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Abstract

How to measure the complexity of a finite set of vectors embedded in a mul-
tidimensional space? This is a non-trivial question which can be approached
in many different ways. Here we suggest a set of data complexity measures
using universal approximators, principal cubic complexes. Principal cubic
complexes generalise the notion of principal manifolds for datasets with non-
trivial topologies. The type of the principal cubic complex is determined
by its dimension and a grammar of elementary graph transformations. The
simplest grammar produces principal trees.

We introduce three natural types of data complexity: 1) geometric (devi-
ation of the data’s approximator from some “idealized” configuration, such as
deviation from harmonicity); 2) structural (how many elements of a principal
graph are needed to approximate the data), and 3) construction complexity
(how many applications of elementary graph transformations are needed to
construct the principal object starting from the simplest one).

We compute these measures for several simulated and real-life data dis-
tributions and show them in the “accuracy-complexity” plots, helping to
optimize the accuracy/complexity ratio. We discuss various issues connected
with measuring data complexity. Software for computing data complexity
measures from principal cubic complexes is provided as well.
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1. Introduction

To our scientific father,
Prof. Alexander N. Gorban,
on his 60th birthday

1.1. What is complex data?

Rapid development of computer-based technologies in many areas of sci-
ence, including physics, molecular biology, environmental research led to ap-
pearance of large datasets that are now characterized as “Big Data” ﬂf]
There is a tremendous challenge in how to store, analyze, query and visual-
ize the Big Data. It is frequently said that the problem of the Big Data is
not only that it is big but also that it is complex. Hence, it would be useful
to define what “complex data” means and be able to measure the complex-
ity. This study is devoted to an attempt to define a way to measure some
particular aspects of data complexity, connected to the data’s geometry.

When somebody says “I have complex data”, this can mean many dif-
ferent things. This can refer to the number of measurements, heterogeneity
of measurement types, variety of descriptor types, complexity of descriptors,
impossibility or inability to formalize or abstract the data (like images), etc.
Here we are going to deal with only one particular aspect of the complexity:
complexity of data point distribution structure in some finite-dimensional
space. We assume that a dataset can be represented as a set of vectors in
a simple but potentially many-dimensional vectorial space. Formally, the
question that we try to answer is: “how complex is the finite distribution of
vectors representing data points in R™ space (m > 1), accompanied by some
simple metrics”?

1.2. Complexity of data as complexity of approximators

There are many ways to approach the question formulated above. For ex-
ample, describing “gestalt” data clusters on the language of algebraic topol-
ogy (persistent data homologies) can provide some insights into the complex-
ity of the vector distribution’s structure E, ] Akaike information criterion
(AIC) can be used to select models of data of minimal complexity, using
information theory M]

Here we develop a different approach: we are going to substitute a distri-
bution of data which potentially contains many points by a simpler object



which will approximate the data (approximator). Then we will study the
complexity of the approximator instead of the complexity of the data itself.
By this we believe that our approximator is a good representation of the
internal structure of the data, of the data’s gestalt. A particular point dis-
tribution is an implementation of this gestalt, which can be characterized by
bigger or smaller scattering of points from it, or by bigger or smaller number
of data points. If two datasets have approximators of identical complexity
then we postulate that the datasets have identical complexity too. This point
of view implies that our measurements of data complexity should in general
rather weakly depend on the number of points and the approximation error.

A good approximator always corresponds to a compromise between its
accuracy and complexity. In classical data approximation methods, number
of centroids in K-means, number of principal components, curvature or length
of the principal curve serve as measures of complexity. A good approximator
is able to catch the hypothetical intrinsic shape of the data distribution
without trying to approximate the data’s “noise” (though “one man’s noise
is another man’s signal” B]) Therefore, limiting approximator complexity
is an important aspect of any data approximation strategy. Hence, if we
provide 1) a measure of the approximation complexity and 2) a method to
limit it, then we can define the complexity of a given data distribution as
the complexity of the corresponding optimal approximator. As in the case of
measuring effective intrinsic data dimension, there might exist a hierarchy of
data complexity levels each corresponding to certain approximation “depth”.

Determining a trade-off between complexity and accuracy of approxi-
mation can be regarded as a particular application of the Structural risk
minimization principle introduced by Vapnik and Chervonenkis in 1974 ﬂa],
if it is understood very generally (initially it was introduced for classifica-
tion problems). Structural risk minimization principle is a model selection
strategy which gives a model minimizing both empirical error and the model
complexity (properly measured).

In practical applications, data approximation means a possibility of com-
pressing the data. Less complex data are easier to store: a million points
in thousand dimensional space can be simply distributed along a straight
line with certain (relatively small) scattering around. Therefore, instead of
storing the whole data massif, one can store the approximator structure, ac-
companied by some uncertainty estimates for various parts of it. This might
be enough for any practical use of the data. This idea is by no means a new
one (going back to the vector quantization ﬁ] and the Minimum description
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length principle, from probability theory B]), but its concrete implementa-
tions and applications remain open questions: there is yet no standard ways
and tools for compressing the vectorial data.

1.3. Principal cubic complexes as universal approrimators

A fundamental problem on the way to implement the idea of looking at
the data’s complexity through its approximation consists in finding rather
universal object able to approximate complex data structures and suggest a
constructive algorithm to compute it. Gorban and Zinovyev in ﬂﬁ] introduced
a good candidate for this role: a principal cubic complex. Exact definition
of it is given in the Methods section. In simple words, principal cubic com-
plex is a Cartesian product of graphs (Figure[I]). One-dimensional principal
cubic complex is simply a principal graph HE] The graphs (factors) used to
construct the cubic complex are produced by systematic application of some
operations from a selected graph grammar. The operations can be scored
according to how much they give in terms of optimization of some objective
function (such as the elastic energy), and the best operation is applied to
transform the graph.

The most trivial graph grammar consists in adding a node without con-
necting it to other graph nodes. This grammar produces the simplest pos-
sible “approximator”: a set of principal points m . The well-known
K-means clustering algorithm | provides a way to estimate position of this
set in dataspace. A bit more complex grammar allows to add a node to one
of the terminal nodes of the graph (having only one or zero neighbours).
This grammar produces one-dimensional grids which can represent curves.
The Cartesian product of simple linear grids gives two-, three- and higher-
dimensional grids able to represent hypersurfaces, embedded in the multidi-
mensional space of data. When they approximate data in the sense of mean-
squared error and satisfy some regularity (like smoothness constralnts they
are called “principal curves” and “principal manifolds” ﬁé
Putting requirement of linearity on these approximating surfaces corresponds
to approximating data by lines and planes, known as Principal Component
Analysis, invented by Pearson in 1901 HE]

Next step in increasing the grammar complexity consists in allowing a
node to be connected to any other node in the graph, or, be inserted in
a middle of an existing edge. This produces an approximator called the
principal tree which is already able to approximate various non-linear and
branching data distributions. In this study we will use this first non-trivial
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case of graph grammar to estimate the complexity of some artificial and real
data distributions.

There exists an infinite number of graph grammars able to produce more
complex approximators (though we should define first the notion of the ap-
proximator’s complexity). Hence, what we mean here by data complexity
will drastically depend on the grammar choice: in other words, on how com-
plex is the “language” which we are going to use in order to describe the
data.

1.4. Three measures of the approrimator’s complexity

We introduce three natural measures of the approximator’s complexity,
similar to the ones suggested in @] 1) Geometrical measure, 2) Structural
measure, 3) Construction measure.

1.4.1. Geometrical complexity

The geometrical measure of complexity estimates the deviation of the
approximating object from some “idealized” configuration. The simplest such
ideal configuration is linear: in this case the nodes of the graph are located
on some linear surface. Deviation from the linear configuration would mean
some degree of non-linearity.

However, the notion of non-linearity is applicable only to relatively simple
situations. For example, in the case of branching data distributions (see
example in Figure , non-linearity is not applicable as a good measure of
geometrical complexity. In [9] it was suggested that a good generalisation of
linearity as “idealized” configuration can be the notion of harmonicity. An
embedment of a graph into multidimensional space is called harmonic if, in
each star of the graph, the position of the central node of the star coincides
with the mean of its leaf vectors (see more formal definition in the Methods).
A linear grid with equally spaced nodes is evidently harmonic. In order to
deal with arbitrary graphs, representing various grids, one has to introduce
the notion of pluriharmonicity, when the harmonicity is required only for a
subset of stars or for some subsets of leaves in the stars (see Methods).

In our estimations of the geometrical complexity using principal trees we
will use the deviation from a harmonic embedment as analogue and general-
isation of the non-linearity.

1.4.2. Structural complexity
The structural complexity defines how complex is an approximator in
terms of its structural elements (number of nodes, edges, stars of various
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degrees). In general, this index should be a non-decreasing function of these
numbers. Contribution of some of the elements (for example, nodes and
edges) might be not interesting for measuring the structural complexity and,
hence, have zero weight (not present) in the resulting quantitative measure.

1.4.3. Construction complezity

We derive our approximators by the systematic application of the graph
grammar operations, in the way which is the most optimal in terms of the
objective function. One can introduce a measure of the approximator’s com-
plexity in the spirit of Kolmogorov (see, for example, ﬂﬁ) The complexity
of a graph can be defined as a minimum number of elementary graph trans-
formations which were needed to produce it, using given grammar. This
measure can be similar to the structural complexity in some implementa-
tions but is not equivalent to it.

1.5. Several remarks on measuring the data complexity

Approximating data by complex objects (curves, trees) in our approach is
connected to non-linear optimization with all its usual problems of existence
of multiple local minima and difficulties in finding the global minimum. We
apply several tricks to better deal with these problems like the quadratic
form of the energy functional to be minimized at each iteration, or gradual
“softening” of the grid [!E], but the problem can not completely disappear,
of course. It is manifested already in the case of approximating data by
principal points: K-means algorithm can converge to several local minima.
Moreover, within the same accuracy, one can approximate the same dataset
by different number of centroids. In practice multiple runs of K-means are
needed to choose the most optimal configuration.

There are several exceptions here. One is approximating data by principal
lines and linear manifolds. In this case, if the data does not have degeneracies
in the covariation matrix, the quadratic energy functional has a unique global
minimum. Another exception concerns a special class of data distributions
which can be characterized as “pseudo-linear”: when the structure of their
underlying “gestalt” can be orthogonally mapped onto a line (see example in
Figure. In other words, this corresponds to the situation when the data
points can be naturally ordered using projection on a straight line. In this
case, finding a close to global minimum is usually easy when starting from
this line as an initial approximation. Kernel PCA @] is another exception:



it is able to produce non-linear approximating surfaces with a unique global
optimum, but the approximation depends on the kernel form instead.

Non-uniqueness of the optimal approximator is tightly connected to the
way of measuring the construction complexity. The graph grammar can con-
tain the operations reducing the graph (for example, removing a node or
an edge). The question is: should we take the actual (historical) number
of graph grammar applications, or forget the learning history and count the
number of steps which would be needed to produce the approximator’s struc-
ture de novo? We leave this question open in this contribution because it
appears as not very crucial in the case of principal trees that we use for
estimating complexity.

Another remark concerns existence of clusters in data distributions. For
the K-means approximator, the number k is the only measure of approxima-
tor complexity. For more complex approximators, when the data is separated
well into clusters, a relevant approach is to analyze the data complexity inside
each cluster separately and then characterize their “global” configuration.
Real Big Data, however, is usually organized differently, with no sharp clus-
ter borders and complicated (non-ellipsoidal) cluster shapes. In some cases,
“clusters” of data can even overlap but still represent two clearly different
gestalts (like two overlapping circular distributions): a case which is very
little addressed in the standard clustering methodology. For our purposes
we will not separate the data distribution into clusters, assuming that the
data distribution represents one relatively compact group of points. However,
this question can be addressed by producing sets of unconnected principal
objects, such as growing “forest of principal trees” instead of growing one
singular principal tree.

Our final remark concerns the dimensionality of data. Is the dimen-
sionality itself an index of data complexity? The answer is not so simple.
Of course, for the linear principal manifold, the number of retained com-
ponents is a natural measure of the approximator’s complexity. For more
complex ones, first, we have to distinguish the dimensionality of the embed-
ding space and the effective intrinsic dimensionality of data (dimensionality
of the gestalt). Only the latter, of course, is in relation with data complexity.
Second, higher dimension of data allows more complex patterns of data but
not necessarily. Third, dimensionality of some objects (even as simple as
principal trees) can be difficult to clearly define. And, moreover, data dis-
tributions are very frequently characterized by varying intrinsic dimension,
being, for example, one-dimensional in some regions of data space and two-
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or three-dimensional in other regions (like the standard Iris dataset). We are
not going to go deeply into these questions which have already been discussed
in the literature ﬂiﬁ, b]

2. Materials and Methods

2.1. FElastic graphs and their (pluri)harmonicity

In a series of works ﬂﬂl, @, @, @, @, @, @] a metaphor of elastic mem-
brane and plate was used to construct one-, two- and three-dimensional prin-
cipal manifold approximations of various topologies. Mean squared distance
approximation error combined with the elastic energy of the membrane serves
as a functional to be optimized. The elastic map algorithm is extremely fast
at the optimization step due to the simplest form of the smoothness penalty.
The methodology described below is based on these ideas.

Let G be a simple undirected graph with set of vertices V' and set of edges
E. k-star in a graph G is a subgraph with k + 1 vertices vy, v, ...,v, € V
and k edges {(vo,v;)|i = 1,..,k}€ E. The rib is by definition a 2-star.

Suppose that for each k£ >2, a family S, of k-stars in G has been selected.
Then we define an elastic graph as a graph with selected families of k-stars
S, and for which for all E®) € E and Sk(j) € Sk, the corresponding elasticity
moduli A; > 0 and p; > 0 are defined.

Primitive elastic graph is an elastic graph in which every non-terminal
node (with the number of neighbours more than one) is associated with a
k-star formed by all neighbours of the node. All k-stars in the primitive
elastic graph are selected, i.e. the Sy sets are completely determined by the
graph structure.

Let E@(0), E®(1) denote two vertices of the graph edge E® and
Sk()(0), ..., Sk(j)(k) denote vertices of a k-star Sy (where Si;)(0) is the
central vertex, to which all other vertices are connected). Let us consider a
map ¢ : V. — R™ which describes an embedding of the graph into a multidi-
mensional space. The elastic energy of the graph embedding in the Euclidean
space is defined as

U?(G) = UL(G) + UL(G), (1)
UL(G) =Y N [le(ED(0) — o(ED))|, (2)
E@)
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Let us make two remarks. The values Ai and py; are the coefficients
of stretching elasticity of every edge E and of resistance to harmonicity
violation for every star Sy 2 (which is an analogue of star “rigidity”). In the
simplest case A\; = Ay = ... = Ay = A(8), ftg1 = g2 = ... = g = p(r), where
s and r are the numbers of edges and stars correspondingly.

UZ(G) penalizes the total length of the edges and thus provides regular-
ization of distances between node positions. After the graph embedding is
computed, \; can be put to zero with little effect on the graph configuration.

A map ¢ :V — R"™ defined on Vertlces of G is pluriharmonic iff for any
k-star Sy U) ¢ S, with the central vertex S ( ) and the neighbouring vertices

S (i), i = 1..k, the equality holds:

w|»—~

S(J

?vlr—‘

Z S(J (4)

Pluriharmonic embedding for primitive graphs is called simply harmonic
embedment. For a perfectly pluriharmonic embedding the last component
U%(G) of the elastic energy is zero, i.e. minimal.

2.2. FElastic principal graph with given structure

Let us choose an elastic graph, characterized by some structure. FElastic
principal graph for a dataset X is an elastic graph embedded in R™ using
such a map ¢q : V. — R™ that corresponds to the minimal value of the
functional

U?(X,G) = MSD(X,G) + U (@), (5)

where the mean squared distance (MSD) from the dataset X to the elastic
graph G is calculated as the distance to the finite set of vertices {y' =
o(v1),..., y¥ = o(vy)}, i.e. for each datapoint the closest node of the graph
is determined and the MSD is the mean of all such squared distances.

2.3. Definition of the elastic principal cubic complex

Introducing principal cubic complexes E] gives a way to use “r-dimensional”
graphs (similar to r-dimensional manifolds, see Figure [I]).
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G = G,xG,

Figure 1: Simple example of a Cartesian product of two factor-graphs.

Elastic cubic complex K of intrinsic dimension r is a Cartesian product
G1 X ... x G, of elastic graphs Gy, ...,G,. We call each G; a factor of the
cubic complex. Each factor is composed of a vertex set V;: hence, the set of
vertices V' of the cubic complex is V =V x ... x V,..

Let us select a factor G, ¢ € 1...r and any node in another factor v; €
V;(j # 7). For a chosen set of vertices V; and a node v; € V;(j # i), there is
a copy of G; in G. It is defined by

1) vertices

(V1 ey Vi1, U, Vi1, ey U ) (0 € V),

2) edges
((Uh cey Ui—1, Uy Uit 1, +oey Ur)u (Uh ey Ui—1, U/7 Vig1y -y U?‘))v (Ua Ul) € Ei7
3) k-stars in the form

(’Ul, ey Vi1, Sk, Vit1y ooy U7«>,

where S}, is a k-star in G;.

For any G; there are ] |V;| copies of G; in G. Sets of edges and k-stars
for Cartesian product arej inions of that set through all copies of all factors.
A map ¢ : V] x ... x V., — R"™ maps all the copies of factors into R™ too.

By construction, the energy of the elastic graph product is the energy sum
of all factor copies. 1t is, of course, a quadratic functional of ¢.

If we approximate multidimensional data by a r-dimensional object, the
number of points (or, more generally, elements) in this object grows with
r exponentially. This is an obstacle for grammar—based algorithms even
for modest r, because for analysis of the rule A — B applications we should
investigate all isomorphic copies of A in G. Introduction of a cubic complex is
useful factorization of the principal object which allows to avoid this problem.
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2.4. Basic algorithm for optimization of the elastic principal graph with given
structure

In the Euclidean space one can apply an Expectation-Maximization (EM)

algorithm for computing the optimal embedding map ¢ of an elastic principal

graph for a finite dataset X.

1. Choose some initial position of nodes of the elastic graph {y! = p(v;),...,y* =

©(vr)}, where k is the number of graph nodes k = |V
2. Calculate two matrices e;;, and s;;, using the following sub-algorithm:
(a) Initialize the s;; matrlx to zero;

(b) For each k-star S with elasticity module p;, outer nodes vy1, ..., Uy
and the central node Uno, the s;; matrix is updated as follows
(1<l,m<k):

SNoNo < SNoNo + Mkis SNyNm < SNyNow + i/ K>
SNoN, <= SNoN, — Mki/ kK, SnNg < SNiNe — Hki/ K
(c) Initialize the e;; matrlx to zero;
(d) For each edge £ with Welght A;, one vertex vy, and the other
vertex vgo, the e;, matrix is updated as follows:

Chiky < Chiky T Nis Choky € Choky T Ai
Chiky € Chiky — Niy Choky € Choky — A
3. Partition X into subsets K;, i =1..k of data points by their proximity
toy,: K;={xeX: :y, =arg mi)@ dist(x,y;) }:

. . K;|6
4. Given K, , calculate matrix a;, = | |3“”5 + ejs + sj5, where 0;5 is the

Kronecker’s symbol.
5. Find new position of {y*, ..., y*} by solving the system of linear equa-

tions
Zajsy |X| Z X

x'eK;

6. Repeat steps 3-5 until complete or approximate convergence of node
positions {y*, ..., y*}.

As usual, the EM algorithm described above gives only locally optimal
solution. One can expect that the number of local minima of the energy
function U grows with increasing the ‘softness’ of the elastic graph (decreas-
ing ju;; parameters). Because of this, in order to obtain a solution closer to
the global optimum, the softening strategy has been proposed, used in the
algorithm for estimating the elastic principal manifold @J]
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2.5. Graph grammars

The graph grammars ] provide a well-developed formalism for the de-
scription of elementary transformations. An elastic graph grammar is pre-
sented as a set of production (or substitution) rules. Each rule has a form
A < B, where A and B are elastic graphs. When this rule is applied to an
elastic graph, a copy of A is removed from the graph together with all its
incident edges and is replaced with a copy of B with edges that connect B
to the graph.

Let us define graph grammar O as a set of graph grammar operations
O ={o4,..,05}. All possible applications of a graph grammar operation o;
to a graph G gives a set of transformations of the initial graph o0;(G) =
{G4, Gs,..., G,}, where p is the number of all possible applications of o; to
G. Let us also define a sequence of r different graph grammars {O®") =
(o, o}, - 00 = {7 0l

Let us choose a grammar of elementary transformations, predefined bound-
aries of structural complexity SC,,.., construction complexity CC,.. and
elasticity coefficients \; and fu; .

Using these ingredients, we can choose the structure of the elastic prin-
cipal graphs among all possible graph structures that can be obtained by
application of the given graph grammar.

Elastic principal graph for a dataset X is such an elastic graph G embed-
ded in the Euclidean space by the map ¢:V — R™ that SC(G) < SCas,
CC(G) < CChaz, and U¥(X,G)— min over all possible elastic graphs G
embeddings in R™.

Note that this definition does not define a unique elastic principal graph:
for the same dataset, one can have several principal graphs with equal U¥? (X, ).

2.6. Algorithm for the principal graph construction

1. Initialize the elastic graph G by 2 vertices v; and vy connected by an
edge. The initial map ¢ is chosen in such a way that ¢(v;) and @(vy)
belong to the first principal line in such a way that all the data points
are projected onto the principal line segment defined by ¢ (v1), ¢(vs);

2. For all j =1...r repeat steps 3-6:

3. Apply all grammar operations from OU) to G in all possible ways; this
gives a collection of candidate graph transformations {G1, Gs, ... };

4. Separate {G1, G, ...} into permissible and forbidden transformations;
permissible transformation Gy is such that SC(Gy) < SCae, Where
SCnaz 1s some predefined structural complexity upper bound;
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5. Optimize the embedment ¢ and calculate the energy functional U? (X, i)
of the graph embedment for every permissible candidate transformation
after optimisation, and choose such a graph G, that gives the minimal
value of the energy functional: G, = arg min U?(X,Gy);

G, Epermissible set
6. Substitute G < Gop;

7. Repeat steps 2-6 until the set of permissible transformations is empty
or the number of operations exceeds a predefined number — the con-
struction complexity.

2.7. Principal trees

Principal tree is an acyclic primitive elastic principal graph.

‘Add a node, bisect an edge’ graph grammar O applicable for the
class of primitive elastic graphs consists of two operations: 1) The transfor-
mation “add a node” can be applied to any vertex v of G: add a new node z
and a new edge (v, z); 2) The transformation “bisect an edge” is applicable
to any pair of graph vertices v, v’ connected by an edge (v, v'): delete edge
(v,v"), add a vertex z and two edges, (v, z) and (z,v"). The transformation of
the elastic structure (change in the star list) is induced by the change of the
tree’s edges, because the elastic graph is primitive. Consecutive application
of the operations from this grammar generates trees, i.e. graphs without
cycles.

Application of the “add a node” graph grammar operation should be
accompanied by a concrete recipe on how to define the map ¢(z) (position
in the data space) for a new node z. When there is only one node in the
graph, there is no evident strategy on how to do this. In practice we start
constructing the graph from two nodes connected by an edge, positioned on
the first principal component. Another solution is to use a random node
positioning: however, most probably the first iteration will orient it close to
the first principal component.

If the graph contains two or more vertices then the harmonicity is used
to define the map ¢(z). For the transformation “add a node”, the newly
formed k-star containing the new node z has to be pluriharmonic, and the
formula () is used to compute the map ¢(z). For the “bisect an edge” graph
grammar operation, the newly formed rib (a 2-star) with the central vertex
z should be pluriharmonic. In this case, the formula to define the map ¢(z)

is very simple: ¢(z) = £ (¢(v) + (V).
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‘Remove a leaf, remove an edge’ graph grammar Ok applicable for
the class of primitive elastic graphs consists of two operations: 1) The trans-
formation ‘remove a leaf’ can be applied to any vertex v of G with connec-
tivity degree equal to 1: remove v and remove the edge (v,0’) connecting v
to the tree; 2) The transformation ‘remove an edge’ is applicable to any pair
of graph vertices v, v’ connected by an edge (v, v'): delete edge (v,v’), delete
vertex v/, merge the k-stars for which v and v' are the central nodes and
make a new k-star for which v is the central node with a set of neighbours
which is the union of the neighbours from the k-stars of v and v'.

Also  we should define the structural complexity measure
SC(G) =SC(|V|,|E|,|Ss],---,|Sm])- Its concrete form depends on the ap-
plication field. Here are some simple examples:

1. SC(G) = |V]: i.e., the graph is considered more complex if it has more
vertices;

A _
2 sC(G) = | 1S5 1S5 < b and 3 I5i] =0

Y

o0, otherwise

i.e., only by,., simple branches (3-stars) are allowed in the principal tree.

Using the sequence {OWrow) Olorow) O(shrink)1 in the above-described al-
gorithm for estimating the elastic principal graph gives an approximation to
the principal trees. Introducing the ‘tree trimming’ grammar O ™% allows
to produce principal trees closer to the global optimum, trimming excessive
tree branching and fusing k-stars separated by small ‘bridges’.

2.8. Complexity measures used in the examples

In the examples below, we used principal trees constructed for several
artificial and real-life data distributions, using the following forms of the
complexity measures.

For measuring the geometrical complexity, we used the last term in the
energy function (B]), which penalizes deviation from the harmonic tree shape.
For measuring complexity here, we put all p5; = 1. We found out that it is
convenient to multiply this term by the number of nodes squared, i.e. we used
the following form of the geometrical complexity GC of graph G embedded
in the multidimensional space by the map ¢:

GC(G) = N2, UL(G). (6)

odes
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Using the N2 .. multiplier makes GC' closer to the sum of squared second

derivative discrete estimations for the ribs and its analogue for the stars, i.e.
3 @S ) —ke(S7 (0))
(2 38 e @)= (0)])2
decreasing the average length of the graph’s edges, and the N2 ,  multiplier
compensates this effect. We have checked numerically the correct scaling of
([6) with the increasing number of nodes for several typical growing graphs.
For the structural complexity, below we do not introduce any quantitative
measure, but use a symbolic barcoding for showing the number of structural
graph elements (nodes, 3-stars, 4-stars, etc.):

. Adding new nodes when bisecting edges results in

SC(G) = Nk—stars|~-~|N4—stars|N3—stars||Nnodes- (7)

For example, “2|6]|15” means a principal tree with 15 nodes, 6 stars of
order 3 and 2 stars of order 4. We do not show the number of edges and ribs
in the barcode because the number of edges in the tree is always N, o405 — 1.
The number of ribs also can be easily computed from the number of nodes
and number of k-stars (k > 2), and it does not characterize the tree topology,
but rather the number of nodes inserted in the tree branches.

The construction complexity of the principal trees which are produced
by only applying grammar operations adding one node at a time, equals,
evidently, N,oqes — 1, which makes it a particular case of the structural com-
plexity. This is also true if only the final structure of the principal tree is
analyzed forgetting the historical sequence of graph grammar applications.
Of course, the construction complexity can be different from the structural
complexity in the case of less simple graph grammars. Nevertheless, one can
imagine a scenario when the historical construction complexity is not trivial
for principal trees also. For example, this might be achieved if no trim-
ming operation is applied when the increase of the elastic energy is too big.
Then a sequence of graph grammar applications can contain any number of
growing and trimming operations (provided that the first is bigger than the
second, of course), and the resulting historical construction complexity does
not equal N, ,4.s — 1. Having all this in mind, we nevertheless do not use the
construction complexity explicitly in the examples below.

2.9. Awailable implementations

Method for constructing elastic principal graphs (including principal curve,
principal manifold and principal tree) is implemented in Java language. User-
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friendly graphical interface for constructing principal manifolds is available
at |http://bioinfo.curie.fr /projects/vidaexpert. User-friendly graphical in-
terface (Java-applets) for constructing principal trees in 2D is available at
http:/ /bioinfo.curie.fr /projects/elmap. The software found applications in
microarray data analysis, visualization of genetic texts, visualization of eco-

nomical and sociological data and other fields , , @, , ]

3. Results and Discussion

3.1. Test examples

Let us first introduce the “accuracy-complexity” plots that we will use to
find the optimally complex data’s approximator (see examples in Figure [2)).
On the abscissa of the plot we show the Fraction of Variance Explained
(FVE), i.e. a unity minus ratio between the Mean Squared Error and the
total data variance. The Mean Squared Error is measured with respect to
the closest distance to the approximator as a polyline, i.e. to its closest node
or the closest edge. On the ordinate of the plot we show the geometrical
complexity defined by the formula (6)). The absolute value of the geometrical
complexity is in general not comparable between datasets (because its scale
changes with the intrinsic data dimensionality and the spatial data scale).
What is informative in the plot is the structure of minima and maxima
of the geometrical complexity as well as its behavior when the approximator
approaches 100% of explained variance. The changes in structural complexity
are shown in the plot by vertical lines labeled by the barcode defined in ().

To calibrate and understand the behavior of the “accuracy-complexity”
graph, we used several simple 2D distributions (Figures RI3). For exam-
ple, a simple linear distribution shown in Figure leads to a very simple
“accuracy-complexity” plot. The geometrical complexity remains close to
zero but drastically grows up close to FVE ~ 0.99. At some point, the ap-
proximator starts to produce branches which, evidently, approximate some
noisy local data structures and, hence, correspond to excessive complexity.
In Figure ,right we show the optimal (corresponding to a not very deep
local minimum) principal tree containing 10 nodes, no branching, and the
principal tree obtained at 34 nodes, containing two 3-stars (an example of
an approximator whose structure is too complex with respect to the data
distribution).

Figuregives an example of a pseudo-linear distribution. Its “accuracy-
complexity plot” contains a pronounced local minimum at FVE = 0.99.
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Further increase of the number of nodes almost does not allow to increase
accuracy. Thus, the optimal configuration of the approximator is achieved
at 32 nodes and no branching.

A simple example of a branching data distribution is shown in Figure
and Figure . In Figure we apply a reduced grammar “Add a node to
a terminal node” which produces the principal curves (not trees). The com-
plexity of the approximator in this case grows exponentially and suddenly
saturates at F'VE ~ 0.971 and 31 nodes. 16 nodes are needed to produce a
principal curve grid approximation for the accuracy F'VE a~ 0.92. By con-
trast, the full principal tree grammar “Add a node to any node, Bisect an
edge” needs only 6 nodes to achieve the same accuracy (Figure , and
this corresponds to a local minimum of the complexity. Further increase
of the accuracy does not lead to any significant increase of either geometri-
cal or structural complexity. Figures and illustrate dependence of
the complexity measures on the grammar chosen: the correct principal tree
grammar allows to construct much more optimal approximators.

Figure [ represents an interesting non-trivial example of a “tree-like”
structure with several complexity scales. The “accuracy-complexity” plot
contains two pronounced local minima: at FVE ~ 0.87 and FVE ~ 0.98.
These two minima correspond to two scales of data approximation. The
first scale depicts the data structure as a simple 3-star (corresponding to the
barcode 1||4). The second scale corresponds to the “gestalt” formed by the
data points: it is a combination of further branching, containing one 4-star
and two 3-stars (the barcode is 1]2||14). Further improvement of accuracy
(after FVE & 0.98) is quite expensive in terms of geometrical complexity.
The geometrical complexity increases by 4-fold and the number of nodes by
3.5 fold to gain only 1.5% of the total variance explained.

3.2. Exzamples from UC Irvine Machine Learning Repository

We constructed principal trees for several datasets from the UCI Machine
Learning Repository ﬂﬂ] and plotted the “accuracy-complexity” graphs for
them (Figure []). In this Figure, both changes in the geometrical as well as
structural complexity (using verrtical lines labeled by the structural com-
plexity barcode) are visualized as a function of the approximator’s accuracy.

The plots show significantly different complexity of the datasets which
does not necessarily coincides with dimension of the dataset or the number
of points in it. For example, the Abalone dataset with its 4177 points repre-
sents a simple pseudolinear distribution of points. Approximating it makes
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sense until the principal tree starts to form branches. When this happens,
the complexity estimation abruptly goes up, meaning unnecessary growth of
the approximator’s complexity. Quite oppositely, the Iris dataset (150 data
points) shows a non-trivial landscape of complexity, with many local minima
and a constant growth of the structural complexity. The Wine dataset has a
local minimum at only four nodes, forming a 3-star: this corresponds to exis-
tence of 3 well-separated ellipsoidally shaped clusters in the dataset. Further
improvement of the approximation gradually and exponentially increases the
approximator’s complexity, and, after it is increased more than tenfold, the
principal tree starts to branch further.

Finally, the forestfires dataset shows increase of accuracy and complexity
in two epochs. During the first epoch, the geometrical complexity practically
does not grow. In the second epoch it increases approximately linearly with
the accuracy and saturates at (FVE = 0.72). Interestingly, at the point
of the epoch change (FVE =~ 0.52), the structural complexity fluctuates
from “2[|117‘to “3||12”, back to “2||16” and further to “3||27”, due to the
trimming grammar applications (it becomes more advantageous to decrease
the structural complexity during 11 iterations).

4. Conclusion

In the conclusion we should, first of all, repeat the principal guiding idea
of this study: good approzimator is always characterized by a balance be-
tween the approrimation accuracy and the approximator’s complexity. We
define the data complexity as the complexity of its optimal approximator.
Given the type of the approximator, one can estimate its complexity with re-
spect to a dataset by looking at the “accuracy-complexity” plot: the optimal
approximator will correspond to such a point where the further increase of
accuracy leads to the drastic increase of complexity. Often this corresponds
also to a local minimum of the approximator’s complexity. Several local min-
ima of the complexity landscape correspond to several “scales” of complexity
in the data distribution, just as there exist multiple scales in estimating the
intrinsic data dimensionality.

Good and flexible approximators allowing gradual increase of its complex-
ity are principal cubic complexes, which can be constructed using a graph
grammar. The simplest graph grammar “add a node; bisect an edge” pro-
duce principal trees which can be used for measuring the data complexity and
choosing an approximator with the most optimal accuracy/complexity ratio,
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corresponding to the selected complexity scale. We applied this method to
several artificial and real-life datasets, and showed that the “accuracy/complexity”
plot contains enough information to justify such a choice.
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