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Abstract

Space weather phenomena have a significant impact on satellite communications but are
not well understood. In-situ measurements of the ionospheric environment would signif-
icantly improve the understanding of the origins and progressions of these phenomena.
Whilst previous scientific satellites have measured the ionospheric plasma, they only pro-
vide a limited view due to their small number. It has previously been suggested that a
swarm of femto-satellites (PCBsats) could be used to collect high quality temporal and
spatial measurements, whilst being financially effective.

To give the measurements any scientific value, the location and time of each measure-
ment needs to be accurately recorded. The PCBsat prototype used a solution that, due
to export requirements and fundamental limitations with the device, would not be capa-
ble of working in space. Several location and timing solutions have been investigated,
with none matching the precision, accuracy, power consumption and physical size of a
GNSS receiver (i.e. a receiver of GPS, GLONASS, Galileo etc. signals). To further re-
duce the power consumption, a novel distributed GNSS receiver has been designed and
built, where the largest computational burden (calculating the receivers position) is of-
floaded to a relaying node. This use of distributed computing has been shown to reduce
the power consumption of the receiver by between 5.6 % and 13.3 % - which is equivalent
to between 2 and 5 times the power consumption of the PCBsat’s main processor.

In addition to this, this novel approach has the additional benefit of being used in a
hybrid scheme. Where information required to calculate a receiver’s position is stored so
that it can be used with higher precision ephemerides that are publicly available but are
delayed by up to three weeks. This has many applications as it can increase the utility of
collected data, at a reduced cost.

As the intended femto-satellite application relies on a link to relaying satellites, the
dynamics, in particular the dispersion, of the intended constellation needs to be known.
This has been modelled using a novel orbit simulator. The orbit simulator is the first of
its kind to model multidimensional free molecular drag to simulate the effects of the low
density atmosphere on a satellite. This allows the dispersion of a constellation of satellites
to be investigated with maximum separations for the PCBsat being presented.
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Chapter 1

Introduction

Femto- and pico-satellites, satellites with wet masses between 10 g and 1 kg are becoming
increasingly more useful for many scientific missions. In particular, their lower manufac-
turing and launch costs, which are predominately determined by weight, make them very
attractive for multi-node satellite sensor networks. However, being able to accurately and
reliably locate each individual node is critical to many tasks, but there is currently a lack
of systems that are able to do this on a very restricted power budget, such as that of a
femto-satellite. Therefore, the aim of this research was to devise a method of locating a
femto-satellite that would fit within these restrictive power constraints.

This work investigates and evaluates the available technology and, consequently, de-
signs and implements a novel technique for GNSS receivers that can reduce the power
consumption on a node by between 5.6 % and 13.3 %. In addition to this, a novel hy-
brid design is suggested that can, with a small overhead, increase the accuracy of the
receiver’s calculated positions, and an information based acquisition method is presented,
which, through the use of successive acquisition scans, can acquire visible satellites which
are below the search threshold.

To complement this, a novel orbit simulation is presented that can accurately model
the drag effects on femto-satellites, with the maximum dispersion amount for a femto-
satellite swarm being given.

This chapter discusses the background of this work, with the second chapter describ-
ing the mission concept. The third chapter discusses the design of GNSS receivers, the
novelty in the distributed design and the initial prototypes, with the fourth chapter detail-
ing the tools that were constructed for this work. The fifth and sixth chapters present the
software and hardware versions of the receiver design and the seventh chapter details the
orbit simulation that was designed to model the dispersion of femto-satellites. Finally,
chapter eight concludes the work and suggests how it could be furthered in the future.

During the course of this work, a paper on the design of the novel distributed receiver
was accepted by and presented at the 65th International Astronautical Congress (IAC14)
held in Toronto, Canada - Griffiths et al. (2014).
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1.1 Background

The effects of space weather phenomena can interfere with satellite communications, with
a variety of implications. One such phenomena, that has only been investigated to a lim-
ited extent, is the formation of ionospheric plasma depletions, which are described in
section 1.2.1. Due to the highly dynamic nature of plasma depletions, frequent measure-
ments are required to understand their formation, propagation and environmental depen-
dencies. Whilst previous measurements have provided useful data, they lack temporal or
spatial resolution, with high temporal and spatial resolution, practically, requiring large-
scale in-situ measurements. This could be achieved through the use of several traditional
mini-, or larger, satellites, however, a more cost-effective, and potentially higher resolu-
tion, solution is possible through the large-scale use of pico- and femto-satellites. This,
along with satellite design and construction, is described in section 1.3, with a potentially
suitable plasma sensor discussed in section 1.2.2. As such a large sensor network relies
on a large number of nodes, and to make the collected data meaningful, it is important for
each node to be able to locate itself, to reduce the complexity in the management of the
satellites. The most practical location method, for this application, is through the use of
GNSS, which is discussed in section 1.5.

1.2 Space weather

Space weather is the category of research that covers the effects that the Sun and the
Earth’s upper atmosphere, in particular the magnetosphere, ionosphere and thermosphere,
have on space and terrestrial technology (Bothmer and Daglis, 2007). This broad cate-
gorisation is due to the effects being caused by the solar activity of the Sun and, to a
significantly lesser extent, cosmic radiation, which is, largely, from outside the solar sys-
tem. With the increasing use of both terrestrial and space technologies, in a vast array of
applications, the effect that space weather has cannot only disrupt day-to-day life, with
the associated financial costs, but also has the potential to endanger life, making it a par-
ticularly significant area of research (Bothmer and Daglis, 2007).

The thermosphere is a part of the upper atmosphere, between the mesosphere and
exosphere, that is characterised by its high temperature. It contains the entirety of the
ionosphere and parts of the magnetosphere, with the magnetosphere beginning above the
ionosphere and extending into the exosphere (Bothmer and Daglis, 2007). The magne-
tosphere is a plasma and covers a large part of the atmosphere, where it mainly interacts
with the solar wind, which is primarily studied using magnetohydrodynamics (MHD).
The ionosphere is characterised by its partial ionisation by solar ultra-violet radiation,
which results in a neutral gas and a plasma (Kelley, 2009). This dependency on the Sun,
results in a large difference between the day and night sides of the ionosphere, as well as
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Figure 1.1: Temperature and density of the atmosphere up to 1000 km altitude, generated
by the NRLMSISE-00 empirical model.

variations due to the solar cycle - the changing of the Sun’s activity over an approximately
11 year period. Due to these variations, the ionosphere does not have an exact definition
in terms of altitude, but it is often taken as being between 70 and 1000 km (Allnutt, 2011).

One component of space weather is the solar wind, the name given to the charged par-
ticles that are emitted by the Sun. These particles are deflected by the Earth’s magnetic
field into the magnetosphere, where they disrupt its balance. One well known result of
this is the aurorae, where the charged particles collide with atmospheric particles, which
dissipate the gained energy through the emission of light. Whilst this produces an ele-
gant display, the injection of charged ions into the magnetosphere can pose significant
problems to spacecraft. In particular, the Van Allen belt, which consists of two layers of
magnetically confined charged particles. The Van Allen belt occurs above the equator be-
tween 1.2 and 7 times the Earth’s radius (approximate altitudes of 1300 km and 45 000 km,
respectively), however, the lower layer contains the South Atlantic Anomaly, where the
radiation belt has a minimum altitude of approximately 250 km. This poses a problem
for spacecraft as the charged particles can collide with electronic equipment causing both
temporary and permanent damage to those that are not adequately protected. The first
victim of this was the Bell Laboratories’ Telstar 1 communication satellite, launched in
1962, that failed within 5 months of launch (Bothmer and Daglis, 2007).

The ionosphere is affected by space weather in two main ways, the first is directly,
where ultra-violet radiation ionises the atmospheric gas, and the second is through the
magnetosphere, where particle precipitation increases the conductivity of the ionosphere
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and convection induces electric fields into the ionospheric plasma. This couples the iono-
spheric plasma to the solar wind, which has a non-constant flux. This results in variations
in the ionosphere, that can induce currents into electrical equipment on the Earth’s sur-
face. These were first noticed in telegraph wires between Derby and Birmingham in
1847 (Bothmer and Daglis, 2007). Although this was non-destructive, short-term, large-
magnitude variations in the solar wind, such as those caused by solar flares, can cause
geomagnetic storms to occur in the magnetosphere. This can result in large induced cur-
rents, which can damage many technological systems, such as power systems. Several
cases of this occurred in the late 1980s and early 1990s, with one particular example in
north-eastern USA in March 1989 costing several million US dollars in damages (Both-
mer and Daglis, 2007).

1.2.1 Ionospheric plasma depletions

As the ionosphere lies entirely, or partially, between the Earth and orbiting spacecraft,
variations in its composition can affect radio signals and thus communications with satel-
lites. These variations are in the density of the ionospheric plasma, with the density
decreasing by up to 3 orders of magnitude inside a depleted region (Huang et al., 2011),
and are therefore referred to as ionospheric plasma depletions. As plasma depletions can
vary in size from the order of metres to kilometres, depletions smaller than 1000 km are
referred to as plasma bubbles, with depletions larger than 1000 km being referred to as
broad ionospheric depletions (Huang et al., 2011). Despite the variation in size, both
plasma bubbles and broad depletions are thought to be caused by the same effect, the
Rayleigh-Taylor instability. This is where an interface is formed between two fluids with
different densities, with the denser fluid being on top1, which is an unstable configuration.
The study and monitoring of plasma depletions is very important for satellite communi-
cations, with low altitude satellites, those below 1000 km, regularly observing localised
drop-outs in the plasma density along their orbital track (Krause et al., 2005).

Bubble formation

Plasma bubbles are formed in the post-sunset equatorial region of the ionosphere, in the
equatorial ionisation anomaly - a channel that contains a higher concentration of ions,
which is characterised by two peaks in the ion density at approximately ±15 - 20 degrees
latitude of the magnetic equator (Magdaleno et al., 2012). With bubble formation being
preceded by the pre-reversal enhancement phenomena, where the evening equatorial F-
layer of the ionosphere (between 150 and 800 km) is lifted by an eastward electric field
(Magdaleno et al., 2012). After sunset, the Rayleigh-Taylor instability is created in the
bottom-side of the F-layer, at an approximate altitude of 250 - 300 km (Takahashi et al.,

1With respect to gravity.
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2001), by ions recombining at a faster rate at lower altitudes. This results in a steep
upward gradient in the density of the plasma, between the depleted bottom-side and the
higher density top-side of the F-layer. With plasma bubbles being generated as narrow
east-west channels in the equatorial region, that expand to higher latitudes as time pro-
gresses, along magnetic flux tubes (Takahashi et al., 2001). Additionally, a fountain effect
can be generated in the F-layer, when the eastward electric and northward magnetic fields
cause an upward vertical plasma drift velocity. This produces an uplift in the plasma at the
magnetic equator, with the plasma being redistributed to higher altitudes along magnetic
field lines (Magdaleno et al., 2012). It is worth noting that plasma bubble generation is
affected by solar activity, with a greater number of bubbles being generated when solar
activity is higher (Magdaleno et al., 2012).

Measurement methods

There are several methods that have been used to observe plasma bubbles, but they can
be broadly categorised by how the plasma is measured, either directly, where the plasma
properties - such as the density and temperature - are measured, or indirectly, where the
effects of the plasma bubbles are measured and the plasma properties are inferred. The
C/NOFS (Communication/Navigation Outage Forecasting System) satellite was an exam-
ple that directly measured the plasma. It was launched in 2008 in to a 13°, 405 - 845 km

orbit (Huang et al., 2011), and measured the ionospheric plasma, neutral winds and the
strength of scintillation producing irregularities (de La Beaujardière et al., 2009). It did
this by measuring the electric field, using three orthogonal 20 m booms, and the ambient
ion and electron densities, using a 512 Hz Langmuir probe, producing a spatial resolu-
tion of approximately 13 m. After 7 years of operation, it burned up on re-entry in 2015
(NASA, 2015a).

An alternative measurement method of plasma depletions is to observe atmospheric
air-glow, which is where ions in the atmosphere chemically react to, or cosmic rays in-
cident on the atmosphere, produce luminescence. Takahashi et al. (2001) used oxygen
emissions at 630 and 557.5 nm to identify plasma depletions, as the intensity at these
wavelengths is significantly reduced due to the reduction in oxygen ions.

As the effect of plasma bubbles on radio signals is dependant on the frequency of the
signal2, one indirect method of measuring depletions is to observe variations between the
L1 and L2 GPS signals (at 1575.42 MHz and 1227.60 MHz, respectively). From this it is
possible to infer the slant Total Electron Content (sTEC), that is the electron density along
the path of the signal, which is significantly reduced inside a plasma bubble (Magdaleno
et al., 2012).

2In a similar way that diffraction of light is dependent on frequency.
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From C/NOFS’ data, the upward ion velocity inside a plasma bubble is typically be-
tween 200 and 300 m s−1, and both the growth and decay times of plasma bubbles is
greater than 3.3 hours, which is consistent with the growth time of approximately 4 hours
from simulations (Huang et al., 2011). Combining the C/NOFS data with data from the
Challenging Minisatellite Payload (CHAMP) and Defense Meteorological Satellite Pro-
gram (DMSP) satellites, de La Beaujardière et al. (2009) found that the depletions cover
approximately 14 degrees of longitude and 50 degrees of latitude, with depletions oc-
curring more often, and to a greater extent, in the America-Africa and India-Indonesia
longitude sectors. de La Beaujardière et al. (2009) also report that C/NOFS repeatedly
observed deep plasma depletions close to the crossing of the E-layer terminator, as well
as unexpected depletions at dawn.

From air-glow images, Takahashi et al. (2001) observed that plasma bubbles fre-
quently show a branched structure from the main stem, with the bifurcation most likely
being caused by vertically modulated electric fields within the bubble, causing the plasma
to drift from the centre of the bubble laterally. However, other methods of bifurcation are
possible, with more data being required (Takahashi et al., 2001).

Magdaleno et al. (2012) found, from GPS based observations, that during years of
high solar activity (2000/01), plasma bubbles were largely found at the equator; during
medium solar activity (2004/05), plasma bubbles were largely located at ±10° magnetic
latitude; and during low solar activity (2008), the plasma bubbles were located at ±14°
magnetic latitude. Additionally, the occurrence of plasma bubbles was slightly higher
in the northern hemisphere than southern, and the number of occurrences was lowest
in May to August. Magdaleno et al. (2012) describe a typical life of a plasma bubble,
with generation occurring at approximately 7 pm local time, followed by two hours of
rising. The bubbles then peak for approximately an hour before gradually decreasing
until sunrise.

Discussion

Both Takahashi et al. (2001), observing plasma bubble bifurcation, and de La Beaujardière
et al. (2009), observing unexpected depletions at dawn, illustrate the fact that plasma
bubbles are not fully understood. This is largely due to a lack of experimental data on
plasma bubbles, rather than a technological or theoretical boundary, with Saylor et al.
(2007) describing the data as ‘sparse’ and ‘very undersampled’. Use of indirect methods,
such as air-glow and GPS scintillations, provide reasonably high temporal resolution over
a given area, but lack spatial resolution. Additionally, the reliance on ionospheric models
to calculate certain properties of the plasma, such as the drift velocities (Magdaleno et al.,
2012), is not ideal. The use of direct measurements results in significantly better spatial
resolution, but due to the limited number of satellites, the overall temporal resolution is
low - hence why de La Beaujardière et al. (2009) combined data from several satellites.
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For significant gains to be made in the understanding of plasma bubbles, high spatial
and temporal resolution measurements of the ionospheric plasma are required. With high
spatial resolution being very difficult to achieve through indirect measurements, due to
the large number of observing stations needed, the only practical method of achieving
the required resolution is through the use of large scale in-situ measurements. Whilst
these measurements could be achieved through the use of many traditional-sized scientific
satellites, similar in size to C/NOFS for example, the cost of such a programme would be
prohibitive. The use of very small satellites, those below 1 kg (such as pico- and femto-
satellites), operating as a sensor network, however, would have a significantly lower cost,
whilst still providing the necessary resolution. For this to be feasible, it is necessary that a
small enough sensor exists, that is capable of preforming the required measurements with
enough resolution. One such sensor is described in the following section (1.2.2).

As plasma bubble generation is confined to the equatorial region, in-situ observations
of bubble formation are best observed in an equatorial orbit, with observation of bubble
evolution requiring an inclined orbit. With the majority of plasma bubbles remaining
within 50 degrees of latitude, centred on the equator, this only needs to be a relatively
small inclination, with the orbit being near-equatorial. Additionally, an elliptical orbit,
with the perigee towards the local sunset, would allow the evolution of the plasma bubbles
to be observed to a certain extent. A polar orbit would be the least useful of the low Earth
orbits, as only a small part of each orbit would be within the observation region. However,
a polar orbit would allow both sides of the equator to be observed by a single satellite,
although this is unlikely to be a useful attribute.

1.2.2 MESA sensor

There are many plasma sensors that can be used in space, however many of them are
quite large for pico-satellites3. The miniaturised electrostatic analyser (MESA) sensor is a
compact electron and ion spectrometer designed by the United States Air Force Academy
(USAFA), consisting of an array of analysers, each having a volume of 1.5 cm3, with an
array of 1920 analysers resulting in a sensor size of 5× 5× 0.5 cm3 (Balthazor et al.,
2009; Enloe et al., 2003; Krause et al., 2005). Each sensor consists of three plates, con-
taining etched holes, that are separated by insulating spacers, that act as an S-bend for
incident particles. Each plate has a certain potential applied to it, so that the sensor acts
as a band pass for a certain energy of either electrons or ions, with the particles being
detected as a current on a biased collecting plate, this is shown schematically in figure
1.2b (Enloe et al., 2003). As the sensor is an array of analysers, any arbitrary size can
be used which can reduce the volume and mass to that required, at the cost of decreas-

3That is, taking up the majority of a 1U cubesat.

15



(a) A prototype sensor (Balthazor,
2013)

(b) Simulation of ion behaviour in the sensor
(Barnhart, 2008)

Figure 1.2: MESA sensor

ing the signal to noise ratio. For example, a 100× 20× 2.54 mm3 sensor has a mass of
approximately 45 g (Balthazor, 2013).

Due to the geometry of the sensor, the analysers’ aperture has to be within ±4° of
the satellite’s ram direction (Balthazor et al., 2009), a constraint that is potentially quite
difficult to achieve on smaller than pico-satellites. Additionally, to detect ions, the MESA
sensor requires a magnetic field of less than 20 µT, which means that it cannot be used on
satellites with fixed permanent magnets for attitude control, without being significantly
redesigned (Balthazor, 2013).

Another small plasma sensor, and the only available alternative to the MESA sensor,
is the Conceptual and Tiny Spectrometer (CATS) designed at University College London,
which has a fixed size of 2× 2× 1 cm3 (Bedington et al., 2011). It has a structure that
is reminiscent of the hemispherical analysers used in many spectroscopy applications,
with the sensor consisting of two concentric domes at the same potential. Electrons enter
horizontally through the top of the dome and are deflected through 90 degrees to detectors
at the domes’ base. The detectors were originally designed to be micro-channel plates
(MCPs), with more recent prototypes using CCDs (Bedington et al., 2011). Both MCPs
and CCDs used in this way will degrade with time, with the degradation dependant on the
environment, potentially limiting the lifetime of such sensors. However, for short lifetime
missions, this degradation is unlikely to significantly affect the data collection, with the
radiation susceptibility of CCDs being a much more likely source of error. This, with the
fixed sensor size, are limitations that the MESA sensor does not have, without the CATS
sensor having any particular advantages over the MESA sensor. Additionally, as the CATS
sensor has a more complicated structure, it is likely to cost more to manufacture than
the MESA sensor, which could significantly increase the cost of a large sensor network.
Therefore, based on the grounds of flexibility and cost, the MESA sensor is the most
suitable for the pico-/femto-satellite mission envisaged by this research.

As the MESA and CATS sensors are the only two available small plasma sensors, they
represent the state of the art.
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1.3 Satellites

Satellites are largely categorised by their wet mass, that is their mass at launch, as it is
the main factor that affects the launch costs. A system of SI-style prefixes are frequently
used, where micro-satellites are those between 10 and 100 kg, nano-satellites are between
1 and 10 kg, pico-satellites are between 100 g and 1 kg, and femto-satellites are between
10 and 100 g. Additionally, the category of mini, or small, satellites is sometimes used for
wet masses between 100 and 500 kg.

With both the cost and size of technology decreasing, smaller satellites are now able
to perform more meaningful tasks. It is because of this, that the cubesat standard was
created by the California Polytechnic State University in 2001, to provide a standardised
form factor and deployment system, that reduces the launch costs. The standard cubesat
form is a 1 litre cube, measuring 10× 10× 10 cm3, with a maximum wet mass of 1.33 kg

and is referred to as a 1U (one unit) cubesat. Larger cubesats are also in the standard, with
the 2U being 20× 10× 10 cm3 and less than 2.7 kg, and the 3U being 30× 10× 10 cm3

and less than 4 kg - effectively combining multiple 1U cubesats along a single axis. The
3U cubesat is the largest available as it is the largest cubesat that can fit into the cubesat
deployment system, the P-POD.

As satellites are complex systems, they are often broken down into subsystems, and
whilst there are variations in the subsystem naming and contents, they can generally be
defined as:

AOCS Attitude and Orbit Control System - responsible for the determination and con-
trol of the satellite’s attitude and orbital position, through passive or active control
methods.

Comms Communications system - typically responsible for the communication with the
ground station, including telecommand, although can be with other satellites.

OBDH On-Board Data Handling - the main processing behind the satellite, implement-
ing the telecommand and controlling the other subsystems depending on the satel-
lite state. As the name suggests, it is also responsible for buffering the data between
the subsystems and the ground station.

Payload The subsystem that performs the mission specific task, such as data collection
in scientific satellites. Typically, the payload will consume a large proportion of the
power budget.

EPS Electrical Power System - responsible for providing a reliable power supply to the
satellite, including the steering of moveable solar panels.

Thermal Thermal system - responsible for maintaining the satellite’s temperature within
certain limits, for example, by enabling heaters.
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In the following section, an overview of the current state of the art for pico- and nano-
satellites is given, with a particular emphasis on the OBDH subsystem.

1.3.1 Pico- and nano-satellites

In a review of post-1997 pico- and nano-satellite missions, Bouwmeester and Guo (2010)
highlight that all the satellites were either secondary or tertiary payloads of the launch
vehicle. This is a trend that has continued to the present day, partly helped by the cubesat
standard, but is mainly due to the large costs of launching a satellite as the launch vehicle’s
primary payload.

AOCS

Bouwmeester and Guo (2010) found that only 9% of the reviewed satellites had orbital
control, of which, the majority were testing new propulsion technologies, with the orbital
control system being a payload rather than a subsystem. However, the vast majority, 80%,
used attitude control, of which, half used passive control methods, that is hysteresis rods
and static magnets, with active control largely being provided by magnetorquers, with
momentum based control methods being used infrequently. The majority of the reviewed
satellites used the simplest attitude control solution possible, with the main aim of the
attitude control being to reduce the rate of the satellite’s spin, to increase the reliability of
the communication and power generation (Bouwmeester and Guo, 2010). However, some
15% of the reviewed satellites used attitude control to point an instrument, however, the
achieved accuracy was significantly less than that of larger satellites. Bouwmeester and
Guo (2010) also note that 16% of the reviewed satellites used GPS receivers, which were
likely to be used for logging of orbital kinematics rather than accurate timing; however
the authors do not discuss how successfully they were used and any errors or problems
that occurred.

For orbit control, several types of electric and chemical propulsion systems have been
suggested for pico- and nano-satellites, including plasma and arc thrusters. However, only
the chemical propellent sulphur hexafluoride (SF6), used in a cold gas thruster, has been
flight tested (Selva and Krejci, 2012). Despite this, current technology is capable of active
formation flying required to maintain a constellation, although passive formation flying,
using controlled drag, has also been suggested for constellations (Selva and Krejci, 2012).

The design of the attitude control is typically made as simple as possible, unless a
mission requirement states otherwise. The lack of orbit control is likely due to the added
complexities combined with the short mission lifetimes, as the extra management required
is likely to outweigh any potential benefits.
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Comms

The majority of reviewed satellites used UHF for ground station communications, with
VHF and S-band often being used as secondary downlinks, however, S-band uplinks were
infrequently used Bouwmeester and Guo (2010). With a UHF link having an approximate
maximum bit rate of 512 kb/s, low resolution VGA pictures (approximately 2 Mb) and
hyper-spectral data (approximately 256 Mb) become difficult to transmit and infeasible
for a scientific payload (Selva and Krejci, 2012). Additionally, this maximum bit rate is a
lot higher than that typically used in cubesats, with 9.6 kb/s being common for UHF and
256 kb/s common for S-band (Selva and Krejci, 2012). This, therefore, limits the type of
payloads that can be used. However, the use of low data rates, simplistic designs and the
preference for UHF, is likely due to the limited power available and the limited tracking
abilities of the satellites, as well as to increase the reliability of the subsystem.

EPS

Bouwmeester and Guo (2010) found that 87% of the reviewed satellites used solar cells
to generate power, with the majority of these using higher efficiency gallium arsenide
(GaAs) cells. A small number of those reviewed, 16%, used deployable solar cells to
increase the power generated. However, the average power available of the reviewed
satellites was less than 7 W, with the most common power conversion method being the
least-efficient direct energy transfer (DET), with only 7% using the significantly more
efficient maximum power point tracking (MPPT). Bouwmeester and Guo (2010) highlight
that only one of the reviewed satellites did not use batteries, Delfi-C3; with the most
common battery technology being lithium ion and lithium polymer, most likely due to
them not suffering memory effects, making them ideal for this type of satellite, where
the battery is not likely to be fully cycled. Bouwmeester and Guo (2010) describe three
different technologies used to convert power from the solar cells: DET, where the power
is taken at a fixed voltage; peak power tracking (PPT), where the voltage is changed
to increase the power converted; and MPPT, where the voltage is changed so that the
maximum available power can be converted. Of these, PPT is used infrequently as it can
have problems with current surges that would be typical for a rotating satellite (where the
solar cells are mounted on the outside of the spacecraft). MPPT is only used in 7%, due
to it being the most complicated; with DET being used the most often as it is the simplest,
despite it being the least efficient and requiring the degradation of the solar cells to be
considered in the satellite’s power budget.

Thermal

The vast majority of cubesat missions use passive thermal control (Bouwmeester and
Guo, 2010), with the exception of heaters in the batteries, as radiators are impractical on
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satellites with such limited surface area. For a Sun-synchronous orbit, the satellite’s in-
ternal temperature typically varies between−15 and 45 ◦C (Selva and Krejci, 2012). This
additionally makes it difficult for some Earth observation technology, such as photodi-
odes, that work optimally when cooled. However, the temperature range is within typical
industrial specifications, allowing off-the-shelf components to be used without the need
to consider special thermal management.

OBDH

None of the satellites reviewed by Bouwmeester and Guo (2010) used on-board com-
puters with radiation hardened components, with commercial off-the-shelf (COTS) com-
ponents being used instead. This was most likely done due to the prohibitive costs of
radiation hardened processors and due to COTS microcontrollers having similar process-
ing power to the older space-rated processors, whilst consuming significantly less power.
The effects of radiation were mitigated on some of the satellites by the use of redundancy.
Bouwmeester and Guo (2010) notes that the most commonly used interface for subsys-
tems was I2C, which offers no bus-based protection for errors; however, both CAN and
USB have been used in pico- and nano-satellites.

As the Bouwmeester and Guo (2010) survey is a few years old, a survey of the cube-
sats in orbit was conducted. For 36 of these satellites, information about their OBDH
system was available and is shown in table 1.1. It was found that the majority used ei-
ther a 16 or 32 bit architecture for the main processor, with only 7 using 8 bit (19%);
with the ARM and TI’s MSP430 architectures being the most popular architectures, with
28% each. The operating frequencies varied quite widely, with the lowest being 1 MHz

and the highest being 400 MHz. Although this is not a measure of performance, due to
architectural differences, it does illustrate the wide range of processors found in cubesats.

The First-MOVE satellite, launched in November 2013 (Technical University of Mu-
nich, 2014), took an interesting approach to reliability, using a single COTS OBC com-
bined with a ‘hard commanding unit’ (Czech et al., 2010). The hard commanding unit
was designed so that it had the ability to reset the OBC via an uplink command, whilst be-
ing a separate unit to the transceiver, instead monitoring its output for a reset pattern. This
is an interesting and peculiar design decision, as the use of pattern matching by the hard
commanding unit appears to be an unnecessary complication. For system reliability, the
OBC’s software was stored in both flash memory and magnetic RAM (FRAM), to avoid
having to use expensive radiation hardened memory, as FRAM is not susceptible to SEL
and SEB events (Czech et al., 2010). However, the use of a voting system, between the
FRAM and the two flash memories, increases the chance of memory corruption as errors
in both of the flash memories can corrupt the less susceptible FRAM. A more radiation re-
silient solution is to use a single FRAM with checksums, which is a little counter-intuitive
as radiation redundancy typically involves duplicating hardware. This relies on the FRAM
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only being susceptible to SEUs, with an event either upsetting all transfers or only part
of the transfer, both of which can be detected and corrected for using checksums. To
increase reliability, 3 separate power buses were used inside First-MOVE’s OBDH, all
of which have latch-up detection (Czech et al., 2010). However, no details are given on
how these buses were used and whether this increased the reliability and robustness of
the subsystem, or whether electronically controlled power to the different components
could give an equal reliability with less complexity. An end of mission statement was
published on the 21st December 2013 by the First-MOVE team stating that whilst they
have been able to remotely reset the satellite, presumably using their hard commanding
unit, the on-board computer was not completing its boot sequence, with the most likely
reason being corruption of the program memory (Amateur Radio station PE0SAT, 2016;
Technical University of Munich, 2014).

de Jong et al. (2008) describes how the team that designed Delfi-C3 changed the de-
sign for its successor, Delfi-N3XT, which allows a rare insight into the problems faced
during development. Delfi-C3 had a battery-less design based on an MSP430 that was
under-clocked to 1 MHz (from 8 MHz, presumably to reduce power consumption. Each
subsystem had its own processing provided by a PIC microcontroller, running at 31 kHz,
which acted as decentralised redundancy, as each subsystem monitored the main on-board
computer’s activity. Due to the different frequencies used, integration issues limited the
performance to effectively half that of the slowest processor. This limitation is rather
unusual, as often complicated systems consist of many processors running at a range of
frequencies, therefore, it is likely that this limitation was due to the particular implementa-
tion of decentralised redundancy as well as the communication bus. Many improvements
were made for the successor, such as the use of a higher data rate S-band downlink and an
active 3-axis attitude control system. However, one of the most interesting changes was
the removal of decentralised redundancy in preference of having a single redundant node
based in the radio system. Additionally, the successor uses a multi-master I2C bus, with
the masters being the on-board computer, an MSP430, and the radio subsystem, a PIC. To
prevent the bus from becoming locked, such as the babbling idiot condition, I2C buffers
(P82B96) were placed on each node, which consumes approximately an extra 10 mW per
node, but is a rather simple and elegant solution. The successor additionally included a
real time clock (RTC), as the initial design, partly due to it being battery-less, produced
different data frames with the same identifier, making it near impossible to assemble the
received data in the transmitted order (de Jong et al., 2008).

From de Jong et al. (2008) there are a few important points to take note of. The
integration issues with the original satellite are most likely due to a lack of testing in
the design phase, a poor decentralised redundancy implementation and possibly making
the satellite too heavily dependent on the communications bus, to such an extent that it
became a bottle neck in the design. It is interesting that de Jong et al. decided that the
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original design needed such a high level of redundancy. It is highly probable that this was
excessive, considering the mission parameters, and a simpler, less redundant design would
have not caused the same integration problems. The use of I2C buffers as bus guardians,
in the design of the successor, is a very simple and elegant solution to maintain a common
bus when devices fail. From this, it is important to realise that the system needs to be
thoroughly tested from the beginning so that potential integration issues are found and
resolved early in the design. It is also important to design for the flight environment, so
that the design has an adequate, but not excessive, amount of redundancy. It is quite
surprising that the issue of unique identifiers for communications was not thought of
before the original design was completed, especially considering its battery-less design.

Discussion

Throughout the review by Bouwmeester and Guo (2010), there is a common theme that
pico- and nano-satellite missions often use the simplest solution possible, rather than
complicating the design. This is most likely due to cubesats, which make up a large
proportion of the missions reviewed, being seen as either educational platforms, where
the main purpose is to give students experience, or as testing platforms for new hardware,
where the device to be tested is the main interest, with the support hardware sacrificing
functionality to increase reliability. Bouwmeester and Guo (2010) cite, and Selva and
Krejci (2012) agree, that the main bottleneck in pico- and nano-satellite designs is the
attitude control, with the lack of accuracy and dynamic control being the main limiting
factor. This is both a limitation for Earth observation, as well as for communication with
a ground station, with highly directional communication being infeasible, limiting the
communication to lower frequencies and data rates.

Although it is fairly easy to pinpoint the state of the art for each subsystem, cubesats
are not designed with each subsystem being the best possible, they are designed to be the
best fit for the mission requirements, which is a common theme amongst satellites.

1.3.2 Femto-satellites

There have currently been very few attempts at using femto-satellites. This is most likely
due to their small size limiting their applications, in terms of both payloads and commu-
nication. One notable attempt was the KickSat satellite, that was launched in April 2014
(Manchester, 2014a). This was a project to launch 128 sprite satellites from a 3U cubesat,
with each sprite measuring 35× 35× 3 mm3 and weighing 5 g. The project was funded
through the crowd-funding website Kickstarter, with the aim being to lower the cost of
satellites so that anyone could launch one (Manchester, 2011). Removing the marketing
spiel, the aim of the project can be considered to be public engagement and this is re-
flected in the simplistic design of the sprites. Each sprite had a Texas Instruments CC430
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SoC, which combines an 8 MHz MSP430 processor with a 10 mW UHF transceiver, a
gyroscope and a magnetometer. The sprites were designed to have an unregulated power
supply (i.e. directly from the solar cells) and to be battery-less, with Manchester et al.
(2013) stating that batteries would not be able to survive the cold temperatures during
eclipse. In addition to this, the sprites were designed to have no attitude control, either
active or passive, and instead were designed to rely on the spin of the launching cubesat
for stabilisation and Sun orientation.

Overall, the design of the sprites is quite reasonable, considering the size limitations.
The SoC’s processor is more than capable of performing the required tasks, however,
the radio has a lower than ideal transmit power. In particular, Manchester et al. (2013)
estimates that the signal to noise ratio at ground level is around 2 dB below the noise floor.
To allow the signal to be received, CDMA is used - however, the number of PRN codes
used is less than the total number of sprites. So that the sprites’ communications do not
interfere with each other, they are designed to only transmit data 5% of the time - which
is approximately 137 seconds of their 91 minute orbit. At the radio’s 50 b/s data rate4,
each sprite can transmit, at most, 6850 bits per orbit, which is approximately 856 B. This
is a severe limitation of the sprite design, limiting their usefulness as a satellite platform.
The transmit power limitation could be, at least partially, mitigated by the inclusion of
a battery - allowing short transmissions at a higher power. The conclusion that batteries
should be omitted is a curious one. The use of battery heaters in space is so widely
adopted that using a battery without a heater, or some kind of thermal control system,
would be beyond negligent. Whilst it could be argued that using a heater on such a small
satellite would consume too much power, the size of the battery, to fit within the physical
constraints, would be small enough that any required heating would also be small and fit
well within the approximate power budget stated in Manchester et al. (2013). The lack of
attitude control is to be expected, considering the size of the sprites, however, the sensor
payload could be made significantly more useful with the addition of an accelerometer.
The gyroscope and magnetometer are able to provide information on the separation of the
sprites from the launching cubesat, but the sensor payload could be significantly improved
by the addition of an accelerometer. Manchester et al. (2013) estimate the sprite’s life,
i.e. the time before re-entry, as being between 5 and 27 days, which is a large range.
The addition of an accelerometer would allow the effect of the drag on the sprites to be
measured, providing additional information that would allow better life predictions for
future flights.

Unfortunately, the design of the sprites could not be tested during the 2014 flight, due
to a few failings with the design of the launching cubesat. The cubesat’s uplink required
a minimum of 8 V to operate, with only around 6.5 V being seen in orbit (Manchester,
2014c). This meant that a command to launch the sprites could not be sent to the cubesat.

4The data rate is actually 100 b/s, however, half the bits are reserved for parity.
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However, the cubesat was designed with a backup for the launch, in case an uplink could
not be established. This relied on a 16 day timer being run on the cubesat’s main processor.
Unfortunately, the processor was reset - with a likely cause being radiation - and with
it, the launch timer (Manchester, 2014c). This meant that the time of the sprite launch
was delayed until after the cubesat had re-entered, and so the sprites were not launched
(Manchester, 2014b).

Both of these can be considered to be failings in the design of the cubesat. No in-
formation on the design of the cubesat is available, but the voltage requirement gives the
impression that the cubesat’s main power source was not regulated. With the uplink being
a vital part of a satellite, if not one of the most important parts, it is only logical to ensure
that it can always be powered, with any differences in voltage ranges being satisfied with
regulators. It is highly unlikely that the KickSat launcher suffered from inadequate power
levels, as telemetry was being broadcast, so the issues with the uplink can only be a design
oversight. The resetting of the launch timer was due to the cubesat’s system clock being
reset by a processor reset (caused by a watchdog) (Manchester, 2014c). This means that
the system clock was only stored in volatile memory, which seems to be careless at best.
A common practice, for clocks that lack external synchronisation, is for them to period-
ically store their value, so that if they are reset, they only lose a relatively small amount
of time. In a radiation environment, to avoid corruption of this value, a common method
would be for it to be stored in several different places - e.g. in different pages of flash
memory. These failings in the design, highlight the need for a well designed mission,
with a thorough testing plan, to ensure that no oversights are made, even when utilising
low cost hardware and short-life, disposable satellites.

There are very few femto-satellites described in the literature, however, one is the
PCBsat introduced by Barnhart et al. (2009), along with suggestions of what distributed
satellite missions could be used for (terrestrial and space weather monitoring, distress
beacon monitoring and atmospheric composition measuring). The design is based on a
9 by 9.5 cm, 4-layer PCB, using an 8 bit microcontroller (an Atmel Mega128L) as the
on-board computer. Power is provided by hobby grade (15 % efficient) solar cells and
is stored in a 645 mAh Li-ion camera battery, giving approximately 6 hours of battery
life from a full charge. The PCBsat does not have the capability of communication with a
ground station, instead a 60 mW ZigBee RF module is used to transmit data to other nodes
and a larger node with ground station communication capabilities (i.e. a cubesat). The
attitude is determined by magnetometers and Sun sensors, with a single axis magnetorquer
being used to allow some degree of attitude control. Additionally, a commercial GPS
receiver is included to determine the satellite’s orbit position.

The original design was meant to be a proof of concept rather than a flight model,
however, the use of COTS components was designed to make the PCBsat cheap to manu-
facture, rather than being convenient for the proof of concept model. Unfortunately, there
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are several aspects of the PCBsat’s design that prevent it from being used in space - one of
these is the GPS receiver. Commercial GPS receivers have a typical operational ceiling,
due to export restrictions, of 18 km. This means that GPS receiver would be incapable of
functioning in space, however, this initial concept is something that could be developed
further into a fully working satellite.

Barnhart et al. (2007) furthers the idea of creating a space sensor network using multi-
ple PCBsats and suggests three possible measurements such a network could make. These
are measurements of the day-side mid-latitude trough, detecting Joule-heating sources
and measuring ionospheric plasma bubbles. Barnhart et al. go into more details of such a
network, stating that the only commercial constellation with cross-links is the IRIDIUM
constellation, that formation flying is complex and so far has only been used in experi-
mental tests, and that a node separation of 10 cm would require sampling of any sensors
to occur every 10 µs.

1.4 Satellite constellations and swarms

Using multiple satellites for the same mission, or task, is the obvious, and often the only,
solution for communication and global navigation systems, largely due to the necessity
of global coverage. However, this is not the only use of satellite constellations. For many
scientific missions, the use of multiple satellites can be a requirement of the scientific pay-
load or can increase the data’s scientific value, either through higher spatial and temporal
resolution, or through multiple measurements using different apparatus. There are certain
types of scientific missions that are more suitable for constellations, with these typically
being Earth observation based. Here we make a distinction between a satellite constella-
tion and a satellite swarm, with a satellite constellation being a number of satellites where
the distribution is largely fixed (that is, where the satellite separation is maintained) and a
satellite swarm being where the distribution is largely free, with satellite dispersion being
allowed to occur.

Navigational satellites will only be discussed broadly in this section, as they are dis-
cussed in depth in section 1.5. Despite there being many different global navigation satel-
lite systems (GNSS), they all work on the same principle of placing highly accurate clocks
at known reference points. With the receiver calculating its position from the difference
between several clocks5. There is, therefore, no need for GNSS satellites to have inter-
satellite links.

5At least four.
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1.4.1 Satellite constellations

The two satellite constellation GRACE, launched in 2002, is designed to measure the
Earth’s gravitational field by studying the perturbations of the satellite separation (Tap-
ley et al., 2004). To do this, identical satellites were launched into a near-circular orbit
at approximately 500 km and carry precise positional measurement systems - a GPS re-
ceiver and an inter-satellite microwave link - as well as a high precision accelerometer.
Variations in the gravitational field are detected by one of the satellites accelerating, with
respect to the other, approximately 220 km away. As these accelerations are very small,
multiple systems are used to perform the measurement. The GPS receiver uses both the
L1 and L2 frequencies, has a precision of 7 mm and is used mainly for time tagging the
data and coarse position information. A K-band microwave link, with a precision better
than 10 µm, is used as the main apparatus to determine the satellite separation. The high
precision accelerometer, with a precision of 10−11 g, is used to remove the effects of any
non-gravitational forces (Tapley et al., 2004). The inter-satellite link is not a conventional
communications link, with the communication being limited to the phase of the signal.

ESA are developing a technology demonstration for formation flying called PROBA-
3, which will consist of a two satellite constellation with a combined mass of between
500 and 600 kg (Sephton et al., 2008), that is scheduled for launch in 2017 (ESA, 2013).
The proposed method of formation flight is to use an occulted solar chronograph - the
lead satellite, the occulter, will have a 1.5 m diameter occulting disk, that casts a shadow
onto the following satellite, the chronograph. The chronograph, following the occulter
at between 150 and 250 m, will adjust its orbit so that the occulting disk’s shadow is
in the same place on its optical sensor (Sephton et al., 2008), effectively producing a
limited one-way communications link. This method is particularly useful for satellites
that directly follow each other, with a small separation, and so is well suited to imaging
based Earth observation tasks. However, due to the required size of the occulting disk,
this method is not particularly well suited for pico or femto-satellites - a 10 cm disc,
producing the same solid angle, would have a separation of between 10 and 17 m, with
an optical system fifteen times larger than that of the PROBA-3 satellite required to work
at the same separation distances - see appendix A for details. This practically limits the
separation distance for occulting pico-satellites to below 1 km.

ESA launched a constellation project, consisting of three satellites, to measure the
Earth’s magnetic field in November 2013, called Swarm (Merayo et al., 2008; ESA,
2016). Each satellite has a mass of 468 kg and was launched into a near polar orbit,
with one satellite at an altitude of 530 km and two at 460 km (Haagmans et al., 2012).
The higher altitude satellite is designed to have a slightly different inclination, by 0.6°, so
that it will cross the lower satellites’ orbit at a right angle during the third year after launch
(Haagmans et al., 2012). With the aim of the project being precise measurements of the
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Earth’s magnetic field, both in spatial and temporal terms. Each satellite uses three star
trackers, each having an accuracy of better than 1 second of arc, as well as a GPS receiver
and a retro-reflector (Merayo et al., 2008; Haagmans et al., 2012). Unlike the PROBA-3
mission, the satellites of the swarm constellation do not have any inter-dependencies, as
they are designed to work separately.

The GANDER constellation was a mission concept by the Surrey Space Centre6,
consisting of 12 micro-satellites in a Sun-synchronous orbit to perform sea monitoring
(Zheng, 1999). The satellites were designed to measure the relative sea level using radar
altimetry, which would then be broadcast on UHF for marine use - to aid ships in avoid-
ing difficult weather that could cause them damage. To perform this in a beneficial way,
multiple satellites would be required. However, the satellite constellation was never put
into orbit, possibly due to its high estimated cost of US$ 50 million. Each satellite of
the constellation was designed to be less than 100 kg and 60× 60× 80 cm3, which partly
explains the high cost, and designed to work independently, with no kind of inter-satellite
communication.

1.4.2 Inter-satellite communication

There has only been one commercial satellite constellation to date that utilises inter-
satellite communication - the Iridium communications constellation (Barnhart et al., 2007).
The Iridium constellation consists of 66 satellites in 6 orbital planes at an altitude of ap-
proximately 780 km, with each satellite weighing 680 kg (Fossa et al., 1998). An integral
part of the Iridium constellation is the satellite cross-links, which is used to pass the han-
dling of phone calls from one satellite to another, to avoid the phone calls being dropped,
as each satellite is only visible for approximately 9 minutes, due to the satellites being in
LEO. These inter-satellite links use steerable antennas and operate in the K band, provid-
ing a data rate of 25 Mbps (Fossa et al., 1998).

The lack of inter-satellite links among constellations is likely due to a lack of re-
quirement. For many commercial satellites, such as those that perform satellite imaging,
inter-satellite links are not beneficial. For those where inter-satellite links could poten-
tially be beneficial, the requirement can often be designed out. In the case of the Iridium
constellation, the inter-satellite links are required due to the satellites being in LEO and
the user terminals only being able to connect to one satellite at a time. If, however, the
user terminals were designed so that they could communicate, at least partially, with a sec-
ond satellite, then the inter-satellite link would no longer be required. When the Iridium
constellation was designed, in the early 1990s, this addition to the user terminal would
have considerably increased its size and cost. However, with the constant evolution of
technology, this high level of integration is becoming more practical and also has the ad-

6Part of the University of Surrey.
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ditionally benefit of not only reducing the complexity of the satellites, but also allowing
the user terminal to select the best satellite to change to, using a metric that can be easily
updated. Therefore, it is highly likely that if the Iridium satellite was being designed in
the present day, it would not use inter-satellite links.

Of the scientific satellite constellations, those that use inter-satellite links do so as part
of their measurement apparatus, rather than using them as an alternative to, or to com-
plement, a ground station link. However, a need for inter-satellite links is introduced if
a distributed system is used - whether this is sharing tasks between satellite nodes, or
providing a data relay system. In the case of a data relay system, there would be very
little, if any, computation of the received data occurring on the receiving node; however,
with distributed computing the computational processing of the received data is typically
large, with a tendency for the transferred data to be as small as possible, as to increase
the computational efficiency. Horst and Noble (2011) present a market-based task alloca-
tion, designed for large numbers of heterogeneous satellites in a dynamic network. Whilst
their market-based allocation is particularly relevant to heterogeneous nodes, where each
message can only be received by a small subset of the total number of nodes, their model
of a dynamic network is applicable to many distributed satellite systems. Their model
is Keplerian based, uses orbital parameters derived from a single reference orbit, ran-
domly perturbed for each satellite, and does not consider non-Keplerian contributions,
such as non-Newtonian forces (e.g. drag), solar and terrestrial pressure, and variations in
the Earth’s gravitational potential. These assumptions are stated as valid, as only one or-
bit, which is less than 100 minutes, is considered. This model is used by Horst and Noble
(2011) to analyse the efficiency of their task allocation algorithm, however similar models
would be necessary to understand the connectivity of any distributed satellite system.

1.4.3 Small satellite constellations

Despite the lack of small satellite constellations, there are certain types of Earth observa-
tion, such as gravity measurements, that could significantly benefit from multiple satellites
in regular orbits to improve and supplement existing data (Selva and Krejci, 2012). Thom-
sen et al. (2008) investigate the feasibility of using a constellation of miniature satellites
to measure the Earth’s magnetic field. The authors set the requirements of better than
1 ms clock accuracy, with inter-satellite time synchronisation better than 1 ms, better than
1° attitude determination and better than 500 m orbit determination. Both the timing and
orbital determination requirements could be met by using GPS, whilst the attitude de-
termination requirement could be met with commercial Sun sensors and, during eclipse,
magnetometers. Thomsen et al. (2008) suggest using magnetorquers for attitude control
and controlled drag for constellation control, through the use of controlled flaps on the
side of the satellites. For flaps that double the drag area of the satellite, their simulations
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show that during a solar maximum at an altitude of 550 km, the flaps would affect the
orbit by approximately 20 m per orbit, however during solar minimum, at an altitude of
450 km, the flaps would affect the orbit by approximately 2.7 m per orbit (Thomsen et al.,
2008). This highlights the effect the solar cycle has on a satellite’s drag and suggests
that controlling a satellite formation using drag is significantly more difficult during solar
minima.

1.5 GNSS

For Earth and atmospheric measurements, among many others, to have any scientific
value the exact location and time of the measurement needs to be known. For many
missions, this is achieved using global navigation satellite systems, such as GPS.

Global Navigation Satellite System (GNSS) is the generic name of any satellite based
navigation system that is designed to provide global coverage. The most known of these
is the American GPS, however, there are also the Russian GLONASS, the Chinese COM-
PASS and the EU’s Galileo, which is due for completion in 2019 (ESA, 2011). All GNSS
use the same principle for navigation - providing high precision clocks that transmit their
current time and position, so that a receiver can determine its location by inferring the
distance between itself and the clocks by measuring the delay in the received transmis-
sions. Each of these systems use different methods for signal encoding and transmission,
with them operating on different frequencies and using different modulation methods.
However, there are many similarities between them, with the most similar being GPS and
Galileo. The GLONASS and COMPASS constellations are used much less than GPS, as
they do not provide the same global coverage and have a history of not being as reliable,
with the Russian GLONASS spending many years with the constellation only providing
partial coverage, with only a quarter of the designed number of satellites being opera-
tional, due to a lack of funding (Hofmann-Wellenhof et al., 2008).

GNSS is divided into three different segments - space, control and user. The space
segment consists of the orbiting satellites, both those which are active and inactive; the
control segment consists of the management of the space segment, changing which satel-
lites are active based on constellation specific criteria and updating the satellite’s data;
and the user segment consists of the GNSS receivers, receiving the broadcasts from the
space segment (Hofmann-Wellenhof et al., 2008). The interaction between the user and
space segments are the most important for locating the user, as the control segment, whilst
being vitally important to the accuracy of the GNSS and the continued functionality of
the constellation, is hidden from the user.

To describe a non-constrained position in a three dimensional space, three coordinates
are required and are usually measured from a fixed point in the reference frame. If three
unique points in the space are known, then any position in the space can be described
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by the distances between these points and the position, through the use of trilateration.
Using this, a three dimensional location system could consist of three retro-reflectors,
being optical or radio in nature, at three different locations. Then any position in the space
could be found by measuring the time of flight of a signal to complete a round trip from a
certain position to the three retro-reflectors. Whilst this method would be effective, it has
certain drawbacks that make it impractical for a GNSS. The requirement to transmit the
signal would require the transmitted signal to be very high powered, for large distances,
due to the signal’s dispersion. An additional drawback is the pointing requirement, which
would make it increasing difficult, with distance, to accurately aim the transmitted signal
onto the retro-reflectors. If we replace the three retro-reflectors with transmitters, which
encode the time the signal was sent onto the signal, then the time of flight of the signal
from the transmitter can be calculated at the receiving position. This, however, has the
drawback that each of the three transmitters and the receiving position require an accurate
clock - of atomic precision - with all of the clocks being synchronised. This drawback can
be simplified for the receiving position, by using four transmitting unique points rather
than three, then the receiver can use a significantly less accurate clock, as the fourth
transmitting point provides enough information for the receiver to correct for its clock
inaccuracies. This is the principle used in GNSS, however, in practice it is not as simple.

As each of the transmitters are on satellites orbiting the Earth, their exact position at a
given time is not known. This means that this information has to also be encoded onto the
transmitted signal. However, as the satellites are moving, their location is described using
orbital elements that are statistically based on the satellite’s previous motion, adding addi-
tional errors. For at least four of the satellites to be visible at any given point on the Earth’s
surface, many more satellites are required - GPS uses 24 operational satellites in six or-
bital planes, so that between 4 and 8 satellites can be typically seen (Hofmann-Wellenhof
et al., 2008; El-Rabbany, 2002); with Galileo being designed to use 27 operational satel-
lites in three orbital planes, so that at least 6 satellites are visible (Hofmann-Wellenhof
et al., 2008); and GLONASS using 24 operational satellites also in three orbital planes,
with at least 5 satellites being visible from over 99 % of the Earth’s surface (Hofmann-
Wellenhof et al., 2008). For accurate positioning, there are additional complications that
affect the transmitted signals that have to be considered, such as multipath propagation,
ionospheric and tropospheric refraction, and relativistic effects (Xu, 2003).

1.5.1 GNSS signals

To minimise the effect of interference, the transmissions from GNSS satellites use spread
spectrum techniques, in particular direct-sequence spread spectrum (DSSS), with the ma-
jority using code division multiple access (CDMA). This is where a pseudo-random noise
(PRN) code, unique to each satellite, is used to spread the transmitted data over a wide
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shared bandwidth; with each PRN code chosen to be orthogonal to each other (i.e. so
that there is little correlation between the codes used in the system). The signal is then
decoded by the receiver knowing the PRN codes and applying them successively to the
received signal. GLONASS is the exception to this, using frequency-division multiple
access (FDMA), where the bandwidth is divided into 15 channels that are shared between
the 24 satellites; however, the use of CDMA for GLONASS is being researched, to im-
prove compatibility with other GNSS (Inside GNSS, 2008).

GPS satellites were originally designed to broadcast two BPSK modulated signals on
two carrier frequencies, one at 1575.42 MHz and one at 1227.60 MHz, referred to as L1
and L2 respectively. The L1 signal consists of a coarse acquisition code, referred to as
C/A, and a precision code that is intended for military use, referred to as P(Y) to de-
note that it is encrypted with a secret Y code, with the L2 signal consisting of only the
P(Y) code. The C/A code uses a 1023 chip long PRN code broadcast at a chip rate of
1.023 Mcps. This results in a code that repeates every millisecond and a chip range - the
distance the signal travels during a chip - of 293 m. The P(Y) code uses a 6.1871× 1012

chip long PRN code broadcast at a chip rate of 10.23 Mcps, resulting in a chip range of
29.3 m and a code that repeats every week (Kaplan and Hegarty, 2006). The length of the
P(Y) code means that it cannot be directly acquired, without an accurate clock estimate
or knowledge of the satellite’s position, and so requires the C/A code to be acquired first
(Hofmann-Wellenhof et al., 2008). Both the C/A and P(Y) codes contain the same nav-
igational message that is transmitted at 50 b/s. The navigational message is split into 5

subframes of 300 bits - the first subframe contains the GPS week number, the satellite’s
accuracy and clock corrections, with the second and third frames containing the satellite’s
ephemeris, which is used to find the satellite’s position. The fourth and fifth subframes
contain 25 pages each and describe the GPS constellation, with almanac and health data
for all 32 possible satellites as well as information to correct for ionospheric effects. The
almanac contains coarse orbital elements for all of the GPS satellites, to assist in satel-
lite acquisition, with the ephemeris containing more accurate orbital elements to enable
precise location, which are typically valid for 4 hours (Kaplan and Hegarty, 2006).

As of 2005, supplemental signals and codes have been added to the broadcasts of
GPS satellites in what is referred to as GPS modernisation (Kaplan and Hegarty, 2006;
Hofmann-Wellenhof et al., 2008). The first addition, added in 2005, was the military, or
M, code. It is designed to be the successor to the P(Y) code, providing better accuracy,
an improved resistance to signal jamming as well as being directly acquirable, that is, not
requiring the use of any additional signals. Like the P(Y) code, it is encrypted, but unlike
the legacy GPS signals, it does not use BPSK modulation, instead it uses binary offset
carrier (BOC) modulation (Hofmann-Wellenhof et al., 2008).

The second addition, starting in 2010 (National Coordination Office, 2013), was the
introduction of a civil signal to the L2 carrier, referred to as L2C, and the introduction
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of a civil safety-of-life signal to the new L5 carrier (1176.45 MHz), referred to as L5C,
with both the L2C and L5C signals using BPSK modulation (Hofmann-Wellenhof et al.,
2008). The L2C signal consists of two balanced codes, both of which have a chip rate
of 511.5 kcps, but are time multiplexed on to the L2 carrier to create a 1.023 Mcps code
(Hofmann-Wellenhof et al., 2008). The first is a moderate code, referred to as L2CM,
whose length is 10 230 chips, and the second is a long code, referred to as L2CL, whose
length is 767 250 chips (Kaplan and Hegarty, 2006). The L2CM code is modulated by a
50 baud data stream, containing a 25 b/s navigational message and a forward error cor-
rection (FEC) code, with the L2CL code being left as a pilot channel and so containing
no data. The use of a lower data rate navigational message, than the legacy signals, is de-
signed to assist demodulation in difficult environments, where the signal is attenuated to
a greater extent, whilst the use of a data-less L2CL code is designed to make the tracking
of the signal more robust (Kaplan and Hegarty, 2006). The L5 signal contains in-phase
and quadra-phase signal components that use different PRN codes, with lengths of 8190

and 10 230 chips, and a chip rate of 10.23 Mcps. The in-phase component is modulated
with a navigational message, where as the quadra-phase component is used as a pilot
channel, drawing similarities to the L2C signal (Hofmann-Wellenhof et al., 2008). The
navigational message is added as a 50 b/s stream and also, like the L2C signal, is com-
bined with an FEC resulting in a 100 baud data stream (Kaplan and Hegarty, 2006). Both
phases are modulated with Neuman-Hoffman synchronisation codes that have a chip rate
of 1 kcps and are 10 chips, for the in-phase signal, and 20 chips, for the quadra-phase sig-
nal, long (Hofmann-Wellenhof et al., 2008). These synchronisation codes are designed to
reduce narrow-band interference and cross-correlation, whilst allowing for a more robust
symbol/bit synchronisation (Hofmann-Wellenhof et al., 2008).

The third addition to GPS is the introduction of a fourth civilian signal to the L1 car-
rier, referred to as L1C (Hofmann-Wellenhof et al., 2008), with the first satellite intended
to be launched in 2017 (Gunter’s Space Page, 2016). The L1C signal is designed to be a
common signal between GPS and Galileo and will use multiplexed binary offset carrier
(MBOC) modulation, with the signal consisting of both a data and a pilot channel, like
the L2C and L5 signals (Hofmann-Wellenhof et al., 2008).

As these additions will be completed in stages, complete support for the modernised
signals across all 24 operational GPS satellites is expected to be completed in 2018 for
L2C, 2021 for L5 and 2026 for L1C (National Coordination Office, 2013).

The Galileo signals are categorised into 4 services - the open service (OS), intended
for general use; the commercial service (CS), intended for users that require a guaranteed
quality of service, for example in asset management; the safety-of-life service (SoL), in-
tended for aeronautical and maritime users who require a guaranteed quality of service as
well as integrity information, to indicate the user of faults with the system (in particular
the satellites); and the public regulated service (PRS), intended for the use of European
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nations for civil protection, national security and law enforcement. Both the commercial
and public regulated services are encrypted to enable controlled access, with little infor-
mation made public regarding the public regulated service (Hofmann-Wellenhof et al.,
2008). Galileo uses four carrier frequencies - E1 at 1575.42 MHz, which is the same as
GPS L1; E6 at 1278.75 MHz; E5a at 1176.45 MHz, which is the same as GPS L5; and
E5b at 1207.14 MHz. Both the E1 and E6 signals have three components (denoted as A,
B and C), whereas the E5a and E5b signals contain two components (I and Q), with the
C and Q components designed to be pilot codes (Hofmann-Wellenhof et al., 2008). E1-A
and E6-A are used solely for the PRS, with E6-B and C being used solely for the CS. As
these are both encrypted, we shall not discuss them further. E1-A, E1-B, E5b-I and Q
are shared between OS, CS and SoL, with E5a-I and Q being shared between OS and CS
(Hofmann-Wellenhof et al., 2008). As these signals are shared between multiple services,
the entire signal is not encrypted, as it is with the E6 and GPS P(Y) signal, instead only
certain data fields in the navigation message are encrypted.

Galileo, unlike GPS, uses a tiered code sequence, where a primary and secondary
code are added together, using modulo-2 addition, to produce the final code. The E1-B
and C signals have a primary code length of 4092 chips, and a secondary length of 1

and 25 chips, respectively; with the E5a and E5b signals having a primary code length
of 10 230 chips, and a secondary code length of 100 chips for the Q pilot signals, 20

chips for E5a-I and 4 chips for E5b-I. This is designed to increase the robustness of the
signal, as the overall code is large, whilst still allowing a short acquisition time, due to the
short repetitive period (Hofmann-Wellenhof et al., 2008). The E1-A and B signals have a
chipping rate of 1.023 Mcps and use MBOC modulation; whilst the E5a and E5b signals
have a chipping rate of 10.23 Mcps and use BPSK modulation.

1.5.2 GNSS receivers

The first space-bourne GPS receiver was flown on NASA’s Landsat-4 (Montenbruck et al.,
2008), which was launched in July 1982 (NASA, 2013), since then, GNSS receivers have
been included on a wide range of satellites, including cubesats (Bouwmeester and Guo,
2010). GPS receivers are available in both single and dual frequency configurations -
single frequency receivers use the commercial L1 signal, whilst dual frequency receivers
additionally use the L2 signal. As the P(Y) code is encrypted and only available for
military applications, dual frequency receivers use signal processing techniques that do
not rely on being able to decrypt the signal. The first is known as codeless processing,
where it is assumed that the same P(Y) signal is broadcast on both L1 and L2 (Kaplan
and Hegarty, 2006), whereas the second technique, known as semi-codeless processing,
relies on the encryption rate being approximately 1⁄20

th of the P(Y) chip rate (Kaplan and
Hegarty, 2006; Woo, 2000). Both of these techniques increase the accuracy of the receiver
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as the P(Y) chipping rate is higher, allowing the range from the satellites to be calculated
to a higher accuracy, and the use of two different frequencies allows the receiver to com-
pensate for the ionospheric delay in the signals to a better extent than with the navigation
message based correction, decreasing the uncertainty in the position. The accuracy of a
receiver is largely dependant on the environment, as well as the receiver itself; however,
in LEO, a single frequency GPS receiver can have a spatial accuracy of approximately
10 m, with a timing accuracy better than 1 µs; with a dual frequency receiver achieving a
spatial accuracy of less than 1 m and approximately 5 cm, when post-processing is used
(Montenbruck et al., 2008). This basic order of magnitude increase in accuracy is due to
the order of magnitude difference in the chipping rates of the C/A and P(Y) codes.

Commercial receivers

A typical GNSS receiver, as found in most mobile devices (such as mobile phones and
tablets), is not capable of being used in space for several reasons. As the satellites, and
possibly the receiver, are moving, the signals detected by the receiver are Doppler shifted.
This results in the receiver having to scan a two dimensional search space to acquire the
satellites, one consisting of the possible Doppler shifts and the other being the satellite
PRN codes7. As the majority of GNSS receivers are designed to work on Earth, the
Doppler shifts are optimised to the speeds the receiver is likely to observe, as an ex-
cessively increased search space would only increase the time required to acquire the
satellites. This means that the typical speeds in LEO of around 7800 m s−1, will produce
Doppler shifts that are significantly greater than those the receiver searches for - just as
an example, a Boeing 747 cruises at 248 m s−1 and an Airbus A380 at 262 m s−1 (Boeing,
2013; Airbus, 2017b) - therefore, the receiver will be unable to acquire the satellites.

The second reason is a regulatory one - as GNSS receivers that can work in space,
could be used in ballistic missiles. Due to this, export restrictions are placed on GNSS
receivers by different countries. The European Union has the ‘EU dual-use regulations’
that regulates the export of goods that can be used in both civil and military applications
and applies to all EU countries, which requires any GNSS receiving equipment that is de-
signed, or modified, to provide navigation information at speeds greater than 600 m s−1,
or designed, or modified, for use on space vehicles, unmanned aerial vehicles or sounding
rockets, to have an export licence (Council of the European Union, 2009). The US gov-
ernment has similar regulations, called ITAR (International Traffic in Arms Regulations),
which classifies any GNSS receiver that is capable of functioning above an altitude of
60 000 ft (18.3 km) and a velocity greater than 1000 knots (514 m s−1, 1151 mph) as mu-
nitions, which require an export licence (Electronic Code of Federal Regulations, 2013).
To simplify the import and export of devices to different markets, most GNSS receiver

7Which, in itself, is a two dimensional search space, as each satellite has a unique code and the codes
are delayed due to the receiver’s position.
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Table 1.2: Space-rated commercial GNSS receivers.

Name Type TID Power Dimensions Mass
(kRad) (W) (mm3) (g)

SSBV GPS receivera 12 ch L1 >10 <1 50x20x5 <30
SSTL SGR-05Ub 12 ch L1 >10 0.8 70x40x15 52
SSTL SGR-05Pc 12 ch L1 >10 1 105x65x12 60
SSTL SGR-07d 12 ch L1 >10 1.6 120x78x48 450
SSTL SGR-10e 24 ch L1 >10 5.5 160x160x50 950
SSTL SGR-20f 24 ch L1 >10 5.5 195x162x48 950

DLR Phoenix-Sg 12 ch L1 15 0.9 20
SpaceQuest GPS-12-V1h 1.25 100x70x25 20

ASTRA GAMMAi 40 ch L1 & L2 5 102x95x32 200
General Dynamics Viceroy-4j 18 ch L1 7 152x132x43 1100
General Dynamics Explorerk 12 ch L1 7 160x132x43 1200

RUAG innovative GNSSl 24 ch L1 & L2 >20 <8 300x240x50 1300
Thales Alenia Space TopStarg 16 ch L1 >30 1.5 1500
General Dynamics Monarchm 12 ch L1 & L2 100 25 205x200x140 3720

Airbus MosaicGNSSn 8 ch L1 100 10 272x284x92 3900
Thales Alenia Space Tensorg 9 ch L1 100 15 4000

a CubeSatShop (2013). b SSTL (2013b). c SSTL (2013a).
d SSTL (2013c). e SSTL (2013d). f SSTL (2013e).
g Montenbruck and D’Amico (2013). h SpaceQuest (2013).
i ASTRA (2015). j General Dynamics Mission Systems (2013c).
k General Dynamics Mission Systems (2013a). l RUAG (2013).
m General Dynamics Mission Systems (2013b). n Airbus (2017a).

manufactures limit their receivers to the US government’s requirements, which prevents
the receiver from being used in satellites.

Additionally, terrestrial GNSS receivers do not have any radiation protection and so
have an increased chance of failure when exposed to space conditions. To meet these
environmental requirements, specialist space-rated GNSS receivers have been designed
and manufactured by several companies, with a non-exhaustive list shown in table 1.2.
The majority of space-rated GNSS receivers, as shown in table 1.2, are designed for
large spacecraft, with few solutions existing for pico-satellites, such as cubesats, and none
existing for femto-satellites. Both the SSTL SGR-05U and the SSBV GPS receivers
could be used on a cubesat platform, however, their power consumption is only really
suitable for cubesats larger than 1U, or with deployable solar panels, as the average power
budget for a 1U cubesat is 1 W (Montenbruck et al., 2008). Additionally, the unit cost of
all the receivers is quite high (ranging from approximately £10k to £165k), due to the
specialisation and the limited market of space-rated GNSS receivers (Montenbruck et al.,
2008); and is high enough to limit their use in a pico-satellite constellation or swarm, as
the cost of each node would be prohibitive.
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Scientific receivers

As GNSS is a requirement for many scientific missions, either for precise orbit determi-
nation or as a scientific instrument, custom receivers have been made by different insti-
tutions. One notable receiver is ESA’s AGGA-4, which is designed to be versatile with
support for 36 single, or 18 dual, frequency channels and the GPS, Galileo and COMPASS
constellations (Guasch et al., 2010; Rosello et al., 2012). The receiver is designed as an
ASIC, without an RF front-end, using 6 million gates and manufactured using a 180 nm

technology. It is packaged into a 352 pin MQFP and has many different interfaces includ-
ing UART, SPI, GPIO, SpaceWire and Mil-Std-1553 (Rosello et al., 2012). AGGA-4 is
a progression of a previous ESA design, the AGGA-2, with the improvements being an
embedded LEON2-FT processor (with FPU), on-chip 128-point FFT and CRC modules,
and 5 complex correlators per channel, compared with 3 per channel of the AGGA-2 re-
ceiver (Rosello et al., 2012). As the AGGA-4 is designed primarily for ESA’s use on large
spacecraft, it is unsuitable for use on a cubesat due to power constraints. Although the
exact power consumption is not available, a presentation on the AGGA-2 receiver (Holl-
reiser, 2001), states that the power consumption for 4 dual channels is between 1.2 and
3 W, and that the AGGA-2 is used in the Astrium MosaicGNSS receiver (see table 1.2),
which has a maximum power of 10 W. As the AGGA-4 has more gates than the AGGA-2,
albeit using a small manufacturing technology, and contains an embedded processor, it is
likely to consume more power than its predecessor. It is, therefore, unlikely that it will fit
into the power constraints of a cubesat.

Grondin et al. (2010) present a GNSS receiver designed for micro-satellites in LEO,
in particular two satellites, MicroSCOPE, that was launched in April 2016, and TARA-
NIS, that is due for launch in 2018 (ESA, 2016a,b; CNES, 2017). Although it is only
suitable for micro-satellites and larger, due to its volume (180× 140× 40 mm3), mass
(less than 900 g) and power consumption (less than 5 W, with a peak of less than 8 W),
it is particularly well described. It is designed to have two operating modes, the first is a
normal mode where it operates continuously and the second is a fractionated mode, where
it minimises power by only working in short bursts. The fractionated mode decreases the
power by approximately a factor of five (to approximately 1 W), but has the disadvantage
of also decreasing the accuracy, which, unfortunately, is not quantified by Grondin et al.
(2010). The receiver uses an FPGA and a DSP for processing the signal, with the FPGA
being used for filtering, IF compensation and signal tracking, and the DSP for signal ac-
quisition (using FFT) and calculating the navigation solution. However, when the receiver
is operating in fractionated mode, the FPGA does not do any signal tracking - effectively
the signal is captured and then post-processed, by the DSP, to find the navigation solution.
The idea of a fractionated mode, as a method of reducing the required power, is quite log-
ical and, for a lot of scientific missions, could be used as the main operating mode of the
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receiver, especially if the dilution of accuracy could be reduced by using accelerometer
data or externally obtained orbit data, either in real time or by using post-processing.

The receiver has a similar performance to typical terrestrial receivers, with a spatial
accuracy of 15 m and a timing accuracy of less than 5 µs, when in its normal mode. It
has a cold-start time of approximately 120 seconds, which is reduced to approximately
5 seconds when aided, presumably by providing the ephemeris or almanac data. Despite
the use of COTS components, the receiver has a TID of 10 kRad, which is possible as the
FPGA and DSP were chosen for their radiation robustness. SEUs are mitigated by the
memory being periodically scrubbed and safety circuitry is used to protect against latch-
up conditions. Although the safety circuitry is not described, it is likely to be a current
limiting device, which interrupts the power when an over-current condition is detected.
It is also unfortunate that Grondin et al. (2010) do not state whether the FPGA and DSP
used in the receiver design are space-rated or standard commercial grade parts, although it
is likely that these are not space-rated, as space-rated FPGAs typically have higher TIDs8.

Tang et al. (2012) present a low power GPS baseband processor that is designed to be
implemented in hardware, with transistor level simulations showing a power consump-
tion of less than 1.5 mW for 6 channels, whilst having an accuracy of less than 4 m,
when simulated against ideal signals. Although the baseband processor does not include
an RF front-end, with the authors quoting that 10 mW front-ends have been designed,
and requires further processing with a DSP, or microcontroller, to produce a navigation
solution, the design is very promising. It is quite possible that, using this design, a com-
plete GPS receiver could be built that would have a power consumption under 200 mW,
that would be well suited for femto and pico-satellites. Unfortunately, the design is not
radiation-hardened, has not been tested in hardware and can only use the GPS constella-
tion. Additionally, Tang et al. (2012) do not state how long it takes for the first fix to be
obtained or what the maximum number of channels for their design is. To achieve a low
power, Tang et al. (2012) use a methodology of reusing components, for example, each
channel in their design uses mathematical functions for the tracking loop and accumulator
calculations, but these functions are only required at the end of each loop (that is every
millisecond), so each mathematical block is shared by up to 6 channels. This methodol-
ogy of component reuse, could be used in many embedded applications to reduce power
consumption.

Previously flown on pico-satellites

Many cubesats have been flown with GPS receivers (Bouwmeester and Guo, 2010), how-
ever, due to the size and power consumption of many available space-rated commercial
GPS receivers (see table 1.2), some cubesat missions have used COTS GPS receivers

8For example the Xilinx Virtex-4QV has a TID of 300 kRad and the Virtex-5QV has a TID of greater
than 1MRad (Xilinx Inc., 2010b, 2011d).
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modified for use in space. The CanX-2 cubesat used the NovAtel OEM4-G2L receiver
with the altitude and velocity restrictions removed, however, the tropospheric correction
was not removed, causing an error of between 10 and 20 m, resulting in an overall posi-
tionally accuracy of approximately 30 m (Spangelo et al., 2013). The OEM4-G2L mea-
sures 60× 100× 16 mm3, has a mass of 56 g and a typical power consumption of 1.6 W,
which is large enough to require a cubesat that is larger than 1U (NovAtel Inc., 2006a).
The Radio Aurora eXplorer (RAX) mission used a NovAtel OEMV-1-L1 receiver on each
of the two satellites, with the altitude and velocity limits, and, learning from CanX-2, the
tropospheric corrections, removed. They additionally extended the Doppler window in
the receiver, to account for the higher velocities of satellites (Spangelo et al., 2013). The
OEMV-1-L1 is smaller than the OEM4-G2L, at 46× 71× 13 mm3, has less than half its
mass, at 21.5 g and has a lower power consumption at 1 W (NovAtel Inc., 2011). The
cost of the OEM4-G2L is not known, but Spangelo et al. (2013) state that the cost of the
GPS receivers, used in the RAX mission, was less than $3,000. Additionally, Spangelo
et al. (2013) cite the GPS receiver as the cause for both of their satellites failing after
a month, for the first satellite, and two weeks, for the second satellite. The exact cause
of this failure was deemed to be unexpected electrical interference produced by the GPS
receiver that caused the power supply system to fail (Spangelo et al., 2013), highlighting
the potential problems of using a black-box system.

There are many potential problems with using a commercial GPS receiver not de-
signed for space, besides the lack of radiation tolerance. The first is the difference between
the environments, requiring modification of the receiver to allow for a higher altitude, a
larger Doppler range and to remove corrections that are not applicable (e.g. tropospheric
corrections). The second potential problem is that these modifications have to be per-
formed to the receiver’s firmware, with the modifications, due to the propriety nature of
the firmware, being subject to the manufacturer’s discretion. This is potentially a problem
as the manufacturer can, at any point in time, withdraw the ability to modify the firmware.
Additionally, these modifications are likely to be outside the manufacturer’s specification,
with the receiver operating in a non-tested state. These problems mean that the power
consumption is likely to be more, that the receiver has a larger error in the calculated
navigation solution, interferes with other components or behaves unexpectedly. As the
length of the mission, from first conception to flight, can span the majority of a decade,
or longer, it is ideal for the components used in the satellites to be available several years
later. Often, with commercial products, the product’s lifetime is a lot shorter than this -
an example of this is the OEMV-1-L1, which was flown on the RAX satellites in Octo-
ber 2010 and November 2011, that, as of October 2012, is no longer being manufactured
(Spangelo et al., 2013; NovAtel Inc., 2012). The OEMV-1-L1 first became available in
April 2006 (NovAtel Inc., 2006b), therefore, it was available for a total of 6 years and 3

months.
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Challenges for GNSS receivers

Montenbruck et al. (2008) state that there are four key challenges that have to be met
regarding GPS receivers - miniaturisation, increased accuracy and robustness, support
of new signals, and advanced science applications. Additionally, there is a challenge of
minimising the power consumption so that such receivers can be used on 1U cubesats and
femto-satellites. For many satellite applications, the start up time of the GNSS receiver
can be problematic, with space-rated GPS receivers typically having a cold start time of
between 10 and 15 minutes (Montenbruck et al., 2008). This can be reduced by providing
the almanac through the satellite’s uplink, but even with this, GNSS receivers do not offer
instant-on positioning. This is improved with the new safety-of-life signals in both Galileo
and GPS, which could potentially reduce the overall power consumption of a fractionated
GNSS receiver.

1.6 Summary

The highly dynamic nature of ionospheric plasma depletions requires both high tempo-
ral and spatial resolution from ionospheric measurements to further the understanding of
how they form, develop and dissipate. The most cost effective way of achieving this is
through the use of a large number of low-cost satellites, with the use of femto-satellites
being very attractive. The sensor technology to measure the ionospheric plasma on such
a small satellite is available, however, only a small number of femto-satellites have ever
been flown. Pico- and nano-satellites have been flown in significantly higher numbers,
with the majority designed as testing platforms for a particular new piece of technology.
Whilst they frequently lack attitude and orbit control systems, they make use of COTS
components to reduce costs and allow them to perform more complicated tasks. Con-
ventional attitude and orbit control are unlikely to be suitable for femto-satellites, due to
size and power constraints. Constellations of larger commercial and scientific satellites
exist, however, inter-satellite links are frequently designed out where possible, to reduce
the complexity of the constellation. In a constellation, or swarm, of smaller satellites,
which are dispersed over a smaller volume, the use of inter-satellite communication could
be both easier, through the use of COTS components, and a requirement of the mission.
Overall, the current main limitation in using femto-satellites for high temporal and spatial
resolution ionospheric measurements is not in their cost, ability to collect the data, or to
get the data to a ground station, but in their ability to know their own location with a high
enough precision to make the measurements meaningful.
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Chapter 2

Mission concept

The University of Leicester has proposed a concept for a combined pico- and femto-
satellite mission, consisting of a single pico-satellite, a 3U cubesat, and a single femto-
satellite, a PCBsat (Vladimirova et al., 2011). The design of the PCBsat is based on the
initial design of Barnhart et al. (2009) and would form part of the cubesat’s structure at
launch. During flight, the cubesat would deploy the PCBsat on a tether, so that the PCBsat
could be fully tested whilst guaranteeing it to be in communication range of the cubesat.
At a later point in the mission, the tether would be cut to test how the satellites separate,
the communication over a longer distance and so that the PCBsat can test its scientific
payload. The overall aim of this mission is to perform an in-orbit test of the technologies
required to create a space weather monitoring satellite swarm, whilst providing useful
data from additional payloads on the cubesat (which are outside the scope of this work).
The eventual aim is a significantly larger mission - a satellite swarm mainly consisting
of PCBsats, that perform data collection, with the data being relayed to a smaller num-
ber of cubesats, dispersed among the PCBsats, which provide a ground link. Therefore,
the PCBsat needs to be designed so little, if any, changes are needed between the two
missions. The original design of the PCBsat was a proof of concept, to show that a femto-
satellite could be used, and is, unfortunately, not flight ready.

This chapter discusses the original design and ways to modernise it. In section 2.1.1 a
power budget is constructed, with section 2.2 discussing possible location techniques that
could be used.

2.1 PCBsat design

The original PCBsat, designed by Barnhart et al. (2009) and hence will be referred to as
the ‘Barnhart PCBsat’, has already been discussed in section 1.3.2, however, it is now
briefly described to illustrate the proposed changes. It was designed to use COTS compo-
nents to reduce manufacturing costs, with the effects of the increased exposure to ionising
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Figure 2.1: Concept drawing of the PCBsat (Barnhart, 2008).

Figure 2.2: The prototype version of the Barnhart PCBsat (Barnhart et al., 2009).

radiation, common in satellite orbits, largely being disregarded, due to the short mission
life.

The Barnhart design, shown in figure 2.2, is based around an 8 bit microcontroller
(Atmel ATmega128L), serial flash memory (16 Mb) and a 900 MHz mesh-network radio.
It has a main payload of the MESA sensor, with a commercial GPS receiver and a VGA
CMOS camera. For housekeeping, there is a real time clock and temperature sensor,
and there is a Sun sensor for simple attitude determination. Power is provided by single
junction GaAs solar cells on the two largest faces and a 2322 mWh (645 mAh at 3.6 V)
Li-ion battery (Barnhart, 2008).

Whilst the Barnhart design was fully functional on the ground, certain parts of it
would not be able to function in space, others might cause problems and some can be
updated so that they are better suited for a satellite. The first major problem is the use of a
commercial, non-space-rated GPS receiver. As explained in section 1.5, non-space-rated
commercial GPS, and GNSS, receivers are limited to only work below a certain altitude
(18 km) and a certain velocity (less than 600 m s−1), and even with these limitations re-
moved, the majority are unlikely to work due to a significantly increased Doppler shift of
the received signals. This is a severe problem with the original design, as it means that
location information could not be obtained once the satellite was in orbit. Additionally,
the use of a 900 MHz radio could cause problems, as it is only part of the license-free ISM
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band in some countries, not worldwide, which might restrict its use in space. Addition-
ally, the solar cells used in the original design have a fairly low efficiency compared to
that of commonly used triple-junction GaAs cells, and so could be upgraded to increase
the flexibility of the design.

2.1.1 Modernised PCBsat

In the years since the Barnhart PCBsat was designed, technology has progressed in many
ways. One of these is the fairly recent availability of ferroelectric RAM (FRAM, or
sometimes FeRAM) based microcontrollers. FRAM is a non-volatile storage that stores
data by using a ferroelectric film - a material that can be polarised, like a permanent
magnet (with similar hysteresis), using an electric field (rather than a magnetic field).
As the data is stored as a crystal polarisation, it is substantially less susceptible to the
effects of ionising radiation as flash memory is - which relies on a charge being stored on
a floating gate. This essentially means that FRAM microcontrollers are still susceptible
to single event upsets (SEUs), but the microcontroller’s program and data memory are
practically not, allowing their use in a satellite to increase the reliability over that of non-
radiation hardened microcontroller.

One FRAM based microcontroller is the TI MSP430FR5738. It is a 16 bit microcon-
troller that operates at up to 24 MHz, which is three times faster than the ATmega128L,
whilst having a maximum power consumption of 12.9 mW, compared to the 55 mW of
the ATmega128L (Texas Instruments, 2011; Atmel Corporation, 2011). Whilst it is not
fair to compare the clock frequencies of microcontrollers with different architectures, it
is possible to say that the MSP430FR5738 is likely to perform significantly more ef-
ficiently, with its 16 bit architecture and lower power consumption. Additionally, the
MSP430FR5738 includes a real time clock, which simplifies the overall design and also
decreases the power consumption.

The preliminary design for the modernised PCBsat includes an accelerometer as a
secondary payload rather than a camera. Whilst camera images from satellites are very
useful for publicity, they add very little scientifically to this mission1. The Barnhart design
envisaged the camera being used to capture the dispersion of the PCBsats through images
taken at random times (Barnhart, 2008). However, there is little chance that the captured
images would show the other PCBsats, as, under the best conditions, the camera of one
PCBsat would be looking at one of the smallest faces on the rear of a leading PCBsat.
As a consequence, the majority of images would show very little and so would require
a considerable amount of processing on the PCBsats to determine which images were
useful, to avoid transmitting useless data. Although an accelerometer would not provide

1However, a camera on the cubesat could be useful to help determine the state of the tether and the
deployment of the PCBsat.
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Table 2.1: Time averaged power generation for a variety of solar array configurations.
Figures calculated assuming a solar irradiance of 135.3 mW/cm (Spectrolab Inc., 2008).

Solar cell Estimated time-averaged powera

(mW)

Type Efficiency
Area (cm2)

56 64 81 100

Generic
Silicon 11.0% 417 476 603 744

GaAs triple junction 28.0% 1061 1212 1534 1894
Spectrolab (GaAs)

ITJb 26.8% 1015 1160 1469 1813
UTJc 28.3% 1072 1225 1551 1915
XTJd 29.5% 1118 1277 1617 1996

a When illuminated. b Spectrolab Inc. (2008). c Spectrolab Inc. (2010a).
d Spectrolab Inc. (2010b).

information on the dispersion of the PCBsats, without post-processing, it would allow the
effects of atmospheric drag on the PCBsat to be measured, which would be useful for
future missions. The presence of a GPS receiver in the Barnhart design, and some kind of
location technology in the modernised design, would allow the dispersion to be observed,
providing that the PCBsats and the communication network functioned correctly.

Many space-rated receivers are available (see section 1.5), however, they are typically
too large, in both size, mass and power consumption, for the PCBsat. To be able to judge
what location technologies can be used on the PCBsat, it is necessary to construct a power
budget.

Power budget

Due to the dimensions of the PCBsat, the only practical place for the solar cells is the
two side faces, that measure 10 by 10 cm2. For a first order approximation, we consider
the PCBsat to not have any attitude control, instead it is assumed that it is tumbling at a
constant rate. Whilst this is unlikely to be true, it provides a good approximation of the
illumination characteristics. At a given distance from the PCBsat, each length of the side
face will vary sinusoidally, with the rotation, from its true length to zero. Therefore, the
visible area of the side face will vary like a squared sinusoidal. With the time average of
a squared sinusoidal being 1/2, the effect of the PCBsat’s rotation can be approximated as
reducing the power output by half of that of a static PCBsat, with the incident radiation
normal to the solar panels. From this, it is possible to calculate the average solar power
for different solar arrays, which is shown in table 2.1. The four areas chosen are 56 cm2,
the area of solar cells in the original PCBsat design (Barnhart, 2008), and 64, 81 and
100 cm2, respectively 8× 8, 9× 9 and 10× 10 cm2. Although a solar array with an area
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Table 2.2: Solar power generation considering orbital eclipse. The minimum and maxi-
mum are based on the estimated power of 1 and 1.5 W, respectively.

Satellite altitude Orbit illuminated Average power (mW)
(km) (%) Minimum Maximum
320 60.4 603.6 905.3
500 62.6 626.1 939.1
700 64.6 646.2 969.3

Table 2.3: Available power for different orbit altitudes, with required battery capacity.

Solar power Power Altitude Orbit Power (mW) Minimum battery
(mW) stored (%) (km) eclipsed (%) Lit Eclipsed capacity (mWh)
1000 50 320 39.6 500.0 609.0 365.1

500 37.4 500.0 669.7 394.1
700 35.4 500.0 730.6 424.7

1500 45 320 39.6 825.0 822.1 492.9
500 37.4 825.0 904.1 532.0
700 35.4 825.0 986.3 573.4

of 100 cm2 is not practical, it is included as the physical maximum. Disregarding the
silicon solar cells, due to their low efficiency, the estimated power output is between 1

and 1.5 W.
To calculate the power available, it is necessary to know how much of each orbit is

spent in eclipse. There are a few methods of doing this, with one being simple trigonom-
etry (see appendix B) which results in the eclipse angle being,

θ = 2 arcsin

(
re

re + rs
− rsun − re

d

)
,

where re is the Earth’s radius, rs is the altitude of the satellite, rsun is the radius of the
Sun and d is the average distance between the Earth and the Sun. This can be easily
used to calculate the amount of the orbit that is spent in eclipse. This is done in table
2.2, where the average power for several orbital altitudes is shown. This average power
is not particularly useful for constructing a power budget, as it is averaged over an orbit,
however, it illustrates how sensitive the orbital illumination is to altitude.

This orbital illumination information can be used to calculate how much available
power there will be during both the lit and eclipsed parts of the orbit. This is shown in
table 2.3, using the same likely orbits for space weather monitoring as table 2.2. The table
uses a chosen percentage of the estimated power output of the solar cells (1 W and 1.5 W)
to be stored for use during eclipse, with the minimum battery capacity to do this being
shown. The percentage of the power stored was chosen to approximately equalise the lit
and eclipsed power, with the power during eclipse considering a battery charge-discharge
efficiency of 80 %. Additional calculations, that have been omitted, have verified that the
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charging rates of 500 and 675 mW, implied by table 2.3, are within the charging limits of
small li-ion batteries, that would be suitable for the PCBsat’s form.

From table 2.3, the PCBsat would have between 500 and 825 mW, when lit, and
between 609 and 822 mW, when in eclipse, for the lowest altitude considered2. Therefore,
a conservative power budget should be based on maximum power targets of 500 mW,
when lit, and 600 mW, when eclipsed. The preliminary power budget for the PCBsat is
shown in table 2.4. As the PCBsat would operate differently depending on whether it is
eclipsed or not - as the data collection from the MESA sensor is only performed during
eclipse - the power budget is split into two. It should be noted that this power budget does
not consider either the Sun sensors or magnetorquers, and uses estimates for the MESA
sensor and radio, with the radio being intentionally excessive.

With such a restrictive power budget, none of the available GPS, or GNSS, receivers
are suitable for the PCBsat. There is, therefore, a need to find, or create, an alternative
to the commercially available location techniques that fits within the PCBsat’s power
constraint of less than 360 mW.

2.2 Potential location techniques

There are many potential methods to locate an orbiting satellite, which can be classified
into two categories - prediction and measurements. Predictive methods use orbital models
to determine a satellite’s position at a certain time, whilst measurement methods calcu-
late the distance from known reference points - practically, this means ranging. For a
swarm of satellites, Earth based ranging, that is bouncing a laser off of a target on the
satellite, becomes impractical due to the number of satellites and would rely on predic-
tive methods to calculate the location between measurements. The small size of pico-
and femto-satellites, would make this significantly more difficult as the retro-reflecting
target would be a lot smaller. Additionally, ranging using an Earth facing camera on the
satellites could be problematic due to cloud cover and requiring a definitively shaped land
mass, and would also not be particularly useful for measuring space weather as the posi-
tion would have to measured at night, where the land masses are harder to distinguish and
identify, or would rely on predictive measurements from daytime measurements.

2.2.1 Prediction

Predictive methods largely revolve around the use of the two line elements (TLEs) pro-
duced by NORAD, an example of which is shown in figure 2.3. These are orbital ele-
ments that are calculated for each satellite, or orbiting body, and are made available for
public use. Because of this, they only have a positional accuracy of approximately 1 km

2This is considered, as the PCBsats should be able to function fully as they de-orbit.
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ISS (ZARYA)
1 25544U 98067A 16226.93779845 .00005281 00000-0 84287-4 0 9998
2 25544 51.6448 129.8623 0002079 130.1779 315.5703 15.55001256 13971

Figure 2.3: A TLE for the International Space Station (ISS). The first line contains the
satellite’s name. The first line of data contains (in order from left to right), the line num-
ber, the satellite number, the international designator, the epoch of the TLE, the first and
second derivatives of the mean motion, the BSTAR drag term, the ephemeris type (which
is always 0) and an element number (which is incremented for each TLE). The second
line of data also contains the line and satellite numbers, but then has the orbit inclination,
the right ascension of the ascending node, the eccentricity, the argument of perigee, the
mean anomaly, the mean motion and the revolution number at epoch.

at epoch (Vallado et al., 2006a). To calculate a satellite’s position at a time before or after
the epoch, a propagator has to be used, with SGP4 being the only propagator that the
TLEs are designed to work with (Vallado et al., 2006a). SGP4 was first published in 1980
and considers the atmospheric effects on a satellite through a ballistic drag coefficient,
however, this coefficient frequently changes for satellites and it is fairly common for it
to become negative at some epochs, which is unrealistic, to account for inaccuracies in
the propagation model. Using SGP4, the accuracy of a satellite’s position decreases by
approximately 1 to 3 km per day (Vallado et al., 2006a,b). This, combined with the TLEs
only being published for a satellite if its positional accuracy meets certain unknown cri-
teria, results in a positional accuracy of a satellite that can be severely inaccurate for the
purpose of space weather monitoring.

As the TLEs are only accurate to approximately 1 km at epoch, any propagators that
use them also have this level of inaccuracy, making them less than ideal for the measure-
ment of space weather phenomena, prior to considering the inaccuracies of each individ-
ual model.

Additionally, to be able to calculate the satellite’s position, each satellite would have
to record the time of each measurement with a reasonable degree of accuracy, which
requires an accurate time source. A typical watch crystal has a frequency stability of
approximately ±20 ppm (ABRACON Corporation, 2010), which, excluding temperature
effects, will drift by 1.73 seconds every 24 hours. To maintain a clock accuracy of 10 ms,
which at orbital velocities is around 100 m, the clock would have to be synchronised
with a high precision clock at least once every 8.3 minutes. Higher accuracy crystals are
available that have a frequency stability of ±0.5 ppm (IQD Frequency Products, 2012),
however, to maintain the same clock accuracy, this would have to be synchronised at least
once every 330 minutes, which is approximately every 5.5 hours. In addition to this, these
higher stability crystal are significantly larger than a standard watch crystal, they consume
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more power and cost approximately 10 times more; however, they are still feasible to use
on a femto-satellite, such as the PCBsat.

The choice of the synchronisation clock is also very important to the accuracy of the
clocks on the satellites. If each of the cubesats were to have high stability clocks, perhaps
relying on the reception of GNSS signals, then the communication network would have to
be able to relay the time to all of the PCBsat nodes within a few milliseconds. This relay-
ing would have the potential problem that the PCBsat nodes would not be synchronised
with each other, hindering data analysis through ambiguity. Terrestrial time broadcasts,
commonly used in radio controlled clocks, could be utilised, but unfortunately, there is no
worldwide standard, with different countries using different frequencies and encodings.
This would result in a large number of protocols having to be supported by each satellite
to ensure an accurate clock, whilst there would be no guarantee that the time broadcasts
could be received in space under all circumstances.

Satellite time broadcasts, such as those from GNSS, could be used to ensure a high
accuracy clock. However, as this would require each node to have a GNSS receiver, it
would be illogical to use predictive methods for location, as a more accurate position
would already be known.

2.2.2 Satellite ranging

As seen is section 1.4, it is possible to use satellite ranging to locate satellites. However,
the use of a microwave link, such as that used in the GRACE satellites, or the occulted
solar chronograph, used in the PROBA-3 mission, requires a fixed satellite separation in
a predetermined geometry. With the intention of the PCBsats to disperse over the mission
lifetime, these methods are not suitable. It is possible to design an optical or radio based
ranging system, however, these are not particularly practical.

Firstly, an optical based system, such as three evenly spaced lights mounted on each
face of the PCBsat, would allow the distance to be calculated by analysing captured im-
ages from other nodes. However, this would require that each PCBsat has a camera on
each face as well as having the necessary processing power to analyse the images. This is
likely to require too much power and be too large for the PCBsat, as well as not providing
any method of synchronising the clocks between nodes. Additionally, the positions of the
PCBsats would only be known relative to each other, requiring the cubesats to be used to
locate the swarm absolutely.

Secondly, an RF based system would either require time of flight signals, essentially
RF echoes, or for the nodes, at least the cubesat nodes, to have very accurate and pre-
cise clocks. Time of flight signals have the issue that they have to be transmitted by the
PCBsats over a potentially large distance to several nodes, which could consume a large
amount of power and become increasingly difficult to manage when there are a large
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number of nodes. Time of flight signals would also not provide a way to perform clock
synchronisation. If, instead, accurate and precise clocks were used on the cubesat nodes,
then effectively a custom GNSS would be created. This has the issue that it would be less
accurate than current GNSS and would require knowing the exact location of each of the
cubesats, essentially resulting in a GNSS that would be less reliable than current systems.
The only advantage to doing this would be if the PCBsat nodes were able to consume less
power using a custom system, and this lower power consumption out-weighed the loss in
accuracy, however, this is highly unlikely.

2.2.3 Summary

Predictive methods do not have the required accuracy for measuring space weather phe-
nomena, where measurements require a positional accuracy of at least 100 m, due to the
methods relying on TLE data that is, at best, only accurate to 1 km. Earth based and
optical satellite ranging are impractical for the small size of the PCBsats and the poten-
tially large number of nodes. With any RF based satellite ranging methods resembling a
less accurate version of current GNSS solutions. Therefore, the only practical method of
finding the precise location of nodes in a dispersive swarm is to use current GNSS.
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Chapter 3

GNSS receiver design

As described in section 1.5, GNSS utilise very similar signals, frequently with the same
encoding methods. This results in a typical architecture for a GNSS receiver, that varies
very little. This typical architecture, as shown in figure 3.1, consists of five distinct parts.
The first is the RF front-end, that down-converts the received signal from the antenna to
an intermediate frequency - from the order of gigahertz to tens of megahertz. The front-
end then digitises the signal, with 1 to 3 bits being typically used, although some software
defined radios will use 8 bits1. We will refer to this digitised data from the front-end
as being the baseband data, which is fed into multiple tracking channels. Each tracking
channel despreads the received signal with one of the satellite’s PRN codes, by tracking
the frequency offset and code delay of the signal, and, if the signal is present, will output
a decoded data stream, alongside information such as the satellite’s pseudorange (the per-
ceived distance between the satellite and the receiver). This data stream is then processed
by the navigation processor individually, to determine the satellite’s position and apply
any necessary corrections, and together with the data from other tracking channels to cal-
culate the location of the receiver (referred to as the navigation solution). The navigation
processor will then output the location of the receiver at a set rate and using a predefined
protocol.

1However, it should be noted, that this level of quantisation is excessive for GNSS signals.
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Figure 3.1: Typical GNSS architecture, optional elements are shown with dashed lines.
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To manage the satellite tracking, the receiver has some control logic that determines
which satellites are assigned to the tracking channels. The complexity of this varies, from
assigning new satellites to tracking channels that have been unable to detect a signal, in
a round-robin fashion, to using the position of the receiver with estimates of the satellite
locations (the almanac) to choose potentially visible satellites. One method of assisting
the control logic, is the addition of an FFT acquisition unit. This provides a method of
determining which satellites are visible and estimating the required tracking parameters
without any prior knowledge.

The PRN codes in a system are designed to be orthogonal, that is, they are chosen
so that they cross-correlate poorly. When used in the time domain, the PRN codes will
only correlate strongly when they are aligned, however, in the frequency domain, auto-
correlation can be used, where two unaligned signals are used to produce a correlation
peak that is delayed by the unaligned offset. The tracking channels can be used to search
for a signal by iterating through the possible offsets, which, due to the large search space,
can take a considerable amount of time. An FFT acquisition unit, however, can determine
which satellites are visible in a smaller amount of time, but there are certain drawbacks
to using the method. The main drawback is that the produced tracking parameters (the
signal’s frequency offset and code delay) are only estimates, with more accurate estimates
requiring more data, memory and a larger processing time. In addition to this, the signal
to noise ratio (SNR) required for an FFT based acquisition is higher than that of using
the tracking channels to perform a slower time domain correlation. This means that some
visible satellites will not be acquirable, whilst they are present, and trackable, in the signal.
This is why an FFT acquisition unit is optional - it is not a required part of the receiver’s
architecture, but its addition can be advantageous.

3.1 Distributed receiver concept

The architecture in figure 3.1 implies that all the processes are concurrent, whilst this is
true for most receivers, it is not true for all. The only requirement a GNSS receiver has is
that the tracking of satellites is concurrent, so that the distance from at least four satellites
is known at a given time, to calculate the receiver’s position. It is possible to store the
baseband data as it leaves the RF front-end. This is referred to as post-processing, as it
allows the acquisition and tracking to performed at a later time and also repeatedly, which
has several advantages.

The first is that a receiver can track a higher number of satellites, by using more
tracking channels. Any receiver has a maximum number of channels, which is less than
the number of transmitting satellites in a GNSS. Whilst it is not possible to see all the
satellites at once, it is possible for more to be visible than the receiver can concurrently
track. When post-processing is used, the tracking channels do not have to run at the same
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time, they just have to run so that they are concurrent with the data (i.e. the timing is based
on the current sample number rather than a clock), which allows the same channel to be
used for tracking multiple satellites, resulting in the possibility of tracking more satellites.
In addition to this, the tracking channels, as they do not have to run in real-time, can be
designed to have higher precision and greater accuracy. The second advantage is that the
receiver can acquire and track satellites that it would not otherwise be able to. Due to
the signal type, the SNR required for tracking is lower than that required for acquisition.
In a post-processing receiver, when the SNR of a satellite changes, from low to high, it
is possible to use the tracking parameters used during the higher SNR period to allow
the receiver to acquire and track the satellites in the low SNR period. Whilst this does
require multiple iterations of the receiver, it can be beneficial. The third advantage is that
the positional accuracy can be increased when using post-processing. Part of this is fairly
obvious: if you use more satellites, you can more accurately pinpoint the location of the
receiver; however, it is also possible to more accurately know the location of the satellites.
The navigation message from each satellite (the data that the tracking channels decode),
contains an estimate of the satellite’s position in terms of orbital elements (the ephemeris).
These orbital elements are predictions and have a certain amount of error associated with
them. Higher accuracy ephemerides are produced by the International GNSS Service
(IGS), by utilising a range of ground based monitoring stations. By using the IGS data,
the positional accuracy of GPS satellites can be increased from the navigation message’s
100 cm to approximately 2.5 cm, with the timing accuracy increasing from a standard
deviation of 2.5 ns to approximately 20 ps (International GNSS Service, 2014). However,
it can take the IGS up to 18 days to produce these improved accuracy ephemerides, as
they use data collected over periods of weeks, from different sources (including laser
ranging), to model the movement of the satellites, whilst trying to minimise any sources
of measurement error.

Whilst post-processing has many advantages, it has some significant disadvantages.
The primary of these is the amount of data storage that is required to capture the baseband
data. The smallest possible data rate is 1 bit at 1.023 MHz (the chipping rate), which is
around 125 kB/s or 439 MB/h. However, this makes tracking difficult and will produce
poor quality navigation solutions. A more practical sample rate is around 5 MHz, which
results in a data rate of around 610 kB/s or 2 GB/h. In addition to this, post-processing
cannot produce any information about the receiver’s position until after the fact. These
two main disadvantages, limit the use of post-processing to laboratory use and niche, short
duration applications.

There is another point, in a typical GNSS receiver, where the data can be stored, which
has currently not been investigated - where the data leaves the tracking channels (see fig-
ure 3.2). This, like post-processing, has certain advantages and disadvantages - namely
the ability to use the IGS ephemerides and the receiver not knowing its position - whilst
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Figure 3.2: An alternative post-processing architecture, where the decoded data, rather
than the baseband data, is stored.

not requiring the large amount of data storage. In particular, it is possible that it could be
beneficial for it to be used in two applications. The first is in a power constrained envi-
ronment. The navigation processor calculates the position of the receiver by calculating
the positions of the satellites, applying corrections and solving at least 4 simultaneous
equations (which is typically done through matrix inversion). This, in particular the last
step, is quite computationally complex and can consume a significant amount of power.
If the decoded data stream, from the tracking channels, is stored, there is no need for
a navigation processor to be part of the receiver’s design, reducing the receiver’s power
consumption. The second application is a hybrid between a typical receiver and one that
stores the decoded data. This would allow a receiver to be able to know its position in
real-time, like a typical receiver, whilst storing the decoded data to be used later with the
more accurate ephemerides, which could be useful in a variety of different applications.

For a power constrained design, such as the PCBsat, the first application is very at-
tractive and could be integrated into the mission’s design. In particular, it could be used
in a distributed receiver design where the receivers on the PCBsat are designed without
a navigation processor and transmit their collected scientific data with the unprocessed
position data (see figure 3.3). Then the receiving cubesats, which provide a ground-link
for the PCBsats, process the receiver’s data to produce a navigation solution before trans-
mitting the scientific data to the ground station. This, from the point of view of the ground
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Figure 3.3: Architecture of a distributed GNSS receiver, with the navigation processor
being in a different location to the GNSS antenna.
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station, would be as if the PCBsats were calculating and transmitting their own positions,
like they were using a typical GNSS receiver; whilst reducing the power consumption of
the PCBsats (by placing the computational burden on the cubesats, which have a more ac-
commodating power budget). However, as the PCBsats have to transmit more data, there
is a trade-off between the power saving made by the receiver and the increase in power
of the communications subsystem. To determine if this design could reduce the power
consumption of the PCBsats, a feasibility study was conducted.

3.2 Distributed receiver feasibility study

Whether the distributed receiver design reduces the power consumption depends on the
power consumption of the navigation processor and the power consumption of the radio
transmitter. Both of these will be quantified as the amount of energy required per position,
as they are both discrete processes.

The power consumption of the navigation processor was estimated by mimicking the
main computational burden - the matrix inversion - as a full navigation processor, at the
time of the feasibility study, was not available. There are many ways to do this and
singular value decomposition (SVD) was chosen as it is capable of finding an approximate
solution to a singular, or numerically close to singular, matrix (Press et al., 2007). A
singular matrix is a matrix that cannot be inverted and occurs, in square matrices, when
multiple rows are degenerative - i.e. they contain the same information. Whilst this is not
likely to happen in a GNSS receiver - as no two satellites will be in the same position - it
is possible for a singular matrix to occur because of conflicting information, for example,
caused by differences in the signal’s propagation velocity.

A typical receiver will track around 6 satellites at a time - 4 is the minimum required
to calculate the receiver’s position, with around 8 being the highest number of satellites
visible at one time. It is often the case that one or two of the 8 visible have an SNR
that is too low for a receiver to acquire and track, so 6 was chosen to cover the typical
case. As the positions of the satellites and their pseudoranges was not available, 6 points
were chosen at the approximate altitude of GNSS satellites (in particular, GPS satellites)
with the pseudoranges being manually calculated from a position on the Earth’s surface.
Whilst this did not include any propagation delays or errors, and so was idealistic, it was
more than adequate for testing the SVD routine and estimating the required energy.

The calculation of the receiver’s position can be performed on a wide range of proces-
sors, so three likely candidates were chosen, based on the design of the PCBsat. The first
was a low performance, 16 bit microcontroller: Texas Instruments’ MSP430FR57392.
The second and third choices were both 32 bit ARM Cortex-M microcontrollers but

2The MSP430FR5739 is very similar to the MSP430FR5738, with the only differences being in the
available peripherals and that the ’39 is available as part of a development board.
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Table 3.1: Summary of the 3 microcontrollers used for the navigation processor estimates.

Performance
Low Medium High

Microcontroller MSP430FR5739a STM32L152b STM32F407c

Architecture 16 bit MSP430 32 bit Cortex-M3 32 bit Cortex-M4
FPU No No Yes

Operating frequency (MHz) 24 32 168
DMIPS 24 (estimated) 33.3 210

Maximum power (mW) 12.9 54.3 392.4
a Texas Instruments (2011). b STMicro Electronics (2013a). c STMicro Electronics
(2013b).

from different series - the second was a Cortex-M3, designed for low power use: ST’s
STM32L152; with the third being a Cortex-M4, which is an Cortex-M3 with a floating
point unit (FPU) and DSP extensions: ST’s STM32F407. These three microcontrollers,
summarised in table 3.1, cover the range of processing that a PCBsat, or any femto-
satellites, is likely to be capable of. The DMIPS row of table 3.1 is a considerably more
useful metric than the operating frequency, as it is a standardised benchmark that shows
the performance of the processor.

Most modern processors have low powered sleep modes that stop the processor’s
clock, which are used instead of continuously running the processor when there is nothing
for it to do. This can reduce the power consumption of the processor quite drastically, but,
if the processor is only running at full power for small periods of time (i.e. milliseconds),
can make measuring the power consumption difficult. An alternative method, which was
used, is to measure the power consumption whilst running the processor continuously do-
ing the required task - the matrix inversion - and measure how long it takes to perform
each task; then the power consumption of the sleep mode is measured. With the task run
time known, the amount of sleep time is also known and so an overall power consumption
can be calculated.

When a processor wakes up from its sleeping state, there is a certain amount of time
required before it can start processing as normal, which is due to its internal clocks sta-
bilising and its interfaces being re-initialised. This means that this method of calculating
the power consumption will be an underestimate, as the processor will spend some time
consuming more than its sleep power, which is not considered in the task processing time.
However, this amount of time is very small and significantly smaller than the task pro-
cessing time, resulting in the underestimation being very small. For example, the typical
wakeup times for the microcontrollers used are 78 µs, 360 ns and 1 µs (Texas Instruments,
2011; STMicro Electronics, 2013b,a).

The active power consumption for the three microcontrollers, shown in table 3.2, was
taken whilst running the SVD task in a loop, with an output on the microcontroller being
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Table 3.2: Microcontroller power consumption and task length for the SVD (matrix in-
version) task. Both the active and sleep powers, and the task length are averages over 100
measurements.

Power consumption
Microcontroller Low Medium High

Active power (mW) 14.82 ± 0.03 44.69 ± 0.03 121.58 ± 0.03
Sleep power (mW) 2.0082 ± 0.0003 16.151 ± 0.002 36.539 ± 0.003
Task length (ms) 434 ± 4 55.2 ± 0.6 10.84 ± 0.03
Maximum task

2 18 92
frequency (Hz)

Task energy
(mJ)

10 Hz 3.19 ± 0.03 4.58 ± 0.01
4 Hz 5.61 ± 0.04 10.06 ± 0.03
2 Hz 6.56 ± 0.07 9.65 ± 0.08 19.19 ± 0.05

toggled after each calculation. The frequency of the output pin was then used to calculate
the task length. In table 3.2, the maximum frequency of the task is shown, which is
number of navigation solutions that can be calculated per second. The minimum rate of
navigation solutions required, due to the changes in the orbit being quite small, is 4 Hz.
This results in a distance of approximately 2 km between each position measurement,
for a satellite in low Earth orbit. Due to the complexity of the calculation, the lowest
performance of the three microcontrollers is not capable of this rate, and so its maximum
rate, 2 Hz, is shown in the table. In addition to this, the highest likely rate, 10 Hz, is also
shown in the table, which would result in a distance between position measurements of
approximately 800 m. The task energies increase when the rate decreases and this is to
be expected, as the energy includes when the processor is sleeping between tasks. For
example, the energy for the 4 Hz rate consists of the task length at the active power and
then the sleep power for 250 ms minus the task length. The energy per task will, therefore,
be smallest when the processor spends no time sleeping, however, this will increase the
total power consumption of the processor.

The second part of the feasibility study requires the amount of extra data needed to
calculate the navigation solution to be known. Each GNSS uses a different format for
the navigation message, so the GPS constellation was chosen to produce these numbers.
However, the differences in the data sizes for different GNSS is going to be very small, as
they all implement the same level of functionality, to similar accuracy levels.

A GPS navigation message is 1500 bits long and is transmitted in 5 frames, each
300 bits long. Each of these frames is further divided into 10 words of 30 bits. The
contents of each word depends on its position in the frame and what frame it is in, but the
last 6 bits of each word is used for parity - resulting in 20 % of the navigation message
being used for parity. Whilst this is high, it is needed because of the signal transmission
method. However, the communication between the nodes in the distributed receiver do
not need this level of error checking as, unlike GNSS, the message can be retransmitted
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Table 3.3: Size of the data transmission for the distributed receiver design.

Data caching
Number of Data required per

used satellites position (bits)

Yes
4 328
6 476
8 624

No
4 2744
6 4100
8 5456

if it is incorrectly received. In addition to the reduction in the number of parity bits,
the entirety of the 5th frame and the majority of the 4th frame are not needed as they
contain the almanac. The almanac is the approximate orbits of the satellites, that are valid
for around a month, and are used for predicting which satellites should be visible to a
receiver. However, as the receiver on the PCBsats do not know their own location, the
almanac is of no use to them. Frame 4 also contains the correction information for the
ionospheric model, which is useful for the receiver. But, like the majority of the first 3

frames, which contain the satellite’s ephemeris and clock information, this data does not
change very frequently - approximately once every 4 hours. It would therefore be quite
redundant to send this common data repeatedly alongside each position measurement.
This data is also common amongst all receivers tracking the satellite and so only needs to
be stored by one of the receivers. In the envisaged mission, the relaying cubesats will also
have GNSS receivers on them and, as they will be in a similar location to the PCBsats, it
is highly likely that the same satellites will be visible to both the cubesats and PCBsats.
Therefore, the receivers on the cubesats could decode and store this common data, without
the PCBsats having to transmit it to them, further reducing the amount of data that has to
be transmitted. If a cubesat did not already have the ephemeris and clock data for a given
satellite, then the PCBsat could transmit it once to the cubesat. However, this would not
be strictly necessary, as this data could be supplemented by that provided by the IGS.

This caching approach reduces the required navigation data for each satellite a receiver
tracks to the satellite’s week number and accuracy, and an issue of data, that is used, with
the week number, to uniquely identify the ephemeris and clock data. This is 24 bits per
satellite, with the full non-cached data being 628 bits, which is a drastic decrease from
the original 1500 bits. In addition to this, the time of reception, relative to the other
satellite signals, is required, with a generous estimate of this being 50 bits. This results
in 74 bits being required per satellite for the distributed receiver. The total number of bits
required for a position measurement is therefore a multiple of this, with an additional 32

bits. These bits are used to indicate which satellites were used by the receiver, so that the

58



Table 3.4: Comparison of the three radio transceivers considered.

Digi Atmel Amber Wireless
XBee-PRO ZBa AT86RF212Bb AMB8636c

Frequency 2.4 GHz 868 MHz 868 MHz
Data rate (kbps) 250 20 50

Transmit power (dBm) 10 10 27
Receiver sensitivity (dBm) -102 -110 -123

Transmitting power
738 79.5 1650

consumption (mW)
Approximate estimated

2.48 10.9 34.3
range (km)

a Digi International Inc. (2014) b Atmel Corporation (2014)
c AMBER wireless GmbH (2014)

navigation processor can calculate the position correctly3. The total number of bits for
both the cached and non-cached receiver are shown in table 3.3.

For a non-distributed receiver, the size of the position data is fixed. Whilst most
commercial GNSS receivers use a text format for their position output, a binary output is
significantly more efficient. Using Cartesian coordinates, rather than longitude, latitude
and altitude, single precision floating points - which are 32 bits in size - will give metre-
level precision, which is an order of magnitude better than the typical accuracy of a single
frequency GNSS receiver. In addition to this, the time and satellites used are needed,
both of which are 32 bits long. When calculating a navigation solution, the arrangement
of the satellites affects the precision of the solution. There are a common set of values,
the dilution of precision, that are used to describe this, with 4 being needed - for the
horizontal, vertical, positional and time dilutions. 16 bits each for these is adequate,
bringing the total number of bits required for a navigation solution to 224.

Different radios require different amounts of energy to send each bit, depending on the
transmission method and the signal power. Other than the network being mesh-based, the
radio has not been defined, so three possible radio transceivers are considered, and these
are shown in table 3.4. To determine the feasibility of the distributed receiver, we need to
find the break-even point - where the non-distributed and distributed receivers are equal in
their energy consumption. This is fairly straightforward, with the break-even point being
when,

Ec = ∆NEb,

where Ec is the energy required to calculate the navigation solution, Eb is the energy
required to transmit a bit of data and ∆N is the difference between the number of bits that
the distributed and non-distributed receivers transmit (with the difference being positive
for a larger number of distributed bits). These break-even points are shown in figure 3.4 as

3With the data always being ordered from lowest satellite number to highest.
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solid lines. Figure 3.4 uses an array of lines - horizontal for the estimates of the navigation
processors and vertical for the radio transceivers - with their intersections representing the
different configurations. The intersections which occur in the shaded regions (below the
solid lines) are where the configuration is not energetically viable - i.e. the distributed
design uses more energy than the non-distributed design.

When caching is not used (the left hand side of the figure), only the Digi radio
transceiver has viable configurations, however, these are of questionable worth. For ex-
ample, when used with the high microcontroller at 2 Hz, the distributed design is viable
for up to 8 satellites, however, at the same rate it is not viable for the low microcontroller
and only for 4 satellites for the medium microcontroller. Whilst there might be some sit-
uations where it is not be possible to choose the lower performing microcontrollers, from
a pure receiver perspective it would be reckless to choose a less efficient solution to make
the distributed design viable. This results in the non-caching version of the distributed
receiver almost always being infeasible, due to the large increase in the amount of data
that has to be transmitted.

The right hand side of figure 3.4, shows that when data caching is used, with either the
Digi or Atmel transceivers, the distributed design reduces the energy consumption. How-
ever, with the Amber Wireless radio transceiver, a similar situation to the non-cached case
is seen, where the distributed design is feasible for some configurations, whose microcon-
trollers are less efficient.

In conclusion, the distributed receiver design is feasible if data caching and an appro-
priate radio transceiver is used. Whilst the transceivers in table 3.4 represent the available
range rather than the most optimum, it does suggest that the distributed design is only
feasible for node separations under 10.9 km. Despite this being quite small for satellite
separations, it fits in well with the size of plasma bubbles and so this limitation is unlikely
to negatively impact the intended mission.

3.3 GNSS receiver prototype

There are two options available for the RF front-end - either a commercial IC can be used
or a custom solution can be made. The custom solution has certain advantages, the main
being that the intermediate frequency and the number of bits the signal is digitised to
can be easily chosen. However, it comes at the cost of extra complexity and an increase
in power consumption - as one chip would be replaced with many to do the same job.
Unfortunately there are not many commercial ICs available that implement only the RF
front-end. With the design of a GNSS receiver being quite complex, especially when con-
sidering extra features which are frequently used in terrestrial receivers, the vast majority
of GNSS receivers have become single chip solutions (i.e. the front-end is integrated into
the receiver). In addition to this, the pressure on miniaturisation in the mobile phone in-

61



dustry has led to many companies integrating their GNSS receivers into system on chips
(SoCs) - where the peripheral devices are placed into the same package as the processor -
such as Qualcomm Technologies Inc. (2016)4.

Whilst there have been several commercially available RF front-end ICs in the past,
there is currently only one available - Maxim Integrated’s MAX2769 (Maxim Integrated,
2010). However, this IC is quite adequate and is capable of being used for the most
popular GNSS constellations - GPS, GLONASS and Galileo.

Its digitised output utilises 5 lines - 4 for data and one for the clock. This makes it
quite difficult for it to be captured by a microcontroller, as few communication interfaces
use 4 bit parallel data and those which do cannot be manipulated so that they only sample
the data. The only method of capturing this data would be to use the general purpose
I/Os, which would use the clock line to generate interrupts. Whilst this would work,
guaranteeing a low and predictable amount of jitter would not be an easy task, and would
be made significantly more difficult by the addition of an appropriate interface to store or
transfer the data (e.g. flash memory, SD cards, USB or Ethernet); therefore, an FPGA was
used.

As the FPGA’s requirements were not initially known at the start of the prototyping,
an available FPGA development board was used, which had a Xilinx Spartan-3 FPGA.
Whilst this FPGA is not particularly suited to DSP, it is more than capable of correctly
sampling the front-end’s data output. However, the development board lacks any high
data rate peripherals that could be used to store or transfer the data, with the best option
being a UART/serial interface. The limited block RAM available in the FPGA was used as
a FIFO to store 5 ms of baseband data, which then took approximately 800 ms to transfer
to a computer over a UART link.

In addition to this, due to the RF front-end IC being in a surface mounted package
and requiring a non-trivial circuit, the initial prototyping used an RF front-end evaluation
board, shown in figure 3.5. This had several drawbacks. The first was that the board
required 3 power supplies (3.3, −5 and 5 V) and was controlled, through the use of an
add-on board, using a desktop computer. The second was that the board was primarily
designed to test and characterise the analogue functionality of the IC, rather than use it
for digital output. But, the board could be modified - through the removal of soldered
links - so that it could be used for digital output. The third was the location of the digital
output pins, which required the use of approximately 20 cm wires to connect to the FPGA
board. This prevented the set up from being taken outside, where the satellite signals have
a greater SNR.

This affected the development of the prototype in two ways. First of all, the 5 ms

of data was enough to detect the visible satellites, but was not enough to perform any
tracking. With the GPS navigation message being broadcast at 50 bps, 5 ms of data holds

4It should be noted that Qualcomm is one of the market leaders in mobile device SoCs.
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Figure 3.5: The RF front-end (MAX2769) evaluation board. The control interface con-
nects to a computer interfacing board, which is not shown.

approximately a quarter of a bit. Due to the 800 ms gap between captures, the data could
not be joined. The second was that the signal was significantly attenuated by the lab’s
building5, resulting in only one satellite being typically viewable at a time (both in the
captured signal and with commercial receivers). When added to the set up’s requirements
- i.e. computer for control and receiving of data, multiple power supplies and multiple
static sensitive boards connected to each other - it was impractical to move the set up
outside, or to a place with a better signal. Overall, the initial set up was not particularly
well suited, so external baseband data was sought.

There is very little baseband data that is publicly available, which is most likely due
to the large data size and limited application, however, there are some sources. One of the
best is the SetiQuest project (which is funded by the SETI institute), who acquire signals
from many known sources, including spacecraft and satellites, by using radio telescopes
(SetiQuest, 2015). This means that their GPS data consists of a strong signal from a single
satellite, with very little signal, if any, from other satellites, as the telescope has a limited
field of view and was only directed towards one target. This restricts the use of the data, as
a navigation solution cannot be calculated, however, both signal acquisition and tracking
are possible.

5It should be noted that this was not a feature of this building, most GNSS signals are difficult, if not
impossible to receive within most buildings.
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3.3.1 Python prototypes

To enable a prototype to be constructed in the shortest possible time, a high level scripting
language (Python) was used. This allowed for rapid development of the algorithms for
both acquisition and tracking, as the specifics of the low level implementation did not
have to be considered, however, it had the disadvantage of sacrificing performance.

As the data available only contained GPS satellites, the FFT acquisition program was
designed to only detect GPS signals. FFT based acquisition utilises the orthogonal nature
of the PRN codes to determine which satellites are visible, using the process of auto-
correlation. This is a significantly faster technique than detecting visible satellites using
correlation, which requires that each code delay is individually tried, but has the downside
of being less precise.

The program first loads the PRN codes, at the correct sample rate, and then calculates
the FFT of each code. The baseband data is then loaded and an FFT of it is also calcu-
lated. Rather than the program demodulating the signal in the time domain, which would
involve multiplying each sample with a generated sine wave, the modulation is removed
in the frequency domain, by rotating the FFT’s bins. The number of bins to rotate by is
calculated using,

r =

⌊
(fc + fD)

N

fs

⌋
,

where r is the number of bins to rotate by, fc and fD are the carrier and Doppler frequen-
cies, N is the number of samples and fs is the sample rate. The demodulated signal is
then used to produce the correlation power spectrum,

A (ω) = F (ω)P ∗ (ω) ,

where F (ω) is the demodulated signal and P (ω) is FFT of the PRN code. The inverse
FFT of A (ω) is then calculated, squared and searched for peaks. This procedure is then
repeated for all of the required Doppler shifts, with the highest peak across all Doppler
shifts being stored and then outputted. This is then repeated for all of the PRN codes.

# c a l c u l a t e FFT of baseband d a t a
f d a t a = f f t . f f t ( d a t a )
# i t e r a t e t h r o u g h PRNs 1 t o 32
f o r prn i n r a n g e ( 1 , 33) :

# s e t b e s t v a l u e s t o s m a l l numbers
b e s t f r e q =−1e20
b e s t p e a k =−1e20
b e s t s n r =−1e20
b e s t d e l a y =0

# i t e r a t e t h r o u g h f r e q u e n c y s h i f t s
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f o r f r e q i n np . a r a n g e ( do pp l e r mi n , doppler max , f r e q s t e p ) :
# c a l c u l a t e s h i f t
s h i f t = i n t ( ( f r e q + c e n t r e f r e q ) * num codes / 1 e3 )
# s h i f t FFT ’ d baseband d a t a / demodu la t e t h e baseband d a t a
d a t a s =np . append ( f d a t a [ s h i f t : ] , f d a t a [ : s h i f t ] )

# c a l c u l a t e i n v e r s e FFT of s h i f t e d baseband d a t a m u l t i p l i e d
wi th t h e FFT c o n j u g a t e o f t h e PRN code

r e s u l t = f f t . i f f t ( d a t a s * f c a c o n j [ p rn ] )
# t a k e t h e a b s o l u t e v a l u e and s q u a r e i t
r e s u l t =np . s q u a r e ( np . abs ( r e s u l t ) )

# f i n d t h e peak v a l u e
t p e a k =np . max ( r e s u l t )
# c a l c u l a t e SNR m e t r i c − peak s i g n a l ove r a v e r a g e
t s n r = t p e a k / np . mean ( r e s u l t )

# i f peak v a l u e i s l a r g e t h a n c u r r e n t b e s t v a l u e
i f t p e a k>b e s t p e a k :

# s t o r e i t a s t h e b e s t v a l u e wi th t h e r e l e v a n t i n f o r m a t i o n
b e s t p e a k = t p e a k
b e s t s n r = t s n r
b e s t f r e q = f r e q
# t h i s l i n e f i n d s t h e a r r a y i n d e x of where t h e peak v a l u e

i s
b e s t d e l a y =np . where ( r e s u l t == t p e a k ) [ 0 ] [ 0 ]

# o u t p u t t h e b e s t peak found
p r i n t ( prn , b e s t f r e q , b e s t p e a k , b e s t s n r )

Listing 3.1: Example of Python based FFT acquisition.

The main part of the program is shown in listing 3.1, where the PRN and data loading has
been omitted for brevity. This particularly shows off the advantage of using Python, as the
produced code is remarkably close to pseudocode, or the most idealistic way of writing
it.

With this approach, the smallest change in the Doppler frequency is the width of a
frequency bin (the resolution of the FFT). It could be argued that a greater Doppler res-
olution could be achieved through demodulating the signal in the time domain, however,
the limitation of the FFT’s resolution will still be the limiting factor, resulting in a limited,
at best, increase in the resolution.

The tracking program processes the data in a loop, with the processing initially being
simplified. The frequency / carrier tracking was performed with a Costas PLL, with a very
simple loop filter, with code removal being achieved through a matched filter. Whilst a
matched filter does the job very well, it is not compatible with calculating a navigation
solution, as it does not produce a code delay. However, it did allow for different error
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Figure 3.6: Spartan 6 FPGA development board connected to the RF front-end evaluation
board.

discriminators to be tested in the Costas PLL, without having to be concerned with the
code tracking. As the SNR in the SetiQuest data is very high, that is significantly higher
than that normally seen by a GNSS receiver, the tracking of the signal is not very difficult.
This is advantageous, as it allows a sub-optimal implementation to correctly track and
decode the satellite’s signal, however, it is a little unrealistic.

Shortly after this initial prototype was completed, an FPGA development board that
better fitted the requirements was acquired. This utilised a Spartan 6 FPGA (LX45),
a USB FIFO interface and enough I/O pins (available through connectors) to meet the
expected requirements. The FPGA has a few advantages over the Spartan 3, such as lower
power, higher logic density and efficiency, and more block RAM, but most importantly
has DSP slices (Xilinx Inc., 2011b). These are hard logic elements that implement a 36

bit (18× 18 bit) multiplier, with a pre- and post-adder, that are particularly useful for DSP
designs (as multipliers consume a large amount of logic) (Xilinx Inc., 2014).

The FPGA’s acquisition logic was re-written to use the USB FIFO interface, which
allowed the samples to be both captured and transferred in real-time. However, two ad-
ditionally problems occurred - latency and interference. Whilst the USB FIFO could
transfer the data to the computer at the required bandwidth, the USB architecture means
that the host (the computer) has to poll the device (the USB FIFO) to see if it is request-
ing to send data and then the hosts initiates the transfer (Axelson, 2015). This results in
a certain amount of latency that is dependant on the software running on the computer,
which, due to the multitasking inherent in modern computer design, meant that some
samples were occasionally lost due to the FPGA’s buffer overflowing. This happened in
an unpredictable way and could not be mitigated by modifying the software running on
the computer (including memory mapped IO, process priorities and processor shielding -
limiting a processor, in a multiprocessor system, to only one task or process). In addition
to this, it became apparent that the digital interface, between the RF front-end and the
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FPGA, was being affected by interference. The RF front-end was connected to the FPGA
using 2.54 mm wire jumpers, which were approximately 20 cm in length, see figure 3.6.
Whilst this type of parallel cable should be more than capable of carrying signals at the
baseband’s sampling rate, 16.368 MHz, movement of the cable or near the cable, resulted
in significant changes in the signal’s power spectral density. The exact cause of this is not
known, it could have been due to the changes made to the RF front-end board or, more
likely, due to the way the front-end produced its output. The RF front-end’s output is not
at a single frequency, but instead is produced at two frequencies, one above the sample
rate and one below (namely, 16.67 MHz and 15.80 MHz), with the number at each aver-
aging to the sampling rate. This adds additional frequency components to the signals, that
could have affected the signal, through reflection or coupling. Attempts were made to
reduce the interference, but these were not particularly successful, with the fundamental
problem being the use of cabling to interface the two boards.

With these problems being combined with the practical difficulties of taking the set
up outside, mainly computing and power, it became obvious that additional tools would
have to be developed.
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Chapter 4

Required tools

The required tools, to allow the development of the GNSS receiver, that are discussed in
this chapter are:

Data storage A form of data storage that can be used to store the RF baseband data, that
can be easily interfaced to by hardware.

Baseband recorder A tool that uses the data storage to record the digital baseband being
produced by the RF front-end.

Baseband reader Similar to the baseband recorder, but instead designed to playback the
baseband data as if it was being produced by the RF front-end.

Custom RF front-end board A custom designed PCB for the RF front-end which con-
nects directly to the FPGA development board, to reduce any interference and to
remove the requirement of any undesirable external power supplies.

GNSS signal simulator A GNSS specific signal generator used to test the receiver de-
sign with a known input.

4.1 Data storage

To be able to record the RF baseband data, an interface with a fairly fast data rate (around
8.2 MB/s) and a low latency is needed. The data rate is that of the RF front-end and the
small latency is required due to the limited buffering that can be performed in the FPGA
(due to the available RAM).

The fastest data rate of the USB interface on the FPGA board (an FTDI FT2232H)
is approximately 10 MB/s. However, the latency, combined with the interface’s small
internal buffers, is large enough to cause the buffer in the FPGA to overflow. It is, ad-
ditionally, unfavourable to require the baseband recorder to be connected to a computer
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during data collection, as it limits the flexibility of the data collection. Therefore, an
alternative, non-volatile storage solution was sought.

With the high data rate, the size of the storage medium has to be quite large. For exam-
ple, 10 minutes of baseband data requires approximately 4.6 GB of storage. Whilst there
are many different types of non-volatile storage mediums, many have complex interfaces
or are only available in capacities that are considerably smaller than required. For ex-
ample, hard drives, either SATA or PATA, use a fairly complex command system, whilst
also having less than desirable physical interfaces - high speed differential signalling for
SATA and a large number of data and control lines for PATA. USB hard drives, whilst still
using differential signalling, operate at a lower speed making them easier to physically in-
terface with. However, the USB protocol consists of many layers and is quite complex to
implement (Axelson, 2015). Many microcontroller manufacturers (particularly for ARM
Cortex-M based microcontrollers), offer USB software stacks to aid in the interfacing of
their products with USB devices. Whilst a microcontroller could be used, there are many
drawbacks and potential issues in doing so. For example, the microcontroller is likely to
be a bottleneck in the system, as it would have to buffer the data internally. With micro-
controllers only having small amounts of RAM and the software stacks being designed
primarily for functionality, rather than performance, it is likely that there would be la-
tency issues due to the high data rate required. There are also issues with sampling the
baseband data, with the primary concern being that it is difficult to ensure that a micro-
controller samples an input in a deterministic way - that is, without any jitter. This is
especially the case when a large software stack has to be used, as there is a non-trivial
amount of processing occupying the processor, and any jitter would be exacerbated by
the high data throughput. There is also an issue that the baseband data has to be captured
fairly precisely on the data clock edge as the data lines are not held constant by the RF
front-end. This is something that is difficult to guarantee on a microcontroller due to jitter,
but could be solved by adding external logic.

At the opposite end of the spectrum, there are commercially available flash memories
that use serial interfaces, typically SPI or I2C. Whilst they are considerably easier to
interface with and control, the largest typical size is around 1 to 4 Gb (which is 128 to
512 MB) and their write speeds are lower than required. As an example, a Micron 4 Gb

serial NAND flash memory has a typical page write speed of 220 µs (around 9.3 MB/s)
(Micron Technology Inc., 2016). But as the writes can not be pipelined, this has to be
combined with the time it takes to transfer the data, which, at 50 MHz (the fastest the
memory supports), takes around 42.4 µs, resulting in an overall typical write speed of
around 7.8 MB/s, below that required.

An alternative option would be to use parallel flash memory, which have faster write
speeds and larger capacities - currently up to 2 Tb - but they also have more compli-
cated interfaces. In addition to this, write-levelling techniques have to be used with flash
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memory, due to the limited number of times flash memory can be written, and have the
disadvantage, alongside serial flash memory, that they require either the same hardware,
or additional hardware, to be able to transfer the data to a computer. These are, for the
design of a fairly simple data recorder, unnecessary complications. One particularly nice
solution is to use SD cards, which are essentially a proprietary serial interface coupled
to parallel flash memory. They also have the advantages of being available in a range of
sizes, are fairly simple to interface to, and, as they are the de-facto standard for digital
image storage, have adapters for computers that are readily available.

4.2 SD card controller

SD cards, including micro and mini SD cards1, utilise a serial bus that can be operated in
two modes - as a standard SPI bus and as a proprietary SD bus.

The SPI bus consists of a clock, a chip select and two data lines - one for each device’s
data output (master to slave and slave to master). The proprietary SD bus consists of a
clock, a bi-directional command line and 4 data lines - either a single data line or all 4 can
be used depending on the card’s configuration.

There are several main differences between the two buses. First of all the SPI bus is
full-duplex and the SD bus is half-duplex - this, however, makes very little difference to
how the card is controlled, as the protocol is half-duplex / command and response based.
Secondly, the SD bus uses CRCs to ensure that both commands and data are transferred
correctly, whereas the SPI bus does not2. This inevitably makes the SD bus more compli-
cated to implement. And thirdly, the card responds to commands in a different fashion. In
SPI bus mode, the responses from the card are transferred at the request of the master, with
any errors being directly reported. In the SD bus mode, the card sends a response within a
set time limit, with errors being indicated by the card not responding to the command and
a flag being set in the card’s status register. This further complicates the implementation
of the SD bus, as the master has to detect these time-out conditions.

Overall, an SD bus master is more complicated than a SPI bus master. However, there
are certain advantages of the SD bus. For example, the SD bus supports a higher clock
frequency and additionally, with the 4 data lines, allows a nibble to be transferred on each
clock, resulting in an increased data rate.

Whilst there are a small number of SD card interfaces available, none of them were
suitable for the application. For example, Edvardsson (2016) and Czerski and Clayton
(2013) are designed to use the Wishbone bus and are primarily meant to be controlled by
a processor, with the processor instructing the controller to send the requested commands

1Which are just smaller physical formats of SD cards.
2Technically, the first command issued over the SPI bus enables the SPI mode of the card and disables

the card’s CRC checking. But as the first command is always the same, the CRC for it is constant.
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and data. To use these, would require the use of a soft-core processor and more than
likely interrupts. Whilst this does add complexity to the design, it would also add a non-
deterministic latency. Instead a design was sought where the initialisation and both the
commands and their responses were hidden from the interface of the controller. Present-
ing a simpler interface, consisting of an address, a read/write flag and a data buffer, whilst
complicating the controller’s internal logic, simplifies the commanding logic. Allowing
the controller to be fully tested and then used as a module, requiring less time to test the
main design, which would otherwise have to reimplement the same logic - such as the card
initialisation. Unfortunately, the only available open source SD card controller that fits
this description also used the Wishbone interface and had a maximum card size of 2 GB

(Fielding, 2014). Whilst it might have been possible to extend the design and remove the
Wishbone requirement, the amount of time it would require to become familiar with the
controller’s structure and design, and then make the changes, would likely be similar to
that of writing a controller from scratch. In addition to the open source controllers already
mentioned, there are a number of commercial SD card interfaces available. However, like
the open source designs, the majority of these are designed to be used with processors,
with some offering DMA functionality, and so would require a soft-core processor. How-
ever, the overriding factor of commercial interfaces was the cost, with all of them being
too expensive to consider.

Due to the lower complexity, a SPI bus based SD card controller was designed. How-
ever, whilst testing the controller with physical SD cards, it became apparent that it would
not be suitable for the data recording application. Whilst the SPI bus was theoretically ca-
pable of the data rates required, it appeared that the SD card was the bottleneck, limiting
the data rate by taking a longer than anticipated time to write the data, once the data had
been transferred across the bus. Although not documented publicly, it seems that an SD
card operating in SPI mode will significantly limit its performance. The initial tests used
a class 2 microSD card, where the effective write speed was limited to approximately
120 kB/s. This was considerably below the class 2’s minimum serial write speed3 of
2 MB/s. Following this, other microSD cards were tested, from a range of manufacturers
and a range of higher class ratings, but all showed similar write speeds. This, is therefore
not an issue with a particular make or model, but a systematic change in the functionality
of many, if not all, SD cards. Unfortunately, due to this not being publicly documented, it
is only possible to speculate on why the cards impose this restriction. Possible reasons in-
clude backwards compatibility, in terms of power consumption, with the preceding MMC
cards (which only operated in SPI mode); and potentially a more commercial reason. The
SD card specification is closed and licensed, however, since 2007 a simplified version
of the specification has been available (SD Association, 2007). It is possible that the
performance is limited when using the SPI bus to prevent manufacturers from using the

3The SD card class system refers to the serial write speed in MB/s.
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Figure 4.1: Diagram of the two ways that an SD card can respond to a command.

legacy interface for new products, that will likely require higher data throughput, forcing
them to use the licensed interface. Of course, this is just speculation, but it would make
commercial sense for such a restriction to be enforced.

With the data rate being significantly less than expected, the only option was to change
the SPI bus based SD card controller to use the full SD bus, which is described below. The
structure of both the SPI and SD bus versions of the SD controller are remarkably similar
- they consist largely of a single finite state machine, that performs the card initialisation
and the subsequent read and write commands, a 512 byte RAM interface, that is used to
hold the current transaction’s data, and the bus interface (including timing generator). It
would therefore be superfluous to describe both of these, so, as the SD bus version is the
one that was used, it is the version that is detailed below.

4.2.1 SD card bus

The SD card bus is an amalgamation of topologies - during normal operation it is a single
master (the controller), multiple slave (the SD cards) topology, with each individual card
being referred to by an address. However, the cards are assigned their address during ini-
tialisation and so the specification requires that each card has its own command line whilst
initialising. There are advantages to this bus topology, namely that the same data can be
written to multiple SD cards concurrently, however, the requirement of independent com-
mand lines during initialisation essentially reduces the topology to a single master, single
slave bus. It is because of this, that the SD card bus is most frequently used in a single
master, single slave topology.

The bus consists of a clock, generated by the controller, a command line and 4 data
lines. Commands are issued by the controller on the command line and, if the command
is successfully recognised by the card, a response is returned on the command line. If
the command is not recognised, either because it fails CRC checking, the card does not
understand the command or the card ignores the command (for example if the card is in
the wrong state for the command), no response will be issued by the card. Instead, a flag
is set in the card’s status register. Figure 4.1 shows a high-level diagram of how a card can
respond to a command. As the card has the ability to not respond to a command, the card
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Figure 4.2: SD bus command format.
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R1, R3 & R6 response

R2 response

Figure 4.3: SD bus response formats.

has to produce a response within a set time limit. During the initialisation, this time limit
is set to 1 second (SD Association, 2007), however, no figure is given for the time limit
during normal operation. Tests have shown that a time limit value of 10 ms is appropriate,
as most cards respond in less than 1 ms.

All SD commands have a fixed size and format - they are 48 bits long and contain a 7

bit CRC. The first and last bits are start and stop bits, removing the command line from
its idle state and returning it, respectively. The second bit is referred to as the transmitter
bit and indicates if the transfer is a command or response, for commands this is 1. The
remaining 38 bits are split into a command index and an argument, as shown in figure 4.2.
The command’s index is a big-endian (most significant bit first) encoded integer, which
specifies the command number. The content of the command’s argument varies between
commands, but when a command does not require an argument it is filled with stuff bits
so that the command is always 48 bits long. The 7 bit CRC is calculated on the first 5

bytes of the command - that is from the start bit to the last bit of the argument, inclusively.
An SD card can respond in two main formats - a 48 bit response and a 136 bit response.

All of these have the transmitter bit set to 0, to indicate that they are responses from the
card. The 48 bit response is used in three different forms, however, they all share the
same overall format as the command format (figure 4.2). In the R1 and R6 formats, the

73



Command
Data[3:0]

command response

data block

Figure 4.4: Diagram of a single data transaction, following a successful command and
response.

command’s argument is replaced with the card’s status and a combined card address and
status, respectively. The R3 format is used for returning the card’s operating conditions
register to the controller and is only used during initialisation, it has the equivalent of the
command’s index and CRC set high (i.e. each bit is set to 1). The remaining response,
R2, is used for the card’s identification and specific data registers, both of which are 126

bits long4. The equivalent of the command’s index - the 6 bits following the transmitter
bit - is set high, like in the R3 format, with the equivalent of the command’s argument
being extended to 120 bits. The 7 bit CRC is classed as part of the registers and is only
calculated for the 120 bits, which are equivalent to the command’s argument.

Data is transferred on the bus after a correctly received, and understood, data com-
mand, with the delay between the command’s response and the start of the data being
variable. When the controller is sending the data, no time limit for the delay is enforced
by the card5. However, when the controller is reading the data, the card responds within
100 times its typical read access time6 or 100 ms, whichever is smaller (SD Association,
2007).

The SD bus has four data lines which, as shown in figure 4.5, can be used in two
different ways - either as a wide bus, where all four lines are utilised, or as a narrow bus,
where only the first line is used, with the others remaining idle (i.e. high). Like both the
commands and responses, the start and end of a data transfers are indicated by a start and
stop bit, respectively. The data transfer is also protected by a 16 bit CRC, opposed to the
command and response’s 7 bit CRC, and is calculated on a line basis - this means that in
the wide bus mode, the controller has to calculate 4 separate checksums in parallel. The
data is transferred across the bus most significant bit first (i.e. big-endian), which, when
using the narrow bus, is done sequentially. In the wide bus mode, a nibble is sent at a time
across the four data lines (as shown in figure 4.5), which quadruples the bus’ throughput
for a given clock speed. The number of bytes in a transfer is determined by the card’s
settings, but, for the vast majority of uses, it is set to 512.

When the controller writes data to the card, the transfer of each data block is followed
by a status response from the card, indicating if the block was accepted. Figure 4.6 shows
the three responses: a success response and the two possible error responses, for either

4Technically, these registers are 127 bits long, with the least significant bit being indefinitely reserved.
It is this bit that is omitted when the card responds with the register.

5As the card does not impose any time limit functionality.
6Which is available via the card’s specific data register.
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0 b6 b2 b6 b2 b6 b2 ... b6 b2 CRC 1

0 b5 b1 b5 b1 b5 b1 ... b5 b1 CRC 1

0 b4 b0 b4 b0 b4 b0 ... b4 b0 CRC 1
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Figure 4.5: SD bus data formats for the two bus width modes.

Data accepted 0 0 1 0 1
0CRC error 1 0 1 1
0Write error 1 1 0 1

start bit stop bitstatus

Figure 4.6: SD bus data write responses.
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a CRC or write error. After the stop bit of the write response, the SD card will hold the
first data line (Data[0]) low whilst the card is performing the write, preventing further
transfers, and will return the line to its idle state when the card is ready to accept new data.
This means that the write error response is largely misnamed, as when the card sends this
response it does not know if the write was successful. Instead, this should be thought
more of a mis-configured write - such as writing past the end of the card’s memory space
or to an un-writeable region. The true status of a write can only be found by checking the
card’s status register once the data lines have returned to their idle state.

In addition to single data transactions, as shown in figure 4.4, there are multiple data
transactions, which come in two varieties - counted and uncounted. An uncounted multi-
ple data transaction consists of multiple data blocks, separated by a variable spacing, until
either an error occurs (e.g. reaching the end of the card) or a stop command is issued. A
counted multiple data transaction consists of a set number of data blocks, with the num-
ber of blocks being sent in a command prior to the data transfer command. It is worth
noting that the number set in a counted transaction is the maximum number of data blocks
and the controller can stop the transaction, in the same way as it would for an uncounted
transaction, prior to this number being reached7. The data responses, described above,
are particularly useful for multiple block writes, as they allow any errors to be detected
sooner, and in a simpler manner, than otherwise possible.

When write commands are issued, the card will wait indefinitely for the data block.
However, when read commands are issued, the card will respond as fast as it can. When
reading a single block of data, this is unlikely to cause a problem, but when reading
multiple blocks it is possible for the card to produce data at a higher rate than the controller
can handle - for example, if the controller is also processing the data. In this case, it is
possible to stop the bus’ clock signal, essentially pausing the current transactions. Whilst
the clock can be stopped at any point, it is recommended that the clock is stopped in
between transfers (i.e. after a response or data block) and that the controller issues 8

clocks prior to stopping the clock.

4.2.2 Design

The SD card controller is designed to be simple to interface to, consisting of a 512 bit
RAM interface, used for the data transfers, and a small number of input signals and status
outputs, such as enable, read/write, start address, block count and data continue, and idle,
error and card version information.

The design of the SD card controller is divided into several sub-modules, which are
shown in figure 4.7. The three simplest modules are the clock strobe, the clock controller

7The main advantage of counted transactions is that the SD card is aware of, and can optimise for, the
amount of data that is being sent or requested. This improves performance as the card can perform erases
and data buffering on the total transaction size, rather than on a block by block basis.
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Figure 4.7: SD card controller sub-module hierarchy.

and the dummy clocks. The clock strobe, when enabled, pulses an output signal (for one
clock cycle) at a specified divided rate. This is used by the clock controller to generate the
bus’ clock and as a gating signal for many parts of the controller, rather than controller
running at a lower clock frequency. In addition to producing the bus’ clock, the clock
controller also ensures that the required 8 clocks are issued before the bus is stopped. The
dummy clocks module exists for a very special purpose - prior to starting the initialisation
procedure, the SD card standard requires that a set number of clocks are issued to the
card. These are used so that the card can pre-initialise itself. Whilst this could be done by
the controller issuing a command, where all of the bits are high, it adds extra complexity,
as both the start bit and CRC generation need to be modified to ensure all bits are high,
or the command output needs to be multiplexed, resulting in logic that would not produce
an output in this circumstance. Instead, the dummy clocks module issues a set number of
clocks whilst holding both the command and data lines high. This module is then disabled
and the multiplexer is switched to the relevant other modules for initialisation and normal
operation.

The SD command module is responsible for issuing commands and controlling the
reception of the response, it does this by using two main modules - the command sender
and the response receiver. The command sender writes a byte at a time to the command
line of the bus. It does this, as opposed to accepting and sending the full 6 byte command
at a time, so that the SD command module can calculate the CRC of the command on-the-
fly, allowing a smaller time between the command being issued and the command being
seen on the bus. Whilst there are alternative methods of implementing this, so that the
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entire command is written instead of each byte, this method is the simplest. The response
receiver consists of a 128 bit register and a time out counter. When the module is enabled,
it will count the number of rising edges of the bus clock whilst waiting for the response’s
start bit. If this counter exceeds the module’s time out input, then the module raises an
error and returns to its idle state. If the start bit is detected before this, then the response is
shifted into the 128 bit register. The length of the response is determined by the module’s
input and changes the number of times new data from the command line is shifted into
the register. If CRC checking is enabled, the CRC sub-module is enabled after each byte
has been shifted in.

The data controller is the logic that connects the data lines of the SD bus with the
controller’s RAM interface and, as performance was a major concern, only supports the
wide bus mode. This means that the data is transferred over the bus a nibble at a time.
The design of the data controller is, therefore, fairly simple. When reading data, it waits
for the start bits, then repeatedly combines the nibbles to form bytes, which are then
written using the RAM interface. At the end of the data block, the CRC values and the
presence of stop bits are checked, with an error being raised if they do not match or are
missing, respectively. For writes, the process is largely the same, with the exception of
the direction of the data. The only difference is what happens after the stop bits, where
the data controller will wait for the write response and, if it is received correctly, until
the data lines become idle. As the data controller operates on individual data blocks, it is
unaware if the transfer is part of a multiple transfer transaction.

Both of the CRC generators that are used in the controller have wider inputs than are
typically expected. For the 7 bit CRC, the generator processes a byte at a time and for the
16 bit CRC generator a two bit input is used. This is done to match the byte based design
of the command sending (for the 7 bit CRC) and the nibble to byte conversion that is done
for the data lines8. This is done to simplify the CRC generation, with the generators being
created using the parallel CRC generator by Stavinov (2010).

Initialisation

The initialisation procedure for an SD card consists of many steps, which are, in part, due
to the evolution of the standard. In particular, during initialisation the controller has to
determine if the card is an MMC or SD card and, if it is an SD card, which version it is
and whether it is locked.

As the SD card controller was intended to be used with larger capacity cards, that is
SDHC and SDXC cards, the controller was not designed to be used with card versions
below 2.0. In addition to this, the controller was not designed to be used with locked cards

8When operating in the wide / 4 bit data mode, a nibble is sent at a time (see figure 4.5), but bytes are
used both inside the controller and in the RAM interface. So the data controller handles the top nibble (bits
7 to 4) then the bottom nibble (bits 3 to 0), making two bits the best input size for the 16 bit CRC.
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(cards that are password protected). In both of these cases, the controller will produce an
error. The controller’s initialisation process is shown in figure 4.8, with the start occurring
after a card has been detected and the end being where the controller enters its idle state -
i.e. waiting for a read, write or erase command. The flow chart, for clarity, assumes that
a correct response is received for each of the commands. If a response is not received
within the time limit, the controller will produce an error. There is an exception to this -
command 0 is used to force any SD card on the bus into its idle state. As it is possible
to have multiple cards on the same bus, SD cards are designed to not respond to this
command. In addition to this, command 8 is only recognised by version 2.0 or higher SD
cards, and will also be ignored if the SD card’s voltage is out of range. However, as the
controller does not support cards with versions below 2.0 and an SD card is not usable
outside its voltage window, the lack of a response for command 8 is considered to be an
error by the controller.

To maintain backwards compatibility, the initialisation has to be performed at a lower
clock speed than what is typically used - 400 kHz instead of 25 MHz. From the point
of view of the card, its initialisation is completed when the clock speed is increased in
figure 4.8. However, as the controller can only communicate with a single card, it has to
select the card, which places the card in a state where it can accept read, write and erase
commands, and it needs to enable the wide bus mode before it can enter its idle state,
which is the final part of the controller’s initialisation procedure.

Reading and writing

Other than the direction of the data transfer, the process of reading and writing is almost
identical. For a single read transaction, the controller issues a read command and checks
its response, it then enables the data controller for the receiving of the data. When the data
has been received, the controller checks that the data’s CRC is a match before returning
to its idle state. In the case of a single write transaction, the difference is that the con-
troller does not check the data’s CRC, but instead checks that the data has been correctly
acknowledged by the card - through the data write response - and then checks that the
card has correctly written the data. This is done by waiting for the data lines to become
idle and then by checking the card’s response to command 13 (send status).

Multiple transactions are done by essentially repeatedly enabling the data controller,
with the exception that an additional command is used on the last data transfer to instruct
the card to stop sending or receiving data. In between the multiple transfers, the controller
stops the bus and waits for the interfacing logic to signal that it should transfer the next
block of data and when to end the transaction. To enable better read and write performance
from the SD card, a multiple data transaction can be counted (i.e. a fixed length read or
write), when this is signalled to the controller by the interfacing logic, it issues a command
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Figure 4.8: SD card controller’s initialisation process.
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to the card informing it of the length of the data transaction and then the data transaction
continues as in the uncounted case.

Erasing

SD cards have a built-in erase command that is similar to the page erase functionality
of flash memory. Three commands are required to perform an erase - one to set the start
address, one to set the end address and one to perform the erase. When the erase command
is issued, the controller, in a similar way to when writing data, has to wait until the data
lines become idle before returning to its idle state. As the interfacing logic is primarily
designed for reading and writing, where only a start address is required, the controller
uses the same continue signal of its interface to separate the start and end addresses. This
requires more interaction with the controller’s interface, but is not a concern as erases are
unlikely to be time sensitive.

4.3 Baseband recorder

The concept of the baseband recorder was quite simple, the baseband data is sampled,
stored into the SD card controller’s RAM buffer, then written to the SD card. However,
there are additional complexities to make the recorder dependency-less and to make it
capture the baseband in a reliable way.

The largest dependency of the RF front-end evaluation board was the computer con-
nection required for configuration. The MAX2769 uses an SPI interface for configuration
(Maxim Integrated, 2010), so this dependency was removed by adding an SPI master to
the baseband recorder, with the configuration settings fixed during the FPGA’s synthesis.

The baseband data, despite having a clock signal, was sampled asynchronously by
the FPGA. This was done to avoid any clock domain crossing in the FPGA and because
the MAX2769’s digital output is not particularly well specified. Any metastability issues
were mitigated by the baseband’s clock and data signals being passed through 2 flip-flops
before being used by the FPGA’s logic. The data is sampled on the falling edge of the
clock signal, as implied by the oscilloscope traces in Maxim Integrated (2010), with the
falling edge being detected by the logic looking for a 1 to 0 transition (i.e. the logic detects
that a falling edge has occurred rather than detecting the falling edge itself.).

The data buffering was initially implemented using double buffering - where data is
placed into one 512 byte RAM whilst the SD controller is reading from another, with a
multiplexer being used to determine which RAM is in use by which logic. Whilst this
works well, there were consistent buffer overflows that occurred in a periodic manner.
It was found that an SD card achieves its minimum writing / class speed on an average
over tens of blocks, with occasional blocks requiring significantly longer to write than
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others. It is highly likely that these longer block writes are where the card is performing
an erase or a page write. For most applications this is irrelevant with the overall speed
being important and not the time between successive blocks. However, these longer writes
cause the baseband recorder’s buffer to overflow.

Increasing the size of the buffer, by utilising block RAM based FIFOs as well as
the double buffering, reduced how frequently these buffer overflows occurred, but did
not remove them completely, due to the limited total size of block RAM in the FPGA.
By utilising the 64 MB LPDDR RAM on the FPGA development board, as a very large
FIFO, the buffer overflow issue was completely removed. The size of the LPDDR RAM
was significantly more than what was needed, but the entirety was used as it was avail-
able. The LPDDR RAM was controlled via Xilinx’s Memory Interface Generator (MIG)
which allowed access to the RAM through two 64 b ports - one for reading and one for
writing - each with an 8 deep data and command FIFO. The interfacing logic then imple-
mented a FIFO over the LPDDR RAM. On the write side, the baseband was sampled and
buffered into 64 b blocks which were queued directly into the MIG’s interface. On the
read side, available blocks were read into the SD card controller’s double buffer. Whilst
this might sound a little complicated, the double buffering is particularly advantageous as
it prevents the SD card controller from waiting mid-transfer for data. Such waiting would
significantly slow down the card’s write speed.

One particular limitation with the FPGA development board is its lack of user input
(i.e. buttons). With only one button available, the control of the baseband recorder’s state
was achieved through button presses of different durations (0.5, 1.5 and 5 seconds), with
the state and the action of the button shown using LEDs. When the baseband recorder is
first powered, it enters an idle state. From there the user starts the initialisation, where
the recorder performs the SD card initialisation and the configuration of the RF front-
end. When this completes, which is less than a second, the flashing rate of the status
LED changes to indicate that the recording can begin. The user then starts the recording,
which will continue recording until either the SD card becomes full, an error occurs or
the user stops the recording (again through the single button). When the recording ends,
the recorder enters its final state, where it can only be reset, to prevent the recorded data
from being accidentally overwritten. At any point in time, the user can hold the button
down for its longest duration (5 seconds) and the recorder will be fully reset.

4.4 Baseband reader

The baseband reader, unlike the recorder, does not need to utilise the LPDDR RAM on the
FPGA development board, as the SD card’s reading is at a more consistent data rate9, pro-

9This is part of the reason why it is believed that the longer write times are due to the writing mechanism
- i.e. either erasing or page writing.
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viding that two conditions were met. The first was that the SD card controller performed
a counted multiple read transaction, which allows the SD card to optimise its buffering,
and the second was that the SD card had been erased and then written once with the data.
This second condition is quite curious, as it produced a noticeable difference, and can
only really be attributed to write-levelling. SD cards are known to perform write-levelling
(ensuring each part of the flash memory is used a similar number of times, so one area
does not fail significantly before another) and it is possible that when sequentially reading
from an SD card, that has been written to many times, that the data in the card’s internal
memory is not sequential, resulting in the card having to frequently switch the flash page
it is reading from. This frequent switching could negatively impact the read performance
quite significantly. When the SD card is erased, it is possible that the write-levelling statis-
tics are reset, or reset to a certain extent, that the data is stored sequentially in memory,
allowing for faster and more consistent read speeds.

However, it is not necessarily detrimental if a given block takes longer to read as,
unlike in the recorder, no data is lost. Whilst there might be some implications for a
GNSS receiver design, it was considered highly likely that the receiver’s design would be
clocked, or more likely gated, by the baseband data, so any longer read times would not
affect the receiver’s performance, or indeed be noticeable by the receiver’s design.

The baseband reader was designed to be integrated with other logic, rather than be-
ing standalone (like the recorder), as there would be very little point in reading the data
without logic being present to process it. The reader’s interface consists of a start address,
the number of blocks to read, an enable input and a loop input, which allows a section of
the baseband data to be repeatedly read. There is also an idle and an error output. When
removed from reset, the baseband reader initialises the SD card and then issues a read
command, requiring that the start address and number of blocks inputs to be set to valid
values before removing the module from reset. The enable input will allow playback of
the baseband and will pause any playback when the input is low. The idle output is only
continuously asserted when the playback has finished (i.e. all of the requested data has
been read) and the loop input is low. If looping is enabled, the idle output will pulse for 1

clock cycle when a new loop begins.

4.5 Custom RF front-end board

The RF front-end evaluation board was not ideal in two ways - the use of multiple power
supplies and the need to use fairly long wires, considering the size of the board, for con-
necting the RF front-end to the FPGA development board. This set up was also quite
large, with it being difficult to move and the connecting wires were prone to poor con-
nections and becoming disconnected. As the MAX2769’s SPI interface does not have a
slave to master output (Maxim Integrated, 2010), this had the potential to cause issues
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as the RF front-end’s configuration could not be checked, with a bad connection causing
misconfiguration.

Both of these were solved by the designing of a custom front-end board that connected
directly to the FPGA development board, through a pin header. However, as GNSS signals
are broadcast at frequencies in the low gigahertz, special attention has to be paid to the
PCB design to ensure that it works correctly and that its performance is not degraded.

The FPGA development board provides two power supplies to its main IO connec-
tors, referred to as wings, these are 5 V and 3.3 V. The 5 V supply is from an external
power supply (provided through a USB connector), with the 3.3 V supply being from a
linear regulator on the FPGA development board. To ensure the best performance, the
MAX2769 needs to be supplied with a low noise power supply, as any noise in the power
supply will result in noise in the baseband data. So a linear regulator was chosen with
a high PSRR and a very low noise output, with two regulators being used - one for the
analogue portion of the MAX2769 and one for the digital. Both of these had 2.85 V out-
puts, as these are optimum for the MAX2769, and were powered from the 5 V supply.
Whilst this 5 V supply is noisier, as USB supplies are typical switch-mode based, the
3.3 V supply does not have enough headroom for a 2.85 V linear regulator.

Prior to laying out the PCB design, high frequency techniques were researched to find
the best way of routing traces. With the small distances between components, impedance
matching is not particularly critical, however, sharp corners in the traces should be avoided.
Typically, mitred corners are used in PCB design, as right angled corners can suffer from
manufacturing defects during the etching process. From using the EM analysis package
Sonnet Lite (Sonnet Software Inc., 2013), it became apparent that diagonal traces with
shallow angles result in the best signal transfer. Using this, the impedance of traces were
matched as best as possible, considering the PCB manufacturer used was targeting low
cost, rather than RF applications; and any traces that required angles were routed so that
they were as shallow as possible, using components to perform larger changes in direction.
Figure 4.9 shows the design of the board, which measures 48× 48 mm2. The board uses
a star-based ground to minimise ground loops and an excessive number of vias, to ensure
that the ground planes on the top and bottom side of the board were coupled together with
the smallest amount of capacitance as possible. To reduce any potential problems with
the IC’s digital output, the baseband data signals were length matched to within 1 µm,
including the trace lengths on the FPGA development board. This is why four of the
traces going to the IO connector on the top of the board (left hand side of figure 4.9a) are
serpentine - i.e. have repetitive ‘S’ curves.

When assembling the board, it became apparent that the choice of U2 was overly
optimistic. U2 is a high quality low noise amplifier that is connected to the secondary
input of the IC and, whilst not technically needed, would have allowed for a wider range
of testing. U2 is only available in a very small, ‘wafer-level’ package, which measures
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(a) Top (b) Bottom

Figure 4.9: CAD drawing of the custom RF front-end board.

0.86× 0.86 mm2; as the board was assembled by hand, this proved impractical to solder
and so only the primary antenna input was used on the board. Figure 4.10 shows an
assembled board, with the secondary input (labelled S1) being unused. The figure also
shows the use of the white box on the top silkscreen layer, to show any information about
the board.

4.6 GNSS Signal simulator

There are many issues with using real GNSS data to test a receiver, with the majority
revolving around additional sources of error - such as propagation errors and not knowing
the exact position of the satellites. Whilst they can be used to test a receiver, there will
be some ambiguity in the results. In the case of satellite receivers, there is an additional
difficulty of not being able to easily acquire the data. One solution to this is to use a
GNSS signal simulator, which simulates the signals that would be received by a receiver
in a wide range of circumstances. We were very fortunate that Spirent Communications
agreed to lend us one of their GNSS signal simulators that was configured for the GPS
constellation for both terrestrial and satellite receivers. Their simulator produces in-depth
log files during each simulation, which list, amongst others, the satellites being broadcast,
with their position and pseudorange, and the position of the receiver. This is incredibly
useful, as it allows both the acquisition, tracking and navigation calculation to be checked
for accuracy.

As the simulator was only available for a limited period, it was used with the custom
RF front-end board and the baseband recorder to create baseband data files that could
be used repeatedly. In total, approximately 4 TB of baseband was collected from the

85



Figure 4.10: Assembled custom RF front-end board.

simulator (around 150 hours), which was recorded in blocks varying from 10 minutes to
just under 3 hours (due to the size limit of the SD card). This data covers a wide range
of scenarios, including static and moving receivers on the Earth’s surface and a variety of
satellite orbits. These were recorded with both an isotropic antenna and a simulated patch
antenna. There was also additional data recorded to characterise and debug the receiver
design.
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Chapter 5

Software receiver

The software receiver follows on the from the prototypes written in Python (see section
3.3.1), with it being implemented in the C programming language. This was done for two
reasons, the first was performance. Whilst Python code is very easy and quick to write,
it tends to perform badly in data heavy tasks and it is not possible for it to have a similar
performance to lower level programming languages (such as C)1. The second reason is
that high level languages abstract the details of an implementation away, which is nor-
mally a good thing. However, considering the intention of designing a hardware version
of the receiver, knowing these details, and being able to change them, is advantageous.

The software receiver can be broken down into its key components for acquisition,
tracking and the navigation solver, with the data flow for the receiver shown in figure 5.1.

5.1 Acquisition

The acquisition, like in the Python prototype, is based around the FFT method. Rather
than implementing the FFT, the FFTW library was used, which is one of the highest
performing implementations that is available (Frigo and Johnson, 2005). It does this by
adapting its functions for different architectures, with it finding the best version of its
algorithms for a given system. This process can take a considerable amount of time, but
does not need to be performed on each use. Instead, the optimisation process can be run
once - for the required transform size and system - with the library’s algorithm choice
being stored into a ‘wisdom’ file for future use. It is also more efficient to perform an

1It is, however, possible to write a library for Python in a lower level language, which will result in
similar performance. But essentially, this is using a low level language from a high level language, and
removes any advantages of Python being easier and quicker to write.

Baseband
input Acquisition Tracking Navigation

solver
Position
output

Figure 5.1: Data flow for the software receiver.
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Figure 5.2: Comparison of FFT acquisitions where a satellite is visible (top) and not
visible (bottom), for the same Doppler frequency, using 10 codes.

FFT whose length is 2n, so the C implementation pads the input data with zeros. This
also has the benefit of slightly increasing the FFT’s resolution.

The only other notable difference is that the acquisition can be run in a comparison
mode, which is believed to be novel. When a satellite is not in view of the receiver,
performing an FFT acquisition will result in random peaks. However, when a satellite
is visible, an FFT acquisition will produce a peak, whose amplitude is proportional to
the signal to noise ratio. An example of this is shown in figure 5.2, where the top graph
shows the results of an acquisition where the satellite is present, and the bottom graph
showing when the satellite is not present. Both of these acquisitions were performed on
the same data, and so the graphs are comparable, with the amplitude of the bottom graph
being approximately equal to that of the top graph when the single peak (just below a
code delay of 400) is removed. If two FFT acquisitions are done sequentially, the peak
for a visible satellite should be in a similar location, with small variations in the Doppler
frequency and the code delay being expected, due to the movement of the receiver and
satellites.

This can be used in two ways, the first is as a secondary discriminator to a typically
FFT acquisition. This is where a standard FFT acquisition is performed, where the visi-
ble satellites are determined by their perceived signal strength (the size of the correlation
peak), with subsequent acquisitions comparing the results to the previous results to re-
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Figure 5.3: Example of using the comparison method to select visible satellites, with the
acquisition using 10 codes and a spacing, for the comparison, of 1 s. See text for details.

move any satellite that is unlikely to be transmitting (e.g. large, unrealistic change in the
satellite’s Doppler frequency). An example of this is shown in figure 5.3, where the satel-
lites selected from a single FFT are shown with hatching. The horizontal line shows the
average correlation across the satellites, which is typically the threshold for the single
FFT method. The results from the comparison are shown using colours, with green be-
ing those that were marked as visible, red being those that were marked visible but were
not transmitting (false positives) and blue marking those that were transmitting but were
missed by the acquisition. Grey is used to mark satellites that were not visible and were
not transmitting2. Whilst figure 5.3, shows a false positive for satellite 23, it is able to
detect satellites 1, 14 and 30 which the standard technique did not, showing the potential
utility of this method.

The second way this can be utilised is through using smaller length FFTs. Typically,
FFT acquisition’s are done with 5 or 10 ms of baseband data, as this gives the highest
FFT resolution whilst not crossing a data/bit boundary. The second approach, uses the
comparison to reduce the length of the FFT required, for example, instead of performing
one FFT of 10 ms of data, perform two FFTs of 5 ms of data. This allows for two FFTs,
and the comparison logic, to be run in approximately the same time as a single FFT, but
does have downside of reducing the FFT resolution. However, it does reduce the memory
consumption by half, which is advantageous for an embedded system.

2The baseband data used for this was recorded from a GNSS signal simulator and so the transmitting
satellites were known.
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5.2 Tracking

The C implementation of the tracking is significantly more complex than the Python ver-
sion. In the Python version, the carrier tracking (both the error and filtering) was updated
after every sample, which is very expensive and is not possible for a hardware receiver.
The C implementation uses the more common integrate and dump method, where the
tracking is updated at intervals by using a summed error. In addition to this, the carrier
replication is implemented as a numerically controlled oscillator (NCO). The code track-
ing is also implemented using an NCO, but in a DLL instead of a PLL. Both of the error
discriminators for the carrier and code tracking can be easily changed, allowing a range to
be used - which is advantageous, as some are significantly more computational complex
than others.

Alongside the carrier and code tracking is a phase lock detector. This is based on the
design of Kaplan and Hegarty (2006) and features both an optimistic and pessimistic lock
output. These are used for the carrier tracking to determine the bandwidth of the loop
filters - allowing a wider filter to be used when not locked, then switching to a narrower
filter when locked, or close to locking, which improves the acquisition time.

To maintain precision, the C implementation uses double (64 bit) floating points for
the vast majority of calculations, with the only integers being used for loop counters and
for the data decoding.

The data is decoded by determining the sign of the prompt, in-phase code integrator.
As it is highly unlikely that the receiver will start tracking a channel perfectly in line
with the bit edges, each bit is oversampled into 20 sub-bits3. After 20 sub-bits have been
collected, a data edge is searched for, and if one is found, the length of the next bit is
modified (to either 19 or 21 sub-bits) so that the edge is closer to the start of the bit
period. When the bit period is correctly aligned, the receiver is significantly better at
decoding the data, as each bit has a higher amplitude. Prior to the detection of a frame,
the decoder does not consider the sign of a bit’s amplitude to be a specific bit value4.
Instead, the decoder searches for the frame’s preamble in both signs. When the preamble
is found, the first word’s parity is checked and, if it is valid, the entire frame is stored to be
decoded; otherwise, the decoder continues to search for the frame’s preamble. The frame
decoding is not particularly complex, as it checks the parity of each word in the frame and
then outputs the frame’s data. However, only the first 3 frames are decoded, with frames
4 and 5 being discarded as they contain data that is not required by the receiver (i.e. the
almanac).

320 was chosen as it was convenient - each bit is 20ms long and the integrators were chosen to integrate
for 1ms.

4The amplitude can be either ±1, but the data can only be 0 or 1.
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p o s i t i v e preamble d e t e c t e d a t 89631168 ( code o f f s e t 8539)
f i r s t word p a r i t y good
preamble : good

i n t e g r i t y l e v e l : l e g a c y
TOW: 27003
subf rame number : 3
C i c : −10
Omega 0 : −837274202
C i s : −16
i 0 : 652339396
C rc : 9203
omega : −2144385594
Omega ˆ d o t : −23493
IODE : 36
IDOT : −1141

p o s i t i v e preamble d e t e c t e d a t 187839168 ( code o f f s e t 8491)
f i r s t word p a r i t y good
preamble : good

i n t e g r i t y l e v e l : l e g a c y
TOW: 27004
subf rame number : 4
p o s i t i v e preamble d e t e c t e d a t 286047168 ( code o f f s e t 8443)

f i r s t word p a r i t y good
preamble : good

i n t e g r i t y l e v e l : l e g a c y
TOW: 27005
subf rame number : 5

p o s i t i v e preamble d e t e c t e d a t 384255168 ( code o f f s e t 8395)
f i r s t word p a r i t y good
preamble : good

i n t e g r i t y l e v e l : l e g a c y
TOW: 27006
subf rame number : 1
week number : 842
L2 : P code on
URA i n d e x : 0
SV h e a l t h : okay
SV h e a l t h code : 0
NAV s t r e a m on L2 P code
T GD : 7
IODC : 36
T oc : 10350
a f 2 : 0
a f 1 : 55
a f 0 : 84901

p o s i t i v e preamble d e t e c t e d a t 482463168 ( code o f f s e t 8347)
f i r s t word p a r i t y good
preamble : good

i n t e g r i t y l e v e l : l e g a c y
TOW: 27007
subf rame number : 2
IODE : 36
C r s : −2391
D e l t a n : 13623
M 0 : −1135845715
C uc : −2122
e : 14713626
C us : 2462
s q r t (A) : 2702015276
t o e : 10350
c u r v e f i t = 4 h o u r s
AODO: 31
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p o s i t i v e preamble d e t e c t e d a t 580671168 ( code o f f s e t 8299)
f i r s t word p a r i t y good
preamble : good

i n t e g r i t y l e v e l : l e g a c y
TOW: 27008
subf rame number : 3
C i c : −10
Omega 0 : −837274202
C i s : −16
i 0 : 652339396
C rc : 9203
omega : −2144385594
Omega ˆ d o t : −23493
IODE : 36
IDOT : −1141

Listing 5.1: 6 GPS frames decoded using the tracking program.

Listing 5.1 shows 6 frames that were decoded from a simulated GPS signal, only the time
of week (TOW) and the subframe number are decoded from the discarded frames, as the
TOW is important for calculating the navigation solution. In the listing, the data decoded
from the subframe is inset from the left-hand side, with the variable name before the colon
and its value being after. The majority of the variables are for the satellite’s ephemeris,
with the a_f0, a_f1 and a_f2 being clock corrections. The IODE and IODC are issues
of data (for the ephemeris and clock, respectively). When a parameter of the ephemeris or
clock corrections changes, the issues of data will also change - resulting in a variable
which uniquely identifies the combination, within a given timespan. The three other
types of lines in the listing, starting with positive preamble detected at,
first word parity good and preamble: show the decoders state. The first
says when a preamble has been detected - with the number following it being the sample
number of the baseband. The second states if the first word has been received correctly.
As it is possible for the preamble sequence to appear in the frame’s data, this is needed
to ensure that a detected preamble is actually a preamble. The last of the three is an out-
put from the decoder, which performs a check on the preamble when decoding the entire
frame.

5.3 Navigation solver

For the calculation of the navigation solution, the pseudoranges for each satellite have to
be known. This is done by running all the tracking channels concurrently (at least with
respect to the data) and then looking at their code delays, which frame they last decoded
and the current bit (including sub-bit) that they are processing. The navigation solver,
other than using SVD for calculating the pseudo-inverse of a matrix, is fairly typical of
what is found in a GNSS receiver, with the exact implementation being close to that
recommended in Global Positioning Systems Directorate (2014).
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5.4 Fixed point model

To ensure the correctness of the hardware design, a version of the C implementation was
changed to use fixed point maths. This allowed the typical number of bits required at
each stage of the processing to be measured, which helped optimise the hardware design,
and ensure that the tracking would perform as expected. The model also considers the
latency in both the error calculation and filtering. The main advantage of the model is that
it allowed parameters to be tweaked, including the choice of error discriminators, with
the results being available in a useful time scale. Whereas, the simulation of the hardware
required orders of magnitude more time5.

5Whilst it was possible to get the data from the hardware itself, the large amount of data required to
see how the tracking was performing - or more determine why it was not working - was impractical for the
hardware to output.
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Chapter 6

Hardware receiver

Whilst software receivers are useful for prototyping, as well as for niche applications,
they require a lot of processing power and so consume a lot of electrical power, which
is not compatible with femto-satellites. Hardware that is designed for a particular task
consumes considerably less power than software that is emulating it. However, the cost
involved in developing a custom designed integrated circuit (commonly referred to as an
Application Specific Integrated Circuit or ASIC) is prohibitive - for example, $1 million
for a tapeout of a processor (converting a design to transistors and physically laying them
out into a chip package) is considered to be a significant reduction in cost (EE Times,
2016). An alternative to this, which is also frequently used as a stepping stone between
software and ASICs, is a Field Programmable Gate Array (FPGA). FPGAs consist of look
up tables (LUTs) and flip-flops that are grouped together into logic cells1. The contents
of the LUTs and the wires in both the cell and connecting them to others, are determined
by a design that is loaded into the FPGA2. Once the design is loaded, an FPGA acts
similar to custom hardware, with some limitations - such as a higher power consumption
(due to additional and unused logic) and a slower maximum operating frequency (due to
delays between logic cells). It is for this reason that FPGA designs are often referred to as
being ‘hardware’, as they are a very close approximation. In particular, the programming
languages used to describe an FPGA’s design (usually Verilog or VHDL) are the same
that are used to design ASICs, allowing designs to transition from one to the other3, often
with only minor modifications.

1This is a simplified description and is similar to the first FPGAs that were commercially available.
Modern FPGAs are a little more complicated, consisting of dedicated clocking resources, logic cells that
are dedicated to mathematics (often referred to as DSP cells) and hard cores - specific hardware that is
designed to perform a certain task (such as a RAM or communications interface, or even processors). All of
these are designed to improve performance and reduce power consumption, making FPGAs more capable.

2Most FPGAs use RAM to hold the design, however, some use flash memory and there are also some
one-time programmable FPGAs which use a fuse-based system, to disconnect certain wires.

3This is typically in the direction of FPGA to ASIC, however, some manufacturers have moved from
ASICs to FPGAs as they allow more flexibility and a shorter development time.
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Figure 6.1: Structure of the SoC, with the processor controlling the tracking channels,
rather than being directly in the data path.

The intention of the hardware receiver was for it to be modularised. So whilst it
would be targeting the legacy GPS signals initially, it would be easily extendible so that it
could be used with the modernised signals and other GNSS. This modularisation ranges
in size, from entire channels down to different error discriminators, and even to particular
implementations of filtering. The concept, and the eventual goal, is for this modularisation
to enable a design to be tailored for different applications, including high accuracy and
low power.

Whilst the interfaces between different elements of the tracking channels are designed
for small amounts of data, the configuration of and the output of each channel uses a
lot of data. As it is possible that there would be a large number of channels in certain
implementations, this is an ideal candidate for a common bus design. With the channels
requiring external control logic, to select which satellites to acquire, it becomes beneficial
to use a system on chip (SoC) based design.

6.1 SoC design

There are many advantages to a SoC based design for a GNSS receiver, but by far the
most important is the greater interoperability that is inherent in a SoC, which results in a
smaller and more power efficient design.

In our GNSS receiver design, the processor is used as a controller rather than as a
central part of the signal processing, as shown in figure 6.1. Therefore, the processor will
spend the vast majority of its time in a low power state, only becoming active to monitor
the signal tracking and to process the acquisition and tracking results. With acquisition
results arriving at the processor in bunches, with only around a millisecond gap between
each result, the acquisition processing has to be done as quickly as possible, whilst still
remaining energy efficient.

Whilst FPGAs with hard-core processors have been available for many years, such
as the Virtex-II Pro which was released in 2002 (Xilinx Inc., 2011c), it has only been
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in recent years that hard-core processors have been integrated with the lower and middle
range FPGAs, such as Xilinx’s Zynq in 2012 (Xilinx Inc., 2016). These all use ARM’s
Cortex application (or A series) processors, ranging from single to quad cores, with their
operating frequency between high megahertz and low gigahertz.

It is important to understand that ARM’s application processors are embedded proces-
sors designed for high performance, they are typically found in smartphones, tablets and
some low-end computers, as well as a range of other consumer electronics. The individual
architectures vary, but floating point and memory management units, along with support
for media extensions, are commonplace. With the complexity of these processors, it is
recommended to use a Linux based operating system on them, to both correctly use them
and to use them efficiently. With the processor in our SoC being primarily a controller,
the use of such high-end processors is considerably overkill and would be a significant
waste of energy.

Whilst there are certain advantages to using a full-scale operating system - such as
simpler debugging and programming - there is also the large drawback that the peripherals
require drivers so that they can be used by a user space program4. This is a significant
over-complication and hindrance for our design, that is practically guaranteed to waste
power without any real gain.

It is worth mentioning that there is currently one manufacturer that makes FPGAs with
hard-core processors that are not application processors - Microsemi. Their SmartFusion
devices have an ARM Cortex-M3 processor in addition to a large number of peripherals
and the FPGA fabric. Whilst in some aspects the Cortex-M3 is beneficial, it has many
peripherals that are unnecessary (such as an Ethernet MAC, ADCs and DACs) and lacks
hardware DSP blocks, which would make the design consume more power and require
more logic. The SmartFusion2, which was released in 2014 (after the FPGA design was
started), although it suffers from a similarly large set of peripherals, at least has hardware
DSP blocks as part of the FPGA fabric - but it is worth noting that these “Math Blocks”
are not as flexible as the Xilinx and Altera equivalents (the DSP48A1 and the “variable
precision DSP block”, respectively), which would make it less favourable (Microsemi
Corporation, 2016; Xilinx Inc., 2014).

With the available hard-core processors not being a viable option, this leaves soft-
core processors, of which there are many, ranging in size and performance. Most FPGA
manufacturers have their own soft-core processors, that are typically locked to the manu-
facturer’s own devices. For example, Xilinx has the PicoBlaze and MicroBlaze soft pro-

4It is worth noting that it is possible to access peripherals in Linux without drivers (through the /de-
v/mem character device). However, when using this method, a bug in the controlling program can crash the
operating system in a way that is very difficult to debug (somewhat similar to stack corruption, as the effects
of the bug might not be seen immediately). Whereas the equivalent fault in a driver would be considerably
easier to debug, with the kernel providing a stack trace, and, in some cases, a bug in the driver would not
cause the operation system to crash. This essentially makes the writing of a driver easier than using the
mem character device for anything but the simplest of peripherals.
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cessors and Altera has the NIOS II. There are additionally open source and commercial
processor IPs that are available as soft-cores. There are many advantages and disadvan-
tages to each processor, and whilst it is impossible to compare all the available processors,
we have chosen a small number which broadly cover the available range.

First of all, there are a fairly large number of 8 and 16 bit processors, with many
designed for use in FPGAs. However, these are intended to be used to control processes
and so are typically quite limited, in terms of functionality, ability and code size. Whilst
the processor in our design is not in the signal path, it does have to process the acquisition
results, requiring some calculations relating to the strength and offsets of the signals, and
the tracking results, requiring a non-trivial amount of data movement and reduction. For
example, Xilinx’s PicoBlaze is a 16 bit processor, with an instruction memory that can
hold up to 1000 instructions and 64 bytes of scratch memory. Whilst it can run at 128
MHz in a Spartan 6 FPGA, admittedly at 2 clock cycles per instruction, and can interface
to external memory, it is very limited in what it can do. In a similar way, the J1 is an open
source Forth processor, which is very small - less than 200 lines of Verilog and requiring
42 registers and 444 LUTs. However, the Forth language, despite its age and lack of type
checking, is entirely stack based, making it difficult to program for. It additionally suffers
from the same problems as the PicoBlaze, where the 16 bit data bus / word size limits its
ability to perform tasks quickly.

An argument for using 32 bit, instead of 16 bit, processors that is often given is that
they increase performance and decrease code size. For any moderate task, calculations
that are greater than 16 bits, or potentially could be, are more efficient on a 32 bit pro-
cessor. For example, adding two 32 bit numbers requires a single instruction on a 32 bit
processor but at least two instructions for a 16 bit processor, providing the operands are
already in the processors registers. If the required data needs to be fetched from memory,
either RAM or memory mapped peripherals, then the number of instructions significantly
increases for a 16 bit processor to at least 6 compared to 2 of a 32 bit processor. Whilst
many 32 bit processors use 32 bit instructions, which do not offer much of a reduction
in code size over 16 bit processors, which typically use 16 to 18 bit instructions. ARM
processors that implement the Thumb instruction set have the advantage of mainly using
16 bit instructions, there are additionally other 32 bit processors that use 24 bit instruction
sets.

In terms of power consumption, 32 bit processors can be more efficient despite their
larger size, as they operate at a lower frequency and can return to a low power sleep state
sooner than an 8 or 16 bit processor, due to a smaller number of instructions needed to
perform the same task. The only argument that remains for using 8 or 16 bit processors
is that they are simpler. However, whilst this argument might have some validity when
comparing microcontrollers, where the peripherals of 8 and 16 bit devices are simpler, the
argument does not apply well to the processor core, where the only change is operating
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modes and interrupt behaviour, which widely vary between processors despite the data
width.

The performance of a processor is not particularly tied to its operating frequency, par-
ticularly as larger processors make use of pipelining to improve performance. To rectify
this, there are a range of benchmarks that can be run on a processor to determine how
well it performs a task. One of these is the Dhrystone benchmark, where a score is gen-
erated by measuring how long an iteration of the Dhrystone test takes to execute. Whilst
there are criticisms that the Dhrystone benchmark is not particularly realistic of typical
processor use5, it is a widely used benchmark. As the score generated by the benchmark
is dependant on the processor’s operating frequency, it is often converted into Dhrystone
MIPS (Million Instructions Per Second) per megahertz (DMIPS/MHz) to remove this
dependency.

With the comparison being more in-depth for 32 bit processors, difficulties inevitably
arise. Comparing by benchmark performance alone, whilst useful in finding the best
performing processors, is not particular useful when power efficiency is a concern. In an
FPGA, the power consumption can be split into two causes - static and dynamic. Static
power consumption is the general power consumed by the logic, in terms of configuring it
and allowing it to be used. In particular, modern FPGAs will remove the applied power to
unused areas of the FPGA fabric to reduce the static power consumption. Dynamic power
consumption is the power consumed by the logic being active, with the main source being
the logic switching between levels. In particular, higher clock frequencies will consume
considerably more dynamic power than lower clock frequencies. For a processor to be as
power efficient as possible, it needs to be able to operate at a low clock speed, using as
little logic as possible, whilst still being able to perform the required operations quickly.
In short, we are looking for a high number of DMIPS/MHz whilst using as few logic
elements as possible.

As different FPGAs use different logic cells - with the number and size of LUTs, and
the number of registers and muxes, per logic slice varying - comparing logic use between
devices and manufactures is difficult. So here we define a logic slice as containing 4 LUTs
and 8 registers. This definition is chosen as it is the number of LUTs and registers in a
slice for Xilinx series 6 and series 7 FPGAs (Xilinx Inc., 2010a, 2011a).

Additionally, different FPGAs are targeted at different markets, with varying costs,
and so perform differently. Ultimately, higher end devices, such as Xilinx’s Virtex and
Altera’s Stratix, will perform considerably better, with the number of logic cells used by
a design decreasing and the maximum operating frequency increasing. Whilst this is not
much of a concern when comparing frequency independent data, when comparing logic

5In particular, it can easily fit in a processor’s cache and does not test floating point performance. How-
ever, these are largely irrelevant for an FPGA based processor where the use of either an instruction or data
cache, or a floating point unit is unlikely.
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Table 6.1: Comparison of 32 bit soft-core processors

Processor Pipeline Performance Logic usage Interconnect
(DMIPS/MHz) LUTs Registers Slices

Altera NIOS II/e 5 stage 0.15 1248 914 312 Avalon
PicoRV32 none 0.341 1353 577 339 native

OpenRISC 1200 5 stage 1 4850 2337 1213 Wishbone
ARM Cortex-M0 DSa 3 stage 1.033 3478 1016 870 AHB-Lite

Altera NIOS II/f 6 stage 1.13 2486 1895 622 Avalon
Aeroflex Gaisler Leon3b 7 stage 1.4 7983 3793 1996 AHB

Xilinx MicroBlaze 5 stage 1.44 4938 4425 1235 AXI4
Aeroflex Gaisler Leon4 7 stage 1.7 4000c unknown unknown AHB
a ARM Cortex-M0 DesignStart processor (r0p0), configured with 16 interrupts and a 32 cycle mul-
tiplier. Dhrystone benchmark compiled with GCC 5.2.1 using the small-multiply option.
b Diligent Nexys 3 default configuration. c LUTs based on Stratix 3 and Virtex 5, for processor
core area only.

Table 6.2: Comparison of the 32 bit soft-core processors’ logic efficiency

Processor Performance Logic usage Logic efficiency
DMIPS/MHz Slices

Altera NIOS II/e 0.15 312 20800.0
PicoRV32 0.341 339 994.1

OpenRISC 1200 1 1213 1213.0
ARM Cortex-M0 DS a 1.033 870 842.2

Altera NIOS II/f 1.13 622 550.4
Aeroflex Gaisler Leon3 b 1.4 1996 1425.7

Xilinx MicroBlaze 1.44 1235 857.6
a ARM Cortex-M0 DesignStart processor (r0p0), configured with 16 inter-
rupts and a 32 cycle multiplier. Dhrystone benchmark compiled with GCC
5.2.1 using the small-multiply option.
b Diligent Nexys 3 default configuration.

usage, FPGAs from different manufacturers need to be targeting a similar market, to make
the comparison meaningful.

From table 6.1, the highest performing processors are the Leon3 and 4, and the Mi-
croBlaze. Whilst the exact logic usage of the Leon4 is not available, the Leon3 and Mi-
croBlaze have the highest logic use of the compared processors. The smallest processors
are the NIOS II/e and the PicoRV32, which are also the lowest performing processors.
Comparing the processors in the middle is more difficult, so to simplify the comparison,
we can define the logic efficiency as the logic utilisation divided by the benchmark per-
formance. From table 6.2, the most efficient processors are the NIOS II/f, the Cortex-M0
and the MicroBlaze.

All the processors in table 6.1, with the exception of the ARM Cortex-M0, use 32
bit instructions. The Cortex-M0 uses ARM’s Thumb instruction set, where the majority
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of the instructions are 16 bit, with the only 32 bit instructions being branch with link
(BL), which is used to call subroutines, the synchronisation barriers (DSB, MSB and ISB)
and two instructions for moving data to and from the processor’s special registers (MRS
and MSR). This smaller instruction size is advantageous for a lower power consumption,
requiring not only less data to be stored in memory, but also fewer memory reads and
therefore fewer bus transactions.

With the Cortex-M0 having a high logic efficiency, as well as it being FPGA vendor
agnostic, it is the most attractive soft-core processor available. Whilst it is a commercial
product, it does use the AHB interconnect, so a SoC that is designed to use it is not tied to
it. It also has the advantage that the AHB interconnect is widely used and that the Thumb
instruction set is likely to increase its power efficiency.

6.2 FFT acquisition

The FFT module is split into several sub-modules to separate the functionality into logi-
cal blocks, however, the main part of the calculation - the forward and inverse FFTs are
performed by Xilinx’s FFT IP (Xilinx Inc., 2012). This IP uses an AXI streaming inter-
face, where the data is controlled through the use of valid and ready signals, with data
being transferred when both are high. The IP is configured - i.e. changed from forward
to inverse - also through an AXI interface. Due to the size of the FPGA, the largest FFT
that can be performed is for 2 PRN codes in length (32 768 samples), with this restriction
mainly due to the limited amount of block RAM that is available. Like the software ver-
sion, and unlike the Python prototype, the FFT IP uses 2n length FFTs, with the module
padding both the PRN and sample inputs.

The module consists of two RAMs, one for the PRN data and one for the sample
data, and there are two main sub-modules, the loader and the unloader. The acquisition
process is very similar to the software approach, with a few changes required to make
it work efficiently in hardware. The FFT module, as well as the loading and unloading
sub-modules, implement their functionality by using state machines.

When the FFT module is enabled, it samples a bit mask, where any high bits are satel-
lites that should be searched for. If the bit mask is non-zero, the module configures the
Xilinx IP for forward FFTs and uses the loader to load the sample data into the IP. The
unloader is also enabled, with the destination being set to the sample RAM. When the
loader completes, the module restarts the loading process with the first selected satellite’s
PRN code. This is done to increase the performance of the FFT IP, as the loading and
unloading can either be concurrent or sequential. The unloader is re-enabled as soon as it
becomes idle, with its destination changing to the PRN RAM. In addition to this, because
the FFT-based algorithm requires one of the signals to be conjugated, the unloader conju-
gates the IP’s output when unloading to the PRN RAM. When the unloader next becomes
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idle, the FFT module has all the data ready for performing the search for the satellite,
so configures the IP for inverse FFTs. The next step is to demodulate the sample data
across a range of frequencies, achieved by adding an offset to the sample RAM address
and implemented by repeatedly switching between a loading and unloading state. For this
part of the calculation, the loader and unloader perform a larger task, initially, they act is
if they were simple counters. At this point, the loader uses a complex mutliplier (which
utilises the FPGA’s DSP blocks) using the data stored in the two RAMs. The unloader,
instead of storing the IP’s output data, processes it to detect any peaks in the signal. Both
of these have some latency which the module has to take into consideration. Each time
after the unloader becomes idle, the required data (e.g. the satellite number, peak location
and strength, and the Doppler value) are outputted from the FFT module, and, if the satel-
lite is not the last in the bit mask, the demodulation frequency is adjusted and the search
is performed on the new satellite.

The complex multiplier is an implementation of a Xilinx recommendation given in
Xilinx Inc. (2014), with two versions available for use - one uses 3 DSP blocks and has
a latency of 2 clocks, the other uses 4 DSP blocks and has a latency of 3 clocks. The
main advantage of the 4 block version is that it can be used with clocks up to approx-
imately 455 MHz, where as the 3 block version has a maximum frequency of approxi-
mately 115 MHz. With the hardware design targeting a clock frequency of 50 MHz, both
versions are likely to help timing closure, with the 4 block version not significantly aiding
more than the 3 block, with its extra performance not being utilised. Therefore, to save
resources and power consumption, the 3 block version was chosen.

The peak detector calculates the squared magnitude of the inverse FFT’s output and
stores the highest value, whilst creating an average. Unlike the complex multiplier, it
does not use any hard elements in a specific way. The only notable functionality is that
the average is scaled to reduce the number of bits required to store it, and the width has
been further reduced for typical values, so an overflow flag has been added as it is possible
for the calculated average to exceed the width of the data.

6.3 Correlator

The correlator has been designed in 6 stages, enabling the frequency of each stage to
decrease with the stage number (figure 6.2). Each stage is clocked with the exception of
stage 0, which uses combinational logic to map the baseband data to the correct numerical
values. This is why stage 0 is not referred to as a stage. The first stage is the carrier
removal, where the baseband data is multiplied with a locally generated sine wave at the
carrier frequency. The sine wave is implemented as a 16 value, 3 bit lookup table, using
the top 4 bits of the NCO’s phase to select the required value. Each value only needs to
be 3 bits due to the limited number of bits used in the baseband data, which limits the
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Figure 6.2: Correlator data stage structure.

required length of the table. The second stage is the code removal, which is fairly similar
to the carrier removal; the code NCO is, however, different. With the carrier NCO using
a lookup table, any arbitrary step can be made, however, the code NCO uses a generator
to produce the code, which saves RAM usage and only requires a small amount of logic
to implement. This generator can only perform one step at a time. To avoid any issues,
the code NCO is updated with every sample rather than at the chipping frequency (which
is once every 16 samples). This allows the code NCO to operate at up to 16 times faster
than the nominal rate, with any rate higher than this being an indicator of a fault. Both the
carrier and code removal work at the sample rate and work in a pipelined fashion.

The third stage is the integrate and dump, which accumulates the early, prompt and
late output of the code removal for both the in-phase and quadrature signals over an inte-
gration period (which is 1 ms). At the end of this period, the data accumulators are stored
into output registers for the next stage to access. The next stage - the error calculation -
as a consequence, operates once per millisecond. The dump outputs are also used by the
lock detector, which performs some low pass filtering on the prompt values before com-
paring them to produce the lock output. The error calculation for the carrier NCO is quite
simple - it uses the magnitude of the quadrature integration with the sign of the in-phase
integration, which is referred to as a directed Costas (Kaplan and Hegarty, 2006). In con-
trast, the calculation of the code error is a little more involved. The code error requires
the magnitude of the early and late components, which is typically achieved by,

|mn| =
√
I2n +Q2

n,
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where n is the component and I and Q are the values from the integrators. This is prob-
lematic, as square roots are a complicated calculation to perform. Instead an estimator for
the magnitude is used,

|mn| ≈ max (|In| , |Qn|) +
1

4
min (|In| , |Qn|) ,

this, according to Griffin (1999), is the lowest error magnitude estimator, whilst only
requiring bit shifts. As the hardware used fixed not floating point maths, the hardware
implements this estimation with the addition of a scaling factor, namely,

4 |mn| ≈ 4 max (|In| , |Qn|) + min (|In| , |Qn|) .

This scaling factor is later removed.
With the differences in the complexity of the carrier and code error calculations, their

outputs are misaligned, with the code error output becoming available 32 clocks after the
carrier error. This is very useful, as it allows the same filtering hardware to be used for
both the carrier and code error filtering, as the filtering takes 4 and 5 clock cycles respec-
tively. The use of hardware for the error calculation and filtering is uncommon amongst
GNSS designs. Most designs only perform up to the integration in hardware, with a pro-
cessor performing the calculations. Whilst under typical terrestrial circumstances, the
extra delay required by the processor to calculate the filtered value (and deal with many
correlators requesting the values at the same, or similar, point in time) is negligible, the
extra delay in a high velocity environment will result in the loops having to have a wider
bandwidth, which has its own disadvantages. The final stage applies the filtered error to
the carrier and code NCOs’ steps.

6.4 Decoder

The decoder uses the same logic for decoding the navigation data from the signal as the
software version. However, the decoder processes a word at a time, instead of a frame.
This reduces the amount of memory required from the frame’s 300 bits to the 30 bit
word size. The software version decodes a frame at a time for simplicity, however, this
simplicity is not present to the same extent in hardware and is not worth the extra resource
cost.

In a similar way to listing 5.1, the hardware version of the receiver design was used
with the same data, with its output shown in listing 6.1. This listing only shows the
output of one active channel (correlator and decoder combined), purely for comparison
with listing 5.1. The output format is different from the previous listing, here the point
where the preamble is detected is not displayed, instead the tick: lines are when the
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t i c k : 303594 TOW: 27003 a l e r t : 0 enhanced : 0
F3 : IODE : 36

Omega 0 : −837274202 i n c l 0 : 652339396 C rc : 9203 C i c : −10
C i s : −16 omega : −2144385594 Omega ˆ d o t : −23493 IDOT : −1141

t i c k : 384339 TOW: 27004 a l e r t : 0 enhanced : 0
t i c k : 465069 TOW: 27005 a l e r t : 0 enhanced : 0
t i c k : 545862 TOW: 27006 a l e r t : 0 enhanced : 0

F1 : week num : 842 IODC : 36 URA i n d e x : 0 SV h e a l t h : 0 ( 0 )
t o c : 10350 a f 2 : 0 a f 1 : 55 a f 0 : 84901

t i c k : 626540 TOW: 27007 a l e r t : 0 enhanced : 0
F2 : IODE : 36 c u r v e f i t = 4 h o u r s

M 0 : −1135845715 ecc : 14713626 s q r t A : 2702015276 D e l t a n : 6811
t o e : 10350 C r s : −2391 C uc : −2122 C us : 2462

t i c k : 707224 TOW: 27008 a l e r t : 0 enhanced : 0
F3 : IODE : 36

Omega 0 : −837274202 i n c l 0 : 652339396 C rc : 9203 C i c : −10
C i s : −16 omega : −2144385594 Omega ˆ d o t : −23493 IDOT : −1141

Listing 6.1: 6 GPS frames decoded by the hardware receiver.

processor detects that a frame has been decoded (with the tick being the value of a clock
in the processor). The inset lines show the decoded data, with the frame being indicated
by F1, F2 and F3 (frames 1, 2 and 3, respectively). There are 2 tick: lines that are
not followed by a decoded frame, these are for frames 4 and 5 which are not decoded,
however, the TOW still increments when these frames have been received. The other
parts of the inset lines match those in listing 5.1, showing that both the software and
hardware decoders are able to decode the same data from the same input (as the baseband
data for this was transferred to the hardware over the USB FIFO interface).

Correctly decoding the same data, however, does not mean that both the receivers are
equivalent, as the quality of the receiver’s position calculation depends on how well the
receiver is able to track the satellite’s carrier. Figure 6.3 shows how the three different
receivers track the carrier offset, alongside the generated offset taken from the Spirent
simulator’s logs. Whilst the three receivers are noisier than the data in the simulator’s
log files, differences between the receivers cannot be seen. Figure 6.4, however, shows a
smaller section of figure 6.3. In this figure, it is possible to see that the software receiver
is the least noisy, with the hardware receiver having the most noise. In particular, the
hardware receiver has more noise in its tracking than the fixed point model. All of the
receivers have a small offset against the simulator’s logs. There are several causes to this,
firstly, the crystal oscillator which is used as a clock for the RF front-end is not precisely
calibrated and will drift with both time and temperature. Secondly the precision in the
simulator’s log files is higher than what its hardware can produce, resulting in a nosier
signal, and the simulator’s hardware also relies on crystal oscillators, which will also drift
and may not be perfectly calibrated. These explain why the software and fixed point
receiver’s have a similar offset. However, the hardware receiver’s offset is explained by a
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Figure 6.3: Carrier tracking of the three different receivers compared with the carrier
offset being simulated by the Spirent signal simulator.
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Figure 6.4: A zoomed in portion of figure 6.3, allowing the small differences in the track-
ing between the different receivers to be seen.
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third reason - the hardware implementation of the tracking has an offset. Although these
small offsets look undesirable, they will not affect the receiver’s tracking performance as
they are consistent or, in the case of the oscillators’ drift, change only at a small rate.
The main difference between the receivers, is the amount of noise they have - with the
software receiver having the best quality tracking. However, these differences are quite
small, with the tracking performance of the receivers being comparable.

6.5 Power consumption

To determine if the distributed design is practical, the power consumption of the receiver
design was required. This was done by measuring the voltage and current of the receiver
using high-end multimeters (6.5 digits for voltage, 7.5 digits for current6). The multi-
meters were chosen for several reasons. The first is that they have a higher resolution,
dynamic range and accuracy than oscilloscopes, but they do have a smaller bandwidth.
This is not particularly a problem, as both quantities should not be changing at a particu-
larly high frequency. The ADC architecture of these multimeters is advantageous - they
use integrating ADCs which, as they are connected to the input for the entirety of the
measurement period, results in the value being the average of that measured. In another
way, many short samples will average to the same value as one longer sample, where as,
most ADCs are only connected to the input for a small portion of their measurement pe-
riod. For measuring the power consumption, this means that a longer integration period
can be used (which reduces noise), whilst the multimeters are still able to measure the
average power consumption in an accurate way. As both the voltage and current have
small fluctuations, the measurements were synchronised through an external trigger and
carefully set trigger delay settings.

It was important to test the receiver design with known data, with data collected from
the simulator chosen. However, this presents a problem - if the SD card is used, then
its power consumption, as well as the power consumption of the baseband reading logic,
would be included in the measurement; but a secondary board could not be used to gener-
ate the data as it would involve wires being used, which, as was previously found out, are
prone to interference. The use of an SD card was the only reasonable solution, with the
additional power consumption being compensated for by performing additional measure-
ments to estimate the increase. These measurements were, the power consumption when
idle, when only playing the baseband from the SD card and when performing the tracking.
By knowing the increase between the idle and baseband playing power consumptions, an
estimate of the increase can be made and then removed from the tracking measurement.
Whilst this will not be the same power consumption as the tracking by itself, due to the

6The higher resolution multimeter was used for the current measurement as it has a higher dynamic
range and only one 7.5 digit multimeter was available.
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Table 6.3: Measured power consumption of the receiver design for the different levels of
activity. The power consumptions were measured at 100 PLCs (integration time of 2 s)
and are averaged over 10 readings.

Number of channels
Power consumption (mW)

Idle Baseband playing Tracking
4 205.60 ± 0.04 332.6 ± 0.2 362.7 ± 0.2
6 216.68 ± 0.04 355.6 ± 0.2 418.5 ± 0.2
8 259.72 ± 0.05 388.4 ± 0.2 461.8 ± 0.2

Table 6.4: Calculated power consumption of the receiver, with the baseband player re-
moved.

Number of channels
Power consumption

(mW)
4 235.7 ± 0.2
6 279.6 ± 0.3
8 333.1 ± 0.3

extra logic’s static power consumption, it does provide a good estimate and will be larger
than that of the receiver under normal operating conditions. Table 6.3 shows the three
measured power consumptions for a reasonable range of channel numbers. The differ-
ence between the baseband playing and idle power consumptions is the amount of power
required to read the data from the SD card. It is this increase that needs to be removed
from the tracking power consumption to determine the power consumption of the receiver
and not the receiver with the SD card - which is what table 6.4 shows. When compared
against the power budget of the PCBsat in table 2.4, the measured values in table 6.4 are
less than the available 357 mW during the satellite’s eclipse. From table 3.2, the naviga-
tion processor has a power consumption between approximately 22.4 mW, at 4 Hz, and
46 mW, at 10 Hz. This results in the distributed design reducing the power consumption
by between 5.6 % and 13.3 %.
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Chapter 7

Orbital simulation

With the theoretical feasibility and the potential advantages of a distributed GNSS receiver
being demonstrated, there is the question of whether a distributed receiver is practical.
When the nodes are close together, the reduction in the power consumption will be more
than the figures stated in section 6.5, primarily because the radio transceivers can operate
at a lower transmitting power. However, as the nodes move further apart, there will come a
point where they can no longer communicate with each other. Although this is a problem
with the mission concept, a question that needs to be answered is: how long will it take
for this to happen?

In low Earth orbit, the main dispersive force is drag. However, the vast majority of
orbit simulations use ballistic drag to model the drag of satellites. Ballistic drag is the
classic drag equation that is frequently taught,

Fd =
1

2
ρu2CDA,

where ρ and u are the fluid’s density and relative velocity, CD is the drag coefficient and
A is the effective or projected area (NASA, 2015b). What might not be initially obvious,
is that this equation does not consider torque and the drag force is always parallel to
the fluid flow. When a flow is incident on a inclined surface, the drag force is parallel
to the surface’s normal. Figure 7.1 shows the differences between the two drags, with
ballistic drag being obviously wrong. Whilst ballistic drag is a useful approximation,
it is frequently used in orbit simulations as a fitting parameter, rather than having any

uFd

(a) Ballistic drag

u

Fd

(b) Realistic drag

Figure 7.1: Diagram of the different drag effects, with u being the surface’s velocity.
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Figure 7.2: Coordinate system for orbit simulation.

physical significance (Allgeier, 2013). In particular, high-level simulations - used for
precise modelling of GPS satellites - use many factors (including radiation pressure) but
reduce the model to ballistic, or ballistic-like, drag to simplify its use (Allgeier, 2013).
However, to correctly model drag, especially in space where the density of the atmosphere
is very low, the flow must be considered to be free molecular - essentially considering
individual molecules incident with the surface rather than an ideal flow.

In Barnhart (2008), the dispersion is modelled by varying the drag area by 1 %. The
physical basis for this is given as the random variations in the arrangement of the deploy-
able antenna - which, whilst demonstrating the concept, does not make physical sense -
as random variations, over a large time period, will be approximately equal. In addition
to this, it only affects the satellites in one axis.

Previous work by Psiaki (2004), used a free molecular dynamics approach for a cube-
sat, but only considered rotation of the flow in a single axis, as they were interested in
the aerodynamic stability of the satellite. Whilst this is a marked improvement over bal-
listic drag, it is not capable of modelling the dispersion. Therefore, a new model was
constructed to accurately model the dispersion.

7.1 Simulation design

The derivation of the model allows the flow to rotate, with respect to the surface, in two
axes. Figure 7.2, shows the coordinate system used by the simulation with the positive
z direction being the satellite’s ram direction. If we consider the incident face in this
diagram (whose normal is in the positive z direction), any rotation of the flow round the z
axis does not need to be considered on a per-surface basis for the drag, as it is equivalent
to a rotation of the satellite. Utilising this symmetry, the derivation, contained in appendix
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C, results in the pressure, p, and shear, τ , on each surface of,

p = (2− σ′) pi + σ′pw,

pw =
ρ

2

√
2πRTwNi,

pi = ρRT
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,

with the terms explained in the appendix. Whilst the rotation of the surfaces is important,
the density and temperature of the flow are the main parameters that affect the magnitude
of the drag. It is therefore important that the atmospheric model used is significantly
accurate so that its inaccuracies do not affect the simulation’s output. For this reason, the
NRLMSISE 2000 atmospheric model was used (Picone et al., 2002), with both solar flux,
magnetic intensity and polar corrections being used for specific date ranges.

Whilst commercial orbit simulators are available, with the most notable being AGI’s
Systems Tool Kit (STK), they are meant to be used as off-the-shelf tools for standard
situations. Some do allow custom code to be used with them, however, they are not meant
to be used in the way that the drag model requires. Whilst it might be possible to make
a working solution, it is considerably easier, and more predictable, to implement the drag
model in a custom orbit simulator.

The aim of the simulator was for it to be accurate and have a high performance, whilst
being extendible and easy to control. From the first two aims, it was obvious that a low
level programming language would be the most suitable as it would allow for the most
control, with the C programming language being chosen. Whilst any program can be
designed to be extendible, making a program easy to control can be difficult. From previ-
ous experience, simulations can involve a myriad of parameters that need to be correctly
configured and this, especially with the requirement of surface positions relative to the
satellite, was unlikely to be the exception. Therefore, a light-weight scripting language
was embedded into the simulation program. This scripting language, Lua, is used in a
wide range of applications, but excels as it can be used for simple configurations (like
text files) or as a full scripting environment, whilst only having a small performance
overhead1. From a development point of view, Lua was very useful as it allowed rapid
prototyping to occur in the same environment, with the tested code being easily ported
into C for a performance boost.

There are two ways to calculate a satellite’s orbit - propagation and integration. Prop-
agation uses an analytical approach to calculate the orbit, whereas, integration considers

1The performance overhead is not particularly in processing, which Lua, being stack based, is very fast
at, but in Lua’s memory management.
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the forces on a satellite and then calculates the orbit through numerical integration. Prop-
agation is considerably faster than integration, as any arbitrary time can be chosen, with
the quality of integration requiring small time steps to be taken between the start and
end points. However, propagation relies on an analytical solution being available that is
also not too complex to implement. In addition to this, propagation is often difficult with
non-conservative forces, as energy dissipation is not considered in the model. As drag is
a non-conservative force and the simulator would need to be able to simulate a satellite
that was constantly changing its attitude (i.e. rotating), there was no real benefit in choos-
ing propagation, whilst integration would likely provide more accurate results - therefore
integration was chosen.

Whilst two integrators were originally chosen, with the addition of the drag force,
only one had a convergence that occurred at a small enough time step to be useful. These
integrators were the leapfrog and a second order Runge-Kutta (Press et al., 2007). The
leapfrog algorithm gets its name from calculating the position and velocity at different
time steps (in a leapfrog pattern) and, despite being only first order, performs surpris-
ingly well for conservative forces. However, when non-conservative forces are used, its
performance decreases. The Runge-Kutta integrator is commonly used and performs 4

calculations per step - two trial mid-points and one trial endpoint, before calculating the
end point of the step. Because of these extra points, it is significantly more capable of
correctly integrating non-conservative forces, however, higher order methods can be used
- at the cost of performance.

Alongside the effect of drag, the J2, J3 and J4 gravity corrections were also used.
These correct a satellite’s motion to include the effect of the Earth’s shape. Whilst higher
quality gravity models are available, the improvement over the J2, J3 and J4 corrections
are very small and are much smaller than the expected drag forces, making their inclusion
unnoticeable, whilst negatively affecting the simulator’s performance.

The convergence of the simulation is shown in figure 7.3. This is the numerical deriva-
tive of the changes between each calculation. As the calculation converges, the line in
the graph should become flat, indicating that no change is occurring between step sizes.
However, this is rarely seen as the numerical precision of the calculation often affects
the results. In the left hand side of the figure, for the leapfrog integrator, as the step size
decreases the calculation improves. However, on the right hand side, not only are the
same size changes occurring at a larger step size (indicating a shorter runtime), but the
last point shows an increase in the change. This is where numerical precision is starting
to impact the calculation and signifies that the 0.1 step size is the most converged for this
configuration.
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Figure 7.3: Drag convergence.

7.2 PCBsat dispersion

Whilst the torque experienced by a satellite is an interesting topic, this work is interested
in the dispersion of the PCBsats. To model this, different angular configurations of the
PCBsat were simulated, with the incident angle being fixed (i.e. torque was ignored). The
results below look at only a rotation in pitch (around the x axis).

Figure 7.4 shows the overall effect of drag on the satellites by looking at the change
in their radii, compared to a zero pitch angle. In particular, two different orbital altitudes
are used. This shows that a 30° or lower pitch angle at 500 km altitude will result in a
difference of below 9 km after 140 days, whereas, at 300 km, the same separation occurs
after approximately 20 days for a 30° pitch.

Figure 7.5 shows the position of the satellites during the first day, with the progression
of time in the data being anti-clockwise from just below the y = 0 line, with figure 7.6
showing the first 100 days, with the progression in the same direction. Both of these
figures show the large effect that the drag has on dispersion but also how the dispersion
is largely in the xy plane, with significantly less dispersion occurring in the z axis. This
is ideal for a multi-node constellation, as the communication and control is significantly
easier if the satellites are more confined in the z axis. Figure 7.6 shows that after 100

days, at the worst combination (0° pitch compared to 90°) the separation is within 20 km.
Whilst this is a larger distance than the radio transceivers can communicate over, it is
highly unlikely that this pitch would be chosen for any long period of time. Instead,
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Figure 7.6: First 100 days of orbit simulation at 500 km altitude.

such a high pitch could be used to quickly aid the dispersion, before returning to a much
smaller angle.

7.3 Summary

The results from the simulation show that dispersion in the xy plane is achievable using
drag and the separation is less in the z axis. Whilst it does suggest that the concept
mission has a lifetime of under 2 months at 300 km altitude, it also suggests that an altitude
of 500 km could prolong the mission lifetime quite significantly. The word ‘suggest’
has been used here because figure 7.4 does not necessarily mean that a 300 km altitude
mission would have a short life. These figures are comparisons with a satellite that has
the smallest amount of drag possible applied to it (via orientation), so they represent
the largest dispersion possible. If the satellites were allowed to change their pitch in
the simulation, it would be possible for extreme satellites, in the xy plane, to become
less extreme and become closer to the zero pitch satellite. However, they would still be
dispersed in the z axis. This could be easily corrected for by the low pitch satellites using
a high pitch for a limited time. Unfortunately, this is not a particularly easy design to
demonstrate due to the runtime of the simulation.
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Chapter 8

Conclusions

This works presents several novelties:

• Distributed GNSS receiver design
• Hybrid GNSS receiver design
• Open source implementation of a modular, extendible GNSS receiver
• Comparative FFT acquisitions
• Free molecular drag orbit simulation

The distributed GNSS receiver design, discussed in chapters 3 and 6, is able to reduce the
power consumption by between 5.6 % and 13.3 % - which, in terms of the limited power
budget of the PCBsat, and femto-satellites in general, is a substantial saving. Its novelty
is split into two parts - first is the distributed aspect, where the navigation processor is
moved to a different physical location, and the second is the use of a data caching and
optimisation of the ephemerides, which makes the complete process energetically viable.
Whilst there are technical limitations, the largest being the power efficiency of FPGAs,
which improves with each product generation, the main limitation of this approach is the
limited applications - as there are not many situations where a device containing a GNSS
receiver does not need to know its location. However, the concept of a distributed GNSS
receiver is not limited to space applications. There are many instances where remote
sensing is required within the constraints of a restrictive power budget, such as on buoys
in oceans and on atmospheric weather balloons, where this distributed design could prove
to be as useful as it is for femto-satellites.

Following on from this, the hybrid GNSS receiver design combines a traditional re-
ceiver with the data storage and optimisation of the distributed receiver. This allows the
receiver to function as a traditional receiver, where it is aware of its own location, whilst
being able to store the required information to calculate its position at a later point in
time, allowing it to utilise the more precise IGS ephemerides. This has a much wider
range of applications than the distributed receiver design, as there are many applications,
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particularly scientific, where being able to calculate a more accurate position, even with a
substantial time delay, is useful.

By utilising a modular and extendible design for the GNSS receiver, individual mod-
ules can be easily exchanged, allowing the receiver to be tailored for specific usage cases.
Whilst the current number of modules is small - allowing only the filters and loop discrim-
inators to be changed - by making the design open source, it allows others to extend the
design as they see fit. This is particularly advantageous for research, as it allows novelties
to be built on an existing platform, rather than having to recreate the same base.

The FFT acquisition technique, described in section 5.1, is capable of detecting vis-
ible satellites that would otherwise be missed with a traditional FFT approach. This is
achieved by performing multiple acquisition scans and comparing them to determine if
the results are consistent with the typical movements of the broadcasting satellites and
the receiver. Whilst this technique suffers from the same limitations as any FFT based
acquisition - mainly the lack of precision in the results - it can be implemented alongside
any existing FFT acquisition with only a small overhead.

The final novelty of this work is the derivation and implementation of the free molec-
ular drag model - see appendix C and chapter 7. This considers a free molecular flow
incident on a surface, with the flow able to rotate in all 3 axes, allowing the drag force
to not only be correctly calculated but for it to exert a torque on the surface, correctly
modelling drag induced rotations. This is implemented in a custom, open source orbit
simulation which can be easily configured and controlled through a scripting language.

The key results of this research are the implementation of a distributed GPS receiver
on an FPGA that can perform within the power budget of a femto-satellite; the distributed
receiver design being not only feasible but vital in meeting the power constraints of the
femto-satellite; and the distributed design, as shown by the drag simulation, being practi-
cal for the designed satellite mission and its target lifetime.

Future work

There are several areas which could be enhanced with further work. The current receiver
design, whilst being modular, does not have many modules that can be exchanged and
only supports the legacy GPS signals. This could be easily extended to support more
modules, that are optimised for different applications, or different signals, either from
different GNSS constellations or the new modernised GPS signals.

The receiver design utilises an SRAM based FPGA which is not optimised for low
power usage, if the design was transitioned to an FPGA designed for low power or to an
ASIC, the advantages of the distributed design would be considerably more. In addition
to this, low power techniques could be investigated to reduce the power required by the
design on the current FPGA.
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The orbit simulation has a great potential for further work, from investigating different
constellations to determining how to achieve particular flight patterns. But the greatest
potential is in the simulation’s ability to be used to test attitude control algorithms. This
could be used to understand how a femto- or pico-satellite behaves in orbit, allowing the
attitude algorithms, as well as the satellite’s design, to be altered so that it performs as
intended.
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Appendix A

Occulting disc calculations

The PROBA-3 satellites are designed to use a 1.5 m occulting disc (Sephton et al., 2008),
which is impractical for a pico-satellite. This section, therefore, considers a 10 cm occult-
ing disc.

To maintain the same solid angle at the chronograph satellite, the angle between the
centre of the occulting disc and its edge, as seen by the chronograph, must be the same.
This apex angle can be described as,

tan θ =
D

2d
, (A.1)

where D is the diameter of the occulting disc and d is the distance between the occulter
and chronograph satellites. As ESA do not detail this apex angle, or the solid angle at the
chronograph, we construct a ratio to calculate the separation required for the reduced size
occulting disc,

D

d
=
Dr

dr
,

where the subscript r is used for the reduced size disc. Calculating for dr, using ESA’s
separation values of 150 and 250 m, results in a separation distance for the reduced size
disc of 10 and 16.67 m, respectively.

For a larger separation distance, the solid angle will decrease and will therefore require
an optical system with a greater resolving power. The angular resolution of a system can
be found using the Rayleigh criterion,

sin θ = 1.22
λ

Da

, (A.2)

where θ is the angular resolution, λ is the wavelength of light andDa is the diameter of the
aperture1. As the minimum angle resolution is quite obviously determined by equation

1The factor of 1.22 in equation A.2, is for a circular aperture and is derived from the diffraction pattern
of an Airy disc.
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Table A.1: Minimum aperture diameter for the PROBA-3 optical system, at either end of
the visible spectrum and the separation range.

d
λ

390 nm 700 nm

150 m 95.2 µm 171 µm
250 m 159 µm 284 µm

Table A.2: Minimum aperture diameter for the reduced size occulting disc at several
separation ranges at both extremes of the visible spectrum.

λ
d

150 m 250 m 500 m 1 km 5 km 10 km

390 nm 1.43 mm 2.38 mm 4.76 mm 9.52 mm 47.6 mm 95.2 mm
700 nm 2.56 mm 4.27 mm 8.54 mm 17.1 mm 85.4 mm 171 mm

A.1, we can calculate the minimum aperture diameter as,

Da = 1.22
λ

sin θ
= 1.22

λ

sin
(
arctan D

2d

) . (A.3)

As there is very little information available of the PROBA-3 optical system, we make
the assumption that it is operating within the visible part of the spectrum, that is 390 to
700 nm. Using this assumption, and equation A.3, the PROBA-3 optical system must have
an aperture that is at least 78 to 233 µm in diameter (see table A.1). This is small enough
that the optical system could consist of a low pixel count CCD, without any lenses. For
this, the minimum aperture diameter would be the minimum pixel size2, with a 100 by
100 pixel CCD measuring between 7.8 and 23.3 mm in both width and height. However,
it is highly likely that the optical system is much more complicated than this.

Using equation A.3, the minimum aperture diameter for the reduced size disc is fif-
teen times larger than that of the original system (see table A.2). For small separations, an
optic-less system could still be used, however, for larger separations this becomes increas-
ing difficult to accommodate and thus requiring lenses. Additionally, for pico-satellites,
an optical system with an aperture of 50 to 170 mm would be difficult to integrate, both
in terms of size and mass, resulting in the largest practical separation distance for the
reduced size occulting disc of approximately 1 km.

2Assuming the use of square pixels.
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Appendix B

Eclipse shadow angle derivation

From simple trigonometry, it is simple to approximate that the eclipse angle will be,

θ = 2 arctan

(
re

re + rs

)
,

where re is the radius of the Earth and rs is the altitude of the satellite. However, this ap-
proximation assumes that the Earth is a flat disc, with the incident radiation being normal
to it. To account for a spherical Earth, the equation for the eclipse angle becomes,

θ = 2 arcsin

(
re

re + rs

)
. (B.1)

This is not as obvious, but essentially moves the right angle from the Earth’s centre to
its surface, due to the different geometry. As the incident radiation is not normal, there
is a small correction that has to be considered that will reduce the angle of eclipse. This
correction is, again, simpler to understand if flat discs are considered and is shown in
figure B.1,

θc = 2 arctan

(
rsun − re

d

)
,

where rsun is the radius of the Sun and d is the average distance between the Sun and
Earth, by definition, 1 AU. This correction is the ratio of the difference in size between

θc

d

rsun
re

Figure B.1: Diagram showing the small correction angle that is required due to the differ-
ent sizes of the Earth and Sun.
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the Sun and the Earth, and the distance that separates them. Again, if a spherical Sun and
Earth are considered, this becomes,

θc = 2 arcsin

(
rsun − re

d

)
, (B.2)

and is only a small correction, at less than 5 mrad.
The total eclipse angle is, therefore, a combination of equations B.1 and B.2,

θ = 2 arcsin

(
re

re + rs
− rsun − re

d

)
.
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Appendix C

Derivation of drag model

To calculate the effect of drag acting on a surface in a free molecular flow, we need
to consider the stress on the surface (that is, the force per unit area). This is resolved
into two components, pressure - the stress normal to the surface - and shear - the stress
tangential to the surface. To do this, we start from the molecular density function. Whilst
this can be derived fairly easily using Maxwell Boltzmann statistics, for brevity we take
it from Schaaf and Chambré (1961, p. 12),

f =
ρ

m (2πRT )
3
2

exp

{
−(v1 − u1)2 + (v2 − u2)2 + (v3 − u3)2

2RT

}
, (C.1)

where ρ, m and T are the density, molecular mass and temperature of the flow, respec-
tively; R is the molar gas constant, vn and un are the absolute and gas velocities in the
three axes. In addition to this, we derive the number density, that is the number of parti-
cles, per area, that are incident on the surface.

These derivations use four standard integrals, which are:∫ ∞
−∞

e−
(x−b)2

a dx =
√
πa (C.2)

∫ ∞
−∞

xe−
(x−b)2

a dx =
√
πab (C.3)∫ ∞

0

xe−
(x−b)2

a dx =
a

2
e−

b2

a +

√
πab

2

[
1 + erf

(
b√
a

)]
(C.4)∫ ∞

0

x2e−
(x−b)2

a dx =
ab

2
e−

b2

a +

√
πa

4

(
a+ 2b2

) [
1 + erf

(
b√
a

)]
(C.5)
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C.1 Number density

The number of particles incident on a surface is dependant on the molecular density of the
flow, described by f , and the velocity of the flow normal to the surface, v1. The density
of this number is quite obviously dependant on the size of the surface,

Ni

dA
=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
0

fv1dv1dv2dv3. (C.6)

Using equation C.1, this expands to,

Ni

dA
=

ρ

m (2πRT )
2
3

∫ ∞
0

v1e
− (v1−u1)

2

2RT dv1

∫ ∞
−∞

e−
(v2−u2)

2

2RT dv2

∫ ∞
−∞

e−
(v3−u3)

2

2RT dv3.

Both of the integrals over v2 and v3 have the same form - that of the standard integral in
equation C.2,

Ni

dA
=

ρ

m
√

2πRT

∫ ∞
0

v1e
− (v1−u1)

2

2RT dv1.

The remaining integral is of the form of equation C.4, resulting in

Ni

dA
=

ρ

m
√

2πRT

(
RTe−

u21
2RT +

√
2πRTu1

2

[
1 + erf

(
u1√
2RT

)])

=
ρ

m

(√
RT

2m
e−

u21
2RT +

u1
2

[
1 + erf

(
u1√
2RT

)])
. (C.7)

C.2 Pressure

The pressure exerted onto the surface by the flow is dependant on the momentum and
number of particles incident with the surface. This makes its form not too dissimilar from
that of the number density (equation C.6),

pi =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
0

mv21fdv1dv2dv3,

where m is the mass of the molecules and vn and f are as in equation C.6. Using the
standard integrals of equation C.2 and C.5, this is reduced to,

pi =
ρ√

2πRT

∫ ∞
0

v21e
− (v1−u1)

2

2RT dv1,

and

pi =
ρ√

2πRT

{
RTu1e

− u21
2RT +

√
2πRT

4

(
2RT + 2u21

) [
1 + erf

(
u1√
2RT

)]}
,
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respectively. This can be simplified to,

pi = ρRT

{
u1√

2πRT
e−

u21
2RT +

(
1

2
+

u21
2RT

)[
1 + erf

(
u1√
2RT

)]}
. (C.8)

pi is the pressure incident on the surface, however, it is not the total pressure felt by
the surface as there are a certain amount of reflections. These reflections have a pressure
of,

pw =
ρ

2

√
2πRTwNi,

where Tw is the temperature of the surface. The total pressure is then found through the
use of a reflection coefficient, σ′,

p = (2− σ′) pi + σ′pw, (C.9)

with typical values for σ′ being between 0.8 and 1.

C.3 Shear

The shear exerted onto the surface by the flow is effectively the same as the pressure, with
the exception that the momentum of the particles is in the direction of v2 instead of v1,

τi =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
0

mv1v2fdv1dv2dv3.

This, using equation C.2 and C.3, reduces to,

τi =
ρu2√
2πRT

∫ ∞
0

v1e
− (v1−u1)

2

2RT dv1,

which, using equation C.4, reduces further to,

τi =
ρu2√
2πRT

(
RTe−

u21
2RT +

√
2πRT

2
u1

[
1 + erf

(
u1√
2RT

)])
.

Simplifying and adding in the reflection coefficient results in,

τ = σρu2

(√
RT

2π
e−

u21
2RT +

u1
2

[
1 + erf

(
u1√
2RT

)])
. (C.10)
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Appendix D

Source code

A fairly large amount of computer code and hardware design has been completed for, and
is used in, this work. Rather than include it here, links are listed below to the source code
repositories that contain the various parts.

SD card controller https://gitlab.com/6thimage/sd controller
A finite state machine based SD card controller, which presents a 512 byte RAM
interface for reading and writing data to the card. See section 4.2.2.

Baseband recorder https://gitlab.com/6thimage/baseband recorder
A data storage tool designed for use on an FPGA to record the digital baseband
directly from the RF front-end to an SD card. See section 4.3.

Baseband reader https://gitlab.com/6thimage/baseband reader
A tool designed to play back the recorded baseband data (stored on an SD card).
As the baseband is recorded at a frequency that cannot be directly generated by
the FPGA (as the two clocks are not integer multiples of a common frequency),
the reader plays the baseband data back at a faster speed - 16.667 MHz instead of
16.368 MHz. See section 4.4.

Software GPS receiver https://gitlab.com/6thimage/soft gps c
A software implementation of a GPS receiver, written in the C programming lan-
guage. This also includes the fixed point version of the receiver. See chapter 5.

GPS tracking channel https://gitlab.com/6thimage/gps channel
Verilog implementation of a GPS tracking channel, including the frame decoder.
See sections 6.3 and 6.4.

FFT acquisition module https://gitlab.com/6thimage/fft module
Verilog implementation of the FFT acquisition module, utilising Xilinx’s FFT IP.
See section 6.2.
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GPS SoC https://gitlab.com/6thimage/cm0 gps soc
SoC design for the receiver, based around the AHB-Lite bus and using the ARM
Cortex-M0 DS processor (which, due to its proprietary nature, is not included). See
section 6.1.
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