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Abstract

This thesis contains three chapters. In particular, it examines the opaqueness of
financial securities, risk contagion among asset markets and learning behaviours and
trading skills in financial markets.

Chapter 1, “Opacity in Security Design: The Role of Derivative Markets”, builds
a theoretical model to explain the contribution of financial derivatives, especially
Credit Default Swap, to the opaqueness of financial securities. We find a trade-off
in the opacity design of financial securities: opacity increases adverse selection in
the primary market while gives the originator information advantage in the derivat-
ive market, the former decreasing the originator’s profits while the latter increasing
his profits. Hence, the optimal opacity involves a balance between the two effects,
implying derivative markets do play a role in deciding the opacity of financial se-
curities. In addition, a liquid derivative market tend to induce more opacity as
the originator makes more profits on the derivative market, which makes him more
willing to sacrifice his profits in the primary market and increase opacity.

Chapter 2, “Statistical Arbitrage and Risk Contagion”, builds a computational
model to investigate the risk contagion mechanism provided by statistical arbit-
rageurs among asset markets. Statistical arbitrageurs arbitrage mispricings but also
follow a market-neutral rule. We find that statistical arbitrageurs help stabilise mar-
kets in normal periods. However, they may also act as the mechanism for the spread
of shocks, making the whole system expose to extreme events. While statistical ar-
bitrageurs may play a role in risk contagion, we find the effects are limited. The
reason is that statistical arbitrageurs in markets not shocked trade against shocks,
which helps the system to recover fast. In addition, statistical arbitrageurs per-
sistently make positive profits from trading, consistent with the fact that financial
institutions heavily rely on this strategy.

Chapter 3, “The Role of Heterogeneous Beliefs in Trading Skill Acquisition”, also
creates a computational model to examine how chartists, who are effectively noise
traders, affect fundamentalists’ learning and trading skill acquisition, where funda-
mentalists do not have the skill to fairly price financial assets and learn to do so
from trading. We find that the presence of chartists can facilitate the learning of
fundamentalists by stabilising the market price. However, chartists tend to reduce
the accuracy of the learning outcome by misleading the market price. Hence, an
increase in the amount of chartists increases the proportion of fundamentalists hold-
ing trading skills, which makes markets more resilient. However, the less accurate
learning outcome of fundamentalists tend to increase market volatility.
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Introduction

This thesis contains three themes in financial markets. The first theme is about

the role of derivative markets in security design in terms of the transparency of the

security, in the context of the prevalence of the opaque structured financial securities

before the 2007-2008 global financial crisis. The theoretical results show that de-

rivative markets, especially the Credit Default Swap markets, do play an important

role in increasing the incentive to make financial securities opaque. The magnitude

of this effect depends on the liquidity in the derivative markets in the sense that

a liquid derivative market induces more opaque securities. This is because a li-

quid derivative market makes the originator’s profits in the derivative market more

important compared to his (negative) profits in the primary market. Hence, the

originator is more willing to give up his profits in the primary market to reap more

profits in the derivative market. In the model, an originator holds a risky asset and

wants to securitise it and sell the risky security to potential buyers via first price

auction. If trade of the risky security occurs in the primary market, a derivative

security, which is to hedge the default risk of the risky security, will be traded and

the originator is allowed to trade both the underlying and derivative securities, a

wide practice among financial institutions before the global crisis. The originator

is a profit maximiser and optimally chooses ex-ante the opacity of the underly-

ing security before he knows the type of the risky asset. After opacity is decided,

the originator observes the type of the asset while everyone else observes a public

(noisy) signal. Then, trade of the risky security and the derivative security occurs

sequentially. Finally, either security pays off. Opacity has opposite effects on the

originator’s profits in the primary and derivative markets. In the primary market,

opacity increases adverse selection, decreases the price buyers willing to pay and re-

duces the originator’s profits. In the derivative market, opacity gives the originator

information advantage and increases his profits. Put it simple, opacity hurts the

originator in the primary market but benefits him in the derivative market. When

deciding the optimal opacity, the originator faces a trade-off and needs to find a

balance between the two effects. The more liquid the derivative market, the more

profits the originator can get from the derivative market, which makes the losses in

the primary market less of an issue and motivates the originator to make the under-
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lying security more opaque. In addition, we find that opacity can increase liquidity

by discouraging the acquisition of private information. This creates a feedback loop

between opacity and liquidity, through which the effects of any change in either opa-

city or liquidity will be amplified. This study contributes to the literature on opacity

and liquidity by providing an innovation that investigates the relationship between

opacity in the primary market and liquidity in the derivative market, instead of

focusing on a single market. Also, this study enriches the growing literature arguing

that opacity may not necessarily decrease but could increase liquidity. In addition,

this study provides a new explanation for the diffusion of opaque financial securities

in recent years, which is a result of the speculation in the derivative markets. The

results in this study also support the policy that restricting the proprietary trading

of financial institutions after the recent global financial crisis.

The second theme is concerned with the networks among asset markets, especially

stock markets. We build a numerical model to look into the role of statistical ar-

bitrage in linking stock markets and in risk contagion. This idea comes from the

contagion of liquidity dry-ups among stock markets in the Flash Crash on 6 May

2010. Statistical arbitrage is a market-neutral strategy widely used by financial

institutions. It involves the exploitation of short-term deviations from a long-run

equilibrium between assets. When deviations occur, statistical arbitrageurs take

long positions in assets underperformed and short positions in assets outperformed,

in a way such that the resulting portfolio is market neutral. In this study, we

consider multiple markets populated by fundamentalists, chartists and statistical

arbitrageurs. Fundamentalists and statistical arbitrageurs are informed of the fun-

damental value of the stocks and share the same beliefs. Chartists do not care

about fundamental values but only rely on past price trends. Fundamentalists and

chartists trade in one market while statistical arbitrageurs cross trade among mar-

kets, through which markets are linked. The results show that in normal periods,

statistical arbitrage can help stabilise the markets by driving prices back to the fun-

damentals. However, when extreme events occur, for example, when an unexpected

shock occurs in one market, it may act as the mechanism for the transmission of

the shock. In our test, we find that when statistical arbitrageurs do not trade, a

shock occurring in one market does not propagate to other markets. However, when

they trade, a shock can result in significant and systematic price decrease in other

markets, as what has happened in the Flash Crash. This finding confirms the role

of statistical arbitrage in risk transmission. Intuitively, when a shock occurs in one

market, statistical arbitrageurs trading that stock and stocks linked to the shocked

one will adjust their demand for each stock in their portfolio to keep market neut-

rality. This affects the price in these markets. Statistical arbitrageurs trading these

stocks and other stocks linked will also adjust their demand, which changes prices

2



again and triggers larger scale of demand adjustment and price change etc. Hence,

statistical arbitrageurs provide the route for risk contagion with which a shock in a

single market can lead to a systematic collapse. Our study is first consistent with the

existing literature arguing the double-edged role of networks in financial stability,

that is, financial networks are able to stabilise market in normal periods but may

act as a mechanism for risk contagion. More importantly, our study raises the con-

cern about the potential hazard from advanced and modern trading techniques and

strategies, among which statistical arbitrage is one with great representativeness by

heavily relying on advanced computational capacity. It is true that the generation of

advanced trading techniques and strategies has greatly improved trading efficiency.

However, the downside of it should also be noticed and attract more attention.

The third theme focuses on the learning behaviours and trading skill acquisition

in financial markets. The aim of this study is to investigate how noise traders

(chartists) affect the learning of fundamentalists. Specially, we revisit the question

of how heterogeneous beliefs affect market performance. However, we assume fun-

damentalists do not have the skill to fairly price financial assets but learn to do so

through trading, different from most of the relevant literature assuming fundament-

alists are rational by nature. We consider markets populated by fundamentalists

and chartists and learning occurs only among fundamentalists. Traders trade 3-

month European call options. Black-Scholes price gives the fundamental value of

the options. Each trader has a pricing function deciding the quote at which he is

indifferent between buying and selling one option. Transaction price is the median of

all quotes. Pricing function of fundamentalists is randomly generated computer pro-

grams while pricing function of chartists is weighted average of past prices. After a

trading round, all fundamentalists can review and with the same probability replace

their pricing functions with a one generating more accumulated wealth, which is how

learning occurs. In particular, replacement of pricing functions follows the rule of

nature selection. Through evolving, pricing functions generating more accumulated

wealth will survive which give quotes close to the Black-Scholes price. The numer-

ical results show that most price quotes lie within three clusters: one at left extreme

(0), one in the middle around the Black-Scholes price and one at the right extreme

(over 15). As the amount of chartists increases, the middle cluster becomes bigger

and fatter while the other two clusters becomes smaller, implying that as there are

more chartists, more fundamentalists are quoting close to the Black-Scholes price,

however, their evolved pricing functions are also more dispersed around the Black-

Scholes price. This indicates that chartists promotes learning, reducing extreme

quotes and increasing the proportion of fundamentalists holding skill, but also de-

crease the accuracy of the learning outcome. In addition, chartists reduce market

stability but increase market resilience. Trading skills are normally rewarded higher

3



returns in practice, which is confirmed in this study by the finding that fundamental-

ists holding higher level of skill tend to make more profits from trading. Intuitively,

the evolving of fundamentalists’ pricing functions adds uncertainties to the market

price. Chartists, by taking past prices into their pricing functions, may play the

role of stabilising market price, which facilitates learning. Hence, the proportion of

skilled fundamentalists increases with the amount of chartists (middle cluster be-

comes bigger). However, chartists still add noises to the market price, which can

mislead fundamentalists, resulting in low accuracy of the learning outcome (middle

cluster becomes more dispersed). Skilled traders are able to absorb shocks where

shocks in this study come from the entry of traders with extreme quotes (0 and 40).

Hence, markets with more chartists tend to be more resilient to shocks. However,

since the evolved pricing functions are more dispersed, market price becomes more

volatile.

4



Chapter 1

Opacity in Security Design: The

Role of Derivative Markets

Abstract

The period before the 2007-2008 financial crisis witnessed an incredible growth both

of highly opaque financial securities and of credit derivatives. We present a model

to explain the prevalence of opaque securities by considering the role of derivative

markets in the design of financial securities. More opaque securities imply larger

information asymmetries in the primary market, but increase the originator’s profits

from informed trading in the derivative market. We find a self-reinforcing positive

relationship between opacity of the security and liquidity of the derivative market:

a small exogenous increase in liquidity of the derivative market can, through a

feedback loop, lead to a large increase of the opacity of the security and liquidity

itself.
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1.1 Introduction

The period preceding to 2007-2008 financial crisis witnessed an incredible growth

of opacity in financial markets, especially of structured financial products (Furfine,

2014; Sato, 2014; Brunnermeier and Oehmke, 2009).1 For instance, from 2000

to 2003, the global annual issuance of Collateralized Debt Obligations (CDOs), a

widely traded class of structured securities, rose slightly from $68 billion to $86.6

billion, while growing sharply to $520 billion in 2006.2 After the crisis, both the

academia and the popular press have widely documented that before the crisis,

structured securities were so opaque that even top financial experts such as invest-

ment banks and rating agencies could not understand their payment structure. We

observe financial companies aggressively bet against the default of structured se-

curities and rating agencies gave inappropriate ratings to them.3 What motivates

the high opacity design of structured securities and what fuelled the success of the

markets for structured securities just right before the crisis?

During the same period, the markets for credit derivatives experienced spectacular

growth. For instance, between 2004 and 2008, the total nominal amount of Credit

Default Swap (CDS), the main form of credit derivatives, grew from just $6 trillion

to $57 trillion (Stulz, 2009). Obviously, the markets for opaque structured securities

and credit derivatives experienced a simultaneous period of prosperity.

While after the crisis the opacity of structured securities has been blamed for con-

cealing risks (Gorton, 2008; Pagano and Volpin, 2012; Siegert, 2014), little attention

has been paid to the incentives to design opaque securities. Traditional models im-

ply that opacity worsens adverse selection and destroys liquidity in asset markets.

If this is the case, why did originators make structured securities opaque? By doing

so, what did they attain? Augustin et al. (2016) and also, in the popular press,

Michael Lewis4 point out that before the crisis, the speculation in the credit deriv-

ative markets of some hedge funds and investment banks motivated these financial

institutions to intentionally create fragile and opaque securities. One good example

is the famous “ABACUS” case. In this case, Paulson & Co., a New York hedge fund,

on the one hand picked the most risky (subprime) mortgage loans to originate the

very fragile and opaque (subprime) mortgage-backed securities ‘Abacus 2007-AC1’,

1People can think mortgage-backed securities as an example of structured financial products.
Since structured financial products are financial securities, we use structured securities instead of
structured financial products in the rest of this paper.

2Source: The Securities Industry and Financial Markets Association (SIFMA).
3Please see Utzig (2010) and Harrington (2009) as the examples in the aca-

demia and https://eu.usatoday.com/story/money/business/2013/09/13/credit-rating-agencies-
2008-financial-crisis-lehman/2759025/ as an example in the popular press.

4In his popular book “The Big Short”, Michael Lewis provides a number of anecdotes showing
that before the crisis, some financial institutions intentionally design fragile and opaque structured
securities to facilitate their speculation in the credit derivative markets.
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on the other hand, bet on the default of these securities by taking positions in the

credit derivative markets.5

Observing the interesting simultaneous growth of the markets for opaque struc-

tured securities and credit derivatives and the numerous anecdotes, we ask: Is the

simultaneous growth in the two markets before the crisis a coincidence? Does the

growth of the market for credit derivatives partly explain the high opacity of struc-

tured securities before the crisis? Or more generally, can the derivative markets play

a role in the design of securities? In this paper, we answer these questions.

In our baseline model, we consider the problem of an informed originator who is a

profit maximiser and designs securities to be issued in a primary market. Different

from most existing models, however, we allow the originator to engage in speculative

trading in the derivative market. This setting matches key features of widespread

practice (see the “ABACUS” case for example). Also, it allows us to investigate

how the trading activities of the originator in the credit derivative market affect his

incentives in security design, which is the task of our model. The derivative asset

can be interpreted as a Credit Default Swap (CDS).6 Speculative buyers of a CDS

profit when the underlying asset defaults. Speculative sellers of CDS profit when the

asset is safe. Obviously, if allowed to design the underlying assets, these speculators

would do it to their benefits. Hence, we can expect that the derivative markets can

play a role in security design.

When the originator is able to participate in both the primary and derivative

markets, a trade-off arises: opacity increases information asymmetries and hence

lowers the originator’s profits in the primary market. On the other hand, it increases

the originator’s information advantage and raises his profits in the derivative market.

Put simply, opacity hurts the originator in the primary market but benefits him in

the derivative market. Without a derivative market, the originator would make the

securities as transparent as possible. In contrast, in the presence of a derivative

market, optimal opacity will be determined by trading off the two effects, which

implies the derivative markets do change the originator’s incentive to design opaque

securities. More importantly, our key prediction is that opacity is increasing in

the liquidity of derivative markets. In other words, the more liquid the derivative

market, the more opaque the securities will be. Intuitively, more liquid derivative

markets imply greater scope for informed speculation. As liquidity increases, the

originator is thus more willing to sacrifice profits in the primary market.

In an extension of the baseline model, we add speculators (different from the

5For more details, please see https://uk.reuters.com/article/us-goldmansachs-abacus-
factbox/factbox-how-goldmans-abacus-deal-worked-idUSTRE63F5CZ20100416.

6As CDS is the main form of credit derivatives, in the following context, we focus on CDS. The
speculation of CDS before the crisis was huge. As pointed out by Zabel (2008), by the end of 2007,
among the $45 trillion of notional value of CDS, at least $20 trillion were speculative “bets”.
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originator) to the derivative market who can become informed at some costs. We

endogenise the liquidity of the derivative market by assuming that information ac-

quisition costs increase in opacity. This is consistent with the fact that as opacity

rising, speculators need more time, resources and skills to collect and process inform-

ation. Interestingly, this creates a feedback loop between opacity of the primary

asset and liquidity of the derivative market, through which opacity and liquidity

are interconnected. For instance, any change in opacity of the primary asset would

affect liquidity in the derivative market, which further impacts the opacity of the

primary asset. Through this feedback loop, the effects of any change in either opa-

city or liquidity would be amplified. This result shows that the simultaneous period

of prosperity of the opaque structured securities and credit derivatives before the

2007-2008 financial crisis is not a coincidence, instead, it is the outcome of the

interaction between opacity and liquidity. In addition, this result enriches the grow-

ing literature showing that opacity may not necessarily reduce but could improve

liquidity (Farhi and Tirole, 2015; Stenzel and Wagner, 2015).

Opacity and liquidity are at the center of financial literature. However, most

related research focuses only on a single market, that is, how the opacity of an asset

affects the liquidity of the market for that asset. Our paper provides an innovation

by investigating the interaction of opacity in the primary market and liquidity in

the derivative market. A similar paper to ours is the one by Pagano and Volpin

(2012) where they also consider a trade-off problem between the effects of opacity

on the primary and secondary markets. However, in their paper, opacity is good

in the primary market but is bad in the secondary market, while in our paper, the

reverse applies.

The rest of this paper is organised as follows. Section 1.2 discusses relevant lit-

erature on security design, opacity and liquidity and market micrstructure. Section

1.3 present our baseline model where liquidity is exogenous. Section 1.4 provides an

extension with endogenous liquidity. Section 1.5 concludes.

1.2 Literature review

Fistly, this paper is related to the literature on security design. The security design

literature is mostly interested in the question of which type of security, debt or

equity, is better able to make the security information insensitive, as information

insensitivity reduces adverse selection and makes the security market liquid. Gener-

ally, the consensus in this literature is that debt contracts are usually less sensitive

to information and are thus optimal (Demarzo and Duffie, 1999; DeMarzo, 2005;

Dang et al., 2015). Unlike the above literature focusing on the design of the security

cash flows, this paper studies the design of a security’s transparency.
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Sato (2014) explores why and how opaque financial assets are designed, which

is quite similar to our work in this paper. In his model, financial engineers are

able to transform transparent assets into opaque assets with the incentive to obtain

an “opacity price premium” from the asset market.7 In our paper, the originator’s

incentive for greater opacity comes from his ability to trade in the derivative market.

Also, in Sato’s paper, in the primary market, opacity is good for the engineers, while

in our paper opacity is harmful as no one benefits from it.

In addition, our paper is related to the literature of opacity and liquidity (Pagano

and Volpin, 2012; DeMarzo, 2005; Stenzel and Wagner, 2015; Siegert, 2014; Ka-

plan, 2006). Asymmetric information is one contributor to the bid-ask spreads and

thus market liquidity (Kyle, 1985; Glosten and Milgrom, 1985). The stronger the

information asymmetry, the larger the bid-ask spreads and the less liquid the mar-

ket. Hence, opacity and liquidity cannot be separated. In general, opacity provides

incentives for private information acquisition, which results in greater information

asymmetry between traders and reduces market liquidity (Welker, 1995; Diamond

and Verrecchia, 2001). However, a growing literature argues opacity may facilit-

ate trading and hence improve market liquidity. Siegert (2014) finds a non-linear

relation between opacity and liquidity. Stenzel and Wagner (2015) point to a hump-

shaped relation between opacity and liquidity. In their paper, high opacity does

not necessarily reduce but could increase market liquidity. When opacity goes up,

both parties of a trade may end up being symmetrically uninformed (see also Farhi

and Tirole (2015)). This “common ignorance” facilitates trades and liquidity. In

their paper, the costs of transparency are exogenous while in our paper, the costs

of transparency are represented by the originator’s profits in the derivative market,

which are endogenous opportunity costs.

Pagano and Volpin (2012) show that opacity weakens the incentives for private

information acquisition in the primary market, but leaves large scope for private

information acquisition in the secondary market. Thus, opacity increases liquidity

in the primary market while decreases liquidity in the secondary market. Hence,

the determination of optimal opacity involves a balance between the two effects.

While our paper is similar to theirs in spirit, important differences exist between

the two papers. First of all, as mentioned above, in their paper, opacity is good in

the primary market but is bad in the secondary market. In our paper, the reverse

is true. Secondly, in their paper, only the two extreme cases, full transparency and

full opacity, are considered. In our case, opacity is a continuous variable, which

enables us to solve for the optimal opacity and do comparative statics. Finally,

7Although in Sato’s paper, engineers never design the asset, they do change the opacity of the
asset. In this sense, the opacity of the asset is decided by the engineers. Hence, engineers in Sato’s
paper play the same role as the originator does in this paper, that is to design opacity of the asset.
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originators in their paper are unsophisticated in the sense that they cannot process

information, while in our paper the originator has an information advantage and is

fully sophisticated.

The most significant difference between the current literature on opacity and

liquidity and our paper is that most of the current literature puts much attention

into the asset market while we explore the relation between opacity of the underlying

asset and liquidity of the associated derivative market, which allows us to provide a

different angle to the prevalence of opaque securities before the crisis.

Another literature this paper is related to is voluntarily withholding of information

(Diamond, 1985; Madhavan, 1995; Siegert, 2014; Kaplan, 2006; Boot and Thakor,

2001). This literature focuses on whether and what kind of information should be

released. Dang et al. (2015) argue that banks should hide some information to make

the financial system stable. Boot and Thakor (2001) point out that complementary

information should be released to strengthen investors’ incentive to acquire private

information. Again, this literature does not consider the effects of derivative mar-

kets. In this paper, the incentive for the originator to withhold information is to

make the derivative market liquid, enabling him to speculate in it.

Finally, this paper is related to the literature on market microstrucutre (Glosten

and Milgrom (1985); Kyle, 1985). The baseline model in this paper is built on the

market microstructure model by Glosten and Milgrom.

1.3 Model

1.3.1 Setting

We consider a three period setting where in period 1, an informed originator O is

endowed with a risky asset of size 1. O wants to securitise the risky asset and sell the

security to a potentially uninformed buyer B. Let A denote the security paying the

underlying asset’s cash flows. The originator optimally chooses ex-ante the opacity of

security A, which determines the extent to which information about the underlying

asset is public or private. In period 2, O has the chance to trade a derivative security

A which hedges the default risk of security A.8 In the baseline model, we assume

that liquidity in the derivative market is exogenous. A competitive market maker

observes the order flow, sets prices and makes zero expected profits. The order flow

comes from either noise traders, informed speculators or the informed originator.

In an extension, we endogenise liquidity by endogenisng the presence of informed

speculators. Assets pay in period 3.

8Security A can be seen as Asset-Backed Securities (ABS) where receivables such as mortgage
loans and credit card loans could be the underlying risky asset. Security A can be seen as Credit
Default Swap (CDS).
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Securities and states There are two possible states of nature ω ∈ {α, β}. The

underlying risky asset could be of two types, which is denoted by e ∈ {a, b}. If the

risky asset is of type a, it pays 1 in state α and 0 otherwise. If the risky asset is of

type b, it pays 1 in state β and 0 otherwise. Accordingly, security A pays 1 whenever

the underlying risky asset pays, while the derivative security A pays 1 whenever the

risky asset does not pay. The payment structure of A and A is summarised in the

table below.

ω = α ω = β
e = a A pays 1, A pays 0 A pays 0, A pays 1
e = b A pays 0, A pays 1 A pays 1, A pays 0

We denote with γ ∈ (0, 1) the probability of state α (and hence, 1 − γ is the

probability of state β). Without loss of generality, we set γ ∈ [0, 1/2], which implies

that without knowing the state of nature, the expected return of type b is larger

than that of type a. In this sense, we call type b the high type and type a the low

type. For simplicity, we assume all traders have a prior over e such that probability

Pr(e = a) = Pr(e = b) = 1/2

Opacity Before trading, information about the underlying asset’s type becomes avail-

able. This information is perfectly revealing to the originator - so that O is able to

perfectly observe e ∈ {a, b} - but the usefulness of the information to other parti-

cipants depends on security A’s transparency.9 To model this, we assume everyone

except O observes a (possibly noisy) public signal σ ∈ {0, 1} about e. In partic-

ular, we define στ , τ ∈ {a, b}, as the probability Pr(σ = 1|e = τ). If σ = 1, the

probability of type a and b is respectively

Pr(e = a|σ = 1) =
σa

σa + σb
;Pr(e = b|σ = 1) =

σb
σa + σb

(1.1)

If σ = 0, the probability of type a and b is respectively

Pr(e = a|σ = 0) =
1− σa

1− σa + 1− σb
;Pr(e = b|σ = 0) =

1− σb
1− σa + 1− σb

(1.2)

Without loss of generality, we assume σa 6 σb. We say security A is fully transparent

if σa = 0, σb = 1 and fully opaque if σa = σb. In the first case, σ = 0 reveals type

a while σ = 1 reveals type b. Thus, the public signal σ is perfectly informative. In

the second case, the public signal does not help uninformed participants to update

9For instance, if the underlying risky asset is based on credit card loans, information about
labor market conditions is potentially relevant for predicting the future asset’s cash flow. However,
the extent to which labor market information may be used to price the security will depend on the
investors’ grasp of the details of the security they bought, which is determined by the security’s
opacity.
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their prior over e and hence is perfectly uninformative. The degree of opacity of

security A is chosen by O ex-ante, i.e. before he observes e. To make things simple,

we set σb = 1 and let σa vary. Note that signal σ = 0 fully reveals the low type

(type a). However, signal σ = 1 is only partially revealing as long as σa ∈ (0, 1).

Furthermore, signal σ = 1 is more likely when the underlying risky asset is of the

high type (type b) in the absence of full opacity (σa = σb = 1). Thus, we call σ = 0

the “bad” signal and σ = 1 the “good” signal.

Originator and buyers The originator is risk neutral. O is initially endowed with the

risky underlying asset and securitises it to A. There is a large number of potential

buyers (strictly greater than one), who are also risk neutral. They can choose to buy

security A offered by O or to invest in a risk-free asset paying a gross return equal to

one. We assume trade between O and buyers occur via a first price auction. Buyers’

expectation about the value of security A is given by A’s expected time 3 cash flow.

O faces an opportunity cost k > 0 when A is not sold to buyers. Hence, by trading

A, O realises a surplus k. k can be interpreted as the net present value of a fixed

size project funded by the cash raised from trading A. Alternatively, k can be seen

as an invisible regulatory benefit O can get from selling A, which enables him to

(temporarily) remove the risks associated with the risky underlying asset from his

balance sheet.

Primary market The primary market works as follows. In the first period, after the

public signal σ is revealed, security A is auctioned to potential buyers through a

first price auction. If more than one buyer bids the same price, a lottery is used

to decide the actual buyer of the security. Competition between buyers forces the

transaction price to equal to buyers’ expectation about A’s value. A key assumption

of our model is that O cannot commit ex-ante - i.e. prior to obtaining information

about e - to trade at a given price. This conforms to practice that investment banks

informally contact potentially interested parties to solicit bids for the security on

offer. Typically, if the bank is not satisfied with the price, it always retains the

option not to sell the security. In our setting, if O is holding the high type risky

asset, that is type b given γ < 1/2, he may thus choose not to sell if adverse selection

is severe.

Derivative market In the second period, the state of nature ω ∈ {a, b} is publicly

revealed. Since security A is the underlying asset of the derivative security A, the

derivative market opens only if security A has been issued in the primary market.

Otherwise, the derivative market does not exist. The derivative market is a one-trade

version of the model by Glosten & Milgrom (1985). A competitive market maker,

observing the order submitted, decides the bid/ask price of the derivative security A
based on all other public information including the public signal σ and state of nature

ω. The derivative market is populated with noise traders, informed speculators and
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the informed originator, each group of traders being chosen to submit an order of size

s to the market maker with some probability. Noise traders are uninformed. Once

chosen to trade, they submit a buy or a sell order with equal probability. While the

one-trade assumption is not necessary for our results, it considerably simplifies the

analysis in the derivative market and enables us to provide some insights into the

role of derivative markets in opacity design of securities but avoid repeating complex

calculations.

Timing

The timing of our model is as follows,

• O chooses the opacity of security A (given by σa)

• Period 1

- Information about the underlying risky asset is released, O observes the

asset’s type e ∈ {a, b}, everyone else observes a public signal σ ∈ (0, 1)

- Trade of security A occurs between O and B

• Period 2

- State of nature ω ∈ {α, β} is revealed.

- The market for derivative security A opens, the market maker observes the

order submitted and sets the bid/ask price.

- Trade of A occurs.

• Period 3 - Either security A or A pays off.

-
T=1 T=2 T=3σa is

chosen by O
before

observing
e ∈ {a, b}

O observes e ∈ {a, b};
B observes σ ∈ {0, 1};

Trade of A occurs

ω is publicly revealed;
Derivative market

for A opens

Payoffs are realised;
Consumption occurs

Timeline of the baseline model.

1.3.2 Equilibrium Analysis

Let t ∈ {buy, sell} denote the type of order submitted to the competitive market

maker in the derivative market. If t = buy, the market maker sets an ask price, how-

ever, if t = sell, market maker sets a bid price. Generally, we denote by pA(t, σ, ω)

the transaction price of security A.

So far, we have shown the whole setting of our model. The originator chooses

ex-ante the level of opacity σa, participates first in the primary market and then

have the chance to trade in the derivative market. O is a profit maximiser and hence
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the level of opacity σa chosen ex-ante maximises his ex-ante overall profits. In the

primary market, the transaction price is given by a pricing function pA(σ). At price

pA(σ), O chooses whether to trade, especially when he is holding the high type,

based on his information and the expected profits he can obtain from each action. If

trade occurs in the primary market, in the derivative market, the transaction price

is given by a pricing function pA(t, σ, ω) at which the market maker makes zero

expected profits. O, once chosen to trade, submit either a buy or a sell order based

on his information.

In summary, O’s strategy comprises the probability σa chosen ex-ante and an

interim strategy mapping {a, b} × {0, 1} into an action {trade, not} in the primary

market and {a, b} × {0, 1} × {α, β} into an action {buy order, sell order} in the

derivative market. Equilibrium is defined by pricing functions pA(σ) and pA(t, σ, ω)

and O’s strategy as below.

Definition 1.1. An equilibrium of the overall game is a pricing function pA(σ) for

the primary market trade, a pricing function pA(t, σ, ω) for the derivative security

A and a strategy for O such that:

1. σa maximises O’s ex-ante expected profits.

2. O’s interim strategy maximises interim expected profits at each stage.

3. pA(σ) is consistent with a Nash equilibrium in the primary market’s auction given

the public information.

4. pA(t, σ, ω) ensures zero expected profits for the market maker conditional on the

order submitted and all other public information.

We will proceed backward, by analysing the derivative market first.

1.3.3 Derivative Market

Upon observing the bad signal σ = 0, the market maker knows that e = a and hence

is able to fairly price the derivative security A, in which case O makes zero profits

in the derivative market. Thus, O has an information advantage only when σ = 1

and σa > 0.

We start by deriving the prices of the derivative security and O’s profits in the

derivative market in each state. As mentioned before, the derivative market exists

only if security A has been issued in the primary market. Thus, we focus on the

scenario where trade of A has occurred in the primary market. There are three

groups of traders - noise traders (N), informed speculators (S) and the originator

(O). In period 2, before trade occurs in the derivative market, each group of traders

is chosen to submit an order of size s with probability λN , λS and λO, respectively

and λN + λS + λO = 1. λO (λS and λN) measures the participation of O (S and N)
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in the derivative market in the sense that the larger λO, the more likely O is chosen

to trade.

Assuming trade has occurred in the primary market, the market maker sets the

price at which he earns zero expected conditional profits. The price is conditional

on: a) the type of order submitted t ∈ {buy, sell}, b) the state of nature ω ∈ {a, b},
c) the public signal σ ∈ {a, b}. Let VA(e, ω) denote the value of security A.

VA(e = a, ω = β) = VA(e = b, ω = α) = 1; (1.3)

VA(e = a, ω = α) = VA(e = b, ω = β) = 0

After observing all available information, while he still does not know if e = a or e =

b, the market maker can assign a probability Pr(e = a|t, σ, ω) and Pr(e = b|t, σ, ω)

respectively to the two cases. Based on the analysis above, the price of A will be

pA(t, σ, ω) = VA(e = a, ω)× Pr(e = a|t, σ, ω) + (1.4)

VA(e = b, ω)× Pr(e = b|t, σ, ω)

For illustrative purpose, we fix σ = 1 and ω = α. Note that

Pr(e = a|σ = 1) =
σa

1 + σa
, P r(e = b|σ = 1) =

1

1 + σa
(1.5)

In the absence of full transparency (σa > 0), 0 < pA(t, σ, ω) < 1. Hence, it is always

optimal for informed traders (including O) to trade in the derivative market, that

is, to sell A when e = a and to buy A when e = b. The reverse is true for ω = β

(see the table below).

ω = α ω = β
e = a sell A buy A
e = b buy A sell A

The tree below shows how the market maker updates his beliefs based on all

available information. i denotes informed traders and u denotes uninformed traders.
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A

value=1

i

buy

w.p.1

sell

0

λO + λS

u

buy

1/2

sell

1/2

λN

1
1+σa

value=0

i

buy

0

sell

1

λO + λS

u

buy

1/2

sell

1/2

λN

σa

1+σa

Based on the above, we obtain

pA(buy, 1, α) =
2(λS + λO) + λN

2(λS + λO) + λN(σa + 1)
(1.6)

pA(sell, 1, α) =
λN

2(λS + λO)σa + λN(σa + 1)
(1.7)

Note that the bid-ask spread is

pA(buy, 1, α)− pA(sell, 1, α) (1.8)

which acts as the liquidity measure of the derivative market. In the absence of full

opacity (σa < 1), keeping λO, λS and λN constant, the bid-ask spread increases

with opacity. Intuitively, as opacity goes up, information asymmetries between the

market maker and informed traders (O and S) increase. As a consequence, the

market maker will increase the bid-ask spread to avoid being cheated by informed

traders.

In the extreme case of full opacity (σa = 1), the bid-ask spread collapses into
λS+λO

λS+λO+λN
, in which case, opacity is so high that the market maker gets no informa-

tion from the public signal and his beliefs rely heavily on the proportion of informed

traders in the total population. In other words, the bid-ask spread widens if there

are more informed traders while narrows if there are more noise traders.

For the originator, the narrower the bid-ask spread, the higher the expected profits

from derivative market trading.

To see this, note that the originator expects a profit

λOs[1− pA(buy, σ, ω)] (1.9)
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when he wants to buy and

λOs[p
A(sell, σ, ω)] (1.10)

when he wants to sell. Recall λO is the probability O is chosen to trade and s is the

order size O can submit. Again, let us focus on the case (σ = 1, ω = α). Replace

the prices in the profit expressions and rearrange to get profits

πAa (sell, 1, α) = λOs
λN

2(λS + λO)σa + λN(σa + 1)
(1.11)

when O wants to sell and

πAb (buy, 1, α) = λOs
λNσa

2(λS + λO) + λN(σa + 1)
(1.12)

when O wants to buy. Since the bad signal σ = 0 is fully revealing, O makes zeros

profits in the case of σ = 0. Hence

πAa (t, 0, ω) = 0; πAb (t, 0, ω) = 0 (1.13)

In the extreme case of full transparency (σa = 0), all information is public and

derivative market profits are zero in all states (e = a, σ = 0) and (e = b, σ = 1).

O can make higher profits if the realisation of the signal has misleading effects on

market maker’s beliefs. For instance, O’s profits are higher in the case of e = b

when σa is higher because a higher σa makes the market maker believe that e = a

happens with a high probability, which lowers the market maker’s beliefs in state

ω = α but increases O’s profits.

Moving one step backward, now we look at the derivative market from the ori-

ginator’s perspective in period 1 when ω is not known but the originator already

knows e. We denote the expected profits from derivative market trading with

πAeσ = E[πAe (t, σ, ω)|e, σ] (1.14)

where the expectation is taken with respect to ω ∈ {α, β} and t ∈ {buy, sell}.
Intuitively, the originator’s profits in the derivative market depend on the liquidity

of the market which is provided by noise traders and consumed by the originator and

speculators. On the one hand, the more noise traders, the more liquid the market

and the better the originator will be able to hide his order and his information

advantage. On the other hand, the more speculators, the less liquid the market and

the less favourable the market price will be.
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1.3.4 Primary market

Before trade occurs in the primary market, O directly observes the type of the

underlying risky asset while others including B observe the public signal σ. As

mentioned before, potential buyers’ surplus from buying A is competed away and

hence trade occurs at buyers’ expectation. Let pσ denote the price of security A

given the signal σ ∈ {0, 1} received. Upon observing σ = 1,

p1 = γ
σa

σa + 1
+ (1− γ)

1

σa + 1
(1.15)

Similarly, upon observing σ = 0,

p0 = γ (1.16)

For the informed originator, let Ve denote his expectation about the value of security

A after observing type e ∈ {a, b}. If he observes e = a, Va = γ − k, otherwise,

Vb = 1− γ − k. Obviously, Va < p0 < p1 for k > 0, which implies that trade always

occurs for the low type (type a). However, for the high type (type b), trade may

not always occur, depending on how severe adverse selection is in the market. If O

decides to sell A, his profits are

pσ − Va + πAaσ (1.17)

when e = a and

pσ − Vb + πAbσ (1.18)

when e = b. However, if O chooses not to sell A, again, since A is derived from A,

the derivative market will not exist.

Remember when σ = 0, O always earns zero profits in the derivative market. As a

result, when σ = 1, there are two interim participation constraints for the originator

(each for the cases {a, b}).

k +
1− 2γ

1 + σa
+ πAa1 > 0(PCa1) (1.19)

k − (1− 2γ)σa
1 + σa

+ πAb1 > 0(PCb1) (1.20)

Since the transaction price in the derivative market is between 0 and 1, the originator

always makes non-negative profits from trading the derivative security A. Given

γ < 1/2, (PCa1) always hold. Intuitively, the low type always benefits from pooling,

which makes the buyers believe the underlying asset could be of the high type and

thus increases its expected value. However, this may not be necessarily true for
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(PCb1). In other words, trade of the high type suffers from adverse selection. So

long as opacity is not zero, the information asymmetry between O and buyers lowers

the price buyers are willing to pay. As shown in (PCb1), an increase in σa results

in less profits for O in the primary market, given by the lower value of k− (1−2γ)σa
1+σa

,

keeping k constant. When k is small, O may make losses from trading the high

type. However, at the same time, opacity increases O’s information advantages and

he can make gains from informed trading in the derivative market.

Hence, when designing the opacity of security A, the originator is facing a trade-

off. By choosing full transparency (σa = 0, σb = 1), the originator guarantees

non-negative profits in the primary market but zero profits in the derivative mar-

ket in all states with positive probability, i.e. (e = a, σ = 0) and (e = b, σ = 1).

However, full opacity imposes severe adverse selection on the primary market. As a

result, the optimal opacity requires the originator to trade off the benefits from redu-

cing information asymmetry in the primary market with the benefits from informed

trading in the derivative market. The next section will talk about this trade-off.

1.3.5 Optimal Opacity

As mentioned above, when designing the opacity of security A, the originator is

facing a dilemma: before he knows the type e, he wants security A to be opaque,

which enables him to do informed trading in the derivative market. However, opacity

imposes adverse selection in the primary market, increasing the costs of trading the

high type. Thus, after he knows that the underlying risky asset is of the high type,

he tends to quit the primary market. Optimal opacity involves a balancing act

between the two effects. Let us start with two benchmarks.

1.3.5.1 Two Benchmarks

Suppose first O makes zero profits in the derivative market. This could be the case

where the market maker is fully informed and O can only trade at the fair value

of A, or, it could be the case where there are no noise traders, in which case the

trading behaviour of the originator reveals his private information.

Proposition 1.1. If there are no rents from informed trading in the derivative

market, then full transparency is always ex-ante optimal.

From an ex-ante point of view, opacity only affects the expected profits in the

primary market when it causes the high type to quit. When this does not happen,

the extra gains from trading the overpriced type (type a) are perfectly offset by

the underpricing of the high type (type b), so the overall opacity does not matter.

Looking at (PCb1), if O earns zero from the derivative market (πAb1 = 0) but k is large
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enough to still make (PCb1) hold, then opacity is immaterial in the sense that any

value of σa gives the same expected profits in the derivative market. Transparency

matters only when (PCb1) does not hold, in which case, the optimal strategy for O

is to reveal the type e to eliminate adverse selection. In this case, full transparency

weakly dominates.

Now, let us look at the other extreme case where there is no adverse selection in

the primary market. Suppose that O can eliminate the information asymmetry by

telling buyers his private information and is able to contractually bind them not to

reveal what they know. In this case, O can avoid adverse selection in the primary

market but retains his information advantage in the derivative market. Then, how

much information would O like to make public?

Proposition 1.2. In the absence of adverse selection in the primary market, full

opacity is always ex-ante optimal.

Ideally, O makes the maximum profits if he can systematically make the market

maker believe the underlying risky asset is of the opposite type compared to the

real type he knows, for instance, he makes the market maker believe e = a while

the truth is e = b and vice versa. However, this is impossible in equilibrium. The

maximum “misleading” O can impose on the market maker is with full opacity.

Hence, optimally, O will choose full opacity when there is no adverse selection in

the primary market.

1.3.5.2 The right amount of opacity

Now, let us move to the more interesting case where O trades off the two opposite

effects of opacity on the primary and derivative market. First, let us look at the two

participation constraints (PCa1) and (PCb1). As mentioned before, (PCa1) always

holds and we focus on (PCb1).

Lemma 1.1. In equilibrium, participation constraint (PCb1) holds under full opacity

whenever

k + λOs
λN

2(λS + λO + λN)
>

1

2
− γ (1.21)

If the reverse of the above inequality holds, then there exists a unique value σ∗a ∈ [0, 1]

that makes (PCb1) bind, where σ∗a gives the optimal opacity.

If condition (1.21) is satisfied, all participation constraints are satisfied under full

opacity. Hence, in equilibrium, full opacity is the optimum. The left-hand-side of

(1.21) is the gains the originator obtains from the primary market, measured by k

and the expected profits the originator can obtain from the derivative market which
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increases with order size s and λN . The right-hand-side of (1.21) measures adverse

selection. Intuitively, when γ is close to 1/2, there is no much ex-ante difference

between O’s and B’s beliefs. In other words, adverse selection is less of an issue,

in which case, the incentive for full opacity is strong according to Proposition 1.2.

The strong incentive is represented by the fact that (1.21) is more easily satisfied

as γ is closer to 1/2. However, if γ gets closer to zero, adverse selection becomes

more severe and (1.21) is more difficult to be satisfied and when (1.21) can not hold,

the originator has to introduce some transparency to the market. When condition

(1.21) is violated, Lemma 1.1 actually tells that the optimal opacity is given by the

binding participation constraint (PCb1). While ex-ante the originator wants σa to

be as close to 1 as possible, this may hurt him in the primary market when the good

signal (σ = 1) is received and he is holding the high type (type b), in which case,

the originator may want to drop out of the primary market. Hence, to balance the

two effects, optimal opacity, σ∗a, is the solution to the equation

k − (1− 2γ)σa
1 + σa

+
λOsλNσa

2(λS + λO) + λN(σa + 1)
= 0 (1.22)

which is the binding (PCb1). Let G(σa) ≡ k− (1−2γ)σa
1+σa

+ λOsλNσa
2(λS+λO)+λN (σa+1)

. As Figure

1.1 shows,10 when σa < σ∗a, G(σa) > G(σ∗a), so that (PCb1) is satisfied. However, by

increasing σa, the originator could obtain higher profits and thus has an incentive

to further increase opacity. When σa > σ∗a, (PCb1) does not hold and according

to Lemma 1.1, the originator has the incentive to introduce more transparency by

lowering σa. Thus, optimal opacity σ∗a satisfies G(σ∗a) = 0, that is (1.22).

10Figure 1.1 depicts only one possible shape of G(σa). We know G(σa = 0) > 0 and G(σa = 1) <
0 with (1.21) not holding. For σa ∈ (0, 1), G(σa) could be of any form with G(σa) = 0 crossing
the horizontal axis only once. The similar argument applies to Figure 1.2 in the next section.
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Figure 1.1: Optimal opacity in baseline model.

The equilibrium level of opacity/transparency is characterised by the following Pro-

position:

Proposition 1.3. The equilibrium of the overall game is characterized by

1. Full opacity (σa = σb = 1) whenever (1.21) holds.

2. Partial transparency with σa = σ∗a and σb = 1 if (1.21) does not hold.

To conclude, we provide some thoughts on the assumption σb = 1. In our setting

with σb = 1, the probability of (e = b, σ = 0) is zero and the originator gets zero

profits from derivative trading. This is equivalent to the case where (e = b, σ = 0)

may occur with positive probability but the loss in the primary market is larger than

the gains from the derivative market and hence the originator does not trade in the

primary market, which reveals his private information. In this case, σb = 1 (weakly)

dominates σb < 1. Conditional on the above case, given any level of opacity, denoted

by σa/σb = r where r is constant, σb = 1 gives O the maximum interim overall

profits. The intuition is the following. Since O’s profits from derivative trading is

decided by opacity, once the level of opacity is given, his profits from the derivative

market are fixed. In other words, any pair of σa and σb satisfying σa/σb = r gives O

the same profits in the derivative market. However, in the primary market, σb = 1 is

the optimum because it enables O to minimise adverse selection when he is holding

the high type and hence to maximise the price buyers are willing to pay. Thus, as

long as trade of the high type (type b) does not occur with the bad signal (σ = 0),

σb = 1 is the optimum.

Recall that when designing the optimal opacity, the originator balances the two

opposite effects of opacity on the primary and derivative market. This balance is
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reflected in the interior solution given by σ∗a ∈ (0, 1). For opacity lower than σ∗a,

overall, increasing opacity brings more gains from the derivative market than the

losses from the primary market. While for opacity higher than σ∗a, it is the reverse.

Hence, at σ = σ∗a, the two effects trade off.

Remark 1.1. The interior solution given by G(σa) = 0 reflects the trade-off between

the effects of opacity in the primary market and the derivative market.

1.3.6 Opacity and Liquidity

The main comparative statics of the model concerns the relationship between deriv-

ative market liquidity and opacity. Note that noise traders provide liquidity while

speculators and the originator consume liquidity. The higher λN , the more liquid

the market. Recall that λO + λS + λN = 1. Since we are interested in O’s parti-

cipation in the derivative market, whenever we change λN , we keep λO constant.

That is to say, all changes in λN are from the corresponding changes in λS. For

instance, an increase in λN is accompanied by a same amount of decrease in λS such

that λO + λS + λN = 1. We now show that in the partial transparency regime,

high liquidity induces higher opacity of security A. First of all, we show that when

opacity is fixed, the originator’s expected profits in the derivative market increase

with the order size s and probability λN .

Lemma 1.2. For σa ∈ [0, 1],

πAb1(σa) = λOs
λNσa

2(λO + λS) + λN(1 + σa)
(1.23)

increases with liquidity measured by the order size s and probability λN .

The reason for this result is easy to understand. When the originator can trade

more in the derivative market with a larger order, he definitely makes more profits.

In addition, an increase in λN enables the originator to better hide his order in the

order of the uninformed noise traders and thus he can better remain his information

advantage and make more profits in the derivative market.

Note also that liquidity of the derivative market does not affect the primary

market. Now suppose there is an increase in λN (or s). Then, according to Lemma

1.2, the originator can make more profits in the derivative market, which implies

that at the initial optimal opacity level, (PCb1) must be slack. As a result, optimal

opacity must increase to a new level at which (PCb1) binds. Intuitively, the rise

of liquidity allows O to make greater profits in the derivative market. This makes

O’s costs of adverse selection in the primary market more easily be covered by his

gains in the derivative market. Thus, as the derivative market becomes more liquid,
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O has the incentive to make the underlying asset more opaque. However, if the

equilibrium is already full opacity, a change in liquidity does not affect the optimal

opacity.

Proposition 1.4. Unless the equilibrium already involves full opacity, optimal opa-

city strictly increases as the derivative market becomes more liquid.

Another interesting question is how the optimal opacity changes with adverse

selection measured by 1
2
− γ where the smaller γ, the larger adverse selection. To

answer this, consider the left-hand-side of (PCb1). As γ decreases, at the initial

optimal opacity, (PCb1) does not hold any more. This implies that the initial

optimal opacity is too high with the now smaller γ, which will induce O not to

trade in the case (e = b, σ = 1). Thus, the originator will reduce opacity to ensure

(PCb1) is binding. Therefore, as there is more adverse selection, O’s incentive for

more transparency/less opacity becomes stronger.

Proposition 1.5. Unless the initial optimum is full opacity, optimal opacity strictly

decreases with the adverse selection in the primary market, measured by 1
2
− γ.

Finally, let us look at how the optimal opacity changes with k, the gain from

trade in the primary market. A change in k does not affect the ex-ante profits in

the derivative market. On the left-hand-side of (PCb1), the expression k − (1−2γ)σa
1+σa

measures the ex-post (after observing e = b, σ = 1) net profits the originator can

obtain from the primary market. Keeping σa constant, that is, keeping opacity

constant, a larger k makes adverse selection less important to O. In other words,

a larger k makes (PCb1) more easy to be satisfied. Thus, a larger k reduces the

negative effects of adverse selection on the originator and hence encourages more

opacity.

Proposition 1.6. Optimal opacity increases with the gains from trading in the

primary market measured by k.

1.4 Extension: Endogenous Liquidity

Opacity and liquidity are always at the center of financial studies. So far, we have

shown that liquidity in the derivative market can induce more opacity of the un-

derlying security. At the same time, does opacity also affect the liquidity of the

derivative market? If yes, what is the mechanism for these effects to happen? In

this section, we answer these questions.
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1.4.1 Rationale

In the current literature, opacity always relates to the scope of private information

acquisition. A traditional consensus in this area is that opacity encourages private

information acquisition, which increases information asymmetries and hinders trade.

However, the recent development in this field argues that high opacity may discour-

age private information acquisition, which makes traders equally uninformed and

thus facilitates trade. One reason for this finding is the high costs that may be in-

curred in information acquisition: traders may stop collecting private information if

the costs of doing so can not be compensated by the gains that they can obtain with

the private information. Based on this idea, in this section, we assume speculat-

ors’ costs of becoming informed rise with opacity and they have heterogeneous cost

functions. This is plausible in the sense that as opacity goes up, more time, skills

and resources have to be provided to collect and process information. Consequently,

as opacity increases, it will be less profitable to acquire private information. Once

speculators cannot make positive profits from information acquisition, they quit the

derivative market. This is equivalent to a reduction in λS. Hence, we assume λS is

a decreasing function of opacity

Assumption 1.1. λ′S(σa) < 0

Still, as in the exogenous case, we assume λO+λS+λN = 1 and keep λO constant.

This enables us to check how O’s profits in the derivative market change when the

liquidity in that market changes, without affecting O’s trade opportunity in the

derivative market. Hence, Assumption 1.1 implies that keeping λO constant, an

increase in opacity will result in a decrease in λS and an equal immediate increase in

λN . In other words, an increase in opacity will reduce informed trading and increase

liquidity in the derivative market. This is consistent with the anecdotal evidence in

the real world, especially some facts that have occurred during the 2007-2008 finan-

cial crisis. For instance, facing the new and complex structured financial products

such as CDOs, even the world’s top financial institutions could not fully understand

these securities. Similarly, credit rating agencies gave inappropriate ratings to these

products and financial companies such as the American International Group (AIG)

aggressively bet against the default of these products, which however turned out to

be wrong. From these facts, we see that high opacity does affect traders’ abilities

of getting informed. Traders such as AIG actually traded as uninformed traders

providing liquidity to the CDS market before the crisis. This is similar to our set-

ting that speculators, when stay uninformed due to high opacity, reduce informed

trading and increase the liquidity in the derivative market. A microfoundation of

Assumption 1.1 is provided in Appendix A.9.
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From the perspective of the market maker, overall liquidity in the derivative mar-

ket is provided by noise traders while consumed by informed speculators and the

originator. As shown above, when λS is exogenous, an increase in opacity enlarges

the bid-ask spread. In contrast, with endogenous λS, we see mixed effects. Suppose

first that λS, λO and λN are kept constant. An increase in opacity will increase the

bid-ask spread. However, if we allow λS to correspondingly decrease with opacity,

this reduces the probability of informed trading and narrows the bid-ask spread. We

call the former the direct effect and the latter the indirect effect of opacity on bid-

ask spread. Overall, the bid-ask spread increases when the direct effect outweighs

the indirect effect, it shrinks when the indirect effect outweighs the direct effect and

remains constant if the two effects cancel out. Hence, Assumption 1.1 allows us to

endogenize liquidity as a function of opacity.

1.4.2 The right amount of opacity

The two benchmarks we have described in Propositions 1.1 and 1.2 also apply here.

In this section, we start by looking at the interior optimal amount of opacity. Replace

λS in Lemma 1.1 with λS(σa). The optimal opacity, denoted by σ∗∗a , is the solution

to the equation

k − (1− 2γ)σa
1 + σa

+ λOs
λNσa

2(λS(σa) + λO) + λN(σa + 1)
= 0 (1.24)

which is the binding participation constraint (PCb1) with endogenous λS(σa). Let

G(σa, λS(σa)) denote the the left-hand-side of (1.24). As the graph below shows,

optimal opacity is given by σa = σ∗∗a , σb = 1.

Remark 1.2. From Lemma 1.1, optimal opacity σ∗∗a is given by the largest root of

(1.24).
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Figure 1.2: Optimal opacity with endogenous λS(σa).
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In the endogenous case, expected profits of O in the state (e = b, σ = 1) are

πAb1(σa) = λOs
λNσa

2(λS(σa) + λO) + λN(σa + 1)
(1.25)

All the relevant results we have obtained in section 1.3.6 also apply here. In par-

ticular, in the absence of full opacity, a more liquid market induces more opacity.

In this case, the liquid market not only comes from the increase in noise traders’

trading, but from the decrease in the trading of the informed speculators, which can

be seen more clearly in the next section.

1.4.3 Comparison between σ∗a and σ∗∗a

While we have shown that qualitatively, with both the exogenous and endogenous

λS, optimal opacity increases with liquidity, quantitatively, the magnitude of these

effects are different. In particular, optimal opacity in the endogenous case is more

responsive to liquidity compared to the optimal opacity in the exogenous case. In

this section, we investigate this difference.

We want to analyse how the comparative statics of a change in λN differ in the

two cases. Let σa and σ̂a denote the optimal opacity in the exogenous case and

endogenous case, respectively. Assume that, initially, σa = σ0
a and σ̂a = σ̂0

a. Recall

that optimal opacity in the exogenous case and endogenous case is the solution to

(1.22) and (1.24), respectively. Hence, σ0
a and σ̂0

a must satisfy

k − (1− 2γ)σ0
a

1 + σ0
a

+
λOsλNσ

0
a

2(λS + λO) + λN(σ0
a + 1)

= 0 (1.26)

and

k − (1− 2γ)σ̂0
a

1 + σ̂0
a

+
λOsλN σ̂

0
a

2(λS(σ̂0
a) + λO) + λN(σ̂0

a + 1)
= 0 (1.27)

Suppose in (1.26) and (1.27), λN = λ0
N and λS = λS(σ̂0

a) = λ0
S where λ0

N +λ0
S+λO =

1. Then the left-hand-side of (1.26) and (1.27) are the same and σ0
a = σ̂0

a. Suppose

now λ0
N increases to λ1

N , keeping λO constant. Since λN + λS + λO = 1, in the

exogenous case, the increase in λN results in an equal decrease in λS, in which

case, the market becomes more liquid and the optimal opacity adjusts to a higher

level (Proposition 1.4). Let σ1
a denote the new level of opacity in the exogenous

case, so that σ1
a > σ0

a. Changes in liquidity and opacity in the exogenous case are

one-shot. However, the same change in λN in the endogenous case generates more

complicated effects. Suppose first that λS(σa) does not change with opacity. Then,

as in the exogenous case, the increase in λN leads λS(σa) to decrease by the same

amount, which generates an equal increase in opacity as in the exogenous case and
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the new level of opacity is also σ1
a > σ̂0

a. Now, we allow λS(σa) to decrease with

opacity (Assumption 1.1). Then, at the new and higher level of opacity σ1
a, λS(σa)

must shrink further, which increases λN more and the market becomes more liquid.

This pushes opacity to increase again and results in another decrease in λS and

increase in λN . This self-reinforcing process between liquidity and opacity continues

until new opacity satisfies (1.24). Let σ̂1
a denote the new optimal opacity in the

endogenous case and σ̂1
a > σ1

a.

From the above discussion, we observe two effects of liquidity on opacity. One

is the one-shot direct effect. The other is a self-reinforcing indirect effect brought

caused by the interaction between opacity and information acquisition. As men-

tioned above, an increase in liquidity first induces more opacity (direct effect). The

higher opacity reduces the trading of informed speculators by decreasing λS(σa)

(λ′S(σa) < 0) and hence increases market liquidity further. This generates a new

round of increase in opacity, decrease in λS(σa) and increase in market liquidity.

This dynamic process ends when new opacity satisfies (1.24). Through the feedback

loop between opacity and liquidity, any change in liquidity or opacity will be amp-

lified. In the exogenous case, only the direct effect appears while in the endogenous

case, both the direct and indirect effects appear and the overall effect is greater than

the direct effect. Therefore, opacity in the endogenous case is more responsive than

that in the exogenous case, that is, for a same change in liquidity, opacity in the

endogenous case changes more than that in the exogenous case.

Proposition 1.7. Opacity in the endogenous case is more responsive to changes in

liquidity than opacity in the exogenous case.

1.5 Implications and Conclusion

Our paper first suggests that derivative markets do play a role in securities design.

More specifically, they affect the originator’s incentive to design opaque securities.

Our results also imply that the observed simultaneous success of the markets for

opaque structured securities and credit derivatives preceding to the recent crisis was

not an coincidence. We explain it as the outcome of the interaction between opacity

and liquidity via a feedback loop. With this feedback loop, any change in either

opacity or liquidity will lead the two to reinforce each other. The effects of the

initial change will be accordingly amplified.

Many commentators point out that high opacity hindered the discovery of risks

in financial markets and hence contributed to the 2007-2008 financial crisis. Our

paper shows that originators’ ability to speculate in the derivative markets could

fuel opacity. Thus, policies restricting the ability of investment banks to take large

positions on the derivative markets are expected to help reduce opacity in financial
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markets. For instance, the Dodd-Frank Act issued after the crisis restricts banks’

proprietary trading. This, based on the results of our paper, would reduce origin-

ators’ incentive to design opaque securities and hence help increase transparency in

financial markets.

Credit derivatives are altering the financial landscape, especially by influencing the

incentives of economic agents (Augustin et al., 2016; Hu and Black, 2008; Campello

and Matta, 2013; Danis and Gamba, 2018; Kim, 2013). For instance, Bolton and

Hehmke (2010) and Kim (2013) present the incentive effects of CDS on lender-

borrower relationship. Our paper enriches this incentive literature in the sense that

we show how credit derivative markets could change originators’ incentive in security

design.

Future work could address welfare and regulatory aspects of credit derivatives. In

particular, the costs of opacity in the current version of the model are ultimately

borne by noise traders. In this respect, it may be important to understand whether

uninformed trading is motivated by genuine liquidity needs or by underlying cog-

nitive biases. This would inform a welfare analysis and policy prescriptions. It

would also be interesting to study the effects of credit derivatives on securitisation

in general. For instance, how the presence of the markets for credit derivatives affect

originators’ decisions of putting correlated or uncorrelated assets into the asset pool

in the process of securitisation.
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Chapter 2

Statistical Arbitrage and Risk

Contagion

Abstract

Contagions among financial intermediaries are believed to play a significant role in

market stability while contagions among asset markets receive less attention. This

paper fills this gap by investigating the role of statistical arbitrage, a widely used

trading strategy among financial institutions, in building networks among stock mar-

kets and in stock market stability. We find that statistical arbitrage can stabilise

markets in normal periods, however, may also act as a mechanism for risk contagion

when shocks occur. More interestingly, we find a double-edged role of statistical

arbitrageurs in risk contagion: while they provide the routes for risk contagion, the

effects are limited and disappear exponentially. This is because statistical arbit-

rageurs in markets unshocked trade against the shock by arbitraging mispricings.
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2.1 Introduction

The 6 May 2010 witnessed a large scale collapse in the US stock market, which is

known as the Flash Crash. The crash first occurred in the market for futures on the

S&P 500 index. It soon spread to other index products and individual stocks (Men-

kveld and Yueshen, 2017). This event triggered a new round of extensive discussions

regarding liquidity fluctuations and comovements, especially the transmission of li-

quidity dry-ups among asset markets. In recent decades, liquidity comovements

happen more frequently. According to Kamara et al.(2008), liquidity comovements

among large-cap stocks have increased greatly since 1960s. In terms of the reasons

for this phenomenon, one stream of this literature attributes to common components

in the liquidity across assets. For instance, changes in macroeconomic conditions can

affect liquidity in multiple markets simultaneously and hence result in liquidity co-

movements (Anshuman and Viswanathan, 2005; Coughenour and Saad, 2004; Kyle

and Xiong, 2001). However, more and more evidence is now pointing to another

possible explanation, which is the propagation of liquidity dry-ups in one market to

other markets (Cespa and Foucault, 2014; Goldstein and Yang, 2014; Menkveld and

Yueshen, 2017), as what has happened in the Flash Crash. This possibility comes

from the phenomenon that during the last two decades asset markets have become

more connected than ever. The rapid development in information technology and

computation capacity have greatly enlarged the scope of trading. Hence, we observe

the generation of new trading techniques and strategies such as index trading and

algorithmic trading. These techniques and strategies involve wide range of finan-

cial assets, which to some extent contributes to the close connections among asset

markets. Based on this, our paper investigates the role of statistical arbitrage, a

widely used algorithmic trading strategy by investment banks and hedge funds, in

establishing networks among asset markets and in the contagion of liquidity crashes.

Statistical arbitrage is a long/short market neutral strategy. It involves the ex-

ploitation of short-term deviations from a long-run equilibrium between assets. The

simplest form of statistical arbitrage involves only two assets and is known as “pairs

trading”. In the case of pairs trading, when a deviation occurs, statistical arbit-

rageurs take long position in the asset underperformed and short position in the

asset overperformed, in a way such that the resulting portfolio is market neutral

and with the expectation that prices will revert back to the long-run equilibrium

(Avellaneda and Lee, 2010; Caldeira and Moura, 2013). For a liquidity shock oc-

curring in one market, statistical arbitrageurs adjust their demand in the shocked

market and also in the other market to restore market neutrality, through which

the shock spreads to the other market. Statistical arbitrage usually involves broadly

diversified portfolios of securities, among which networks can be established. As
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the shock spread to the other market in pairs trading, a shock in the network can

transmit to the whole system.

Generally, our paper lies in the literature on financial networks. However, a large

majority in this literature study the networks among banks (Georg, 2013; Acemoglu,

Ozdaglar and Tahbaz-Salehi, 2015; Ladley, 2013). Our paper instead investigates

the networks among stock markets. Especially, we investigate the role of a modern

trading strategy – statistical arbitrage – in networks. Because of its high returns and

low risks,1 statistical arbitrage has become one of the strategies financial institutions

most heavily rely on. A mainstream of the literature on statistical arbitrage focuses

on the exploitation of arbitrage opportunities with econometric models (Bondarenko,

2015; Caldeira and Moura, 2013; Alexander and Dimitriu, 2005). Another stream

is concerned about the test of market efficiency with the strategy (Hogan, 2004).

However, its market-linking effects and implications on the market stability have

received less attention. Our paper fills this gap.

We consider a numerical model where stock markets are populated by fundament-

alists, chartists and statistical arbitrageurs. Fundamentalists and chartists trade in

one market while statistical arbitrageurs are allowed to cross trade, which creates

a network: two markets are linked if statistical arbitrageurs trade the two assets.

All three groups of traders simultaneously submit their orders and equilibrium price

is achieved when demand equals supply. For statistical arbitrageurs, if they adjust

their demand in one market, to keep their portfolio market neutral, they have to

adjust their demand for other stocks in the portfolio, which affects the equilibrium

price in each market involved. This provides the routes for the contagion of shocks.

The results of our paper show that in normal times, statistical arbitrageurs help

stabilise markets. However, when shocks occur, the network built by them can act

as a mechanism for the transmission of shocks, resulting in systematic decrease in

market prices. This result is consistent with the current literature in that finan-

cial networks play a double-edged role in market stability (Ladley, 2013; Georg,

2013). In addition, we find statistical arbitrageurs persistently make positive trad-

ing profits, which echoes with the practice that statistical arbitrage generates huge

profits for financial institutions in their daily business.2 Intuitively, the nature of the

strategy is mispricing arbitrage. Hence, it helps drive prices back to the long-term

fundamental levels, which makes prices less volatile. However, the existence of the

network exposes the whole system to unexpected shocks, making the system fragile.

The rest of this paper is organised as follows. Sections 2.2 is the literature our

paper most relates to. Section 2.3 describes the model of this paper. Section 2.4

1In a study of Caldeira and Moura (2013), statistical arbitrage exhibits excess returns of 16.38%
per year and Sharpe Ratio of 1.38.

2For more details, please see https://www.quantinsti.com/blog/statistical-arbitrage/ for ex-
ample.

32



summarises our results. Section 2.5 concludes this paper.

2.2 Literature Review

Our paper relates to the long existing literature on liquidity comovements and the

rapidly growing literature on the Flash Crash. The Flash Crash brought people’s at-

tention back to liquidity comovements. In terms of the reasons for liquidity comove-

ments, a stream in the literature focuses on common components among the liquidity

of different assets (Chordia and Subrahmanyam, 2000; Hasbrouck and Seppi, 2001;

Huberman and Halka, 2001; Coughenour and Saad, 2004). For instance, Brunner-

meier and Pedersen (2009) argue that tight funding constraints may make financial

intermediaries reluctant to provide liquidity especially when big shocks occur, which

can lead to systematic illiquidity.

However, the observed spread of liquidity dry-ups during the Flash Crash3 has

triggered hot discussions about another possible explanation for liquidity comove-

ments, that is, the contagion of illiquidity among markets. As for the channel for the

propagation, Cespa and Foucault (2014) and Goldstein and Yang (2014) give the-

oretical possibilities. Cespa and Foucault (2014) find a feedback loop from liquidity

shocks. When dealers abstract information from the price of other markets, a liquid-

ity shock in one market may make that price less informative. This increases the

costs of providing liquidity and hence less liquidity will be provided, which lowers

the informativeness of more prices and further reduces the provision of liquidity.

This argument is confirmed by Borkovec et al. (2010) who find that before the

Flash Crash the price discovery in the market for Exchange Traded Funds (ETF)

failed dramatically and the cause was an extreme deteroration in liquidity.

Arbitrage is talked widely for its role in the Flash Crash (Menkveld and Yueshen,

2017; Ben-David et al., 2012; Goldstein and Yang, 2014). In Menkveld and Yueshen

(2017), cross-market arbitrage can transfer trading pressures among markets. How-

ever, before the Flash Crash, cross arbitrageurs failed to do so in the futures mar-

ket due to the shortfalls in liquidity provision, which contributes to the big selling

pressure and large price drop in the futures market. In Ben-David et al. (2012),

arbitrage of ETF is believed to facilitate the transmission of liquidity shocks from

the futures market to the stock market during the Flash Crash. Arbitrage of ETF

is against both the futures and the underlying portfolio. A liquidity shock in the

futures market first lead arbitrageurs to buy the futures and sell the ETF, resulting

in a decrease in the ETF price, which then propagates to the stock market through

3As mentioned in the previous section, the Flash Crash is the result of a crash spreading from
the market for futures on the S&P 500 index to the markets for other index products and individual
stocks. For more details, please see Menkveld and Yueshen (2017) and Ben-David et al. (2012) for
example.
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the hedging of arbitrageurs in the stock market.

Our paper is in the spirit of Ben-David et al. (2012) but differs from theirs in the

following points. Arbitrageurs in their paper follow the law of one price. Ideally,

the fair price of ETF is the same with the price of the underlying index and they

arbitrage the price difference between ETF and the underlying index. Arbitrageurs

in our paper exploit the deviations from a long-term equilibrium between assets and

more importantly, they follow a market neutral strategy. In addition, arbitrageurs in

their paper trade assets of different classes – futures, ETF and the underlying index.

Arbitrageurs in our paper trade only stocks and we consider networks among stocks

and show a clearer idea about the propagation of shocks. In terms of methodology,

they collect data from the Flash Crash to empirically test their hypotheses about the

role of ETF arbitrage in the Flash Crash. With a numerical model, we investigate

the role of statistical arbitrage in risk contagion in a more general setting.

Our paper also relates to the literature on statistical arbitrage, which currently

focuses on the profit exploitation with econometric models (Bondarenko, 2015;

Caldeira and Moura, 2013; Alexander and Dimitriu, 2005) and the test of mar-

ket efficiency (Hogan, 2004). For example, Alexander and Dimitriu (2005) find

that cointegration-optimal strategy performs better than the tracking error vari-

ance minimisation strategy for all the statistical arbitrage strategies in portfolio

optimisation. Hogan et al. (2004) test the existence of statistical arbitrage, which

provides evidence against the hypothesis of market efficiency. Our paper, however,

looks at another aspect of this strategy by looking into its role in linking asset mar-

kets and in risk contagion. This role of statistical arbitrage widely exists but is often

ignored.

Finally, our paper contributes to the literature on financial networks. Financial

networks attract much more attention after the 2007-2008 financial crisis because

the liquidity dry-ups in the interbank market before the crisis is believed to be one

of the reasons for the crisis. The mainstream in this literature studies how networks

affect financial stability (Ladley, 2013; Georg, 2013; Allen and Gale, 2000). For

example, Allend and Gale (2000) find that relative to incomplete networks, complete

networks make financial system more stable. Ladley (2013) and Georg (2013) discuss

the double-edged role of networks in financial stability. However, most of the study

in this area is based on the networks among banks. Our paper, instead, focuses

on the networks among asset markets, especially among stock markets where the

network is established by the cross trading of statistical arbitrageurs. So our paper

in particular contributes to the literature on the networks among asset markets.
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2.3 Model

2.3.1 Assets

We assume there are N risky assets and a risk-free asset. Risk-free asset pays a

constant net rate of return r ∈ (0, 1) (hence gross rate of return is R = 1 + r).

Asset i ∈ {1, 2, ..., N} pays regular dividends yi,t. In each market for the N risky

assets, three types of traders – fundamentalists, chartists and statistical arbitrageurs

– trade the risk-free asset and the risky asset. In addition, we have a fairly priced

market index M following a geometric random walk process.

dMt

Mt

= (r + µm)dt+ σmdBt (2.1)

where µm is the market premium; σm is the market volatility; Bt is a standard

Brownian motion. The price of the market index M is public information. Let

Fi,t denote the fundamental value of asset i after dividends at time t. According

to the Capital Asset Pricing Model (CAPM), we assume Fi,t satisfies the following

geometric Brownian motion

dFi,t
Fi,t

= βi[(r + µm)dt+ σmdBt] + σidVi,t (2.2)

The dividend process of asset i follows IID.

yi,t = yi + εi,t (2.3)

The noise term {εi,t} is IID stochastic process with zero mean.

2.3.2 Traders

As mentioned above, in each risky asset market, there are three types of traders:

fundamentalists (F), chartists (C) and statistical arbitrageurs (A). Chartists ignore

the public information about the market index and hence are uninformed of the fun-

damental value of the asset. Chartists are also uninformed of the dividend process.

They trade based on past prices and dividends. Fundamentalists observe the market

index and are able to infer the fundamental value. They are also informed of the

dividend process. They trade based on the fundamental value of each asset. Both

fundamentalists and chartists trade in one market. Statistical arbitrageurs share

the same information and beliefs with fundamentalists but they cross trade among

markets with market neutral strategy. In each market, the three types of traders

trade the risk-free asset and the risky asset. All trader are myopic mean variance
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maximisers and have identical risk aversion measured by a. We start from analysing

the demand of fundamentalists and chartists who trade only one asset and then the

demand of statistical arbitrageurs.

2.3.2.1 Fundamentalists and Chartists

Suppose for a fundamentalist or a chartist, his demand for a risky asset at time t is

Qt and his wealth, denoted by Wt, evolves as

Wt+1 = RWt + (St+1 + yt+1 −RSt)Qt (2.4)

where St is the price of the risky asset traded at time t; yt+1 is the dividend at

time t + 1 of the risky asset traded at time t; R = 1 + r is the gross risk-free rate

of return; (St+1 + yt+1 − RSt) is the excess return relative to the risk-free return

at time t + 1 of the risky asset traded at time t. At time t, the trader has his

expectation about the excess return of the risky asset in period t + 1, denoted by

Et(St+1 + yt+1 − RSt) and his expectation about the variance of the excess return,

denoted by Vt(St+1 + yt+1 − RSt). We assume Vt(St+1 + yt+1 − RSt) = θ2 for all

types of traders. Since all traders are myopic mean variance maximisers who share

the same risk aversion a, this trader will choose Qt that solves

max
Qt

EtWt+1 −
a

2
Vt(Wt+1) (2.5)

The optimal demand of this trader at time t is

Qt =
Et(St+1 + yt+1 −RSt)

aθ2
(2.6)

2.3.2.2 Statistical Arbitrageurs

Statistical arbitrage is a long/short market neutral trading strategy. We assume

statistical arbitrageurs (SAs) do pairs trading among different markets. That is,

statistical arbitrageurs taking positions in one market must take opposite positions

in another market such that his portfolio is market neutral. Through the hedging

of SAs, any two markets involved in a pairs trading are linked together. Hence, if

a SA trades assets i and j, the two markets are in the link ij. Let Qij
i,t and Qij

j,t

respectively denote this trader’s demand for asset i and asset j in this link. Then

his wealth evolves as

Wt+1 = WtR +Qij
i,t[Si,t+1 + yi,t+1 − Si,tR] +Qij

j,t[Sj,t+1 + yj,t+1 − Sj,tR] (2.7)
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Since statistical arbitrage is a market-neutral strategy, the portfolio beta is zero,

that is

Qij
i,tSi,tβi +Qij

j,tSj,tβj = 0 (2.8)

For simplicity, let R̃i,t denote the excess return of asset i.

R̃i,t = Si,t+1 + yi,t+1 − Si,tR (2.9)

For a SA taking positions in markets i and j, his demand Qij
i,t and Qij

j,t solves

max
Qij

i,t,Q
ij
j,t

{EtWt+1 −
a

2
Vt(Wt+1)} (2.10)

where

EtWt+1 = WtR +Qij
i,tEtR̃i,t +Qij

j,tEtR̃j,t (2.11)

Vt(Wt+1) = (Qij
i,t)

2θ2
i + 2Qij

i,tQ
ij
j,tcov(R̃i, R̃j) + (Qij

j,t)
2θ2
j (2.12)

subject to

Qij
i,tSi,tβi +Qij

j,tSj,tβj = 0 (2.13)

In expression (2.12), cov(R̃i, R̃j) is the covariance between excess returns of asset i

and asset j and is assumed to be constant over time. Solving the problem given by

(2.10)-(2.13), we have

Qij
i,t =

(
Sj,tβj
Si,tβi

)2EtR̃i,t − Sj,tβj
Si,tβi

EtR̃j,t

a(
Sj,tβj
Si,tβi

)2θ2
i + aθ2

j − 2a
Sj,tβj
Si,tβi

cov(R̃i, R̃j)
(2.14)

Qij
j,t =

−Sj,tβj
Si,tβi

EtR̃i,t + EtR̃j,t

a(
Sj,tβj
Si,tβi

)2θ2
i + aθ2

j − 2a
Sj,tβj
Si,tβi

cov(R̃i, R̃j)
(2.15)

2.3.2.3 Beliefs

From the above analysis, we know the demand of fundamentalists and chartists and

that of SAs. Each type’s expectation about the excess return, Eht(St+1 + yt+1 −
StR), decides their demand for the asset. In terms of the beliefs of traders, we

consider the model by Jackson and Ladley (2016). Fundamentalists trade based on
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the deviation of the price from the fundamental value. They purchase the asset

when it is undervalued and sell the asset when it is overvalued compared to the

fundamental value. The further the price deviates from the fundamental value, the

larger fundamentalists’ positions in that asset. Their one-period-ahead expectation

about the price follows

EFt[Si,t+1] = Si,t + γi(Fi,t − Si,t) (2.16)

where γi ∈ (0, 1) measures the speed at which price converts back to the fundamental

value in market i. From (2.3), we know

EFt[yi,t+1] = yi (2.17)

SAs have the same information and beliefs with fundamentalists, that is

EAt[Si,t+1] = Si,t + γi(Fi,t − Si,t);EAt[yi,t+1] = yi (2.18)

For chartists, their one-period-ahead expectation follows

ECt[Si,t+1] = (1 + r +
It · SRannual · σdaily√

252
)Si,t (2.19)

where It is the value of the trading signal ∈ {−1, 0, 1}; SRannual is an annualized

Sharpe ratio from daily returns; σdaily is the volatility of daily returns. One difficulty

in the literature on technical trading is to map the trading signals ‘buy’, ‘sell’ and

‘hold’ to the quantity to be traded. According to Jackson and Ladley (2016), with

an acceptable risk-adjusted profitability measure, technique trading rules can be

mapped into price expectations. Based on this, the authors provide the expression

in (2.19) as a possible solution to the difficulty. Sharpe ratio, as a widely used

measure of profitability in the finance industry, enters (2.19) as the risk-adjusted

profitability measure, which combines with the trading signal It to decide chartists’

expectation about the future price. As for the trading signal, we assume

It =

{ +1 if St−1 > max(St−2, St−3, ..., St−n);

0 if St−1 = max(St−2, St−3, ..., St−n);

−1 if St−1 < max(St−2, St−3, ..., St−n)

(2.20)

That is to say, we assume the trading signal at time t is given by a comparison

between the most recently realised price (St−1) and the maximum price during the

last n days. This is reasonable in the sense that chartists heavily rely on past price

trends to make the current decision. In addition, we assume chartists’ expectation
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about dividends follows

ECt[
yi,t+1

Si,t
] = g

yt
Si,t−1

+ (1− g)ECt−1[
yi,t
Si,t−1

] (2.21)

where g is the weight chartists put on the most recent dividend yield.

2.3.2.4 Equilibrium Price

In each asset market, equilibrium price clears the market by equating demand and

supply. Let nh denote the proportion of type h ∈ {C,F,A} trader in a risky asset

market and
∑
nh = 1. We assume outside supply is 0. Given SAs trading in markets

i and j, in equilibrium, price S∗i,t solves

niFQ
F
i,t + niCQ

C
i,t + niAQ

ij
i,t = 0; (2.22)

and price S∗j,t solves

njFQ
F
j,t + njCQ

C
j,t + njAQ

ij
j,t = 0; (2.23)

From (2.14) and (2.15), we see that the cross-trading of SAs in markets i and j links

the two markets and the price in each market depends on the price of the other

market. In equilibrium, prices in the two markets are determined simultaneously by

solving the system of equations (2.22) and (2.23).

2.3.3 Network

Without SAs, the N asset markets are independent of each other. However, with

SAs, links between markets are established by the cross trading of SAs. Hence,

in our model, a network consists of N nodes (N markets) and edges representing

the cross trading of SAs, through which a shock in one market can spread to other

markets.

In each market, we assume the population of fundamentalists and chartists is fixed

at P = PF + PC . Also, in each possible link between markets, the amount of SAs

is given by PA. Each node links to others randomly. More formally, we assume a

uniform Poisson random graph in which each possible link in the graph is present

with probability p. Let ij denote a link between markets i and j.

ij =

1, if i and j are connected.

0, if i and j are disconnected.
(2.24)

For i = j, we assume ij = 0. Since in our network, each link is undirected, ij = 1
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and ji = 1 implies the same link between nodes i and j. Once nodes i and j are

connected, SAs take long position in one market and short position in the other

market. We see from (2.14) and (2.15) that if Qij
i,t > 0 (Qij

i,t < 0), then Qij
j,t < 0

(Qij
j,t > 0), implying that SAs long (short) asset i and short (long) asset j.

The amount of traders in each market depends on the markets it links to. Let

Ti denote the total population in market i and let κi denote the index of markets

linked to market i. Then,

Ti = P +
∑
κi

P iκi
A (2.25)

where P iκi
A is the amount of SAs in link Liκi . Hence

niF =
P i
F

Ti
;niC =

P i
C

Ti
;niκiA =

P iκi
A

Ti
(2.26)

The equilibrium condition in market i is

niFQ
F
i,t + niCQ

C
i,t +

∑
κi

niκiA Qiκi
i,t = 0 (2.27)

Hence, in each trading period t, equilibrium prices [S∗1,t, S
∗
2,t, ..., S

∗
N,t] solve the fol-

lowing system of equations.

n1
FQ

F
1,t + n1

CQ
C
1,t +

∑
κ1

n1κ1
A Q1κ1

1,t = 0 (2.28)

n2
FQ

F
2,t + n2

CQ
C
2,t +

∑
κ2

n2κ2
A Q2κ2

2,t = 0 (2.29)

.......... (2.30)

nNFQ
F
N,t + nNCQ

C
N,t +

∑
κN

nNκNA QNκN
N,t = 0

2.4 Results

2.4.1 Parametrization

In this section, we summarise the parametrization in our model. The time step

in our model is assumed to be one trading day, ∆t = 1/264. Net risk free rate is

r = 0.01 (gross rate of Return R = 1 + r = 1.01). Networks are established among

20 markets (N = 20). The market premium is µm = 0.05 and market volatility is

σm = 0.35. For each asset, we assume βi ∈ [0.5 1.5]. Speed of reversion γ is assumed

to be within [1% 2%]. Mean dividend of each asset is yi ∈ [0.8 2.0]. Risk aversion

a is assumed to be 1. Standard deviation of excess return θ is within [0.25 1].
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Table 2.1: Parameter Values

Population size P 100
Amount of arbitrageurs PA [10 30]

Net interest rate r 0.01
Mean dividend yi Uniformly draw from [0.8 2.0]

Dividend noise term ε U(-1,1)
Market premium µm 0.05
Market volatility σm 0.35

Systemic risk β Uniformly draw from [0.5 1.5]
Speed of reversion γ Uniformly draw from [1% 2%]

Risk aversion a 1
Variance of expected return θ Uniformly draw from [0.25 1]

Probability of a link p 0.4
Weight on recent dividend yield g 0.5
Daily volatility of returns σdaily 0.01

Annualised Sharpe ratio SRannual 0.5

Each pair of assets has correlation coefficient ρij ∈ [-1 1]. Given θ2
i and ρij, we can

calculate the covariance between the assets in a pair. The weight chartists put on

the most recent dividend yield is g = 0.5. Any link between two nodes is present

with probability p = 0.4. The population of fundamentalists and chartists is fixed

at P = 100. The amount of SAs in each link is PA ∈ [10 30]. Parameter values are

summarised in Table 2.1.

In our analysis, we investigate how the presence of SAs affect the market perform-

ance. Hence, our model without SAs acts as a benchmark, which is our baseline

model. In the following sections, we look into the effects of SAs on market stability,

traders’ wealth and risk contagion.

2.4.2 Market Stability

In this section, we show the effects of statistical arbitrage on market stability. There

are long-standing arguments regarding the proportion of traders using technical

trading rules in financial markets. For instance, Hoffmann and Shefrin (2014) and

Lewellen et al. (1980) have similar argument that technical traders account for

around 30 percent of the trading population. A survey by Menkhoff and Taylor

(2007) concludes that the proportion of technical traders ranges between 30% and

70%. Based on the literature and the real situation in our setting, we consider

two compositions of traders in our baseline model: 60% fundamentalists and 40%

chartists; 80% fundamentalists and 20% chartists.4

4In multiple tests, we get more accurate solutions of the equilibrium prices in all markets when
there are more fundamentalists in markets. The two compositions of the trading population in our
model is an outcome of the balance between the compositions in real financial markets and the
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Table 2.2: Moments of Asset Prices

Fundamentalists:Chartists 60:40 Fundamentalists:Chartists 80:20
Baseline Value SD Value SD
Volatility 0.09703 (0.00176) 0.03510 (0.00057)
Skewness 0.37005 (0.04065) 0.12824 (0.03843)
Kurtosis 2.61341 (0.07351) 2.43181 (0.05207)

With SAs Value SD Value SD
Volatility 0.03369 (0.00120) 0.01568 (0.00037)
Skewness 0.10274 (0.08532) 0.03443 (0.05208)
Kurtosis 2.76343 (0.13046) 2.79116 (0.09527)

Improvement 65.27% (0.01240) 55.32% (0.01091)

Note: Fundamentalists:Chartists is the proportion of fundamentalists to chartists in the
initial population without SAs. There are 100 time steps in each model run. Statistics
of the markets are averaged over the 20 markets and 200 model runs. Standard devi-
ations across simulations are in parenthesis. All values are significantly different at 95%
confidence level.

Table 2.2 summarises the results examining market stability. The top half of the

table summarises market statistics of the baseline model while the bottom half is

the market statistics with SAs.

Results show that the volatility of market price with 60% fundamentalists is much

higher than that with 80% fundamentalists, either with or without SAs, implying

that markets become more volatile as there are more chartists. This result is con-

sistent with the literature on the role of heterogeneous beliefs on market stability

(DeLong et al., 1991, Lux, 1998, Chiarella, 1992, Vigfusson, 1997). A consensus

in this literature is that fundamentalists stabilise while chartists destabilise mar-

kets. For instance, Chiarella et al. (2009) find that increasing the degree of usage

of technique trading rules in trading strategies reduces market stability. The in-

tuition behind this result is that fundamentalists arbitrage mispricings and drive

prices back to the fundamentals while chartists add noises, which deviates prices

from fundamentals. The more chartists, the more noises and the less stable the

market price.

More importantly and interestingly, we find that SAs help stabilise markets. Price

volatilities decrease greatly when SAs trade in markets. Recall that SAs are taking

long/short strategy to trade assets when short-term deviations from the long-term

level occur. They long the underperformed assets and short the overperformed

assets, keeping their portfolio market neutral. The nature of the trading strategy is

also mispricing arbitrage. Hence, when SAs trade, market prices can better trace the

fundamental values and therefore become less volatile. As a result, they help stabilise

markets. Furthermore, the stabilising effects from SAs are more significant when

accuracy of the solutions.
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there are more chartists. The improvement in market stability with 40% chartists

is about 10% higher than that with 20% chartists. Intuitively, more chartists drive

prices further away from fundamentals, which creates more scope for SAs to trade

and thus their market-stabilising role is more significant.

While markets with SAs tend to be more stable, these markets are more prone

to extreme volatilities by giving higher kurtosis values. This is due to the potential

that shocks may spread to other markets through the network established by SAs.

Extreme volatilities occur when unexpected shocks occur. The network provides

a mechanism for the transmission of shocks. Hence, an unexpected shock in one

market may result in systematic turbulence. The markets as a whole are exposed

to extreme events when SAs trade. More details about this result are provided in

section 2.4.4.

2.4.3 Wealth Effect

In this section, we investigate the wealth change of traders when SAs are present.

The literature regarding the wealth of fundamentalists and chartists is vast. Fried-

man (1953) argues that irrational traders will eventally be driven out of the market

by rational traders who know better the fundamental and make positive profits.

However, DeLong et al. (1991) find that noise traders can significantly increase the

volatility of price, which discourages rational traders to bet against noise traders.

This may result in rational traders not being able to take over the market. As a

result, noise traders can actually make positive profits and persistently trade in the

market. In our test, wealth of fundamentalists and chartists is summarised in Table

2.3 and that of SAs in Table 2.4.

From the two tables, we obtain the following findings in traders’ wealth. First,

in the baseline model fundamentalists make positive profits while chartists make

negative profits. However, when SAs are present, the result may be different. In the

case of 20% chartists, fundamentalists make negative profits (-25.69) while chartists

make positive profits (27.42), which is contrary to the result in the baseline model.

SAs always earn positive wealth. Also, wealth of fundamentalists and SAs increases

while wealth of chartists decreases as there are more chartists in the markets. In-

tuitively, more chartists may lead prices to deviate more from fundamental values,

leaving greater arbitrage scope for fundamentalists and SAs, which results in more

wealth transfer from chartists to fundamentalists and SAs. However, the extent

of the above-mentioned change in wealth tend to reduce when SAs trade. For in-

stance, as Table 2.3 shows, with SAs, when chartists increase from 20% to 40%, we

can still observe increase in the wealth of fundamentalists and decrease in the wealth

of chartists, however, compared with the baseline model without SAs, the extent of
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Table 2.3: Wealth of Fundamentalists and Chartists

Fundamentalists:Chartists 60:40 Fundamentalists:Chartists 80:20
Baseline F C F C

Mean 1419.04 -2128.56 67.19 -268.74
SD 74.44 111.66 9.98 39.94

Skewness 0.04022 -0.04022 -0.14317 0.14317
With SAs F C F C

Mean 285.24 -656.08 -25.92 28.75
SD 56.48 86.43 8.98 36.78

Skewness 0.49578 -0.37370 0.18623 -0.08113

Note: Fundamentalists:Chartists is the proportion of fundamentalists to chartists in the initial
population without statistical arbitrageurs. There are 100 time steps in each model run.
Statistics of the markets are averaged over the 20 markets and 200 model runs. All values are
significantly different at 95% confidence level.

change has reduced significantly.

The reason behind these findings is that after SAs trade, the magnitude of wealth

transfer decreases and SAs compete with fundamentalists in reaping wealth. First,

since the trading strategies of SAs help drive prices back to fundamentals, the pres-

ence of SAs enables informed traders (fundamentalists and SAs) to better dominate

the markets, in which case, market prices will be closer to fundamental values and

there is less scope for arbitrage, which results in less wealth transfer from chartists

to informed traders. This explains why after SAs trade, we observe smaller change

in fundamentalists’ and chartists’ wealth as the amount of chartists increases. In

addition, SAs compete with fundamentalists in collecting wealth. While both funda-

mentalists and SAs arbitrage mispricings, a significant difference exists. Fundament-

alists trade in a single market and what matters for them is the absolute mispricings.

SAs are doing pairs trading where the relative mispricings between the two assets

are more important to them. For example, suppose two assets are both undervalued,

but asset 1 is more undervalued than asset 2, in which case, fundamentalists will

take long positions in both assets while SAs will take long position in asset 1 and

short position in asset 2, keeping market neutrality of the portfolio. Because of this,

fundamentalists and SAs can take the same and opposite positions in one market.

In both possibilities, total wealth is divided between fundamentalists and SAs and

in the second possibility, SAs may even reduce the dominance of fundamentalists

in the market, in which case fundamentalists can make losses. It explains the neg-

ative wealth of fundamentalists and positive wealth of chartists in Table 2.3 when

SAs are present (-25.92 for fundamentalists and 28.75 for chartists). This finding

supports the argument by DeLong et at. (1991) that noise traders (chartists) may

not always make losses but could make gains from trading. We observe this only

with 20% chartists but not with 40% chartists. This is because when chartists are
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Table 2.4: Wealth of Statistical Arbitrageurs

Fundamentalists:Chartists 60:40 Fundamentalists:Chartists 80:20
Mean 52.00 8.91
SD 2.94 0.68

Skewness 0.18220 0.10527

Note: Fundamentalists:Chartists is the proportion of fundamentalists to chartists
in the initial population without statistical arbitrageurs. There are 100 time steps
in each model run. Statistics of the markets are averaged over the 20 markets and
200 model runs. All values are significantly different at 95% confidence level.

in small amount, arbitrage scope is limited and fundamentalists are more likely to

make losses. SAs’ caring about the relative mispricings between assets guarantees

them non-negative profits from trading. Hence, their wealth is always positive. The

positive wealth of SAs is consistent with real life in that financial institutions make

huge profits with statistical arbitrage and rely heavily on it.

Another interesting finding in Table 2.3 involves the skewness of wealth distribu-

tion. In the baseline model, the skewness of wealth distribution of fundamentalists

and chartists are symmetric, while in the model with SAs, this symmetry disappears.

In the baseline model, the losses of chartists all become the gains of fundamentalists.

Hence, we observe the inverse values of skewness of fundamentalists’ and chartists’

wealth distribution. However, when SAs trade, as mentioned before, total wealth is

divided between fundamentalists and SAs and the symmetry disappears.

2.4.4 Market Resilience

In section 2.4.2, we mention that because of the network established by SAs, mar-

kets are more prone to extreme volatilities which occur when shocks arrive. In this

section, we provide more detailed explanation and evidence to this result by in-

vestigating the contagion of shocks through the network. Unless otherwise stated,

the data we collect to do statistical analysis in this section is from four models: the

baseline model (Model 1), the baseline model with shocks (Model 2), the model with

SAs but no shocks (Model 3) and the model with SAs and shocks (Model 4). A

shock is described as a sudden and sharp decrease in the price of an asset. Shock size

is between 0 and 1 which measures how greatly the market is shocked. For example,

if the shock size is 20%, then the price of the shocked market will decrease by 20%

from the level without the shock. We randomly shock a market and measure the

effects of the shock on other markets. Percentage price change (PPC) is employed

to measure the effects of a shock. In particular, if we shock a market at time step t,
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Table 2.5: Risk Contagion

Fundamentalists:Chartists
60:40 80:20

Average Least Most Average Least Most
Model 1

PPC 0.569% -0.648% 0.635% 0.097% 0.115% 0.211%
SD 0.02204 0.08207 0.08813 0.00798 0.03937 0.05036

Model 2
PPC -1.456% -0.648% 0.635% -1.903% 0.115% 0.211%
SD 0.02184 0.08207 0.08813 0.00796 0.03937 0.05036

Change in PPC 3.56 0 0 20.62 0 0
Model 3

PPC 0.098% -0.309% -0.00032% 0.036% 0.115% 0.0087%
SD 0.02195 0.02778 0.01981 0.00819 0.01969 0.01775

Model 4
PPC -4.960% -2.775% -3.081% -4.450% -0.667% -4.906%
SD 0.02130 0.02737 0.01976 0.00848 0.01951 0.01742

Change in PPC 51.42 7.98 9644.07 125.20 6.80 563.30

Note: Fundamentalists:Chartists is the proportion of fundamentalists to chartists in the
baseline model. Size of shock is 40%. There are 100 time steps in each model run.
Statistics of the markets are averaged over 200 model runs. All values are significantly
different at 95% confidence level. The first “Change in PPC” describes the change in
PPC from Model 1 to Model 2 while the second “Change in PPC” describes the change
in PPC from Model 3 to Model 4.

PPC in each model can be expressed as

PPC =
St − St−1

St−1

× 100% (2.31)

where St is the market price at time step t. PPC > 0 (PPC < 0) implies an

increase (decrease) in price. The greater the magnitude of PPC in a market, the

greater the price change and the more significant the effects of the shock on that

market. PPCs of the four models are compared to see the effects of a shock and

are summarised in Table 2.5. For illustrative purpose, in each model, we show the

average PPCs and the PPCs of the least and most significantly affected markets. A

general finding is that an unexpected shock can result in large scale of significant

decrease in the price of other markets, which is consistent with our expectation that

shocks can spread through the trading activities of SAs.

First, comparing Model 1 and Model 3, we see that the magnitude of PPCs in

markets with SAs are much lower than those in markets without SAs, implying that

prices change less when SAs trade. This provides evidence for our previous finding

that SAs help drive prices back to fundamentals and stabilise market prices. Now,

let us compare Model 1 and Model 2, Model 3 and Model 4 as two pairs to see
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the role of SAs in risk contagion. We observe that when a shock occurs, in the

baseline model (Model 1 and Model 2), on average, the markets as a whole has a

decrease in price. For instance, on average, prices in markets with 40% chartists

change from increasing by 0.569% in Model 1 to decreasing by 1.456% in Model 2,

a more than 3.5 times of change. But PPCs in other markets without the shock

remain the same (changes in PPC are 0), implying that the shock does not affect the

prices in other markets. In the model with SAs (Model 3 and Model 4), we observe

a systematic price crash, both the average price and price in individual markets

decreasing significantly. For example, in markets with 40% chartists, on average,

prices change from increasing by 0.098% in Model 3 to decreasing by 4.960% in

Model 4. In the case of 20% chartists, the price of the least affected market changes

from increasing by 0.115% to decreasing by 0.667% and that of the most affected

market changes from increasing by 0.0087% to decreasing by 4.906%. It indicates a

significant and large scale decrease in the prices in all other markets. All changes in

price in the second pair is much greater than those in the first pair.

From the comparison of the two pairs, we observe the role of SAs in transmitting

shocks. In the baseline model, individual markets are independent of each other

since SAs are not trading. Hence, shocks occurring in one market will not spread to

other markets whose prices therefore remain unchanged. However, when SAs trade,

they link markets together, creating a network among markets, which provides the

route for the contagion of shocks. The property of market neutrality of statistical

arbitrage plays the key role in risk contagion. As mentioned before, when a market

is shocked, SAs in that market will adjust their demand for that asset and also

the demand for the other asset in their portfolio to keep their portfolio market

neutral. The change in demand affects the equilibrium prices in the two markets.

SAs trading the two assets and other assets will respond by adjusting their demand,

affecting other prices, which will further affect SAs trading these assets and more

other assets etc. Through this way, shocks spread to the whole system. This result

confirms the contribution of SAs in risk contagion and echoes with our discussions in

section 2.4.2, especially the greater kurtosis values when SAs trade. While SAs make

market prices more stable, they make the whole system sensitive to extreme events

such as unexpected shocks. When a shock occurs in one market, it may propagate

to other markets through the trading of SAs. In extreme cases, it can lead to a

large scale collapse in market prices, just as the case in the Flash Crash. The risk

contagion role of SAs, together with their market-stabilising role, is consistent with

the finding in network literature in that in normal periods, networks help stabilise

markets, however, they may also act as a mechanism for risk contagion when shocks

occur (Acemoglu and Tahbaz-Salehi, 2015; Haldane, 2009; Georg, 2013; Gai and

Kapadia, 2010). In our paper, the network is established by SAs.
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2.4.5 Propagation of Shocks

While from section 2.4.4, we show that shocks can propagate through the network

established by SAs, we still do not know the pattern of the propagation. For sim-

plicity, we consider a straight-line network with 20 markets where the 20 markets

link one by one through the trading of SAs. A shock is still described as a sudden

and sharp decrease in the price of a market. As in the baseline model shocks do not

spread, we only consider shocks when SAs trade. More generally, we consider three

models: the baseline model with no shocks where the 20 markets are independent

(Model 1), the model with SAs but no shocks (Model 2) and the model with SAs

and shocks (Model 3). Again, percentage price change (PPC) is used to measure

the effects of shocks. We shock the terminal market (market 20) and compare the

price change in other markets in all the three models. Figure 2.1 and Figure 2.2

show our findings.

Comparing the two graphs in Figure 2.2, we can see that when there are more

fundamentalists, the PPC curves of Model 1 and Model 2 track each other better,

implying less volatile market prices. Also, in each graph, we observe that the mag-

nitudes of PPCs in Model 2 are smaller than those in Model 1, the PPC curve of

Model 2 below that of Model 1. This is more obvious in the top graph with 40%

chartists. In both findings, the increase in the amount of fundamentalists and the

presence of SAs increase the dominance of informed traders in markets and prices

hence better track fundamental values and become more stable.

Also, Figure 2.1 shows that when a shock occurs, markets close to the shocked

market are more affected than markets less close to the shocked markets. The effects

of shocks on other markets decrease exponentially and disappear after some point. In

our case, as Figure 2.2 shows, in market 15, we can not observe significant differences

between the PPC curves of Model 2 and Model 3 with different shock sizes and the

effects of shocks almost eliminate after market 15. Hence, our findings show that

while the trading activities of SAs may act as a mechanism for risk contagion, the

effects are limited.

The limited effects may come from a double-edged role of SAs in risk contagion.

On the one hand, trading activities of SAs link markets together, providing routes

for the contagion of shocks. On the other hand, since SAs arbitrage mispricings,

SAs in markets not shocked will trade in the opposite direction of the effects of the

shock, which helps stop the contagion of the shock. For example, suppose the shock

in market 20 results in a decrease in the price of market 19. SAs trading in markets

18 and 19 will expect the price in market 19 to increase. Hence, they will either

increase their long position or decrease their short position or change from short to

long position in market 19, all of which help counteract the effects of the shock on
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Figure 2.1: Propagation of Shocks
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Note: The two graphs illustrate the overall trends of PPCs in Models 1, 2 and 3. Four sizes of shock
are considered: 10%, 20%, 30% and 40%. The top graph is for the markets with 40% chartists.
The bottom graph is for the markets with 20% chartists.
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Figure 2.2: Details of Shock Propagation
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graph is for the markets with 20% chartists.
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market 19. The similar mispricing arbitrage happening in market 19 also happens

in market 18 and the markets ahead, which to some extent prevents the contagion

of the shock and limits the shock effects. In summary, we can say that while SAs

establish the networks for risk contagion, they also play a role in absorbing the

effects of shocks.

The shock-absorbing role of arbitrageurs also appear in Menkveld and Yueshen

(2017) where cross-arbitrageurs act as a buffer for the spread of shocks. The authors

attribute the Flash Crash to the fact that cross-arbitrageurs were not able to trade

enough due to the liquidity shortfalls before the event, which prevents them to trans-

fer selling pressures to other markets, implying the positive role of cross-arbitrageurs

in absorbing shocks.

2.5 Conclusion

The spread of the liquidity dry-ups in the Flash Crash has attracted much attention.

Our paper provides a new possible mechanism for the contagion of illiquidity and

hence a new explanation for the Flash Crash, which is the trading of statistical

arbitrageurs. Statistical arbitrage is a trading strategy that heavily rely on advanced

computation capacity. As the rapid development in computer technology over the

last two decades, it has become one of the strategies most used by investment banks

and hedge funds in their daily business. Given the dominant positions of these

financial institutions in the finance world, the influential affects of this strategy on

financial markets are huge and are worth to investigate.

In this paper, we consider the role of statistical arbitrage in linking asset markets

and investigate the effects of statistical arbitrageurs’ trading activities on market

performance and risk contagion. We find that statistical arbitrageurs reduce market

volatilities in normal periods while at the same time make the whole system more

sensitive to shocks as their trading activities may act as the mechanism for the

spread of shocks. However, in the investigation of the patter of the spread, we find

the contagion effects are limited and disappear exponentially among markets. We

attribute it to the arbitrage nature of the strategy, which means that after a shock,

statistical arbitrageurs in markets not shocked will trade against the shock which to

some extent prevents the spread of the shock to larger scale.

Statistical arbitrage is one representative example of the modern trading strategies

that are the result of the rapid development in computer technology. Over the last

two decades, these strategies have become the dominant strategies among financial

institutions. During the same period, financial markets have become more linked

to each other and more frequent price crashes have been observed. Our paper, by

linking computational trading strategies with risk contagion, provides some insights
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into the overall effects of the advances in trading strategies on financial markets.

While advanced trading strategies do make trading more efficient, at the same time,

they may make financial system fragile. The positive sides of these strategies are

always praised, however, the negative sides are always ignored but should attract

more attention. This echoes with the recent discussion regarding the role of high

frequency trading on market stability.
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Chapter 3

The Role of Heterogeneous Beliefs

in Trading Skill Acquisition

Abstract

Trading skills bring higher returns in practice and receive much attention in the

existing literature on financial markets. However, the process of acquiring trading

skills draws less attention. This paper investigates the effects of heterogeneous

beliefs on the acquisition of trading skills and the resulting market performance. We

consider a computational model where markets are composed of fundamentalists and

chartists with the former developing pricing skills from trading and the latter being

effectively noise traders. Learning of fundamentalists is achieved through natural

selection. We find that an increase in the amount of chartists promotes learning but

also reduces the accuracy of the learning outcome. Furthermore, markets with more

chartists tend to be more volatile but are also more resilient to shocks. Intuitively,

the evolving process of fundamentalists’ acquiring skills adds uncertainties to the

market and makes the market price more volatile, which deters learning. However,

chartists, by taking past prices into their decision-making, are able to stabilise price

and facilitate learning.
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3.1 Introduction

Trading skills are important in identifying mis-priced assets and are able to bring ab-

normal returns (Coval et al., 2005; Puckett and Yan, 2011; Cremers and Petajisto,

2009). However, in the current finance theory literature, they are often ignored.

In traditional finance theory, traders are assumed to be completely rational in the

sense that they have all the skills needed to do financial analysis. However, as some

behavioural economics studies point out, in real life, people are bounded rational

(Cremers and Petajisto, 2009; Selten, 1990; Conlisk, 1996; Eliaz and Spiegler, 2006).

They are bounded in the ability to understand information and they are bounded

in the skills of doing complex calculations etc, even if with complete information.

The fact that top financial institutions made huge losses during the 2007-2008 fin-

ancial crisis by failing to understand the then popular structured financial securities

provides evidence for bounded rationality in real life.1

Numerous pieces of evidence in the academic work show that people are bounded

in trading skills (Locke et al., 1999; Chang and Loche, 1996; Leaver and Reader,

2016). Also, multiple studies prove that by accumulating trading experience, people

are able to improve and acquire trading skills (Coates and Page, 2009; Nicolosi et al.,

2009). To capture the process of trading skill acquisition in financial markets, in this

paper, we start by considering a scenario with complete information. Traders differ

in trading skills and acquire trading skills through evolutionary learning by natural

selection. This guarantees the survival of superior trading strategies. In particular,

we investigate how the presence of noise traders affects the learning outcome and

the resulting market performance. Trading skill in our paper refers to the ability

to accurately price a financial asset, with complete information. For instance, a

trader knowing some asset pricing model can accurately identify mispricings and

make correct trading decisions and hence is more skilled.

The basic setting of our paper, as described above, distinguishes our paper from

other literature on learning, especially the longstanding literature on learning by in-

formation procession (Akerlof, 1970; Kyle, 1985; Glosten and Milgrom, 1985; Dang

et al., 2015; Grossman and Stiglitz, 1980). In this literature, information intrans-

parency provides agents the incentive to acquire private information which results

in information asymmetry in which case Bayesian decision theory is the mainstay

for rational decision making (Asparouhova et al., 2009; Morellec and Schurhoff,

2011; Sciubba, 2005). This literature assumes traders are born with the skills and

1Before the 2007-2008 financial crisis, people failed to understand the complex structure of the
then popular structured securities Collateralised Debt Obligations (CDOs) (Carlin et al., 2013;
Arora et al., 2009; Brunnermeier and Oehmke, 2009). Financial institutions used wrong models
to evaluate these securities and made wrong decisions as a result. From this, we see that facing
new financial products, even the world’s top financial professionals need to learn the skills to do
correct analysis.

54



knowledge to do Bayesian updating given new information. Hence, the focus of this

literature is information acquisition rather than skill. However, this literature has

been challenged by a growing literature arguing that agents do imperfect learning in

the sense that they may not follow the Bayes’ rule to update their beliefs (Kuhnen,

2015; Ellison and Fudenberg, 1993; Binmore, 2008; Spiegler, 2006; DellaVigna and

Malmendier, 2004). For example, Spiegler (2006) argues that firms tend to complic-

ate consumers’ understanding of actual values of products, making use of their better

understanding of markets. Consumers then find it difficult to grasp the structure

and thus resort to simplifying heuristics. DellaVigna and Malmendier (2004) argue

that rational firms may design contracts that exploit consumers’ misperceptions of

their time-inconsistent preferences, in which case consumers get welfare loss. Going

beyond Bayesian rationality, Ellison and Fudenberg (1993, 1995) make progress to

consider the evolutionary learning of bounded rational agents. For instance, in El-

lison and Fudenberg (1993), naive agents observe the experience of others which is

then used in their own future decision making. Following this simple learning rule,

efficient long-run social states can be realised. Our learning mechanism is consistent

with theirs and this feature also distinguishes our paper from the literature on learn-

ing by experience reflection (Daudelin, 1996; Lundgren et al., 2017). This literature

emphasizes the importance of reflection in transforming experience into learning,

which is different from the mechanism of learning in our paper. In addition, this

literature focuses on the use of reflection as a learning mechanism to train managers

in firms, which is also different from our aim in this paper mentioned above.

We consider a centralised market populated by fundamentalists and chartists.

Fundamentalists are ignorant of trading skills and learn to acquire them from trad-

ing. Chartists do not learn and rely on past price trends to make trading decisions

and therefore are effectively noise traders. Each trader has a pricing function de-

termining his quote on a financial asset. Learning of fundamentalists is achieved

by the evolving of their pricing functions. A fundamentalist is more skilled if his

quote after learning is closer to the fundamental value of the asset. The expectation

of our paper is as follows. As fundamentalists learning, the evolving of their pri-

cing functions adds uncertainties to the market price. However, chartists, by taking

past prices into consideration in their pricing functions, can stabilise market price.

Learning is more doable in a market with stable price. Hence, an increase in the

proportion of chartists will increase the proportion of fundamentalists holding skills.

Skilled traders increase market resilience (Ladley et al., 2015). So, in expectation,

a market with more chartists relative to fundamentalists tend to be more resilient.

However, by adding noises to the market price, chartists tend to mislead fundament-

alists, reducing the accuracy of the learning outcome of fundamentalists. The more

chartists relative to fundamentalists, the greater the misleading effects. Thus, when
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there are more chartists, the market price is less able to reflect the fundamental

value of the asset and it is therefore expected to be more volatile.

Starting with the work by DeLong et al. (1990), heterogeneous beliefs have been

documented in numerous settings (DeLong et al., 1991; Vigfusson, 1997; Panchenko,

2013). A consensus in this literature is that fundamentalists stabilise markets while

chartists destabilise markets (Brocka and Hommes, 1998; Chiarella et al., 2009;

Bauer and Herz, 2004; Lux, 1998). These papers assume fundamentalists are ra-

tional while chartists are irrational and add additional risk to the markets. We

consider this issue from a different angle by assuming fundamentalists do not have

the skills to accurately price financial assets and learn to do so. Then we invest-

igate the effects of noise traders (chartists) in the learning process. An important

innovation of our paper is that we consider learning in the context of heterogeneous

beliefs and investigate the resulting learning outcome.2

The model in our paper extends that of Ladley et al. (2015). In their paper,

the authors consider how market fragmentation affects traders’ learning and the

associated market performance. Our paper differs from theirs in the sense that we

consider a centralised market and investigate the effects of heterogeneous beliefs on

the learning of traders.

This paper is organised as follows. Section 3.2 is literature review. Section 3.3

describes the model. Section 3.4 discusses data collection and performance meas-

urements. Section 3.5 is a regression analysis. The last section concludes the paper.

3.2 Literature review

Trading skills bring high returns in practice but are often ignored in the finance

theory literature. It is widely documented that skills enable a trader to persistently

outperform the markets (Oliven and Rietz, 2004; Barras, 2010; Fama and French,

2010; Makarov and Plantin, 2011). For instance, Barber et al. (2014) finds that

among the most successful day traders in the Taiwan Stock Exchange, a small group

of skilled day traders earn predictably high returns. Similarly, Grinblatt et al. (2011)

show that traders with high IQ, a measure of cognitive skill, tend to participate more

in the stock market and earn higher Sharp ratios than those with low IQ. Learning

plays a significant role in traders’ acquisition of trading skills. As pointed out by Lo

et al. (2005), given proper instruction and practice, traders of different personality

types can perform trading functions equally well. Nicolosi et al. (2009) document

that traders learn from previous trading experience and adjust their trading beha-

2There are papers by LeBaron who also studies the effects of heterogeneous beliefs on learn-
ing(see LeBaron (2001a), LeBaron (2001b) and LeBaron (2002) for examples). However, in his pa-
pers, heterogeneous beliefs refer to the different memory lengths traders use in the decision making
while in our paper, heterogeneous beliefs refer to traders’ being fundamentalists or chartists.
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viours. This helps them to obtain better investment performance. Thus, traders

will participate in unprofitable trades at the beginning of their trades as long as

the short-term loss can be compensated after they obtain the skills and ability to

submit profitable orders (Pastor and Veronesi (2009)). Imitation is one of the main

forms of learning (Shleifer and Summers, 1990; Lieberman and Asana, 2006). Lit-

erature shows that by imitating more successful traders, less successful traders can

earn higher returns. In Grinblatt et al. (2012), high IQ traders have superior stock

picking skills and imitation of their trades generates abnormal returns. In Coval et

al. (2005), strategies long in firms purchased by previously successful traders and

short in firms purchased by previously unsuccessful traders earn abnormal returns

of 5 basis points per day.

Most of the above literature emphasizes the outcome of being skilled at individual

level, that is, being skilled helps individuals make better investment decisions. Our

paper analyses not only the performance of skilled individuals, but also the effects

of skilled traders on the performance of the markets as a whole. More importantly,

with genetic programming, our paper considers the details of the learning process,

in particular, we investigate the role of noise traders in the process of learning and

the resulting outcome.

Our paper also contributes to the small but growing literature studying the role

of heterogeneous beliefs on the learning and acquisition of trading skills (LeBaron,

2001a; LeBaron, 2001b; LeBaron, 2002). For instance, LeBaron (2002) investigates

the effects of short-memory traders on long-memory traders’ evolutionarily learning

of an optimal investment strategy. He finds that the existence of short-memory

traders hinders the learning of long-memory traders and thus it is difficult for long-

memory traders to take over the market, which leads to persistence in market volat-

ility.

Our paper is in the same spirit as of his but differs from his in the following points.

First, the heterogeneous beliefs in his paper come from the past prices traders use

to make the current decision. In his paper, all traders are memory traders who

have different memory length. However, in our paper, heterogeneous beliefs come

from the trading strategies traders use: fundamentalist or chartist. Chartists in our

paper correspond to the memory traders in his paper. Second, in his paper, all

memory traders learn while in our paper only fundamentalists learn with memory

traders (chartists) disturbing the learning process. Finally, in his paper, traders

seek to solve an optimisation problem through learning while fundamentalists in

our paper do not solve optimisation problem but seek to accurately price assets

through learning.

Finally, our paper relates to the literature of trading technologies. The rapid

development in trading technologies in recent decades has made the financial world

57



more accessible for the public. Hence, various types of traders have entered into

the financial markets, especially some individual traders who just rely on past price

trends to speculate (Zhang and Zhang, 2015; Peri et al., 2014). This background

makes our paper important in the sense that we study how this increase in noise

traders in financial markets would affect the functioning of the markets. Our paper

shows that an increase in noise traders can encourage learning but affect the learning

accuracy by misleading prices.

3.3 Model

The model constructed in this paper follows the framework of Ladley et al. (2015).

A centralised market is populated by two types of traders: fundamentalists and

chartists, each in the amount of If and Ic, respectively, where I = If + Ic is the

total population in the market and is assumed to be fixed. To better illustrate the

role of chartists in learning, we consider different compositions of fundamentalists

and chartists in a market. These agents trade options during a sequence of trading

rounds (denoted by T = 1, 2, ..., T ). In each trading round T , traders trade a

randomly generated option CT . Traders daily hedge their positions in the option

until it expires at T+1, after which, a new trading round starts and the same traders

trade a new randomly generated option.

To collect data, we assume I = 100 and 5 possible values of If ∈ {100, 90, 80, 70, 60}.
Note that a decrease in fundamentalists is equivalent to an equal increase in chartists

and hence correspondingly, Ic ∈ {0, 10, 20, 30, 40}, giving 5 population compositions

in total. When all traders are fundamentalists (If = I = 100, Ic = 0), without

noise from chartists, learning in the market is expected to be the most efficient in

the sense that transaction price best describes the fundamental value compared with

other population compositions. However, if there are 40 chartists (If = 60, Ic = 40),

the misleading effects from chartists on learning are expected to be the maximum

and transaction price deviates the most from the fundamental value.3

Market. All options in our model are 3-month European call options.4 Thus,

each trading round lasts for 66 days (from the first to the last trading day, we have

tn = n ∗∆t with n = 0, 1, ..., 65 and ∆t = 1/264). The price of the underlying asset

follows a Geometric Brownian Motion. Let S(t) denote the price of the underlying

3Tests show that when chartists are more than fundamentalists, influences from chartists are so
huge that the market can not be normally functioning, which makes the study of fundamentalists’
learning pointless. Thus, we keep Ic smaller than If to guarantee the normal functioning of the
market.

4For each year, we assume there are 264 trading days and the 3-month duration of each option
accounts for a quarter of the annual trading days, that is 66 days.
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asset at time t, then

dS(t) = µS(t)dt+ σS(t)dW (t) (3.1)

where µ and σ are respectively the annual drift and annual volatility of the asset.

Without loss of generality, we normalise the initial price of the underlying asset in

each trading round to 100, that is S(0) = 100. In addition, a money market exists

for traders to borrow and lend at the same annual rate r. An option is defined

by (K, σ, r) where K is the strike price of the option. We use C to denote a set

of options including all options determined by K ∈ [80, 120], σ ∈ [0.1, 0.3] and

r ∈ [0.01, 0.06]. So,

C := [80, 120]× [0.1, 0.3]× [0.01, 0.06] (3.2)

Trade of options occurs in the following way. In the beginning of any trading round

T , a random draw from C gives the option for that trading round CT . Then, traders

simultaneously post their quotes at which they are indifferent between buying and

selling this option. The median of their quotes is the transaction price, denoted

by PT .5 Traders quoting higher than the transaction price have higher valuation

and hence will buy the option while traders quoting lower will thus sell the option.

Traders quoting the transaction price will buy or sell the option with probability

1/2. Each trader is allowed to trade only one unit of the option and hence at the

transaction price, market clears. On each trading day, traders participate in the

underlying asset market and the money market to delta hedge their position in the

option. In particular, traders buying (selling) one unit of the call option need to sell

(buy) the underlying asset in a way such that the value of their portfolio does not

change with the price of the underlying asset.

Pricing Function. Each trader has a pricing function which determines his quote.

Unlike the traditional finance literature assuming fundamentalists have the know-

ledge and ability to accurately identify mispricings, fundamentalists in our model

are assumed to have to learn to do this. More specifically, each fundamentalist is

randomly assigned a pricing function at the start of our model. Through trading,

they learn and improve their pricing functions. More details about the pricing func-

tions of fundamentalists can be seen when we talk about learning, as can be seen

later.

Chartists are traders who do not care about the fundamental value of the options

but rely only on past price trends to decide their pricing quotes. In our model,

chartists are effectively noise traders. They base their decisions on a fictitious time

5In the following context, transaction price and market price may be used interchangeably.
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series of past prices. Since each option is traded only once, the realised past prices

constitute a random time series which is observed by chartists and decides their

quotes. This series lies within the pricing bounds of the set of considered options.

Using this series leads to chartists adding noise to the market. Fictitious time series

are very often used in the finance literature (Bonanno, Valenti and Spagnolo, 2007a

& 2007b). For instance, Bonanno, Valenti and Spagnolo argue that fundamental

traders, speculators and noise traders make the financial market a complex system.

To model the stock price closer to the real financial markets with normal activity and

extreme days, they use a random walk to replace the geometric Brownian motion,

in which case, the random walk represents a fictitious “Brownian particle” moving.

Their papers provide rationale for the chartists in our setting using fictitious time

series to decide their quotes.

Suppose chartist j has a memory length of Lj. Let Vj,T denote this chartist’s

quote on trading round T . According to Chiarella and He (2003), Vj,T is a function

of past transaction prices: Vj,T = H(
−→
P T−1), where

−→
P T−1 = (PT−1, PT−2, ..., PT−Lj

)

is a vector of transaction prices on the past Lj trading rounds. Chartists differ first

in their memory length and also in the extent to which they respond to past price

movements, which is the extrapolation rate. Chiarella and He (2004) assume Vj,T

follows Geometric Decay Process (GDP), that is,

Vj,T = H(
−→
P T−1) = exp(gj

Lj∑
k=1

bjω
kPT−k) (3.3)

where bj = 1/
∑Lj

k=1 ω
k, ω ∈ [0, 1] measures the decay rate of memory; bjω

k with

k = 1, 2, ..., Lj is the weight chartist j puts on the transaction price of trading round

T − k in deciding his quote on round T , measuring the influence of that price on

the current decision and
∑Lj

k=1 bjω
k = 1; gj ∈ [g, 0) ∪ (0, g] is the extrapolation rate

of chartist j, which measures his response to past price movements. If gj > 0, then

chartist j is a trend follower as he believes the observed price trend will continue.

If gj < 0, chartist j is a contrarian as he believes the future price will move in

the opposite direction to the current price trend. For gj > 0 (gj < 0), as gj rises

(declines), chartist j gets more aggressive in their expectation extrapolating from

past prices.

Gains and losses. All traders have zero initial wealth. In trading round T , after

trading the option, on each trading day, traders delta hedge their position in the

option via trading the underlying asset and the money market. A trader selling

(buying) one unit of the option in that trading round needs to buy (sell) ∆tn units
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of the underlying asset on day tn where

∆tn = Φ(
log(S(tn)/K) + (r + σ2/2)(t66 − tn)

σ
√
t66 − tn

) (3.4)

according to Black-Scholes delta hedge. Φ is the standard normal cumulative dis-

tribution function; t66 − tn is time to maturity on day tn. On trading day tn+1, the

accumulated net cash flow of a seller from delta hedging is

v(tn+1) = er∆t[v(tn)−∆tnS(tn)] + ∆tnS(tn+1) (3.5)

with v(0) = 0. On the expiration of the option, that is on day t65, the payoff of a

seller, denoted by Πs, is

Πs = PT e
rt65 + er∆t[v(t64)−∆t64S(t64)] + ∆t64K (3.6)

if the option is in the money and

Πs = PT e
rt65 + er∆t[v(t64)−∆t64S(t64)] + ∆t64S(t65) (3.7)

if the option is out of the money. The payoff of a buyer Πb is equal to −Πs because

payments net to zero.

Learning. Learning occurs only among fundamentalists. Before any trade oc-

curs, every fundamentalist is randomly assigned a pricing function, which decides

his quote for any option drawn from set C in each trading round. Based on the

above analysis of the payoffs, fundamentalists get some wealth from each trading

round and we allow wealth to accumulate as trading round. After a trading round,

fundamentalist can review the performance of their pricing function relative to oth-

ers in terms of the accumulated wealth their pricing function generates. The more

accumulated wealth a pricing function generates, the better the pricing function is

judged to be.6 Each fundamentalist, with equal probability, will be chosen to replace

his pricing function with a better one. A fundamentalist’s pricing function remains

the same until a better one replaces it. The learning we consider in this model is

the skill acquisition of fundamentalists to price an asset more accurately through

the accumulation of trading experience, rather than the learning of new information

as is more common in the literature. Hence, in our model, what matters is how the

parameters of options enter into pricing functions rather than the update of para-

meter values. Learning is realised through competition and natural selection. The

6Success of a pricing function is measured by the accumulated wealth it generates compared
with the other pricing functions. We say a pricing function is better than the other if it generates
more accumulated wealth than the other does.
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Table 3.1: Parameter Values

Population size I = 100
Proportion of chartists ρf ∈ [0, 0.1, 0.2, 0.3, 0.4]
Maximum tree depth 10

Tournament size 4 traders
Crossover probability χ1 0.5
Mutation probability χ2 0.05
3-month Discount rate τ 0.01

Initial stock spot price S(0) 100
Stock price drift µ 0.06

Option strike price K Uniformly drawn from [80,120]
Stock price volatility σ Uniformly drawn from [0.1, 0.3]

Interest rate r Uniformly drawn from [0.01, 0.06]
Extrapolation rate gj Uniformly drawn from [−1, 0) ∪ (0, 1]

Penalty for quote<0 or >40 5

way learning happens in this model is in the spirit of Lensberg and Schenk-Hoppe

(2007) and Ladley et al. (2015) in the form of genetic programming. Each pricing

function is randomly generated as a tree structure. Tree structures are composed of

operators and terminators. The set of operators is {+,−,×, /, exp, sqrt, log}.7 The

set of terminators consists of a subset of parameters of options {S(tn), K, σ, r, t65}
and a subset of constants X = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. Operators

and terminators are randomly drawn to construct a tree structure with depth no

more than 10, which gives the pricing function of a fundamentalist. The evaluation

of a tree structure gives the quote. Replacement of pricing functions happens with

the following algorithm:

1. Tournament: After each trading round, we randomly choose four traders and

rank their accumulated wealth.

2. Reproduction: We replace the pricing functions of the two traders at the

bottom of the rank with the pricing functions of the two at the top of the

rank.

3. Crossover: With probability χ1, we exchange two randomly selected subtrees

between the two top programmes.

4. Mutation: With probability χ2, a randomly selected operator or terminator

is replaced by a new random operator or terminator.

The change of pricing functions does not affect traders’ wealth. Without any dis-

count, traders’ accumulated wealth might increase to infinity as more trading rounds

7In the genetic programming, we use binary trees. Thus, every operator is binary
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taking place. This would deter the survival of better pricing functions, especially

when some fundamentalists holding bad pricing functions are lucky enough to earn

higher accumulated wealth. To avoid this, or, to make sure the survival of better

pricing functions, we discount each trader’s wealth by the 3-month discount rate

τ . In addition, to facilitate learning, we impose a punishment on fundamentalists

quoting lower than 0 or higher than 40. 0 and 40 are the two bounds of the value of

the options considered in set C. More specifically, we penalise fundamentalists by

subtracting 5 from their accumulated wealth if they quote outside the interval [0 40].

A summary of the values of parameters is in Table 3.1. We allow one tournament

to take place after each trading round.

3.4 Data and performance measurement

In this section, we describe how we collect data and the measurements we use to test

our hypotheses. As mentioned before, we consider a market with 5 possible popu-

lation compositions of fundamentalists and chartists. For each population composi-

tion, we do 30 model runs with 30 different seeds for random number generation. At

the end of each model run, the pricing function of each fundamentalist is recorded

and applied to a set of options, Ĉ. This set contains 27 options and is defined by

all combinations of the following parameters.

K = 95, 100, 105;σ = 0.15, 0.2, 0.25; r = 0.02, 0.035, 0.05 (3.8)

Data is collected from the evaluation of fundamentalists’ pricing functions with the

above 27 options and is used to do statistical analysis. Performance measures in

our paper are similar to those in Ladley et al. (2015), which include trading skills,

trader wealth and market performance.

Skill measures how accurately a fundamentalist is able to price an option. In this

paper, we choose the Black-Scholes (BS) value of each option in Ĉ as a benchmark.

In Ladley et al. (2015) the market mid quote is used as the benchmark rather than

the BS price. The authors mention that BS price is biased downwards because

traders can only do imperfect hedging and hence as a benchmark, BS price is not

as good as the market mid quote. In our paper, we use BS price as the benchmark

for two reasons. First, our market is a centralised market where the BS price is less

biased compared with that in fragmented markets.8 Also, quotes of fundamentalists

might be misled due to the impacts of chartists, which makes the bias of BS price

small compared to the bias of fundamentalists’ quotes. For fundamentalist i, we

apply his pricing function to each of the 27 options and count the options that his

8See Ladley et al. (2015) for more details
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quote lies within a 10 percent interval around the BS price of that option. The

number ki ∈ {0, 1, ..., 27} gives a measure of trader i’s skill and
∑If

i=1 ki/If gives the

overall trading skill that fundamentalists acquire as a group in the market (we call

it market skill for simplicity). We observe one value of market skill for each of the 5

population compositions. In 30 model runs, we get 30*5=150 observations in total.

Trader pricing error measures the derivation of a fundamentalist’s quote from

the BS price of an option. For each option in Ĉ, we calculate the absolute difference

between fundamentalist i’s quote and the BS price of that option. The resulting

value TPEi gives the individual trader pricing error and
∑If

i=1 TPEi/If is the aver-

age trader pricing error. Hence, in the market with 5 population compositions, 27

options and 30 model runs, we get 27*5*30=4050 observations in total.

Market pricing error measures the distance between transaction price and the

BS price. For each option in Ĉ, we compute the absolute difference between the

transaction price and the BS price. Hence, we get 27 observations in the market

with each of the 5 population compositions and from the overall 30 model runs, we

obtain 27*5*30=4050 observations in total.

Trader pricing error and market pricing error play important roles in explaining

our results, which will be seen later. Hence, we spend some time discussing the

difference between the two. Trader pricing error measures pricing errors at individual

level and is easily affected by extreme quotes.9 The more fundamentalists with

quotes close to the BS value, the less extreme quotes and the smaller the trader

pricing error. Hence, trader pricing error better describes the overall learning of

fundamentalists. A smaller trader pricing error indicates better overall learning.

Market pricing error measures pricing errors at the market level. The more accurate

the learning outcome, the closer the transaction price to the fundamental value and

the lower the market pricing error. Hence, market pricing error better describes the

accuracy of the learning outcome. A smaller market pricing error indicates more

accurate learning.

Trader wealth measures the links between trader skill and trader wealth. Data is

collected in the following way. For each population composition, after the model has

evolved, we wipe out the wealth that fundamentalists have obtained from previous

trading and ask them to trade another 1000 rounds with their evolved pricing func-

tions. That is, in the 1000 trading rounds, fundamentalists start with zero initial

wealth again and do not learn (tournament process turned off). After that, we record

fundamentalists’ skill level and wealth to examine if skills generate more wealth for

fundamentalists. Each fundamentalist’ skill level lies within {0, 1, 2, ...27}, 28 levels

in total. For each population composition, we record the skill levels that at least

9Extreme quotes are quotes far from the BS price of an option. For example, quotes lower than
0 or higher than 40 can be seen as extreme quotes for the options considered in C.
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one fundamentalist is at. Then we calculate the average wealth of fundamental-

ists at each recorded skill level. Hence, for each skill level, we have the average

wealth it generates. After the above process, from 30 model runs and 5 population

compositions, we get 1541 observations in total.

Price volatility measures the time-series variations of transaction price. With

each population composition, we run the converged model for another 10,000 trad-

ing rounds with tournaments taking place. For every 10 trading rounds, we apply

fundamentalists’ pricing functions to the 27 options, calculating the transaction

price. For each option in Ĉ, we get a sample with 1000 observations of transac-

tion price. Price volatility is therefore measured by the standard deviation of that

sample. Hence, with 5 population compositions, 27 options and 30 model runs, we

get 5*27*30=4050 observations in total.

Price sensitivity measures the market resilience in the case of shocks. Shocks

happen in the form of the entry of new traders with extreme quotes 0 and 40. We

use the measure designed in Ladley et al. (2015), that is

price sensitivity =
P (J)− P (−J)

P (0)
/J (3.9)

where J ∈ {10%, 20%, 40%, 80%} measures the size of a shock. For instance, if

J = 20%, there will be I ∗ J new traders enter the market with extreme quotes.

The larger J , the more extreme quotes and the larger the shock is. P (0) is the

transaction price without any shock. P (J) is the transaction price with extreme

quotes 40 and P (−J) is the transaction price with extreme quotes 0. In the case

of P (J) = P (−J), price sensitivity is zero, which implies that the shock does not

affect the market price and the market is therefore perfectly resilient. However,

when P (J) 6= P (−J), we observe some level of sensitivity of the market to shocks.

The greater P (J) − P (−J), the greater the effects of shocks on the market price

and the market is hence less resilient to shocks. With 5 population compositions,

27 options in Ĉ and 4 sizes of shock, we get 5*27*4=540 observations.

Our model converges after 0.8 million trading rounds. As mentioned before, all

relevant data is from the application of the converged pricing functions of funda-

mentalists to a set of 27 options. Due to the fact that most measures are positively

skewed, such as the trader pricing error and market pricing error, we log transform

these measures to make them less skewed. Also, some measures are bounded in

value, for instance, skill level is bounded between 0 and 27. We take logit of these

measures to make them unbounded.
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3.5 Results

In this section, we illustrate our results. In particular, we show the results and

analysis in the effects of chartists on pricing errors, skills and wealth and market

performance.

Figure 3.1 shows the histogram of the evolved quotes of fundamentalists in pricing

one of the 27 options in set Ĉ with the Black-Scholes price 3.3959. Two population

compositions are considered: (1) all traders are fundamentalists (black line); (2)

60% of the population are fundamentalists and 40% are chartists (grey line). We

observe that generally, pricing quotes are concentrated in three clusters: the middle

cluster around the Black-Scholes price and the two clusters at the extremes (0 and

over 15).10 The middle cluster is the result of learning. One reason for the large

amount of quotes at the two extremes is that some fundamentalists are lucky enough

to make positive profits by quoting very high or very low quotes, in which case, these

fundamentalists free ride other fundamentalists who are less lucky and have to learn

to price the options more accurately.

From Figure 3.1, we can see that as the amount of chartists increases, the middle

cluster becomes taller and fatter and the two clusters at the extremes become shorter.

In addition, there are less quotes between each extreme and the BS price as chartists.

This is more obvious for quotes lower than the middle cluster (for quotes lower than

2.5, most of the grey line lies below the black line). At the same time, the middle

cluster becomes more dispersed with chartists. Hence, increasing chartists and de-

creasing fundamentalists can reduce the quotes at the extremes and the quotes

between each extreme and the BS price, pushing quotes towards the BS price. How-

ever, it also makes the evolved quotes in the middle cluster more dispersed.

Since the total population is fixed, an increase in chartists is equivalent to an

equal decrease in fundamentalists. In the following context, unless otherwise stated,

the amount of chartists is represented by the amount of fundamentalists (denoted

by Flists in all regression results).

3.5.1 Pricing errors

We first consider the relationship between chartists and pricing errors. As mentioned

above, we use two measures of pricing errors: trader pricing error and market pri-

cing error. Trader pricing error is the absolute difference between individual trader

quotes and the Black-Scholes (BS) price while market pricing error is the absolute

10As mentioned above, the Black-Scholes price of the 27 options in Ĉ ranges between 1 and 9.
To between illustrate the concentration of fundamentalists’ evolved quotes, we classify all quotes
into three categories: quotes lower than 0, quotes between 0 and 15 and quotes higher than 15.
Hence, in Figure 3.1, 0 and 15 are the two extremes in the graphs.
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Figure 3.1: Quoted price
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Note: F:C is the proportion of fundamentalists to chartists. The top graph shows traders’ quoted
prices for the option (K, r, σ) = (105, 0.06, 0.35) in two market structures: F:C = 100:0 (black line)
and F:C = 60:40 (grey line). The vertical line gives the Black-Scholes price of the option, which in
this example is 3.3959. Frequency is calculated from the quotes collected from the 30 model runs.
The bottom graph gives the details of the middle cluster of the top graph.
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Table 3.2: Pricing Errors

Dependent variable: log(Pricing error)
Trader pricing error (Model 1) Market pricing error (Model 2)

Constant 0.227 3.943∗∗∗

(0.220) (0.492)
log(Flists) 0.134∗∗ −1.202∗∗∗

(0.050) (0.112)
log(BS price) 0.239∗∗∗ −0.019

(0.016) (0.036)

Observations 4050 4050
F-statistics 0.000 0.000

Note: Pricing errors are the absolute difference between pricing quotes and the Black-
Scholes price. Trader pricing error (Model 1) and market pricing error (Model 2) are
examined. Robust standard errors are in parentheses. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p <
0.001.

difference between transaction price and the BS price. From Figure 3.1, we observe

that as chartists increase, the middle cluster gets bigger and the other two clusters

at extremes get smaller, which implies that as there are more chartists, more funda-

mentalists will quote around the BS price and less will quote very high or very low

prices. Since trader pricing error is more easily affected by extreme quotes, we ex-

pect to see that trader pricing error decreases with chartists. At the same time, the

more dispersed middle cluster as chartists increase implies that transaction price,

the median of all quotes, will be less able to reflect the fundamental value and we

expect to observe a greater market pricing error.

Table 3.2 summarises our findings. The zero F-statistics shows that both of the

two models have significant explanatory power. The coefficient on fundamentalists

is significantly positive in Model 1 and significantly negative in Model 2, which

confirms our expectation that chartists decrease trader pricing error but increase

market pricing error. As mentioned above, trader pricing error better reflects the

overall learning of fundamentalists and market pricing error better reflects the ac-

curacy of the learning outcome. Hence, we can first say that chartists increase the

proportion of fundamentalists holding skills (bigger middle cluster when chartists

increase). Data shows that when chartists increase from 0% to 40%, the proportion

of fundamentalists’ quotes lying within a 20% interval of the BS price increases from

34.83% to 44.83%, a 10% increase. Chartists also reduce the accuracy of the learning

outcome (more dispersed middle cluster when chartists increase). As the measure

of learning accuracy, the average market pricing error over the 27 options and 30

model runs increases from 0.33578 in the case of all fundamentalists to 0.86380 in

the case of 60% fundamentalists and 40% chartists, implying a significant reduction
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in the learning accuracy.

Intuitively, learning has costs. One cost comes from the time fundamentalists

spend on learning. Another cost would be the possibility that after learning, fun-

damentalists get worse in their wealth. The higher the cost, the more reluctant

fundamentalists are to learn. When fundamentalists cannot accurately price assets

and learn to do so, the uncertainties from the evolving of their pricing functions may

make transaction price volatile, increasing the costs of learning and discouraging

learning. However, the trading rules followed by chartists, which are a weighted

average of past prices in our model, can help stabilise market price. This lowers the

costs of learning and hence facilitates fundamentalists to learn. Therefore, in equilib-

rium, as chartists increase, we observe larger proportion of fundamentalists quoting

around the BS price. They give less extreme quotes and as a result trader pricing

error becomes smaller. However, chartists always add noises to the market price,

which misleads learning and reduces the accuracy of the learning outcome. The

more chartists, the greater the misleading effects and the further the market price

will deviate from the BS price. This explains why market pricing error increases

with chartists.

In addition, the positive coefficient on the Black-Scholes price in Model 1 is con-

sistent with the one in Ladley et al. (2015) in that when options get more expensive,

it becomes more difficult to estimate their values. The opposite result appears in

Model 2 but is insignificant. In Appendix B.1, we do the same regression on market

pricing error but only with fundamentalists. The result shows a positive coefficient

on the BS price. Hence, the negative coefficient in Model 2 can be seen as an

outcome of the inaccuracy brought about by chartists.

3.5.2 Skill and wealth

In this section, we investigate how trading skills and wealth change with chartists.

Based on the result that chartists are able to promote learning, we expect to see a

positive relationship between chartists and market skill, or a negative relationship

between fundamentalists and market skill. Also, according to the current literature

that skilled traders are rewarded excessive trading profits, we expect to observe

positive effect of trading skills on wealth. Table 3.3 summarises our finding in the

relationship between trading skills and chartists.

The overall model is significant at the 95% confidence level. The negative coeffi-

cient on fundamentalists is consistent with our prediction, implying that the more

chartists (and hence the less fundamentalists), the more fundamentalists will learn

and the higher the overall market skill. As Figure 3.1 shows when the amount of

chartists increases, there are more quotes around the BS price but less quotes at
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Table 3.3: Market Skill

Dependent variable: logit(skill/27)
Constant 1.701 (1.432)
log(Flists) −0.628∗ (0.325)

Observations 150
F-statistics 0.034

Note: Skill refers to the market skill, which is the average of the skill of all fundament-
alists in a market structure, ranging between 0 and 27. We take the logit transform of
skill/27 to obtain an unbounded variable. With 30 model runs and 5 market structures,
30*5=150 observations are obtained in total. Robust standard errors are in parentheses.
∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

the extremes and less quotes between each extreme and the BS price. Intuitively, as

mentioned in the above section, the replacement of fundamentalists’ pricing func-

tions adds uncertainties to the market price. The more fundamentalists, the greater

the uncertainties which make the market price more volatile, increase the cost of

learning and hence deter learning. On the contrary, since past prices enter chartists’

pricing functions, the presence of chartists is able to reduce the uncertainties from

fundamentalists and makes the market price stable. This lowers the cost of learning

and hence facilitates learning. Therefore, when the amount of chartists increases,

there will be more active learning among fundamentalists and we observe larger pro-

portion of fundamentalists holding skills. In other words, trading skill acquisition

increases with the amount of chartists. In addition, our finding provides evidence

for the argument in the current literature that through accumulating experience,

traders are able to acquire trading skills, as fundamentalists acquire more skills

when there are more chartists in our model.

Table 3.4 contains the relationship between skill and wealth. In this test, two

models are considered. Model 1 investigates only skill and wealth. From Model 1,

we see that skill has positive effect on wealth, consistent with the fact that skilled

traders can persistently earn abnormal returns in real financial markets (Coval et

al., 2005; Barber et al., 2014). This effect is more significant when there are less

fundamentalists and hence more chartists in the market (Model 2). This comes from

the positive effect of chartists on skill acquisition from the above analysis. That is,

an increase in chartist promotes learning and trading skill acquisition. Trading skills,

according to the positive coefficients on skill in Table 3.4, bring higher returns from

trading and hence increase wealth.
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Table 3.4: Skill and Wealth

Dependent variable: exp(wealth/10000)
Model 1 Model 2

Constant 1.002∗∗∗ 1.422∗∗∗

(0.006) (0.111)
log(1+skill) 0.009∗ 0.010∗∗

(0.003) (0.003)
log(Flists) −0.096∗∗∗

(0.025)

Observations 1541 1541
F-statistics 0.011 0.000

Note: We turn off the the tournament process, initialise traders’ wealth
to zero and run the converged model for 1000 trading rounds. For each
of the 30 model runs with each market structure, we record the skill
levels that at least one fundamentalist is at and calculate the average
wealth of the fundamentalists at the same recorded skill level. This gives
1541 observations in total. Robust standard errors are in parentheses.
∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

3.5.3 Market performance

In this section, we revisit the role of heterogeneous beliefs on market performance,

especially on market stability and market resilience. This topic has been discussed

greatly. A consensus is that chartists, who act as noise traders, increase market

volatility while fundamentalists, who drive prices back to fundamentals, stabilise

markets. However, most of the relevant papers assume fundamentalists are rational

by nature in the sense that they have all the skills required to do financial analysis

and make correct decisions. The innovation of our paper is that we assume funda-

mentalists do not have the skills to fairly price financial assets and learn to do so.

Furthermore, we investigate the market performance given the learning outcome of

fundamentalists when chartists are present. Hence, compared with the current lit-

erature, our paper goes deeper and is more consistent with the presence of bounded

rational agents in real financial markets and provides another possible explanation

for the destabilising effects of chartists on financial markets.

In the above analysis, we observe that chartists can mislead fundamentalists by

affecting the market price. When there are more chartists, misleading effects get

stronger and the learning outcome becomes less accurate, which results in the wide

dispersion of the evolved pricing functions around the BS price. This leads transac-

tion price, the median of all quotes, to be volatile. Hence, we expect that an increase

in chartists, or a decrease in fundamentalists, will increase market volatility. Results

are shown in Table 3.5. The negative coefficient on fundamentalists confirms our
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Table 3.5: Market Volatility

Dependent variable:
log(volatility)

Constant 1.815∗∗∗ (0.111)
log(Flists) −0.340∗∗∗ (0.025)
log(BS price) 0.023∗∗∗ (0.007)

Observations 4050
F-statistic 0.000

Note: We run the evolved model for 10000 trading rounds, with the
tournament process turned on and record the pricing functions of fun-
damentalists for every 10th round, which gives a sample with 1000
observations. In each model run with each market structure, we ap-
ply the recorded pricing functions to the 27 options in Ĉ, calculating
the volatility of the transaction prices in that sample. Overall, there
are 30 × 5 × 27 = 4050 observations. Robust standard errors are in
parentheses. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

expectation, indicating that chartists make market price less stable.

This finding echoes with the common idea in the relevant literature mentioned

above that chartists play a negative role in market stability. However, by focusing

on the learning process of fundamentalists, we provide a new possible explanation

for these adverse effects. In the learning process of fundamentalists, the presence of

chartists add noises to the market price, which can mislead fundamentalists. The

misleading effects provide different directions for the evolving of pricing functions

and as a result, the evolved pricing functions become more diversified and more dis-

persed around the BS price. The diversity in pricing functions increases the volatility

of transaction price and hence the market becomes less stable. In our paper, chartists

affect market stability via affecting the learning process of fundamentalists, unlike

the common literature argues that noise traders destabilise markets by discouraging

the trade of rational traders (see DeLong et al. (1991) for example). The positive

coefficient on the BS price is consistent with the argument that it is more difficult

to estimate expensive options.

In terms of market resilience, we use the measure designed in Ladley et al. (2015),

which is the expression in (3.9). This measure captures how transaction price

changes with shocks. Shocks are described as the entry of traders with extreme

quotes 0 and 40. The lower the value of the measure, the less the effects of a shock

and the more resilient the market. Results are summarised in Table 3.6.

One of the key findings in this paper is that fundamentalists can make the market

less resilient, or chartists can make the market more resilient, as shown by the

positive coefficient on fundamentalists in Table 3.6. Skill plays an important role

in explaining this result. Recall in expression (3.9), the difference between the
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Table 3.6: Market Resilience

Dependent variable:
log(Resilience)

Constant −2.166∗∗∗ (0.511)
log(Flists) 0.833∗∗∗ (0.114)
log(BS price) −0.749∗∗∗ (0.042)

Observations 540
F-statistic 0.000

Note: We model shocks with the entry of traders with extreme feasible
quotes into the evolved market with only fundamentalists. We consider
four sizes of shock J = [0.1, 0.2, 0.4, 0.8] which indicates for each value of
J , new entrants will account for a proportion J of the fundamentalists.
Let P (0), P (J) and P (−J) respectively denote the transaction prices
without shocks, with entrants with extreme quote 40 and with entrants
with extreme quote 0. The sensitivity measure is calculated as ((P (J)−
P (−J))/P (0))/J . In each market structure, the sensitivity measure
is applied to the 27 options in C. For 4 shock sizes and 5 market
structures, we obtain 27 × 4 × 5 = 540 observations. Robust standard
errors are in parentheses. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

transaction prices with the two extreme quotes. P (J)− P (−J), is the key element

in measuring market resilience. The larger the difference, the greater the effects

of shocks on the market price. Since transaction price is the median of all quotes,

before a shock, the more quotes concentrating around the BS price, that is the more

skilled fundamentalists, the smaller the value of P (J)− P (−J) after the shock and

the less the effects of the shock on the transaction price. In other words, the middle

cluster of quotes acts as a buffer for shocks. The larger the middle cluster, the

better the buffer is able to absorb the effects of shocks and the more resilient the

market is. For example, in the case that all fundamentalists are perfectly skilled at

quoting the BS price, all quotes will be concentrated in the middle cluster. A shock

has no effects on the market price, in which case, the market is perfectly resilient.

In our model, chartists facilitate learning, pushing quotes to the middle cluster and

increasing the proportion of skilled fundamentalists. Therefore, markets with more

chartists tend to be more resilient to shocks.

3.6 Conclusion

In this paper, we analyse the role of chartists, who are effectively noise traders, in

the learning of fundamentalists. We assume fundamentalists are not born with the

skills to price financial assets and learn to acquire them. Generally, we find that the

presence of chartists promotes fundamentalists to learn but has negative effects on

the accuracy of the learning outcome. When chartists increase, larger proportion of
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fundamentalists’ quotes will be close to the Black-Scholes price. The middle cluster

of quotes around the Black-Scholes price acts as a buffer for shocks and hence a

market with more chartists tends to be more resilient. However, the evolved pricing

functions of fundamentalists are more dispersed because of the misleading effects of

chartists on the transaction price, which makes the market price more volatile.

The higher volatility because of chartists in our model is consistent with the fact

that during the recent two decades, we observe more volatile market prices. For

instance, the large scale price decrease during the Flash Crash in 2010. The rapid

development in communication technology has greatly lowered the threshold of the

financial world to the general public and various types of traders flow into the fin-

ancial markets, a large proportion of them being noise traders who do not have

the ability to abstract useful information but use biased and fictitious information

to make decisions. Their trading adds addition risks to the financial markets. On

the other hand, it has made it much more convenient for traders to exchange ex-

perience and knowledge in trading, greatly increasing the learning among traders.

This background makes our paper of great significance as we investigate how this

trend will contribute to the learning in financial markets and the associated market

performance.

From our findings, we can see that trading skills have great influences on market

performance, especially the important role of accurate trading skills in keeping mar-

ket stable and resilient. Noise information can reduce the acquisition of accurate

trading skills and increase market volatility. Since now various types of traders are

in the financial markets, for policy makers, our paper highlights the necessity of

relevant training in finance for these traders, which might be the most direct and

effective way for them to gain trading skills and to avoid being misled. Given the

easy and convenient channel for information swap provided by the internet, another

direction for policy makers would be to increase their regulatory strengths on the

filter of financial information to reduce the spread of misleading information, which

would increase accurate learning.

Based on the setting in this paper, some future work can de done. For instance,

we would like to extend our current model to consider daily mark-to-market in the

options market. This provides real time series which chartists can use to make their

decisions. This extension allows us to model chartists fully by considering different

types of chartists: chartists using fictitious time series and chartists using real time

series. It will give us more complete insights into the role of noise traders in learning

and in market performance.
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A.1 Basic beliefs, derivative market price and profits

Basic beliefs

pA0 (1, β) = 0 ∗ Pr(e = b|1, α) + 1 ∗ Pr(e = a|1, α) =
σa

1 + σa
(A.1)

Prices

pA(buy, 1, β) =
2(λS + λO)σa + λNσa

2(λS + λO)σa + λN(σa + 1)
(A.2)

pA(sell, 1, β) =
λNσa

2(λS + λO) + λN(σa + 1)
(A.3)

O’s profits

πAa (buy, 1, β) = λOs
λN

2(λS + λO)σa + λN(σa + 1)
(A.4)

πAb (sell, 1, β) = λOs
λNσa

2(λS + λO) + λN(σa + 1)
(A.5)

A.2 Proof of Proposition 1.1

Proof. Assume πAeσ = 0 for e ∈ {a, b} and σ = 1. Let πAeσ denote the originator’s

interim profits in the primary market in each of the four {0, 1} × {a, b} cases. If

both (PCa1) and (PCa0) are satisfied, trade in the primary market always occurs

and the originator’s ex-ante profits (before he observes e ∈ {a, b}) in the primary

market, denoted by Π
A

, is

Π
A

= Pr(e = a, σ = 0)πAa0 + Pr(e = a, σ = 1)πAa1 (A.6)

+Pr(e = b, σ = 0)πAb0 + Pr(e = b, σ = 1)πAb1 = k

which is independent of opacity σa. In other words, any σa gives the same ex-ante

profits in the primary market. Hence, opacity is immaterial when both (PCa1) and

(PCb1) hold. However, when (PCb1) does not hold, the originator will not trade

A in the case (e = b, σ = 1). Hence, as long as trade occurs in the primary market,
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the buyer will know his type is a. Thus, πAa1 = k and πAb1 = 0. In this case

Π
A

=
1

2
k 6 k (A.7)

Also, with full transparency σa = 0, (PCb1) always holds. Therefore, the best

strategy of the originator when he makes zeros profits in the derivative market is to

eliminate adverse selection by making security A fully transparent.

A.3 Proof of Proposition 1.2

Proof. From the proof of Proposition 1.1, we already know when there is no ad-

verse selection (full transparency) in the primary market, trade always occurs in the

primary market and O’s ex-ante profits in the primary market are Π
A

eσ = k, inde-

pendent of opacity σa. Hence, if we can show O’s ex-ante profits in the derivative

market increase with opacity, we can prove Proposition 1.2. Let Π
A

denote O’s

ex-ante profits in the derivative market.

Π
A

= Pr(e = a, σ = 0)πAa0 + Pr(e = a, σ = 1)πAa1 (A.8)

+Pr(e = b, σ = 0)πAb0 + Pr(e = b, σ = 1)πAb1

=
1

2
[

λOsλNσa
2(λS + λO)σa + λN(σa + 1)

+
λOsλNσa

2(λS + λO) + λN(σa + 1)
]

Taking first order derivative of Π
A

with respect to σa, we get

∂Π
A

∂σa
=
λOsλN

2
[

λN
(2(λSσa + λO)σa + λN(σa + 1))2

+ (A.9)

2(λS + λO) + λN
(2(λS + λO) + λN(σa + 1))2

] > 0

Hence, O’s ex-ante profits in the derivative market increase with σa for σa ∈ [0, 1] and

thus, O gets maximum profits with full opacity. Therefore, when there is no adverse

selection in the primary market, O’s best strategy is to make A fully opaque.

A.4 Proof of Lemma 1.1

Proof. From the proof of Proposition 1.2, we have already known that ignoring

participation constraints, full opacity offers O the maximum ex-ante profits. Hence,

for full opacity to be the optimum, we just need to find out the condition under

which (PCb1) holds with full opacity. Recall (PCb1)

k − (1− γ)σa
1 + σa

+ πAb1 > 0 (A.10)
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Setting σa = 1 and rearranging (PCb1), we get

k + πAb1 >
1

2
− γ (A.11)

Hence, as long as k + πAb1 >
1
2
− γ, (PCb1) is slack and full opacity is the optimum.

Now let us show the existence of the unique optimal opacity when (1.21) fails to

hold. We define

G(σa) ≡ k − (1− 2γ)σa
1 + σa

+
λOsλNσa

2(λS + λO) + λN(σa + 1)
(A.12)

which can be rearranged as

G(σa) ≡
D(σa)

(1 + σa)(2(λS + λO) + λN(σa + 1))
(A.13)

where

D(σa) = ξ1σ
2
a + ξ2σa + ξ3 (A.14)

and

ξ1 = λNλOs− λN(1− 2π − k) (A.15)

ξ2 = 2k(λS + λO + λN)− (1− 2γ)(2λS + 2λO + λN) + λNλOs (A.16)

ξ3 = k(2λS + 2λO + λN) (A.17)

G(σa) = 0 is equivalent to D(σa) = 0. From (A.14), obviously, D(σa) is a quadratic

function. In addition, we know that D(0) = k > 0 and D(1) < 0 when (1.21) fails

to hold. Thus, for σa ∈ (0, 1), D(σa) must cross the x-axis only once. That is, when

(1.21) is not satisfied, there exists one unique solution to G(σa) = 0 which gives the

optimal opacity.

A.5 Proof of Proposition 1.3

Proof. We have already shown that if (1.21) holds, full opacity is the optimum in

the proof of Lemma 1.1. Also, Lemma 1.1 shows if (1.21) fails to hold, optimal

opacity is given by the binding (PCb1), which gives σa = σ∗a, σb = 1. Now, we

show that σb = 1 in our setting is the optimum. The setting in our model that the

state (e = b, σ = 0) never occurs (due to σb = 1) is equivalent to the case where
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(e = b, σ = 0) occurs with positive probability but the loss in the primary market

is larger than than gain from the derivative market, in which case O does not trade

and hence reveals the type of the underlying asset. Conditional on this, for opacity

given by (σa, σb), O’s ex-ante overall profits are

ΠA =
1

2
k(1 + σb) +

1

2
(

λOsλNσaσb
2σa(λO + λS) + λN(σa + σb)

+ (A.18)

λOsλNσaσb
2σb(λO + λS) + λN(σa + σb)

)

Suppose opacity satisfies σa/σb = r where r ∈ [0, 1]. Then, (A.18) can be rewritten

as

ΠA =
1

2
k(1 + σb) +

1

2
(

λOsλNrσb
2r(λO + λS) + λN(r + 1)

+ (A.19)

λOsλNrσb
2(λO + λS) + λN(r + 1)

)

Taking first order condition of ΠA with respect to σb, we obtain

dΠA

dσb
=

1

2
k +

1

2
(

λOsλNr

2r(λO + λS) + λN(r + 1)
+

λOsλNr

2(λO + λS) + λN(r + 1)
) > 0 (A.20)

Thus, O’s ex-ante overall profits increase with σb, implying σb = 1 is the optimum.

A.6 Proof of Lemma 1.2

Proof.

πAb1(σa) = Pr(ω = α)[1− pA(buy, 1, α)] + Pr(ω = β)pA(sell, 1, β) (A.21)

=
λOsλNσa

2(λS + λO) + λN(σa + 1)

Since λS + λO + λN = 1, we replace λS + λO in (A.21) with 1− λN , which gives

πAb1(σa) =
λOsλNσa

2(1− λN) + λN(σa + 1)
(A.22)

Taking first order condition of πAb1 with respect to s and λN , respectively, we can see

that

∂πAb1
∂s

=
λOλNσa

2(1− λN) + λN(σa + 1)
> 0 (A.23)
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and

∂πAb1
∂λN

=
λOsσa(2 + λN)

[2(1− λN) + λN(1 + σa)]2
> 0 (A.24)

which implies O’s profits in the case (e = b, σ = 1) increase with liquidity measured

by s and λN .

A.7 Proof of Proposition 1.4

Proof. Suppose now (1.21) does not hold. Hence, full opacity is not the optimum

and optimal opacity is given by the binding (PCb1), that is G(σa) = 0.

Suppose σ∗a solves G(σa) = 0, then G(σ∗a) = 0 always holds in equilibrium. Taking

first order condition of G(σ∗a) with respect to λN , the overall effects should be zero

in equilibrium, that is,

∂G(σ∗a)

∂λN
=
∂G(σa)

∂σa

∂σ∗a
∂λN

+
∂G(σa)

∂λN
= 0 (A.25)

which can be re-written as

∂σ∗a
∂λN

= −∂G(σa)

∂λN
/
∂G(σa)

∂σa
(A.26)

From the proof of Lemma 1.2, we know that ∂G(σa)
∂λN

> 0. As Figure 1.1 shows, σ∗a is

achieved when G(σa) is decreasing. Hence for σa ∈ [σ∗a − ε, σ∗a], we have

∂G(σa)

∂σa
< 0 (A.27)

where ε is a small interval on the left-hand-side of σ∗a. Therefore

∂σ∗a
∂λN

> 0 (A.28)

Proofs of Propositions 1.5 and 1.6 follow the same logic.

A.8 Proof of Remark 1.2

Proof. Let Π denote O’s ex-ante overall profit in the endogenous case.

Π = k +
λOs

2
(

λNσa
2λS(σa)σa + 2λOσa + λNσa + λN

+ (A.29)

λNσa
2λS(σa) + 2λO + λNσa + λN

)
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Taking the derivative of Π with respect to σa, we have

∂Π

∂σa
=
λOs

2
(

−2λ′S(σa)σ
2
a + λ2

N

(2λS(σa)σa + 2λOσa + λNσa + λN)2
+ (A.30)

−2λ′S(σa)σa + λN(2λS(σa) + 2λO + λN)

(2λO + 2λS(σa) + λNσa + λN)2
) > 0

given λ′S(σa) < 0, which implies that O’s ex-ante overall profits increase with opacity.

Hence, all roots of (1.24) within [0 1] satisfies the binding participation constraint

(PCb1). However, at the largest root, O gets maximum profits. Therefore, the

optimal opacity in the endogenous case is the largest root of (1.24).

A.9 Proof of Proposition 1.7

Proof. After a change in liquidity, only the direct effect on opacity appears in the

exogenous case but both the direct and indirect effects appear in the endogenous

case. In this proof, we show that the overall effect, consisting of the direct and

indirect effects, is greater than the direct effect.

Suppose in the exogenous case, λS = λ0
S and in both the exogenous and endo-

genous cases λN = λ0
N . λO + λ0

S + λ0
N = 1. Also, suppose initially σ0

a and σ̂0
a solve

G(σa) = 0 and G(σa, λS(σa)) = 0, respectively:

k − (1− 2γ)σ0
a

1 + σ0
a

+
λOsλNσ

0
a

2(λS + λO) + λN(σ0
a + 1)

= 0 (A.31)

and

k − (1− 2γ)σ̂0
a

1 + σ̂0
a

+
λOsλN σ̂

0
a

2(λS(σ̂0
a) + λO) + λN(σ̂0

a + 1)
= 0 (A.32)

σ̂0
a satisfies λS(σ̂0

a) = λ0
S. Obviously enough, the left-hand-side of (A.31) and (A.32)

are the same and hence σ0
a = σ̂0

a.

We first assume λS(σa) does not change with opacity. Now suppose λN increases

from λ0
N to λ1

N , keeping λO constant. So λS and λS(σa) decrease from λ0
S to λ1

S such

that λO +λ1
S +λ1

N = 1. After these changes, the left-hand-side of (A.31) and (A.32)

are still the same. Suppose σ1
a and σ̂1

a are the new optimal opacity in the exogenous

and endogenous case, respectively. Then, σ1
a = σ̂1

a and

G(σ1
a) = G(σ̂1

a, λ
1
S) = 0 (A.33)

Proposition 1.4 implies σ1
a > σ0

a and σ̂1
a > σ̂0

a. This is the direct effect of liquidity

on opacity which results in an increase in opacity.

Now, we allow λS(σa) to change with opacity to see the indirect effect. λ′S(σa) < 0
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implies that as opacity increases from σ̂0
a to σ̂1

a, there must be a decrease in λS(σa).

Taking this into consideration, at σ̂1
a, λS(σ̂1

a) must below λ1
S and

G(σ̂1
a, λS(σ̂1

a)) > G(σ̂1
a, λ

1
S) = 0 (A.34)

Optimal opacity hence need to rise further from σ̂1
a, which triggers a new round of

change in liquidity and opacity due to λ′S(σa) < 0. This self-reinforcing process ends

when G(σa, λS(σa)) binds again. That is to say, the direct effect induces a one-shot

increase in opacity and the indirect effect induces more increases in opacity. Hence,

the overall effect, comprised of the direct and indirect effects, is greater than the

direct effect.

A.10 A Microfoundation of λ′S(σa) < 0

Once speculators become informed, they are the same with the originator except

that they incur some costs in information acquisition. Overall, we assume specu-

lators’ costs of becoming informed increase with opacity. As mentioned before, this

assumption is plausible in the sense that as opacity going up, speculators have to

spend more time, learn more skills and seek more resources to collect and process

information. Speculators are heterogeneous in their cost functions. This can be un-

derstood as some speculators are more skilled in information acquisition than others,

which implies these skilled speculators incur less costs in process information than

the unskilled ones. For speculator i, we assume his cost function is

Ci(σa) = κσa − θi (A.35)

where κ measures the marginal effects of opacity σa on the costs and θi measures

speculator i’s skills in information acquisition. From the above cost function, we

can see that costs of information acquisition increase with opacity σa while decrease

with the trader’s skills. We assume θi ∼ U [θ, θ], ∆θ ≡ θ − θ. Hence Ci ∼ U [C,C]

where C = κσa − θ and C = κσa − θ. When opacity is relatively small, it could

be the case that speculator i’s costs are negative. The interpretation for this scen-

ario is that this trader’s skills are advanced relative to the level of opacity. This

makes information acquisition less of an issue, which makes him save some skills

in information acquisition and also brings him some sense of achievements, adding

(non-monetary) benefits to his trading in the market.

Speculators themselves know their skills while others only know the distribution

of θi. Trading activities of speculators are the same as the originator. Let R denote

the revenue and Π denote the ex-ante net profits of speculators in the derivative
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market, then

Π(σa) = R− Ci(σa) (A.36)

where from the proof of Proposition 1.2, we can easily obtain the expression of the

revenue of speculators.

R(σa) =
1

2
[

λS(σa)sλNσa
2(λS(σa) + λO)σa + λN(σa + 1)

(A.37)

+
λS(σa)sλNσa

2(λS(σa) + λO) + λN(σa + 1)
]

For speculators, if they can make positive profits by collecting information, they

will do so and trade in the market, otherwise, they quit the market. In other

words, as long as R(σa) > Ci(σa), speculator i will remain in the market and when

R(σa) = Ci(σa), he will be indifferent between collecting and not collecting inform-

ation. Suppose C∗ = σa − θ∗ solves R(σa) = Ci(σa). Then traders with skills lower

than θ∗ will quit the market. The higher θ∗, the more speculators quit. Hence, we

assume the probability λS(σa) satisfies

λS(σa) = φ
C∗ − C
C − C

(A.38)

where φ > 0 is a multiplier. Since C∗ solves R(σa) = Ci(σa), C
∗ = R(σa). Also

C − C = ∆θ. Thus, (A.38) can be re-written as

λS(σa) = φ
R(σa)− (κσa − θ)

∆θ
(A.39)

Taking first order condition of (A.39) with respect to σa on both sides, we obtain

dλS(σa)

dσa
= φ

dR(σa)
dσa

− κ
∆θ

(A.40)

Since the cost function intersects with the revenue function at C∗, we must have

that the slope of the cost function greater than that of the revenue function at the

intersection point, that is

dR(σa)

dσa
− κ < 0 (A.41)

which implies dλS(σa)
dσa

< 0.
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Table B.1: Market Pricing Error

Dependent variable: log(Market pricing error)
Constant −1.768∗∗∗ (0.079)
log(BS price) 0.096 (0.122)

Observations 810
F-statistics 0.196

Note: Market pricing error is the absolute difference between transaction
price and the Black-Scholes price. Robust standard errors are in paren-
theses. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

Table B.2: Convergence Test

Dependent vari-
able:

log(Market pri-
cing error)

Constant 4.436 (0.405)
log(Fundamentalists) −1.233∗∗∗ (0.090)
log(Black-Scholes price) −0.007 (0.032)
dum 0.218 (0.565)
dum*log(Fundamentalists) −0.053 (0.125)

dum*log(Black-Scholes price)

0.016 (0.044)

Observations 270
Prob > F 0.0000
Test of structural break between sample periods
H0: dum ×X = 0 for all ordinary regressors X
F-statistic: 0.134 on 3 and 264 DF

Note: We run the evolved model for 0.84 million trading rounds and collect data from the first
and last 0.1 million trading rounds for every 10th round, which gives two samples, each with
1000 observations. All observations in each sample are applied to the 27 options in set Ĉ. We
calculate the average market pricing error over each sample, which is the dependent variable
in this table. We add a dummy variable dum to represent the second sample period. Cross-
products of the dummy variable and other regressors are also used as explanatory variables.
An F-test is applied to test the convergence of the model with the null hypothesis that all
explanatory variables involving the dummy variables are insignificant. Robust standard errors
are in parentheses. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.
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B.1 Market pricing error without chartists

In this section, we investigate the relationship between market pricing error and the

BS price with only fundamentalists to avoid the potential misleading effects from

chartists. Regression results are summarised in Table B.1.

From Table B.1, we observe a positive coefficient on the BS price, which means

market pricing error is larger for expensive options. This is consistent with the

finding in Ladley et al. (2015) that expensive options are more difficult to evaluate.

While the coefficient is positive, it is insignificant. We believe the significantly

positive coefficient in Ladley et al. (2015) is attributed to the fragmentation of the

markets, which greatly facilitates learning while in our paper centralised markets

are considered.

B.2 Convergence

Convergence of our model is tested with the data of market pricing error across two

different sample periods. From each sample period, we collect 1000 observations,

one from each 10 trading rounds. The two samples are 0.2 million trading rounds

apart. Based on our analysis in section 3.5.1, we add a dummy variable dum rep-

resenting the second sample period, and the products of the dummy variable and

other explanatory variables are also used as explanatory variables. Results of the

convergence test are summarised in Table B.2.

From Table B.2, we can see that the dummy variable and its cross-products with

other regressors are insignificant, implying that the market pricing errors in the two

different sample periods are not significantly different, which means our model has

converged after 0.8 million trading rounds.
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