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Abstract—Massive multi-input multi-output (MIMO) has been 
regarded as one of the key technologies for fifth generation (5G) 
mobile communication systems, as it can significantly enhance 
the system capacity with high spectrum and energy efficiency. 
For massive MIMO systems, accurate channel estimation is a 
challenging problem, especially when the number of parameters 
to be estimated is large and the number of pilots is limited. In 
this paper, a compression based linear minimum mean square 
error (CLMMSE) channel estimation algorithm is proposed for 
massive MIMO in 5G systems. Compared with the traditional 
linear minimum mean square error (LMMSE) algorithm, the 
proposed approach calculates the channel autocorrelation matrix 
by investigating the channel prior information based on 
compressive sensing (CS) theory, utilizing the block sparsity of 
massive MIMO channels, to reduce the complexity for obtaining 
autocorrelation matrix. Then it substitutes matrix inverse 
operation by singular value decomposition (SVD) to further 
reduce the computational complexity. In addition, a block 
sparsity adaptive matching pursuit (BSAMP) method is also 
proposed to adaptively estimate the block sparsity of the channel 
in the first step of the proposed CLMMSE algorithm, which can 
make it more efficient. The sparsity-adaptive processing is 
achieved by setting a threshold and finding the position of the 
maximum backward difference, then using the regularized 
method to solve channel estimation as a convex optimization 
problem. Analyses and simulations indicate that with slight 
performance degradation, the proposed algorithm reduces the 
computational complexity significantly compared with the 
traditional LMMSE algorithm. And compared with pure CS 
methods, CLMMSE has an obviously better performance, which 
is benefit to solve the pilot pollution problem of massive MIMO 
in 5G systems. Furthermore, the BSAMP based CLMMSE 
algorithm has better performance and lower time complexity 
than the algorithm based on other CS methods, which further 
improves the system performance. 

Index Terms—Massive MIMO, 5G, compressive sensing, 
channel estimation, CLMMSE, SVD, sparsity adaptive 
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I.  INTRODUCTION 

In the area of mobile communications, new technologies 

being able to increase the capacity and spectrum efficiency 

are forever needed to satisfy the increasing data rate demand 

from the users. The existing 3G CDMA (Code Division 

Multiple Access) and 4G LTE (Long Term Evolution) systems 

make the limited wireless bandwidth even more urgent. 

Multi-input multi-output (MIMO) is a key technology to 

increase the capacity and system reliability by exploring the 

spatial domain without any additional wireless bandwidth. In 

4G communications, the standard named LTE-A (Long Term 

Evolution-Advanced) first adopts MIMO technology to boost 

the communication capacity [1]. Although MIMO can help 

increase the capacity over SISO with 4G systems, it cannot 

meet the expectation for the future mobile communication 

systems. 

Massive MIMO can make a huge increase on system 

capacity with a much larger number of antennas configured at 

the base station (BS). Thus, it is regarded as one of the key 

technologies for future fifth generation (5G) wireless 

communication systems for its high spectrum and energy 

efficiency [2-3]. By utilizing spatial multiplexing, a massive 

MIMO base station can serve multiple users simultaneously 

through multi-user beamforming [4-6]. Recently, some 

proposals using massive MIMO technology for 5G standard 

have been presented in 3GPP release 15 for one of the key 

enabling technologies for 5G systems [7].  

Baseband signal processing such as channel estimation, 

channel equalization, channel encoding, etc, are the important 

parts of wireless communication systems to resist fading 

channel [8-11], where channel estimation is especially critical 

for massive MIMO systems. In massive MIMO systems, 

accurate and efficient channel estimation is a challenging 

problem and an open research issue, because the number of 

channel parameters to be estimated is very large as the 

antennas increase, while the number of pilots adopted by 

channel estimation is limited to make sure a high spectrum 

efficiency. 

Linear minimum mean square error (LMMSE), known as a 

classic algorithm, has been widely used for channel 

estimation of traditional wireless communication systems, 

such as LTE which adopts orthogonal frequency division 



 

 

multiplexing (OFDM) for baseband modulation, due to its 

good anti-noise performance. It may also be suitable for the 

LTE-A system when the scale of antennas is not large.  

However, it is a challenge for LMMSE to be used in 5G 

massive MIMO systems that the channel autocorrelation 

matrix is difficult to get and the computational complexity is 

pretty high brought by the massive antennas [12]. Therefore, 

how to keep the optimum balance between the performance 

and complexity of channel estimation is essential to be 

studied in 5G systems. 

In order to optimize the performance of the LMMSE 

algorithm, [13] utilizes the reference signals, received by the 

downlink of MIMO systems, to obtain second-order statistical 

properties such as channel correlation matrix, and then 

estimated the channel parameters. Reference [14] proposes a 

channel estimation method for MIMO-OFDM systems based 

on weighted iteration. By performing weight iteration on the 

LMMSE algorithm, higher estimation accuracy is achieved. 

In [15], the complexity of the LMMSE algorithm for 

MIMO-OFDM systems is optimized under the assumption of 

channel uncorrelation, and the difficulty of obtaining the 

channel autocorrelation matrix was avoided. Also, a discrete 

Fourier transformation (DFT) based LMMSE algorithm is 

proposed in [16], which uses DFT transform property to 

estimate the channel correlation matrix, reducing the amount 

of parameter calculation and achieving higher channel 

estimation performance with lower computational complexity. 

Though numerous efforts have been done to improve the 

performance of traditional channel estimation algorithms, all 

of them are restricted to the Nyquist-Shannon theorem, which 

may lead to extremely high pilot overheads as well as high 

computational complexity. Compressive sensing (CS) theory 

is proposed by Donoho et al. in [17] for sparse signal 

processing. In recent years, it has been widely used in sparse 

channel estimation for massive MIMO systems [18-22] and 

[20] has proven that the massive MIMO channel shows joint 

sparse characteristics. In this paper, a compression based 

LMMSE (CLMMSE) channel estimation algorithm is 

proposed to reduce the complexity of LMMSE algorithm and 

enhance the performance of pure CS based estimation for 

massive MIMO systems. It uses the channel prior information 

estimated by CS theory to gain channel autocorrelation matrix, 

this operation using optimal rank reduction compared with 

traditional channel autocorrelation matrix calculation. 

Meanwhile, it adopts singular value decomposition (SVD) to 

substitute channel matrix inversion to further reduce the 

computational complexity of the proposed algorithm. 

In the proposed CLMMSE algorithm, if the channel 

sparsity can be estimated accurately, the dimension of the 

autocorrelation matrix can be reduced greatly, which will 

further reduce the computational complexity. Thus, in the 

process of CS based estimation in the first step of the 

proposed CLMMSE algorithm, sparsity adaptive 

determination methods are also discussed in this paper. The 

existing common CS channel estimators, such as those based 

on orthogonal matching pursuit (OMP) [23], subspace pursuit 

(SP) [24], need the knowledge of the channel sparsity level, 

which limits their applications in practice. The sparsity 

adaptive matching pursuit (SAMP) [25] algorithm can recover 

the channel information without knowledge of the channel 

sparsity level, but the iteration step size of this algorithm is 

fixed at the initial stage. If the step size is much smaller than 

the signal sparsity, a large number of iterations will be 

required. It has been demonstrated in [20] that the 

sub-channels between different transmitting and receiving 

antenna pairs have the same sparsity support set in massive 

MIMO systems, and an adaptive structured subspace pursuit 

(ASSP) algorithm exploiting such joint sparsity has been 

proposed in [21]. However, fixed step size cannot estimate the 

real sparsity precisely because this method can only set the 

estimated sparsity to an integer multiple of step size. 

In this paper, a block sparsity adaptive matching pursuit 

(BSAMP) algorithm is further proposed, exploiting the joint 

sparse characteristics of massive MIMO channels, to make 

the proposed CLMMSE algorithm more efficient. When the 

channel sparsity level is unknown, the proposed algorithm 

first selects the atoms by setting a proper threshold and 

finding the position of maximum backward difference 

position. Then the regularized method is used to improve the 

accuracy of atoms selection. The proposed BSAMP algorithm 

reduces the iteration times greatly by exploiting the joint 

sparsity of sub-channels. The sparsity adaptive processing is 

more flexible, for it does not rely on fixed step size, which 

reduces the computational complexity effectively.  

A. Contributions of this paper 

Based on all the descriptions above, we summarize and list 

all the contributions of this paper here:  

First, by utilizing the sparsity of massive MIMO channels, 

a compression based LMMSE channel estimation algorithm 

named CLMMSE is proposed, which gains the channel 

autocorrelation matrix by CS estimated channel prior 

information, solving the problem of obtaining the 

autocorrelation matrix, reducing the complexity of traditional 

LMMSE based channel estimation, improving the spectrum 

utilization compared with pure CS estimation for 5G wireless 

communication systems. 

Second, SVD operation is adopted in the proposed 

CLMMSE algorithm to substitute channel matrix inversion, 

which further reduces the computational complexity 

efficiently. 

Third, a block sparsity adaptive matching pursuit algorithm 

named BSAMP is proposed by exploiting the joint sparse 

characteristics of massive MIMO channels to make the 

proposed CLMMSE algorithm more efficient. 
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Fig. 1. Typical FDD 5G communication scenario 

B. Organization of this paper 

  The reminder of this paper is organized as follows: Section 

II discusses the massive MIMO system model in typical 5G 

communication scenarios. Section III gives the detail 

description of the proposed CLMMSE algorithm and sparsity 

adaptive determination principle. Section IV gives the 

complexity analysis of the algorithms. In section V, a 5G 

massive MIMO system based on 3GPP release 15 evolved 

from LTE-A is established by MATLAB, and simulation 

results and discussions are presented to validate the proposed 

solutions. Section VI gives the conclusion of this paper. 

II.  SYSTEM MODEL 

A typical frequency division duplexing (FDD) 5G 

communication scenario, based on 3GPP release 15 evolved 

from LTE-A, is shown in Fig. 1. The BS is equipped with M 

transmitting antennas, and OFDM modulation is adopted for 

downlink transmission. Suppose the total number of OFDM 

sub-carriers is N, and P sub-carriers (P<N) are selected as 

pilot sub-carriers. The length of the channel is L. Define the 

pilots of the ith transmission antenna as p(i), i=1, 2, …, M, 

and ( ) ( )i j =p p , if i j . Suppose y is the received 

signal after transmission, and y(i) is the abbreviation of y(p(i)) 

corresponding to each antenna. The fundamental channel 

estimation model in the downlink can be formulated as 

( ) ( ) ( ) ( ) ( )i i i i i= +y P F h n
       

      (1) 

where P(i)=diag{p(i)} is the diagonal matrix consisted of the 

selected pilots, n(i) is the additive white Gaussian noise 

(AWGN), 
( ) 2~ ( , )i

Pn 0 I , IP is a P P  identity matrix. 

F(i) is a P L  sub-matrix indexed by p(i) in row and [1, 

2, …, L] in column from a standard N N  DFT matrix, 

where L is the length of the channel. h(i)=[h(i)(1), h(i)(2), …, 

h(i)(L)]T denotes the channel impulsive response (CIR) of the 

ith transmitting antenna. Define A(i)=P(i)F(i), then (1) can be 

written as 

( ) ( ) ( ) ( )i i i i= +y A h n               (2) 

Define supp{h(i)}={l: |h(i)(l)|>gth, 1 ≤ l ≤ L} represents the 

support index of the ith sub-channel and gth is the noise 

threshold. It has been proven in [20] that sub-channels of 

different transmitting and receiving antenna pairs have 

approximately the same channel delay. Because the scale of 

the compact antenna array at the BS is relatively small 

compared with the long signal transmission distance in typical 

massive MIMO geometry, the channels associated with 

different transmitting and receiving antenna pairs share the 

common scatters. In other words, sub-channels between 

different transmitting and receiving antenna pairs have a 

common support set. It can be expressed as 

supp{h(i)}=supp{h(j)}              (3) 

when i≠j, which shows the joint sparse characteristics in 

massive MIMO systems. 

In order to exploit the joint sparsity of MIMO channels in 

all the transmitting antennas, we further define h=[h1
T, h2

T, …, 

hL
T]T, where hj=[h(1)(j), h(2)(j), …, h(M)(j)]T, j=1, 2, …, L is the 

jth block of h. Based on the fact that the position of non-zero 

entries of different antennas are same, we transform the 

received pilot signal as follows. Define y=[y1
T, y2

T, …, yP
T]T, 

where yk=[y(1)(k), y(2)(k), …, y(M)(k)]T, k=1, 2, …, P, and 

n=[n1
T, n2

T, …, nP
T]T, where nk=[n(1)(k), n(2)(k), …, n(M)(k)]T. 

Considering all the transmitting antennas, the received signal 

can be expressed as 

y = Ah +n                  (4) 

where A=[A1, A2, …, AL] is a MP×ML matrix, and M, P, L 

separately represent the number of transmitting antennas, pilot 

sub-carriers and channel length. Aj=[A(1)(j), A(2)(j), …, A(M)(j)] 

is the jth sub-matrix of A where A(i)(j) is the jth column of A(i). 

Formula (4) is the signal model of massive MIMO systems, 

where the CIR h is need to be estimated precisely by channel 

estimation algorithms. 

III.  COMPRESSION BASED LMMSE CHANNEL ESTIMATION 

WITH ADAPTIVE SPARSITY 

A. CLMMSE Channel Estimation 

In this section, we give the description of the proposed 

CLMMSE algorithm to solve the channel estimation problem 

of massive MIMO systems. 

In the traditional LMMSE algorithm, the estimated result 

can be obtained as 

1

LMMSE HH HH N LS
ˆ ˆ( )

SNR

 −= +H R R I H        (5) 

where RHH is the channel autocorrelation matrix. 
2 2

E[ ]E[1 ] = X X is a constant determined by the 

modulation method, where X is the frequency domain data 

information and E[.] represents average energy calculation. 
2 2E[ ]SNR = X is the average signal-to-noise ratio (SNR), 

where 2 is the variance of the noise. IN is a unit matrix. 

LSĤ
 

is the channel frequency domain response estimated by 



 

 

least square (LS) algorithm. 

In (5), traditional LMMSE algorithm gets the channel 

autocorrelation matrix RHH on the assumption that the power 

of the multi-path channel taps obeys negative exponential 

distribution, that the elements in RHH can be calculated as 

max

,

max

2 1
1 exp[1 ( ( ) )]

1
(1 exp( ))[ ]

2
( )

l

rms

m n

rms

rms
rms l

j m n
N

r

j m n
N


 







 

− − − +

=

−

+ −

    (6) 

where 
max  is the largest delay of the channel, 

l  is the 

delay of the lth path and 
rms  is the average delay of the 

channel. However, in actual scenarios, prior information of 

the channel is hard to know, consequently the channel 

autocorrelation matrix is difficult to get. Although we can 

estimate the channel information, high computational 

complexity will be brought in massive MIMO systems for its 

large amount of antennas. 

  The problem stated above can also be solved in another 

way that the elements in RHH can also be calculated by the 

power delay spectrum of the channel as 
1

2

,

0

2
exp( ( ))

L

m n l l

l

r j m n
N


 

−

=

= − −          (7) 

where 2

l  is the power of the lth path tap and l  is the lth 

path delay. Based on formula (7), we obtain the prior 

information by CS based initial channel estimation in this 

paper, to improve the RHH calculation efficiency, which is 

given in the next part. 

  In order to further reduce the complexity of the proposed 

algorithm, we also adopt SVD substitute matrix inversion and 

the channel autocorrelation matrix can be expressed as 

HH

H=R UΛU                 (8) 

where U is a unitary matrix, Λ is a diagonal matrix containing 

K singular values arranged in descending order from large to 

small that (0) (1)... ( 1)K    − , and K is the channel 

sparsity level.  

  By substituting (8) into (5), and replacing LSĤ  by CS 

based estimation result CSĤ , the improved estimation 

formula can be expressed as 

2 1

CLMMSE CS
ˆ ˆ( )H H H −= +H UΛU UΛU UU H      (9) 

Using unitary matrix property, the formula can be written as 

CLMMSE CS
ˆ ˆdiag( ,...,0) H=H U Δ U H         (10) 

where 
2 2 2

(0) (1) ( 1)
diag( , ,..., )

(0) (1) ( 1)

K

K

  

     

−
=

+ + − +
 . 

  Considering all the transmitting antennas, the channel 

autocorrelation matrix of massive MIMO systems is 

expressed as 

1 1 1 2 1

2 1 2 2 2

1 2

H H H H H H

H H H H H H

HH

H H H H H H

...

...

... ... ... ...

...

M

M

M M M M

 
 
 =
 
 
 

R R R

R R R
R

R R R

         (11) 

According to the channel autocorrelation property, highly 

correlated elements have a great impact on the performance of 

channel estimation, while the effect from lowly correlated 

elements is slight. Hence, RHH can be approximately 

expressed in terms of 

1 1 2 2HH H H H H H Hdiag( , ,..., )
M M

=R R R R        (12) 

Based on the former analysis, considering all the transmitting 

antennas, the ultimate channel vector is expressed as 

CLMMSE 1,CLMMSE 2,CLMMSE ,CLMMSE
ˆ ˆ ˆ ˆvec( ) [ , ,..., ]T T T T

M=H H H H (13) 

Formula (13) can further be transformed to 

1 1 1

2 2 2

CLMMSE CS

diag( ,...,0)

diag( ,...,0)ˆ ˆvec( )
...

diag( ,...,0)

H

H

H

M M M

 
 
 

=
 
 
  

U Δ U

U Δ U
H H

U Δ U

  (14) 

where ,CLMMSE ,CS
ˆ ˆdiag( ,...,0) H

i i i i i=H U U H  is the estimated 

channel in frequency-domain form of the ith transmitting 

antenna. The detailed description of the proposed CLMMSE 

algorithm is shown in Table I. 

TABLE I 

THE PROPOSED CLMMSE ALGORITHM FOR CHANNEL 

ESTIMATION 

Input: received pilot signal y, observation matrix A, number of antennas M. 

Output: frequency domain channel estimation vector CLMMSEĤ . 

Step: 

(1)  Calculate the CIR vector hi based on compressive sensing according to the 

signal model (4). 

(2)  Calculate the frequency domain channel autocorrelation matrix H Hi i
R by using 

the obtained channel sub-path delay and tap information. 

(3)  Perform SVD operation on the matrix H Hi i
R according to (10) to obtain the 

diagonal matrix iΛ , and then calculate i by using the statistical 

characteristics of the noise. 

(4)  Perform Fourier transform on hi to obtain the frequency domain channel 

information 
,CS

ˆ
iH . 

(5)  Obtain the final channel estimation result CLMMSEĤ of the whole antennas 

according to (14). 

B. CS Based Initial Channel Estimation 

Since the massive MIMO channel shows sparse 

characteristics [20], compressive sensing algorithm is used in 

this paper to perform the initial channel estimation in the step 

(1) of the proposed CLMMSE algorithm. 



 

 

In the basic compressive sensing principle, it recovers the 

channel h by calculating the correlation coefficient u between 

the measurement matrix A and the observation vector y, 

which can be expressed as 

 ,j j ju u= =u r A             (15) 

where r is the residual of signal recovery, and j=1, 2, ..., N. 

When the atoms conform to the relevant condition, they will 

be selected into the support set S. Then, the LS method is 

performed to recover the original signal and update the 

residual. The estimated signal can be expressed as 

2
ˆ arg min= −

S
h y A h             (16) 

where 
2

 .  denotes the l2-norm, and AS is derived from the 

observation matrix A by seeking the columns corresponding 

to S. Then the new residual is expressed as 

ˆ= −
S

r y A h                 (17) 

Repeat the above process of (15)-(17) until the residual meets 

the iteration quit condition. 

Generally, to calculate the result of (16), greedy algorithms 

can be adopted to solve the following approximately 

equivalent l0-norm minimization problem 

0 2
ˆ arg min  subjet to = − 

S
h h y A h      (18) 

where 
0

 .  denotes the l0-norm, i.e., the number of non-zero 

elements in the channel vector h. 

  1) Sparsity Adaptive Determination: In this section, the 

proposed BSAMP algorithm is given to adaptively determine 

the sparsity of the CS algorithm, which can make the 

CLMMSE estimation more efficient. 
  In (18), reference [26] has proven that when 

0

1
spark( )

2
h A               (19) 

is satisfied, unique recovery of h can be guaranteed, where 

spark(A) is the minimum number of columns with linear 

correlation of matrix A. It can easily be seen that 

2 spark( ) rank( ) +1 A A . Since A is a P L  partial 

Fourier matrix and P L , it can be found that 

0
( 1) / 2P +h . 

Since the CIR of the wireless channel shows sparse 

characteristics, the maximum number of the non-zero channel 

taps is small compared with the channel length L and (19) is 

satisfied. Denote K’ as 

  is even ,
2

=       
-1

,  is odd 
2

P P

K'
P

P







            (20) 

the L-K’ elements of CIR with the smallest power can be 

considered as noise based on the analysis above. 

Greedy algorithms select a fixed number of atoms during 

each iteration. As the number of antennas increases in massive 

MIMO systems, the number of iterations rises dramatically, 

and it incurs an intractably high computational complexity. 

Usually, the power of CIR is higher than that of AWGN. A 

clever thing to do to make a distinguish between the non-zero 

taps and the noise is to find a position with the fastest change 

of power. The selection of atoms can be more flexibility and 

efficiency by finding this position. Therefore, we calculate the 

backward difference between two adjacent elements to choose 

the appropriate entries. Those two elements with the 

maximum backward difference are considered as the 

boundary of non-zero taps and noise. 

Much work has been done to show that convex 

optimization methods can be used in signal recovery to 

further improve the performance [23]. If for the k-sparse 

vector h there is 

( ) ( )
2 2 2

1- 1   +h Ah h          (21) 

where (0,1)  , it is shown that the measurement matrix A 

satisfies the restricted isometry property (RIP). [27] shows 

that when matrix A satisfies the RIP and 2 1  −  at the 

same time, the convex program can exactly recover the 

k-sparse signal. Since the partial Fourier matrix satisfies the 

RIP with the parameter 0.5  [28], the sparse recovery 

problem is equivalent to the convex program, expressed as 

1 2
ˆ arg min  subject to - = h h y Ah       (22) 

Greedy methods are usually fast and easy to implement. 

Numerical evidence [29] suggests that the convex program 

should be more stable than the greedy algorithms. In order to 

guarantee the accuracy of the selection of the atoms, we 

further adopt the regularized method proposed in [30] to 

enhance the performance of the proposed algorithm. [30] has 

proved that the bound for the stability of the regularized 

method has the same form as that of the convex problem. The 

regularized method succeeds with absolutely no prior 

knowledge about the error noise, which magnitude can be 

arbitrary [30], and the method identifies at least one atom of 

the support set during each iteration. 

  2) BSAMP Based Initial Channel Estimation: In this 

subsection, the proposed BSAMP algorithm is applied to 

massive MIMO systems to do sparsity adaptive initial channel 

estimation. 

Eq. (4) can be solved by CS exploiting the joint sparse 

characteristics of h. Let both sides of (4) multiply AH, where 

AH is the conjugate transpose of matrix A, then 

          
( )

       ( )

H H

H H

= +

= + − +

A y A Ah n

I A A I h A n
 

      ( )H H= + − +h A A I h A n           (23) 

where I is a ML ML  unit matrix. Since the observation 

matrix A is not strictly orthogonal generally, 
H −A A I  is a 

non-zero matrix with small element values and ( )H −A A I h  

represents the energy dispersion caused by the 



 

 

non-orthogonality. Let ( )H H= − +n' A A I h A n , then formula 

(23) can be rewritten as 

H = +A y h n'                 (24) 

Then, calculate H=R A r , where r is the iteration residual 

indicating the residual energy of CIR after each iteration, and 

|.| means taking element-wise absolute values. Let T be a 

1L  vector with its ith entry computed as 

2

( 1) 1
( ) ( ) , 1,2, ..., ,

                                          1, 2,...,

j M

j M
T i R i i ML

j L



−  +
= =

=


      (25) 

where R(i) is the ith element of R. Then sort T in descending 

order to obtain Ts, and denote the corresponding permutation 

vector by S1. 

Since a recovery algorithm should be stable, it should be 

able to approximately recover the original signal from these 

perturbed measurements. From the analysis above, set 
2E{[ ( )] , 1, 2, ..., }sf T i  i=K'+  K'+  L=

 
as a threshold, then the 

elements in Ts, whose power is not less than f, are selected 

into the support set. 

At each iteration of the proposed BSAMP algorithm, we 

calculate the maximum backward difference of the elements 

in Ts and denote its position as t. Then the non-zero taps can 

be selected by t, and then regularize this set to improve its 

accuracy [30]. In this case, the power of the selected atoms is 

much larger than that of the unselected ones. The detailed 

description of the proposed BSAMP algorithm is shown in 

Table II. 

TABLE II 

THE PROPOSED BSAMP ALGORITHM FOR INITIAL CHANNEL 

ESTIMATION 

Input: received pilot signal y, observation matrix A, number of antennas M. 

Output: channel estimation vector ĥ . 

Initialization: block support set index 
1
=S , support set index 

3
= S , 

ĥ =0, threshold f=E{[Ts(i)]
2, i=K’+1, K’+2, ..., L}, residual r=y. 

Iteration: 

(1)  Calculate vector T according to (25) and sort it in descending order to obtain 

vector Ts and S1. 

(2)  Select the elements in Ts whose energy is larger than the threshold f, and set the 

number of elements be m. If m=0, exit; otherwise, go to step (3). 

(3)  Calculate the maximum backward difference between adjacent elements in 

Ts(1:m+1), and denote its position by t. 

(4)  Do regularization to Ts(1:t). Define e=Ts(1:t) and J=S1(1:t). Sort e into some 

groups according to ( ) 2 ( ) , ,i j i j e e J , and choose the group with the 

maximal energy. Define V as the index vector of the selected atoms. Then 

 
3 2

( ( ) 1) 1: ( )k M k M=  − +S S V V , 1, 2,...,k U= , where U is the length 

of the vector V. 

(5)  Seek the columns in the observation matrix A corresponding to
3

S , and denote 

them as
2

S
A . 

(6)  Calculate the channel estimation vector by the LS algorithm, where 

2 2 2

1ˆ )H H−

S S S
h = (A A A y . 

(7)  Update the residual by 
2

ˆ= −
S

r A hy , set 
1
=S , =V and return to step 

(1). 

BSAMP 

Estimation

RHH 

Calcula tion

SVD 

Operation

CLMMSE 

Estimation

HBSAMP

HBSAMP

  Fig. 2. Diagram of proposed BSAMP based CLMMSE algorithm 

IV.  ALGORITHM DIAGRAM AND COMPLEXITY ANALYSIS 

A. BSAMP based CLMMSE Channel Estimation 

In this section, we give the intact diagram of the proposed 

BSAMP based CLMMSE algorithm stated above, as show in 

Fig. 2, and compare its complexity with the traditional 

LMMSE algorithm and the OMP (typical CS algorithm with 

low computational complexity) based CLMMSE algorithm, to 

indicate the implementation difficulty, in terms of times of 

multiplication and addition operation. 

Based on the assumption that the channel length is L and 

the channel sparsity level is K ( K L ), the complexity of 

the traditional LMMSE algorithm is O(2L3), which mainly 

comes from the calculation of the channel autocorrelation 

matrix and the matrix inversion operation, and O(.) represents 

the main complexity of the algorithm. Specifically, the 

number of multiplication in the LMMSE algorithm can be 

calculated as 2L3+4L2+PL. Since the CLMMSE algorithm 

uses the priori channel information provided by CS theory, 

when the CIR is initially estimated by OMP algorithm with 

P/2 iterations (a fixed experience value), the computational 

complexity of OMP based CLMMSE is O(P2L/2), and the 

specific number of multiplication is 2K3+4K2+PK+PL(P+1)/2. 

When the CIR is initially recovered by using the proposed 

BSAMP algorithm with R iterations ( / 2R K P  ), the 

calculation complexity is reduced to O(RPL). Specifically, the 

number of multiplication in the BSAMP based CLMMSE 

algorithm is 2K3+4K2+PK+RL(P+1). The complexities of the 

proposed and traditional algorithms are listed in Table III. 

TABLE III 

COMPLEXITIES OF THE PROPOSED AND TRADITIONAL 

ALGORITHMS 

Algorithms Multiplications Additions 

LMMSE 2L3+4L2+PL 2L3+4L2+(P+4)L 

OMP-CLMMSE 2K3+4K2+PK+PL(P+1)/2 2K3+4K2+(P-2)K+P2(L-1)/2  

BSAMP-CLMMSE 2K3+4K2+PK+RL(P+1) 2K3+4K2+(P-2)K+RP(L-1)  

 

From above analysis, it can be seen that since K L  and 

/ 2R K P  , the complexity of BSAMP based CLMMSE is 

much lower than that of LMMSE, and also lower than that of 

OMP based CLMMSE. The complexity of the proposed 

channel estimation algorithm is based on the block channel 

sparsity K, the channel length L, the pilot number P and the 



 

 

iteration time R. As the four parameters being larger, the 

complexity of the algorithm increases correspondingly. 

B. BSAMP Based Initial Channel Estimation 

In this section, we separately give the complexity analysis 

of the proposed BSAMP algorithm and other reconstruction 

algorithms of CS in terms of iteration times and atoms 

searching time. 

OMP algorithm, the most representative CS algorithm, is 

simple to operate and has fast convergence speed. But the 

channel sparsity is needed as a priori information in order to 

recover the original signal accurately. During each iteration 

process, the atom with the biggest correlation coefficient is 

selected into the support set, and then LS algorithm is used to 

calculate the signal and update the residual. The channel state 

information is recovered after K iteration times. 

The iteration process of SP algorithm, another 

representative CS reconstruction algorithm, is very similar to 

that of OMP algorithm. The difference is that the atoms with 

K biggest correlation coefficients will be selected into the 

support set during each iteration, which makes it more 

efficient than OMP. 

Both OMP and SP need the channel sparsity level as a 

priori information to recover the original signal accurately. 

However, the channel sparsity level K is usually unknown in 

actual situations. Artificially setting a fixed and large 

experience value to K, will bring invalid iteration operation 

and a low computational efficiency. 

  To solve this problem, SAMP algorithm recovers the 

original signal by adjusting the iterative step adaptively, 

according to the change of the signal residuals during the 

iteration. Fig. 3 shows the conceptual diagram of the SAMP 

algorithm in the kth iteration. Here, rk represents the residue, 

Ck and Fk represent the candidate set and the final support set 

of the estimated signal, respectively. It is quite similar to that 

of the SP algorithms except that the sizes of candidate set |Ck| 

and final set |Fk| are adaptive. The estimation process could 

be divided into multiple stages, each of which contains 

multiple iterations. |Fk| is kept fixed for iterations in the same 

stage and increased by a step size s≤K between two 

consecutive stages. The number of atoms selected into the 

support set is equal to the iteration step size. At the same time, 

the algorithm can eliminate the atoms which are not conform 

to the iteration condition. If the residual calculated at one 

stage is bigger than that of the previous stage, the algorithm 

will enter the next stage and adjust the iteration step size 

accordingly. The size of the final support set matches the 

signal sparsity, and the signal recovery process is completed. 

The sparsity adaptive processing of ASSP, which utilizes the 

block sparse characteristics of massive MIMO channel, is like 

SAMP. However, these methods using fixed step size cannot 

estimate the real sparsity precisely, because they can only set 

the estimated sparsity to an integer multiple of the step size. 

Prelim Test Candidate Ck Final Test Update Fk

Update 

Residual rk

|Ck| adaptive |Fk| adaptive

Fk-1rk-1

  Fig. 3. Diagram of original SAMP algorithm 

Correlation 

Test
Final Test Update Fk

Update 

Residual rk

|Fk| adaptive

Fk-1rk-1

  Fig. 4. Diagram of proposed BSAMP algorithm 

The diagram of the proposed BSAMP algorithm in the kth 

iteration is shown is Fig. 4, which combines the speed and 

ease of implementation of the greedy algorithms with the 

strong guarantees of the convex program methods. It takes 

advantages of two major approaches to channel estimation: 

firstly, the atoms with the biggest power are picked by setting 

the proper threshold and finding the boundary position in AHr; 

secondly, the regularized method based on convex program 

during each iteration ensures that the selected atoms are 

disjoint from those selected from the last one, which further 

make sure the support is selected correctly. 

Besides, the proposed BSAMP algorithm reduces the 

iteration times greatly by exploiting the joint sparse 

characteristics of sub-channels in massive MIMO systems. 

The sparsity adaptive processing is more flexible and it does 

not rely on fixed step size. During each iteration, at least M 

atoms can be selected into the support set, which reduces the 

computational complexity effectively. 

V.  SIMULATION EXPERIMENT 

In this section, the performance of the proposed channel 

estimation algorithm is evaluated via MATLAB simulation 

which offers a theoretical basis for hardware implementation. 

In this simulation, a massive MIMO-OFDM system with 64 

transmitting antennas is constructed. The main system 

parameters are shown in Table IV, and they are forward 

compatible with the existing FDD-LTE standard defined by 

LTE-A and suitable for 3GPP release 15. Here, 64QAM 

modulation and low density parity check (LDPC) encoding 

are adopted. The number of total sub-carriers is 256, where 

16 are the pilot sub-carriers. The sub-carrier frequency 

interval is 15 KHz. The length of cyclic prefix of transmitted 

OFDM symbols is 64. In addition, although channel models 

are recommended in the LTE standard, the proposed 

algorithm is more suitable and applicable to sparse massive 

MIMO channel recovery. Thus, according to [21], a channel 

model with length 60 is considered, which includes 4 to 8 

valid paths dynamically changing as time. The positions of 

non-zero paths are uniformly distributed and the tap 



 

 

coefficients follow Rayleigh distribution. To maximize the 

performance of channel estimation, pilot sub-carriers of the 

system are selected randomly for each antenna. 

In the following part, the proposed channel estimation 

algorithm will be applied to the constructed massive MIMO 

system. By using Monte Carlo simulation, mean square error 

(MSE) curves and running times will be firstly given to show 

the estimation accuracy and efficiency separately. And then, 

constellations and bit error rate (BER) curves will also be 

given to indicate the performance of the system adopting the 

proposed algorithm. In order to make a contrast, other 

existing channel estimation algorithms are also simulated. 

TABLE IV 

SYSTEM PARAMETERS 

Parameters Values 

Transmitting antennas (M) 64 

Total sub-carriers (N) 

Pilot sub-carriers (P) 

256 

16 

sub-carrier interval 15 KHz 

Channel length (L) 60 

Channel sparsity (K) 

Digital modulation 

Channel encoding 

[4,8] 

64QAM 

LDPC 

A. Performance of BSAMP Based Initial Channel Estimation 

Fig. 5 demonstrates the MSE performance of different CS 

based channel estimation algorithm versus the SNR through 

1000 runs. The MSE of the traditional LMMSE algorithm is 

illustrated as a benchmark, which shows the optimal 

performance, for the exact locations of non-zero channel taps, 

the channel autocorrelation matrix and the noise variance are 

known as prior information. It can be observed that the 

algorithms exploiting joint sparse characteristics of 

sub-channels outperform the algorithms using individual 

sparse channel estimation. OMP and SP algorithms need to set 

the iteration times as half of the channel length when the 

channel sparsity is unknown, which reduces the precision of 

the algorithms greatly. SAMP algorithm does not need the 

priori knowledge of the channel sparsity level, but the fixed 

step size will degrade the estimation accuracy. By exploiting 

the joint characteristics of sub-channels, ASSP and BSAMP 

algorithms outperform others under the same SNR. BSAMP 

algorithm uses the regularized method to further enhance the 

channel estimation and eliminates the precision descending 

caused by the fixed step size, thus it has better performance 

than ASSP algorithm. The MSE of the proposed BSAMP 

algorithm is about 3×10-3 when the SNR is 25 dB. 

Fig. 5. MSE performance of different CS algorithms 

Table V illustrates the average running time of different 

channel estimation algorithms with 1000 trails. We can see 

that although the OMP and SP algorithms cannot achieve 

sparsity adaptive processing, these two algorithms perform 

better in computational efficiency compared with the SAMP 

algorithm. The SAMP algorithm does not exploit the joint 

sparse characteristics of MIMO sub-channels and estimates 

the channel information individually by fixed step size, which 

causes high computational complexity due to the large scale 

of aggregate channel vector. By contrast, the ASSP algorithm 

and the proposed BSAMP algorithm utilize the joint sparsity 

of the sub-channels and can recover the information of 

multiple antennas at the same time during each iteration. 

Moreover, the sparsity adaptive processing of the BSAMP 

algorithm is more flexible that it does not rely on fixed step 

size which exhibits significant computational efficiency than 

other CS algorithms. From the table, it can be seen that the 

average running time of the BSAMP algorithm is 0.01284 s, 

which is only about 0.56% and 0.1% of that of OMP and 

ASSP separately. 

TABLE V 

AVERAGE RUNNING TIME OF DIFFERENT ALGORITHMS 

Channel Estimation Algorithms Average Running Time (s) 

OMP 2.2887 

SP 1.1069 

SAMP 93.393 

ASSP 13.207 

BSAMP 0.01284 

B. Performance of BASMP Based CLMMSE Channel 

Estimation 

Fig. 6 shows the MSE performance of the proposed 

BSAMP, BSAMP based CLMMSE and traditional LMMSE 



 

 

Fig. 6. MSE performance of proposed CLMMSE algorithm 

Fig. 7. MSE performance of different CS algorithms based CLMMSE 

versus the SNR. It can be seen that compared with the pure 

BSAMP, the BSAMP based CLMMSE algorithm has better 

performance, especially in lower SNR conditions. As the SNR 

increasing, the performance of BSAMP based CLMMSE gets 

close to that of pure BSAMP, and both of them are close to 

that of LMMSE. When the SNR is 25 dB, the MSE of 

BSAMP based CLMMSE gets 2×10-3. 

It investigates that the anti-noise performance of the 

proposed CLMMSE algorithm outperforms existing pure CS 

based channel estimation that is benefit for solving the pilot 

pollution problem. Although the performance of the proposed 

algorithm is slightly lower than that of the traditional 

LMMSE, it is in exchange for a significant increase in 

computational efficiency at an acceptable performance cost. 

Fig. 7 shows the MSE performance of channel estimation 

algorithms versus the SNR, after applying different CS 

algorithms to CLMMSE. As can be seen, the performances of 

all the CLMMSE algorithms are lower than that of traditional 

LMMSE. However, the proposed BSAMP based CLMMSE 

has the most similar performance, which is obviously better 

than other ones, with that of LMMSE in all the CLMMSE 

algorithms. 

(a)                       (b) 

 

 

 

 

 

(c) 

Fig. 8. Constellations of received data using different CS based CLMMSE. (a) 

SAMP-CLMMSE. (b) ASSP-CLMMSE. (c) BSAMP-CLMMSE. 

 

Fig. 9. BER performance of system using different CS based CLMMSE 

C. Performance of CLMMSE Based 5G System 

Fig. 8 (a) (b) and (c) separately shows the received signal 

constellation of the constructed system with 64QAM, by 

using CLMMSE channel estimation based on different 

sparsity adaptive CS algorithm (SAMP, ASSP, and BSAMP), 

when the SNR is 25 dB. It can be seen that the BSAMP based 

CLMMSE algorithm can recover the data with higher quality, 

compared with the ASSP based algorithm, while it is a little 



 

 

serious for SAMP that the constellation obviously diffuses. 

In Fig. 9, the BER performance of the system versus the 

SNR is given, using different channel estimation algorithms. 

As can be seen, the BERs of the system using different CS 

based CLMMSE are lower than that of the system adopting 

traditional LMMSE. However, the system utilizing the 

proposed BSAMP based CLMMSE has the most similar BER 

performance, which is obviously better than other ones, with 

that of the LMMSE based system. When the SNR is 25 dB, 

the BER of the system with the proposed algorithm is 1×10-3, 

which guarantees the communication reliability of the system. 

D. Application and Implementation Introduction 

From the above simulation experiments, the proposed 

sparsity adaptive CLMMSE has great advantages in 

estimation accuracy and computational complexity, compared 

with other existing algorithms. By applying it to the existing 

FDD-LTE communication system, the pilot overhead can be 

reduced and the spectrum efficiency can be enhanced. For the 

further 5G systems with larger antenna scale, it can also be 

utilized as an economic estimator. In the FDD massive MIMO 

system shown in Fig. 1, the pilots are transmitted in the 

downlink, and the proposed channel estimation algorithm is 

performed at the UE side. To obtain a high spectrum 

efficiency, the design of pilot number should be taken into 

consideration, meanwhile the channel estimation performance 

should be continuously improved under limited pilot 

overhead. 

On the other hand, to realistically implement the proposed 

channel estimation algorithm, the issue of hardware 

complexity should be carefully taken into account just as the 

analysis given in part IV, and the power consumption is 

normally proportional to the computational complexity. In 

order to show the implementation difficulty, based on the 

system parameters given in table IV, all the variances in table 

III are set to be specific values that K=8, L=60, P=16 and R is 

supposed to be the upper limit 8. Therefore, it can be 

calculated that the number of multiplications and additions of 

traditional LMMSE algorithm is 447360 and 447600 

separately, while that of the proposed BSAMP based 

CLMMSE algorithm is 9568 and 8944 separately, which is 

only about 2.1% and 2.0% of that of LMMSE. 

VI.  CONCLUSION 
In this paper, a compression based LMMSE algorithm 

named CLMMSE is proposed to recover channel state 

information, which is a challenging problem for massive 

MIMO in 5G systems. The channel is firstly estimated by 

applying CS theory and the channel autocorrelation matrix is 

calculated based on the initial estimation. SVD is also utilized 

to substitute the matrix inversion operation. Furthermore, in 

the process of CS based initial channel estimation, a sparsity 

adaptive determination method named BSAMP is also 

proposed, which is achieved by setting a threshold and finding 

the position of the maximum backward difference. 

Theoretical and simulation analyses demonstrate that in the 

constructed 5G system, the proposed CLMMSE algorithm can 

keep the balance between performance and complexity. On 

condition of same pilots overhead, the proposed algorithm has 

an improved accuracy compared with existing pure CS based 

algorithms, which is benefit to improve the system spectrum 

utilization. When the SNR is 25 dB, the MSE of BSAMP 

based CLMMSE gets 2×10-3. It is also investigated that the 

system utilizing the proposed BSAMP based CLMMSE 

channel estimation algorithm can achieve more excellent BER 

performance and much higher computational efficiency than 

those using other CS based CLMMSE. When the SNR is 25 

dB, the BER of the system with the proposed algorithm can 

get 1×10-3, which guarantees the communication reliability of 

the system. On the other hand, with a little loss of 

performance compared with the traditional LMMSE 

algorithm, the computational complexity is reduced from 

O(2L3) to O(RPL), which is very important for massive 

MIMO systems to maintain an acceptable hardware cost. 

In the future work, the proposed algorithm is planned to be 

implemented in an USRP based hardware experiment 

platform and the actual performance will be tested. 

Meanwhile, this algorithm will be optimized by furtherly 

exploring the sparsity of the massive MIMO channel and 

utilizing the correlation of the channel in time, frequency and 

spatial domain. 
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