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Abstract

This paper proposes a simple anti-windup mechanism for aeimedference adaptive
control scheme subject to saturation constraints. Thewantup compensator has, in
essence, the same structure as posjtivaodification for the same class of systems. It
is shown how this structure can, under certain circumstrdigplay characteristics sim-
ilar to anti-windup schemes proposed for linear controtays. In particular, it is shown
that if the (unknown) ideal control signal eventually liegshin the control constraints, then
the response of the adaptive control system will converghdbof the reference system
- provided certain conditions are satisfied. The papertithiss the challenge of designing
anti-windup compensators for model-reference adaptimrcobsystems.

Key words: adaptive control, anti-windup, saturation

1 Introduction

Model reference adaptive controllers (MRAC) are well knawthe adaptive con-
trol community [10,2] and are an appealing way to design aadapontrol systems.
The central idea is to use the error between the state-veftfoe model system and
that of the real system to govern adaptation of the contrgiens. The field has
become reinvigorated recently thanks to reports of thessffiof MRAC-type con-

trollers on real systems - see for example [31,4,1,21,2d]raferences therein.
Unfortunately, as with most control systems, MRAC systenmasvalnerable to the
effects on input saturation and, in fact, adaptive systeppear to be especially
sensitive to saturation because the nonlinearity not celyges traditional wind-up
effects, described in the books [9,7,32,25], but also gasrthe manner in which
the controller parameters are updated [2] - delivering aulde whammy” to the

adaptive controller.

Researchers have long been aware of the sensitivity of i@dagmintrollers to in-
put saturation and many papers have appeared on the togR3s22,15,14,29,27]
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and references therein for more detail. Most of these papegse approaches to
reducing saturation problems in adaptive systems whichodiéofiow a traditional
anti-windup structure which has long been used in lineatrobsystems. The ad-
vantage to the traditional anti-windup approach is thedefined, two-part struc-
ture: the main (baseline) controller is solely respondiistabilisation and perfor-
mance when saturation does not occur; in the event of setnran additional ele-
ment (the anti-windup compensator) then becomes activelteed improved per-
formance and enhanced stability properties. The anti-wpr@bmpensator remains
inactive unless saturation occurs and, once saturatiomes allows a “graceful
recovery” of the un-saturated behaviour [18,26,30]. Thagteof the anti-windup
compensator isompletely separatieom that of the baseline controller.

The anti-windup approach has not been pursued as much indhé @f adaptive
control because, as this paper illustrates, it can be difficdemonstratéonafide
anti-windup-like properties for adaptive control systefisere are exceptions of
course and we refer the reader to the work by [13] which repamtadaptive con-
trol scheme for indirect adaptive controllers, the soeshipseudo-hedging tech-
nique described in [12] and elsewhere, and the techniqengi/[17]. In addition,
a recent paper reports the development of a so-called nmefé¥kence anti-windup
(MRAW) scheme for MRAC controllers but the architecturetustscheme is com-
plicated and the properties this scheme bestows upon teed:loop is difficult to
discern. In fact, for linear systems the development of a MRgcheme requires
one to have a reasonably good ([28]) model of the plant; in MRAis model
is assumed to be unknown so the generalisation of this to MB&@mes is not
straightforward.

This paper proposes an anti-windup scheme for MRAC schentesualike many
adaptive schemes addressing input saturation, attemgeefothe architecture of
the scheme as simple as possible. The only extra dynamrcslutded to the sys-
tem is an additional controller gain to be adapted when igattiration occurs.
In fact, one can see that the architecture of the anti-wirstilygme is, in essence,
the same as the “positiyve modification” proposed recently [19] and generalising
earlier work [15]. However, using ideas from anti-winduprgeensation (in partic-
ular those introduced in [26] - see also [32,5]) it can be ptbthat the scheme,
under certain circumstances, allows statements abouetiwwery of un-saturated
behaviour to be made. Note in [19] it was proved that the dsetween the ideal
model state and the plant state vilmsindedorovided the reference and initial state
satisfied certain bounds. Here, it will be proved that, unéetain assumptions, the
error between the ideal model state and the plant stateanlfergeprovided that,
roughly speaking, the ideal control signal is within the ttohbounds in steady
state. This property is much more aligned with the spiritraflitional anti-windup
compensation.



1.1 Notation

Notation is standard throughout. A positive (negative)rdefimatrix M is denoted
M > 0 (< 0). The scalar saturation functienty(.) : R — [—u, u] is defined as

saty(u) = sign(u) min{|u|,u} « >0 (1)
The scalar deadzone functi®z;(.) : R — R is defined as
Dzg(u) = sign(u) max{0, |u| —a} uw>0 2)
The saturation and deadzone functions satisfy the identity
satg(u) + Dzg(u) = u (3)

Note that both functions are globally Lipschitz with a Lipge constant of unity,
meaning that

[p(21 + 22) = P(w1)|| < lwall V25 € R (4)

whereg(.) is either the saturation or the deadzone function.

A signalz(t) is said to belong the Lebesgue spaGsf its £, norm is finite, i.e.

foll o= ([ e Par)* < o ©)

Similarly a signal is said to belong to the Lebesgue spaceif its £, norm is
finite, i.e.
[z ]|o == sup max |z;(t)[ < oo
t>0 ¢

2 Preliminary results

Several results will be used in the proof of the main resiest of these are
standard results in nonlinear control [16], but there a@particular results which
are introduced below.

Lemma 1 Consider the deadzone nonlinearity (2) andiét) be some continuous
scalar function such thakt(¢) € [0, k] for all ¢t > 0 and somé: > 0. Then we have

IDza[k(t)u]l| < [Dzalku]l| Vu e R (6)

Proof: The proof proceeds on a case by case basis:



(i) |k(t)u| < u. In this case
Dz [k(t)ull| = 0
so if either|ku| < @ or |ku| > w, the inequality in the theorem follows.
(il) |k(t)u| > w. In this case

[Dzalk(t)ulll = [[k(t)ul] —u (7)

< |lkul - u 8)

= || Dzg[kul]| 9)

which is exactly the inequality in the lemma. O

The results in this paper will be developed for plants of thref below
& = Az + Blsat(u) (10)

whereA € R, B € R™ and)\ is a positive scalar. The following straightforward
lemma will be used to derive the main results.

Lemma 2 Consider the plant dynamics (10).Afis Hurwitz, then the state(¢) is
bounded for alks(¢) € R.

Proof: The proof is similar to the first part of the proof of Theorerm119]. Let
P, solve the Lyapunov equation

A/PA+PAA =—Q4<0

Let V(z) = 2’ P4z and differentiate it along the trajectories of (10). Thislgs

V(z) = —2'Qax + 2! P4\ Bsat(u) (11)
< Ain( Q)] + 2A |2 [ P B (12)
< —[[2l|(Amin (Qa)l[x]] = 2A[| PaB]a) (13)

It can then be proved that(t) will converge to a ball surrounding the origin by
application of Lemma 5.1 of [16]: the state is ultimately bded. O

In the next section, the concept of well-posedness is impbrA feedback system
is said to be well-posed if unique solutions exist to the bemtt equations. Well-
posedness issues often arise when the output equation deedback element
has the implicit formy = f(y, z). If there exists a unique solving this implicit
equation, well-posedness can often be inferred.

Remark 1: Even in the case thal, B and A\ are perfectly known, the analysis
of the system (10) is not trivial. There is much discussiothi literature on the
conditions under which, for a givan= F'z, the system (10) is stable - see [20] for
a good overview. O



3 Main results

Consider again the plantin equation (10). The followingiagstion is made through-
out the paper. This assumption is restrictive but compatibth that made in [19].

Assumption 3 A is Hurwitz but unknownB is perfectly known; and is unknown
but positive.

The reference model is given by the dynamics

&y = Ay + B (14)

In order for the reference model to be compatible with thenfpthe following
assumption is made

Assumption 4 There exist a matri¥; € R'*™ and a scalarK’* such that

A=A+ BAK® B, = B\K} (15)

Note that only the existence &f* and K is required; they are typically not known
a priori. Assumption 4 is restrictive and is well known to limit thepfipability of
MRAC to plants with a very particular structure. Again, ittempatible with that
made in [19]. In the absence of saturation, that isif u(¢)) = u(t) in equation
(20), itis well known (see for example [10,19]) that the atlagcontrol law

u = Klx+Klr
K, = —T',z(¢/PB) T, >0 (16)
K, =-Tr(¢PB) I,>0

ensures convergence of the ere@t) := z(t) —z,.(¢) and boundedness of the gains
K,(t) and K, (t) whereP > 0 is the solution to the Lyapunov equation

AP+ PA,=-Q <0 (17)

Unfortunately in the presence of input saturation, whencthr@rol law (16) is ap-
plied the plant (10), error convergence is not guaranteestead, the following
control law, which has a natural anti-windup structure riggosed:

u = K;x + [A(;r — p(z, xp)Dz(u)

K, = —T,z(¢/PB) I, >0

. (18)
K, = -TI',r(e'PB) >0

K, = —Tu(1 + p(z, 2))Dz(u) (¢ PB) T, >0



where the error now is formed between the plant state and afistbdeference
model:e(t) = z(t) — x,,(t) where

G = AT + B — B(1 4 p(z, 2,,)) K Dz(u) (19)

This control structure, initially, appears to be differémthe scheme proposed in
[19], but it is essentially the same with “anti-windup” ntten. The attractive fea-
ture of the control system (18)-(19) when written in the abform is that a classic
anti-windup structure may be observed: in the absence wifegain i.e Dz(u) = 0,
the original unsaturated control law (16) is recovered #tg “anti-windup” terms
in the control law and the reference model are only activatex® saturation occurs
i.e. Dz(u) # 0. The aim of the remainder of the section is to prove that therin
connection of the plant (10) with the controller (18)-(19sares the plant state,
approaches the ideal model state (14) provided some adalittonditions are sat-
isfied. The functionu(.,.) : R* x R" — R is a static anti-windup term, similar to
that found in static linear anti-windup schemes. In [19is term was chosen as a
constant scalai(z, =,,,) = pand, as demonstrated in [19], it can be tuned to bestow
good performance upon the system. The extra adaptivelﬁ’q;(m) in the reference
model state equation is present to alter the evolution of¢fe¥ence model during
saturation; it gives information about saturation to thfenence model and is cru-
cial for proving convergence in the results given lateruFégl shows a schematic
of the the proposed scheme.

- -V
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Fig. 1. Schematic of modified adaptive anti-windup schenseideed by equation (18).
The model is described by equation (19).

The first result is a stepping stone to the main result.

Proposition 5 Consider the interconnection of the plant (10), the comdro(18)
and the dynamics (19) and let Assumptions 3 and 4 be satigfgstime further
that u(z, z,,,) is such that the interconnection is well-posed; L., and that there
exists ak} = A. Then the signals = = — z,,, K,, K, and K, are all bounded
and furthermorémHoo e(t) =0.



Proof: For simplicity in notation, the arguments pfz, x,,) are suppressed.

¢ = Az + Bsat(u) — A2y — Bor + BK! (1 + p1)Dz(u) (20)
— Az + Blsat(u) — ATy — Bpr + BKX(1 + p)Dz(u) + B(1 + p)(K! — K*)Dz(u)
(21)

Defining AK! := K/, — K*, then gives

¢ = Ax + Blsat(u) — A2y — Byr + BKE(1+ p)Dz(u) + BAK, (1 + p1)Dz(u)

(22)

= Ax + BAu — BADz(u) — A,y — Byr + BK (1 + 1)Dz(u) + BAK, (1 + p1)Dz(u)
(23)

= Az + BA\u — Ay — Br + BAuDz(u) + BAK! (1 + pu)Dz(u) (24)

where the identity (3) has been used, along with the assom{itat there exists a
K = \. From the expression farin (18) it follows that

¢ =Ax + BAK'x + BAK!r — A, x,, — Bpr + BAK! (1 + 1)Dz(u)  (25)
Adding and subtractin@\(Kx + Kr), then gives

¢ = (A+ BAK})x + BAKr + BAAK.x + BAAKr — Ay, — By + BAK! (1 4 p)Dz(u)
(26)
= A,e + BAAK.x + BAAK,r + BAK, (1 + p)Dz(u) (27)

whereAK! := K! — K*, AK’ := K — K* and Assumption 4 has been used.
Next, choose the Lyapunov function

V =¢Pe+ AAK.T,'AK, + \AK/T,AKr + AK,I',AK, (28)

After using the adaptive updates from equation (18) and temu#27), the time
derivative of the Lyapunov function (28) is given by

V =¢(PA, + A,P)e=—¢'Qe (29)

From this it follows that, AK,, AK, andAK, are bounded and then thit,, K.,
and K, are also bounded. To prove convergence(¢f Barbalat's Lemma needs
to be applied and to do thig needs to be proven uniformly continuous. First note
that the control signal is given by

u=K'z+ K'r — uDz(u) (30)
Writing Dz(u) = o(u)u whereo (.) : R — [0, 1) then allows us to re-write this as

u = k(u)[K.x + K'r] (31)



wherer(u) = (1+0(u)u) . Because the systemis assumed to be well-peged,
exists and is unique for all € R. Thereforey will be bounded if: bounded, ag,
and K, are bounded as proved above anis bounded by assumption. However,
by Assumption 3A is Hurwitz, so from Lemma 2y is bounded.

Therefore, referring to the equation (27), it follows that L., since all terms on
the right hand side are bounded. Next note that

V =—¢Q¢

which impliesV" is uniformly continuous and thus th&t(t) converges to zero by
Barbalat’'s lemma. This then implies thdt) converges asymptotically sincgis
positive definite. O

Remark 2: Convergence of the error depends on the system being wedigoand
henceu(z, z,,) being chosen such thatw) exists and is unique. This will be the
case if, for example is simply a scalar such that> —1. O

Proposition 5 does not imply convergencedeal behaviour: it simply says that the
error between the plant stat¢t) will converge to the state of the model (19). Note
that the model (19) isotthe ideal model; it has been modified by the anti-windup
term BK' (1 + pu(x))Dz(w). In fact we would like to prove that

tllglo en(t) = 0 wheree,, = z,,, — (32)
If equation (32) holdse,, converges to zero, which implies, converges ta,,
which is the state of the ideal model (14). Proposition 5 Hesady proved that
thatx converges ta,,, so equation (32) then implies thatwill converge tox,.
The following result establishes conditions under whidgh tionvergence can occur.
This is a natural generalisation of the “graceful returniner behaviour” sought
in anti-windup compensation for linear control systemg[18

Proposition 6 Consider the interconnection of the plant (10) and the caller
(18)-(19) and let Assumptions 3 and 4 be satisfied. Assung:thaz,,) is such
that the interconnection is well-posed and also that, x,,) € [0, x| forall z, z,, €
R™ and some: > 0. Also assume € L., and that there exists & = \. Then
lim, ., e,,(t) = 0 if the following conditions are also satisfied:

(1) Dz(u*) € Lo

(2) Au e L,
whereu* := Kz(t)+ K r(t) andAu := AK,(t) z(t)+AK,(t)'r(t), andA K] (t)
andAK,(t) are as defined earlier.

Proof: Frome,, = z,, — =, we have that
ém = Apme — B(1+ p) K Dz(u) (33)

Now, from equation (31) we have



u = r(u) (K;xjtf(:r—i—AK;x—i—AK;'r) (34)

=u* =Au

By the well-posedness assumption suehexists and is unique. Furthermore, be-
causeu(z, z,,) > 0, then||x(u)|| < 1. Using this expression far in (33), gives

ém = Ape — B(1 + ,u)f( Dz[k(u)(u* + Au)] (35)
= Ape — B(1 + p) K, (Dz]r(u)(u* + Au)] — Dz[k(u)u*])
~ B+ p) KDl (36)

Next, forming a Lyapunov functiol.(e,,) = e/, Pe,,, we obtain

Vi(em) = €. Qe — 2¢. PBK, (1 + 1) (Dz[s(u) (v + Au)] — Dzlk(u)u*])

—2¢! PBK,(1 4 p)Dz[k(u)u’] (37)
< —€pQem + 2lenll| PBI I KI(1 + )| Aul| + 2llen || PB]| Hf(uH(l(Jr gft)HDZ[H(U)U*]H
38

where in the inequality we have used the Lipschitz propefrth@ deadzone men-
tioned in Section 1.1. Proposition 5 implies that thatis bounded, viz| K, (¢)|| <
¢, forall ¢ > 0 and some:,, > 0. Therefore we have

Ve(em) < —€1,Qem + 2llen| | PBlleu(L + )| Aull + 2llew||| PBleu(1 + f)||Da(x(u)u”) |
(39)

Next, because thdt:(u)|| < 1, Lemma 1 then can be applied to obtain

Ve(em) < — er,Qem + 2llenl| PBlleu(t + m)| Aull + 2]len[[| PBlleu(l + )| Dz(u”)]|
(40)

The Comparison Principle (section 5.4 in [16]) can now beliadgo inequality
(40) to prove convergence ef, if (i) Au € Lo, and (ii) Dz(u*) € L,: exactly
those conditions given in the proposition. O

Remark 3: Proposition 6, roughly speaking, requires, (the “ideal control sig-
nal”) to eventually fall below the saturation limits ilem, .o |u*(¢)| < @, which is

a similar condition to that assumed in the case of linearwimdup schemes: the
nominal linear control law should eventually lie within teaturation constraints.
The additional assumption requirés; also should decay to zero - this will be the
case ifAK, andAK, converge to zero. Note that the Lyapunov analysis of Propo-
sition 5 only guarantees these gains are bounded, they dwnessarily converge;
hence the extra assumptions in Proposition 6 O

The conditions in the above proposition are quite strongy tiequire the adaptive
gains to converge to the ideal gaiRs, K¥, which is not only not guaranteed, but



probably unlikely to be the case. Instead assume that theiagdgains have steady
state values

lim K () =Ko, (41)
lim K (1) =K, (42)

which then means th&t K, andA K, will converge to steady state values (probably
different from zero) which are defined as

tli)m AK,(t) =AK, s (43)
tli)m AK,(t) :=AK, s (44)

These can be used to then define

Aug(t) = AK, o z(t) + AK, (1) (45)
and from there, the control law can be re-written as

u = rk(u)[u" + Augs + Au — Aug]

Then via a similar argument to that of the proof in Propogi#o we can state the
following result:

Proposition 7 Consider the interconnection of the plant (10) and the culler
(18)-(19) and let Assumptions 3 and 4 be satisfied. Assumie.thaz,,) is such
that the interconnection is well-posed and also that, x,,) € [0, x| forall z, z,, €
R™ and some: > 0. Also assume € L., and that there exists & = \. Then
lim; , e, (t) = 0 if the following conditions are also satisfied:

(1) Dz(u* + Augs) € Lo
(2) Au— Augs € Lo

whereu* and Au are defined in Proposition 6 andu,(¢) is defined in equation
(45).

Proposition 7 is similar to Proposition 6 but the conditians more practical. Con-
dition (i) on the ideal control law now no longer requités; .. |u*(¢)| < u, but
instead requires the ideal control lglus some perturbatioto fall below the sat-
uration limits i.e.

Jim |u*(t) + Augs(t)]| < @ (46)

This may be seen as a stronger requirement than in PropoSitiout it leads to a
weaker second condition: now ondyu — Au,, is required to converge ii; which
is, essentially, equivalent to requiring thst and &, converge tosteady state val-
ues K, ., and K, ,, respectivelynottheirideal valuesk* and K*.

Remark 4: The results in this paper have been proved under Assumptidnch
required A to be Hurwitz, but assumes that it is otherwiggknown For linear
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systems, it is well known (see [11,8] for example) thatliis not Hurwitz there
is considerably more complexity in the design of an antiduip compensator and
estimating a subset of the domain of attraction becomesraipe. Note however,
that estimating a region of attraction in the case thas unknown is effectively
impossible. Therefore, ift is known to not be Hurwitz, but is otherwise unknown,
anti-windup design witha priori guarantees becomes extremely difficult. In this
case, it would seem more sensible to use an estimate of a randdb design a
robust anti-windup compensator to cope with the mismat8t6[2 Note that some
local conditions (size of initial state) have been giverli@][but they are extremely
conservative and dependent on the (unknown) adaptive dgjrend K - this is
not a criticism of these results but a consequence of theudtiies of anti-windup
when A is unknown and has unstable eigenvalues. O

4  Simulation results

Plant/Model state evolution Control signal evolution
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Fig. 2. Response of adaptive control system without inpwiradion: left, plant/model state
evolution; right, control signal
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Fig. 3. Response of adaptive control system with input aéitm: left, plant/model state
evolution; right, control signal

We re-use the hydraulic actuator example from [23], but nssdaptive control law
to control the system. The nominal adaptive control law wasstructed according

11



Plant/Model state evolution
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Fig. 4. Response of adaptive control system with input asitir and anti-windup: left,
plant/model state evolution; right, control signal
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Fig. 5. Response of adaptive control system with input stitm and nonlinear an-
ti-windup: left, plant/model state evolution; right, cositsignal

to equation (16) with", = 273, I', = 2 and() = I3 in equation (28). The nominal
model was described by the dynamics in (14) whéye= A — BK, B,, = B and
K was used to place the poles of the reference modekat-3, —4, —5; this form
of the reference model automatically satisfies Assumptionwas set to 2 i.e. the
control effectiveness is twice that which the controllepests. The nominal step
response of the model is shown in Figure 2, whér¢is step with an amplitude of
20 cm. Note that the adaptive controller causes the systd&mitave well and after
about a second all states have converged to the referencel states. However,
note that the control signal is somewhat oscillatory andgit Imagnitude.

Figure 3 shows the behaviour of the system with input comgtraf magnitude
u = 10.5 volts ([23]) are introduced. In this case, the adaptive aler takes a
long time to converge to steady state behaviour and it does adhighly oscil-
latory manner; clearly the saturation limits cause thegrerince of the adaptive
controller to degrade.

Figure 4 shows the behaviour of the adaptive control schesimg) the anti-windup
modifications described by equations (18) and (19). Hgre-= 2 and u(x, z,,) is
simply chosen as a scalar= 2 which satisfies the assumptions of Proposition 6.
Note that in this case, convergence to steady state trackimgch improved with
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this occurring faster and without the oscillations obsdmuen anti-windup is ab-
sent; clearly the adaptive controller with anti-windupfpems better than without.

Consider again the adaptive control scheme with anti-wpnohodifications de-
scribed by equations (18) and (19), with = 2 as before, but with(z, x,,) chosen
as a nonlinear function of the statesndz,,:

(@, ) = 2min {1+ ||z — 2|2, 10} = 2min {1 + e, 10} (47)

which satisfies the assumptions of Proposition 6, with < i = 20. In this
case we see from Figure 5, that there is more transient agredratween the ac-
tual and reference model states, although the correspgredintrol signal is much
more active. It appears that nonlinear choices:0f, z,,,) can lead to improved
performance, in some sense, but care must be exercised ichtbice.

As with any anti-windup-like approach to handling satwmatithe design of the
baseline controller is of paramount importance: the chofadaptive parameters,
@, T', andl’,, are central in determining the performance of the systém, and
I, are chosen too small, and hence, adaptation is too slow, agenot anticipate
good nominal performance and, therefore, performancerwmhstraints cannot be
expected to improve. Conversely, if adaptation is too fastling to good uncon-
strained performance, one might expect large control mstieading to more sat-
uration and therefore worse performance when control caings are introduced.
This will then lead to more saturation effects for the anitraup compensator to at-
tenuate, again implying poor performance. Indeed, for Xaerle discussed here,
too fast adaptation (i.d., andI', chosen large) leads to extensive periods of satu-
ration and, consequently a slower return to desired bebavio

5 Conclusion

This paper has shown how a simple anti-windup scheme can \sdoged for
MRAC schemes. The anti-windup scheme has the structure piasitiver, scheme
introduced in [19]. For stable plants, it has been shownithatder for the scheme
to exhibit bonafide anti-windup behaviour, the “ideal” (luntknown) control sig-
nal - plus a perturbation - must eventually lie within theusation limits. This is a
similar condition to that originally introduced in [26]. €wesults have been proved
under the assumption that the platimatrix is unknown but Hurwitz; when this
assumption is dropped, it is generally quite difficult toy@aiseful results about the
performance of this anti-windup scheme due to the difficiitgstimating an ac-
companying region of attraction. The results have beenldped for single-input
systems, but the multi-input counterpart is a relativetgightforward extension.

The results in this paper have been proved, as in [19], untlet wight be de-
scribed asdeal conditions. The effects of disturbances, measurement ramsl
unmodelled dynamics have not been accounted for; neithver the effects of so-
calledo-modification or projection, which are typically used in giaal adaptive

13



systems [21]. Clearly, there is a need to understand theaatpns of these phe-
nomena on the anti-windup scheme under consideration Neygeover, it may
be that anti-windup/positive modification is better understood in the context of
other adaptive control techniques: the so-called Simplaphide Control approach
(see for example [3]) appears particularly promising andlar anti-windup results
may be anticipated for this scheme.
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