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Twisted tensor products of n-groupoids and crossed
complexes

Abstract

For any 1-reduced simplicial set X, we define a crossed complex of groups P“*X, which
we define as a twisted tensor product of the crossed cobar construction QX and the
fundamental crossed complex 7X. In fact, we prove that P¢*X is contractible. Therefore
PC*X is a crossed complex model for the path space of X. It is also an example of a

crossed complex model of the total space of a fibration,
QX — PX — X.

This generalises from chain complexes to crossed complexes the theorem proved by J.
F. Adams, and P. J. Hilton in their paper [3]. Our definition of twisted tensor products
of crossed complexes also defines a twisted tensor product of n-groupoids, for all n. This
comes from the fact that there is an equivalence of categories (oo-groupoids «— crossed
complexes) which was proved by R. Brown and P. J. Higgins in their paper [12].
We recall the classical Eilenberg-Zilber theorem for chain complexes, and its generalisation
for crossed complexes, which show that the tensor product provides an algebraic model for

the Cartesian product of the fibration
X—XXxXY —Y.

We also extend our theorems to O-reduced simplicial sets X. In this case we generalise the
crossed cobar construction QX from 1-reduced simplicial sets to the group-completed
crossed cobar construction QX for 0-reduced simplicial sets and define a crossed complex

of groupoids P“*X, a twisted tensor product with the twisted boundary maps
P PCeX = (QX ®47X), — PSS = (Q°X @y 7X)p1, 0> =0.

We end by defining a contracting homotopy {n, : P*X — PSS X} which shows that this

crossed complex of groupoids is still a model for the path space on X.
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1 Introduction

We are interested in the category of crossed complexes of groupoids and twisted tensor
products of crossed complexes. The motivation for this thesis has come from two directions:
firstly, from a wish to generalise J. F. Adams and P. J. Hilton’s theorem for chain complexes
[3], by constructing a crossed complex P“*X which is a model for the path space of X,
as a twisted tensor product of the crossed cobar construction QX and the fundamental
crossed complex wX for 1-reduced simplicial set X. Secondly to define the general path
crossed complex of groupoids P“*X = QCrs X ®¢ mX where QX is the group-completed
crossed cobar construction for any 0-reduced simplicial set.

The definition of a crossed complex is motivated by the principal example: the funda-

mental crossed complex 7.X of a filtered space
X: XoCcXyCc---CcX,C---CX.

Here m X is the fundamental groupoid m;(X;, Xp). For n > 2, m,X is the family of
relative homotopy groups m,(X,, X,—1,29) where zq € X, together with the standard
boundary operators 0 : m,(X,, Xn—1) — m_1(Xyu_1, Xn—2) and the actions of m X on
Tn—1(Xn_1, Xn_2) [11]. The category of crossed complexes is a monoidal closed category
which shares many properties of the category of chain complexes, but with some non-
abelian features in dimensions one and two, it and may also be thought of as a reduced
form of a simplicial groupoid [14], or as a strict co-groupoid [12].

A crossed complex of groupoids C' is a sequence of groupoids C,, over a fixed object set
Cy, which are Cy-indexed families of abelian groups for n > 3, equipped with Cj-actions
and Ci-equivariant boundary maps 0, between them, which on the object sets will be the
identity function, and 8721 = 0 for all n. Furthermore, dy : C'y, — (4 is a crossed module of

groupoids, and for n > 3, ,Cs acts trivially on C,.



The tensor product of two chain complexes A and B, is also a chain complex C,, =

(A® B), such that :
C.= P 4,98,

ptq=n

with the boundary homomorphism 9,, defined by:
In(ap @ by) = (6pap) ® by + (—1)Pa,(d4bg)

which satisfies that 6> = 0 [25]. The classical Eilenberg-Zilber theorem in its original

form [33] gives a chain homotopy equivalence
CX)C(Y)~C(X xY)

where X, Y are simplicial sets, and C'(X) is the normalised free chain complex on the
simplicial set X. This theorem was generalised to twisted products by E.H. Brown [4], and
also generalised by A. Tonks for crossed complexes [31]. Our original aim was to combine
the two generalisations to define a twisted Eilenberg-Zilber theorem for crossed complexes.
A. Tonks |31] gave a natural strong deformation retraction from the fundamental ho-
motopy crossed complex of a product of simplicial sets 7(X X Y') onto the tensor product
of the corresponding crossed complexes 71X ® Y. For a fundamental crossed complex X
of a simplicial set X, A. Tonks had obtained a strong deformation retraction of 7(X x Y)
onto 7X ® 7Y satisfying certain side conditions and interchange relations [31}32].
Suppose first that X is a 1-reduced simplicial set. We introduce a free Q¢ X-module
P X with basis B = {(@®b,),b, € 7X}. P*X is a twisted tensor product of the cobar
construction QX and the fundamental crossed complex 7.X of a 1-reduced simplicial set
X, with object set PF*X = PS™X = {(@ ® *)}. It is twisted because we define a twisted

boundary map 97 : P X — P X as

OP (@ @ by) = (s 1by @ )



65(@ & bg) = (S_lbg (024 *) — (@ & d3b3) — (@ & dlbg) + (@ & dzbg)

+ (@ ® dobs)

n

ON(@@by) =Y (1) (@@dib) + Y (s 0. ®bin), n >4 (Note[LT] page 11).

i=1 i=1

which satisfy that 9 0F : P¢*X — P, X is trivial. We prove that this crossed complex
of groups P“*X is homotopy equivalent to the trivial crossed complex. It is therefore a
crossed complex model for the path space of X, when X is 1-reduced simplicial set.

We extend our definition of the crossed complexes of groups P*X to a crossed com-
plexes of groupoids P*X for a 0-reduced simplicial set X, but before we do this we gen-
eralise the crossed cobar construction QX to a crossed cobar construction of groupoids
Qs X where X is a 0-reduced simplicial set. The group-completed crossed cobar construc-
tion QX is a free crossed chain algebra generated by the elements s~'a,; in dimension
n for each non-degenerate (n + 1)-simplex of X, together with extra generators (s~ 'a;)™*
for each non-degenerate 1-simplex a; of X (Definition [5.4)).

Now suppose X is only 0-reduced. The crossed complex of groupoids P¢*X is a twisted
tensor product of the crossed complex of groups X, whose object set is {*} and the crossed
chain algebra Qs X, whose ob ject set will be defined in Definition . The crossed complex

of groupoids P X will be a free crossed complex with the same generators as the ordinary,

non-twisted, tensor product QX @ 7X. We write these generators as

r®be P X

n+m=<*
where
e 7 is a generator of degree |z| = n in Q"X defined as:

T = w(O)Silaglll)ﬂ-lw(l)a?(lzz)-f—l " 'W(Pl)sila?(z:)jtlw(r)

10



where r > 0, each w® € O§<X, w = (s7'aM) (s 1a{P)e2 - (s71alF)e | each a,(fi)ﬂ
is a non-degenerate simplex in X, 41, n; = 1, and > n; = n, k > O,agi) € Xy —

{so(*)},€e; = £1.

We know that QX is a (free) crossed chain algebra with the algebra structure

defined by concatenation of words x ® ' — zx’.
e b is a generator of degree |b| = m in 7 X, given by a non-degenerate m-simplex of X.

Before we define the twisted boundary maps 0 for PsX we will give formulas for the
boundary 9® for the ordinary, non-twisted, tensor product. This boundary map, in the
context of chain complexes, would be 0% = 02 ® id+id®9". And then we define the
twisted boundary map 07 : P¢*X — P X which satisfies that 9 ;07 = 0.

A crossed complex of groupoids is pointed if there is a specified object x* € Cy. If C'is
a pointed crossed complex of groupoids, then C' is contractible to the basepoint * if there

is a family of functions n, : C,, — C,41 that define a contracting homotopy
h:x~ide:m(A[l]) @ C — C
by
i. h(0®c) =0, (or x if c € Cp),
i. h(l®c)=c,
iii. h(oc® c) =n(c).

A family of functions 7, : C,, — Cp41, (n = 0) defines a contracting homotopy via h(oc ®

¢n) = Mu(cy) if and only if it satisfies

1. no(co) € Cy has source * and target co,

11



2. m(c1) € Cy has basepoint * and boundary:

Oy (c1) = —mo(targ(cr)) + e + no(sre(er)),

* 4}7}0@) x
no(y\J %
Y
Figure 1:

3. If n > 2 then, n,(c,) € Cp+1 has basepoint * and boundary:
an+177n(cn> = CZO(”) - 77n—1(9n(0n),
4. For alln > 1,
Mn(Cn +¢,) = Nalcn) +nalcy,)

5. For all n > 2,

M (cit) = Mh(cn)
Important note we should point out.

Note 1.1. We will use the symbols b, which mean a simplex b € X,, of dimension m.

h vertex in the simplex by,. We will also write, for example

While b,y means the m!
dabs = bo134s d1by = b

and

51ba = bo112

12



Structure of the thesis

In this thesis, we begin with recalling some background information on the category of
simplicial sets and chain complexes [18]27,[32],and [15] that will be used in the thesis, as
well as reviewing the classical Eilenberg-Zilber theorem in its original form [33] which gives

for simplicial sets X, Y a chain homotopy equivalence
CX)®CY)~C(X xY)

where C'(X) is the normalised free chain complex on the simplicial set X. This theorem was
generalised by A. Tonks in his paper [31] for crossed complexes, which shows that the tensor
product provides an algebraic model for the Cartesian product and of trivial fibrations. We
also recall E. H. Brown theorem [4] on chain equivalence of the chain complex of a total
space of a twisted cartesian product of two simplicial sets, and a twisted tensor product of
the corresponding chain complexes.

In Chapter 3, the definition of loop space and Adams’ cobar construction is recalled [2],
which is dual to the bar construction of Eilenberg and Mac Lane. We can think of the cobar

construction as a chain complex analogous to the fibre space in the path loop fibration

QX - PX = X

K. Hess and A. Tonks proved in their paper [19] that the Adams’ cobar construction QC'X
of a 1-reduced simplicial set X, on the normalised chain complex is a strong deformation

retract of the normalised chain on loop space CGX.

o)
n CCGX — QCX
(G

They are obviously equivalent, as {2 and G are both models for the loop space.

13



We study also the generalised Adams cobar construction of a O-reduced simplicial set
which was defined by K. Hess and A. Tonks in their paper [19]. We end this chapter by
introducing Baues’ construction of the cobar construction QX in the category of crossed
complexes. If X is 1-reduced simplicial set, then the generators of the cobar construction
have the form w = s7l2; ® s7'2o @ -+ - ® s, in dimension > (|z;| — 1), [14] we give
some motivation for an intuitive definition of the twisted tensor product of pointed crossed
complexes.

We begin Chapter 4 with defining a new crossed complex of groups (P<*X) in terms
of a twisted tensor product of a free crossed chain algebra Q¢*X and the fundamental
crossed complex X for 1-reduced simplicial set X. It is a free Q“*X-module with basis
B = (2 ®b), and b € mX. We explain the twisted boundary maps as:

05 (@ @by) = (57'by @ )

O (@ @b3) = (s71b3 @ %) — (T @ dsbs) — (T @ dibs) + (T @ dabs) + (T @ dobs)

OF (@ @bn) = Y1 (=1)(B @ diby) + >0 (57 bo.i @ b)), n =4,

then we prove that (07)? is trivial for all dimensions n > 2. For the general form of the
generators (] s 'a,, ® by,), we define a differential map 92’ taking into account the order
of terms and actions in dimensions one and two due to non-abelian features.

The main theorem in Chapter 4 is that we prove the crossed complex of groups (P<*X)
is contractible by defining a contractible homotopy 7, : P<X — PSS X. First we recall
the definition of the notion of contracting homotopy.

Definition:

Let C be a crossed complex with Cy = {*}. A contracting homotopy is a homomorphism
h:7m(A[l]) ® C — C that satisfies:

h(0 ® ¢) = 0,,

h(1®c)=c.

14



Given a contracting homotopy we have h : x ~ ids, and so C' is contractible because there

is a homotopy equivalence:

From this contracting homotopy, we define the family of functions
M Cp = Chpr, (n21)

defined by
Mn(c) =h(lc®c), (ceCy)

where (0 : 0 — 1) € (A[1]), conversely, given a family of functions 7,, we could define a

contracting homotopy
h(0®c) =% h(1®c)=c h(c®c)=mn(c)

In order for h to be well defined and commute with 0, the family must satisfy the prop-
erties:

Proposition:
The family of functions 7, : C,, — C,11 provides a contracting homotopy h, which is

defined as h(o ® ¢,) =n(c,), (n > 1) if n satisfies the properties that:
1. On(c1) = ¢,
2. On(cn) = cn —nO(cy),

3. n(cn + ) = nlen) +n(e,),

15



and n(x) = 0,.
Now we let C' = P“*X and prove it is contractable by defining the functions n, for all
possible forms of the generating elements of P<™X.

Definition:

Let x = [[s ta,,, n; € Xn;—1 Define n: PSX — PS5 X as:
L (@ ® *) = 0(zgx),
2. n(zs™la, @) = (- (z®a),
3. Nz ®by) = 0z

At the end of the Chapter we present two examples to illustrate the definition of 7,.
Chapter 5, is concerned with extending our results in Chapter four on the crossed com-
plex of groups P X from 1-reduced simplicial sets X to a crossed complexes of groupoids
P X for O-reduced simplicial sets. First, we need to generalise the definition of the crossed
cobar construction Q2¢*X to a group-completed crossed cobar construction Qs X whose
objects form a free group whose generators correspond to the non-degenerate 1-simplices
of X.
Definition:
For a 0-reduced simplicial set X, the group completed crossed cobar construction Qs X is
a free crossed chain algebra generated by s'a,; in dimension n for each non-degenerate
(n)-simplex of X, together with extra generators (s™'a;)™' for each non-degenerate 1-
simplex a; of X. The boundary of a generator s 'a,,; is analogous to that of the cobar

construction QX in degree 0,

057X = {w = (s7al) (M) o (s hal) 1 k> 0,00 € X0 = {so(0)} 6 = +1}

16



the free group on X; —s9Xy. The generators x of degree |z| = n of the free crossed complex
Qs X are given by words

0) (1) (2) -1,(r)  (r+1)

— (g1 1 cee ™
rT=wSs A, W WS A, W

where r > 0, each w® € QS'SX, each aﬁf}H is a non-degenerate simplex in X,,, 11, n; > 1,
and Y n; = n. The source of s™'ay is s tag; - s71aso and the target is s~ ags.
The basepoint p = S(z) of = is the product of the basepoints of all of the terms in x.
Then, we define the crossed complex of groupoids P*X as a kind of twisted tensor
product of QX and 7.X:
Definition:
Let X be a O-reduced simplicial set. The path crossed complex PC*X = QX @, 7.X
is the twisted tensor product of the crossed complex of groups 7.X, and the free crossed

complex of groupoids QCsX. Its object set is
Py®X = (Q5°X @5 mX) = {(w ® )}
where
w= (s’lagl))”(s’la?))e? e (s’lagk))ek k>0, agi) € X —{so(x)},e; =1

and in Dimension 1 the generators are {(w ® by), (ws tasw’ @ )}
(WRDbp): (W) = (ws™hy ® %)

and
(ws™tagw’ ® *) 1 (ws™tagrs tajaw’ @ *) — (ws™tagw’ @ *).

In dimension n > 2, the general form of a generator is:

(z®y)

where

17



where k > 0, and w® € QS'SX , each aﬁfi) 41 is a non-degenerate simplex in X, 11, n; > 1,
and Y n; = n, y; € m;X. We finish this Chapter by defining a twisted boundary map 9
for each n > 1 and prove (97)% = 0.

We finish this thesis with Chapter 6, in this Chapter we prove that the pointed crossed
complex of groupoids P“*X is contractable to the basepoint. This comes from defining a
homotopy 7, : P<*X — PS5 X.

A crossed complex of groupoids is pointed if there is a specified object x € Cy. If C is
a pointed crossed complex of groupoids, then C'is contractible to the basepoint * if there

is a family of functions n,, : C,, — C,41 that define a contracting homotopy

h:x~ide:m(All]) @ C — C

h(0 ® c) = 0,, h(l®c)=c
h(o @ c¢) =n(c)

The main proposition in this chapter show condition that h : 7(A[l]) ® C — C is a

well defined homomorphism of crossed complexes of groupoids, and commutes with the

boundary 0, holds if and only if 7 satisfies the properties (1 — 5) of Proposition:
Proposition:

A family of functions 7, : C;, — Cp41, (n > 0) defines a contracting homotopy via h(oc ®

¢n) = nu(cy) if and only if it satisfies
1. no(co) € C has source * and target co,

2. mi(c1) € Cy has basepoint * and boundary:

Oamn(c1) = —mo(targ(cr)) + e + no(sre(er)),

18



. mo() .
Mo (y\J %
Y
Figure 2:

3. If n > 2 then, n,(c,) € C,+1 has basepoint * and boundary:

(»)

an+177n(cn) =W — nnflan(cn)v

4. For alln > 1,
N (Cr + C/n) = n(cn) + nn(C;)

5. For all n > 2,

C1

() = 1 (Cn)

Definition:
For every 0O-reduced simplicial set X, and for m # 0 we define the contracting homotopy

N, on the general form generators (z ® by,) of PSX as:

N (T ® bn) = Oz

While, for the generators when m = 0 we define 7, as:
Definition:

For a string of r one-simplices w, define a homotopy 7 : P — P by:
1. 7]0(@ X *) = 0(@@)*) € PlcrsX,
2. no(w @ %) % — sfla(ll) ® * — s*1a§1)8*1a§2) Rk = s = W Rk,

can be defined inductively by:

19



ng(s_lagl)s_la?) . s_lagr) ® %) = (s‘lagl)s_laf) . s_lagT_l) ® am)

+o(s71al? .. sl Y @ %)

and for dimension 1 we define the homotopy 7, : PF™X — PS™X as:

m (ws_laz ®*)=(w® a2)"°(w®*)

and

(257 1by @ %) = 11 (z ® %) — (z @ by )

finally for dimension n > 2, we make the definition:
Definition:

For dimension n > 2 we can define 1, : P X — P X as:

L. ma(ws™laz @ ¥) = (W ® ag)™@s),

2. (s by ® %) = Moz @ %) + (z ® by)0lrel@E)

3. mu(zs™a, @ x) = (—1)l(z ® a,)0Ee@e)

4. Nu(2s™1 @ %) = N @ ¥) + (=1)"(x @ by)10lre@@),

We then prove theorem:

Theorem:
For n > 0, n, satisfies the properties in Proposition. Therefore 7 is a contracting homotopy
and, for any O-reduced simplicial set, P“*X = QOCrs X ®g¢ X is contractible : a model for

the path space on X

20



2 Preliminaries

Introduction

In this chapter, we recall some preliminaries about the categorical definition of simplicial
sets and homotopy. Furthermore, we introduce the classical Eilenberg-Zilber theorem and
the generalised version of such for crossed complexes.

The structure of the chapter is as follows. In the first section, we recall some background
information on simplicial sets, their structure and some of their properties. In the second
section, we recall the definitions of chain complexes, and the Cartesian product and tensor
products of chain complexes, in addition to, investigating how the classical Eilenberg-Zilber
theorem for chain complexes was generalised to twisted products. In the third section, we
recall from [31] the generalisation of the Eilenberg-Zilber theorem to crossed complexes,
after we introduce the definitions of groupoids, crossed modules, crossed complexes and the

equivalences between the categories, of crossed complexes and co-groupoids.

2.1 Simplicial Objects and Homotopy

We begin by recalling some standard definitions.

Definition 2.1. [18, Page 4/, |32, Page 18] Let A be the ordinal number category whose
objects are finite ordinal numbers [n] ={0 -1 — 2 — --- — n} for n > 0(in other words,

[n] is a totally ordered set with n + 1 elements). A morphism
a:[n] — [m]

is an order-preserving set function, or alternatively a functor. Among all of the functors

[m] — [n] appearing in A, there are special ones, namely

d:n—1—=1[n] 0<i<n (cofaces)

21



sl:n+1—=1[n] 0<j<n  (codegeneracies)
where by definition,
d0—=1—=--—=n-1)=0—=1—-—=i-1—=i+1l—---—n)

and

FO0olo - on+)=0—=1=->j5jo - 5n).
d' and s’ satisfy the following relations:

dd = dd="  ifi<

sist = sitlsd  4fi <

digi—! 1<
sd' =11 i=j or i=j+1
d='sh P> 41

The maps d*, s’ and these relations can be viewed as a set of generators and relations of A.

Proposition 2.2. [15, Page 4] Every morphism o : [n] — [m] can be uniquely decomposed
as a = do, where § : [p] — [m] is injective and o : [n] — [p] is surjective. Moreover,
if d': [n — 1] — [n] is the injection which skips the value i € [n] and s7 : [n + 1] — [n]
is the surjection covering j € [n] twice, then § = d...d" and o = s’ ..., where
mzi,.>-->1120and0< js<---<jpy<nand m=n—s~+r. The decomposition is
unique, with the i's in [m] being the values not taken by «, and the j's being the elements

of [m] such that a(j) = a(j + 1).

The relationship between the d* and s/ in A for n > 2 can be expressed by the diagram

below [24, Page 3]:
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st d dz st
&t
[n —1] —a [n—2]
Figure 3:

Definition 2.3. 18] A simplicial set is a contravariant functor X : A°® — Set, where
set is the category of sets and A is the simplex category. Denote X([n]) = X,,, n >0,

the sets of n-simplices, together with maps
di=X(d): X, —X,.1 0<i<n (faces)
and
s;i=X(s): X, > X1 0<j<n  (degeneracies)

satisfying the simplicial identities dual to the cosimplicial identities given above.
The elements of Xo are called the vertices of the simplicial set. A simplex x is degenerate

if x is the image of some s;.

Definition 2.4. Geometric realisation of any simplicial set X [18, Page 7]
The geometric realisation of any simplicial set X is a functor | . | : S — Top from the
category S of simplicial sets to that Top, of topological spaces, defined by
X =| ||An] x X,/ ~
n=0

where |A[n]| is the realisation of the n-simplex given in the following example.
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Example 2.5. [18, Ezample (1.1)]

There is a standard covariant functor
A — Top

{0 =>1—---—=n}— |An]

where |Aln]| is the standard n-simplex in Top given by
AD]| = {(to,-...ta) €ER™ | Y ;=1 ;>0}
i=0

Gliven

fin] = [ml,

the functor produces

([n] & [m)) = (|Am]| &

Alml|)

where f, is defined by

f*(to, . ,tn) = f*(t(ﬂ}o 4+ 4+ tn”n)

= ton(o) + tl’Uf(l) + -+ tnUf(n)

= (Dt t (Y ti)m

f(@)=0 f(i)=m

and we have used the notation
vo = (1,0,...,0),v; = (0,1,0,...,0),...,v, = (0,0,0,...,0,1).

This is the i vertex of |A[n]|, as sent to the f(i)!" vertex of |A[ml]|, and the barycentric
coordinates are mapped linearly.

We see that the coface map d. sends |An]| to |An + 1]| and that the codegeneracy map
s sends |A[n]| to |An — 1]| by collapsing together vertices j and j + 1.

A face of [vo, ..., v,] is defined as the simplex obtained by deleting one of the v;, which we
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denote [vg,..., 04 ...,0,]. The union of all faces is the boundary of the simplez, and its

complement is called the interior, or the open simplez.

Definition 2.6. [18, Page 6] As a simplicial complex, the k™ horn |A*[n]| on the n-
simplex |A[n]| is the sub-complex of |A[n]| obtained by removing the interior of |Aln]|
and the interior of the face d,Aln]. Let A¥[n] refer to the associated simplicial set. This

simplicial set consists of simplices [ig, ..., iy, with 0 <ig <, ..., < 4y < N, such that:
(1) not all numbers {0,...,n} are represented;

(i1) we never have all numbers except k represented (this would be the missing the (n—1)-

face or degeneracy).

That s

0 1
A'[2]

Figure 4: The three horns on |A[2]|

Definition 2.7. ,@ Page 10] The simplicial object X satisfies the extension condition, or
Kan condition, if any morphism of simplicial sets A¥[n] — X can be extended to a simplicial
morphism A[n] — X. Such an X is referred to as being fibrant. A map f: X — Y is also
called a fibration if , when we have a horn in X, and a simplex in'Y extending the image of

the horn then we have a simplex in X extending the horn, as shown in the diagram below:
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A¥[n] > X
//,/// f is a fibration

Afn] - Y

Figure 5:

Example 2.8. A[0] does satisfy the Kan condition.

2.2 The Classical Eilenberg-Zilber Theorem

The classical Eilenberg-Zilber theorem [16,33] gives a strong deformation retraction of
the chain complex of a Cartesian product of simplicial sets onto the corresponding tensor

product of chain complexes.

Definition 2.9. (15, Page 113] Let X and Y be simplicial sets, that is, X and Y are

functors A°P — Set. The Cartesian product X XY 1is the functor: A°P — Set satisfying:
1. (X xY), =X, xY, ={(z,y)|z € X,,,y € Y,,},
2. if (x,y) € (X X Y),, then di(z,y) = (d;x, d;y),
3. if (z,y) € (X X Y),, then s;(x,y) = (siz, s;y).

Example 2.10. /29, Page 45] We consider the two simplicial sets X = A[2],Y = A[l],
and their Cartesian product X x Y = A[2] x A[l]. Then (A[l])o is the set {0,1} of
0-simplices of A[l], (A[l]); is the set {(00),(01),(11)} of 1-simplices and so on. The
Cartesian product of (A[2]); and (A[l]); will be
(AR]): x (All]); = (AR]xAl]) =

{(00, 00), (01, 00), (02,00), (11,00), (12, 00), (22, 00),
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(00,01),(01,01),(02,01),(11,01), (12,01), (22,01),
(00,11),(01,11),(02,11),(11,11), (12,11), (22, 11)}.
Twelve of these are non-degenerate 1-simplices of X X Y.

The Cartesian product X XY contains three non-degenerate 3-simplices
(0012,0111), (0112,0011), (0122,0001).

as shown in Figure 6.

(L0)

71)

Figure 6: A[1] x A[2]

2.2.1 Chain complexes

Definition 2.11. [35, Definition(1.1.1)] A chain complex C' is a sequence of abelian groups
and homomorphisms § : C,, — C,_; satisfying the condition that 6% : C,, — Cy_o is zero.
The kernel of 0,, is called the group of cycles of C,,, and denoted by Z,. The image of 0,41

is called the group of boundaries of C,,, denoted by B,,. From the rule that 6* = 0, we have;
0CB,CZ,CC,

Definition 2.12. [35] For any chain complex (C,,d,) the n'" Homology groups H,, are
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the quotient groups

H, = Ker 4,,/Img 0,41.
The elements of the Homology groups are cosets of Img 0,11, called Homology classes.

Definition 2.13. 29,35/ Let C' and D be chain complezes such that

On On— o o o
CI"'—>Cn——>On_1—1>...—3>02—2>01—I)C(),

on Op— 1) 4 )
D:---—>D, D, =5 ...3 Dy 2 D 25 Dy.

Then, a chain complex morphism f : C — D 1is a sequence of morphisms of abelian groups
{fn} where the f, : C, — D, are compatible with the differentials, that is f,_10, = Onfn

for every n.

Definition 2.14. [29] Two chain complex morphisms f,g : C,, — D,, are homotopic if

there exists some homotopy H = {h,, : C,, = Dyi1}nez satisfying

g—f=0h+ho
4] o 4] o
o Cnp Cn Chny ——— -
ghh'f ,,”,, ghh‘f ,b/’,, ghhf
B R S BT
Figure 7:

Example 2.15. [I18, Page 5] Let X be any simplicial set. We can construct a chain
complex (C,(X), ) as a sequence of a free abelian groups Z.X,, on X,,, and homomorphisms
0p =Y (=1)'d; 1 ZX, — ZX,
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2.2.2 Tensor Products of Chain Complexes

Let A and B denote chain complexes. The tensor product C' = (A ® B) is also a chain

complex such that :

Co= D (4B

pt+q=n

with the boundary homomorphism 9, : C,, — C,,_; defined as:
In(ap @ by) = (Opap) @ by + (—=1)Pa, @ (9,b,)
and this satisfies that 9% = 0 [25].

Example 2.16. In this example we will define the chain complexes for two simplices and
then write the tensor product of these two chains.

For A[1], the chain complex C(A[1]) is Cy = Z*, which generated by two vertices {0,1},
Cy = 72 which generated by three edges {00,01,11}, Cy = Z* which are generated by four

triangles {000,001,011, 111}, and so on. Hence
CAl]:---—7Z*—~ 7> - 72
In the same manner for A[2], we have
ca2): - — 720 - 7% - 7°

The normalized chain complex Cn(Aln]) is for n = 0 the subchain complex of C,(A[n])

generated by non-degenerate elements
CyAl]:---—=0—=20—7Z— 72

and

CyA2] - = 0—>Z—7°—7°
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SO

Cy(A[l) @ Cn(A[2]): - = 0= Z = 7Z° = 7° — 78

and

Cy(A[] xA2]): -+ =07 =7 - 72 - 7Z°
Example 2.17.

Ca(al] x Al == @ C(A[) © C,(Al)

p+q=n
Cn(A[l]) ® Cn (A1) Cn(A[1] x A[1))
0®1 191 0,1) (1,1)
¢ sum all Shuffles*

-
001®011: (sg, s1)

001,011
+ 011®001: (s1, s0) (001,011)

¢

(011,001)—
0001+ 0101
020 180 +O11®1 = 01801 (%)

Figure 8:

Theorem 2.18. (The classical Eilenberg- Zilber theorem) [16,[17]

For any two simplicial sets X and Y there exists a strong deformation retract of chain

complexes:

¢
M x x Y)%’C(X) ® C(Y)

where ¢ 1s the Eilenberg-Zilber map which sends generators of the tensor product of two

chain complexes to a chain of products of two simplices as indexed by shuffles. This map
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is a natural chain homotopy inverse of ¢, where ¢ is the natural Alexander—Whitney map

for the normalised free-chain complex on a simplicial set, that sends a generator (z,y) to

op ~ identity, ¢ ~ identity.

For all vertices v; € X, v} €Y,
o(vi,v) = v @v;, (v @ v;) = (v3,0]).
2.3 The Twisted Eilenberg- Zilber Theorem

In 1958, E. H. Brown in his paper [4], generalised the classical Eilenberg-Zilber theorem
to fibre spaces by using the twisted version. The generalisation is as follows: for every
fibering p : X — B with fibre A = p~1(by), there is a twisted tensor product of the chains
on the base space B and the chains of the fibre space A, with differential Jg, which is chain

equivalent to the chain complex on X. The differential is
do = 0" + 0"
where 97, is the differential of the classical tensor product theorem and 9/ is
9" = (=1)" (b, @ a,,) N .

First, we recall from [26] a number of basic concepts necessary to understand E. H. Brown’s
generalisation.

First, let A be a commutative ring, with a unit 1, and let A be differential graded
augmented A-module (DGA): a module graded by submodules Ay, s > 0, with a homo-
morphism ¢ : A — A (the differential) such that ¢ = 0, and an augmentation ¢ : A — A

which is A-linear epimorphism satisfying that €6 = 0 and e(A,) = 0, for s > 0.
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If A, B are DGA A-modules, then A ® B is the DGA A-module with the grading (A ®
B)y =D, (A ® By), and the differential

da®b)=(0a) @b+ (—-1)'a® b, ac A,beB.
A DGA module A will be called a chain algebra if it has an associative product
Yv:ARA— A

of degree zero. A DGA coalgebra is a DGA A-module K with a DGA associative (coproduct)

homomorphism

v:K—=KaK.
A DGA algebra A is connected if Ay = A and it is n-reduced if A4; =0, 1 <i < n.
Definition 2.19. 21,26/ Let K be a DGA coalgebra with differential O with coproduct <7 :
K — KQK, let L, M and N be A-modules and let p : LXxM — N be a homomorphism. Let
C"(K,L) = Hom(K,, L), C*(K,L) =5 C"(K,L) and define d : C"(K,L) — C"T(K, L)
by dU =U0. Let U € C*(K, L), V € C*(K,M) and c € K ® M.

The cup product U — V € C*(KC,N) is the composite

UueVv

KSL5KoK =5 LMD N
and the cap product c ~ U € K @ N is the composite
vl IQU®I

KoMIh kokomM28 coromMELS KN

Theorem 2.20. [// Let B be a pathwise connected space. For each fibering p : X — B
with fibre A = p~1(b,), there is

e a cochain ® =Y P,
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e a differential Oy on C(B) ®¢ C(A) defined as:

03 (by, @ ) = (0by) @ apy + (—=1)"(by, ® Dy, + (b, @ ) —~ P)

e a chain equivalence map ¢ : C(B) ®¢ C(A) — C(X)

Remark 2.21. [}/ The twisting cochain ® = > ®, used in E. H. Brown’s theorem is a
cochain which assigns to each q-chain of B a (q — 1)-chain of the space of loops QB by
twisting all loops o € B based at by to a loop o in the space of loops QB, whose ending is
at x € A with an initial point ax. Hence ax is a continuous action of QB on the fibre A

and satisfies the identity:
q—1
0y =0, 10— (—1)'®; — O
i=1
such that 03 = 0.

The proof of theorem above, and indeed further details, can be found in [4].

Our first aim in this thesis was to try and generalise E. H. Brown’s theorem from chain
complexes to crossed complexes. The classical, non-twisted, Eilenberg—Zilber theorem was
proved for crossed complexes by A. Tonks. We will end this chapter by presenting this

result.

2.4 The Eilenberg—Zilber Theorem for crossed complexes

In this section we present Tonks’ generalisation of the classical Eilenberg-Zilber theorem
to a slightly non-abelian setting. In [31,132], A. Tonks gave a natural strong deformation
retraction from the fundamental homotopy crossed complex of a product of simplicial sets
onto the tensor product of the corresponding crossed complexes.

We start this section by recalling some definitions.
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2.4.1 Crossed modules and crossed complexes of groups

The notion of crossed complex, and of crossed module, is due to J.H.C. Whitehead, who
called them group systems. They have been considered by many authors, especially H-J

Baues.

Definition 2.22. A crossed complex of groups C is a sequence of groups C,, n > 1, and

group homomorphisms 0, called boundary maps,

an—i—lc an C an—l 84 83 82

i n—1 C3—Cy—C)

satisfying the following:

~

O0n_10, : C,, — C,,_5 is the trivial homomorphism for each n > 3
2. Cy acts on each C,, for each n > 2 (and on itself by conjugation)
3. 0, :C, — C,_1 preserves the group action for each n > 2
4. Cy is not necessarily an abelian group, but if a,b € Cy then a'ba = b?2¢
5. Forn = 3, 0,Cy acts trivially on C,, and C,, is an abelian group.
The map 0y : Cy — C1, satisfying (2,3,4) is called a crossed module of groups.
2.4.2 Actions of groupoids and crossed modules of groupoids

Groupoids are groups with many objects, or with many identities. Alternatively, they are
categories in which every morphism is an isomorphism. They were first introduced by

Brandt in 1926 [6]. We introduce some notation:

Definition 2.23. A groupoid G consists of a set of objects Ob(G) = Gy and a set of

morphisms or arrows Arr(G) = Gy together with
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1. source and target maps src, targ : Gy — Gq. If an arrow a has source x and target y
then we write a : x — y or v — y. For x,y € Gy we write G(x,y) = {a : z — y},

the hom-set of all arrows from x to y.
2. a unit map id : Gy — G1, and we write id(z) =id, : * — =

3. a composition map o which associates to every composable pair of arrows a : x — y
and b :y — z the composite map boa : x — z. This composition is unital, id, oa =

aoid, = a, and associative, (cob)oa=co(boa):x — w ifc:z — w.

1

4. an inverse map (=)' : Gy — Gy such that ifa:x — y thena™ : y — z, a”toa = id,

and aoa™t =id,.

A group is just a groupoid in which the object set is {*}. The definitions of group

action and of crossed module of groups are extended to groupoids as follows.

Definition 2.24. [31,/32] Suppose G and H are two groupoids over the same object set,
and H is totally disconnected, that is, H(x,y) = @ whenever x # y. An action of G on H

is a collection of functions
Arr(G) x Arr(H) % Arr(H)
(9,h) = b
where satisfies :
1. h9 is defined if and only if src(h) = targ(g) , and then targ(h?) = src(g),
2. (hgohy)9 =hohi for all hy,hy:y —y inH and g:z —y inG.
3. h92o9r = (h92)9 for allh:ox —x inH and g1 : 2z > y,g2 1y = = in G.
4. W% = h for all h:y — y in H.
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5. idy =id, forallg:z —y inG.
A group action is just a groupoid action in which the object set is {x}.

Definition 2.25. [5/ A crossed module of groupoids is a morphism of groupoids 0 : M — P
over a fized object set O together with an action (m,p) — mP of the groupoid P on the

groupoid M satisfying the two axioms:
1. 9(mP) = p~H(Om)p
2. m% = n~"tmn

forallm,ne M, pe P.

Simple consequences of the axioms for a crossed module of groups 0 : M — P are:
e Im 0 is normal in P, because d(m)p = po(m?).
on

e ker0 is a central subgroup of M, because mn = nm° = nm if n € kerd, and in

particular ker 0 is an abelian group.
e ker 0 is acted on trivially by Im 0, because if n € ker  then n?™ = m~'nm = n.
e ker 0 inherits an action of M/Imd.
e M is abelian if 0 is the trivial homomorphism.

The cokernel M/ Im 0 is usually called m; of the crossed module, and the kernel ker 0, which

is a m;-module, is usually called 75 of the crossed module,
T — M — P — m.

All of these properties hold for crossed modules of groupoids, but they are slightly harder

to state.
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2.4.3 The equivalence of 2-groupoids and crossed modules

The material in this section comes from [9,22,28]. Crossed modules are algebraic models
for connected homotopy 2-types, so are essentially the same thing as 2-groupoids.

(=) Given a 2-groupoid structure G = (G, G1, G2), we define a crossed module A\G by
assuming the object set O = G, and the set of arrows P = (1, and define the source
and target maps s, t : P — O by so, tg: Gy — Gy respectively.

Now let

M(z) ={a € Gy |hao =€, for each z € Gy= 0}

For each a@ € M(z) we have sp(a) = x since so(a) = spti(a) = spe, = x. Thus we can

characterise M (x) as
M(z) ={a e G| si(a) =t)(a) =2 and ti(a) =e,}
Let M be the family {M(x)}.co and for o € M(x), define d(a) = s;(«). Then J(«a) €
P(z,x), and
0 5 )

G = (M—— P:t:O

is a crossed module.
(<) Now our aim is to show that G can be recovered from the crossed module (M, P, 0).
We have constructed, for any 2-groupoid G, a crossed module AG, and this construction

clearly gives a functor we now construct a functor in the. opposite direction

Proposition 2.26. (22, Proposition (2.2)] Let (M, P, O) be a crossed module over groupoids.
This induces a 2-groupoid G with (G1,Gy) = (P,0) and

Go=PxM={(g,a) | g€ Gy and a € G(t(g)) }
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The composition is given by (g,)(g’, ') = (g4¢’, a?a’), and the source and target maps are
given by s(g, ) = g and t(g,«) = gd(«). The source map s, and the target map t, and the

inclusion map P — P x M, g = (g,1), giving the identity map.
Theorem 2.27. (22, Theorem (2.3)] [28] The functors

A 2-Grpd — CrsMod

and

£ : CrsMod — 2-Grpd

defined above are inverse equivalences.

Proof. See [22] O
2.4.4 Crossed complexes of groupoids

In this section, we will review a number of definitions and properties of crossed complexes
of groupoids, including the fundamental crossed complex 7.X of a simplicial set X, and
then we will introduce the Eilenberg—Zilber theorem for the fundamental crossed complex
functor 7, which was proved by A. Tonks in [31]. The concept of a crossed complex of
groupoids was first introduced by Brown and Higgins, generalising the definition of crossed

complex of groups to the case of a set of base points.

Definition 2.28. A crossed complex of groupoids C' is a sequence of groupoids C,, over a
fized object set Cy, which are totally disconnected groupoids for n > 2 and are Cy-indezed
families of abelian groups for n > 3, equipped with Ci-actions and C1-equivariant boundary

maps between them

O, o, O ) 0 0 src

targ
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The following axioms must be satisfied

e cach 0, : C,, — C,,_1 is the identity function on the object sets, that is,

Op : Cplz,2) = Chq(z, x)

e cach 0,_10, : C, — C,,_o is trivial,

e 0y : Uy — (1 1s a crossed module of groupoids, and 05Cs acts trivially on C,, if

n = 3.

We will usually write just C,(z) instead of C,(z,z) if n > 2, and we call f(a) = src(a)
the basepoint p of a € C,, for any n > 1.

A crossed complex of groups is just a crossed complex of groupoids C' in which Cy = {x}.

Remark 2.29. Another simple consequence of the crossed complex axioms is that the image

03C'3 1s central in Cy, because
(O5¢3) "t ey O3 = 0328353 = .
Definition 2.30. [15/ A morphism of crossed complezes
f:C—=D

1s a family of morphisms of groupoids

fn:C,— D, n>1
all inducing the same map of vertices fo : Co — Do and compatible with the boundary maps

o :C,—Cnhy, 0°:D,— D,y

and compatible with the actions of Cy, Dy on Cy, D,.
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The fundamental groupoid m;C' of a crossed complex C' is the cokernel C;/Im 05, that
is, the quotient of the groupoid C; by 05(C3). This groupoid acts on each C,,, for n > 3,
and also on m(C' = ker 05, because elements in the image of 0, act trivially. This means

that for each basepoint x € Cy we have a chain complex of m;C-modules
o= Cp(x) = Crq(x) = - = Cs(x) = (mC) ().

Remark 2.31. From now on we will use additive notation instead of multiplicative notation
for the composition law in crossed complexes, even in C7 and in Cy which may be non-
abelian. For example, the two crossed module axioms in Definition [2.25 will be written

d(m?P) = —p + Om + p, m? = —n +m +n.

Remark 2.32. [19/ Theorem may be extended to an equivalence of categories between

crossed complexes and co-groupoids.

2.4.5 Tensor product of crossed complexes

Brown and Higgins proved that the category of crossed complexes is equivalent to the
category of strict (globular) co-groupoids, and also to the category of cubical w-groupoids
[12]. The category of cubical w-groupoids has a tensor product with very good properties.
It may be defined using the fact that the product of an r-dimensional cube with an s-
dimensional cube is an (r + s)-dimensional cube.

Using the fact that the categories are equivalent, Brown and Higgins proved that the
category of crossed complexes also has a tensor product. This tensor product includes
non-abelian constructions related to the homotopy-addition lemma.

We will next give two explicit definitions of the tensor product of crossed complexes. The
first one will be for the tensor product of crossed complexes of groups, and the more general
one will be for the tensor product of crossed complexes of groupoids. These definitions can

be found in [14], [20, P.2], [31, Definition (1.4)] and [11, Proposition (3-10)], for example.
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Definition 2.33. Let A, B be crossed complexes of groups. The tensor product A ® B is
the crossed complex of groups which has a presentation in terms of generators and relations
as follows:

Generators are given by symbols a, ® bs in (A ® B).1s for all elements a, € A, and
bs € Bs, where r,s > 0 (and so ag = * and by = *). These are subject to the following

equivariance, bilinearity and boundary relations,

a® @b, = (a, @ by)** forr>2,5>0 (1)

a, @b = (a, ® by)*™ fors>2,1r>0 (2)

(a, +a)@*=a, @ + a, R x* forr>1, (3)
* @ (by +0)=x@bs + xR0, fors>1 (4)
(a1 +d}) @by = a, @by + (a3 @ by)1®, fors>1 (5)
ay @ (by + b)) = (a, @ b)) + a, @, forr>1 (6)
(a, +a.)Rbs=a, by + a. R by forr>2s>1 (7)
a, @ (bs+ b)) =a,@bs + a, fors>2,r>1 (8)
D1(a Qb)) = —% Qb — a1 Q% + *Qby + a3 @ * (9)
O (a, ® %) = dra, @ * forr =2 (10)
Os(* ® by) = % ® Osbs fors>=2 (11)
Orr1(a, @b1) = 0ra, @by + (—1)" (—aT®>x<+ (ar®*)*®b1) forr>2 (12)
O1is(ay @b,) = — @b, + (x@b,)"®*  — a3 @ 0,b, fors>2 (13)
Orys(ar @ bg) = Ora, @by + (—1)"a, ® Osbs forr,s =22  (14)

Definition 2.34. Given crossed complexes of groupoids A and B, their tensor product
A® B can be presented by generators (a, @ bs) € (AR B),s with source (src(a,) ® src(by))

(and target (targ(a,) ® targ(bs)) if r + s = 1), subject to the following relations:
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1. The equivariance relations

a™ ® by = (a, @ by)1Esrel) forr >2
ay @b = (a, @ by)srelar)®h fors>2

2. The bilinearity relations

(a, +al) @ by = a, @ by + a.. @ by,
ag ® (bs + 1) = ag @ bs + ap @ b,
(a1 + d}) @ by = a, @ by + (a3 ® by)1@ebs)
a, ® (by + b)) = (a, ® bl)src(“r)‘@b,l + a, ® b,
(ar + az) ® by = a, ® by + a, ® by,

a, ® (bs+ b)) =a, @bs+ a, @,
3. The boundary relations

ar(ar X b()) = &JIT X bg

8S(a0 X bs) = a9 X Osbs

forr>1

fors>1

Vv

fors>1

Vv

forr>1
forr>2,s>1

fors>=2r

WV
—

Oh(ay ®by) = —srca; ® by — a; ® targ by + targ ay ® by + a3 ® srcby

Ors1(ar @by) = Orar, @by + (—1)" (—aT ® srcby + (a, ® targ bl)src(‘”)@”)

O14s(a ® bg) = —srca; ® bs + (targa; ® bs)“1®sm(bs) —  a; Q@ 0sb

arJrs(ar & bs) = arar & bs + (_1)Tar X asbs

2.4.6 Free crossed complexes

Vv

forr >2

for s > 2

forr >2

fors>2

forr,s > 2

It is well known that any group can be defined via a presentation: first find a set of

generators and specify the relations that hold between products of the generators and their

inverses. In a similar way, any crossed complex (of groups or of groupoids) can be defined

by a presentation. The generators of a crossed complex C' will be:
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e the object set (Y,

e generators for the groupoid C}: a subset of Arr(C}) such that all arrows in C can

be expressed as composites of the arrows in this subset and their inverses,

e generators for the crossed Ci-module Cs: a subset of C'y such that all elements in Co
can be expressed as composites of elements a in this subset, and the elements a“* for

any ¢; € C1, and their inverses,
e generators for the m;C-module C,,, for each n > 3.

To define the crossed complex C' would then have to give all the relations that hold be-
tween expressions we can form using these generators. We would also have to specify the
boundary relations by giving functions from the generators of C), to expressions written
using generators of C),_1.

We have already seen examples: in the previous section we already gave definitions of
the tensor product of crossed complexes using generators and relations.

The easiest crossed complexes that we use are the free crossed complexes. A crossed
complex is free when it has a presentation with generators but no relations, except for
axioms in the definition of a crossed complex and the formulas that define the boundary

maps.

Example 2.35. [31] Let X be a simplicial set with X as its object set. We can construct
a free crossed complex of groupoids C' = wX, called the fundamental crossed complex of
X, with the following presentation. The generators are elements T € C,, for each non-

degenerate n-simplex x of X, where the source and target of T, are the objects Tp)y and T(y)
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respectively, and the boundary relations are

i Te X,
OX@) = dr +da™ —d —dE T Xa
T L (-)@T)  TE Xa n34

Because the image of 05 is central, we use any cyclic permutation of its terms, for example
IX@) = —dpr+ 0@ +dor = doz" — dyz — dyx + dow
ifr e Xs.
The following result is very useful

Theorem 2.36. If C' and D are free crossed complexes then their tensor product C ® D is

still a free crossed complex.
If we combine Example with Definition then we obtain the following

Example 2.37. Let X andY be two simplicial sets. Then the crossed complex of groupoids
C =71X ®7nY s the free crossed complex of groupoids with generators T, ®7Yy,, in Cpim
for all non degenerate simplices x € X, and ym, € Yy, with source T(g) ® Yoy (and target

Zo @Yy if (n,m) =(0,1) or Ty @Yo if (n,m) = (1,0)). The boundary relations are:

05 (T2 @ o) = —(Toz @ Go) + (T12 @ Fy) + (Tor @ Ty)

K (T1®7,) = — (T @) — (T1 @Tq)) + (Ta) @T) + (T1 @Fg))

858(50 ® yz) - _(50 ® yoz) + (fo ® 512) + (EO ® @01)

05 (T3 @Yy) = +(To13 @ Yy) + (T123 ® Yo) ™ YO — (Tp12 ® Y) — (Toas @ Yo)

05 (T2 @ 7)) = (T ®T) + (Tra @ ) O — (T, @) — (Toz @ Ty) + (T2 ® Jp) TO=)
05 (T1 @Y,) = (T) @ o) "V = T1 @Yy — (T1 @ Fp2) " O — T() @ Yo + Tt @ Yoo

35 (To © T3) = (To @ Yor3) + (To ® Fia3) "% — (To @ Yo12) — (To © Tgas)
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(@ © 5,770 + Y (-1 s 97,
i=1

+(_1)n(fn ® M)E(O)@@Ol + Z(_l)n—i_‘jfn ® m
J=1

The last relation is for n+m > 4, but if n = 0 then the first line on the right hand side of

this relation should be ignored, and if m = 0 then the second line should be ignored. Because
the other boundary relations, for n +m < 3, are not abelian expressions, we cannot say
that they are special cases of the relation for n+m > 4. Their terms (including the signs

and the actions) are the same, but the order is important.

Remark 2.38. In general, if C' and D are free crossed complexes, then it might be quite
complicated to write down the boundary relations in the free crossed complex C'® D. First,
we must use the boundary relations of Definition |2.54\(3). For example, in the ezample we

Just calculated, we know that

)xl ®srcyy

03(T1 ®Yy) = —SICT) @Yy + (targ T @ 7, — T1 ® 0oy

= —T(0) @Y, + (T(1) @) — Ty @ (—diyo + doya + dayp)

Here we have used the boundary relation in the free crossed complex Y given in|2.39. The
answer is still not in the form we need for the boundary relation of a free crossed complex:
we have to use the bilinearity relations in Deﬁm’tion to write 03(T1®7,) as a composite
of generators, possibly with actions. For this example we can write

a3@1 ® yz) = —T(0) @Yy + (f(l) ® @2)961@?(0) -1 ® (_%2 + Yo + @01)

= ~T(0) @ T + (Ta) ®Fo) " — (@1 @ (~7o)) TN + T, ® (71 + Tin))

= —T(0) @Yo + (T) ®F)" O — ((T1 ® (=) "Wt + Ty @ (15 + 1))

The bilinearity relation also implies that

T1® (—Tpa) = —(T1 @ Ygp) "2
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and so

O3(T1 @ Tp) = —T(0) @ Yo + (T(1) @ Yp) ™ ¥
_ ((—(f1 ® yOQ)*m(O)@@yoz)f(o)®@12+%1) T ® (T + %1)))

= —T0) @Yy + (T) ®F,)"VO — (_(51 ® Yoo) 2O 4 T @ (G + @01))
= —T(0) QT + (T ®T)"VO  — Ty ® (Tgo +To1) + (T2 @ Pop) 2@V

= —T(0) Yy + (T(1) @) — T1 ® (T1y + Yo1) — Z(0) @Y + T1 @ Ygp + Z(0) @ T
Since the image of Oz is cyclic, this can be simplified:
03(T1 ® ) = (T(1) @Yp)" O — T1 @ (Jyg +Tor) — 2(0) @ To + T1 @ Yoo
Now we can use bilinearity once more to obtain

(71 ®Y,y) = (T ® o) VO — T @ Ty — (T1 @) O — T(0) @Yz +T1 & Yoo
2.4.7 Diagonal approximation and shuffles

In this section we will review the maps ¢ and ¢ defined by A. Tonks in his papers [31],
and [32]. These crossed complex maps are analogues to the Eilenberg-Mac Lane map
which sends generators of the tensor product to a sum of terms indexed by shuffles, and
the Alexander-Whitney map for the normalised free-chain complex on a simplicial set,
which sends a generator (z,y) — > 7" %o ® Y., respectively. ¢ ¢ is the identity, and

there is a homotopy 1 between ¢ ¢ and the identity.

Remark 2.39. (32, Proposition 2.2.6] For any simplicial set X. There is a crossed complex
morphism, 7 of an approximation to the diagonal which acts on the generators * € m, X
by,

vV mX -1 XerX
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%) = (% @ %)

]

01) = (T(o) ® To1) + (To1 ® Tr))

g

(
(T

V(Zo12) = (Tor ® T19) T257) 4 (T1o @ T(a)) + (T(0) © Tong) 257
(T

\V4 n) — Z;L:O(EO...’Z X fi...n)(ii"(gj(”))

Proposition 2.40. There are crossed complex homomorphisms
¢p:m(X xY) = mX)en(Y)

natural in simplicial sets X, Y defined on generators by

n

¢n(xv0...vn7 yvo...vn) = Z (xvo...vi & yvi...vTL)(va@yvovi) fO’f‘ n 2 3
=0

While in dimension 0 it is trivial and in dimension 1 and dimension 2 are defined as

¢1 (xvovnyvovl) = (xvovl ® tyvovl) + (S'r’UOUI ® yUO’Ul)

and
¢2(xvov1v27 yvovwz) = (Togvivy ® yvz)(zm@yvm) + (xvo ® Yugvrva) T (Twgey ® vaz)(zm@yvovl)

These commute with the boundary map O defined in Definition , and are associative.

In the sense that the following diagram commutes.

(X XY XZ) 4¢> T(XXY)RnZ
o o ®id
T XQn(Y XZ) T XQnYnZ
id® ¢

for simplicial sets X,Y, and Z.
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For more detail the proof of the proposition above is in [31].

Example 2.41. In this example we show that ¢ commutes with the boundary map O.x
that is defined in Definition , for n = 2. We have 0¢o(x,y) = $10(x,y) with the

cancellations which occur in the following diagram:

r&@
w v dox @ doy

dldzx & Y r & dodly

(0,0)
dldgl' & dly

Figure 9: (z(vov1v2), y(vhuivy))

Definition 2.42. (32, Definition 2.2.7] A crossed differential graded algebra is a crossed

complex C, with a homomorphism p : C @ C — C which make the diagram

p® id

CeCxC CxC

id @ p 7

CeC — C

commute.

Dually one has that a crossed chain coalgebra 7 X is a crossed complex with a coasso-

ciative comultiplication forms a crossed chain coalgebra [20]:
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X QX

\/ﬁ

(X x X)

Figure 10:

The homomorphism 57 : 71X — 71X ® 7.X is termed the diagonal approximation map,

as we have already said in Remark

Proposition 2.43. (31, Proposition 2.6/, [32, Proposition 2.2.10] There are crossed com-
plex homomorphisms

p:rX@mY -5 n(X xY)

natural in simplicial sets X, Y, defined for all (x,y) € (X,,Y,) by

P(TRY) =2 (0 onres, (1 (5002, 50,y)  where (p,q) # (1,1),
where x € Xq,y € Y1, and S,, denotes the set of (p, q)-shuffles we have,

P(r DY) = —(50Twp01> S1Yw00) + (51%ug01 5 S0Ywgwy )

= —(Zugwovr» Yoovrv1) T (Tugoror s Yoovowr )

which are associative in the sense that the following diagram commutes

id
T XQnYQnZ ¥ ® m(XXY)®nwZ

1d @ 2

T Xen(YxZ) —— , w(XXYxZ)

for simplicial sets X,Y, and Z.

Also the proof of this Proposition and for more detail can found in [31]
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Example 2.44. In this example we show that ¢ commutes with O for dimension 2. Let
p=q=1

O (Loguy @ Yogur) = —O(50Zvg01> 51Yugr ) + (51T ugur s S0Yuour)
= —(80Tug; Yoovr) = (Tugurs S0Yu1) + (Tugurs Yoowr) = (Tugurs Yuoor) + (80015 Yogen) + (Tugur s S0Yu)
= —(Zuguos Yoovr) — (Tugurs Yolot) F (Zugvrs Yugor) = (Tugors Yoowr) + (Togors Yoovr) + (Zugors Yuoen)
which by the diagram:

vV

(vovo,v)v})

! /
VoV (vov1,v4v() V1Y)

The middle diagonal terms cancel, leaving O(x(vyvy), y(vyvy)).

Theorem 2.45. |31, Theorem 3.1] There is a strong deformation retraction of crossed

complexes
¥
WCW(X xY) —— 7(X)®@m(Y)
¢

which is natural in X, Y, where n is a contracting homotopy id ~ p¢ rel.(Xy X Yp).

For simplicial sets X, and Y the composite

(X x Y)L X @7nY (X xY)

is homotopic to the identity on 7(X x Y') via a splitting homotopy. Thus 7.X ® 7Y is a
strong deformation retract of m(X x Y).

The proof of this theorem could found in [32, P. 48].
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3 The cobar construction

Introduction

The main of our aim in this chapter is to introduce the main theorem on chain algebras
which was proved by J. F. Adams and P. J. Hilton in [3]. They showed, for a 1-reduced
simplicial set X, that the twisted tensor product of chain loop algebra Q2C'X and the chain
complex C'X is contractable. Moreover, we illustrate the theorem proved by K. Hess and
A. Tonks in [19], on the loop group and the cobar construction for any 1-reduced simplicial
set X.

The structure of the chapter is as follows. In section one, we introduce some preliminaries
on path space and then show the theorem on chain algebra which was proved by J. F. Adams
and P. J. Hilton. In section two we introduce the Adams cobar construction, which passes
from one chain complex to another chain complex with different structure [2]. We also
present the theorem that was proved by K. Hess and A. P. Tonks in [19], which shows that
for any 1-reduced simplicial set X, Adams’ cobar construction X is a strong deformation

retract on the chain on the Kan loop space CGX.

3.1 The cobar construction of Adams

Let CX be the normalised chain complex of 1-reduced simplicial set X. We have seen
earlier that this is a differential graded coalgebra, using the Alexander—Whitney diagonal

approximation,

CX —-CXeCX

The classical cobar construction 2 is a functor that takes differential graded coalgebras
to differential graded algebras. In algebraic topology, Adams in [1] introduced the cobar

construction and proved that the differential graded algebra QC' X is a model for the loop
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space on X. Recall that the loop space (2.X is defined as the space of all continuous maps
v : 8t — X. Two loops 7,7 : S' — X may be composed. Therefore the chain complex
C(£2X) on the loop space has a multiplication operation. Adams defined the differential
graded algebra QQC'X and proved that it is weakly equivalent to the differential graded
algebra C(QX).

Definition 3.1 (Adams’ cobar construction). Let A be a principal ideal domain of coeffi-
cients, and let C' be a chain complex of A-modules which is 1-reduced: Coy = A and C; = 0.
Suppose C has a comultiplication V : C — C' ® C' given by an associative chain map such

that, if x € C,., the components of V(z) in Cy @ C, and in C, & Cy are
Vor(zr) = 1®x

Vr,()(.f) = r®1

respectively.

Adams defined the chain complex Q(C) by

AC)=A+ Y 0% (where C*" =C@C®---®C, 7 times).

r>1

If x € Cy11 then, in Q(C), the element x has degree n and boundary

a) = -d(@)+ 3 (=1 Vysri(a).

2<r<n—1

This is a (free) differential graded algebra with the multiplication induced by the maps
cer ® %5 C®(r+s) c QC.

Definition 3.2. For any simplicial set X, the normalised chain complex CX is a differ-

ential graded coalgebra and has a comultiplication

V:CX - CX®CX
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given by the Alexander-Whitney diagonal approximation,
Vin—i(z) = 20 ® Ti_n, Va(z) = Z Z0..i & Tj. -
i=0

Theorem 3.3 (Adams). If X is a 1-reduced simplicial set, Xo = {*}, X1 = {so(*)}, then
there is a homology equivalence between the cobar construction on the chains on X and the

singular chain complex on the geometric realisation of the loop space on X,
C(|QX]) ~ QC(X)).
3.1.1 Kan’s loop group and cobar construction

Kathryn Hess and Andrew Tonks showed in [19] that Adams’ cobar construction is naturally
a strong deformation retract of the normalised chains CGX on the Kan loop group GX.
Recall that the simplicial group GX is the loop group of a simplicial set X, and was

first introduced by Kan. In each degree GX is a quotient of free groups
(GX)TL = F<Xn+1)/F(50Xn) = F(Xn+1 - SOXn)

In other words, it is the free group on the simplices that are not so-degenerate.
Let X be any simplicial set and G any simplicial group. A twisting function 7 : X — G
is a family of maps

{Tm . Xm — gm—l}m21

satisfying the following properties.
(i.) dot(2) = —7(dox) + T(d12);
(ii.) dim(x) = 7(dipqx) if i > 1;
(iii.) s7(z) = 7(sip1x), if i > 0;
(v.) 7(soz) = e, if z € X,,, the unit element of G, being e,,.
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In particular, a twisting function has degree —1 and is not a simplicial map.

Let 7 : X — GX be the universal twisting function from O-reduced set X, to the
simplicial group GX. The universal twisting function sends x € X,,;; to the image 7(z) =7
of the generator in (GX),.

As described in [19, page 1864], the shuffle map can be used to provide an algebra
structure on the chains on the Kan loop group: the normalised chain complex CGX on

the Kan loop group GX is a graded algebra with multiplication map

p:CGX @ CGX —» C(GX x GX) —» CGX,

that is,

Wor@g) = D (=D si(90) 5 55,(95)  gr € Gry s € Gy
shuffles 7=(4,7)

Theorem 3.4. [19] For any l-reduced simplicial set X there is a strong deformation
retract between Adams’ cobar construction on the normalised chain compler QCX and the

normalised chains on the Kan loop group CGX.

o
U CCGX — QCX
(0

Here ¢ and 1 are homomorphisms of chain algebras and n is a chain homotopy from

oY to the identity map.

This strong deformation retract is actually Eilenberg-Zilber data in case of X is a

simplicial suspension. More detail can be found in [19].

Proposition 3.5. [19/ For any simplicial map 0 : GX — GY ,(X, and Y are 1-reduced

simplicial sets) there is a chain-level model ¢ of 0, and then the diagram
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QCX QCy
¢ ¢
CGX GCY

co

Figure 11: ( =voCho¢: QCX — QCY

commutes up to chain homotopy.

The homomorphism ¢ in the theorem above was first described by Szczarba [30]: he
gives the explicit formula for a twisting cochain A4 which is based on the twisting function
7: X — GX, but he did not prove that ¢ has a homotopy inverse that is also an algebra

homomorphism.
3.1.2 The cobar construction of O-reduced simplicial sets

In order to prove the previous theorem, Hess and Tonks needed to generalise the classical
cobar construction of Adams from 1-reduced simplicial sets to O-reduced simplicial sets.
They introduced an extended cobar construction, that they denote Q, and they defined ¢
and ¢ for O-reduced simplicial sets. They then proved the homotopy equivalence of CGX

and QCX using an acyclic-models argument.

Defining the Hess-Tonks cobar construction. Let R be a commutative ring with
unit and let (C,0) be an R-free differential graded coalgebra with Cy = R. Consider first

the ring A, in degree 0, given by the free associative R—algebra on the desuspension of Cf,

A=) (s'Cy)n.

r=0

Now let B = {z; ;j € J} be a basis of C}, so that A is the free algebra with generators

s™tz;, and let K be the ring obtained from A by adjoining inverses \; of all elements
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of the form (1 4 s™'x;). The ring K is an algebra in degree 0 generated by s™'x; and
/\j = (]_ =+ Silxj)il.
The extended cobar construction QC' of Hess and Tonks [19] is

OC= ) K®(s'C,eK)®.

r>0,n>2

In the case of 1-reduced chain complexes, Cy = 0 and K = 0, so this is Adams’ cobar
construction.

The generators of in degree n of QC therefore have the form
k=k®- -k, n:Zni

where either k; = s~!c for some basis elements ¢ € C,,, 11, or n; = 0 and k; = A; for some
j € J. The unit 1 € (QC’)O is the empty word. Since elements in degree zero do not have
boundaries, the differential is the same as for the classical cobar construction: for all basis

elements c € )11, n > 1, the differential 9% on Q is specified by

%57 le = —sMde + (st ®@s HV(c).

n

Definition 3.6. Let X be a 0-reduced simplicial set and let 7 : X — G be any twisting
function to a simplicial group. Then there is a canonical homomorphism of differential
graded algebras

¢: QCX — CG,

defined in positive degrees using the Szczarba operators Sz;; see [30] and [19].

¢0<)\z1) = Ty,
bo(stwy) = T(x1)t -1,

Gn(s Tpt1) = Z(—l)ziSzix, n>1

1€Sn

for any x,11 € Xpy1.
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In the other direction,
Definition 3.7. Let X be a 0-reduced simplicial set. The differential graded algebras map
Y :CGX — QCX

from the chains on the loop group to the extended cobar construction of the 0-reduced sim-
plicial set is determined as follows.

In degree 0, 1y : (CGX)o — (QCX)q is defined on the algebra generators by
Yo(TT) = Asy Yo(tr™!) =1+ s 1o
In degree 1, iy : (CGX), — (QCX); is determined by
Uy (Tt oTalT) = i Yodi (T2t . Ta ) @ Yy (Tl @ odo (Tt L TalT)
i=1
In degrees > 2, ¥, : (CGX), — (QCX), is determined by

Un(T2 - y) = ¥n(y) — Z$o...i+1 ® Y1 (Tdiz.dyy)
i=0
Hess and Tonks showed the following.
Proposition 3.8. The map ¢ : CGX — QCX s

1. well defined, that is, ¥(w) = 0 if w is degenerate,

2. a chain map, i.e., for allx € X1 and y € (GX),,
0§wn(7x.y) = Vp_10,(T2.7),

3. an algebra homomorphism.

Un(2.y) = V() s(y), =€ (GX),, ye(GX)s, n=r+s,

57



4. a retraction of ¢, that is, 1@ is the identity.
Proof. See [19] O

Theorem 3.9. The cobar construction QCX on the normalised chain complez of 0-reduced
simplicial set X is naturally a strong deformation retraction of the normalised chains CGX

on the Kan loop group GX.

¢
<I>C(JGX — Acx
(0

Here v and ¢ are the Szczarba and the retraction maps respectively.

3.2 On the chain complex model of the path space

For any O-reduced simplicial set X, there is a simplicial fibration
GX - EX - X

where FG may be identified with a certain twisted cartesian product of simplicial sets
EG=X x,GX

The simplicial set EG is contractible, and the simplicial fibration is a model for the path-
loop fibration of spaces,

OX - PX — X.

For any 1-reduced simplicial set X, the cobar construction on C'X is an algebraic model
for the loop space. A twisted tensor product of the chains C'X and the chains on the loop
space C'QQX should therefore be an algebraic model for the path space. That is, it should
be contractible, since any path can be retracted to the constant path at the basepoint.

The following theorem was proved by J. F. Adams and P. J. Hilton in [3]
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Theorem 3.10. Let X be a I1-reduced simplicial set. The tensor product of the loop space
QCX on the chains on a 1-reduced simplicial set X and the chain complexr CX 1is con-

tractable.

Proof. Let L = CX be the free abelian group generated by elements [; € C; X with [j =1
and augmented by a(1) = 1,a(l;) = 0,7 > 1. Let K = QCX be the loop space on the
chains on X generated by elements k; € (QCX);. Define C' = L® K as a tensor product of

L, and K with the usual augmentation o. Next define a retraction n : C,, — C, 11 by:

n(1) =0, n(k:) = 1, (77/%')2 =0 (15)

and for z € C,, y € K,, define the homotopy n and a boundary map J as:

n(zy) = n(@)y + (ax)n(y), (16)
6(zy) = (dx)y + (—1)"x(dy), (17)

The differential § satisfies
5[1 = (1 — 775) k?i, l; € Cn+1, k; € C, (18)

It is clear that n and ¢ are consistent with the two distributive laws and with the associative

law of multiplication. O

Remark 3.11. [5/ The augmentation « is homotopic to the identity, i.,e, there is a

homotopy n from the identity map 1 to the augmentation o such that
(on+nd)x=(1—a)z
for all x € C,.

Proof. Let x € C,,, if x =1, (x € Cy), this is trivial. If = is a generator of K,,, and = = k,

then (0n-+nd)k = én(k)+nd(k) = (1) +nd(k) (from Theorem [3.10(1)), also from the same
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theorem in (4) we have 61 = (1 — d)(k), so 5(1) + nd(k) = (1 — 8) (k) + nd(k) = k.
If z is a generator of L, and z = [,
(61 + nd) = dn(l) + o (1) = dn(nk) + né(l) = 0 + nd(1) (by Theorem [B.10(1))
= (1 —nd)(k)) = n(k) — n*(3(k)) = n(k) = I, (Theorem 3.10(1) and (4)).
The prove above showed that if z on the generators of QCX and of CX, it satisfies
6+ 1)z = (1 — Q).
Now if z € C,, y € K,,,
(01 +nd)xy = dn(xy) +nd(zy) = 6((nx)y + (ax)(ny)) +n((6x)y + (=1)"x(dy)) (Theorem
3.10(3))
= (onz)y + (=1)""(nz)(dy) + (daz)(ny) + (—1)"(az)(dny) + (ndz)y
+ (6ax)(ny) + (=1)"(nz)(6y) + (=1)" () (ndy)
= (0nz)y+ (dax)(ny)+(—1)"(ax)(dny) + (ndz)y+ (dazx) (ny) + (—1)" (az) (ndy)
= (dnz + néx)y + (6ax)(ny) + (—1)" () (dny + ndy) + (daz)(ny)
( the term (—1)"!(nz)(dy) cancels with the term (—1)"(nz)(5y))
Now, if n = 0 then
(0n +nd)(zy) = zy — (az)y + az(y — ay) = zy — azay = (1 — a)zy.
Ifn >0,

ax =0 and (6n+nd)(zy) = zy = (1 — a)xy. O
Proposition 3.12. § is a differential on C'.

Proof. In case of the generators of K, it is clear from Theorem [3.10)(3), so we need only

verify the proposition on a generator of L,,. Let [ be a generator of L, satisfy that nk = (.
62l =6(1 —nd)k = (6 — ond)k = (1 — on)dk.

Now,
(6n 4+ nd)dk = (1 — a)dk ( from Remark [3.11]).
So

60



dndk = 6k (68*k = 0, and adk = 0). Hence that implies 6] = 0.
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4 A crossed complex of groups

In this chapter we will try to generalise the theorem of Adams and Hilton that we gave in
the previous chapter.

We define a crossed complex of groups P<*X, where X is a 1-reduced simplicial set, to
try and obtain a crossed complex model for the path-loop fibration.

The cobar construction QX for crossed complexes, for 1-reduced simplicial sets, was
introduced by Baues and Tonks. We want to introduce a twisted tensor product of this
crossed cobar construction QX and the fundamental crossed complex 7X. It will have
the same generators as the usual tensor product of crossed complexes of groups. The
most important part of our construction will be to define the new twisted boundary maps
oF - PSsX — P X

To make our construction easy to define, we will introduce the idea of a free module
over an algebra in the category of crossed complexes. Then our crossed complex of groups
P X will be a free module over the crossed chain algebra QX . We will then only need
to define the twisted boundary on the basis elements of the module.

The structure of the chapter is as follows. In first section, we begin with recalling
the Baues-Tonks definition of the crossed cobar construction Q¢*X. We follow this by
presenting the idea of free modules over crossed chain algebras, and then we can give our
short definition of the path crossed complex P X as a module over QX . Next we expand
this definition, and we calculate the boundary maps 97 on other generators of P<*X. We
will also prove that 9% is a differential, that is, we will prove its square is trivial.

In the second section, we define a contracting homotopy, which we can do by defining a
family of maps 7, : P<"X — PS5 X which raise the dimension by one and satisfy certain

conditions. We then have h : % ~ id, so P“*X is contractible. Therefore P**X is a crossed
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complex model for the path space of X.
B 1
x ~ Id P {x
Ot

4.1 The crossed cobar construction

We begin this section by recalling the crossed cobar construction QX given by A. P.
Tonks and H. J. Baues in [14]. In their paper, full details of the definition of Q=X for a
1-reduced simplicial set X are given.

They define the interval object Z in the category of crossed complexes to be given by
the crossed complex Z = w(A[1]). This has generators {0,1} € Zy and (0 : 0 = 1) € Z;3. Tt
has a map p: Z ®Z — 7T given on the generators by a ® b = 1 for a,b € {0,1,0}, except
for 0 0=0and 0®oc=0®0=o0.

We write down some of the boundaries of tensor products Z®" of copies of Z, which we

will need later,

Oh(o®0)=—(sre(o) ®0o) — (0 ® targ(o)) + (targ(c) ® o) + (0 @ sre(o))
=—(0®o)—(c@1)+(1®0)+ (0 ®0).
N0 @0 ®0)=—(0®0®targ(o)) — (0 ®@sre(o) @ )€ — (targ(c) ® 0 @ o)

+(e®o® src(g))(1®1®a) + (0 @ targ(c) @ o) + (sre(o) @ 0 @ 0_>(U®1®1)

Definition 4.1. [14,20] Let X be a 1-reduced simplicial set. The crossed cobar construction
QX is a free crossed chain algebra generated by the elements s 'a,,1 in degree n for each

(n+ 1)-simplex of X and boundary map given by:

Q —1 —1 -1 -1 -1
82 S a3 = —S "A123 —S Qp13 + s ap23 + s api2

O (s ay) = —s agras — (s tagiza)” — s tarazs + (s tagias)

63



+ (s agiz - 87 agss) + (s tapza) ™

and for dimension n > 4 the differential defined by the formula

ag(s_lan“) = Z(_l)iﬂ(s_ldianﬂ)% - Z(—l)”l(s‘lao...i -5 g n41)

i=1 i=1

Here the actions are by the elements

-1
Vi =S Qi1 4 i+1

Remark 4.2. The algebra structure of the cobar construction is given by the crossed com-

plex homomorphism defined by concatenating the generators,

e QCrsX®QCrsX N QCrsX

plrex) =z

The generators of QX as a crossed complex are all of the words, or strings, of its gen-
erators as a crossed chain algebra. We can write a generator of degree n of the crossed
complex QX as

= s gM .. g1
rT=8"a, s a,’,

where r > 0, each agf,.) is a non-degenerate (n; + 1)-simplex of X and n =Y _n,.
The boundary Stz of a general word x can be calculated using the boundary relations in

the definition of the tensor product of crossed complexes.

The crossed cobar construction is only defined here for a 1-reduced simplicial set, which
has no non-degenerate 1-simplices. Therefore it is a crossed complex of groups, with base-

point given by the word x = & of length r = 0,
05X = {2}
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In dimension one we can see that Q$™X is the free group on Xy — {s2(*)}.

In dimension two, Q$*X is the free crossed module over QX with two types of

generators
s las, s lagsal,
and boundary relations
Ostay = —s ajes — s taps + 5 ages + 5 taon (19)
O (s Yagstah) = —stah — s lay + sl + s lay (20)

In dimension 3 we see that Q$=X is a free Q5™ X-module with four types of generators

slay, slassTlay, sl'aps las, s lags lahs'ay.

whose boundaries are given by

8398_1(14 — _(S—1a0134)(s—1a123) . (s_1a1234) 4 (8_1a0124)(s_1a234)

+ (s tagrzs tagss) + (8_1a0234)(s_1a012) — (s tapias), (21)

O (s Yagsrag) = — (5 tarass tag) + (s tag)® ™ + (s lagiaslay)
+ (s Tagess tag) T 9012) — (s7lag) — (s lagrgstan) M) (22)

05 (s tagstag) = —(stas) + (s ass tags)® 92 4 (s ags  agas)

+(57as) ") — (s ays lagrn) — (s ans ages) P (23)

O (s ags Tahs T al) = —(stags Tt ah) — (s tagslal)T ) — (s lals ™ al)
+ (8_1a25_1a’2)(871“/2/) + (s tags™ah) + (s_la’zs_la;’)(sflaz), (24)

4.2 Construction of the path crossed complex (P¢*X,9")

Definition 4.3. Let A be an algebra in the category of crossed complexes, that is, a crossed

complexr A with an associative multiplication given by a homomorphism
w: AR A— A
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Let M be a left A-module, that is, a crossed complex M with a homomorphism
a: AQM — M

that respects the multiplication. We say that a subset B of M is a basis for the A-module
M if the set
{a(a®d); a€ A, be B}

forms a set of generators of the crossed complex M. The action of A on M 1is then given
by multiplication in A,

ala®@ald @b)) =alad @b).

Our main example of a module with a basis will be the path crossed complex P“*X.
We would like this to have the same generators as the usual non-twisted tensor product of

QX @7X,
T®b, = (H sla(i)> & by,
i=1

where o) € Xn,+1 and by, € X,,,. Therefore we can choose a basis
B ={(2 ®b) | b anon-degenerate element of X}.
The action of QX on B C P**X is given by
a(r®(FRby)) =1 by,

The elements = ® b,, gives the set of generators that we want, and so we see that B is a

basis.

Definition 4.4. Consider the twisted tensor product P¢*X = QX @, 71X of the free
crossed chain algebra QX and the fundamental crossed complex X, defined as the free

QX -module with basis
B={(@®by,) : by is a generator of X},
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whose boundaries are defined by the following formulas

OF (@ @by) = (57 by @ %)
0P (@ @b3) = (57 b3 @ %) — (T @ dsbs) — (T @ dybs) + (T @ dabs) + (@ @ dobs)

m m

0L (@@ by) =Y (1) (@@diby) + Y (s b0 @bin), n >4

i=1 i=1

We call P¢*X, the path crossed complex of X. In the rest of this section we will make
this definition more explicit. In the definition we have only given the definition of the
boundary map on generators of P¢*X of the form (& ® b,,). In the next two theorems we

use the fact that
a: QX @ PCSX — PCRX, alr@ (' ®@b) = (z-2)®b
is a homomorphism of crossed complexes. Therefore we can see that

(2@ by) =0"a(z® (@®b,)) =ad’(z® (2@ b,))

If + = @ this does not tell us anything new. In general, if m,n > 3, we know that the
formula will have the form

O (x @ by) = 0% @by, + (—1)la(z ® 0F (@ @ by)).
In the case m = 0, b,, = *, we see that
O (x @ by,) = 0%(z) ® *

where the right hand side must be expanded using (1) and (3) from Definition together
with the formulas for 0 from the previous section. This is done in Theorem below.
Then in Theorem [4.6] we will give a general formula for

O (s a, @ by,).
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Theorem 4.5. The boundary % of elements with generators of the forms

DPn = (H Silanﬁ—l ® *)7 ani+1 < Xni+17 n = an

in P X for a 1-reduced simplicial set X are as follows.
1. In dimension 2 we have two forms of generators and using and we find

L (95(3_1(13 ® *) = —(s—1a123 & *) — (8_1(1013 ® *) + (s_1a023 ® *) + (3_1a012 ® *),

II. OF (s7tags™ah, @ x) = —(s7tah, @ %) — (s7tay @ %) + (s7tah, @ *) + (s Lag @ *).
2. In dimension 3 we use equations —

I 85(5*1a4 ®*) = —(slagz ® *)(s_1a123®*) — (57 ar934 ® %)
+ (s tagiza @ *)(571“234@)*) + (s7tagras tagzs @ *)

+ (57 Yaggss @ %) 9028 _ (s71g0100 @ %),

I1. 05 (s lazs™lay @ %) = — (s 'arozs laa @ %) + (s 'az ® *)(871@@*)
+ (s Magizs " ag @ %) + (s agzslag @ *)(5 a0128%)

—(slaz @ %) — (s tapss g ® *)(371‘“23@*)7

1. 9 (s7Lazstaz ® %) = —(s7laz ® %) + (s Laps tagrs ® ) 91299
+ (57 Yags Lagas @ %) + (s lag @ ) a0128%)

— S_ICLQS_la’ X *x) — 3_1a25_1a023®* (s ap12®%*)
012

IV, 0 (s a5 a0 © %) = —(s s~y @ %) — (5 aps~a @ )8
— (s7'abs ™ al @ %) + (s agsTlal @ %) aE®)

+ (s ragsral @ %) + (s ahs al @ )57 e2@%)
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3. For dimension n > 4 we can find 0F inductively,
_ i—1)
(OF T ay) s @ %) = (707l TTap @ %)

a ) l
1)l (5710, 07 TTal) @ %)

_ 1) i—1) n; _ (i—1 ( ‘)(1)
(s lai £LZ+1 11 agz 41 ® *) = Zj:l( 1)J+1( td; an +1 I1 Qp, +1) ® *) K
g ] — 1 — 1
= (1 (s a5 al L TTan s @ %)

_ 1
() = (57 511 ®%)

Proof. We will just prove (1-I), and (2-I), because the other cases will be similar but

longer.

1. (1-I)
(slaz @ *) = a(slaz ® (D ® %)), so
OF (s7lay @ *) = O a(s™ a3 ® (2 @ %)) = (0% (s'az ® (@ ® *))) by (19)

= Oé((—s_lams — s 'agis + 5 ages + s tao2) ® (I ® *))

(
a = (sra123 @ (B @ %)) — (s ags ® (T ® *))
+ (s 'aoes ® (@ %)) + (s 'ag12 ® (D @ *

)
= — (s a123 ® %) — (s lagis ® *) + (s ages ® *) + (s Lagiz @ *).

2. (2-1)
(s7tay ® x) = a(s 'ay ® (T @ x)), hence
O (s7'ay @ ) = 0 a(sas ® (B @ %)) = a( (s tas ® (B @ *))) by (21)

— -1 —1_a123 -1 1 ,a234 -1 -1
—a((—s ap1az — S ragiyy — s lajozs + s agly + (s agis ® s agsy)

+ s7tagy) @ (@ @ *)

= a(— (s 'ao1s @ (T @ %)) — (s7'afiF; @ (T @ %)) — (s 1231 ® (T @ %))
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+ (sHagi @ (B @ %)) + (s age ® (s agss ® %)) + (s afl) ® (@ @ *))
= — (s "agias @ *) — (s7'agiE @ %) — (s 'araze ® %) + (s agisy ® *)

+ (57 Yagres tagss ® *) + (s7Lalsyy ® *).

We give now a formula for O of general element (s a, 1 ® by,).

Theorem 4.6. Let X be a simplicial set with Xo = X; = {*}. P*X = Q"X ®47X is a
path crossed complex with generators (& ® by,), with the differential defined on an element

of form (s7'a, ® bp)y, q=m+n—1, by the following formula:
1. 331)3(3—1% Rby) = —(5 azs Ty @ %) — (TR by) + (T ® b2)(s_1a2®*)7

2. 85(8*1% Qb)) =Y (1) (s a, @ dib,)
+ (=0 (57 ans T o © i)
+ Z;:ll(—l)j*l (s’ldjan ® bm)w
— S0 (57 ag. 5T g © bin)

where
_ —1
Y= (87 a1 j j41 @ %).

By induction, this specifies the differential on the whole of P<*X .

Proof. We use the definition of the ordinary tensor product of crossed complexes that we
introduced in Definition [2.33] Let us start with dimension ¢ = 3 = (1 + 2).
05 (sras @by) = 0 (a(s7'ar ® (B @ bo))) = adf (s as @ (T @ by))
= —a(PR(BRb))+a(P (TR b)) 2 —a(slay @ IF (T ® by))
= (PR (BRb)+a(@ (T b)) 2 — a(say ® (s by @ *))Definition (4.4)
= (B by) + (B D by) 289 _ (571057 1hy @ %).

Now we need to prove the theorem when ¢ =1+ m
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O (57 as @ by) = 0F,,, (57 as ® (B @ by))) = @df (s as ® (T ® b))
= —a(PR (B Rbp)) + (TR (TR b)) 2% — (s ay @ L (S @ by,))

~a(@ @ (T @ bn)) + (B ® (T @ by,)) ¢ 228%)

+a ( S (=D (sl ® (2 ® dibm))> - a<zyil(s—1a2 ® (57t i ® blm))>
—(D D b) + (D @ b)) + 377 (=1 (57 ap © diby)
— > (s ags T o, i @ bim)-
0 (s a3 @ by) = 03 (sl ag @ (B @ b)) = a0, (57 ag @ (T @ b))
= —a(s1a1230 (TRb,,)) —a(s agz @ (T Rby)) +a(s tags @ (TRb,))+a(s tag 2 ®
(T Rbp)) —al(staz @ 0L (2 @ by))

= —04(8716L123®(®®bm))—a(871a013®(@@bm))+Oé(871a023®(®®bm))+O€(8716L012®
(2@ b))

v S0 e (@8d,) ) +DPa (T a0 (s b))
= — (s a123@byn) — (5 a013@bm) + (5 023 @i ) + (5 012 @by ) + 31 (1) (s az @
dibpm)
+ > (s azs o @ b ).
And, for dimension ¢ > 4, n > 3 we have
OF (s ap, @ by) = 0F (a(s7'a, @ (B @ by))) = adF (s a, @ (T ® by,))
= a(Op-15"'a, @ (B ®@by)) + (—1)" (s a, @ OF (2 @ b,,))
a((0 (~1) (s dsan )
— S (1) (s ag s i) © (2 @ b))
=D a(sTan @ (2 (-1)(2 ® dibn)
+ 30 (57 0. ® b))

=« ( S (57 dan) ® (2 @ bm))
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—« ( S (=D (s ag. s i) ® (B ® bm)>
+(-1)" o (slan @3 (- (e dibm))

He o S 6@ (@ 9 b.0)
=3 (=) a((s7 dian) " © (2 @ b))
=3 =D (s ag. s i) ® (D @ b))
+(=1)" 13 (D) a(sra, @ (8 @ diby))
+(=1)" 0 als ™ ans o, @ (D @ bim))

= Z?:_ll(_l)i—’—l(‘s_ldian ® bm)% - Z?:_ll(-1)i+1(S_ICLO”J-S_ICLZ-M”) ® bm)
+ Zzﬁ;l(_l)wnil(silan ® dibm)
+(=D)" Y (57 ans T o, @ bin)

O

Proposition 4.7. The boundary map Y : P — P which was defined in Definition

is a differential on the crossed complex group P=X.

Proof. We will just prove that 0 ;0P (@ @ b,) = 0, for all n > 3.

We start with dimension n = 3, and use Definition 4.4
0508 (@ ® by) = 0F ((3153 ® *) — (O ® dsbs) — (@ ® dibs) + (T @ dabs) + (T ® dob3))
= —(stho3 @ %) — (5713 @ %)  + (sTlhooz @ %)+ (s bo12 @ )
— (5712 ® %) — (sTlhos @ %)+ (s7lboi3 ® %) + (57 1bioz ® *)
=0 (this also from Theorem 4.5]).

Now we need to show that 97 0P (@ ®b,) =0, n>4.
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%ﬁﬁ@@@»=%H(ZL@UWM@M@+ZL@*WJ®mm):

M (=10 (@ @diby) + > 08 (s b0 i @ bin)
=1

i=1

The terms of 07 (@ @ b,) have the following form:

(s bo..i @ bi.n), (2)

and the last element will be

(571b, ® %), (3)

where by, is the simplex b, but after deleting the vertex i. When we take OF | for the terms
(1) the elements which come out will be the same forms of elements in (1), (2) and (3) but

related to l;l and 7 =0...n— 1. They are:
() (@ @db),  (1-1)
(1o @bja), (1-2)
and the last element will be
(—Di(s By ®%), di=1...n—1 (1—3)

all the terms in (1 — 1) will cancel each other under the laws of simplices (d;d; = d;_1d;).
The terms of
0P 1(2) = O 4 (5 b4 @ bin) = ST~ 1)1 (57 by @ i)

+ (=1 Z?:_;(S_lbO.A.is_lbi...j—‘ri ® bjtin)

3 (DR (s by s @ by )
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- ZZ:1<_1)]€+1(3_1dkb0...k3_1bk...i ® bi..n)

have the following forms:
(=17 (s o..i @ djbi. ) (2—-1)

<_1)i_1(S_Ibo...is_lbz‘...jH‘ ®bjtin) (2—2)
(=) (s drbo...; ® byn)™ (2-3)
(=)™ (s drbo..ks™ ' br..i @ bi..m) (2—4)

If we take 9,_1(3) we will use Theorem [4.5| which the formula is:

On_1(s7th, @ %) = Z;:ll(—l)”l(s_ldibn ® *)Yi — Z?:_ll(—1)”1(8‘1b0‘,¢8—1bimn ® *)

which consists of two forms of elements,
(=) (s7 d;b, @ %) (3-1)

and

(=)™ (s bo.i5™ bin © ¥) (3-2)

The elements in both terms (1 — 3) and (3 — 1) will cancel each other because of the fact
that PS™X acts trivially on PSX n > 3 so all elements on (1 — 3) and (3 — 1) have the
same expression, but with opposite signs.

If i = 1, the terms in (2 — 1) will be (—1)/(@ ® d;b;.,,) which similar to the elements in
(1 — 2) where j = 1 which are have the form (—1)(@ ®§1__n), so all terms in (1 — 2), and
(2 — 1) cancel each other in pairs.

The terms of (2—2) and (2—4) are equals but with opposite sign, so they cancel. In (2 —3)
if n— 1 = 1 the type of elements in this term will have the forms (—1)*"(s™(dpbo.. n1 @ *)

which are the same elements on (3 — 2) in case of i = 2 or i« = n — 1, since in this case
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the elements on (3 — 2) will have the form —(s7'b;_, ® %) or (=1)""(s71by_,,_1 ® *) also
here we used the fact that PS™X acts trivially on P*X. otherwise the form of elements
in (3 — 2) will have the same form of elements in (2 — 4) but with opposite sign, so they

cancel in pairs. O

4.3 Construction of the contracting homotopy

Recall that the interval object Z in the category of crossed complexes is given by the
fundamental crossed complex of the 1-simplex, Z = w(A[1]). This has object set Z, = {0,1}

and just one generator (0 : 0 — 1) € Z;.

Definition 4.8. Two homomorphisms f,qg: C — D are homotopic if there exists a homo-

topy h : f ~ g between f and g. That is, if there is a homomorphism
h:m(All])® C — D
such that hig = f and hiy = g [31)].
i()/\

C—= x(AI)eC - p

9

Definition 4.9. Let C be a crossed complex with Cy = {x}. A contracting homotopy is
a homotopy h between the constant homomorphism 0, : C — C' and the identity function

idc. That is, it is a homomorphism
h:m(All) @ C — C
that satisfies:
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i. h(0® c) =0,
ii. h(1®c)=c¢,
We will also assume that, for x € Cy, h(o ® x) =0, € C4.

In other words, given a contracting homotopy we have h : x ~ 1dc. So C'is contractible:

there is a homotopy equivalence

Given a contracting homotopy
h:rtAll®@C —C
we consider the family of functions
N Cp = Chig, (n2>1)

defined by
ma(c) =h(oc®c), (ceC,)

Conversely, given a family of functions 7,,, we could define a contracting homotopy
h(0®c) =0, h(l®c)=c, hloc®c)=n(c)

In order for h to be well defined and commute with 0 : C,, — C,,_1, the family must satisfy

some properties.

Proposition 4.10. The family of functions n, : C,, — Cy41, which is defined as h(c®c,,) =

n(cn), (n > 1) satisfies the properties that

1. On(c1) = 1,
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and n(x) = idc.
Remark 4.11. The homotopy n which was defined in definition[f.9 satisfies the properties

of Proposition (1 —4) if and only if h is well defined and commutes with 0.

Proof. =) Suppose that the contractable homomorphism map h, is well defined and com-
mutes with 0 then we need to prove that 7 satisfies the Properties (1 — 4) of Proposition
410

1. On(c1) = 0h(o®cy) =ho(o®cy) = —h(0®c) —h(o®@%*)+h(1®c)+h(o®@%*) = ¢

(from Definition and Definition 4.9)),

2. On(c,) = Oh(o ® ¢,) = hd(o ® ¢,) = h(010 ® ¢,) — h(o ® Oc,,) = —h(sre(o) ® ¢,) +
h((targ(0)@c,) ")) —h(c®@dc,) = h(0@c,) +h(1©¢,)" ") —h(0@dcy) = cn—ndey,
( this is from Definition [4.9| (i) and (ii)),

3. by use of Definition we have, n(c, +¢}) = h(0®(c,+,)) = h((c®@c,) @) 4

(0®c)) =h(o® ) +h(o®c,) = n(ca)" %) +1(c),) = n(ca) +n(c)),
4. because 1(cct) = h(o @ ') = h((0 ® ¢,)®)) = h(o ® ¢,)"0%D) = n(c,)% = n(c,).

<) Conversely, if we have n : C,, — C,,41 a family of functions that satisfies the properties
(1 —4) of Proposition then we need to prove that the contracting homotopy h given

as h(0® c) = 04, h(oc ® ¢) = n(c) and h(1 @ ¢) = ¢, is well defined and commutes with 0.

1. he®(cn+c))) =nlen+c,) =nl(e,) +n(c,) =h(c®@¢c,)+h(c®d,), (by Proposition
4.10[ (3)).
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2. Oh(o ® c) = On(cn) = cn — 1d(cy), (by Proposition
= h(1®c,) — h(o ® d(cy))
While
ho(o @ cn) = (= (0® ¢) + (1 © ) — (0 ®@ 0(cy))) = —h(0® ¢,) + h(1 ®
cn)"7®) — h(oc ® d(c,)) = (1 ®¢,) — h(oc ® d(cy,)).

]

We want to define a family of functions n : P¢X — PSS X which form a contracting

homotopy.
Definition 4.12. Let x be an element of QX given by a word
Tr = 3_1:1315_1372 o s_lxk

where x; € X, 11 and Y5 n; = |z|. Define : PX — PS% X as:

1. n(@ @ *) = 0w,

2. n(xsla, @ %) = (-1l (z®a,) ,

3.1 ® bp) = Oz -
Theorem 4.13. The family of functions n in Definition[4.13 forms a contracting homotopy.
Proof. The general form of the generators of P“*X of dimension n is

o= (18 a1 ®b,), |z| = m, m+q+r=n

1. Case r = 0, the generators of P<X have the form

(w5 a 1 ® *), |z| = m, m-+q=n

78



1.

ii.

In dimension 1 we have the only generator is p; = (s 'as ® %), so by Definition
4.12| (2) we have

n(p1) = (2 @ az)
we need to show that 0ym1(p1) = p1, so that the Proposition holds.

Oy (p1) = 02(D ® ay) = (s~ 'ag @ *) = py, (this from the definition of the
boundary map 9" in Definition [4.4).

Hence for dimension 1 where r = 0, 7 satisfies Proposition [£.10]

Assume |z| > 3, qg=1, lz| +1=n,
we need to show that O, (17,00 = Pn — Mn_10npPn Where p, = (x5 tay ® *)
so that the Proposition [4.10| holds.
From Definition we have, 0,(pn) = (x5 ay ® *) = (—=1)"l(z @ ay)
and from Definition [4.6{2), the terms of 8,41(z ® as) will be
On1(r ® ag) = (=)l (x5 ay @ *) + (0% ® ay),
so the result of 9,17, (x5 tay ® %) is
D1 (w5~ as ® %) = (1)l ((=1)l*N (@57 as ® %) 4+ (0% ® ap))
= (r57'ay @ %) + (—1)1"1(0% @ ay).
Now;
first we will find 0,11 (2s~'aa ®*) by use Definition the forms of the bound-
ary of ordinary tensor product of crossed complexes,
O(xs tay @ *) = ((0%)s Lag @ ) + (= 1) 2L (= 1)* (25  diag @ %)
— (=D)L (1) (s ag s a0 @ %)
= (%) az @ *) + (=P (2 @ %) — (—=1)**2(z @ %)
= ((0%)s tay ® *)
that is because of Proposition [4.10(4) we can ignore the action.
no(zs tay ® *) = (—1)*171(0% ® ay), (Definition .
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iil.

And hence,
—n0(pn) = (v57 ay ® ¥) — (—1)1171(0% @ ay)
= (zs'ay @ %) + (—1)"(0% ® ay).
again with dimension n where |z| > 3,q = 1, n satisfy Proposition m
Assume |z| > 2, q=2, |z| +q =n,
again we want to show that 0,4 1m.pn = Pn— Mn_10.Pn Where p, = (xs’laqﬂ ® %)
from Definition [4.12)(2) we have
N(pn) = M5 g1 @ %) = (=1)"(z @ agr1),
Onira(75™ g @ %) = (=1)(0% @ agpr) + (~DF L (1) (2 @ diag)
+ (_1)2‘33' Z?if(:vé"lao...i ® i g+1)
= (=1)F(0% @ ag1) + 1L (1) (2 @ diagyr) + 1 (w57 a0 i ® a;_g41)
( this is by using the boundary laws of tensor products of crossed complexes
Definition .
While,
On(pn) = On(257Yag1 @ %) = ((0%2)s Lag1 @ *) + (= 1)*/(20%,41 ® *)
(using Definition
= ((0%)s agr1 ® ) + (= 3L, (=1)* (w57 diags1 © %)
— (= )‘xl Zq (= )Hl( s 1a0...i871ai...q+1 ® *)
now from Proposition [£.10] (3) we have:

nn—lan(zsilaq-i-l ® *) = nn—l((aﬂx)silaq—f—l ® *)

ot (D 2L () o s-ldiaw@*))
e (0 L ) s a5 g )

= (=D)FIH0% @ agsr) + (1) L (1) (@ @ diagea)
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— (= )2|$‘ Z (= L)t (zs™tag.; @ Qi..g+1)

Now
Pn = Mn=10n(pn) = (25 ager @ %) + 3L, (1) (@57 a0..i @ aiq41)
— XL (=) (@ @ diagin) — (=1)"7H(0% @ agi1)
= (s Agp1 @ *) + Z (= )" (zs ag.; ® Q.. g+1)

+ 2 (-1 (2 @ diagar) + (=1)1(0% @ ag41)

which satisfies property (2) of Proposition [4.10]

2. Case r # 0, we have two cases,

1.

11.

If, r =2, |z| =m, m+q+2=n,
That is we have p, = (vs 'a,.1 ® by) and we need to show that 1, 10,p, = pn
so that the Proposition holds.
On(pn) = Op(ws™Lag1 @ by) = (0% (ws Lag1) @ be) + (—1)" (x5 Lag15 by ® *)
but from the Definition m (3) we have n(0%(xs ta,1) ® by) = 0, so, because
of that we have
n0(rs ™ agr1 @ be) = 0+ (=1)"(=1)" (25 ags1 ® b)) = pa,
If,r>3andn=q+|z|+r
Let p, = (zs a1 ®b,),
Apn) = O(zs rag @ b,) = ((0%)s tag @b,) + (=) (20%,1 ®b,)

+ 3 (— D)l (rsTla, @ dib,)

+ (=1)kre T ( agr1sT o @ biy)

+ (=Dl (x5 a1 571, @ *)
M-10n (s ag ®b,) =0 — 040+ (—1)2=HD (257 a1, @ b,.)

= (25 g1 ® ;) = pn,

81



(Proposition [4.10] (3) and Definition [£.12] (3)).
[l

We will give two examples to help the reader understand the proof of the theorem above

and furthermore to know how could calculate 7,,p,,.

Example 4.14. Here we introduce an example of Definition[{.19 (2).
Let p3 = (s tazs™tah ® %),

we will use Proposition (2) to calculate n3(s~tazs™tah @ *).

First we find 95(s azs~ay @ *) by using Theorem [{.5 (IT),

83(8_16135_161,2 ® *) _ 2521(_1)j+1<3_1dja33_1a,2 ® *)’Yj

=3 (1) (s ag. s ay s ah @)+ (—1)2 20y (— 1) (s ags T diah @ %)

— (1P (R (s ags T ag sl @ %)

_ _ -1 _ _ -1 _ _
= (S 1@0235 1a'2®*)(5 a012®+) —(S 1&0135 la'2®>k)(5 a123@%) —(S 1@1238 1@&@*)

+ (s7tagreslah, @ ) + (57 ag @ %) 9012®) — (s7lag ® %)
The second step is find no03ps, we will use Proposition (3) and (4), and Definition
(2)

n90s(s tagstab@*) = (—1) (s ages®al) —(—1)'(s7ragz®ah) —(—1)'(staj3®d))
+(-D'(s7 a2 ®ay)  + (9 ® as) — (@ ®as)
Here we can ignore the action by using property (4) of Proposition and we get the
result,
= —1(stag ®@db) + (slapz ®ah)  + (slas®d)  — (sTlage @ ab)

now we need to find (ps — 1203p3)
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ps — m20s(s tazsrah @ x) = (sTlagsrahb @ %)+ (sTlaga ®@ah)  — (sTraies ® ab)
— (s laois ® ay) + (s aozs ® ay)
so, the final step will be to calculate (O4m3ps) by Propositz’on
oms(s tazs™lal, @ *) = p3 — m205(s tazslal, @ %) = O4(s laz ® ab)
=

n3(s tazs tah, @ *) = (s taz @ db)

Example 4.15. This ezample is related to the Definition[{.19 case (3).

Let py = (s tay ® bs) we will calculate ny(s 'as @ b3) by using the Proposition property

(2).

The calculation starts by finding n304(s~tay @ bs) by calculating O4(ps), by using Theorem

4.4
n304(s tas @ b3) = 13 ( Z?Zl(—l)iﬂ(s_l@ ® d;bs) + (—1)* 2?21(8_1@25_150‘..1' ® b 3)

+ 3 (1) (s e @ b)Y = 30 (1) (s7Mag. s a0 ® bs))

=13 ((31a2®b023) —(s'aa®bors) (s 'aa®@bor2)  —(sT'az®@bias)
—(s7ays Ty ®@ %) + (TR b)) — (G ® 53))
From property (4) of Proposition this equals:
=n3(s'as ®bozs)  —ms(slaa @bors)  +ma(sTrae @ bo12)  — (s ag @ bias)

—3(s 7 ags b3 @ %)+ 13(D ® bg)FT w02 _ o @ by)
By Definition [§.19 (3) is equal to
=0-04+0—0—(—1)"(sraa®b3) +0— 0= (s"'ay @ b3)

The second step to calculate ny(s tas @ by) will be:

P4 — 7]384(8_1CL2 & bg) = (S_lCLQ &® bg) — (S_l(lg ® bg) =0
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but from property (2) of Proposition we have:
O5n4(s ag @ bg) = ps — 1304(s tag ® bg) = 0
=4

Na(s  ay ® b3) =0
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5 The general path crossed complex

Introduction

In the previous chapter we have defined a twisted tensor product P¢*X = Q*(X) @47 X
of crossed complexes for a 1-reduced simplicial set X. We have proved that this crossed
complex is homotopy equivalent to the trivial crossed complex. It is therefore a crossed
complex model for the path space of X.

In this chapter our objective is to extend all of our results to O-reduced simplicial sets
which are not necessarily 1-reduced. We obtain an extended crossed complex (P=X,97).

Let X be a O-reduced simplicial set, Xy = {*} and let 7X be the fundamental crossed
complex. This is a crossed complex of groups which has generators b € (7.X),, for each non-
degenerate n-simplex b of X. The crossed complex QCsX is a crossed complex of groupoids.

Ya in degree n for each

It is the free crossed chain algebra with graded algebra generators s~
(n + 1)-simplex a € X . The structure of the chapter is as follows. In the first section, we
generalise the crossed cobar construction X to an extended ‘group-completed’ crossed
cobar QX for any 0-reduced simplicial X and give its structure. In the second section, we
consider a crossed complex that is simpler than the general path crossed complex P<*X:
it is the non-twisted tensor product of the crossed complex QX and 7X. For this non-
twisted tensor product we know there is a boundary map 9°. In the third section, we
define the structure of the crossed complex of groupoids P X, which is the twisted tensor

product of the crossed complex of groups 7X, and the free crossed complex of groupoids

QX . We define the boundary map 0 and prove it satisfies 8 02 = 0.

5.1 The crossed cobar construction for O-reduced simplicial sets

Let X be a O-reduced simplicial set. We aim to introduce a crossed complex model for

the path space PX, but before we do this we must introduce a crossed complex model for
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the loop space QX. That is, we must generalise the crossed cobar construction Q=X of
Definition from 1-reduced simplicial sets to O-reduced simplicial sets. We know this is
possible for chain complexes, by the work of Hess and Tonks [20], but for crossed complexes
it will be a new construction.

For a l-reduced simplicial set X, the crossed cobar construction QX is a crossed
complex of groups. If X is not l-reduced (but only O-reduced) then the crossed cobar
construction QX is a crossed complex of groupoids. Since the cobar construction is a
free algebra, the object set will be an infinite set, defined as a free monoid. The generators
of this free monoid will be the non-degenerate 1-simplices of X.

We cannot see any obvious way to remove the condition that X is O-reduced. If the
simplicial set has more than one vertex, then there will be a loop space based at each
vertex. These different loop spaces will be equivalent if X is connected, but they will be

completely unrelated otherwise.

Definition 5.1. Let X be a 0-reduced simplicial set. The crossed cobar QX is a free
crossed chain algebra generated by the elements s~'a,., in dimension n for each non-
degenerate (n+ 1)-simplex of X. The basepoint of a generator s~ ‘a,,1 in dimension n > 1
18

p =B aps1) =5 a5 tanngr € QgrsX

Yay in dimension 1 are

and the source and target of a generator s~

sre(say) = B(s ag) = s tagis ans targ(s 'ay) = s lagy € QS'SX.

The boundary map is given on the generators s~ ‘a, 1, in dimensionn > 2, by the following

modification of the formulas in Definition [{.1):
Q-1 -1 -1 -1 -1 -1 -1
Oys a3 = —s Qo1 -5 G123 — S Gp3 +S o3+ S doia- S a3
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1

—1 _1 _
Q-1 -1 -1 -1 sThap1-sT Ta123-sT Tas4 -1 -1
83 S G4 = —S Qp123*S aA34 —S Qo134 — S Gp1-S A1234
1 —1 —1 —1 -1 -1
-1 s ap1+s” Ta12-s” “a234 -1 -1 -1 sTlap12:8” Ta23-s” "as4
+ s “api24 + S “api2-S Q234+ S Qo234
n n
—1 ; —1 ; i1 —1 —1
Os tang = (1) (s dian ) =) (1) s agi s 4
i1 i=1
where

| -1 -1 -1 -1 -1
Yi =S Qo1 S A2 S Aj—2 i-1°S Ai—144i+1°S Q41 42 S Qp ntl

Proposition 5.2. The boundary maps in Definition |5.1 are well-defined in the crossed

complex of groupoids Q=X .

Proof. Consider any generator x = s~ 'a,; in dimension n > 2. This has basepoint
-1 -1 -1
P=Srcs Gpi1 =8 Qo1 S Appi1 € QgrsX.

We must check that the terms in the expressions for 99z in Definition have the correct

sources and targets to ensure they are composable in Q5™ X. We must also check that the

Crs

composite Otz € Q™ X has source and target equal to p if n = 2, and has basepoint equal

topifn > 3.
n = 2: We can write the expression
Q1 ~1 ~1 -1 -1 ~1 ~1
82 S a3 = —S8 ap1S G123 — S Qg3+ S Qg3+ S “Qpi2S A93

as a diagram:

s lagi2-s tass

s agy - s ags s agy - s ary - sTlagg = p

1 1 1

s "ap23 —sTap1-s” "ai23

s tagy - s tags

—1
5 ~Gos —s71ag13

In this diagram we have shown that the composite is defined and the result has source

and target p.

87



n = 3: We could try to draw a diagram of the expression

-1 —1 —1
S Tap1-s "a123-s "as4

Q-1 -1 -1 -1 -1 -1
33 (S a4) =—S5 Qp123*S a34 —S Qo134 — S QGp1-S A1234

—1 —1 —1 —1 —1 —1
S Tap1-s "a12-s G234 § Tap12-s "a23'S "as34

-1 -1 -1 -1
+ s “api24 + S “api2-S Qo34 + S “Gp234

but it would be a 3-dimensional cube. Instead, we will just check that the basepoints

of all six terms are equal to p, so the composite is defined and also has basepoint p:

[ S_la()lgg has basepoint 8_1CL01 : 3_1a12 : S_lagg.
Therefore s~ tagio3 - s 'ass has basepoint p.

e The source of s tag; - s taja3-5 Lass is p, and the target is s tag; -5 a3 5 Lass,

which is the same as the basepoint of s~ tag;34.
1

s7lapr-staiaz-s™

1
Therefore s~ agi34 “* has basepoint .

1

[ 5_1(1,1234 has basepoint S “ajyg - 3_1a23 : 5_1a34.

Therefore s~tag; - s 'aja34 has basepoint p.

e The source of s71ag; - s tajs- s tagsy is p and the target is s 1ag; - s tajs - s tag,
which is the same as the basepoint of s~ tag24.

s*1a01~s*1a12~s*

1
Therefore s~ agi24 %% has basepoint p.

o s lagys - s~ tagsy has basepoint p.

e The source of s~ agys -5 ass - s tasy is p and the target is s Lagy - s tags - s tasy

which is the same as the basepoint of s~ tags4.

871a012-871a23~87

1
Therefore s~ agass “* has basepoint p.

n > 4: This is similar to the case n = 3, except now it is abelian too. We can see that half of
the terms have the form s~'ag_; - s~ 'a; n+1, and these clearly have basepoint p. The

other half of the terms have the form s~'d;a,,,"* where the 1-dimensional element
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7v; has source p and has target equal to the basepoint of the (n — 1)-dimensional
element s~ 'd;a,,1. Therefore the composite of the terms in the boundary relation

for 0%s a1 exists in (25, X)(p).

Example 5.3. Let X be the O-reduced simplicial set which is a model for S*,
X =S = A[1]/0A]

which has one O simplex x, one non-degenerate 1-simplex o, and no non-degenerate sim-
plices in dimensions n > 2.
The crossed cobar construction is QS is the free crossed chain algebra generated

-1

by s~'o. Therefore QS has object set given by the free monoid on one generator. In

dimensions n = 1 it has only identity elements.
QCrsSI ~ N.

The usual model for the loop space on S! is not the natural numbers N, it is the integers
Z. We can introduce a new construction, which we call the group-completed crossed cobar

construction 2, so that

Qs > 7,

If X is any O-reduced simplicial set then the object set of QX will be a free group
whose generators correspond to the non-degenerate 1-simplices of X. The group completed
crossed cobar construction (2 is related to the extended cobar construction € that we

looked at for chain complexes in section 3.1.2.

Definition 5.4. Let X be a 0-reduced simplicial set. The group-completed crossed cobar

construction QX is a free crossed chain algebra generated by the elements s tan, 1 in
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dimension n for each non-degenerate (n + 1)-simplex of X, together with extra generators
(s7tay)™! for each non-degenerate 1-simplex ay of X. The source, target and boundary of

a generator s ta,y1 in dimension n > 1 is the same as in Definition .

We have defined QX as a free crossed chain algebra. It is also free as a crossed

complex of groupoids. As a crossed complex of groupoids, we know that the object set is
{w = (S_lagl))“(s_lagz))62 e (s_lagk))e’“ : k>0, agi) € X1 —{so(x)},e; = :I:l} (25)

The generators = of degree |z| = n of the free crossed complex Qs X are given by words

T = w(0)5*1a211)+1w<1)a532)+1 - 'w(rfl)Sflafz?JrM(r)a (26)

where 7 > 0, each w® € Qg“sX, each aq(;)ﬂ is a non-degenerate simplex in X, 11, n; > 1,
and Y n; =n.

The basepoint p = (z) of = is the product of the basepoints of all of the terms in . We
point out that because there are inverses in degree zero, some cancellation might happen.

For example,
B (s az - (s ags) ™Y - s7lah) = s ags tares ay s ),
Because Qg'sX is a (free) crossed chain algebra with the algebra structure
QX ® Q=X — Q%=X
defined by concatenation of words

/ /
rRr —x-x,

the boundary of an element x can be calculated from the relations in Definition [2.34] together

with the boundary relations for the elements s™'a,, ; given in Definition .
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If each n; > 3 then the formula is long but easy. For example

(s ay - s al) = (B35 Yaq) - s7 el + (1)l s7lay - (9457 0al)

-1 -1 -1 s~rao1-s taiaz-s tass —1 1
=\—S Qoi123°S A34 —S Q0134 — S Ap1 S A1234
1 —1 -1 -1 -1 -1
—1 S ap1-s ai2-s a234 —1 —1 —1 S ap12-s az3-s asq —1 7
+5 ap124 + S “api2- S Q34+ S Qo234 )8 as
4 4
_ 1 EERYE= YOt I AR AT _1\jt+1l.-1 oL
S Qg E (—=1)7" (s dj%) ’ (=1)""s Qy.;5 Q5.5
j=1 j=1
—1 ./ — — /
= E Z“( “diag - sThay)" — s ag. 57 ag a8 1a5)
4
1 _ — I\p-~" — / -1 7
- E (—1)7*1 ((5 Yag - s7 djag)P " — s ags T ag s 1%‘...5)
i=1

in the abelian group QS™X (p-p’), where p and p’ are the basepoints of ay and af, respectively.
All the boundary formulas 9%z can be calculated using the relations in Definitions m
and 0.1} In low degrees the boundary formula will not be abelian so we must take more

care. We write down the results in the following proposition

Proposition 5.5. Consider a generator of the crossed complex of groupoids Q<X

H 5 nk+1 *)

with each w® € QC'SX and each ankH € Xyt1, as in (20).

If n =|z| = > n; > 4 then the boundary 07?93 is given by

k—1 7
T Nk — [
z+1+ Z ng (
0) -1_(0) 51 -1, w®
E w -Hs aneﬂ-w alankJrl 5 n¢+1
k=1 i=1 =1 (=k+1
k—1 ,
o OB 1.0 @ 1 (k) -1 (k) (k) -1 ()
w S QW ST Ay ST A, W S Uy, W
=1 £=k+1

Here the action is by

r

k—
1 (k k 1 (k
0. HP(@ w® - B(s 1“8..).1'71) : az(f)liiJrl - B(s laz(+)1...nk+1) : H p - W

{=k+1
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where p'9) is the basepoint ﬁ(s‘laff;)ﬂ).

If n < 3 then to save space we will not write the elements w of degree 0:

O (s tay-s7"

a)

= — (s tagy - s tag - stah) — (sTtay - s agy) + (s ragy - s7tah) + (s tag - s rag, - 5T Mdly)

O (s tay - s~ aly - s~ al)

— — — — _ _ _ -1 o1 o=l =1 11 =111
:—(S 1(12'8 10,/2'8 1&81'8 1&3/2)—(8 1&2'8 1&62'8 1a/2/)(s ap1-s” ta12-s” rah-sT tag;-sT raly)
-1 -1 —1 7 -1 n -1 —1 7 —1.n (s*1a01~s’1a12-s’1a’01~s*1a’12~s*1a’2’)
— (s apg - s Tara - ST an s ay) + (s ag - s an - 8T agy)
— — / — ’ _ Y7i _ _ / _ 1 1 . =1 =10 =11 =11
+ (s7ay - s7lap, - s ly - s al) 4 (s ragy - 57 ak - sTlal) s s dorsT s agy s aly)

(s tas - s

a)

s’lam-s’lalg-sflagg-s’laé)

= — (s Yagr - 5 Yayas - s 1ah) + (s lag - s lap,)!

1 1

—1,/ —1,7
a23-s7"ag; s 1a12)

-1 -1 -1 7 —1 —1 -1 e—
+ (S ap12 ©S Q23 * S a2) + (3 Q23 - S CLQ)(S ap12-s

_ _ _ _ _ -1 o1 [ Y )
— (s7"ag - s Magy - 57 aly) — (s Aoy - 5T ap) T ore s o s

O (s tags™

az)

_ 1 1, =1, =11 o—1_1 _ 1 1
= — (57" ag - s afy) e 0T MBS k) (57 gy - s agy, - s aby)

-1 —1 71\(stag-s~tal,-stal s Lal -1 —1 7 —1 7
+ (S a02 .S a3)( 01 12 23) _|_ (8 as - S a01 .S a123>

+ (s ay - 3_1%13)(871a01'571a12'371“61'571‘1'123) — (s7tag - s rary - 57 ab)
5.2 The general path crossed complex: an example

In the previous section, in Example [5.3] we saw how to define the group-completed cobar

construction Q°S! for the simplical model of the circle,
X =S"=A[1]/{0 ~ 1}.

In this section we give an example of a crossed complex P<*S! of groupoids which is
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e contractible, and so it is a model for the path space on the circle, PS*

e a kind of twisted tensor product of the fundamental crossed complex of S' and the

group-completed cobar construction on S*,
PCrssl — QCrssl ®¢ 7TSl

It is a crossed complex of groupoids, so we first define the object set, then the groupoid
structure. It is only 1-dimensional, so we will not need to define any crossed module or
crossed complex structure. We have seen in the previous chapter how to define the twisted
tensor product in higher dimensions. For the classical construction with chain complexes,

the twisted boundary of the twisted tensor product is just
n—1
M(@@b,) = (@b, £ > x5 b @b
=2

The example we do now illustrates how to twist the tensor product in dimensions 0 and 1.
Instead of twisting the boundary maps, we need to twist the source and target maps. We
find that we just need to twist the target of an arrow in the groupoid, leaving the source
as it was.

We know that m(S') is a crossed complex of groups, which has a single basepoint

7(S') = {*}. In dimension 1 it is the free group
m(Sh) = () & Z.

All higher dimensional elements are the identity id,.
We have seen in Example that the object set of the group-completed crossed cobar

construction QsS! for S! is just the set
Q§=S* = {(s'0)k 1 kez} = 1z,
and that all higher-dimensional elements in QCrs ST are identities.
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Definition 5.6. We define the crossed complex of groupoids
pCrsgl — @crssd R <
as follows:
o The object set is {(s71b))* @ * : k € Z}
e The generators of the groupoid Q%rsSl are

(s70)F @ by) : ((s7'0)F @ %) — ((s7')F ! @ %).

e There are only identity elements in degree > 2.
Another way of writing this is:

e the objects, in dimension 0+0, are w®*, where w is an object of the group-completed

cobar construction

e the arrows, in dimension 0 + 1, are generated by w ® by, which has source w ® * as

usual, but has twisted target w - s71b; ® *

The objects can be thought of as all integers k, and the generating arrows are arrows from
kE—k+1.

A picture of the path crossed complex P¢*S" is:

—k -1 0 1 k k+1——s...
Theorem 5.7. The following crossed complexes are isomorphic:

pPesst = QsSt @, St > x(R) = n(Z x, S)
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5.3 The general path crossed complex: the definition

This is a crossed complex of groupoids, so we first define the object set, then the groupoid
structure, and then the crossed module and crossed complex structure for each object.
Suppose that Xy = {*}. The crossed complex P*X will be an example of a twisted

tensor product of:
e the crossed complex of groups 7X, whose object set is {*}

e the crossed chain algebra Qs x , whose object set ngSX was defined in Definition
[.4], so is the free group on the desuspension of the non-degenerate 1-simplices of X.
Its elements are thus words in the letters s~'a;, and (s7'a;)™" for a; € X7 — {s0(%)},

with neutral element given by the empty word w = &.

We have already considered a simpler version of this construction in the previous chapter.
In chapter 4, X was a l-reduced simplicial set, and so Q5*X = {@}. The construction
in this chapter will be more complicated but it will still be a twisted tensor product. The
crossed complex of groupoids P X will be free crossed complex with the same generators

as the ordinary, non-twisted, tensor product QX @ 7X. We write these generators as

r®be P X

n+m ?

where

e x is a generator of degree |z| = n in QX defined in .

We know that ngsx is a (free) crossed chain algebra with the algebra structure

defined by concatenation of words x ® x’ — xa’.

e b is a generator of degree |b| = m in 7X, given by a non-degenerate m-simplex of X.
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The boundary maps of PsX will be more complicated than the boundary maps of the

ordinary, non-twisted, tensor product.
5.3.1 The boundary of the non-twisted tensor product

Before we define the boundary maps for P¢*X we will given now the explicit formulas for

the ordinary, non-twisted, tensor product
QX @ 71X, 07

This boundary map, in the context of chain complexes, would be 9% = 92 ® id £id ®0".
The crossed complex formula for 9% will be similar, but with a more complicated (possibly
non-abelian) formula if n < 2 or m < 2.

In chapter 4 we have seen that the twisted boundary maps have some extra terms with

the form
(=D (@57 bos @ bim)-
i=1

In the following section we will modify the explicit formulas 9% to obtain a definition of

or.
1. For the non-twisted tensor product, form=n=1, w € QgrsX we have:

05 (ws tagw’ @ by)

-1

= — (ws tagis taw @ by) — (ws tags MW ® b))

+ (ws ™ agaw’ @ by) + (ws ™ asw’ @ b))
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(s7Laz2®b(gy)
p:(s*1a01s’1a12®*) o ©

(S*1a01s*1a12®b1) Q (3*1a02®b1)

(s_1a2®b(1))

Figure 12: 05 (s ay ® by)

2. For n > 2, m = 0 we have:

°
05 (ws™tazw' @ *)
_ -1 —1 / —1 /
=— (ws " ans ajw ® *) — (ws agizw’ & *)
—1 / —1 —1 /
+ (U)S Aposw & *) + (WS ap128 Q93w & *)
(s lap23®x)
(o2~ azsn) O (Laosso)
p=(s"tap1s ta12s" Laa3®%)
(s7lao1s™a123®x)
Figure 13: 05 (s laz ® *)
°

05 (ws tags tahw' @ )
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1

= — (ws tagis tares T ahw' @ x) — (ws T tags M apw’ @ *)

-1 -1 -1 -1/ =1
+ (ws™ ages  apw’ @ %) + (WS ags” Tag s AW @ *)

(s7lags™laf,®x*)

(s_1a01s_1a125_1a’2®*) (s‘laogs_la’2®*)

p:(s’1a01s’lams*laéls*la’m@*) o

(s7lags™laf; s 1a),®%)

Figure 14: 95 (s tagstah, ® *)

O (ws tauw' @ *)

_ —1 1, ae—1,. _ _
_ ((,US 1a0134w/ ® *)(s ap1s” @123 aza®%) ((JJS 1(1018 1a1234w/ ® *)

B T | _ _
+ (ws 1a0124w/® *)(s ao18~ ta12s7 Laaza®x) + (ws 1(10128 1a234w/ & *)

laggs laga®*) (

-1 / -1 - -1 -1 /
+ (WS ap234W X *)(S a0129 WS "Ap123S A3z4W & *)

05 (wstasw's L ahw” @ *)
= — (ws tag1s tagsw's Tt ahw” @ *)

— — -1 -1 —1 -1,/
+ (ws 1a3w/5 1(1//02w” ® *)(s ap1S~ Ta128  ~a23s a2®*)

—1 —1 /=11 "
+ (ws™ "ap1as agsw's  anw” ® *)

— — -1 -1 —1, =17
+(U)S 1(1023&)/8 1a/2w//®*)(s ap125~ Ta23sT rag 8T Tal,®%)

— (wstazw's tah s W @ *)
1

_ _ -1 —1 — / —1 7
. (CL)S 1a013w’5 lal2w//®*)(s ap1s”ra1235” rag, s tal,®%)
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1

—1 ) —
05 (wstagw's M ajw” @ x)

1

1 _ _
= — (ws tag1s tappw's tasw” ® ¥)

— — -1 —1 -1,/ 1./

+ (ws lagw's 1&613(,0” ® *)(s ap1s~ ta12sT tagy; s a4 ®%)
-1 -1 7 ro—1 7 "

+ (ws™ ass  anw's  ajgaw” @ *)
_ _ —1 —1,7 =17 —1_/

+ (ws 1a02w/$ 1a§w” ® >I<)(s ap1257 1 ag; s a8 a3 ®*)
— /] — —

— (ws™tagw' s ap o5 ahyw” @ *)

. (ws—la2w18—1a623w// ® *)(sflaolsflaus’laf)ms*la’23®*)

02 (wWs aw®@ s abw® s Lalw™® @ x)

2) —1 1 —-1_n

= — (WWs tagw@ s tahw® s tay s al,w® @ *)

o (w(l)S—1a2w(2)8—1a62w(3)8—1a/2/w(4) ® *)(s_la01s_1alzs_laés_lagls_la’l’Q@)*)

2) -1

— (w(l)s_lams_lauw( s agw(?’)s_lagw(‘l) ® *)

+ (w(l)s—1a2w(2)S—laéw(3)8—1a6/2w(4) ® *)(571a()ls’1a12571a61571a’125’1a’2’®*)
1) .1 - - -

+ (W s aw@stal s ahw® s Talw® @ )

+ (w(l)s—laozw@)S—laéw(3)s—1a/2/w(4) ® *)(s*1a25*1a615*1a’125*1a’0’1s*1a3’2®*)

3. For n > 0,m > 1 we have:

05 (ws™asw’ @ by)

. / - “lagrs~laggs !
= — (wstags M arasw’ @ by) + (Ws T azw’ @ byyy)E a0 a2 a2s@h)

-1 —1 ! — -1 -1
+ (ws tagras Lagsw’ @ by) + (ws Laggsw’ @ by)ls aorzsT azs®x)
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(s7tap1-s7tar2-s"tasz®b1)

— (ws™lagw’ ® b)) — (ws ™ agizw’ @ by ) 015 at2a®)

(s7'ap23®b(1))

o 9 T .
[‘;b@ | - — - - - - - - - - - m - — - - = \6@‘ 1
~° L T S
q}% i NQ‘Q (]
/\0& N (S as & b(l)) % Yo
< i 5 J
i R 10
o L 12 |
s~ Tapzs™ T-a123®b(1) . . B (8_la3®b1): :
1 (57 a0 ®by) ¥
ap12-a23®b1 | | o
F 2 3 . .
(871a01 cs a3 ® by) 2 T (s lao2s®bo)) | Ol
O K 1
& L T
5 oY 1 Y o
0 & (5 ®b) £
) xO‘Q
8 s
7 6
lo (s7'aoi-s™1a123®b(p))

6

Figure 15: 95 (s 'as @ by)

05 (ws ™ tagw's T ahw” @ by)

—1

_ _ -1 ’oo—1 1 o _
=+ (ws Yagow's lalzw” & bl)(s azs™ag; s a1,®b()) _ (ws Yagw's lagw” ® b))

1

- 1.7 1 -1 -1 —lal - - ro—=1_1 1
— (ws Lagw's tahyw” @ by)s s @mzsTa®b0) _ (57 g0 57 ag0w's T Lahw!” @ by)

_ _ -1 -1 —1,0 =1,
+<ws 1a2w/8 1a’2w”®b(1))(5 ap1s~ta12s” tagy; s a),®b1)

+ (ws ™ tagw'stah s al W @ by)

95 (w @ by)
=— (W®bpz) + (W@ b12) + (w R bo1)
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)

CU ® bOZ \’\}% & b12

w@b(g

Figure 16:

05 (ws ™t agw’ ® by)
= — (ws aw ®bo) — (ws s’ @ b(12))(871a01871a12®b01)
— (wsagis " araw’ @ by)

+ (ws_lagwl (29 602) —+ (w3_1a02w’ X bQ)(371a2®b(0))

Figure 17:

05 (w ® by)
- (w ® bOZS) + (w ® b013)

+ (w® b123)(w®b01) — (w ® bo12)
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L
(w®bo12)

(w®bo23)
L,

(w®bo13)

Figure 18:

O%(z @ b)

=(=1)1l(z @ dyb)P®bor + Z D)l @ d;b)
=1

ro ng i+1+k§:1n k—1 r ®)
+ Z Z(—l) = H s~ n4+1 cw® . 57 da! amle w® . H s_laff)Jr W @ b)%
k=1 i=1 =1 t=k+1
k—1
¢ 1 k) -
- (W(O)‘HS 1a’f’bg)+1 w? s 16‘(()..).1"5 1%( L H s nz+1 -wl ®b))
=1 t=k+1
where the action is by
k—1
1 (k k —1 (k)
0)'HP(Z) W@ - B(sal ) - al) i1 BT §+1 1) H p ® *)
=1 (=k+1

where p¥) is the basepoint 5(s~* £f2+1).

5.3.2 The boundary of the twisted tensor product
In this section we will complete our construction of the crossed complex of groupoids P X,

which will be an example of a twisted tensor product of a (free) crossed chain algebra and

a (free) crossed complex.
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Definition 5.8. Let X be a 0-reduced simplicial set. The path crossed complex P¢sX
18 the twisted tensor product of the crossed complex of groups X, and the free crossed

complex of groupoids QX Its object set is
PEX = (Q°X @4, 71X ) = {(w® ) | w € QS™X}

where w is any object of chsX,

w=(s"a) (s ay?) 3 (57N )

fork >0, al) € X; — {s0(%)}, & = £1.
In dimension 1 the generators are of form

(Wb (W x) = (wWs1h ® *)
which has twisted target, and

1

(ws™tagw’ @ *) : (ws tag s T ajaw’ @ ) = (ws tagw’ & *).

In any dimension n +m > 1, the general form of a generator is:

(r®0b) € PSS X

n+m
where b is a non-degenerate simplex in X,, and x is an n-dimensional generator of Q=X

T = w(o)s_lagl)ﬂw(l)afi)ﬂ .. .w(k—l)s—lafi)ﬂw(k)

with w® € QSVSX, 0 <i <k, and each aﬁfjﬂ a non-degenerate simplex i X, 11, n; > 1,

> n; =n.
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The boundary map OF, —: P¢s X — Pncfm_lX is given for dimension n +m = 2 by the

n+m n+m

following formulas:

For n +m = 2 we have four types of terms, but if n = 2 and m = 0 then the boundary is

the same as the untwisted boundary, so we will not write them. The other two cases are

af(w ® bg) = —(w ® bog) + (ws‘le ® *) + (ws‘lbm ® blg) + (w ® b01)

(ws™1hy @ %)
(w ® bo2) f) (ws™bor @ bra)
p=(w®x*)
(W bor)

Figure 19: 0 (w ® by)

and
05 (ws™agw’ @ by) = —(ws ag s aw’ @ by) — (ws™ agw’s by ® by))
+(ws agw’ @ by) + (ws™ agw’ @ b))

(s Lao®*)

p=(s"tap1s La12®%) o

(S—1a013_1a12®b1) Q (s lapa®b1)

(s tags™1b1®%)

Figure 20: 0 (s tay @ by)
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For n+m = 3, the boundary map 0% (x @ b,,) is in PS™, which is still non-abelian. There

are eight types of generators, but when m = 0 their boundaries are identical to the non-

twisted version, so there are only four cases we need to define.

8?{3((«0 ® b3) :(ws_lbg ® b(3))(5’1b018’1b12®b23)+(s’1bo1®b12)+(W®b01)
+ (w3_1b012 ® bQS)(5—1b01®b12)+(w®bm) _ (w ® b012)

— (W ® bozz) + (W ® bois) + (ws™"boy @ byag) “Eo)

(ws_1b01s_1b123®b(3))

N
3 A
& ¢
¥ & N
I~ wsilb3®b(3) T Nm?’ &
A S . Eéo
" ¥ K] W
’;b Q'\« /’\‘«0
Q \/\0
/'\/‘0 -1 ; Q? B
& N (s bozsibgs) & N s
9 ’ %
E N\ 5
e (ws™1bo1®b13) R T"J
b T B :
w®bo13 |§ (ws_lbm b13) B "§ N £ ;8
— L = (ws™1bo1®b123) E “ 3
- ey ol B 3
~ . :
% (w371l023®b(3)) - % ;
H R S g8 N
F 3 [ |7 e
> = E £ g
& z E - :
J = s -
G % . f (s~ 1bo1®b12) \99/
3 ‘ N\
w®bp23 §/
(w®bo2)
m\\ 1 (ws™'bo1@b12) »
) re
R w®bo12 ‘1»@
0\/
>
&
(w®boz) N

Figure 21: 0 (w ® b3)
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(a02b2®b(2))

— — _ -1 -1
0% (wsagw’ @ by) = —(ws agw's by @ b12)(5 ao1s™ " a12®bo1)
— (w3_1a2w/3_1b2 ® b(2))(5_1ao1s_1a12$_1b()1®b12)+(s‘1a01s—1a12®b01)
—1 -1 / —1 /
— (CL)S ap1S “QA1oW ® b2) + ((,US aow @ b()g)

+ (ws™ agaw’ @ by)®200) — (s asw’ @ by )

(a2®b(gy)
6150@
\OQ{» st as®bo2
(a2-bo2®b(2))
= £
RS &
2 B
A 3
S — 3
8 S
2
I
S
®
=
- ) >
&
5
S
S s
S
(a2b01b12®b(2))
(a2b01®b(g))
‘Q\’{D ‘\
N 1 o
° s~ azs™Tbo1®@b12 N
o® 3°
o
K
oS
(a2b01b12®b(2)) N

Figure 22: 0F (ws™lasw’ ® by)
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P -1 ro—=1_1 1 — - -1 -1 -1,/
83 (LUS AoW'S AW (059 bl) = — ((,US ICLQCL),S 1@62(,0// ® bl)(s ap1s” 'a12s” tay®bg))

1

— (ws tagis tapw's tabw” @ by)

— _ _ -1 -1 -1,/ -1,/
—|—(ws lagw’s laéw"s 1b1®b(1))(5 ao1s™ @128 g 8T alp®b1)

1 1 1

+ (ws™ asw's  ag s alw” @ by)

— — -1 =1, =1,/
+(ws 1a02w18 1a/2w//®b1)(s ao125™ tag; s al,®b(0))

-1

— (ws™ agw’s T ahw"” @ b))

P -1 / -1 —1
05 (ws lazw' @by) = — (ws " agrs™ ajoaw’ ® by)
— —1 —1 —1
_|_ (CL)S 1a3w/ ® *>(s ap18~ Tai12s a23®b1)
—1 —1 / b
+ (ws™ agi2s agsw’ @ by)
-1 / (s tap125 " Lazz®x*)
+ (CL)S ap23W (029 bl)
— (ws™tazw’ @ *)

_ —1 1
_ (ws 1a013w/ ® bl)(s aop1s [74123@*)
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For m +n > 4 the formula looks somewhat long and complicated but it is still easy. Let us

first rewrite the definitions of x,
xr = w(o)s_lagl)ﬂw(l)ai)ﬂ X -w(r_l)s_la;:)+ w” Z n; =n,w® € Q§*X

Then the definition of the boundary map will be:

P
9, (7 ® by,)
Z J+|w\ TR d b, \xl Z ] m)(zj T5)
: ]:
r  ng 1+1+k§:1ng k—1 r ®)
2.2 () A < Jsan) 0@ s i)y w0® - T s a0 @)
k=1 i=1 =1 (=k+1
k—1
— (w(o) : Hs‘lagf;)ﬂ - w® . s_la(()k)l : 3_1a§knk+1 H s §Lj+1 w? ® ym)>
=1 (=k+1
k) g
where the ;"' -action is by
k—1
k 1 (k k
%() (W(O) : Hp(e) cw® B(s la(() )z 1) az(—)lii-i-l'ﬁ(s az+1 nk+1 H pt ® *)
=1 t=k+1

where p' is the basepoint B(s~ ni)+1)

and where the Y j-action is by

Tj = ((w(o) . lz;ll p(g) . w(é)s_lbm Ce S_lbj_g j—1 & bj—l j)

Conjecture 5.9. 07 is a differential on P<*X.

: .. 9P AP _
Proof. The only assertion to prove is 9, ,0, =
For dimension ¢ < 4 the actions and order of terms are important, so we will divide the

proof into two parts
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A. in case of ¢ < 4
Here we need to be a very careful in proof since the features are non-abelian. We could
follow the instruction that we will do in example below for all cases of generators in

dimensions 2,3 and 4.

Example 5.10. 0§"(stagstay ® b)) = (—R" — F + TT + L + B™ + 1)

F
T = (s tazs 'ahs by @ b)) M T) = (s tagis tarestah s al, @ by)
L= (stags tap; s al, @ by)
F = (s tagistajs tah, ® by)
L= (s"tazstal, @ b))
R = (s7tays tahy, @ by Y1 = (s tam s taras T ah @ b))
B = (sltappstab @ b)) v = (s tagsag; s al, ® b))

We will label the edges by numbers to make the answer easier to handle
O(~RS — F + T* + L + B~ 1)=

-6 -8 -5+7+1+6 -6 -1 +12 +4 —4 —12 -7 +11 +2 +4 —4 —
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2+3+9 -9 -3 -11 +5 +10 +9 =9 —10 +8 +6

11

Conjecture 5.11. For all py = (x ®b), 080  py is trivial.

See the Appendix [A] for the way we hope that we could prove this conjecture in the

future.

in this case the proof may seem long and somewhat complicated due to the large
number of symbols used. The twisted 85 (x ® b,,) where z is the general generator
clement in QX will consist of four types of terms, and the square partial (97)2
will consists from 16 part, and to make the proof easier for read and understand we
will label each part by a number and each subparts which comes out from the square

partial to sub numbers.

OF (x ® by) =
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=1

r o ng i+1+ki1n k—1 r *)
+ (-1) = Z( s—laffjﬂ : s_ldiaii)ﬂ : H s_lagi)ﬂ ® byy) " (29)
k=1 i=1 =1 t=k+1
roong ‘+1+’“Z—:1 k—1 r
7 Ty
- (-1) = (s e s hag s a0 T s el @ b)) (30)
k=1 i=1 =1 I=k+1

we can see from above that the terms (27), (29), (30) are non-twisting version whose
we will symbolise them by d, and the twisting term 28, we will symbolise it by d'.
Now, the square partial 9} 0F (2 ® bm) = 0g—1(27) 4+ 9g—1(28) + 9,-1(29) + 04-1(30)
have 16 types of terms, where each part of parts 27,29, 30 consists of 3 non-twisting
terms and one twisting, so from the square partial of the three parts 27,29, 30, we
have 9 terms which are non- twisting we symbolise by d-d, their second partial already
equal zero and three terms which are twisting we symbolise by d’ - d.

The square partial of the twisting term 28 has three types of twisting terms d - d’
and one type of term which is d’ - d’. So to prove (9F)% = 0, we need to prove that
d-d+d-d+d-d =0, and to make the proof more readable let us give a label for

these sub parts.

1. d - d' are the twisting terms coming out from square twisting partial of the

non-twisting items of first partial.

] m m— 7 17 T TTT N
L) Zj:ll(_l) (I -5 b, ® b’r..‘m>z , b=by = . (27 — 2),
kil
.. z|— m I n it+1+ ne k—1 _ Y4 _1~(k
R G VLA DD DD DA Co DRI O | Vi e e
r -1, - B4 Ak k
Tl 87 aner s b0y @b; )™ T Al = a((),.).?...nﬁl (29-2),
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k—1
+1+ > ng

T m T n k-1 1 (£ -1 (k
iii. +(—1)! |Zj:1 > ket 2ica (—1) =t ([T s 1a1(1£)+1 § 1“8..).1'
1 (k r 1 (¢ _ ST
08 laz(...)nkﬂ Jlecpsr s 1a1(u)+1 57 o ®bj )T (30 —2)

2. d' - d are the twisting terms coming out from square non-twist partial of the

twisting items of first partial. Here we also have three types of terms they are:

. m—1 m i — iTi
LT (1) (25 o © dbin)) T (28 — 1),
kX_:I
r 1 n m i+l+ 5 k—1 _ /4 _
+ +] > Zj:l(_1> =1 ( =195 1“7(14)“ Ld; ank+1
r 1 (¢ Zk)+z T,
: H€=k+1 s lagzg)—l—l ~bo.. J®bj. m)7 ) (28 —3),
1 kil
r 1 m ittt ) ne k-1 _ _ k
111. ﬂ > Zjﬂ(_l) = ([T s 1a£Lg)+1 "8 1a(()..).i
1 (k) ST
-5 5 g1 I k+1 S ~la n@+1 “bo..; @ b;. m) 7 (28 —4)

3. and the final term will be d' - d’ which is the twisted version of twisting term

(28) it has the form

_ — i TiJFZj T;
+> DD (2 s 0. 5 Tbit1. jri @ bjsim) (28 —2)

The elements which coming out of the terms (28 — 2) will cancel in pairs with elements
coming out of (28 — 4) where j # m.

The other terms of (28 —4) will have the same expression of some terms coming out (27 —2)
but with opposite signs, and the other elements which coming out the term (27 — 2) will
have the same form of the elements coming out (28 — 1) but with opposite sign.

The elements in both terms (29 — 2) and (30 — 2) are similar to the elements in (28 — 3),

so all terms in (29 — 2), (30 — 2) and (28 — 3) cancel each other.
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6 Contracting homotopy

Introduction

In this Chapter, we define a contracting homotopy 7, : P*X — PanlX , which raises the

dimension by one. We have h : id ~ x, so P“*X is contractible.

6.1 The structure of the contracting homotopy

For convenience we will repeat the definitions from Section 4.3

Definition 6.1. Two homomorphisms f,g : C — D are homotopic, if there exists a
homomorphism

h:m(Al)®C — D

that satisfies hig = f and hi; = g.

Definition 6.2. A crossed complex of groupoids is pointed if there is a specified object
x € Cy. If C is a pointed crossed complex of groupoids, then C' is contractible to the
basepoint * if there is a family of functions n, : C, — C,11 that define a contracting
homotopy

h:x~ide:m(All]) @ C — C

$0
i. h(0®c) =0,
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i h(l®c)=c
and
iii. for c € C,n(c) = h(o ® c)

In other words, the family 7, defines a homomorphism h that provides a homotopy
between the given trivial homomorphism C' — {*} — C and the identity homomorphism
ide : C — C. This gives a homotopy equivalence between the crossed complex C' and the

trivial crossed complex {x}.
«2ide (0T {4

Proposition 6.3. A family of functions n, : C,, — Cyy1, (n = 0) defines a contracting
homotopy via h(o ® ¢,) = nu(c,) if and only if it satisfies

1. no(cy) € Cy has source x and target cy,

2. m(c1) € Cy has basepoint x and boundary:

domi(c1) = —no(targ(cr)) + 1 + mo(sre(er)),

. 1o () .
no(y\J %
Yy
Figure 23:

3. If n = 2 then, n,(c,) € Chyq has basepoint x and boundary:
an-‘rlnn(cn) = CZO(p) - T/n—lan(cn>7

4. For alln > 1,
N(cn 4 ¢3) = Mn(cn) +1ma(cy,)

5. For alln > 2,
c1

(') = 1 (Cn)
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Remark 6.4. Using Deﬁnit@'on (i,44,7ii), if we are given n we can define h from n, or if
we are given h then we can define n from h. The proposition means that the condition that
h:w(A[l]) ® C — C is a well defined homomorphism of crossed complexes of groupoids,
and commutes with the boundary O, holds if and only if n satisfies the properties (1 —5) of
Proposition [6.3

Proof. =) Let h : w(A[l]) ® C — C be a homomorphism satisfies that h(0 ® ¢) = 0,
h(l1®c) = ¢, and h(o ® ¢) = n(c) which commutes with the boundary, 0 and well defined.

We want to prove n : C,, — C,,41 is a contracting homotopy.

1. Let ¢ € Cy, sre(n(c)) = sre(h(o @ ¢)) = hsre(o @ ¢) = (0 ® ¢) = 04,
and the targ(n(c)) = targ(h(oc ® ¢)) = htarg(c ® ¢) = h(1 ® ¢) = ¢. (Definition

2. Let ¢y :a—be Cy, 0n(cy) =0h(oc ®ci) =hd(o®cy)

. 0®c) (id,)
b = = N
o T T 2(0)
s
(1®ep) (c1)

Figure 24: dn(c) in dimension 1 = —n(b) + ¢ + n(a)

3. Ifn=r,
on(c,) = 0h(oc ®c,) = hd(oc ® ;)

= h(— (stc 0 ®@¢,) + (targ 0 @ ¢,) ") — (0 @ ,¢,)) (by Definition and thus

the properties of ordinary tensor product of crossed complexes)

= %) _ h(o ® d,¢,) = P — nd(c,), (p., is the base point of ¢,).
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4. Finally we have
N(en+¢,) =ho® (cn+ ) = h((0® ) @) 1 (g@¢,))
= h(0 ® ;)" 7€) 4 h(o @ ¢],) = 1(e) 0% +(c,) = nlca) +1(c),),
and

n(er) = hio @) = h((o @ c,)™ ") = n(e,).

< ) Let n: C, — C,41 be a family of functions satisfying 1 - 5 of Proposition and
define h by (i) (ié) and (iit) of Definition [6.2] To show that this gives a homomorphism,
we need to show it is well defined and that it commutes with the boundary map, 9. The

first is given as follows
h(o ® (e +¢,)) = nlen + ¢,) = nlcn) +n(c,) = h(o @ cn) + ho @ ).
To see it commutes with the boundaries we note
Oh(0 @ ) = Inlcn) = cf™ —nd(ca)
whilst
hd(o @ cn) = h(—(0®@ cn) + (1 ® ¢,) ) — (6 @ ey)) = 1P — h(o @ D) = P — nde,
follows by Definition [2.33| and Definition [6.2 O]

6.2 Contracting homotopy for P‘*X

In this section we define the contracting homotopy maps 7, : P{™X — P X which
raise the dimension by one for a 0-reduced simplicial set X, for the group completed path
complex PEsX = Qs X ®¢ X that we have introduced in Definition .

We will define the contracting homotopy inductively. We start by defining it in degree

0, and once we have defined 7y we can define 7;, and so on. We can use the following

definition for the partially-defined homotopies we will give:
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Definition 6.5. A k-contracting homotopy on a pointed crossed complex of groupoids C' is
a family of functions

{0 C = Cpyq - n=0,1,...k}
which satisfy the conditions (1-5) of Proposition [6.3 for all elements ¢, for n < k.

The group completed path complex P¢*X = Qs x ®e mX is a free crossed complex,
with an infinite object set
PEX = {(w® ) : we Q5°X}.
We know that
(1))61(3_1a§2))62 . (s—laY))er (r >0, agi) € X — {so(*)},& = £1)

w=(s"ta

is a word given by a string of non-degenerate 1-dimensional simplices of X and their ‘formal’
inverses. We want to think of the group completed path complex P¢X = QCrsx ®¢ mX
as a pointed crossed complex of groupoids: we specify a particular basepoint @ ® x.

For dimension 1, the generators of the free groupoid P X are the elements
e (w® by) with source (w ® *) and target (ws™'b; ® *)
o (ws lagw’ ® *) with source (ws tag s tapw’ ® *) and target (ws™'agew’ & *).

The general form of a generator in higher degrees is (z ® by,) € PSS, X, where

= 050, 2, o Dy 1), )
is a generator of QX in degree n = |z| = Y. n;, and b is a generator of m,, X. The

basepoint p of this element is
p = src(z®@by) = sre(z)@x = wQpWu® ... ur=DpMy,™ @ «
where p® = [T 5_1a§'z)j+1-
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Definition 6.6. Consider a general object w ® * € PS™X given by a string of v non-

degenerate one-simplices and their inverses,
w=(staM (s a2 (s L k>0, € Xy — {so(x)}, 6 = +1.
We define a function ng : PS™ — PE™ in dimension 0 by:
1. If r =0 then no(2 ® %) = O(gex € PIX,
2. Ifr>1 andw=w' - (s7'al") where ' has length r — 1 then
NwR*): TRk —w @k —>w® *
can be defined inductively by:

mo(w®*) =no(w - s7'a” @%) = (W @al)) +mp(w ®%) i e =+1

No(w @ x) = no(w’ - (s_lagr))_l R*) = —(w® aY)) + no(w @ *) if €, = —

Remark 6.7. To make it easier to read we have written out both of the two cases, for €, =
+1, in Definition 6.6 This is redundant, as each of the two cases is really a consequence
of the other one. If we are given the definition for e = +1, for example, we may rearrange

it and write
—(W @a™) + nolw - s7al” @ %) = no(w’ @ *).
Ifw =w" (s71a™)1 this says
~(' ®ay”) 0w’ @ %) = 10w ® %)
This is just the definition for e = —1.

Theorem 6.8. The function 1y : P — PE™ in Definition defines a 0-contracting

homotopy.
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Proof. We need to prove 7, is a well defined homomorphism that satisfies the properties
of Proposition for elements of degree 0. If r = 0, we can see that the source of
(P ® *) is (@ ® *) and the target is (& ® *) so it satisfies property (1) of Proposition
. If r > 1, we see the source of n(w ® *) is (& ® ) = sre(n(w’ - (s7'al™) @ *)), and
the target is (w ® %) (e, = £1), so it satisfies Proposition (1). For the generators of
the form (ws‘lagl) ® *) where w is a word of length n, we assume n(w ® *) has source
(@ ® *) and target (w ® %), and since the source of (w ® agl)) is (w ® %), and the target is
(ws‘lagl) ® *), we see no(ws_lagl) ® ) is well defined and hence 7 satisfies Proposition

(1) by inductively. ]

Definition 6.9. In dimension 1 we define a function n; on the generators of the free

groupoid PF*X as follows.

1. For any generator (w ® by) where w € QS“X and by is a non-degenerate 1-simplex of

X, define
Mm(w ® b1) = O(zes (31)

1

2. Consider a generator (w s Layw' ®%), where w,w' € Q$™X and ay is a non-degenerate

2-simplex of X.

If W' = @ then define
m(ws tag ® %) = (w ® ag)"@E") (32)
If ' = W" - s7ta; then define inductively
m(ws asw' @ %) =y (ws Lasw” @ %) — (ws Lasw” ® ay)PEws T e ®) - (33)
If ' =W" - (s7ta1)™! then define inductively

m(ws asw' @ %) = ny(ws Tasw” @ %) + (ws Lapw” @ ap )P a2 @) (34)
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Remark 6.10. As in Remark[6.7, it is not necessary to give both of the last two definitions,

because they imply each other. For example, we can rearrange the definition to write

it as
m(ws asw”s " ar ® %) 4 (wstagw” ® ay)PEWs 2 @) — (s W @ ).
If we substitute w” = W" (s ta;)™t into this we get
M (ws tagw” @ %) + (ws tagw” @ ap)0Eres” taaw®%)) = (ws taw” (s ay) Tt @ *).

This is the same as the definition .

Example 6.11. 1. Let we have the element ¢; = (s 1a§ )6 la, ® x), we use Proposition

to calculate n(s—'al" s ay @ *)
n(src(silagl)sfl@ ® ) = n(s1aV s lag s la ® *)
= (s71a"s ag, ® ara) + (s7'al” ® agr) + (@ ® alV)
(1)

n(targ(sa{"s lay @ %)) = (s7'a{" @ apy) + (@ @ a}")

(1)

(s taVslay ® %) = —p(targ(s'aVsTas @ %)) + (s71alVsay @ %)

+ n(sre(salVs ay ® *)) (by Pmposition (2)),

=—(o® agl)) - (8_1a§1) ®age) + (s~ 1ag Vs lay ® %)

+(s7aVsag ®@an) 4 (sl ®an)  + (@ @al”)

(571a§1)571a2®*)

(s_la(ll) az)

(s_lagl)@)aog)
(s_lagl)s_lam@alz)

(s_1a§1)®a01)

Figure 25:
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= (s (1) ®a )(®®a§1))
=4

n(s~taVs ey ® %) = (sl ® a )(g®“(11)).

. let now calculate n(s™tags™ a( )s_lag ) ® %)

n(sre(slagsall )3*1a§ ) ® %)) = (s tagis tajas” 1ag ' ® a(2)) + (s tagrsTta ® agl))

+ (s7'ag @ a12) + (P @ ap)
~1, —1,1) —1_(2) — (o1 -1,(1) (2) -1 1
n(targ(s tass tay 's7lay” @ %)) = (s tages tay @ ay”) + (sTrage ® a) + (D ® ags)
again from Proposition[6.5(2) (On(c1) = —n(targ ¢1) + c1 + n(sre 1)) we have,
(s azs lals 0P @ %) = —(O®ag) —(slap®al)  — (s lags 'al) @ al?)
+ (s tays 1a§ Js~1q? )®>x<) + (s tagrstajes! all )® (2)) + (s tags™ a1g®a( ))

+ (S_lam ®a2)  + (T ® aep)

(1)

_ 1. (1 2
S 1a028 1a§ )®ag ) ST a02®a1 TRap2
é ¢ ¢ ¢ °
2] *
) ®
] o |5 %
o
:"’ s lazs™la}’ Qa; S b % IAa2 I
s s laz®a - ®
— N | Q
| 3 )
w -
Il |
] W
-
‘UD ° °
_ _ 1.1 2 _ -1
s~ tapgis~laigs lag )®a§ ) s Lagrs™ a12®ag ) s7 a01®aiz
Figure 26:

s7la a a
= 8((@ ® &2) — (5_1a2 ® agl))( 01®a12)+(P®ao1)

(Sfla s~ gl ®a(2))(5_1‘1018 arzs~1alV @al?) (s~ 1a01®a12)+(®®a01))
- 2 1 1

=

s lapg1®a a
(s lazsalsal® © %) = (2 @ ay) — (s7Lap @ @{V)* rEMDHESD)

) (s~Laprs~taizs~a{M ®a{?)+ (s~ Laoi ®ar2)+(2®aor )

(s tazs e © a?
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Proposition 6.12. The functions ny : PS®X — P*X and ny : PF*X — PS™X in
Definitions and define a 1-contracting homotopy on P=X.

Proof. We need to show the function 7; which we defined in Definition satisfies part

(2) of Proposition [6.3] that is, we need to show that

Oami(c1) = —mo targ(eq) + ¢ + ng sre(eq).

There are three cases.

In the first case, suppose that ¢; = w® by, for some w € QgrsX and some non-degenerate
1-simplex by of X:

By Definition (1) we have

32771(01) = 0(@®*)'

Also, from Definition [5.8} we know that ¢; has source (w®*), and target (ws™'b; ®*), and
from Definition (2) we have

no(sre(cy)) = no(w @ *)
no(targ(cy)) = (w ® by) + no(w @ *)
—no(targ(cy)) + 1 + no(sre(er)) = —no(w @ x) — (W by) + (W @ by) + Mo(w @ *)
= Osre(mo(we)
= Ozey)
= 0oy (cy).
In the second case, suppose ¢; = (ws™tay ® *), for some non-degenerate 2-simplex ay of X:
From Definition (2), we have 7 (ws tay ® *) = (w @ ay)0@E)

Oa(m(ws™tay @ ) = Oa(w ® a2)”0(w®*) = —1o(w %) + I(w ® as) + No(w ® *),

which by the Definition [5.8| equal to:
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= —1o(w @ *) — (W ag) + (wstay ® *) + (w R ap1) + (ws™Lag ® arz) + Molw @ *)
While, by Definition [6.6] we have
no(targ(ws tas @ *)) = no(ws tagy @ *) = (W ® agz) + Mo(w @ *),

and

no(sre(ws™tay @ ) = no(ws tagrs tan @ *) = (ws tagr ® arn) + (W ® apr) + Mo(w @ *)

SO we can see
Oa(m(ws™tay @ %)) = —no(targ(ws™tay ® *)) + (ws tay @ *) + no(sre(ws tay ® *)) which
satisfies the Proposition [6.3](2).

For the third case, suppose that ¢; = (x - s7'a; ® ) for some generator x of QX in
degree 1. Let us write p for the source of x and q for the target of x in QS“X .

We assume, inductively, that condition (2) of Proposition holds for the element
(z ® %),

Oy (z @ *) = —no targ(z @ *) + ( ® *) + 1 sre(r @ *)

= —10(q ® *) + (2 @ %) +10(p @ *).
From Definition , equation , we have

771(61) = ?71(13 ® *) — (3; ® a1>no(p®*)
Aa(mi(c)) = Oa(mi(x @ %)) — Do((x @ ay)PP®)

= —1o(q ® *) + (z @ *) + no(p ® *) — (=mo(p ® ) + o(z ® a1) + Mo(p ® *))
by the inductive hypothesis and by Definition [2.25] Therefore
Gr(m(er)) = —mo(q @ *) + (& @ *) — a2 © a1) + no(p @ *)
Now we need to use Definition of the boundary map, see Figure 20| in Definition [5.8}

hr®a)=—-(pRa)—ca+(@®a)+ (@ *).
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Therefore,

Aa(m(cr)) = —no(a @ %) — (q @ ay) + (x5~ a1 @ %) + (p @ ay) + no(p @ *)

= —n0(q - sTlag @ %) + (:Es_lal ® *) + no(p - sTlay ® *)
by Definition [6.6[2). But this says
Oa(m(c1)) = —notarg(c1) + 1 + nosre(cr),

and we have finished the proof. m

Definition 6.13. We define functions n,., on the generators x @ b in degrees n +m > 2

of the free crossed complex P“*X as follows.

1. If b is given by a non-degenerate m-simplex where m > 1 then define
Nntm (T @ b) = Oz (35)
2. If b = x, the 0-simplex of X, then x # @ and we can suppose that it has the form
! -1
=10 -8 api

where ag,1 is a non-degenerate element of Xy1 and |'| + k =n = |x|.

If k = 0 then define inductively
Mz @ %) = N (2’ @ %) + (=1)" (2’ @ ay) e, (36)
If k > 1 then define:

Mz @ %) = (—1)" (2’ @ a0 (37)
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Remark 6.14. We have not given the definition of n,(x' - (s7'a;)™' @ x). As in Remarks

and the definition is implied by (and implies) the definition in equation (36). If
we let ' = x - (s7tay)™! so that x = 2’ - s7*ay then the definition in equation says

Ma(z @) = nu(@ - (s71ar) ™ @) + (=1)"(@ - (s7'ar) ™ @ ).
Therefore by rearranging this equation we can give the definition of n,(x' - (s71a;)™' @ %)
inductively as

(@ (s7'a1) ™ @) = na(e @) — (=1)"(2 - (s7'ar) T @ ). (38)

Theorem 6.15. The functions 0y, which are given in Definition[6.13 define a contracting

homotopy.

Proof. Consider any element ¢ = = ® b where b is a non-degenerate m-simplex of X and z
is a generator of degree n in QCrsx , as we have described in Definition .

We need to prove, for all n+m > 2, that n(c) satisfies property (3) of Proposition [6.3]

We will prove it by induction on the dimension of c.
Degree 2: To begin the induction, we will first consider an element ¢ in degree 2. In this
degree we must be careful because dc, nd(c) and dn(c) are non-abelian expressions.

There are three cases:

1. In the first case, suppose that m > 0. That is, b is not the basepoint of X.

2. In the second case, suppose m = 0. That is, ¢ = z®*. Suppose also that x = 2’-s71a;,

for some non-degenerate 1-simplex a; of X.

3. In the third case, suppose that m = 0, ¢ = z ® *, where x = 2’ - s 1a;4, for some

non-degenerate (k + 1)-simplex a4 of X.
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In the first case, Definition says that n(c) is trivial, so we need to prove that
Ogex) = PP — 105 (c)
where ¢ = xg ® by or ¢ = x; ® by, so from definition [5.8] we have

g = — (10 @ boz) + (05~ 0o @ %) + (w05~ "bo1 @ brz) + (w9 & bor )

or Opc = —(srcx; @ by) — (215 'by @ *) + (targz; ® by) + (71 ® *)
Then, by Proposition [6.3(4), and Definition [6.9] we have

mOze = —mn (o @ boz) + ni (205~ b2 @ ) + 1 (205~ bor & bia) + 1 (0 @ bon )
= O@ex) + (20 @ b2>n0(src(x0®*)) + 0(zex) + O(oe)
= (1o ® b2>no(src($o®*)) — M(B)
or mdye = —m(srexy @ by) — mu(x1s™ by @ %) + my(targ z1 @ by) + (21 ® *)

= O(®®*) + (I'l ® b1>no(src(w1®*)) _ Th($1 ® *) + O(®®*) + nl(xl ® *)

— (1;1 ® bl)no(src(m@*)) _ 0770(5(6))

and so we always have ¢™(B() — p,0,(c), as we need.

In the second case, m = 0 and we can write

c=r®*=1 -5 ta @ x.

where a1 is a non-degnerate element of X; and z’ has degree 2.
Therefore by Equation (33))

N2C = 772(.1'/ (29 *) + (:C/ ® &1)no(srcx’®*))

Osnpc = 837]2($I ® *) + 83<g;-’ ® al)no(srcr’®*)
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In this case, we have two possibilities for 2’. The first possibility is that 2’ = 2”5 tas,

where 2”7, has degree zero. Then

Oy(x"s tagsray @ %) = — (2" - s agy - s aes - 5T Ay ® %)

— (2”5 agiss tay @ *) + (27 - s tages - 57 Nay ® *)

" —1 —1 —1
+ (2" - s agia - s agz - s Ay ® %)
and so

MmOy (25 razsra; @ %) =

+ (2" 57 agr - 57 1oy @ a) 0P aa®)

— (l’” . S_laol & a123)n0($,/871a01®*) + (QT” . S_1a013 ® CLI)”OB(QSH.S?IGOIB@*)
i (l’” Q a013)n0(a;”®*) + (LE” ® a023)no(w”®*)

" -1 1".g—1 " 7z
— (I' -8 a023 ® al)ﬂoﬁ(iﬂ s a023®*) _|_ (I» ® a012)770(11? ®*)

7 -1 1" .e—1
— (2" s ag1y ® agg) e 02

"

— — " e—1
— (2" - 57 agry - 5 Mgy ® ay )P as®)

1 —1

772(0) — 772(l,//s—lags—la1 ® *> _ (JJ” ® ag)no("f/@*) + (x//s—la3 ® al)noﬁ(m s~ laz®x)
Bsma(c) = +(2"s Lagsray @ )AL (5 Tla 1 5T gy @ a )P aa®s)

!

— /. o—1 " _ 1 o—1
+ (J}” . g 1a012 ® a23>no(a: s7lag1a®x*) _ (J}” Q a012>no(a: ®x) + (I//S 1a023 ® al)noﬂ(a: s~ Lagos®@x)

" " 17 7 v o1 o1
_ (J} (%9 a023)770(ac ®+) + (I ® amg)no(:v ®*) _ (I s Yagrs ® al)noﬂ(x s Lap13®*)

_ 1 e—1 _ _ 7"e—1
+ (LL'”S 1a01 ® a123)n0(x sTlag1®%*) (l'”S 1CL018 10,123 ® al)noﬁ(x s taz®x*)

The second possibility is that 2/ = 2” - s7ay - s7'a), and so

127



o(c) = O(z" - s tag - s raly - s ay @ %) = — (2" - s agy - sty - s A - s hay @ %)

— (2" s7tay - s ahy s ar @ %) + (2 - s agy - s ah - s T ay @ %)

i

+ (2" - s ay - 57 ap, - s aly - 5T Ay @ %)

_ _ _ Mog=1, =1,
77182(C) _ +(CL’H .8 1&01 . la12 . 1a/2 ®a1)n0src(z s~ lag-slalh®x)

_ _ "oo—1
. (.CC// . 1a01 .5 1CL12 ® CLIZ)nO sre(z”-s7taa®x*)

noo—1 -1 1 no sre(z” s~ Lag-s~Lal,®%*) noo—1 7 \nosrc(z”-sTas®x*)
+ (2" - s ar - s ag, ® ay) 029 (2" 5T as @ agy)
1" _ 1", o—1
o (]3” ® a2)n0(gc ®) + (JI“ - 1a02 ® a/2)no(gc s lapga®x*)

_ _ 1 o—1 =11 1
i (Z‘H .S 1@02 .S 1a//2 ® al)no(src(r s~ lage-s~al,®x*)) + (ZL’H ® a2)770(m ®%)

_ "a—1 _ _ Moa=1, =11
. ({L‘H .5 la2 ® a{)l)nosrc(x sTlag®*) (l’” .5 1(12 .5 1%1 ®a/12)nosrc(a: s7lagzs™tag, ®x*)

— — — 1", o—1 -1/
. (IH'S 1a2 - 1(1,01 . la/12®a1)nosrc(a: sTlags~tab®x*))

ma(c) =ma(a” - s tag - s aly - sy @ %) = —(2" - 5 ag @ )0 a2®)

/ — _ 1a=1 g =1t
+<I/'S ICLQ'S lal2®a1)nosrc(z s~ lag-sTlal®x)

Bs(n2(c)) = +(" - s Lag - s taly - s Hay @ x)osrel@”s T Tazs T lahs T ai @)

_ _ _ Moa—=1, =17
—|—<CL’”~S 1(12-8 1a61'3 1a/12®a1>nosrc((a: s7lag-sTlah®x)

_ _ 1"oo—=1, . o—1,7 _ 1, e—1
+ (l’” - la2 - 1a61 ®a/12)n0src(a; sTlag-sTlal, ®*) + (ZL‘” . g la2 ® a{ﬂ)ngSrC(z s as®x*)

_ _ 1", —1 e—17 1", e—1 1" e—1
+ (l’” . la02 .5 la/2 ®a1>nosrc(w s7laga s tab®@*)+ (2" s aa®x)+no sre(z” s ax ®@%*)

. S—la02 ® aé)(w”s’1a2®*)+n0 sre((z”-s7lag®%) (l‘” . 3_1a2 ® a62)ngsrc(m”~s*1a2®*)

— — 1"oo—1, . c—1.7
.3 1a2 - 1a/02®a1)nosrc(z sTlag-sT ap,®*)

_ _ ", o—1
+ (ZL’” .5 1a01 . 1(112 ® alz)no sre(a’’-s7as®+%)

— _ _ 1, —1 Le—1,/
. la01 . la12 . la/2®a1)nosrc(x s~ ltaz-sTlab®x*)

In the third case, m = 0 and we can write
/. —1
C=TS Qg1 @ *
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where ay1 is non-degnerate element of Xy, and £ =1 or 2 and 2’ has degree 2 — k.
If k = 1 then write p and q for the source and target of 2’ in QX so that
Do =0s(2's ay ® %) = —(ps lag @ ¥) — (2's Lag @ *) + (g5 Lay ® *) + (2's tagis tan ® *)
MmOsc = —n1(ps tag @ %) — 0y (2's Tagy @ *) + N1(qs rag ® %) + 0y (2's ragis  an ® *)
= —(p ® @)™ + (' © a02) ™) — (2’ ® %) + (4 © a2)™) (2" © %)
_ (3;/ ® a01)"0("®*) _ (x's_lam Q a12)n0(p871a01®*)
=—(p® a2)no(p®*) + (2’ ® a02)770(p®*) +(q® ag)m’(q®*)+82”1(x'®*)
_ (x’ ® am)no(p@*) _ (x’s’lam Q aw)no(ps*lam@*)
=—(p® az)no(l@*) + (:z:’ ® a02)no(p®*) +(q® a2>(a:’®*)+n0(p®*))
— (2’ ® agy)™P®Y — (2'5 7 agy ® ay,) @ @0 FMOEE)
Nac =no(2's tay @ %) = —(2' ® az)’?O(P@)*))

O3nac = ((l‘/s‘lag ® ) (ps 7 a018a12)+(pBaor)

10(p&))
+ (25 agy ® a12) PP + (2 @ agy) — (q @ ag) @) — (@' @ age) + (p® a2)>

= P — 110ac
If £ =2 then

Dac =0a(ws™'az @ *)
= —(ws™laois™ a1z3 ® *) — (w5 o1z ® ) + (w5 ages ® *) + (W™ ag1zs a3 @ *)

7]1820 _( — (ws—lam X a123)(w®a01) _ (w ® CL013) + (w ® CL023)

1 70 (W®*)
+ (w ® CL012> - (wsilaom X a23)("~’3 a01®a12)+(w®a01)>

ec :T]2(w5*1a3 X *) = (w ® a3)no(w®*)

—1 1 1
O31ac = ( + (ws_lag ® *)(5 ao1s'a12®az3)+ (s a1 ®a12)+(w®ao1)
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s7lag1®a12)+(w®ao1) (

+ (ws agra ® ags)’ w ® agz)

1o (W)
- (w ® (logg) + (w & a013) + (WS_lam ® a123)(w®a01))

We can see that 0sco = 0305 ¢ —n10a¢9, which satisfies property (3) of Proposition , hence

n(ce) define a contracting homotopy.

Degree n +m > 3: We now assume by induction that Property (3) of Proposition (6.3 holds

for any element ¢ of degree < n + m. We will now prove it for elements of degree n + m.
Everything is abelian now.

As before, there are three cases:
1. In the first case, suppose that m > 0. That is, b is not the basepoint of X.

2. In the second case, suppose m = 0. That is, ¢ = z®=*. Suppose also that x = 2’-s71a;,

for some non-degenerate 1-simplex a; of X.

3. In the third case, suppose that m = 0, ¢ = z ® *, where x = 2’ - s 'a;4; for some

non-degenerate (k + 1)-simplex a1 of X.

In the first case, ¢ = x,, ®b,,,, where b,, is a non-degenerate simplex of dimension m > 1

in X. Equation ([35) in Definition says that n(c) is trivial, so we need to prove that

(B(c))

O(@@*) = - 77n+m718n+m(c)

Suppose m = 1, so ¢ = x ® b;. Then the terms in the expression for
Ops1(z ® by)
have the following form
(=) 2 @ *) (39)
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(—1)"(z - 5710y @ %)? (40)
(y@b) (41)

where ¥y is any term in the formula for 8Q(m) Because of Proposition (4, 5), we can
ignore the action in the terms , and the terms in the expression for

77n(9n+1(5€ ® bl)
will be
(=)™ n(z @ *) (42)
(=1)"n(z - 57101 @ %) (43)
n(y @ br) (44)

But by our definition, the term is trivial. Also we can expand into two terms, by

the inductive definition of 7, and one of these terms cancels with . That is:

Musa (@@ b1) = ()P @ 1) + (<D 57y @ 5)
= ()" (e @ 1) + (1) @ #) + (2. by) P

= (z® bl)no(ﬁ(r@J*))

Hence, nd(c) = ¢™5¢ as required.

Now suppose ¢ = = ® by, where m > 2. We will show that
77n+mflan+mc = CnOﬁc'
The terms of 0, m(z ® by,) have one of the following forms

(=1)""z @ diby, (45)
(=1)"z - 57 bo_i @ bi._m (46)
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Y ® by, (47)

where y is any term in the formula for 8%(z). The terms ([5), (16), might also have
actions, but because of Proposition [6.3(4,5) we can ignore them, and the terms of

Nt (T @ by)
will be
(—=1)"""n(z @ dibyn) (48)
(=1)"n(z - 5™ Do © bii_m) (49)
n(y @ b (50)

But by our Definition equation all of these are trivial, except
(=)™ n(z - 5 by, @ *) (51)
and by equation (36| we therefore have

NOntme) = (—1)"n(x - 57 by @ %) = (=1)*" (& @ b)) = (2 @ b,,,) 70O (52)

— o) (53)

so that Proposition [6.3(3) holds.

In the second and third cases, we have
c=r®@*x=2" 5 tap @ *
and we want to prove that
D171 (¢) = P — 118, (¢). (54)

We will prove this by induction on the length of the word .
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In the second case, we have k = 0, and from Equation (36 we know that

Ont11n(c) = Onta <77n<x/ ®*) 4+ (=1)"(2' ® a1)n06(xl®*)>
= O 1 (2 @ %) 4 (=1)" 01 (2 © 0y )P

= (@ © ) 10, (2" @) + (<1 Dy (a’ @ @) ()

Here we have assumed holds inductively, for ¢ = 2’ ® %, since 2’ is a shorter word than

z. We also know that

nn—lan(c) = T]n—lan(xl : 8_16L1 X *)

=3 iy sl @ %)

where we take the sum over all terms y in the expression for 87?@’ ), and we can ignore any
actions. Therefore from Equation (36) we know that

Nn—10x(c Znn1y®* +Z Z/®a)"°5(y®*)

= D10 (2 @ ) + Y (=1 (y @ ay) PP (B)

If we combine (A) and (B) then we have

O (€) + Thn-10n(c) = (=1)" <an+1(ﬂ7’ ®ar)+ ()2 @) - (y® al))%ﬁ(m/@*)

= ((x’ sl ® *)(513’)@&1)7705(2 )

— (l’ ® *)Tioﬁ(u’6®*) — (B

Finally, in the third case, ¢ = 2’ - s7laz 1 ® * where k > 1. From our definition of
the boundary of the cobar construction we can see that the terms in the expression for

On (2" - s tap,1 ® *) have one of the following forms
(y- s app @ %) (55)
(=)l o s g, ® ) (56)
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(—1)‘x|+i+2($' TR 3_1ai...kz+1 ® *) (57)

Here y denotes terms in the expression for 8Q(x’ ), and 1 < i < k. We do not write down

the actions because they will disappear when we apply 7. If £ > 2 then by Equations

and

Mno1(y - s apgr @ %) = (1) (y @ agyy) 70 (58)
D1 (2' - s dsapyy @ %) = (=)' @ dyjagy,)PE® (59)
Muo1(2's ag. 87 s ki1 ® %) = (_1)@/'“71(37/371610...1 ® az‘...k+1)mﬁ(xls_lao”‘@*) (60)

Nn1(2's  ag. x5 appp1 @ %) = N1 (/s Lag, p ® *)
+ (=) N a's ag. p ® ap k+1)mﬁ(x/s_la0"'k®*)
= (_1)\x/|(x/ ® aomk)noﬁ(x’@@*)

+ (=) (@ s g g © g )PP 0k (61)

where isonly for 1 <¢ < k. If K =1 then

Mno1(y - 57 ay @ ) = (=1)"2(y ® ay) ™7 v®) (62)
Dot (2' - s dyag @ %) = oy (2 @ %) + (=1)" " Ha' @ dyay)PE'®) (63)
Mn1(2's ™ agrs a1y @ ) = mo1 (' @ ) + (=1)" (2’ ® agy) ™) (64)
+ (=)™ (@' agr @ agp) P ) (65)

In the end we can see that the terms in the expression for 1,10, (z - stap ® %) are

exactly the same as the terms in the expression for

cnsle) _ Ons1mn(c) = (s g1 ® *)no’g(xls_lak“@)*) - (_1)‘9:/‘3%1(:6' ® ak+1)n05(xl®*)
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A Some data for the proof of the conjecture

We would like to try and prove Conjecture by comparing the terms in the formulas

for
0507 (x @ b) (66)
with the terms in the formulas for

0501 (xr @ b) (67)

We know that the terms in all cancel. We also know that the terms in are quite
similar to the terms in . We hope that this will give us enough insight to prove that
the terms in also all cancel. Unfortunately there are 48 terms (each 4-dimensional
cube has 8 faces, and each of these cubes has 6 square faces) and we have not been able to
prove they cancel yet.

So we collect below some of the data we have found so far. We think that we might
need a good computer to check all of the possibilities and prove the conjecture.

The first two formulas are abelian,

05 (s ay @ bg) = (s 'age ® bg)({l@@*) — (s agy - s ags ® bs)
+ (57 tag @ bo1a) — (s ag @ boi3) + (5 ag @ boz) — (s 1apy ® 6123)(5—1(1013—1@12@{,01)
=A-B+C-D+FE—-FT

O (s7tay @by) = AV — B+ C — D+ E — FT - GFetTr _ f¥atTatTa

F= (s'ag - 57 o1 @ biog)

()

= (871@2 -5 M ho1a ® bas)
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H=(s"ay- s by ® %)

The following formulas are not abelian but they are central. Their terms can be permuted

cyclically, for example.

0 (A7) = — (57 ags @ boas) + (5™ ags © boiz) + (5 Lage @ biag)® 228000 — (571ag, @ byyo)
= A+ Ay + Ay — 4,

OP(A) = —A; + Ay + A\sTl(A) + A\E)TS(A)+T2(A)+T1(A) i A\gz(A)+T1(A) _ A,
As = (s ag2s™"bor ® byaz)
21\5 = (5 tagys thy @ %)

121\6 = (5_1&023_15012 ® bag)

Y (B) = +(s 'ap1s 'a1a ® bo12) — (s 'agis tare ® 5123)(571%1871(112@%1)
— (s ag1s a2 ® boiz) + (s agrs M are @ boas)
=B, -B*® _B,+ B,
OF(B) = By — By~ — By 4 B, + B BINB) | phBB)
B, = (s ao1s " a125 " bor @ bigs)
§5 = (s tag s tays by ® *)

n -1 -1 -1
Bs = (s ap1s™ @125 boiz @ bag)

I2(C) = —(s"agr - s a1z ® bor2) + (s~ 'as ® bga)
+ (s 'age ® 5012)(871@@*) —(s'aa ®by1) — (s 'ax ® b12)T1(0):T1
= O +Co+ 0]~y — @
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5 (C)=—C1+ Coy + C’;(C) — Oy — 6;&(0) _ 5g2(0)+rl(0)

~

Cs = (s'as - s o1 ® bio)

é\(\6 - (8_1a2 . 8_1b012 X *)

05 (D) = —(s™"aps @ bons) ' =) — (57" ap @ byg) + (5 "ag1 - s~ a1 & bon)
+(s'ar ® 513)(871%1871“”@1’01) + (57 ag ® boy)
— Dy Dyt Dy + DI 4
0F(D) = —DIP) — Dy 4+ Dy + DI'P) 4 py 4 PLAOITTID)
ﬁ4 = (s ags by @ by3)
Dg = (5 tags b1 @ *)
0P (B) = — (5402 @ boa) — (5~ @ )00 055m0) _ (5, 57101, 60 B
+ (57 ay ® bos) + (s tage ® 5023)(51@2@*)
09 (E) — By — EIP _ By 1 By 4 Y
OF(E) = —E, — EN'®) — By 4+ B, + B} — EB+0(®)
Ej = (s " ags™ bop @ bas)

Eﬁ = (371@2 -5 o2z ® %)

OF (F)™ = (5™ ass b1 ® bia) — (s "anas™bor ® bag)* 02

— (7 azs™ 001 ® bia) + (57 ao1s™ @128 bor ® bia)

+ (3_1a23_1b013_1b123 X *)(871(101871“1257”’01871b12®b23)+(s*1a01s*1a125*1b01®b12)

-1 -1 -1
+ (s 'ags™ b01®b23)s ao1s™ a1z bo1®b12)
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(95(1%’\) =F — F;(F) — 5+ Fy _|_F5;r2(F)+T1(F) +Fg‘1(F)

85(@)&%(1 = (5 aas 12 ® %) — (5 agas o1y @ byg) (a2 Tbors T 012
- (3_1a23_1b018_1612 & b23) — (8_1a28_1b0128_1b23 ® *)T3

-1 -1 —1 1 1 1 . 1
+ (5 ap1S ~Qa128 b012®b23)—|—<5 ass 602®623)(S ao15 La12s ™ 1bo12®%)

OF (H) Y+ 2tM1 = 4 (57 ags  hggy @ #) (7 Tanrs™ 128 Tboras™ Hbaa@)

-1 —1 —1 —1 —1 -1 —1p, —1p,5—1p
+ (3 A28 b0128 b23 & *) — (3 Qo2 S b3 ® *)(s ao125 1bo1s Lb1os ™ Lhoz @)

+ (S_1a015_1a123_163 (] *)
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