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Twisted tensor products of n-groupoids and crossed

complexes

Abstract

For any 1-reduced simplicial set X, we define a crossed complex of groups P CrsX, which

we define as a twisted tensor product of the crossed cobar construction ΩCrsX and the

fundamental crossed complex πX. In fact, we prove that P CrsX is contractible. Therefore

P CrsX is a crossed complex model for the path space of X. It is also an example of a

crossed complex model of the total space of a fibration,

ΩX −→ PX −→ X.

This generalises from chain complexes to crossed complexes the theorem proved by J.

F. Adams, and P. J. Hilton in their paper [3]. Our definition of twisted tensor products

of crossed complexes also defines a twisted tensor product of n-groupoids, for all n. This

comes from the fact that there is an equivalence of categories (∞-groupoids ←→ crossed

complexes) which was proved by R. Brown and P. J. Higgins in their paper [12].

We recall the classical Eilenberg-Zilber theorem for chain complexes, and its generalisation

for crossed complexes, which show that the tensor product provides an algebraic model for

the Cartesian product of the fibration

X −→ X × Y −→ Y.

We also extend our theorems to 0-reduced simplicial sets X. In this case we generalise the

crossed cobar construction ΩCrsX from 1-reduced simplicial sets to the group-completed

crossed cobar construction Ω̂CrsX for 0-reduced simplicial sets and define a crossed complex

of groupoids P CrsX, a twisted tensor product with the twisted boundary maps

∂Pn : P Crs
n X = (Ω̂CrsX ⊗φ πX)n −→ P Crs

n−1 = (Ω̂CrsX ⊗φ πX)n−1, ∂2 = 0.

We end by defining a contracting homotopy {ηn : P Crs
n X → P Crs

n+1X} which shows that this

crossed complex of groupoids is still a model for the path space on X.
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1 Introduction

We are interested in the category of crossed complexes of groupoids and twisted tensor

products of crossed complexes. The motivation for this thesis has come from two directions:

firstly, from a wish to generalise J. F. Adams and P. J. Hilton’s theorem for chain complexes

[3], by constructing a crossed complex P CrsX which is a model for the path space of X,

as a twisted tensor product of the crossed cobar construction ΩCrsX and the fundamental

crossed complex πX for 1-reduced simplicial set X. Secondly to define the general path

crossed complex of groupoids P CrsX = Ω̂CrsX ⊗φ πX where Ω̂CrsX is the group-completed

crossed cobar construction for any 0-reduced simplicial set.

The definition of a crossed complex is motivated by the principal example: the funda-

mental crossed complex πX of a filtered space

X : X0 ⊂ X1 ⊂ · · · ⊂ Xn ⊂ · · · ⊂ X.

Here π1X is the fundamental groupoid π1(X1, X0). For n > 2, πnX is the family of

relative homotopy groups πn(Xn, Xn−1, x0) where x0 ∈ X0, together with the standard

boundary operators ∂ : πn(Xn, Xn−1) → πn−1(Xn−1, Xn−2) and the actions of π1X on

πn−1(Xn−1, Xn−2) [11]. The category of crossed complexes is a monoidal closed category

which shares many properties of the category of chain complexes, but with some non-

abelian features in dimensions one and two, it and may also be thought of as a reduced

form of a simplicial groupoid [14], or as a strict ∞-groupoid [12].

A crossed complex of groupoids C is a sequence of groupoids Cn over a fixed object set

C0, which are C0-indexed families of abelian groups for n > 3, equipped with C1-actions

and C1-equivariant boundary maps ∂n between them, which on the object sets will be the

identity function, and ∂2
n = 0 for all n. Furthermore, ∂2 : C2 −→ C1 is a crossed module of

groupoids, and for n > 3, ∂2C2 acts trivially on Cn.
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The tensor product of two chain complexes A and B, is also a chain complex Cn =

(A⊗B)n such that :

Cn =
⊕
p+q=n

Ap ⊗Bq

with the boundary homomorphism δn defined by:

δn(ap ⊗ bq) = (δpap)⊗ bq + (−1)pap(δqbq)

which satisfies that δ2 = 0 [25]. The classical Eilenberg-Zilber theorem in its original

form [33] gives a chain homotopy equivalence

C(X)⊗ C(Y ) ' C(X × Y )

where X, Y are simplicial sets, and C(X) is the normalised free chain complex on the

simplicial set X. This theorem was generalised to twisted products by E.H. Brown [4], and

also generalised by A. Tonks for crossed complexes [31]. Our original aim was to combine

the two generalisations to define a twisted Eilenberg-Zilber theorem for crossed complexes.

A. Tonks [31] gave a natural strong deformation retraction from the fundamental ho-

motopy crossed complex of a product of simplicial sets π(X × Y ) onto the tensor product

of the corresponding crossed complexes πX ⊗ πY . For a fundamental crossed complex πX

of a simplicial set X, A. Tonks had obtained a strong deformation retraction of π(X × Y )

onto πX ⊗ πY satisfying certain side conditions and interchange relations [31, 32].

Suppose first that X is a 1-reduced simplicial set. We introduce a free ΩCrsX-module

P CrsX with basis B = {(∅⊗ bn), bn ∈ πX}. P CrsX is a twisted tensor product of the cobar

construction ΩCrsX and the fundamental crossed complex πX of a 1-reduced simplicial set

X, with object set P Crs
1 X = P Crs

0 X = {(∅⊗ ∗)}. It is twisted because we define a twisted

boundary map ∂Pn : P Crs
n X → P Crs

n−1X as

∂P2 (∅⊗ b2) = (s−1b2 ⊗ ∗)
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∂P3 (∅⊗ b3) = (s−1b3 ⊗ ∗)− (∅⊗ d3b3)− (∅⊗ d1b3) + (∅⊗ d2b3)

+ (∅⊗ d0b3)

∂Pn (∅⊗ bn) =
n∑
i=1

(−1)i(∅⊗ dibn) +
n∑
i=1

(s−1b0...i ⊗ bi...n), n > 4 (Note 1.1, page 11).

which satisfy that ∂Pn−1∂
P
n : P Crs

n X → P Crs
n−2X is trivial. We prove that this crossed complex

of groups P CrsX is homotopy equivalent to the trivial crossed complex. It is therefore a

crossed complex model for the path space of X, when X is 1-reduced simplicial set.

We extend our definition of the crossed complexes of groups P CrsX to a crossed com-

plexes of groupoids P CrsX for a 0-reduced simplicial set X, but before we do this we gen-

eralise the crossed cobar construction ΩCrsX to a crossed cobar construction of groupoids

Ω̂CrsX where X is a 0-reduced simplicial set. The group-completed crossed cobar construc-

tion Ω̂CrsX is a free crossed chain algebra generated by the elements s−1an+1 in dimension

n for each non-degenerate (n + 1)-simplex of X, together with extra generators (s−1a1)−1

for each non-degenerate 1-simplex a1 of X (Definition 5.4).

Now suppose X is only 0-reduced. The crossed complex of groupoids P CrsX is a twisted

tensor product of the crossed complex of groups πX, whose object set is {∗} and the crossed

chain algebra Ω̂CrsX, whose object set will be defined in Definition 5.4. The crossed complex

of groupoids P CrsX will be a free crossed complex with the same generators as the ordinary,

non-twisted, tensor product Ω̂CrsX ⊗ πX. We write these generators as

x⊗ b ∈ P Crs
n+mX,

where

• x is a generator of degree |x| = n in Ω̂Crs
n X, defined as:

x = ω(0)s−1a
(1)
n1+1ω

(1)a
(2)
n2+1 · · ·ω(r−1)s−1a

(r)
nr+1ω

(r)
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where r > 0, each ω(i) ∈ Ω̂Crs
0 X, ω = (s−1a

(1)
1 )ε1(s−1a

(2)
1 )ε2 · · · (s−1a

(k)
1 )εk , each a

(i)
ni+1

is a non-degenerate simplex in Xni+1, ni > 1, and
∑
ni = n, k > 0, a

(i)
1 ∈ X1 −

{s0(∗)}, εi = ±1.

We know that Ω̂Crs
n X is a (free) crossed chain algebra with the algebra structure

defined by concatenation of words x⊗ x′ 7→ xx′.

• b is a generator of degree |b| = m in πX, given by a non-degenerate m-simplex of X.

Before we define the twisted boundary maps ∂P for P CrsX we will give formulas for the

boundary ∂⊗ for the ordinary, non-twisted, tensor product. This boundary map, in the

context of chain complexes, would be ∂⊗ = ∂Ω̂ ⊗ id± id⊗∂π. And then we define the

twisted boundary map ∂P : P Crs
n X → P Crs

n−1X,which satisfies that ∂Pn−1∂
P
n = 0.

A crossed complex of groupoids is pointed if there is a specified object ∗ ∈ C0. If C is

a pointed crossed complex of groupoids, then C is contractible to the basepoint ∗ if there

is a family of functions ηn : Cn → Cn+1 that define a contracting homotopy

h : ∗ ' idC : π(∆[1])⊗ C → C

by

i. h(0⊗ c) = 0∗ (or ∗ if c ∈ C0),

ii. h(1⊗ c) = c,

iii. h(σ ⊗ c) = η(c).

A family of functions ηn : Cn → Cn+1, (n > 0) defines a contracting homotopy via h(σ ⊗

cn) = ηn(cn) if and only if it satisfies

1. η0(c0) ∈ C1 has source ∗ and target c0,
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2. η1(c1) ∈ C2 has basepoint ∗ and boundary:

∂2η1(c1) = −η0(targ(c1)) + c1 + η0(src(c1)),

∗ x

y

η0(x)

η0(y) c1

Figure 1:

3. If n > 2 then, ηn(cn) ∈ Cn+1 has basepoint ∗ and boundary:

∂n+1ηn(cn) = cη0(p)
n − ηn−1∂n(cn),

4. For all n > 1,

ηn(cn + c′n) = ηn(cn) + ηn(c′n)

5. For all n > 2,

ηn(cc1n ) = ηn(cn)

Important note we should point out.

Note 1.1. We will use the symbols bm which mean a simplex b ∈ Xm of dimension m.

While b(m) means the mth vertex in the simplex bm. We will also write, for example

d2b5 = b01345 d1b1 = b(0)

and

s1b2 = b0112
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Structure of the thesis

In this thesis, we begin with recalling some background information on the category of

simplicial sets and chain complexes [18, 27, 32],and [15] that will be used in the thesis, as

well as reviewing the classical Eilenberg-Zilber theorem in its original form [33] which gives

for simplicial sets X, Y a chain homotopy equivalence

C(X)⊗ C(Y ) ' C(X × Y )

where C(X) is the normalised free chain complex on the simplicial set X. This theorem was

generalised by A. Tonks in his paper [31] for crossed complexes, which shows that the tensor

product provides an algebraic model for the Cartesian product and of trivial fibrations. We

also recall E. H. Brown theorem [4] on chain equivalence of the chain complex of a total

space of a twisted cartesian product of two simplicial sets, and a twisted tensor product of

the corresponding chain complexes.

In Chapter 3, the definition of loop space and Adams’ cobar construction is recalled [2],

which is dual to the bar construction of Eilenberg and Mac Lane. We can think of the cobar

construction as a chain complex analogous to the fibre space in the path loop fibration

ΩX → PX → X

K. Hess and A. Tonks proved in their paper [19] that the Adams’ cobar construction ΩCX

of a 1-reduced simplicial set X, on the normalised chain complex is a strong deformation

retract of the normalised chain on loop space CGX.

η ΩCXCGX
ψ

φ

They are obviously equivalent, as Ω and G are both models for the loop space.
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We study also the generalised Adams cobar construction of a 0-reduced simplicial set

which was defined by K. Hess and A. Tonks in their paper [19]. We end this chapter by

introducing Baues’ construction of the cobar construction ΩCrsX in the category of crossed

complexes. If X is 1-reduced simplicial set, then the generators of the cobar construction

have the form ω = s−1x1 ⊗ s−1x2 ⊗ · · · ⊗ s−1xn, in dimension
∑

(|xi| − 1), [14] we give

some motivation for an intuitive definition of the twisted tensor product of pointed crossed

complexes.

We begin Chapter 4 with defining a new crossed complex of groups (P Crs
n X) in terms

of a twisted tensor product of a free crossed chain algebra ΩCrsX and the fundamental

crossed complex πX for 1-reduced simplicial set X. It is a free ΩCrsX-module with basis

B = (∅⊗ b), and b ∈ πX. We explain the twisted boundary maps as:

∂P2 (∅⊗ b2) = (s−1b2 ⊗ ∗)

∂P3 (∅⊗ b3) = (s−1b3 ⊗ ∗)− (∅⊗ d3b3)− (∅⊗ d1b3) + (∅⊗ d2b3) + (∅⊗ d0b3)

∂Pn (∅⊗ bn) =
∑n

i=1(−1)i(∅⊗ dibn) +
∑n

i=1(s−1b0...i ⊗ bi...n), n > 4,

then we prove that (∂P )2 is trivial for all dimensions n > 2. For the general form of the

generators (
∏
s−1ani

⊗ bm), we define a differential map ∂Pn taking into account the order

of terms and actions in dimensions one and two due to non-abelian features.

The main theorem in Chapter 4 is that we prove the crossed complex of groups (P Crs
n X)

is contractible by defining a contractible homotopy ηn : P Crs
n X → P Crs

n+1X. First we recall

the definition of the notion of contracting homotopy.

Definition:

Let C be a crossed complex with C0 = {∗}. A contracting homotopy is a homomorphism

h : π(∆[1])⊗ C → C that satisfies:

h(0⊗ c) = 0∗,

h(1⊗ c) = c.

14



Given a contracting homotopy we have h : ∗ ' idC , and so C is contractible because there

is a homotopy equivalence:

h : ∗ ' idC {∗}C

From this contracting homotopy, we define the family of functions

ηn : Cn → Cn+1, (n > 1)

defined by

ηn(c) = h(σ ⊗ c), (c ∈ Cn)

where (σ : 0 → 1) ∈ (∆[1]), conversely, given a family of functions ηn, we could define a

contracting homotopy

h(0⊗ c) = ∗, h(1⊗ c) = c, h(σ ⊗ c) = η(c)

In order for h to be well defined and commute with ∂P , the family must satisfy the prop-

erties:

Proposition:

The family of functions ηn : Cn → Cn+1 provides a contracting homotopy h, which is

defined as h(σ ⊗ cn) = η(cn), (n > 1) if η satisfies the properties that:

1. ∂η(c1) = c1,

2. ∂η(cn) = cn − η∂(cn),

3. η(cn + c′n) = η(cn) + η(c′n),

4. η(cc1n ) = η(cn).

15



and η(∗) = 0∗.

Now we let C = P CrsX and prove it is contractable by defining the functions ηn for all

possible forms of the generating elements of P Crs
n X.

Definition:

Let x =
∏
s−1ani

, ani
∈ Xni−1 Define η : P Crs

n X → P Crs
n+1X as:

1. η(∅⊗ ∗) = 0(∅⊗∗),

2. η(xs−1ar ⊗ ∗) = (−1)|x|(x⊗ ar) ,

3. η(x⊗ bn) = 0(∅⊗∗).

At the end of the Chapter we present two examples to illustrate the definition of ηn.

Chapter 5, is concerned with extending our results in Chapter four on the crossed com-

plex of groups P CrsX from 1-reduced simplicial sets X to a crossed complexes of groupoids

P CrsX for 0-reduced simplicial sets. First, we need to generalise the definition of the crossed

cobar construction ΩCrsX to a group-completed crossed cobar construction Ω̂CrsX whose

objects form a free group whose generators correspond to the non-degenerate 1-simplices

of X.

Definition:

For a 0-reduced simplicial set X, the group completed crossed cobar construction Ω̂CrsX is

a free crossed chain algebra generated by s−1an+1 in dimension n for each non-degenerate

(n)-simplex of X, together with extra generators (s−1a1)−1 for each non-degenerate 1-

simplex a1 of X. The boundary of a generator s−1an+1 is analogous to that of the cobar

construction ΩCrsX, in degree 0,

Ω̂Crs
0 X =

{
ω = (s−1a

(1)
1 )ε1(s−1a

(2)
1 )ε2 · · · (s−1a

(k)
1 )εk : k > 0, a

(i)
1 ∈ X1 − {s0(∗)}, εi = ±1

}

16



the free group on X1−s0X0. The generators x of degree |x| = n of the free crossed complex

Ω̂CrsX are given by words

x = ω(0)s−1a
(1)
n1+1ω

(1)a
(2)
n2+1 · · ·ω(r)s−1a

(r)
nr+1ω

(r+1),

where r > 0, each ω(i) ∈ Ω̂Crs
0 X, each a

(i)
ni+1 is a non-degenerate simplex in Xni+1, ni > 1,

and
∑
ni = n. The source of s−1a2 is s−1a01 · s−1a12 and the target is s−1a02.

The basepoint p = β(x) of x is the product of the basepoints of all of the terms in x.

Then, we define the crossed complex of groupoids P CrsX as a kind of twisted tensor

product of Ω̂CrsX and πX:

Definition:

Let X be a 0-reduced simplicial set. The path crossed complex P CrsX = Ω̂CrsX ⊗φ πX

is the twisted tensor product of the crossed complex of groups πX, and the free crossed

complex of groupoids Ω̂CrsX. Its object set is

P Crs
0 X = (Ω̂Crs

0 X ⊗φ π0X) = {(ω ⊗ ∗)}

where

ω = (s−1a
(1)
1 )ε1(s−1a

(2)
1 )ε2 · · · (s−1a

(k)
1 )εk : k > 0, a

(i)
1 ∈ X1 − {s0(∗)}, εi = ±1

and in Dimension 1 the generators are {(ω ⊗ b1), (ωs−1a2ω
′ ⊗ ∗)}

(ω ⊗ b1) : (ω ⊗ ∗)→ (ωs−1b1 ⊗ ∗)

and

(ωs−1a2ω
′ ⊗ ∗) : (ωs−1a01s

−1a12ω
′ ⊗ ∗)→ (ωs−1a02ω

′ ⊗ ∗).

In dimension n > 2, the general form of a generator is:

(x⊗ y)

where

x = ω(1)s−1a
(1)
n1+1ω

(2)a
(2)
n2+1ω

(2) · · ·ω(k)s−1a
(k+1)
nk+1ω

(k+1)
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where k > 0, and ω(i) ∈ Ω̂Crs
0 X, each a

(i)
ni+1 is a non-degenerate simplex in Xni+1, ni > 1,

and
∑
ni = n, yj ∈ πjX. We finish this Chapter by defining a twisted boundary map ∂Pn

for each n > 1 and prove (∂Pn )2 = 0.

We finish this thesis with Chapter 6, in this Chapter we prove that the pointed crossed

complex of groupoids P CrsX is contractable to the basepoint. This comes from defining a

homotopy ηn : P Crs
n X → P Crs

n+1X.

A crossed complex of groupoids is pointed if there is a specified object ∗ ∈ C0. If C is

a pointed crossed complex of groupoids, then C is contractible to the basepoint ∗ if there

is a family of functions ηn : Cn → Cn+1 that define a contracting homotopy

h : ∗ ' idC : π(∆[1])⊗ C → C

by:

h(0⊗ c) = 0∗, h(1⊗ c) = c

h(σ ⊗ c) = η(c)

The main proposition in this chapter show condition that h : π(∆[1]) ⊗ C → C is a

well defined homomorphism of crossed complexes of groupoids, and commutes with the

boundary ∂, holds if and only if η satisfies the properties (1− 5) of Proposition:

Proposition:

A family of functions ηn : Cn → Cn+1, (n > 0) defines a contracting homotopy via h(σ ⊗

cn) = ηn(cn) if and only if it satisfies

1. η0(c0) ∈ C1 has source ∗ and target c0,

2. η1(c1) ∈ C2 has basepoint ∗ and boundary:

∂2η1(c1) = −η0(targ(c1)) + c1 + η0(src(c1)),
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∗ x

y

η0(x)

η0(y) c1

Figure 2:

3. If n > 2 then, ηn(cn) ∈ Cn+1 has basepoint ∗ and boundary:

∂n+1ηn(cn) = cη0(p)
n − ηn−1∂n(cn),

4. For all n > 1,

ηn(cn + c′n) = ηn(cn) + ηn(c′n)

5. For all n > 2,

ηn(cc1n ) = ηn(cn)

Definition:

For every 0-reduced simplicial set X, and for m 6= 0 we define the contracting homotopy

ηn on the general form generators (x⊗ bm) of P Crs
n X as:

ηn(x⊗ bm) = 0(∅⊗∗).

While, for the generators when m = 0 we define ηn as:

Definition:

For a string of r one-simplices ω, define a homotopy η : P Crs
0 → P Crs

1 by:

1. η0(∅⊗ ∗) = 0(∅⊗∗) ∈ P Crs
1 X,

2. η0(ω ⊗ ∗) : ∗ → s−1a
(1)
1 ⊗ ∗ → s−1a

(1)
1 s−1a

(2)
1 ⊗ ∗ → · · · → ω ⊗ ∗,

can be defined inductively by:
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η0(s−1a
(1)
1 s−1a

(2)
1 . . . s−1a

(r)
1 ⊗ ∗) = (s−1a

(1)
1 s−1a

(2)
1 . . . s−1a

(r−1)
1 ⊗ a(r))

+ η0(s−1a
(2)
1 . . . s−1a

(r−1)
1 ⊗ ∗)

and for dimension 1 we define the homotopy η1 : P Crs
1 X → P Crs

2 X as:

η1(ωs−1a2 ⊗ ∗) = (ω ⊗ a2)η0(ω⊗∗)

and

η1(xs−1b1 ⊗ ∗) = η1(x⊗ ∗)− (x⊗ b1)η0(src(x⊗∗))

finally for dimension n > 2, we make the definition:

Definition:

For dimension n > 2 we can define ηn : P Crs
n X → P Crs

n+1X as:

1. η2(ωs−1a3 ⊗ ∗) = (ω ⊗ a3)η0(ω⊗∗),

2. η2(xs−1b1 ⊗ ∗) = η2(x⊗ ∗) + (x⊗ b1)η0(src(x⊗∗)),

3. ηn(xs−1ar ⊗ ∗) = (−1)|x|(x⊗ ar)η0(src(x⊗∗))

4. ηn(xs−1b1 ⊗ ∗) = ηn(x⊗ ∗) + (−1)n(x⊗ b1)η0(src(x⊗∗)).

We then prove theorem:

Theorem:

For n > 0, ηn satisfies the properties in Proposition. Therefore η is a contracting homotopy

and, for any 0-reduced simplicial set, P CrsX = Ω̂CrsX ⊗φ πX is contractible : a model for

the path space on X
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2 Preliminaries

Introduction

In this chapter, we recall some preliminaries about the categorical definition of simplicial

sets and homotopy. Furthermore, we introduce the classical Eilenberg-Zilber theorem and

the generalised version of such for crossed complexes.

The structure of the chapter is as follows. In the first section, we recall some background

information on simplicial sets, their structure and some of their properties. In the second

section, we recall the definitions of chain complexes, and the Cartesian product and tensor

products of chain complexes, in addition to, investigating how the classical Eilenberg-Zilber

theorem for chain complexes was generalised to twisted products. In the third section, we

recall from [31] the generalisation of the Eilenberg-Zilber theorem to crossed complexes,

after we introduce the definitions of groupoids, crossed modules, crossed complexes and the

equivalences between the categories, of crossed complexes and ∞-groupoids.

2.1 Simplicial Objects and Homotopy

We begin by recalling some standard definitions.

Definition 2.1. [18, Page 4], [32, Page 18] Let ∆ be the ordinal number category whose

objects are finite ordinal numbers [n] = {0→ 1→ 2→ · · · → n} for n > 0(in other words,

[n] is a totally ordered set with n+ 1 elements). A morphism

α : [n]→ [m]

is an order-preserving set function, or alternatively a functor. Among all of the functors

[m]→ [n] appearing in ∆, there are special ones, namely

di : [n− 1]→ [n] 0 ≤ i ≤ n (cofaces)
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sj : [n+ 1]→ [n] 0 ≤ j ≤ n (codegeneracies)

where by definition,

di(0→ 1→ · · · → n− 1) = (0→ 1→ · · · → i− 1→ i+ 1→ · · · → n)

and

sj(0→ 1→ · · · → n+ 1) = (0→ 1→ · · · → j
I−→ j → · · · → n).

di and sj satisfy the following relations:

djdi = didj−1 if i < j

sjsi = si+1sj if i 6 j

sjdi =


disj−1 i 6 j

I i = j or i = j + 1

di−1sj i > j + 1

The maps di, sj and these relations can be viewed as a set of generators and relations of ∆.

Proposition 2.2. [15, Page 4] Every morphism α : [n]→ [m] can be uniquely decomposed

as α = δσ, where δ : [p] → [m] is injective and σ : [n] → [p] is surjective. Moreover,

if di : [n − 1] → [n] is the injection which skips the value i ∈ [n] and sj : [n + 1] → [n]

is the surjection covering j ∈ [n] twice, then δ = dir . . . di1 and σ = sjs . . . sj1, where

m > ir > · · · > i1 > 0 and 0 6 js < · · · < j1 < n and m = n− s+ r. The decomposition is

unique, with the i′s in [m] being the values not taken by α, and the j′s being the elements

of [m] such that α(j) = α(j + 1).

The relationship between the di and sj in ∆ for n > 2 can be expressed by the diagram

below [24, Page 3]:
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[n] [n− 1]

[n− 2][n− 1]

sj

si

sj−1

si

dj

di

dj−1

di

Figure 3:

Definition 2.3. [18] A simplicial set is a contravariant functor X : ∆op → Set, where

set is the category of sets and ∆ is the simplex category. Denote X([n]) = Xn, n > 0,

the sets of n-simplices, together with maps

di = X(di) : Xn → Xn−1 0 6 i 6 n (faces)

and

sj = X(sj) : Xn → Xn+1 0 6 j 6 n (degeneracies)

satisfying the simplicial identities dual to the cosimplicial identities given above.

The elements of X0 are called the vertices of the simplicial set. A simplex x is degenerate

if x is the image of some sj.

Definition 2.4. Geometric realisation of any simplicial set X [18, Page 7]

The geometric realisation of any simplicial set X is a functor | . | : S → Top from the

category S of simplicial sets to that Top, of topological spaces, defined by

|X| =
⊔
n>0

|∆[n]| ×Xn� ∼

where |∆[n]| is the realisation of the n-simplex given in the following example.
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Example 2.5. [18, Example (1.1)]

There is a standard covariant functor

∆→ Top

{0→ 1→ · · · → n} 7→ |∆[n]|

where |∆[n]| is the standard n-simplex in Top given by

|∆[n]| = {(t0, . . . , tn) ∈ Rn+1 |
n∑
i=0

ti = 1, ti > 0}

Given

f : [n]→ [m],

the functor produces

([n]
f−→ [m]) 7→ (|∆[n]| f∗−→ |∆[m]|)

where f∗ is defined by

f∗(t0, . . . , tn) = f∗(t0v0 + · · ·+ tnvn)

= t0vf(0) + t1vf(1) + · · ·+ tnvf(n)

= (
∑
f(i)=0

ti)v0 + · · ·+ (
∑

f(i)=m

ti)vm

and we have used the notation

v0 = (1, 0, . . . , 0), v1 = (0, 1, 0, . . . , 0), . . . , vn = (0, 0, 0, . . . , 0, 1).

This is the ith vertex of |∆[n]|, as sent to the f(i)th vertex of |∆[m]|, and the barycentric

coordinates are mapped linearly.

We see that the coface map di∗ sends |∆[n]| to |∆[n + 1]| and that the codegeneracy map

sj∗ sends |∆[n]| to |∆[n− 1]| by collapsing together vertices j and j + 1.

A face of [v0, . . . , vn] is defined as the simplex obtained by deleting one of the vi, which we
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denote [v0, . . . , v̂i, . . . , vn]. The union of all faces is the boundary of the simplex, and its

complement is called the interior, or the open simplex.

Definition 2.6. [18, Page 6] As a simplicial complex, the kth horn |Λk[n]| on the n-

simplex |∆[n]| is the sub-complex of |∆[n]| obtained by removing the interior of |∆[n]|

and the interior of the face dk∆[n]. Let Λk[n] refer to the associated simplicial set. This

simplicial set consists of simplices [i0, . . . , im] with 0 6 i0 6, . . . ,6 im 6 n, such that:

(i) not all numbers {0, . . . , n} are represented;

(ii) we never have all numbers except k represented (this would be the missing the (n−1)-

face or degeneracy).

That is

Λk[n] =
⋃
i 6=k

di∗∆[n− 1]

0
|∆[2]|

1

2

0 1

2

Λ0[2]
0
Λ2[2]

1

2

0 1

2

Λ1[2]

Figure 4: The three horns on |∆[2]|

Definition 2.7. [18, Page 10] The simplicial object X satisfies the extension condition, or

Kan condition, if any morphism of simplicial sets Λk[n]→ X can be extended to a simplicial

morphism ∆[n]→ X. Such an X is referred to as being fibrant. A map f : X → Y is also

called a fibration if , when we have a horn in X, and a simplex in Y extending the image of

the horn then we have a simplex in X extending the horn, as shown in the diagram below:
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Λk[n] X

∆[n] Y

f is a fibration

Figure 5:

Example 2.8. ∆[0] does satisfy the Kan condition.

2.2 The Classical Eilenberg-Zilber Theorem

The classical Eilenberg-Zilber theorem [16, 33] gives a strong deformation retraction of

the chain complex of a Cartesian product of simplicial sets onto the corresponding tensor

product of chain complexes.

Definition 2.9. [15, Page 113] Let X and Y be simplicial sets, that is, X and Y are

functors ∆op → Set. The Cartesian product X × Y is the functor: ∆op → Set satisfying:

1. (X × Y )n = Xn × Yn = {(x, y)|x ∈ Xn, y ∈ Yn},

2. if (x, y) ∈ (X × Y )n, then di(x, y) = (dix, diy),

3. if (x, y) ∈ (X × Y )n, then si(x, y) = (six, siy).

Example 2.10. [29, Page 45] We consider the two simplicial sets X = ∆[2], Y = ∆[1],

and their Cartesian product X × Y = ∆[2] × ∆[1]. Then (∆[1])0 is the set {0, 1} of

0-simplices of ∆[1], (∆[1])1 is the set {(00), (01), (11)} of 1-simplices and so on. The

Cartesian product of (∆[2])1 and (∆[1])1 will be

(∆[2])1 × (∆[1])1 = (∆[2]×∆[1])1 ={
(00, 00), (01, 00), (02, 00), (11, 00), (12, 00), (22, 00),
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(00, 01), (01, 01), (02, 01), (11, 01), (12, 01), (22, 01),

(00, 11), (01, 11), (02, 11), (11, 11), (12, 11), (22, 11)
}
.

Twelve of these are non-degenerate 1-simplices of X × Y .

The Cartesian product X × Y contains three non-degenerate 3-simplices

(0012, 0111), (0112, 0011), (0122, 0001).

as shown in Figure 6.

∆[1]

1

0

=

(0,1)

(1,1)

(2,1)

(2,0)

(1,0)

(0,0)

(1,1)

(2,1)
(0,1)

(0,0)

∪

(0,0)

(1,0)

(2,1)

(1,1)

∪

(0,0)

(1,0)

(2,1)

(2,0)

∆[2]

0

2

1

Figure 6: ∆[1]×∆[2]

2.2.1 Chain complexes

Definition 2.11. [33, Definition(1.1.1)] A chain complex C is a sequence of abelian groups

and homomorphisms δ : Cn → Cn−1 satisfying the condition that δ2 : Cn → Cn−2 is zero.

The kernel of δn is called the group of cycles of Cn, and denoted by Zn. The image of δn+1

is called the group of boundaries of Cn, denoted by Bn. From the rule that δ2 = 0, we have;

0 ⊂ Bn ⊂ Zn ⊂ Cn

Definition 2.12. [33] For any chain complex (Cn, δn) the nth Homology groups Hn are
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the quotient groups

Hn = Ker δn�Img δn+1.

The elements of the Homology groups are cosets of Img δn+1, called Homology classes.

Definition 2.13. [29, 33] Let C and D be chain complexes such that

C : · · · → Cn
δn−→ Cn−1

δn−1−−→ . . .
δ3−→ C2

δ2−→ C1
δ1−→ C0,

D : · · · → Dn
δn−→ Dn−1

δn−1−−→ . . .
δ3−→ D2

δ2−→ D1
δ1−→ D0.

Then, a chain complex morphism f : C → D is a sequence of morphisms of abelian groups

{fn} where the fn : Cn → Dn are compatible with the differentials, that is fn−1δn = δnfn

for every n.

Definition 2.14. [29] Two chain complex morphisms f, g : Cn → Dn are homotopic if

there exists some homotopy H = {hn : Cn → Dn+1}n∈Z satisfying

g − f = δh+ hδ

Cn

Dn

Cn+1

Dn+1

Cn−1

Dn−1

δ δ

δ δ

δ

δ

δ

δ

. . .

. . .

. . .

. . .

g f g f g fh h

Figure 7:

Example 2.15. [18, Page 5] Let X be any simplicial set. We can construct a chain

complex (Cn(X), δ) as a sequence of a free abelian groups ZXn on Xn, and homomorphisms

δn =
∑
i

(−1)idi : ZXn −→ ZXn−1
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2.2.2 Tensor Products of Chain Complexes

Let A and B denote chain complexes. The tensor product C = (A ⊗ B) is also a chain

complex such that :

Cn =
⊕
p+q=n

(Ap ⊗Bq)

with the boundary homomorphism ∂n : Cn → Cn−1 defined as:

∂n(ap ⊗ bq) = (∂pap)⊗ bq + (−1)pap ⊗ (∂qbq)

and this satisfies that ∂2 = 0 [25].

Example 2.16. In this example we will define the chain complexes for two simplices and

then write the tensor product of these two chains.

For ∆[1], the chain complex C(∆[1]) is C0 = Z2, which generated by two vertices {0, 1},

C1 = Z3 which generated by three edges {00, 01, 11}, C2 = Z4 which are generated by four

triangles {000, 001, 011, 111}, and so on. Hence

C∆[1] : · · · → Z4 → Z3 → Z2.

In the same manner for ∆[2], we have

C(∆[2]) : · · · → Z10 → Z6 → Z3.

The normalized chain complex CN(∆[n]) is for n > 0 the subchain complex of Cn(∆[n])

generated by non-degenerate elements

CN∆[1] : · · · → 0→ 0→ Z→ Z2

and

CN∆[2] : · · · → 0→ Z→ Z3 → Z3
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so

CN(∆[1])⊗CN(∆[2]) : · · · → 0→ Z→ Z5 → Z9 → Z6

and

CN(∆[1]×∆[2]) : · · · → 0→ Z3 → Z8 → Z12 → Z6

Example 2.17.

Cn(∆[1]×∆[1])
φ //

⊕
p+q=n

Cp(∆[1])⊗ Cq(∆[1])
ϕ
oo

CN(∆[1])⊗ CN(∆[1])

0⊗0 1⊗0

1⊗10⊗1

φ

(011,001)7−→
0⊗001+ 01⊗01

+011⊗1 = 01⊗01

ϕ sum all Shuffles

001⊗011: (s0, s1)

+ 011⊗001: (s1, s0)

CN(∆[1]×∆[1])
(0,1)

(0,0)

(1,1)

(1,0)

(001,011)

(011,001)

Figure 8:

Theorem 2.18. (The classical Eilenberg- Zilber theorem) [16, 17]

For any two simplicial sets X and Y there exists a strong deformation retract of chain

complexes:

h C(X)⊗ C(Y )C(X × Y )
ϕ

φ

where ϕ is the Eilenberg-Zilber map which sends generators of the tensor product of two

chain complexes to a chain of products of two simplices as indexed by shuffles. This map
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is a natural chain homotopy inverse of φ, where φ is the natural Alexander–Whitney map

for the normalised free-chain complex on a simplicial set, that sends a generator (x, y) to∑
di+1 . . . dnx⊗ di0y.

φϕ ' identity, ϕφ ' identity.

For all vertices vi ∈ X, v′i ∈ Y ,

φ(vi, v
′
i) = vi ⊗ v′i, ϕ(vi ⊗ v′i) = (vi, v

′
i).

2.3 The Twisted Eilenberg- Zilber Theorem

In 1958, E. H. Brown in his paper [4], generalised the classical Eilenberg-Zilber theorem

to fibre spaces by using the twisted version. The generalisation is as follows: for every

fibering ρ : X → B with fibre A = ρ−1(b0), there is a twisted tensor product of the chains

on the base space B and the chains of the fibre space A, with differential ∂Φ, which is chain

equivalent to the chain complex on X. The differential is

∂Φ = ∂I + ∂II

where ∂I , is the differential of the classical tensor product theorem and ∂II is

∂II = (−1)n(bn ⊗ am) ∩ Φ.

First, we recall from [26] a number of basic concepts necessary to understand E. H. Brown’s

generalisation.

First, let Λ be a commutative ring, with a unit 1, and let A be differential graded

augmented Λ-module (DGA): a module graded by submodules As, s > 0, with a homo-

morphism δ : A → A (the differential) such that δ2 = 0, and an augmentation ε : A → Λ

which is Λ-linear epimorphism satisfying that εδ = 0 and ε(As) = 0, for s > 0.
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If A,B are DGA Λ-modules, then A⊗ B is the DGA Λ-module with the grading (A⊗

B)q =
⊕

r+s=q(Ar ⊗Bs), and the differential

δ(a⊗ b) = (δa)⊗ b+ (−1)qa⊗ δb, a ∈ Aq, b ∈ B.

A DGA module A will be called a chain algebra if it has an associative product

ψ : A⊗A → A

of degree zero. A DGA coalgebra is a DGA Λ-moduleK with a DGA associative (coproduct)

homomorphism

5 : K → K⊗K.

A DGA algebra A is connected if A0 = Λ and it is n-reduced if Ai = 0, 1 6 i 6 n.

Definition 2.19. [21,26] Let K be a DGA coalgebra with differential ∂ with coproduct 5 :

K → K⊗K, let L,M and N be Λ-modules and let µ : L×M→ N be a homomorphism. Let

Cn(K,L) = Hom(Kn,L), C∗(K,L) =
∑
Cn(K,L) and define d : Cn(K,L) → Cn+1(K,L)

by dU = U∂. Let U ∈ C∗(K,L), V ∈ C∗(K,M) and c ∈ K ⊗M.

The cup product U ^ V ∈ C∗(K,N ) is the composite

K 5−→ K⊗K U⊗V−−−→ L⊗M µ−→ N

and the cap product c _ U ∈ K ⊗N is the composite

K ⊗M 5⊗I−−→ K⊗K ⊗M I⊗U⊗I−−−−→ K⊗L⊗M I⊗µ−−→ K⊗N

Theorem 2.20. [4] Let B be a pathwise connected space. For each fibering ρ : X → B

with fibre A = ρ−1(b0), there is

• a cochain Φ =
∑

Φq
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• a differential ∂Φ on C(B)⊗Φ C(A) defined as:

∂Φ(bn ⊗ am) = (∂bn)⊗ am + (−1)n(bn ⊗ ∂am + (bn ⊗ am) _ Φ)

• a chain equivalence map ϕ : C(B)⊗Φ C(A)→ C(X)

Remark 2.21. [4] The twisting cochain Φ =
∑

Φq used in E. H. Brown’s theorem is a

cochain which assigns to each q-chain of B a (q − 1)-chain of the space of loops ΩB by

twisting all loops α ∈ B based at b0 to a loop α′ in the space of loops ΩB, whose ending is

at x ∈ A with an initial point αx. Hence αx is a continuous action of ΩB on the fibre A

and satisfies the identity:

∂Φq = Φq−1∂ −
q−1∑
i=1

(−1)iΦi ^ Φq−i

such that ∂2
Φ = 0.

The proof of theorem above, and indeed further details, can be found in [4].

Our first aim in this thesis was to try and generalise E. H. Brown’s theorem from chain

complexes to crossed complexes. The classical, non-twisted, Eilenberg–Zilber theorem was

proved for crossed complexes by A. Tonks. We will end this chapter by presenting this

result.

2.4 The Eilenberg–Zilber Theorem for crossed complexes

In this section we present Tonks’ generalisation of the classical Eilenberg-Zilber theorem

to a slightly non-abelian setting. In [31, 32], A. Tonks gave a natural strong deformation

retraction from the fundamental homotopy crossed complex of a product of simplicial sets

onto the tensor product of the corresponding crossed complexes.

We start this section by recalling some definitions.
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2.4.1 Crossed modules and crossed complexes of groups

The notion of crossed complex, and of crossed module, is due to J.H.C. Whitehead, who

called them group systems. They have been considered by many authors, especially H-J

Baues.

Definition 2.22. A crossed complex of groups C is a sequence of groups Cn, n > 1, and

group homomorphisms ∂n, called boundary maps,

. . .
∂n+1

Cn
∂n

Cn−1

∂n−1. . .
∂4

C3

∂3
C2

∂2
C1

satisfying the following:

1. ∂n−1∂n : Cn → Cn−2 is the trivial homomorphism for each n > 3

2. C1 acts on each Cn for each n > 2 (and on itself by conjugation)

3. ∂n : Cn → Cn−1 preserves the group action for each n > 2

4. C2 is not necessarily an abelian group, but if a, b ∈ C2 then a−1ba = b∂2a

5. For n > 3, ∂2C2 acts trivially on Cn, and Cn is an abelian group.

The map ∂2 : C2 → C1, satisfying (2,3,4) is called a crossed module of groups.

2.4.2 Actions of groupoids and crossed modules of groupoids

Groupoids are groups with many objects, or with many identities. Alternatively, they are

categories in which every morphism is an isomorphism. They were first introduced by

Brandt in 1926 [6]. We introduce some notation:

Definition 2.23. A groupoid G consists of a set of objects Ob(G) = G0 and a set of

morphisms or arrows Arr(G) = G1 together with
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1. source and target maps src, targ : G1 → G0. If an arrow a has source x and target y

then we write a : x → y or x
a−→ y. For x, y ∈ G0 we write G(x, y) = {a : x → y},

the hom-set of all arrows from x to y.

2. a unit map id : G0 → G1, and we write id(x) = idx : x→ x

3. a composition map ◦ which associates to every composable pair of arrows a : x → y

and b : y → z the composite map b ◦ a : x → z. This composition is unital, idy ◦a =

a ◦ idx = a, and associative, (c ◦ b) ◦ a = c ◦ (b ◦ a) : x→ w if c : z → w.

4. an inverse map (−)−1 : G1 → G1 such that if a : x→ y then a−1 : y → x, a−1◦a = idx

and a ◦ a−1 = idy.

A group is just a groupoid in which the object set is {∗}. The definitions of group

action and of crossed module of groups are extended to groupoids as follows.

Definition 2.24. [31, 32] Suppose G and H are two groupoids over the same object set,

and H is totally disconnected, that is, H(x, y) = ∅ whenever x 6= y. An action of G on H

is a collection of functions

Arr(G)× Arr(H)
α−→ Arr(H)

(g, h)→ hg

where satisfies :

1. hg is defined if and only if src(h) = targ(g) , and then targ(hg) = src(g),

2. (h2 ◦ h1)g = hg2 ◦ h
g
1 for all h1, h2 : y → y in H and g : x→ y in G.

3. hg2◦g1 = (hg2)g1 for all h : x→ x in H and g1 : z → y, g2 : y → x in G.

4. hidy = h for all h : y → y in H.
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5. idgy = idx for all g : x→ y in G.

A group action is just a groupoid action in which the object set is {∗}.

Definition 2.25. [5] A crossed module of groupoids is a morphism of groupoids ∂ : M → P

over a fixed object set O together with an action (m, p) 7→ mp of the groupoid P on the

groupoid M satisfying the two axioms:

1. ∂(mp) = p−1(∂m)p

2. m∂n = n−1mn

for all m,n ∈M , p ∈ P .

Simple consequences of the axioms for a crossed module of groups ∂ : M → P are:

• Im ∂ is normal in P , because ∂(m)p = p∂(mp).

• ker ∂ is a central subgroup of M , because mn = nm∂n = nm if n ∈ ker ∂, and in

particular ker ∂ is an abelian group.

• ker ∂ is acted on trivially by Im ∂, because if n ∈ ker ∂ then n∂m = m−1nm = n.

• ker ∂ inherits an action of M/ Im ∂.

• M is abelian if ∂ is the trivial homomorphism.

The cokernel M/ Im ∂ is usually called π1 of the crossed module, and the kernel ker ∂, which

is a π1-module, is usually called π2 of the crossed module,

π2 →M → P → π1.

All of these properties hold for crossed modules of groupoids, but they are slightly harder

to state.
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2.4.3 The equivalence of 2-groupoids and crossed modules

The material in this section comes from [9, 22, 28]. Crossed modules are algebraic models

for connected homotopy 2-types, so are essentially the same thing as 2-groupoids.

(⇒) Given a 2-groupoid structure G = (G0, G1, G2), we define a crossed module λG by

assuming the object set O = G0, and the set of arrows P = G1, and define the source

and target maps s, t : P → O by s0, t0 : G1 → G0 respectively.

Now let

M(x) = {α ∈ G2 |t1α = ex for each x ∈ G0 = O}

For each α ∈ M (x ) we have s0(α) = x since s0(α) = s0t1(α) = s0ex = x. Thus we can

characterise M(x) as

M(x) = {α ∈ G | s0(α) = t0(α) = x and t1(α) = ex}

Let M be the family {M(x)}x∈O and for α ∈ M(x), define ∂(α) = s1(α). Then ∂(α) ∈

P (x, x), and

O
)

PλG =
(
M

∂ s

t

is a crossed module.

(⇐) Now our aim is to show that G can be recovered from the crossed module (M,P, ∂).

We have constructed, for any 2-groupoid G, a crossed module λG, and this construction

clearly gives a functor we now construct a functor in the. opposite direction

Proposition 2.26. [22, Proposition (2.2)] Let (M,P,O) be a crossed module over groupoids.

This induces a 2-groupoid G with (G1, G0) = (P,O) and

G2 = P oM = {(g, α) | g ∈ G1 and α ∈ G(t(g)) }
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The composition is given by (g, α)(g′, α′) = (gg′, αgα′), and the source and target maps are

given by s(g, α) = g and t(g, α) = g∂(α). The source map s, and the target map t, and the

inclusion map P ↪→ P oM, g ⇒ (g, 1), giving the identity map.

Theorem 2.27. [22, Theorem (2.3)] [28] The functors

λ : 2-Grpd→ CrsMod

and

β : CrsMod→ 2-Grpd

defined above are inverse equivalences.

Proof. See [22]

2.4.4 Crossed complexes of groupoids

In this section, we will review a number of definitions and properties of crossed complexes

of groupoids, including the fundamental crossed complex πX of a simplicial set X, and

then we will introduce the Eilenberg–Zilber theorem for the fundamental crossed complex

functor π, which was proved by A. Tonks in [31]. The concept of a crossed complex of

groupoids was first introduced by Brown and Higgins, generalising the definition of crossed

complex of groups to the case of a set of base points.

Definition 2.28. A crossed complex of groupoids C is a sequence of groupoids Cn over a

fixed object set C0, which are totally disconnected groupoids for n > 2 and are C0-indexed

families of abelian groups for n > 3, equipped with C1-actions and C1-equivariant boundary

maps between them

. . .
∂n+1

Cn
∂n
Cn−1

∂n−1. . .
∂4
C3

∂3
C2

∂2
C1

src

targ
C0
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The following axioms must be satisfied

• each ∂n : Cn → Cn−1 is the identity function on the object sets, that is,

∂n : Cn(x, x)→ Cn−1(x, x)

• each ∂n−1∂n : Cn −→ Cn−2 is trivial,

• ∂2 : C2 −→ C1 is a crossed module of groupoids, and ∂2C2 acts trivially on Cn if

n > 3.

We will usually write just Cn(x) instead of Cn(x, x) if n > 2, and we call β(a) = src(a)

the basepoint p of a ∈ Cn for any n > 1.

A crossed complex of groups is just a crossed complex of groupoids C in which C0 = {∗}.

Remark 2.29. Another simple consequence of the crossed complex axioms is that the image

∂3C3 is central in C2, because

(∂3c3)−1 c2 ∂3c3 = c∂2∂3c32 = c2.

Definition 2.30. [13] A morphism of crossed complexes

f : C → D

is a family of morphisms of groupoids

fn : Cn → Dn n > 1

all inducing the same map of vertices f0 : C0 → D0 and compatible with the boundary maps

∂Cn : Cn → Cn−1 , ∂Dn : Dn → Dn−1

and compatible with the actions of C1, D1 on Cn, Dn.
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The fundamental groupoid π1C of a crossed complex C is the cokernel C1/ Im ∂2, that

is, the quotient of the groupoid C1 by ∂2(C2). This groupoid acts on each Cn, for n > 3,

and also on π2C = ker ∂2, because elements in the image of ∂2 act trivially. This means

that for each basepoint x ∈ C0 we have a chain complex of π1C-modules

· · · → Cn(x)→ Cn−1(x)→ · · · → C3(x)→ (π2C)(x).

Remark 2.31. From now on we will use additive notation instead of multiplicative notation

for the composition law in crossed complexes, even in C1 and in C2 which may be non-

abelian. For example, the two crossed module axioms in Definition 2.25 will be written

∂(mp) = −p+ ∂m+ p, m∂n = −n+m+ n.

Remark 2.32. [12] Theorem 2.27, may be extended to an equivalence of categories between

crossed complexes and ∞-groupoids.

2.4.5 Tensor product of crossed complexes

Brown and Higgins proved that the category of crossed complexes is equivalent to the

category of strict (globular) ∞-groupoids, and also to the category of cubical ω-groupoids

[12]. The category of cubical ω-groupoids has a tensor product with very good properties.

It may be defined using the fact that the product of an r-dimensional cube with an s-

dimensional cube is an (r + s)-dimensional cube.

Using the fact that the categories are equivalent, Brown and Higgins proved that the

category of crossed complexes also has a tensor product. This tensor product includes

non-abelian constructions related to the homotopy-addition lemma.

We will next give two explicit definitions of the tensor product of crossed complexes. The

first one will be for the tensor product of crossed complexes of groups, and the more general

one will be for the tensor product of crossed complexes of groupoids. These definitions can

be found in [14], [20, P.2], [31, Definition (1.4)] and [11, Proposition (3-10)], for example.
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Definition 2.33. Let A, B be crossed complexes of groups. The tensor product A ⊗ B is

the crossed complex of groups which has a presentation in terms of generators and relations

as follows:

Generators are given by symbols ar ⊗ bs in (A ⊗ B)r+s for all elements ar ∈ Ar and

bs ∈ Bs, where r, s > 0 (and so a0 = ∗ and b0 = ∗). These are subject to the following

equivariance, bilinearity and boundary relations,

aa1r ⊗ bs = (ar ⊗ bs)a1⊗∗ for r > 2, s > 0 (1)

ar ⊗ bb1s = (ar ⊗ bs)∗⊗b1 for s > 2, r > 0 (2)

(ar + a′r)⊗ ∗ = ar ⊗ ∗ + a′r ⊗ ∗ for r > 1, (3)

∗ ⊗ (bs + b′s) = ∗ ⊗ bs + ∗ ⊗ b′s for s > 1 (4)

(a1 + a′1)⊗ bs = a′1 ⊗ bs + (a1 ⊗ bs)a
′
1⊗∗, for s > 1 (5)

ar ⊗ (b1 + b′1) = (ar ⊗ b1)∗⊗b
′
1 + ar ⊗ b′1, for r > 1 (6)

(ar + a′r)⊗ bs = ar ⊗ bs + a′r ⊗ bs for r > 2, s > 1 (7)

ar ⊗ (bs + b′s) = ar ⊗ bs + ar ⊗ b′s for s > 2, r > 1 (8)

∂1+1(a1 ⊗ b1) = − ∗ ⊗b1 − a1 ⊗ ∗ + ∗ ⊗ b1 + a1 ⊗ ∗ (9)

∂r(ar ⊗ ∗) = ∂rar ⊗ ∗ for r > 2 (10)

∂s(∗ ⊗ bs) = ∗ ⊗ ∂sbs for s > 2 (11)

∂r+1(ar ⊗ b1) = ∂rar ⊗ b1 + (−1)r
(
−ar ⊗ ∗+ (ar ⊗ ∗)∗⊗b1

)
for r > 2 (12)

∂1+s(a1 ⊗ bs) = − ∗ ⊗bs + (∗ ⊗ bs)a1⊗∗ − a1 ⊗ ∂sbs for s > 2 (13)

∂r+s(ar ⊗ bs) = ∂rar ⊗ bs + (−1)rar ⊗ ∂sbs for r, s > 2 (14)

Definition 2.34. Given crossed complexes of groupoids A and B, their tensor product

A⊗B can be presented by generators (ar ⊗ bs) ∈ (A⊗B)r+s with source (src(ar)⊗ src(bs))

(and target (targ(ar)⊗ targ(bs)) if r + s = 1), subject to the following relations:
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1. The equivariance relations

aa1r ⊗ bs = (ar ⊗ bs)a1⊗src(bs) for r > 2

ar ⊗ bb1s = (ar ⊗ bs)src(ar)⊗b1 for s > 2

2. The bilinearity relations

(ar + a′r)⊗ b0 = ar ⊗ b0 + a′r ⊗ b0, for r > 1

a0 ⊗ (bs + b′s) = a0 ⊗ bs + a0 ⊗ b′s, for s > 1

(a1 + a′1)⊗ bs = a′1 ⊗ bs + (a1 ⊗ bs)a
′
1⊗src(bs), for s > 1

ar ⊗ (b1 + b′1) = (ar ⊗ b1)src(ar)⊗b′1 + ar ⊗ b′1, for r > 1

(ar + a′r)⊗ bs = ar ⊗ bs + a′r ⊗ bs, for r > 2, s > 1

ar ⊗ (bs + b′s) = ar ⊗ bs + ar ⊗ b′s, for s > 2, r > 1

3. The boundary relations

∂r(ar ⊗ b0) = ∂rar ⊗ b0 for r > 2

∂s(a0 ⊗ bs) = a0 ⊗ ∂sbs for s > 2

∂2(a1 ⊗ b1) = − src a1 ⊗ b1 − a1 ⊗ targ b1 + targ a1 ⊗ b1 + a1 ⊗ src b1

∂r+1(ar ⊗ b1) = ∂rar ⊗ b1 + (−1)r
(
−ar ⊗ src b1 + (ar ⊗ targ b1)src(ar)⊗b1

)
for r > 2

∂1+s(a1 ⊗ bs) = − src a1 ⊗ bs + (targ a1 ⊗ bs)a1⊗src(bs) − a1 ⊗ ∂sbs for s > 2

∂r+s(ar ⊗ bs) = ∂rar ⊗ bs + (−1)rar ⊗ ∂sbs for r, s > 2

2.4.6 Free crossed complexes

It is well known that any group can be defined via a presentation: first find a set of

generators and specify the relations that hold between products of the generators and their

inverses. In a similar way, any crossed complex (of groups or of groupoids) can be defined

by a presentation. The generators of a crossed complex C will be:
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• the object set C0,

• generators for the groupoid C1: a subset of Arr(C1) such that all arrows in C1 can

be expressed as composites of the arrows in this subset and their inverses,

• generators for the crossed C1-module C2: a subset of C2 such that all elements in C2

can be expressed as composites of elements a in this subset, and the elements ac1 for

any c1 ∈ C1, and their inverses,

• generators for the π1C-module Cn, for each n > 3.

To define the crossed complex C would then have to give all the relations that hold be-

tween expressions we can form using these generators. We would also have to specify the

boundary relations by giving functions from the generators of Cn to expressions written

using generators of Cn−1.

We have already seen examples: in the previous section we already gave definitions of

the tensor product of crossed complexes using generators and relations.

The easiest crossed complexes that we use are the free crossed complexes. A crossed

complex is free when it has a presentation with generators but no relations, except for

axioms in the definition of a crossed complex and the formulas that define the boundary

maps.

Example 2.35. [31] Let X be a simplicial set with X0 as its object set. We can construct

a free crossed complex of groupoids C = πX, called the fundamental crossed complex of

X, with the following presentation. The generators are elements x ∈ Cn for each non-

degenerate n-simplex x of X, where the source and target of x1 are the objects x(0) and x(1)

43



respectively, and the boundary relations are

∂πX(x) =


−d1x+ d0x + d2x x ∈ X2,

d2x + d0x
x01 − d3x − d1x x ∈ X3,

d0x
x01

+
∑n

i=1(−1)i(dix) x ∈ Xn, n > 4

Because the image of ∂3 is central, we use any cyclic permutation of its terms, for example

∂πX(x) = −d2x+ ∂πX(x) + d2x = d0x
x01 − d3x− d1x+ d2x

if x ∈ X3.

The following result is very useful

Theorem 2.36. If C and D are free crossed complexes then their tensor product C ⊗D is

still a free crossed complex.

If we combine Example 2.35 with Definition 2.34 then we obtain the following

Example 2.37. Let X and Y be two simplicial sets. Then the crossed complex of groupoids

C = πX ⊗ πY is the free crossed complex of groupoids with generators xn ⊗ ym in Cn+m

for all non degenerate simplices x ∈ Xn and ym ∈ Ym, with source x(0) ⊗ y(0) (and target

x0 ⊗ y(1) if (n,m) = (0, 1) or x(1) ⊗ y0 if (n,m) = (1, 0)). The boundary relations are:

∂⊗2 (x2 ⊗ y0) = −(x02 ⊗ y0) + (x12 ⊗ y0) + (x01 ⊗ y0)

∂⊗2 (x1 ⊗ y1) = −(x(0) ⊗ y1)− (x1 ⊗ y(1)) + (x(1) ⊗ y1) + (x1 ⊗ y(0))

∂⊗2 (x0 ⊗ y2) = −(x0 ⊗ y02) + (x0 ⊗ y12) + (x0 ⊗ y01)

∂⊗3 (x3 ⊗ y0) = +(x013 ⊗ y0) + (x123 ⊗ y0)x01⊗y(0) − (x012 ⊗ y0)− (x023 ⊗ y0)

∂⊗3 (x2 ⊗ y1) = (x01 ⊗ y1) + (x12 ⊗ y1)(x01⊗y(0)) − (x2 ⊗ y(0))− (x02 ⊗ y1) + (x2 ⊗ y(1))
(x(0)⊗y1)

∂⊗3 (x1 ⊗ y2) = (x(1) ⊗ y2)x1⊗y(0) − x1 ⊗ y01 − (x1 ⊗ y12)x(0)⊗y01 − x(0) ⊗ y2 + x1 ⊗ y02

∂⊗3 (x0 ⊗ y3) = (x0 ⊗ y013) + (x0 ⊗ y123)x(0)⊗y01 − (x0 ⊗ y012)− (x0 ⊗ y023)
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∂⊗n+m(xn ⊗ ym) =


(d0xn ⊗ ym)x01⊗y(0) +

n∑
i=1

(−1)idixn ⊗ ym

+(−1)n(xn ⊗ d0ym)x(0)⊗y01 +
m∑
j=1

(−1)n+jxn ⊗ djym

The last relation is for n+m > 4, but if n = 0 then the first line on the right hand side of

this relation should be ignored, and if m = 0 then the second line should be ignored. Because

the other boundary relations, for n + m ≤ 3, are not abelian expressions, we cannot say

that they are special cases of the relation for n + m > 4. Their terms (including the signs

and the actions) are the same, but the order is important.

Remark 2.38. In general, if C and D are free crossed complexes, then it might be quite

complicated to write down the boundary relations in the free crossed complex C ⊗D. First,

we must use the boundary relations of Definition 2.34(3). For example, in the example we

just calculated, we know that

∂3(x1 ⊗ y2) = − srcx1 ⊗ y2 + (targ x1 ⊗ y2)x1⊗src y2 − x1 ⊗ ∂2y2

= −x(0) ⊗ y2 + (x(1) ⊗ y2)x1⊗y(0) − x1 ⊗ (−d1y2 + d0y2 + d2y2)

Here we have used the boundary relation in the free crossed complex πY given in 2.35. The

answer is still not in the form we need for the boundary relation of a free crossed complex:

we have to use the bilinearity relations in Definition 2.34 to write ∂3(x1⊗y2) as a composite

of generators, possibly with actions. For this example we can write

∂3(x1 ⊗ y2) = −x(0) ⊗ y2 + (x(1) ⊗ y2)x1⊗y(0) − x1 ⊗ (−y02 + y12 + y01)

= −x(0) ⊗ y2 + (x(1) ⊗ y2)x1⊗y(0) −
(
(x1 ⊗ (−y02))x(0)⊗(y12+y01) + x1 ⊗ (y12 + y01)

)
= −x(0) ⊗ y2 + (x(1) ⊗ y2)x1⊗y(0) −

(
(x1 ⊗ (−y02))x(0)⊗(y12+y01) + x1 ⊗ (y12 + y01)

)
The bilinearity relation also implies that

x1 ⊗ (−y02) = −(x1 ⊗ y02)−x(0)⊗y02
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and so

∂3(x1 ⊗ y2) = −x(0) ⊗ y2 + (x(1) ⊗ y2)x1⊗y(0)

−
(
(−(x1 ⊗ y02)−x(0)⊗y02)x(0)⊗(y12+y01) + x1 ⊗ (y12 + y01))

)
= −x(0) ⊗ y2 + (x(1) ⊗ y2)x1⊗y(0) −

(
−(x1 ⊗ y02)∂2(x(0)⊗y2) + x1 ⊗ (y12 + y01)

)
= −x(0) ⊗ y2 + (x(1) ⊗ y2)x1⊗y(0) − x1 ⊗ (y12 + y01) + (x1 ⊗ y02)∂2(x(0)⊗y2)

= −x(0) ⊗ y2 + (x(1) ⊗ y2)x1⊗y(0) − x1 ⊗ (y12 + y01)− x(0) ⊗ y2 + x1 ⊗ y02 + x(0) ⊗ y2

Since the image of ∂3 is cyclic, this can be simplified:

∂3(x1 ⊗ y2) = (x(1) ⊗ y2)x1⊗y(0) − x1 ⊗ (y12 + y01)− x(0) ⊗ y2 + x1 ⊗ y02

Now we can use bilinearity once more to obtain

∂3(x1 ⊗ y2) = (x(1) ⊗ y2)x1⊗y(0) − x1 ⊗ y01 − (x1 ⊗ y12)x(0)⊗y01 − x(0) ⊗ y2 + x1 ⊗ y02

2.4.7 Diagonal approximation and shuffles

In this section we will review the maps ϕ and φ defined by A. Tonks in his papers [31],

and [32]. These crossed complex maps are analogues to the Eilenberg-Mac Lane map

which sends generators of the tensor product to a sum of terms indexed by shuffles, and

the Alexander-Whitney map for the normalised free-chain complex on a simplicial set,

which sends a generator (x, y) 7−→
∑n

i=0 x0...i ⊗ yi...n respectively. ϕ φ is the identity, and

there is a homotopy η between φ ϕ and the identity.

Remark 2.39. [32, Proposition 2.2.6] For any simplicial set X. There is a crossed complex

morphism, 5 of an approximation to the diagonal which acts on the generators x ∈ πnX

by,

5 : πX → πX ⊗ πX
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5(∗) = (∗ ⊗ ∗)

5(x01) = (x(0) ⊗ x01) + (x01 ⊗ x(1))

5(x012) = (x01 ⊗ x12)(x12⊗x(2)) + (x012 ⊗ x(2)) + (x(0) ⊗ x012)(x02⊗x(2))

5(xn) =
∑n

i=0(x0...i ⊗ xi...n)(xin⊗x(n))

Proposition 2.40. There are crossed complex homomorphisms

φ : π(X × Y )→ π(X)⊗ π(Y )

natural in simplicial sets X, Y defined on generators by

φn(xv0...vn , yv0...vn) =
n∑
i=0

(
xv0...vi ⊗ yvi...vn

)(xv0⊗yv0vi ) for n > 3

While in dimension 0 it is trivial and in dimension 1 and dimension 2 are defined as

φ1(xv0v1 , yv0v1) = (xv0v1 ⊗ tyv0v1) + (sxv0v1 ⊗ yv0v1)

and

φ2(xv0v1v2 , yv0v1v2) = (xv0v1v2 ⊗ yv2)(xv0⊗yv0v2 ) + (xv0 ⊗ yv0v1v2) + (xv0v1 ⊗ yv1v2)(xv0⊗yv0v1 )

These commute with the boundary map ∂ defined in Definition (2.34), and are associative.

In the sense that the following diagram commutes.

π(X×Y×Z) π(X×Y )⊗πZ

πX⊗π(Y×Z) πX⊗πY⊗πZ

φ⊗ id

φ

id⊗ φ

φ

for simplicial sets X, Y, and Z.
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For more detail the proof of the proposition above is in [31].

Example 2.41. In this example we show that φ commutes with the boundary map ∂πX

that is defined in Definition (2.34), for n = 2. We have ∂φ2(x, y) = φ1∂(x, y) with the

cancellations which occur in the following diagram:

(0,0)

d 1
d 2
x⊗

d 2
y

d1d2x⊗ y x⊗ d0d1y

d2x⊗ d0y

d1d2x⊗ d1y

Figure 9: (x(v0v1v2), y(v′0v
′
1v
′
2))

Definition 2.42. [32, Definition 2.2.7] A crossed differential graded algebra is a crossed

complex C, with a homomorphism µ : C⊗ C→ C which make the diagram

C⊗C⊗C C⊗C

C⊗C C

µ

µ⊗ id

µ

id⊗ µ

commute.

Dually one has that a crossed chain coalgebra πX is a crossed complex with a coasso-

ciative comultiplication forms a crossed chain coalgebra [20]:

48



πX πX ⊗ πX

φ

π(X ×X)

5

Figure 10:

The homomorphism 5 : πX → πX ⊗ πX is termed the diagonal approximation map,

as we have already said in Remark 2.39.

Proposition 2.43. [31, Proposition 2.6], [32, Proposition 2.2.10] There are crossed com-

plex homomorphisms

ϕ : πX ⊗ πY → π(X × Y )

natural in simplicial sets X, Y, defined for all (x, y) ∈ (Xp, Yq) by

ϕ(x⊗ y) =
∑

(σ0,σ1)∈Sp,q
(−1)sg(σ)(sσ0x, sσ1y) where (p, q) 6= (1, 1),

where x ∈ X1, y ∈ Y1, and Sp,q denotes the set of (p, q)-shuffles we have,

ϕ(x⊗ y) = −(s0xv0v1 , s1yv0v1) + (s1xv0v1 , s0yv0v1)

= −(xv0v0v1 , yv0v1v1) + (xv0v1v1 , yv0v0v1)

which are associative in the sense that the following diagram commutes

πX⊗πY⊗πZ π(X×Y )⊗πZ

πX⊗π(Y×Z) π(X×Y×Z)

ϕ

ϕ⊗ id

ϕ

id⊗ ϕ

for simplicial sets X, Y, and Z.

Also the proof of this Proposition and for more detail can found in [31]
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Example 2.44. In this example we show that ϕ commutes with ∂ for dimension 2. Let

p = q = 1

∂ϕ(xv0v1 ⊗ yv0v1) = −∂(s0xv0v1 , s1yv0v1) + ∂(s1xv0v1 , s0yv0v1)

= −(s0xv0 , yv0v1)− (xv0v1 , s0yv1) + (xv0v1 , yv0v1)− (xv0v1 , yv0v1) + (s0xv1 , yv0v1) + (xv0v1 , s0yv0)

= −(xv0v0 , yv0v1)− (xv0v1 , yv′1v′1) + (xv0v1 , yv0v1)− (xv0v1 , yv0v1) + (xv1v1 , yv0v1) + (xv0v1 , yv0v0)

which by the diagram:

v0v′0

v0v′1 v1v′1

v1v′0(v0v1,v′0v
′
0)

(v
1
v
1
,v
′ 0
v
′ 1
)

(v0
v1,
v
′
0
v
′
1
)(v0

v1,
v
′
0
v
′
1
)

(v0v1,v′1v
′
1)

(v
0
v
0
,v
′ 0
v
′ 1
)

The middle diagonal terms cancel, leaving ϕ∂(x(v0v1), y(v′0v
′
1)).

Theorem 2.45. [31, Theorem 3.1] There is a strong deformation retraction of crossed

complexes

η π(X)⊗ π(Y )π(X × Y )
φ

ϕ

which is natural in X, Y, where η is a contracting homotopy id ' ϕφ rel.(X0 × Y0).

For simplicial sets X, and Y the composite

π(X × Y ) πX ⊗ πY π(X × Y )
φ ϕ

is homotopic to the identity on π(X × Y ) via a splitting homotopy. Thus πX ⊗ πY is a

strong deformation retract of π(X × Y ).

The proof of this theorem could found in [32, P. 48].
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3 The cobar construction

Introduction

The main of our aim in this chapter is to introduce the main theorem on chain algebras

which was proved by J. F. Adams and P. J. Hilton in [3]. They showed, for a 1-reduced

simplicial set X, that the twisted tensor product of chain loop algebra ΩCX and the chain

complex CX is contractable. Moreover, we illustrate the theorem proved by K. Hess and

A. Tonks in [19], on the loop group and the cobar construction for any 1-reduced simplicial

set X.

The structure of the chapter is as follows. In section one, we introduce some preliminaries

on path space and then show the theorem on chain algebra which was proved by J. F. Adams

and P. J. Hilton. In section two we introduce the Adams cobar construction, which passes

from one chain complex to another chain complex with different structure [2]. We also

present the theorem that was proved by K. Hess and A. P. Tonks in [19], which shows that

for any 1-reduced simplicial set X, Adams’ cobar construction ΩX is a strong deformation

retract on the chain on the Kan loop space CGX.

3.1 The cobar construction of Adams

Let CX be the normalised chain complex of 1-reduced simplicial set X. We have seen

earlier that this is a differential graded coalgebra, using the Alexander–Whitney diagonal

approximation,

CX → CX ⊗ CX

The classical cobar construction Ω is a functor that takes differential graded coalgebras

to differential graded algebras. In algebraic topology, Adams in [1] introduced the cobar

construction and proved that the differential graded algebra ΩCX is a model for the loop
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space on X. Recall that the loop space ΩX is defined as the space of all continuous maps

γ : S1 → X. Two loops γ, γ′ : S1 → X may be composed. Therefore the chain complex

C(ΩX) on the loop space has a multiplication operation. Adams defined the differential

graded algebra ΩCX and proved that it is weakly equivalent to the differential graded

algebra C(ΩX).

Definition 3.1 (Adams’ cobar construction). Let Λ be a principal ideal domain of coeffi-

cients, and let C be a chain complex of Λ-modules which is 1-reduced: C0 = Λ and C1 = 0.

Suppose C has a comultiplication ∇ : C → C ⊗ C given by an associative chain map such

that, if x ∈ Cr, the components of ∇(x) in C0 ⊗ Cr and in Cr ⊗ C0 are

∇0,r(x) = 1⊗ x

∇r,0(x) = x⊗ 1

respectively.

Adams defined the chain complex Ω(C) by

Ω(C) = Λ +
∑
r>1

C⊗r (where C⊗r = C ⊗ C ⊗ · · · ⊗ C, r times).

If x ∈ Cn+1 then, in Ω(C), the element x has degree n and boundary

∂Ω
n (x) = −dC(x) +

∑
2≤r≤n−1

(−1)r∇r,n+1−r(x).

This is a (free) differential graded algebra with the multiplication induced by the maps

C⊗r ⊗ C⊗s ∼= C⊗(r+s) ⊂ ΩC.

Definition 3.2. For any simplicial set X, the normalised chain complex CX is a differ-

ential graded coalgebra and has a comultiplication

∇ : CX → CX ⊗ CX
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given by the Alexander-Whitney diagonal approximation,

∇i,n−i(x) = x0...i ⊗ xi...n, ∇n(x) =
n∑
i=0

x0...i ⊗ xi...n.

Theorem 3.3 (Adams). If X is a 1-reduced simplicial set, X0 = {∗}, X1 = {s0(∗)}, then

there is a homology equivalence between the cobar construction on the chains on X and the

singular chain complex on the geometric realisation of the loop space on X,

C(|ΩX|) ∼ Ω(C(X)).

3.1.1 Kan’s loop group and cobar construction

Kathryn Hess and Andrew Tonks showed in [19] that Adams’ cobar construction is naturally

a strong deformation retract of the normalised chains CGX on the Kan loop group GX.

Recall that the simplicial group GX is the loop group of a simplicial set X, and was

first introduced by Kan. In each degree GX is a quotient of free groups

(GX)n = F (Xn+1)/F (s0Xn) ∼= F (Xn+1 − s0Xn)

In other words, it is the free group on the simplices that are not s0-degenerate.

Let X be any simplicial set and G any simplicial group. A twisting function τ : X → G

is a family of maps

{τm : Xm → Gm−1}m>1

satisfying the following properties.

(i.) d0τ(x) = −τ(d0x) + τ(d1x);

(ii.) diτ(x) = τ(di+1x) if i > 1;

(iii.) siτ(x) = τ(si+1x), if i > 0;

(v.) τ(s0x) = em if x ∈ Xm, the unit element of Gm being em.
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In particular, a twisting function has degree −1 and is not a simplicial map.

Let τ : X → GX be the universal twisting function from 0-reduced set X, to the

simplicial group GX. The universal twisting function sends x ∈ Xn+1 to the image τ(x) = x

of the generator in (GX)n.

As described in [19, page 1864], the shuffle map can be used to provide an algebra

structure on the chains on the Kan loop group: the normalised chain complex CGX on

the Kan loop group GX is a graded algebra with multiplication map

µ : CGX ⊗ CGX → C(GX ×GX)→ CGX,

that is,

µ(gr ⊗ gs) =
∑

shuffles π=(i,j)

(−1)sgn(i,j)sis . . . si1(gr) · sjr . . . sj1(gs) gr ∈ Gr, gs ∈ Gs

.

Theorem 3.4. [19] For any 1-reduced simplicial set X there is a strong deformation

retract between Adams’ cobar construction on the normalised chain complex ΩCX and the

normalised chains on the Kan loop group CGX.

η ΩCXCGX
ψ

φ

Here φ and ψ are homomorphisms of chain algebras and η is a chain homotopy from

φψ to the identity map.

This strong deformation retract is actually Eilenberg-Zilber data in case of X is a

simplicial suspension. More detail can be found in [19].

Proposition 3.5. [19] For any simplicial map θ : GX → GY ,(X, and Y are 1-reduced

simplicial sets) there is a chain-level model ζ of θ, and then the diagram
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ΩCX ΩCY

CGX GCY

φ

ζ

Cθ

φ

Figure 11: ζ = ψ ◦ Cθ ◦ φ : ΩCX → ΩCY

commutes up to chain homotopy.

The homomorphism φ in the theorem above was first described by Szczarba [30]: he

gives the explicit formula for a twisting cochain λφ which is based on the twisting function

τ : X → GX, but he did not prove that φ has a homotopy inverse that is also an algebra

homomorphism.

3.1.2 The cobar construction of 0-reduced simplicial sets

In order to prove the previous theorem, Hess and Tonks needed to generalise the classical

cobar construction of Adams from 1-reduced simplicial sets to 0-reduced simplicial sets.

They introduced an extended cobar construction, that they denote Ω̂, and they defined φ

and ψ for 0-reduced simplicial sets. They then proved the homotopy equivalence of CGX

and Ω̂CX using an acyclic-models argument.

Defining the Hess-Tonks cobar construction. Let R be a commutative ring with

unit and let (C, ∂) be an R-free differential graded coalgebra with C0 = R. Consider first

the ring Λ, in degree 0, given by the free associative R−algebra on the desuspension of C1,

Λ =
∑
r>0

(s−1C1)⊗r.

Now let B = {xj ; j ∈ J} be a basis of C1, so that Λ is the free algebra with generators

s−1xj, and let K be the ring obtained from Λ by adjoining inverses λj of all elements
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of the form (1 + s−1xj). The ring K is an algebra in degree 0 generated by s−1xj and

λj = (1 + s−1xj)
−1.

The extended cobar construction Ω̂C of Hess and Tonks [19] is

Ω̂C =
∑

r>0,n>2

K⊗ (s−1Cn ⊗K)⊗r.

In the case of 1-reduced chain complexes, C0 = 0 and K = 0, so this is Adams’ cobar

construction.

The generators of in degree n of Ω̂C therefore have the form

k = k1 ⊗ · · · ⊗ kr, n =
∑

ni

where either ki = s−1c for some basis elements c ∈ Cni+1, or ni = 0 and ki = λj for some

j ∈ J . The unit 1 ∈ (Ω̂C)0 is the empty word. Since elements in degree zero do not have

boundaries, the differential is the same as for the classical cobar construction: for all basis

elements c ∈ Cn+1, n > 1, the differential ∂Ω̂ on Ω̂ is specified by

∂Ω̂
n s
−1c = −s−1dc+ (s−1 ⊗ s−1)∇(c).

Definition 3.6. Let X be a 0-reduced simplicial set and let τ : X → G be any twisting

function to a simplicial group. Then there is a canonical homomorphism of differential

graded algebras

φ : Ω̂CX → CG,

defined in positive degrees using the Szczarba operators Szi; see [30] and [19].

φ0(λx1) = τx1,

φ0(s−1x1) = τ(x1)−1 − 1,

φn(s−1xn+1) =
∑
i∈Sn

(−1)
∑
iSzix, n > 1

for any xn+1 ∈ Xn+1.
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In the other direction,

Definition 3.7. Let X be a 0-reduced simplicial set. The differential graded algebras map

ψ : CGX → Ω̂CX

from the chains on the loop group to the extended cobar construction of the 0-reduced sim-

plicial set is determined as follows.

In degree 0, ψ0 : (CGX)0 → (Ω̂CX)0 is defined on the algebra generators by

ψ0(τx) = λx, ψ0(τx−1) = 1 + s−1x.

In degree 1, ψ1 : (CGX)1 → (Ω̂CX)1 is determined by

ψ1(τxα1
1 . . . τxαr

r ) =
r∑
i=1

ψ0d1(τxα1
1 . . . τx

αi−1

i−1 )⊗ ψ1(τxαi
i )⊗ ψ0d0(τx

αi+1

i+1 . . . τxαr
r )

In degrees > 2, ψn : (CGX)n → (Ω̂CX)n is determined by

ψn(τx · y) = ψn(y)−
n∑
i=0

x0...i+1 ⊗ ψn−1(τdi1x.d
i
0y)

Hess and Tonks showed the following.

Proposition 3.8. The map ψ : CGX → Ω̂CX is

1. well defined, that is, ψ(ω) = 0 if ω is degenerate,

2. a chain map, i.e., for all x ∈ Xn+1 and y ∈ (GX)n,

∂Ω̂
nψn(τx.y) = ψn−1∂n(τx.y),

3. an algebra homomorphism.

ψn(x.y) = ψr(x).ψs(y), x ∈ (GX)r, y ∈ (GX)s, n = r + s,
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4. a retraction of φ, that is, ψφ is the identity.

Proof. See [19]

Theorem 3.9. The cobar construction Ω̂CX on the normalised chain complex of 0-reduced

simplicial set X is naturally a strong deformation retraction of the normalised chains CGX

on the Kan loop group GX.

Φ Ω̂CXCGX
ψ

φ

Here ψ and φ are the Szczarba and the retraction maps respectively.

3.2 On the chain complex model of the path space

For any 0-reduced simplicial set X, there is a simplicial fibration

GX → EX → X

where EG may be identified with a certain twisted cartesian product of simplicial sets

EG = X ×τ GX

The simplicial set EG is contractible, and the simplicial fibration is a model for the path-

loop fibration of spaces,

ΩX → PX → X.

For any 1-reduced simplicial set X, the cobar construction on CX is an algebraic model

for the loop space. A twisted tensor product of the chains CX and the chains on the loop

space CΩX should therefore be an algebraic model for the path space. That is, it should

be contractible, since any path can be retracted to the constant path at the basepoint.

The following theorem was proved by J. F. Adams and P. J. Hilton in [3]
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Theorem 3.10. Let X be a 1-reduced simplicial set. The tensor product of the loop space

ΩCX on the chains on a 1-reduced simplicial set X and the chain complex CX is con-

tractable.

Proof. Let L = CX be the free abelian group generated by elements li ∈ CiX with l0 = 1

and augmented by α(1) = 1, α(li) = 0, i > 1. Let K = ΩCX be the loop space on the

chains on X generated by elements ki ∈ (ΩCX)i. Define C = L⊗K as a tensor product of

L, and K with the usual augmentation α. Next define a retraction η : Cn → Cn+1 by:

η(1) = 0, η(ki) = li, (ηki)
2 = 0 (15)

and for x ∈ Cn, y ∈ Kn define the homotopy η and a boundary map δ as:

η(xy) = η(x)y + (αx)η(y), (16)

δ(xy) = (δx)y + (−1)nx(δy), (17)

The differential δ satisfies

δli = (1− ηδ) ki, li ∈ Cn+1, ki ∈ Cn (18)

It is clear that η and δ are consistent with the two distributive laws and with the associative

law of multiplication.

Remark 3.11. [3] The augmentation α is homotopic to the identity, i.,e, there is a

homotopy η from the identity map 1 to the augmentation α such that

(δη + ηδ)x = (1− α)x

for all x ∈ Cn.

Proof. Let x ∈ Cn, if x = 1, (x ∈ C0), this is trivial. If x is a generator of Kn, and x = k,

then (δη+ηδ)k = δη(k)+ηδ(k) = δ(l)+ηδ(k) (from Theorem 3.10(1)), also from the same
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theorem in (4) we have δl = (1− ηδ)(k), so δ(l) + ηδ(k) = (1− ηδ)(k) + ηδ(k) = k.

If x is a generator of Ln, and x = l,

(δη + ηδ)l = δη(l) + ηδ(l) = δη(ηk) + ηδ(l) = 0 + ηδ(l) (by Theorem 3.10(1))

= η((1− ηδ)(k)) = η(k)− η2(δ(k)) = η(k) = l, (Theorem 3.10(1) and (4)).

The prove above showed that if x on the generators of ΩCX and of CX, it satisfies

(δη + ηδ)x = (1− α)x.

Now if x ∈ Cn, y ∈ Kn,

(δη + ηδ)xy = δη(xy) + ηδ(xy) = δ
(
(ηx)y + (αx)(ηy)

)
+η
(
(δx)y + (−1)nx(δy)

)
(Theorem

3.10(3))

= (δηx)y + (−1)n+1(ηx)(δy) + (δαx)(ηy) + (−1)n(αx)(δηy) + (ηδx)y

+ (δαx)(ηy) + (−1)n(ηx)(δy) + (−1)n(αx)(ηδy)

= (δηx)y+(δαx)(ηy)+(−1)n(αx)(δηy)+(ηδx)y+(δαx)(ηy)+(−1)n(αx)(ηδy)

= (δηx+ ηδx)y + (δαx)(ηy) + (−1)n(αx)(δηy + ηδy) + (δαx)(ηy)

( the term (−1)n+1(ηx)(δy) cancels with the term (−1)n(ηx)(δy))

Now, if n = 0 then

(δη + ηδ)(xy) = xy − (αx)y + αx(y − αy) = xy − αxαy = (1− α)xy.

If n > 0,

αx = 0 and (δη + ηδ)(xy) = xy = (1− α)xy.

Proposition 3.12. δ is a differential on C.

Proof. In case of the generators of Kn, it is clear from Theorem 3.10(3), so we need only

verify the proposition on a generator of Ln. Let l be a generator of Ln satisfy that ηk = l.

δ2l = δ(1− ηδ)k = (δ − δηδ)k = (1− δη)δk.

Now,

(δη + ηδ)δk = (1− α)δk ( from Remark 3.11).

So
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δηδk = δk (δ2k = 0, and αδk = 0). Hence that implies δ2l = 0.
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4 A crossed complex of groups

In this chapter we will try to generalise the theorem of Adams and Hilton that we gave in

the previous chapter.

We define a crossed complex of groups P CrsX, where X is a 1-reduced simplicial set, to

try and obtain a crossed complex model for the path-loop fibration.

The cobar construction ΩCrsX for crossed complexes, for 1-reduced simplicial sets, was

introduced by Baues and Tonks. We want to introduce a twisted tensor product of this

crossed cobar construction ΩCrsX and the fundamental crossed complex πX. It will have

the same generators as the usual tensor product of crossed complexes of groups. The

most important part of our construction will be to define the new twisted boundary maps

∂P : P Crs
n X → P Crs

n−1X.

To make our construction easy to define, we will introduce the idea of a free module

over an algebra in the category of crossed complexes. Then our crossed complex of groups

P Crs
n X will be a free module over the crossed chain algebra ΩCrsX. We will then only need

to define the twisted boundary on the basis elements of the module.

The structure of the chapter is as follows. In first section, we begin with recalling

the Baues–Tonks definition of the crossed cobar construction ΩCrsX. We follow this by

presenting the idea of free modules over crossed chain algebras, and then we can give our

short definition of the path crossed complex P CrsX as a module over ΩCrsX. Next we expand

this definition, and we calculate the boundary maps ∂P on other generators of P CrsX. We

will also prove that ∂P is a differential, that is, we will prove its square is trivial.

In the second section, we define a contracting homotopy, which we can do by defining a

family of maps ηn : P Crs
n X → P Crs

n+1X which raise the dimension by one and satisfy certain

conditions. We then have h : ∗ ' id, so P CrsX is contractible. Therefore P CrsX is a crossed
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complex model for the path space of X.

∗ h' IdP {∗}P
π

i

4.1 The crossed cobar construction

We begin this section by recalling the crossed cobar construction ΩCrsX given by A. P.

Tonks and H. J. Baues in [14]. In their paper, full details of the definition of ΩCrsX for a

1-reduced simplicial set X are given.

They define the interval object I in the category of crossed complexes to be given by

the crossed complex I = π(∆[1]). This has generators {0, 1} ∈ I0 and (σ : 0→ 1) ∈ I1. It

has a map µ : I ⊗ I → I given on the generators by a ⊗ b = 1 for a, b ∈ {0, 1, σ}, except

for 0⊗ 0 = 0 and 0⊗ σ = σ ⊗ 0 = σ.

We write down some of the boundaries of tensor products I⊗n of copies of I, which we

will need later,

∂2(σ ⊗ σ) = −(src(σ)⊗ σ)− (σ ⊗ targ(σ)) + (targ(σ)⊗ σ) + (σ ⊗ src(σ))

= −(0⊗ σ)− (σ ⊗ 1) + (1⊗ σ) + (σ ⊗ 0).

∂3(σ ⊗ σ ⊗ σ) = −(σ ⊗ σ ⊗ targ(σ))− (σ ⊗ src(σ)⊗ σ)(1⊗σ⊗1) − (targ(σ)⊗ σ ⊗ σ)

+ (σ ⊗ σ ⊗ src(σ))(1⊗1⊗σ) + (σ ⊗ targ(σ)⊗ σ) + (src(σ)⊗ σ ⊗ σ)(σ⊗1⊗1)

Definition 4.1. [14,20] Let X be a 1-reduced simplicial set. The crossed cobar construction

ΩCrsX is a free crossed chain algebra generated by the elements s−1an+1 in degree n for each

(n+ 1)-simplex of X and boundary map given by:

∂Ω
2 s
−1a3 = −s−1a123 − s−1a013 + s−1a023 + s−1a012

∂Ω
3 (s−1a4) = −s−1a0123 − (s−1a0134)γ2 − s−1a1234 + (s−1a0124)γ3
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+ (s−1a012 · s−1a234) + (s−1a0234)γ1

and for dimension n > 4 the differential defined by the formula

∂Ω
n (s−1an+1) =

n∑
i=1

(−1)i+1(s−1dian+1)γi −
n∑
i=1

(−1)i+1(s−1a0...i · s−1ai...n+1)

Here the actions are by the elements

γi = s−1ai−1 i i+1

Remark 4.2. The algebra structure of the cobar construction is given by the crossed com-

plex homomorphism defined by concatenating the generators,

µ : ΩCrsX ⊗ ΩCrsX −→ ΩCrsX

µ(x⊗ x′) = xx′

The generators of ΩCrsX as a crossed complex are all of the words, or strings, of its gen-

erators as a crossed chain algebra. We can write a generator of degree n of the crossed

complex ΩCrsX as

x = s−1a(1)
n1
· · · s−1a(r)

nr
,

where r > 0, each a
(i)
ni is a non-degenerate (ni + 1)-simplex of X and n =

∑
ni.

The boundary ∂Ω
n x of a general word x can be calculated using the boundary relations in

the definition of the tensor product of crossed complexes.

The crossed cobar construction is only defined here for a 1-reduced simplicial set, which

has no non-degenerate 1-simplices. Therefore it is a crossed complex of groups, with base-

point given by the word x = ∅ of length r = 0,

ΩCrs
0 X = {∅}
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In dimension one we can see that ΩCrs
1 X is the free group on X2 − {s2

0(∗)}.

In dimension two, ΩCrs
2 X is the free crossed module over ΩCrs

1 X, with two types of

generators

s−1a3, s−1a2s
−1a′2,

and boundary relations

∂Ω
2 s
−1a3 = −s−1a123 − s−1a013 + s−1a023 + s−1a012 (19)

∂Ω
2 (s−1a2s

−1a′2) = −s−1a′2 − s−1a2 + s−1a′2 + s−1a2 (20)

In dimension 3 we see that ΩCrs
3 X is a free ΩCrs

2 X-module with four types of generators

s−1a4, s−1a3s
−1a2, s−1a2s

−1a3, s−1a2s
−1a′2s

−1a′′2.

whose boundaries are given by

∂Ω
3 s
−1a4 = −(s−1a0134)(s−1a123) − (s−1a1234) + (s−1a0124)(s−1a234)

+ (s−1a012s
−1a234) + (s−1a0234)(s−1a012) − (s−1a0123), (21)

∂Ω
3 (s−1a3s

−1a2) = −(s−1a123s
−1a2) + (s−1a3)(s−1a2) + (s−1a012s

−1a2)

+ (s−1a023s
−1a2)(s−1a012) − (s−1a3)− (s−1a013s

−1a2)(s−1a123). (22)

∂Ω
3 (s−1a2s

−1a3) = −(s−1a3) + (s−1a2s
−1a013)(s−1a123) + (s−1a2s

−1a123)

+ (s−1a3)(s−1a012) − (s−1a2s
−1a012)− (s−1a2s

−1a023)(s−1a012) (23)

∂Ω
3 (s−1a2s

−1a′2s
−1a′′2) = −(s−1a2s

−1a′2)− (s−1a2s
−1a′′2)(s−1a′2) − (s−1a′2s

−1a′′2)

+ (s−1a2s
−1a′2)(s−1a′′2 ) + (s−1a2s

−1a′′2) + (s−1a′2s
−1a′′2)(s−1a2), (24)

4.2 Construction of the path crossed complex (P CrsX, ∂P )

Definition 4.3. Let A be an algebra in the category of crossed complexes, that is, a crossed

complex A with an associative multiplication given by a homomorphism

µ : A⊗ A→ A.
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Let M be a left A-module, that is, a crossed complex M with a homomorphism

α : A⊗M →M

that respects the multiplication. We say that a subset B of M is a basis for the A-module

M if the set

{α(a⊗ b); a ∈ A, b ∈ B}

forms a set of generators of the crossed complex M . The action of A on M is then given

by multiplication in A,

α(a⊗ α(a′ ⊗ b)) = α(a a′ ⊗ b).

Our main example of a module with a basis will be the path crossed complex P CrsX.

We would like this to have the same generators as the usual non-twisted tensor product of

ΩCrsX ⊗ πX,

x⊗ bm =

(
r∏
i=1

s−1a(i)

)
⊗ bm

where a(i) ∈ Xni+1 and bm ∈ Xm. Therefore we can choose a basis

B = {(∅⊗ b) | b a non-degenerate element of X}.

The action of ΩCrsX on B ⊂ P CrsX is given by

α(x⊗ (∅⊗ bm)) = x⊗ bm.

The elements x ⊗ bm gives the set of generators that we want, and so we see that B is a

basis.

Definition 4.4. Consider the twisted tensor product P CrsX = ΩCrsX ⊗φ πX of the free

crossed chain algebra ΩCrsX and the fundamental crossed complex πX, defined as the free

ΩCrsX-module with basis

B = {(∅⊗ bm) : bm is a generator of πX},
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whose boundaries are defined by the following formulas

∂P2 (∅⊗ b2) = (s−1b2 ⊗ ∗)

∂P3 (∅⊗ b3) = (s−1b3 ⊗ ∗)− (∅⊗ d3b3)− (∅⊗ d1b3) + (∅⊗ d2b3) + (∅⊗ d0b3)

∂Pn (∅⊗ bm) =
m∑
i=1

(−1)i(∅⊗ dibn) +
m∑
i=1

(s−1b0...i ⊗ bi...n), n > 4.

We call P CrsX, the path crossed complex of X. In the rest of this section we will make

this definition more explicit. In the definition we have only given the definition of the

boundary map on generators of P CrsX of the form (∅⊗ bm). In the next two theorems we

use the fact that

α : ΩCrsX ⊗ P CrsX −→ P CrsX, α(x⊗ (x′ ⊗ b)) = (x · x′)⊗ b

is a homomorphism of crossed complexes. Therefore we can see that

∂P (x⊗ bm) = ∂Pα
(
x⊗ (∅⊗ bm)

)
= α∂P (x⊗ (∅⊗ bm))

If x = ∅ this does not tell us anything new. In general, if m,n > 3, we know that the
formula will have the form

∂P (x⊗ bm) = ∂Ωx⊗ bm + (−1)|x|α(x⊗ ∂P (∅⊗ bm)).

In the case m = 0, bm = ∗, we see that

∂P (x⊗ bm) = ∂Ω(x)⊗ ∗

where the right hand side must be expanded using (1) and (3) from Definition 2.33 together

with the formulas for ∂Ω from the previous section. This is done in Theorem 4.5 below.

Then in Theorem 4.6 we will give a general formula for

∂P (s−1an ⊗ bm).
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Theorem 4.5. The boundary ∂Pn of elements with generators of the forms

pn = (
∏

s−1ani+1 ⊗ ∗), ani+1 ∈ Xni+1, n =
∑

ni

in P Crs
n X for a 1-reduced simplicial set X are as follows.

1. In dimension 2 we have two forms of generators and using (19) and (20) we find

I. ∂P2 (s−1a3 ⊗ ∗) = −(s−1a123 ⊗ ∗)− (s−1a013 ⊗ ∗) + (s−1a023 ⊗ ∗) + (s−1a012 ⊗ ∗),

II. ∂P2 (s−1a2s
−1a′2 ⊗ ∗) = −(s−1a′2 ⊗ ∗)− (s−1a2 ⊗ ∗) + (s−1a′2 ⊗ ∗) + (s−1a2 ⊗ ∗).

2. In dimension 3 we use equations (21)–(24)

I. ∂P3 (s−1a4 ⊗ ∗) = −(s−1a0134 ⊗ ∗)(s−1a123⊗∗) − (s−1a1234 ⊗ ∗)

+ (s−1a0124 ⊗ ∗)(s−1a234⊗∗) + (s−1a012s
−1a234 ⊗ ∗)

+ (s−1a0234 ⊗ ∗)(s−1a012⊗∗) − (s−1a0123 ⊗ ∗),

II. ∂P3 (s−1a3s
−1a2 ⊗ ∗) = −(s−1a123s

−1a2 ⊗ ∗) + (s−1a3 ⊗ ∗)(s−1a2⊗∗)

+ (s−1a012s
−1a2 ⊗ ∗) + (s−1a023s

−1a2 ⊗ ∗)(s−1a012⊗∗)

− (s−1a3 ⊗ ∗)− (s−1a013s
−1a2 ⊗ ∗)(s−1a123⊗∗),

III. ∂P3 (s−1a2s
−1a3 ⊗ ∗) = −(s−1a3 ⊗ ∗) + (s−1a2s

−1a013 ⊗ ∗)(s−1a123⊗∗)

+ (s−1a2s
−1a123 ⊗ ∗) + (s−1a3 ⊗ ∗)(s−1a012⊗∗)

− (s−1a2s
−1a′012 ⊗ ∗)− (s−1a2s

−1a023 ⊗ ∗)(s−1a012⊗∗)

IV. ∂P3 (s−1a2s
−1a′2s

−1a′′2 ⊗ ∗) = −(s−1a2s
−1a′2 ⊗ ∗)− (s−1a2s

−1a′′2 ⊗ ∗)(s−1a′2⊗∗)

− (s−1a′2s
−1a′′2 ⊗ ∗) + (s−1a2s

−1a′2 ⊗ ∗)(s−1a′′2⊗∗)

+ (s−1a2s
−1a′′2 ⊗ ∗) + (s−1a′2s

−1a′′2 ⊗ ∗)(s−1a2⊗∗).

68



3. For dimension n > 4 we can find ∂Pn inductively,

(∂Pn
∏
s−1a

(i)
ni+1 ⊗ ∗) = (s−1∂Pni

a
(1)
ni+1

∏
a

(i−1)
ni+1 ⊗ ∗)

+(−1)|a
(1)
ni+1|(s−1a

(1)
ni+1∂

P
ni

∏
a

(i−1)
ni+1 ⊗ ∗)

(s−1∂Pni
a

(1)
ni+1

∏
a

(i−1)
ni+1 ⊗ ∗) =

∑ni

j=1(−1)j+1
(
s−1dja

(1)
ni+1

∏
a

(i−1)
ni+1 ⊗ ∗

)(γj)(1)

−
∑ni

j=1(−1)j+1(s−1a
(1)
0...js

−1a
(1)
j...ni+1

∏
a

(i−1)
ni+1 ⊗ ∗)

(γj)
(1) = (s−1a

(1)
j−1 j j+1 ⊗ ∗)

Proof. We will just prove (1-I), and (2-I), because the other cases will be similar but

longer.

1. (1-I)

(s−1a3 ⊗ ∗) = α(s−1a3 ⊗ (∅⊗ ∗)), so

∂P2 (s−1a3 ⊗ ∗) = ∂P2 α(s−1a3 ⊗ (∅⊗ ∗)) = α(∂Ω
2 (s−1a3 ⊗ (∅⊗ ∗))) by (19)

= α
(
(−s−1a123 − s−1a013 + s−1a023 + s−1a012)⊗ (∅⊗ ∗)

)
= α

(
− (s−1a123 ⊗ (∅⊗ ∗))− (s−1a013 ⊗ (∅⊗ ∗))

+ (s−1a023 ⊗ (∅⊗ ∗)) + (s−1a012 ⊗ (∅⊗ ∗))
)

= −(s−1a123 ⊗ ∗)− (s−1a013 ⊗ ∗) + (s−1a023 ⊗ ∗) + (s−1a012 ⊗ ∗).

2. (2-I)

(s−1a4 ⊗ ∗) = α(s−1a4 ⊗ (∅⊗ ∗)), hence

∂P3 (s−1a4 ⊗ ∗) = ∂P3 α(s−1a4 ⊗ (∅⊗ ∗)) = α(∂Ω
3 (s−1a4 ⊗ (∅⊗ ∗))) by (21)

= α

((
− s−1a0123 − s−1aa1230134 − s−1a1234 + s−1aa2340124 + (s−1a012 ⊗ s−1a234)

+ s−1aa0120234

)
⊗ (∅⊗ ∗)

)
= α

(
− (s−1a0123 ⊗ (∅⊗ ∗))− (s−1aa1230134 ⊗ (∅⊗ ∗))− (s−1a1234 ⊗ (∅⊗ ∗))
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+ (s−1aa2340124 ⊗ (∅⊗ ∗)) + (s−1a012 ⊗ (s−1a234 ⊗ ∗)) + (s−1aa0120234)⊗ (∅⊗ ∗)
)

= −(s−1a0123 ⊗ ∗)− (s−1aa1230134 ⊗ ∗)− (s−1a1234 ⊗ ∗) + (s−1aa2340124 ⊗ ∗)

+ (s−1a012s
−1a234 ⊗ ∗) + (s−1aa0120234 ⊗ ∗).

We give now a formula for ∂P of general element (s−1an+1 ⊗ bm).

Theorem 4.6. Let X be a simplicial set with X0 = X1 = {∗}. P CrsX = ΩCrsX ⊗φ πX is a

path crossed complex with generators (∅⊗ bm), with the differential defined on an element

of form (s−1an ⊗ bm)q, q = m+ n− 1, by the following formula:

1. ∂P3 (s−1a2 ⊗ b2) = −(s−1a2s
−1b2 ⊗ ∗)− (∅⊗ b2) + (∅⊗ b2)(s−1a2⊗∗),

2. ∂Pq (s−1an ⊗ bm) =
∑m

i=1(−1)i+n−1(s−1an ⊗ dibm)

+ (−1)n−1
∑m

i=1

(
s−1ans

−1b0...i ⊗ bi...m
)

+
∑n−1

j=1 (−1)j+1
(
s−1djan ⊗ bm

)γj
−
∑n−1

j=1 (−1)j+1(s−1a0...js
−1aj...n ⊗ bm)

where

γj = (s−1aj−1 j j+1 ⊗ ∗).

By induction, this specifies the differential on the whole of P CrsX.

Proof. We use the definition of the ordinary tensor product of crossed complexes that we

introduced in Definition 2.33. Let us start with dimension q = 3 = (1 + 2).

∂P3 (s−1a2 ⊗ b2) = ∂P3
(
α(s−1a2 ⊗ (∅⊗ b2))

)
= α∂P3 (s−1a2 ⊗ (∅⊗ b2))

= −α(∅⊗ (∅⊗ b2)) + α(∅⊗ (∅⊗ b2))(s−1a2⊗∗) − α(s−1a2 ⊗ ∂P (∅⊗ b2))

= −α(∅⊗ (∅⊗ b2)) + α(∅⊗ (∅⊗ b2))(s−1a2⊗∗) − α(s−1a2 ⊗ (s−1b2 ⊗ ∗))Definition (4.4)

= −(∅⊗ b2) + (∅⊗ b2)(s−1a2⊗∗) − (s−1a2s
−1b2 ⊗ ∗).

Now we need to prove the theorem when q = 1 +m
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∂P1+m(s−1a2 ⊗ bm) = ∂P1+m

(
α(s−1a2 ⊗ (∅⊗ bm))

)
= α∂P1+m(s−1a2 ⊗ (∅⊗ bm))

= −α(∅⊗ (∅⊗ bm)) + α(∅⊗ (∅⊗ bm))(s−1a2⊗∗) − α(s−1a2 ⊗ ∂Pm(∅⊗ bm))

= −α(∅⊗ (∅⊗ bm)) + α(∅⊗ (∅⊗ bm))(s−1a2⊗∗)

+ α

(∑m
i=1(−1)i+1

(
s−1a2 ⊗ (∅⊗ dibm)

))
− α

(∑m
i=1(s−1a2 ⊗ (s−1b0...i ⊗ bi...m))

)
= −(∅⊗ bm) + (∅⊗ bm)(s−1a2⊗∗) +

∑m
i=1(−1)i+1(s−1a2 ⊗ dibm)

−
∑m

i=1(s−1a2s
−1b0...i ⊗ bi...m).

∂P2+m(s−1a3 ⊗ bm) = ∂P2+m

(
α(s−1a3 ⊗ (∅⊗ bm))

)
= α∂P2+m(s−1a3 ⊗ (∅⊗ bm))

= −α(s−1a123⊗(∅⊗bm))−α(s−1a013⊗(∅⊗bm))+α(s−1a023⊗(∅⊗bm))+α(s−1a012⊗

(∅⊗ bm))− α(s−1a3 ⊗ ∂Pm(∅⊗ bm))

= −α(s−1a123⊗(∅⊗bm))−α(s−1a013⊗(∅⊗bm))+α(s−1a023⊗(∅⊗bm))+α(s−1a012⊗

(∅⊗ bm))

+α

(∑m
i=1(−1)i+2

(
s−1a3⊗(∅⊗dibm)

))
+(−1)2α

(∑m
i=1(s−1a3⊗(s−1b0...i⊗bi...m))

)
= −(s−1a123⊗bm)−(s−1a013⊗bm)+(s−1a023⊗bm)+(s−1a012⊗bm)+

∑m
i=1(−1)i(s−1a3⊗

dibm)

+
∑m

i=1(s−1a3s
−1b0...i ⊗ bi...m).

And, for dimension q > 4, n > 3 we have

∂Pq (s−1an ⊗ bm) = ∂Pq
(
α(s−1an ⊗ (∅⊗ bm))

)
= α∂Pq (s−1an ⊗ (∅⊗ bm))

= α(∂n−1s
−1an ⊗ (∅⊗ bm)) + (−1)n−1α(s−1an ⊗ ∂Pm(∅⊗ bm))

= α
((∑n−1

i=1 (−1)i+1(s−1dian)γi

−
∑n−1

i=1 (−1)i+1(s−1a0...is
−1ai...n)

)
⊗ (∅⊗ bm)

)
+(−1)n−1α(s−1an ⊗

(∑m
i=1(−1)i(∅⊗ dibm)

+
∑n

i=1(s−1b0...i ⊗ bi...m)
)

= α

(∑n−1
i=1 (−1)i+1(s−1dian)γi ⊗ (∅⊗ bm)

)
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−α
(∑n−1

i=1 (−1)i+1(s−1a0...is
−1ai...n)⊗ (∅⊗ bm)

)
+(−1)n−1α

(
s−1an ⊗

∑m
i=1(−1)i(∅⊗ dibm)

)
+(−1)n−1α

(∑m
i=1(s−1ans

−1b0...i ⊗ (∅⊗ bi...m)

)
=
∑n−1

i=1 (−1)i+1α((s−1dian)γi ⊗ (∅⊗ bm))

−
∑n−1

i=1 (−1)i+1α((s−1a0...is
−1ai...n)⊗ (∅⊗ bm))

+(−1)n−1
∑m

i=1(−1)iα(s−1an ⊗ (∅⊗ dibm))

+(−1)n−1(
∑m

i=1 α(s−1ans
−1b0...i ⊗ (∅⊗ bi...m))

=
∑n−1

i=1 (−1)i+1(s−1dian ⊗ bm)γi −
∑n−1

i=1 (−1)i+1(s−1a0...is
−1ai...n)⊗ bm)

+
∑m

i=1(−1)i+n−1(s−1an ⊗ dibm)

+(−1)n−1
∑m

i=1(s−1ans
−1b0...i ⊗ bi...m)

Proposition 4.7. The boundary map ∂Pn : P Crs
n → P Crs

n−1 which was defined in Definition

4.4 is a differential on the crossed complex group P Crs
n X.

Proof. We will just prove that ∂Pn−1∂
P
n (∅⊗ bn) = 0, for all n > 3.

We start with dimension n = 3, and use Definition 4.4

∂P2 ∂
P
3 (∅⊗ b3) = ∂P2

(
(s−1b3 ⊗ ∗)− (∅⊗ d3b3)− (∅⊗ d1b3) + (∅⊗ d2b3) + (∅⊗ d0b3)

)
= −(s−1b123 ⊗ ∗) − (s−1b013 ⊗ ∗) + (s−1b023 ⊗ ∗) + (s−1b012 ⊗ ∗)

− (s−1b012 ⊗ ∗) − (s−1b023 ⊗ ∗) + (s−1b013 ⊗ ∗) + (s−1b123 ⊗ ∗)

= 0 (this also from Theorem 4.5).

Now we need to show that ∂Pn−1∂
P
n (∅⊗ bn) = 0, n > 4.
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∂Pn−1∂
P
n (∅⊗ bn) = ∂Pn−1

(∑n
i=1(−1)i(∅⊗ dibn) +

∑n
i=1(s−1b0...i ⊗ bi...n)

)
=

n∑
i=1

(−1)i∂Pn−1(∅⊗ dibn) +
n∑
i=1

∂Pn−1(s−1b0...i ⊗ bi...n)

The terms of ∂Pn (∅⊗ bn) have the following form:

(−1)i(∅⊗ b̂n), (1)

(s−1b0...i ⊗ bi...n), (2)

and the last element will be

(s−1bn ⊗ ∗), (3)

where b̂n is the simplex bn but after deleting the vertex i. When we take ∂Pn−1 for the terms

(1) the elements which come out will be the same forms of elements in (1), (2) and (3) but

related to b̂n and j = 0 . . . n− 1. They are:

(−1)i+j(∅⊗ dj b̂n), (1− 1)

(−1)i(s−1b̂0...j ⊗ b̂j...n), (1− 2)

and the last element will be

(−1)i(s−1b̂n ⊗ ∗), i = 1 . . . n− 1 (1− 3)

all the terms in (1− 1) will cancel each other under the laws of simplices (didj = dj−1di).

The terms of

∂Pn−1(2) = ∂Pn−1(s−1b0...i ⊗ bi...n) =
∑n−i

j=1(−1)j+i−1(s−1b0...i ⊗ djbi...n)

+ (−1)i−1
∑n−i

j=1(s−1b0...is
−1bi...j+i ⊗ bj+i...n)

+
∑i

k=1(−1)k+1(s−1dkb0...i ⊗ bi...n)γk
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−
∑i

k=1(−1)k+1(s−1dkb0...ks
−1bk...i ⊗ bi...n)

have the following forms:

(−1)j+i−1(s−1b0...i ⊗ djbi...n) (2− 1)

(−1)i−1(s−1b0...is
−1bi...j+i ⊗ bj+i...n) (2− 2)

(−1)k+1(s−1dkb0...i ⊗ bi...n)γk (2− 3)

(−1)k+1(s−1dkb0...ks
−1bk...i ⊗ bi...n) (2− 4)

If we take ∂n−1(3) we will use Theorem 4.5 which the formula is:

∂n−1(s−1bn ⊗ ∗) =
∑n−1

i=1 (−1)i+1(s−1dibn ⊗ ∗)γi −
∑n−1

i=1 (−1)i+1(s−1b0...is
−1bi...n ⊗ ∗)

which consists of two forms of elements,

(−1)i+1(s−1dibn ⊗ ∗)γi (3− 1)

and

(−1)i+2(s−1b0...is
−1bi...n ⊗ ∗) (3− 2)

The elements in both terms (1 − 3) and (3 − 1) will cancel each other because of the fact

that P Crs
2 X acts trivially on P Crs

n X,n > 3 so all elements on (1 − 3) and (3 − 1) have the

same expression, but with opposite signs.

If i = 1, the terms in (2 − 1) will be (−1)j(∅ ⊗ djb1...n) which similar to the elements in

(1− 2) where j = 1 which are have the form (−1)i(∅⊗ b̂1...n), so all terms in (1− 2), and

(2− 1) cancel each other in pairs.

The terms of (2−2) and (2−4) are equals but with opposite sign, so they cancel. In (2−3)

if n− i = 1 the type of elements in this term will have the forms (−1)k+1(s−1(dkb0...n−1⊗∗)

which are the same elements on (3 − 2) in case of i = 2 or i = n − 1, since in this case
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the elements on (3− 2) will have the form −(s−1b1...n ⊗ ∗) or (−1)n+1(s−1b0...n−1 ⊗ ∗) also

here we used the fact that P Crs
2 X acts trivially on P Crs

n X. otherwise the form of elements

in (3 − 2) will have the same form of elements in (2 − 4) but with opposite sign, so they

cancel in pairs.

4.3 Construction of the contracting homotopy

Recall that the interval object I in the category of crossed complexes is given by the

fundamental crossed complex of the 1-simplex, I = π(∆[1]). This has object set I0 = {0, 1}

and just one generator (σ : 0→ 1) ∈ I1.

Definition 4.8. Two homomorphisms f, g : C → D are homotopic if there exists a homo-

topy h : f ' g between f and g. That is, if there is a homomorphism

h : π(∆[1])⊗ C → D

such that hi0 = f and hi1 = g [31].

DC π(∆[1])⊗ C h

f

g

i0

i1

Definition 4.9. Let C be a crossed complex with C0 = {∗}. A contracting homotopy is

a homotopy h between the constant homomorphism 0∗ : C → C and the identity function

idC. That is, it is a homomorphism

h : π(∆[1])⊗ C → C

that satisfies:
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i. h(0⊗ c) = 0∗,

ii. h(1⊗ c) = c,

We will also assume that, for ∗ ∈ C0, h(σ ⊗ ∗) = 0∗ ∈ C1.

In other words, given a contracting homotopy we have h : ∗ ' idC . So C is contractible:

there is a homotopy equivalence

h : ∗ ' idC {∗}Cn

Given a contracting homotopy

h : π∆[1]⊗ C → C

we consider the family of functions

ηn : Cn → Cn+1, (n > 1)

defined by

ηn(c) = h(σ ⊗ c), (c ∈ Cn)

Conversely, given a family of functions ηn, we could define a contracting homotopy

h(0⊗ c) = 0∗, h(1⊗ c) = c, h(σ ⊗ c) = η(c)

In order for h to be well defined and commute with ∂ : Cn → Cn−1, the family must satisfy

some properties.

Proposition 4.10. The family of functions ηn : Cn → Cn+1, which is defined as h(σ⊗cn) =

η(cn), (n > 1) satisfies the properties that

1. ∂η(c1) = c1,
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2. ∂η(cn) = cn − η∂(cn),

3. η(cn + c′n) = η(cn) + η(c′n),

4. η(cc1n ) = η(cn).

and η(∗) = idC.

Remark 4.11. The homotopy η which was defined in definition 4.9 satisfies the properties

of Proposition 4.10 (1− 4) if and only if h is well defined and commutes with ∂.

Proof. ⇒) Suppose that the contractable homomorphism map h, is well defined and com-

mutes with ∂ then we need to prove that η satisfies the Properties (1 − 4) of Proposition

4.10.

1. ∂η(c1) = ∂h(σ⊗ c1) = h∂(σ⊗ c1) = −h(0⊗ c1)−h(σ⊗∗) +h(1⊗ c1) +h(σ⊗∗) = c1

(from Definition 2.33 and Definition 4.9),

2. ∂η(cn) = ∂h(σ ⊗ cn) = h∂(σ ⊗ cn) = h(∂1σ ⊗ cn)− h(σ ⊗ ∂cn) = −h(src(σ)⊗ cn) +

h((targ(σ)⊗cn)(σ⊗∗))−h(σ⊗∂cn) = h(0⊗cn)+h(1⊗cn)h(σ⊗∗)−h(σ⊗∂cn) = cn−η∂cn

( this is from Definition 4.9 (i) and (ii)),

3. by use of Definition 2.34 we have, η(cn+c′n) = h(σ⊗ (cn+c′n)) = h
(
(σ⊗cn)(σ⊗ src c′n) +

(σ ⊗ c′n)
)

= h(σ ⊗ cn)(σ⊗c′n) + h(σ ⊗ c′n) = η(cn)h(0⊗c′n) + η(c′n) = η(cn) + η(c′n),

4. because η(cc1n ) = h(σ ⊗ cc1n ) = h((σ ⊗ cn)(0⊗c1)) = h(σ ⊗ cn)h(0⊗c1) = η(cn)0∗ = η(cn).

⇐) Conversely, if we have η : Cn → Cn+1 a family of functions that satisfies the properties

(1− 4) of Proposition 4.10, then we need to prove that the contracting homotopy h given

as h(0⊗ c) = 0∗, h(σ ⊗ c) = η(c) and h(1⊗ c) = c, is well defined and commutes with ∂.

1. h(σ⊗ (cn + c′n)) = η(cn + c′n) = η(cn) + η(c′n) = h(σ⊗ cn) +h(σ⊗ c′n), (by Proposition

4.10 (3)).
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2. ∂h(σ ⊗ cn) = ∂η(cn) = cn − η∂(cn), (by Proposition 4.10)

= h(1⊗ cn)− h(σ ⊗ ∂(cn))

While

h∂(σ ⊗ cn) = h
(
− (0 ⊗ cn) + (1 ⊗ cn)(σ⊗∗) − (σ ⊗ ∂(cn))

)
= −h(0 ⊗ cn) + h(1 ⊗

cn)h(σ⊗∗) − h(σ ⊗ ∂(cn)) = h(1⊗ cn)− h(σ ⊗ ∂(cn)).

We want to define a family of functions η : P Crs
n X → P Crs

n+1X which form a contracting

homotopy.

Definition 4.12. Let x be an element of ΩCrsX given by a word

x = s−1x1s
−1x2 . . . s

−1xk

where xi ∈ Xni+1 and
∑k

i=1 ni = |x|. Define η : P Crs
n X → P Crs

n+1X as:

1. η(∅⊗ ∗) = 0(∅⊗∗),

2. η(xs−1ar ⊗ ∗) = (−1)|x|(x⊗ ar) ,

3. η(x⊗ bn) = 0(∅⊗∗).

Theorem 4.13. The family of functions η in Definition 4.12 forms a contracting homotopy.

Proof. The general form of the generators of P CrsX of dimension n is

pn = (xs−1aq+1 ⊗ br), |x| = m, m+ q + r = n

1. Case r = 0, the generators of P Crs
n X have the form

(xs−1aq+1 ⊗ ∗), |x| = m, m+ q = n
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i. In dimension 1 we have the only generator is p1 = (s−1a2 ⊗ ∗), so by Definition

4.12 (2) we have

η(p1) = (∅⊗ a2)

we need to show that ∂2η1(p1) = p1, so that the Proposition 4.10 holds.

∂2η1(p1) = ∂2(∅⊗ a2) = (s−1a2 ⊗ ∗) = p1, (this from the definition of the

boundary map ∂P in Definition 4.4).

Hence for dimension 1 where r = 0, η satisfies Proposition 4.10.

ii. Assume |x| > 3, q = 1, |x|+ 1 = n,

we need to show that ∂n+1ηnpn = pn − ηn−1∂npn where pn = (xs−1a2 ⊗ ∗)

so that the Proposition 4.10 holds.

From Definition 4.12 we have, ηn(pn) = ηn(xs−1a2 ⊗ ∗) = (−1)|x|(x⊗ a2)

and from Definition 4.6(2), the terms of ∂n+1(x⊗ a2) will be

∂n+1(x⊗ a2) = (−1)|x|(xs−1a2 ⊗ ∗) + (∂Ωx⊗ a2),

so the result of ∂n+1ηn(xs−1a2 ⊗ ∗) is

∂n+1ηn(xs−1a2 ⊗ ∗) = (−1)|x|
(
(−1)|x|(xs−1a2 ⊗ ∗) + (∂Ωx⊗ a2)

)
= (xs−1a2 ⊗ ∗) + (−1)|x|(∂Ωx⊗ a2).

Now;

first we will find ∂|x|+1(xs−1a2⊗∗) by use Definition 2.33 the forms of the bound-

ary of ordinary tensor product of crossed complexes,

∂(xs−1a2 ⊗ ∗) = ((∂Ωx)s−1a2 ⊗ ∗) + (−1)|x|
∑1

i=1(−1)i+1(xs−1dia2 ⊗ ∗)γi

− (−1)|x|
∑1

i=1(−1)i+1(xs−1a0...is
−1ai...2 ⊗ ∗)

= ((∂Ωx)s−1a2 ⊗ ∗) + (−1)|x|+2(x⊗ ∗)γi − (−1)|x|+2(x⊗ ∗)

= ((∂Ωx)s−1a2 ⊗ ∗)

that is because of Proposition 4.10(4) we can ignore the action.

η∂(xs−1a2 ⊗ ∗) = (−1)|x|−1(∂Ωx⊗ a2), (Definition 4.12).
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And hence,

pn − η∂(pn) = (xs−1a2 ⊗ ∗)− (−1)|x|−1(∂Ωx⊗ a2)

= (xs−1a2 ⊗ ∗) + (−1)|x|(∂Ωx⊗ a2).

again with dimension n where |x| > 3, q = 1, η satisfy Proposition 4.10.

iii. Assume |x| > 2, q > 2, |x|+ q = n,

again we want to show that ∂n+1ηnpn = pn−ηn−1∂npn where pn = (xs−1aq+1⊗∗)

from Definition 4.12(2) we have

ηn(pn) = ηn(xs−1aq+1 ⊗ ∗) = (−1)|x|(x⊗ aq+1),

∂n+1ηn(xs−1aq+1 ⊗ ∗) = (−1)|x|(∂Ωx⊗ aq+1) + (−1)|x|
∑q+1

i=1 (−1)i+|x|(x⊗ diaq+1)

+ (−1)2|x|∑q+1
i=1 (xs−1a0...i ⊗ ai...q+1)

= (−1)|x|(∂Ωx⊗ aq+1) +
∑q+1

i=1 (−1)i(x⊗ diaq+1) +
∑q+1

i=1 (xs−1a0...i ⊗ ai...q+1)

( this is by using the boundary laws of tensor products of crossed complexes

Definition 2.33).

While,

∂n(pn) = ∂n(xs−1aq+1 ⊗ ∗) = ((∂Ωx)s−1aq+1 ⊗ ∗) + (−1)|x|(x∂Ωaq+1 ⊗ ∗)

(using Definition 2.33)

= ((∂Ωx)s−1aq+1 ⊗ ∗) + (−1)|x|
∑q

i=1(−1)i+1(xs−1diaq+1 ⊗ ∗)

− (−1)|x|
∑q

i=1(−1)i+1(xs−1a0...is
−1ai...q+1 ⊗ ∗)

now from Proposition 4.10 (3) we have:

ηn−1∂n(xs−1aq+1 ⊗ ∗) = ηn−1((∂Ωx)s−1aq+1 ⊗ ∗)

+ ηn−1

(
(−1)|x|

∑q
i=1(−1)i+1(xs−1diaq+1 ⊗ ∗)

)
− ηn−1

(
(−1)|x|

∑q
i=1(−1)i+1(xs−1a0...is

−1ai...q+1 ⊗ ∗)
)

= (−1)|x|−1(∂Ωx⊗ aq+1) + (−1)2|x|∑q
i=1(−1)i+1(x⊗ diaq+1)
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− (−1)2|x|∑q
i=1(−1)i+1(xs−1a0...i ⊗ ai...q+1)

Now

pn − ηn−1∂n(pn) = (xs−1aq+1 ⊗ ∗) +
∑q

i=1(−1)i+1(xs−1a0...i ⊗ ai...q+1)

−
∑q

i=1(−1)i+1(x⊗ diaq+1)− (−1)|x|−1(∂Ωx⊗ aq+1)

= (xs−1aq+1 ⊗ ∗) +
∑q

i=1(−1)i+1(xs−1a0...i ⊗ ai...q+1)

+
∑q

i=1(−1)i(x⊗ diaq+1) + (−1)|x|(∂Ωx⊗ aq+1)

which satisfies property (2) of Proposition 4.10.

2. Case r 6= 0, we have two cases,

i. If, r = 2, |x| = m, m+ q + 2 = n,

That is we have pn = (xs−1aq+1 ⊗ b2) and we need to show that ηn−1∂npn = pn

so that the Proposition 4.10, holds.

∂n(pn) = ∂n(xs−1aq+1 ⊗ b2) = (∂Ω(xs−1aq+1)⊗ b2) + (−1)n(xs−1aq+1s
−1b2 ⊗ ∗)

but from the Definition 4.12 (3) we have η(∂Ω(xs−1aq+1)⊗ b2) = 0, so, because

of that we have

η∂(xs−1aq+1 ⊗ b2) = 0 + (−1)n(−1)n(xs−1aq+1 ⊗ b2) = pn,

ii. If, r > 3 and n = q + |x|+ r

Let pn = (xs−1aq+1 ⊗ br),

∂(pn) = ∂(xs−1aq+1 ⊗ br) = ((∂Ωx)s−1aq+1 ⊗ br) + (−1)|x|(x∂Ωaq+1 ⊗ br)

+
∑r

i=1(−1)i+|x|+q(xs−1aq+1 ⊗ dibr)

+ (−1)|x|+q
∑r−1

i=1 (xs−1aq+1s
−1b0...i ⊗ bi...r)

+ (−1)|x|+q(xs−1aq+1s
−1br ⊗ ∗)

ηn−1∂n(xs−1aq+1 ⊗ br) = 0− 0 + 0 + (−1)2(|x|+q)(xs−1aq+1 ⊗ br)

= (xs−1aq+1 ⊗ br) = pn,
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(Proposition 4.10 (3) and Definition 4.12 (3)).

We will give two examples to help the reader understand the proof of the theorem above

and furthermore to know how could calculate ηnpn.

Example 4.14. Here we introduce an example of Definition 4.12 (2).

Let p3 = (s−1a3s
−1a′2 ⊗ ∗),

we will use Proposition 4.10 (2) to calculate η3(s−1a3s
−1a′2 ⊗ ∗).

First we find ∂3(s−1a3s
−1a′2 ⊗ ∗) by using Theorem 4.5 (II),

∂3(s−1a3s
−1a′2 ⊗ ∗) =

∑2
j=1(−1)j+1(s−1dja3s

−1a′2 ⊗ ∗)γj

−
∑2

j=1(−1)j+1(s−1a0...js
−1aj...3s

−1a′2⊗∗)+(−1)2
∑1

i=1(−1)i+1(s−1a3s
−1dia

′
2⊗∗)γi

− (−1)2
∑1

i=1(−1)i+1(s−1a3s
−1a′0...is

−1a′i...2 ⊗ ∗)

= (s−1a023s
−1a′2⊗∗)(s−1a012⊗∗) −(s−1a013s

−1a′2⊗∗)(s−1a123⊗∗) −(s−1a123s
−1a′2⊗∗)

+ (s−1a012s
−1a′2 ⊗ ∗) + (s−1a3 ⊗ ∗)(s−1a′012⊗∗) − (s−1a3 ⊗ ∗)

The second step is find η2∂3p3, we will use Proposition 4.10 (3) and (4), and Definition

4.12 (2)

η2∂3(s−1a3s
−1a′2⊗∗) = (−1)1(s−1a023⊗a′2) −(−1)1(s−1a013⊗a′2) −(−1)1(s−1a123⊗a′2)

+ (−1)1(s−1a012 ⊗ a′2) + (∅⊗ a3) − (∅⊗ a3)

Here we can ignore the action by using property (4) of Proposition 4.10, and we get the

result,

= −1(s−1a023 ⊗ a′2) + (s−1a013 ⊗ a′2) + (s−1a123 ⊗ a′2) − (s−1a012 ⊗ a′2)

now we need to find (p3 − η2∂3p3)
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p3 − η2∂3(s−1a3s
−1a′2 ⊗ ∗) = (s−1a3s

−1a′2 ⊗ ∗) + (s−1a012 ⊗ a′2) − (s−1a123 ⊗ a′2)

− (s−1a013 ⊗ a′2) + (s−1a023 ⊗ a′2)

so, the final step will be to calculate (∂4η3p3) by Proposition 4.10,

∂4η3(s−1a3s
−1a′2 ⊗ ∗) = p3 − η2∂3(s−1a3s

−1a′2 ⊗ ∗) = ∂4(s−1a3 ⊗ a′2)

⇔

η3(s−1a3s
−1a′2 ⊗ ∗) = (s−1a3 ⊗ a′2)

Example 4.15. This example is related to the Definition 4.12 case (3).

Let p4 = (s−1a2⊗ b3) we will calculate η4(s−1a2⊗ b3) by using the Proposition 4.10 property

(2).

The calculation starts by finding η3∂4(s−1a2 ⊗ b3) by calculating ∂4(p4), by using Theorem

4.6

η3∂4(s−1a2 ⊗ b3) = η3

(∑3
i=1(−1)i+1(s−1a2 ⊗ dib3) + (−1)1

∑3
i=1(s−1a2s

−1b0...i ⊗ bi...3)

+
∑1

j=1(−1)j+1(s−1dja2 ⊗ b3)γj −
∑1

j=1(−1)j+1(s−1a0...js
−1aj...2 ⊗ b3)

)

= η3

(
(s−1a2⊗b023) −(s−1a2⊗b013) +(s−1a2⊗b012) −(s−1a2⊗b123)

− (s−1a2s
−1b3 ⊗ ∗) + (∅⊗ b3)(s−1a012⊗∗) − (∅⊗ b3)

)
From property (4) of Proposition 4.10 this equals:

= η3(s−1a2 ⊗ b023) − η3(s−1a2 ⊗ b013) + η3(s−1a2 ⊗ b012) − η3(s−1a2 ⊗ b123)

− η3(s−1a2s
−1b3 ⊗ ∗) + η3(∅⊗ b3)(s−1a012⊗∗) − η3(∅⊗ b3)

By Definition 4.12 (3) is equal to

= 0− 0 + 0− 0− (−1)1(s−1a2 ⊗ b3) + 0− 0 = (s−1a2 ⊗ b3)

The second step to calculate η4(s−1a2 ⊗ b3) will be:

p4 − η3∂4(s−1a2 ⊗ b3) = (s−1a2 ⊗ b3)− (s−1a2 ⊗ b3) = 0
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but from property (2) of Proposition 4.10 we have:

∂5η4(s−1a2 ⊗ b3) = p4 − η3∂4(s−1a2 ⊗ b3) = 0

⇔

η4(s−1a2 ⊗ b3) = 0
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5 The general path crossed complex

Introduction

In the previous chapter we have defined a twisted tensor product P CrsX = ΩCrs(X)⊗φ πX

of crossed complexes for a 1-reduced simplicial set X. We have proved that this crossed

complex is homotopy equivalent to the trivial crossed complex. It is therefore a crossed

complex model for the path space of X.

In this chapter our objective is to extend all of our results to 0-reduced simplicial sets

which are not necessarily 1-reduced. We obtain an extended crossed complex (P CrsX, ∂P ).

Let X be a 0-reduced simplicial set, X0 = {∗} and let πX be the fundamental crossed

complex. This is a crossed complex of groups which has generators b ∈ (πX)n for each non-

degenerate n-simplex b of X. The crossed complex Ω̂CrsX is a crossed complex of groupoids.

It is the free crossed chain algebra with graded algebra generators s−1a in degree n for each

(n+ 1)-simplex a ∈ X . The structure of the chapter is as follows. In the first section, we

generalise the crossed cobar construction ΩCrsX to an extended ‘group-completed’ crossed

cobar Ω̂CrsX for any 0-reduced simplicial X and give its structure. In the second section, we

consider a crossed complex that is simpler than the general path crossed complex P CrsX:

it is the non-twisted tensor product of the crossed complex ΩCrsX, and πX. For this non-

twisted tensor product we know there is a boundary map ∂⊗. In the third section, we

define the structure of the crossed complex of groupoids P CrsX, which is the twisted tensor

product of the crossed complex of groups πX, and the free crossed complex of groupoids

Ω̂CrsX. We define the boundary map ∂P and prove it satisfies ∂Pn−1∂
P
n = 0.

5.1 The crossed cobar construction for 0-reduced simplicial sets

Let X be a 0-reduced simplicial set. We aim to introduce a crossed complex model for

the path space PX, but before we do this we must introduce a crossed complex model for
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the loop space Ω̂X. That is, we must generalise the crossed cobar construction ΩCrsX of

Definition 4.1 from 1-reduced simplicial sets to 0-reduced simplicial sets. We know this is

possible for chain complexes, by the work of Hess and Tonks [20], but for crossed complexes

it will be a new construction.

For a 1-reduced simplicial set X, the crossed cobar construction ΩCrsX is a crossed

complex of groups. If X is not 1-reduced (but only 0-reduced) then the crossed cobar

construction Ω̂CrsX is a crossed complex of groupoids. Since the cobar construction is a

free algebra, the object set will be an infinite set, defined as a free monoid. The generators

of this free monoid will be the non-degenerate 1-simplices of X.

We cannot see any obvious way to remove the condition that X is 0-reduced. If the

simplicial set has more than one vertex, then there will be a loop space based at each

vertex. These different loop spaces will be equivalent if X is connected, but they will be

completely unrelated otherwise.

Definition 5.1. Let X be a 0-reduced simplicial set. The crossed cobar ΩCrsX is a free

crossed chain algebra generated by the elements s−1an+1 in dimension n for each non-

degenerate (n+ 1)-simplex of X. The basepoint of a generator s−1an+1 in dimension n > 1

is

p = β(s−1an+1) = s−1a01 · · · s−1ann+1 ∈ ΩCrs
0 X

and the source and target of a generator s−1a2 in dimension 1 are

src(s−1a2) = β(s−1a2) = s−1a01s
−1a12 targ(s−1a2) = s−1a02 ∈ ΩCrs

0 X.

The boundary map is given on the generators s−1an+1, in dimension n > 2, by the following

modification of the formulas in Definition 4.1:

∂Ω
2 s
−1a3 = −s−1a01 · s−1a123 − s−1a013 + s−1a023 + s−1a012 · s−1a23

86



∂Ω
3 s
−1a4 = −s−1a0123 · s−1a34 − s−1a0134

s−1a01·s−1a123·s−1a34 − s−1a01 · s−1a1234

+ s−1a0124
s−1a01·s−1a12·s−1a234 + s−1a012 · s−1a234 + s−1a0234

s−1a012·s−1a23·s−1a34

∂Ω
n s
−1an+1 =

n∑
i=1

(−1)i+1(s−1dian+1)γi −
n∑
i=1

(−1)i+1s−1a0...i · s−1ai...n+1

where

γi = s−1a01 · s−1a12 · · · s−1ai−2 i−1 · s−1ai−1 i i+1 · s−1ai+1 i+2 · · · s−1an n+1

Proposition 5.2. The boundary maps in Definition 5.1 are well-defined in the crossed

complex of groupoids ΩCrsX.

Proof. Consider any generator x = s−1an+1 in dimension n > 2. This has basepoint

p = src s−1an+1 = s−1a01 · · · s−1ann+1 ∈ ΩCrs
0 X.

We must check that the terms in the expressions for ∂Ω
n x in Definition 5.1 have the correct

sources and targets to ensure they are composable in ΩCrs
n−1X. We must also check that the

composite ∂Ω
n x ∈ ΩCrs

n−1X has source and target equal to p if n = 2, and has basepoint equal

to p if n > 3.

n = 2: We can write the expression

∂Ω
2 s
−1a3 = −s−1a01s

−1a123 − s−1a013 + s−1a023 + s−1a012s
−1a23

as a diagram:

s−1a02 · s−1a23

s−1a023

��

s−1a01 · s−1a12 · s−1a23 = p
s−1a012·s−1a23oo

s−1a03 −s−1a013

// s−1a01 · s−1a13

−s−1a01·s−1a123

OO

In this diagram we have shown that the composite is defined and the result has source

and target p.
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n = 3: We could try to draw a diagram of the expression

∂Ω
3 (s−1a4) =− s−1a0123 · s−1a34 − s−1a0134

s−1a01·s−1a123·s−1a34 − s−1a01 · s−1a1234

+ s−1a0124
s−1a01·s−1a12·s−1a234 + s−1a012 · s−1a234 + s−1a0234

s−1a012·s−1a23·s−1a34

but it would be a 3-dimensional cube. Instead, we will just check that the basepoints

of all six terms are equal to p, so the composite is defined and also has basepoint p:

• s−1a0123 has basepoint s−1a01 · s−1a12 · s−1a23.

Therefore s−1a0123 · s−1a34 has basepoint p.

• The source of s−1a01 ·s−1a123 ·s−1a34 is p, and the target is s−1a01 ·s−1a13 ·s−1a34,

which is the same as the basepoint of s−1a0134.

Therefore s−1a0134
s−1a01·s−1a123·s−1a34 has basepoint p.

• s−1a1234 has basepoint s−1a12 · s−1a23 · s−1a34.

Therefore s−1a01 · s−1a1234 has basepoint p.

• The source of s−1a01 ·s−1a12 ·s−1a234 is p and the target is s−1a01 ·s−1a12 ·s−1a24,

which is the same as the basepoint of s−1a0124.

Therefore s−1a0124
s−1a01·s−1a12·s−1a234 has basepoint p.

• s−1a012 · s−1a234 has basepoint p.

• The source of s−1a012 · s−1a23 · s−1a34 is p and the target is s−1a02 · s−1a23 · s−1a34

which is the same as the basepoint of s−1a0234.

Therefore s−1a0234
s−1a012·s−1a23·s−1a34 has basepoint p.

n > 4: This is similar to the case n = 3, except now it is abelian too. We can see that half of

the terms have the form s−1a0...i · s−1ai...n+1, and these clearly have basepoint p. The

other half of the terms have the form s−1dian+1
γi where the 1-dimensional element
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γi has source p and has target equal to the basepoint of the (n − 1)-dimensional

element s−1dian+1. Therefore the composite of the terms in the boundary relation

for ∂Ω
n s
−1an+1 exists in (ΩCrs

n−1X)(p).

Example 5.3. Let X be the 0-reduced simplicial set which is a model for S1,

X = S1 = ∆[1]/∂∆[1]

which has one 0 simplex ∗, one non-degenerate 1-simplex σ, and no non-degenerate sim-

plices in dimensions n > 2.

The crossed cobar construction is ΩCrsS1 is the free crossed chain algebra generated

by s−1σ. Therefore ΩCrsS1 has object set given by the free monoid on one generator. In

dimensions n > 1 it has only identity elements.

ΩCrsS1 ∼= N.

The usual model for the loop space on S1 is not the natural numbers N, it is the integers

Z. We can introduce a new construction, which we call the group-completed crossed cobar

construction Ω̂Crs, so that

Ω̂CrsS1 ∼= Z.

If X is any 0-reduced simplicial set then the object set of Ω̂CrsX will be a free group

whose generators correspond to the non-degenerate 1-simplices of X. The group completed

crossed cobar construction Ω̂Crs is related to the extended cobar construction Ω̂ that we

looked at for chain complexes in section 3.1.2.

Definition 5.4. Let X be a 0-reduced simplicial set. The group-completed crossed cobar

construction Ω̂CrsX is a free crossed chain algebra generated by the elements s−1an+1 in
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dimension n for each non-degenerate (n + 1)-simplex of X, together with extra generators

(s−1a1)−1 for each non-degenerate 1-simplex a1 of X. The source, target and boundary of

a generator s−1an+1 in dimension n > 1 is the same as in Definition 5.1.

We have defined Ω̂CrsX as a free crossed chain algebra. It is also free as a crossed

complex of groupoids. As a crossed complex of groupoids, we know that the object set is

{
ω = (s−1a

(1)
1 )ε1(s−1a

(2)
1 )ε2 · · · (s−1a

(k)
1 )εk : k > 0, a

(i)
1 ∈ X1 − {s0(∗)}, εi = ±1

}
(25)

The generators x of degree |x| = n of the free crossed complex Ω̂CrsX are given by words

x = ω(0)s−1a
(1)
n1+1ω

(1)a
(2)
n2+1 · · ·ω(r−1)s−1a

(r)
nr+1ω

(r), (26)

where r > 0, each ω(i) ∈ Ω̂Crs
0 X, each a

(i)
ni+1 is a non-degenerate simplex in Xni+1, ni > 1,

and
∑
ni = n.

The basepoint p = β(x) of x is the product of the basepoints of all of the terms in x. We

point out that because there are inverses in degree zero, some cancellation might happen.

For example,

β
(
s−1a3 · (s−1a23)(−1) · s−1a′2

)
= s−1a01s

−1a12s
−1a′01s

−1a′12

Because Ω̂Crs
n X is a (free) crossed chain algebra with the algebra structure

Ω̂Crs
n X ⊗ Ω̂Crs

n X → Ω̂Crs
n X

defined by concatenation of words

x⊗ x′ 7→ x · x′,

the boundary of an element x can be calculated from the relations in Definition 2.34 together

with the boundary relations for the elements s−1ani+1 given in Definition 5.1.
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If each ni > 3 then the formula is long but easy. For example

∂Ω̂
7 (s−1a4 · s−1a′5) =

(
∂3s
−1a4

)
· s−1a′5 + (−1)|s

−1a4| s−1a4 ·
(
∂4s
−1a′5

)
=
(
−s−1a0123 · s−1a34 − s−1a0134

s−1a01·s−1a123·s−1a34 − s−1a01 · s−1a1234

+s−1a0124
s−1a01·s−1a12·s−1a234 + s−1a012 · s−1a234 + s−1a0234

s−1a012·s−1a23·s−1a34
)
s−1a′5

− s−1a4

(
4∑
j=1

(−1)j+1(s−1dja
′
5)γ
′
j −

4∑
j=1

(−1)j+1s−1a′0...j · s−1a′j...5

)

=
3∑
i=1

(−1)i+1
(

(s−1dia4 · s−1a′5)γi·p
′ − s−1a0...is

−1ai...4s
−1a′5

)
−

4∑
j=1

(−1)j+1
(

(s−1a4 · s−1dja
′
5)p·γ

′
j − s−1a4s

−1a′0...js
−1a′j...5

)
in the abelian group Ω̂Crs

6 X(p·p′), where p and p′ are the basepoints of a4 and a′5 respectively.

All the boundary formulas ∂Ω̂x can be calculated using the relations in Definitions 2.34

and 5.1. In low degrees the boundary formula will not be abelian so we must take more

care. We write down the results in the following proposition

Proposition 5.5. Consider a generator of the crossed complex of groupoids Ω̂CrsX,

x = ω(0) ·
r∏

k=1

s−1a
(k)
nk+1 · ω(k)

with each ω(k) ∈ Ω̂Crs
0 X and each a

(k)
nk+1 ∈ Xnk+1, as in (26).

If n = |x| =
∑
ni > 4 then the boundary ∂Ω̂

n x is given by

r∑
k=1

nk∑
i=1

(−1)
i+1+

k−1∑
`=1

n`

ω(0) ·
k−1∏
`=1

s−1a
(`)
n`+1 · ω(`) · s−1dia

(k)
nk+1 · ω(k) ·

r∏
`=k+1

s−1a
(`)
n`+1 · ω(`)

γ
(k)
i

− ω(0) ·
k−1∏
`=1

s−1a
(`)
n`+1 · ω(`) · s−1a

(k)
0...i · s−1a

(k)
i...nk+1 · ω(k) ·

r∏
`=k+1

s−1a
(`)
n`+1 · ω(`)

)
Here the action is by

γ
(k)
i = ω(0) ·

k−1∏
`=1

p(`) · ω(`) · β(s−1a
(k)
0...i−1) · a(k)

i−1 i i+1 · β(s−1a
(k)
i+1...nk+1) ·

r∏
`=k+1

p(`) · ω(`)
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where p(`) is the basepoint β(s−1a
(`)
n`+1).

If n ≤ 3 then to save space we will not write the elements ω of degree 0:

∂Ω̂
2 (s−1a2 · s−1a′2)

=− (s−1a01 · s−1a12 · s−1a′2)− (s−1a2 · s−1a′02) + (s−1a02 · s−1a′2) + (s−1a2 · s−1a′01 · s−1a′12)

∂Ω̂
3 (s−1a2 · s−1a′2 · s−1a′′2)

=− (s−1a2 · s−1a′2 · s−1a′′01 · s−1a′′12)− (s−1a2 · s−1a′02 · s−1a′′2)(s−1a01·s−1a12·s−1a′2·s−1a′′01·s−1a′′12)

− (s−1a01 · s−1a12 · s−1a′2 · s−1a′′2) + (s−1a2 · s−1a′2 · s−1a′′02)(s−1a01·s−1a12·s−1a′01·s−1a′12·s−1a′′2 )

+ (s−1a2 · s−1a′01 · s−1a′12 · s−1a′′2) + (s−1a02 · s−1a′2 · s−1a′′2)(s−1a2·s−1a′01·s−1a′12·s−1a′′01·s−1a′′12)

∂Ω̂
3 (s−1a3 · s−1a′2)

=− (s−1a01 · s−1a123 · s−1a′2) + (s−1a3 · s−1a′02)(s−1a01·s−1a12·s−1a23·s−1a′2)

+ (s−1a012 · s−1a23 · s−1a′2) + (s−1a023 · s−1a′2)(s−1a012·s−1a23·s−1a′01·s−1a′12)

− (s−1a3 · s−1a′01 · s−1a′12)− (s−1a013 · s−1a′2)(s−1a01·s−1a123·s−1a′01·s−1a′12)

∂Ω̂
3 (s−1a2s

−1a′3)

=− (s−1a2 · s−1a′023)(s−1a01·s−1a12·s−1a′012·s−1a′23) − (s−1a2 · s−1a′012 · s−1a′23)

+ (s−1a02 · s−1a′3)(s−1a2·s−1a′01·s−1a′12·s−1a′23) + (s−1a2 · s−1a′01 · s−1a′123)

+ (s−1a2 · s−1a′013)(s−1a01·s−1a12·s−1a′01·s−1a′123) − (s−1a01 · s−1a12 · s−1a′3)

5.2 The general path crossed complex: an example

In the previous section, in Example 5.3, we saw how to define the group-completed cobar

construction Ω̂CrsS1 for the simplical model of the circle,

X = S1 = ∆[1]/{0 ∼ 1}.

In this section we give an example of a crossed complex P CrsS1 of groupoids which is
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• contractible, and so it is a model for the path space on the circle, PS1

• a kind of twisted tensor product of the fundamental crossed complex of S1 and the

group-completed cobar construction on S1,

P CrsS1 = Ω̂CrsS1 ⊗φ πS1

It is a crossed complex of groupoids, so we first define the object set, then the groupoid

structure. It is only 1-dimensional, so we will not need to define any crossed module or

crossed complex structure. We have seen in the previous chapter how to define the twisted

tensor product in higher dimensions. For the classical construction with chain complexes,

the twisted boundary of the twisted tensor product is just

∂P (x⊗ bn) = ∂⊗(x⊗ bn) ±
n−1∑
i=2

x s−1b0...i ⊗ bi...n.

The example we do now illustrates how to twist the tensor product in dimensions 0 and 1.

Instead of twisting the boundary maps, we need to twist the source and target maps. We

find that we just need to twist the target of an arrow in the groupoid, leaving the source

as it was.

We know that π(S1) is a crossed complex of groups, which has a single basepoint

π(S1) = {∗}. In dimension 1 it is the free group

π1(S1) = 〈b1〉 ∼= Z.

All higher dimensional elements are the identity id∗.

We have seen in Example 5.3 that the object set of the group-completed crossed cobar

construction Ω̂CrsS1 for S1 is just the set

Ω̂Crs
0 S1 = {(s−1b1)k : k ∈ Z} ∼= Z,

and that all higher-dimensional elements in Ω̂CrsS1 are identities.
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Definition 5.6. We define the crossed complex of groupoids

P CrsS1 = Ω̂CrsS1 ⊗φ πS1

as follows:

• The object set is {(s−1b1)k ⊗ ∗ : k ∈ Z}

• The generators of the groupoid Ω̂Crs
1 S1 are

(s−1b1)k ⊗ b1) : ((s−1b1)k ⊗ ∗) −→ ((s−1b1)k+1 ⊗ ∗).

• There are only identity elements in degree > 2.

Another way of writing this is:

• the objects, in dimension 0+0, are ω⊗∗, where ω is an object of the group-completed

cobar construction

• the arrows, in dimension 0 + 1, are generated by ω ⊗ b1, which has source ω ⊗ ∗ as

usual, but has twisted target ω · s−1b1 ⊗ ∗

The objects can be thought of as all integers k, and the generating arrows are arrows from

k → k + 1.

A picture of the path crossed complex P CrsS1 is:

. . . // −k // · · · // −1 // 0 // 1 // · · · // k // k + 1 // . . .

Theorem 5.7. The following crossed complexes are isomorphic:

P CrsS1 = Ω̂CrsS1 ⊗φ πS1 ∼= π(R) = π(Z×τ S1)
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5.3 The general path crossed complex: the definition

This is a crossed complex of groupoids, so we first define the object set, then the groupoid

structure, and then the crossed module and crossed complex structure for each object.

Suppose that X0 = {∗}. The crossed complex P CrsX will be an example of a twisted

tensor product of:

• the crossed complex of groups πX, whose object set is {∗}

• the crossed chain algebra Ω̂CrsX, whose object set Ω̂Crs
0 X was defined in Definition

5.4, so is the free group on the desuspension of the non-degenerate 1-simplices of X.

Its elements are thus words in the letters s−1a1, and (s−1a1)−1 for a1 ∈ X1−{s0(∗)},

with neutral element given by the empty word ω = ∅.

We have already considered a simpler version of this construction in the previous chapter.

In chapter 4, X was a 1-reduced simplicial set, and so ΩCrs
0 X = {∅}. The construction

in this chapter will be more complicated but it will still be a twisted tensor product. The

crossed complex of groupoids P CrsX will be free crossed complex with the same generators

as the ordinary, non-twisted, tensor product Ω̂CrsX ⊗ πX. We write these generators as

x⊗ b ∈ P Crs
n+mX,

where

• x is a generator of degree |x| = n in Ω̂Crs
n X, defined in (26).

We know that Ω̂Crs
n X is a (free) crossed chain algebra with the algebra structure

defined by concatenation of words x⊗ x′ 7→ xx′.

• b is a generator of degree |b| = m in πX, given by a non-degenerate m-simplex of X.
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The boundary maps of P CrsX will be more complicated than the boundary maps of the

ordinary, non-twisted, tensor product.

5.3.1 The boundary of the non-twisted tensor product

Before we define the boundary maps for P CrsX we will given now the explicit formulas for

the ordinary, non-twisted, tensor product

Ω̂CrsX ⊗ πX, ∂⊗

This boundary map, in the context of chain complexes, would be ∂⊗ = ∂Ω̂ ⊗ id± id⊗∂π.

The crossed complex formula for ∂⊗ will be similar, but with a more complicated (possibly

non-abelian) formula if n < 2 or m < 2.

In chapter 4 we have seen that the twisted boundary maps have some extra terms with

the form

(−1)|x|
m∑
i=1

(x · s−1b0...i ⊗ bi...m).

In the following section we will modify the explicit formulas ∂⊗ to obtain a definition of

∂P .

1. For the non-twisted tensor product, for m = n = 1, ω ∈ Ω̂Crs
0 X we have:

∂⊗2 (ωs−1a2ω
′ ⊗ b1)

=− (ωs−1a01s
−1a12ω

′ ⊗ b1)− (ωs−1a2s
−1ω′ ⊗ b(1))

+ (ωs−1a02ω
′ ⊗ b1) + (ωs−1a2ω

′ ⊗ b(0))
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(s−1a2⊗b(0))

(s−1a2⊗b(1))

(s−1a01s−1a12⊗b1) (s−1a02⊗b1)

p=(s−1a01s−1a12⊗∗)

Figure 12: ∂⊗2 (s−1a2 ⊗ b1)

2. For n > 2,m = 0 we have:

•

∂⊗2 (ωs−1a3ω
′ ⊗ ∗)

=− (ωs−1a01s
−1a123ω

′ ⊗ ∗)− (ωs−1a013ω
′ ⊗ ∗)

+ (ωs−1a023ω
′ ⊗ ∗) + (ωs−1a012s

−1a23ω
′ ⊗ ∗)

(s−1a023⊗∗)

(s−1a01s−1a123⊗∗)

(s−1a012s−1a23⊗∗) (s−1a013⊗∗)

p=(s−1a01s−1a12s−1a23⊗∗)

Figure 13: ∂⊗2 (s−1a3 ⊗ ∗)

•

∂⊗2 (ωs−1a2s
−1a′2ω

′ ⊗ ∗)
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=− (ωs−1a01s
−1a12s

−1a′2ω
′ ⊗ ∗)− (ωs−1a2s

−1a′02ω
′ ⊗ ∗)

+ (ωs−1a02s
−1a′2ω

′ ⊗ ∗) + (ωs−1a2s
−1a′01s

−1a′12ω
′ ⊗ ∗)

(s−1a2s−1a′02⊗∗)

(s−1a2s−1a′01s
−1a′12⊗∗)

(s−1a01s−1a12s−1a′2⊗∗) (s−1a02s−1a′2⊗∗)

p=(s−1a01s−1a12s−1a′01s
−1a′12⊗∗)

Figure 14: ∂⊗2 (s−1a2s
−1a′2 ⊗ ∗)

•

∂⊗3 (ωs−1a4ω
′ ⊗ ∗)

=− (ωs−1a0134ω
′ ⊗ ∗)(s−1a01s−1a123s−1a34⊗∗) − (ωs−1a01s

−1a1234ω
′ ⊗ ∗)

+ (ωs−1a0124ω
′ ⊗ ∗)(s−1a01s−1a12s−1a234⊗∗) + (ωs−1a012s

−1a234ω
′ ⊗ ∗)

+ (ωs−1a0234ω
′ ⊗ ∗)(s−1a012s−1a23s−1a34⊗∗) − (ωs−1a0123s

−1a34ω
′ ⊗ ∗)

•

∂⊗3 (ωs−1a3ω
′s−1a′2ω

′′ ⊗ ∗)

=− (ωs−1a01s
−1a123ω

′s−1a′2ω
′′ ⊗ ∗)

+ (ωs−1a3ω
′s−1a′02ω

′′ ⊗ ∗)(s−1a01s−1a12s−1a23s−1a′2⊗∗)

+ (ωs−1a012s
−1a23ω

′s−1a′2ω
′′ ⊗ ∗)

+ (ωs−1a023ω
′s−1a′2ω

′′ ⊗ ∗)(s−1a012s−1a23s−1a′01s
−1a′12⊗∗)

− (ωs−1a3ω
′s−1a′01s

−1a′12ω
′′ ⊗ ∗)

− (ωs−1a013ω
′s−1a′2ω

′′ ⊗ ∗)(s−1a01s−1a123s−1a′01s
−1a′12⊗∗)
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•

∂⊗3 (ωs−1a2ω
′s−1a′3ω

′′ ⊗ ∗)

=− (ωs−1a01s
−1a12ω

′s−1a′3ω
′′ ⊗ ∗)

+ (ωs−1a2ω
′s−1a′013ω

′′ ⊗ ∗)(s−1a01s−1a12s−1a′01s
−1a′123⊗∗)

+ (ωs−1a2s
−1a′01ω

′s−1a′123ω
′′ ⊗ ∗)

+ (ωs−1a02ω
′s−1a′3ω

′′ ⊗ ∗)(s−1a012s−1a′01s
−1a′12s

−1a′23⊗∗)

− (ωs−1a2ω
′s−1a′012s

−1a′23ω
′′ ⊗ ∗)

− (ωs−1a2ω
′s−1a′023ω

′′ ⊗ ∗)(s−1a01s−1a12s−1a′012s
−1a′23⊗∗)

•

∂⊗3 (ω(1)s−1a2ω
(2)s−1a′2ω

(3)s−1a′′2ω
(4) ⊗ ∗)

=− (ω(1)s−1a2ω
(2)s−1a′2ω

(3)s−1a′′01s
−1a′′12ω

(4) ⊗ ∗)

− (ω(1)s−1a2ω
(2)s−1a′02ω

(3)s−1a′′2ω
(4) ⊗ ∗)(s−1a01s−1a12s−1a′2s

−1a′′01s
−1a′′12⊗∗)

− (ω(1)s−1a01s
−1a12ω

(2)s−1a′2ω
(3)s−1a′′2ω

(4) ⊗ ∗)

+ (ω(1)s−1a2ω
(2)s−1a′2ω

(3)s−1a′′02ω
(4) ⊗ ∗)(s−1a01s−1a12s−1a′01s

−1a′12s
−1a′′2⊗∗)

+ (ω(1)s−1a2ω
(2)s−1a′01s

−1a′12ω
(3)s−1a′′2ω

(4) ⊗ ∗)

+ (ω(1)s−1a02ω
(2)s−1a′2ω

(3)s−1a′′2ω
(4) ⊗ ∗)(s−1a2s−1a′01s

−1a′12s
−1a′′01s

−1a′′12⊗∗)

3. For n > 0,m > 1 we have:

•

∂⊗3 (ωs−1a3ω
′ ⊗ b1)

=− (ωs−1a01s
−1a123ω

′ ⊗ b1) + (ωs−1a3ω
′ ⊗ b(1))

(s−1a01s−1a12s−1a23⊗b1)

+ (ωs−1a012s
−1a23ω

′ ⊗ b1) + (ωs−1a023ω
′ ⊗ b1)(s−1a012s−1a23⊗∗)
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− (ωs−1a3ω
′ ⊗ b(0))− (ωs−1a013ω

′ ⊗ b1)(s−1a01s−1a123⊗∗)

6

1 2s
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a 0

13
⊗b

(1
)

3a 0
12
·a 2

3
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−
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0
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−
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−
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a
2
3
⊗
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−
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0
1
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−
1
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1
3
⊗
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)

F
(s−1a01 · s−1a123 ⊗ b1)

7
8

(s−1a01·s−1a123⊗b(0))

s−1a02s−1·a123⊗b(1)

11

s
−1
a 0

12
·s
−1
a 2

3
⊗b

(1
)

⊥

L

R

T

(s−1a3 ⊗ b(0))

(s−1a3⊗b1)

(s−1a3 ⊗ b(1))

a012·a23⊗b1

7

8

10
12

(s−1a023⊗b(0))

(s−1a023⊗b(1))

B
(s−1a023 ⊗ b1)

9

Figure 15: ∂⊗2 (s−1a3 ⊗ b1)

•

∂⊗3 (ωs−1a2ω
′s−1a′2ω

′′ ⊗ b1)

= + (ωs−1a02ω
′s−1a′2ω

′′ ⊗ b1)(s−1a2s−1a′01s
−1a′12⊗b(0)) − (ωs−1a2ω

′s−1a′2ω
′′ ⊗ b(0))

− (ωs−1a2ω
′s−1a′02ω

′′ ⊗ b1)(s−1a01s−1a12s−1a′2⊗b(0)) − (ωs−1a01s
−1a12ω

′s−1a′2ω
′′ ⊗ b1)

+ (ωs−1a2ω
′s−1a′2ω

′′ ⊗ b(1))
(s−1a01s−1a12s−1a′01s

−1a′12⊗b1)

+ (ωs−1a2ω
′s−1a′01s

−1a′12ω
′′ ⊗ b1)

•

∂⊗2 (ω ⊗ b2)

=− (ω ⊗ b02) + (ω ⊗ b12) + (ω ⊗ b01)
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(ω ⊗ b(0)) (ω ⊗ b(1))

(ω ⊗ b(2))

(ω ⊗ b01)

(ω ⊗ b02) (ω ⊗ b12)
(ω⊗b2)

Figure 16:

•

∂⊗3 (ωs−1a2ω
′ ⊗ b2)

=− (ωs−1a2ω
′ ⊗ b01)− (ωs−1a2ω

′ ⊗ b(12))
(s−1a01s−1a12⊗b01)

− (ωs−1a01s
−1a12ω

′ ⊗ b2)

+ (ωs−1a2ω
′ ⊗ b02) + (ωs−1a02ω

′ ⊗ b2)(s−1a2⊗b(0))

B

(s−1a2 ⊗ b02)

(s−1a2 ⊗ b01)

T

⊥
(s−1a2 ⊗ b12)

L

(s
−1 a

01
s
−1 a

12
⊗b2

)

(s
−1 a

02
⊗b2

)

R

Figure 17:

•

∂⊗3 (ω ⊗ b3)

=− (ω ⊗ b023) + (ω ⊗ b013)

+ (ω ⊗ b123)(ω⊗b01) − (ω ⊗ b012)
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⊥
(ω⊗b013)

L1

(ω⊗b023)

L3
(ω⊗b012)

L2

(ω⊗b123)

Figure 18:

∂⊗(x⊗ b)

=(−1)|x|(x⊗ d0b)
p⊗b01 +

m∑
i=1

(−1)i+|x|(x⊗ dib)

+
r∑

k=1

nk∑
i=1

(−1)
i+1+

k−1∑
`=1

n`

((
ω(0) ·

k−1∏
`=1

s−1a
(`)
n`+1 · ω(`) · s−1dia

(k)
nk+1 · ω(k) ·

r∏
`=k+1

s−1a
(`)
n`+1 · ω(`) ⊗ b

)γ(k)i

−
(
ω(0) ·

k−1∏
`=1

s−1a
(`)
n`+1 · ω(`) · s−1a

(k)
0...i · s−1a

(k)
i...nk+1 · ω(k) ·

r∏
`=k+1

s−1a
(`)
n`+1 · ω(`) ⊗ b

))
where the action is by

γ
(k)
i = (ω(0) ·

k−1∏
`=1

p(`) · ω(`) · β(s−1a
(k)
0...i−1) · a(k)

i−1 i i+1 · β(s−1a
(k)
i+1...nk+1) ·

r∏
`=k+1

p(`) · ω(`) ⊗ ∗)

where p(`) is the basepoint β(s−1a
(`)
n`+1).

5.3.2 The boundary of the twisted tensor product

In this section we will complete our construction of the crossed complex of groupoids P CrsX,

which will be an example of a twisted tensor product of a (free) crossed chain algebra and

a (free) crossed complex.
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Definition 5.8. Let X be a 0-reduced simplicial set. The path crossed complex P CrsX

is the twisted tensor product of the crossed complex of groups πX, and the free crossed

complex of groupoids Ω̂CrsX. Its object set is

P Crs
0 X = (Ω̂CrsX ⊗φ πX)0 = {(ω ⊗ ∗) | ω ∈ Ω̂Crs

0 X}

where ω is any object of Ω̂CrsX,

ω = (s−1a
(1)
1 )ε1(s−1a

(2)
1 )ε2 · · · (s−1a

(k)
1 )εk

for k > 0, a
(i)
1 ∈ X1 − {s0(∗)}, εi = ±1.

In dimension 1 the generators are of form

(ω ⊗ b1) : (ω ⊗ ∗)→ (ωs−1b1 ⊗ ∗)

which has twisted target, and

(ωs−1a2ω
′ ⊗ ∗) : (ωs−1a01s

−1a12ω
′ ⊗ ∗)→ (ωs−1a02ω

′ ⊗ ∗).

In any dimension n+m > 1, the general form of a generator is:

(x⊗ b) ∈ P Crs
n+mX

where b is a non-degenerate simplex in Xm and x is an n-dimensional generator of Ω̂CrsX,

x = ω(0)s−1a
(1)
n1+1ω

(1)a
(2)
n2+1 · · ·ω(k−1)s−1a

(k)
nk+1ω

(k)

with ω(i) ∈ Ω̂Crs
0 X, 0 ≤ i ≤ k, and each a

(i)
ni+1 a non-degenerate simplex in Xni+1, ni > 1,∑

ni = n.
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The boundary map ∂Pn+m : P Crs
n+mX → P Crs

n+m−1X is given for dimension n + m > 2 by the

following formulas:

For n+m = 2 we have four types of terms, but if n = 2 and m = 0 then the boundary is

the same as the untwisted boundary, so we will not write them. The other two cases are

∂P2 (ω ⊗ b2) = −(ω ⊗ b02) + (ωs−1b2 ⊗ ∗) + (ωs−1b01 ⊗ b12) + (ω ⊗ b01)

(ωs−1b2 ⊗ ∗)

(ω ⊗ b01)

(ω ⊗ b02) (ωs−1b01 ⊗ b12)

p = (ω ⊗ ∗)

Figure 19: ∂P2 (ω ⊗ b2)

and

∂P2 (ωs−1a2ω
′ ⊗ b1) = −(ωs−1a01s

−1a12ω
′ ⊗ b1)− (ωs−1a2ω

′s−1b1 ⊗ b(1))

+(ωs−1a02ω
′ ⊗ b1) + (ωs−1a2ω

′ ⊗ b(0))

(s−1a2⊗∗)

(s−1a2s−1b1⊗∗)

(s−1a01s−1a12⊗b1) (s−1a02⊗b1)

p=(s−1a01s−1a12⊗∗)

Figure 20: ∂P2 (s−1a2 ⊗ b1)
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For n+m = 3, the boundary map ∂P3 (x⊗ bm) is in P Crs
2 , which is still non-abelian. There

are eight types of generators, but when m = 0 their boundaries are identical to the non-

twisted version, so there are only four cases we need to define.

∂P3 (ω ⊗ b3) =(ωs−1b3 ⊗ b(3))
(s−1b01s−1b12⊗b23)+(s−1b01⊗b12)+(ω⊗b01)

+ (ωs−1b012 ⊗ b23)(s−1b01⊗b12)+(ω⊗b01) − (ω ⊗ b012)

− (ω ⊗ b023) + (ω ⊗ b013) + (ωs−1b01 ⊗ b123)(ω⊗b01)

ω⊗b013

L (ω
s−

1
b 0

1
⊗
b 1

3
)(ω

s
−1
b 0
13
⊗b

3
)

(ω
⊗
b 0

3
)

(ω
⊗b

01
)

(ωs−1b023⊗b(3))

(ω
s
−1
b 0
13
⊗b

3
)

(ωs−1b01s−1b123⊗b(3))

(ω
s
−1
b 0
12
s
−1
b 2
3
⊗b

(3
)
)

ωs−1b3⊗b(3) T

(ωs−1b01⊗b12)

(ω
s−

1
b 0

1
s−

1
b 1

2
⊗
b 2

3
)

(ωs−1b01⊗b13)

(ωs−1b01⊗b13)

(ωs−1b01⊗b123)

B

(ωs−1b023⊗b(3))

(ω
⊗
b 0

3
)

(ω⊗b02)

(ω
s−

1
b 0

2
⊗
b 2

3
)

ω⊗b023

F

(ωs−1b01⊗b12)

(ω
s
−1
b 0
12
⊗b

(2
)
)

(ω⊗b02)

(ω
⊗b

01
)

ω⊗b012
⊥

(ω
s −

1
b
0
2 ⊗
b
2
3
)

ω
s −

1
b
0
1
2 ⊗
b
2
3

(ω
s
−1
b 0
12
⊗b

(2
)
)

(ω
s−

1
b 0

1
s−

1
b 1

2
⊗
b 2

3
)

(ω
s
−1
b 0
12
s
−1
b 2
3
⊗b

(3
)
)

R

Figure 21: ∂P3 (ω ⊗ b3)

105



∂P3 (ωs−1a2ω
′ ⊗ b2) = −(ωs−1a2ω

′s−1b01 ⊗ b12)(s−1a01s−1a12⊗b01)

− (ωs−1a2ω
′s−1b2 ⊗ b(2))

(s−1a01s−1a12s−1b01⊗b12)+(s−1a01s−1a12⊗b01)

− (ωs−1a01s
−1a12ω

′ ⊗ b2) + (ωs−1a2ω
′ ⊗ b02)

+ (ωs−1a02ω
′ ⊗ b2)(s−1a2⊗b(0)) − (ωs−1a2ω

′ ⊗ b01)

s−1a02⊗b2

L

(a
0
2
⊗
b 0

1
)

(a
02
⊗b

02
)

(a
0
2
b 2
⊗
b (

2
)
)

(a
02
b 0
1
⊗b

12
)

(a2.b02⊗b(2))

(a
02
⊗b

02
)

(a2⊗b(0))

(a
01
a 1

2
⊗b

02
)

s−1a2⊗b02 ᵀ

(a2b01⊗b(1))

(a
0
1
a
1
2
⊗
b 0

1
)

(a2⊗b(0))

(a02⊗b01)

s−1a2⊗b01
B

(a2b02⊗b(2))

(a
0
2
b 2
⊗
b (

2
)
)

(a2b01b12⊗b(2))

(a
0
1
a
1
2
b 2
⊗
b (

2
)
)

s−1a2s−1b2⊗b(2)

F

(a2b01⊗b(0))

(a
01
a 1

2
b 0
1
⊗b

12
)

(a2b01b12⊗b(2))

(a
02
b 0
1
⊗b

12
)

s−1a2s−1b01⊗b12
⊥

(a
0
1
a
1
2
b
2 ⊗
b
(2

) )

s −
1
a
0
1
s −

1
a
1
2 ⊗
b
2

(a
01
a 1

2
b 0
1
⊗b

12
)

(a
0
1
a
1
2
⊗
b 0

1
)(a

01
a 1

2
⊗b

02
)

R

Figure 22: ∂P3 (ωs−1a2ω
′ ⊗ b2)
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∂P3 (ωs−1a2ω
′s−1a′2ω

′′ ⊗ b1) =− (ωs−1a2ω
′s−1a′02ω

′′ ⊗ b1)(s−1a01s−1a12s−1a′2⊗b(0))

− (ωs−1a01s
−1a12ω

′s−1a′2ω
′′ ⊗ b1)

+ (ωs−1a2ω
′s−1a′2ω

′′s−1b1 ⊗ b(1))
(s−1a01s−1a12s−1a′01s

−1a′12⊗b1)

+ (ωs−1a2ω
′s−1a′01s

−1a′12ω
′′ ⊗ b1)

+ (ωs−1a02ω
′s−1a′2ω

′′ ⊗ b1)(s−1a012s−1a′01s
−1a′12⊗b(0))

− (ωs−1a2ω
′s−1a′2ω

′′ ⊗ b(0))

∂P3 (ωs−1a3ω
′ ⊗ b1) =− (ωs−1a01s

−1a123ω
′ ⊗ b1)

+ (ωs−1a3ω
′ ⊗ ∗)(s−1a01s−1a12s−1a23⊗b1)

+ (ωs−1a012s
−1a23ω

′ ⊗ b1)

+ (ωs−1a023ω
′ ⊗ b1)(s−1a012s−1a23⊗∗)

− (ωs−1a3ω
′ ⊗ ∗)

− (ωs−1a013ω
′ ⊗ b1)(s−1a01s−1a123⊗∗)
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For m+ n > 4 the formula looks somewhat long and complicated but it is still easy. Let us

first rewrite the definitions of x,

x = ω(0)s−1a
(1)
n1+1ω

(1)a
(2)
n2+1 · · ·ω(r−1)s−1a

(r)
nr+1ω

(r),
∑

ni = n, ω(i) ∈ ΩCrs
0 X

Then the definition of the boundary map will be:

∂Pq (x⊗ bm)

=
m∑
j=1

(−1)j+|x|(x⊗ djbm) + (−1)|x|
m∑
j=1

(
xs−1b0...j ⊗ bj...m

)(
∑

j Υj)

+
r∑

k=1

nk∑
i=1

(−1)
i+1+

k−1∑
`=1

n`

((
ω(0) ·

k−1∏
`=1

s−1a
(`)
n`+1 · ω(`) · s−1dia

(k)
nk+1 · ω(k) ·

r∏
`=k+1

s−1a
(`)
n`+1 · ω(`) ⊗ ym

)γ(k)i

−
(
ω(0) ·

k−1∏
`=1

s−1a
(`)
n`+1 · ω(`) · s−1a

(k)
0...i · s−1a

(k)
i...nk+1 · ω(k) ·

r∏
`=k+1

s−1a
(`)
n`+1 · ω(`) ⊗ ym

))

where the γ
(k)
i -action is by

γ
(k)
i = (ω(0) ·

k−1∏
`=1

p(`) · ω(`) · β(s−1a
(k)
0...i−1) · a(k)

i−1 i i+1 · β(s−1a
(k)
i+1...nk+1) ·

r∏
`=k+1

p(`) · ω(`) ⊗ ∗)

where p(`) is the basepoint β(s−1a
(`)
n`+1),

and where the Υj-action is by

Υj = ((ω(0) ·
∏k−1

`=1 p
(`) · ω(`)s−1b01 . . . s

−1bj−2 j−1 ⊗ bj−1 j)

Conjecture 5.9. ∂Pn is a differential on P CrsX.

Proof. The only assertion to prove is ∂Pq−1∂
P
q = 0.

For dimension q 6 4 the actions and order of terms are important, so we will divide the

proof into two parts
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A. in case of q 6 4

Here we need to be a very careful in proof since the features are non-abelian. We could

follow the instruction that we will do in example below for all cases of generators in

dimensions 2, 3 and 4.

Example 5.10. ∂Crs3 (s−1a2s
−1a′2 ⊗ b1)

)
= (−Rγ′1 − F + TΥ1 + L + Bγ1 + ⊥)

B

⊥

L

T

R

F

T = (s−1a2s
−1a′2s

−1b1 ⊗ b(1))
Υ1 Υ1 = (s−1a01s

−1a12s
−1a′01s

−1a′12 ⊗ b1)

L = (s−1a2s
−1a′01s

−1a′12 ⊗ b1)

F = (s−1a01s
−1a12s

−1a′2 ⊗ b1)

⊥= (s−1a2s
−1a′2 ⊗ b(0))

R = (s−1a2s
−1a′02 ⊗ b1)γ

′
1 γ′1 = (s−1a01s

−1a12s
−1a′2 ⊗ b(0))

B = (s−1a02s
−1a′2 ⊗ b1)γ1 γ1 = (s−1a2s

−1a′01s
−1a′12 ⊗ b(0))

We will label the edges by numbers to make the answer easier to handle

∂2(−R6 − F + T 4 + L + B9 − ⊥) =

−6 − 8 − 5 + 7 + 1 + 6 − 6 − 1 + 12 + 4 − 4 − 12 − 7 + 11 + 2 + 4 − 4 −
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2 + 3 + 9 − 9 − 3 − 11 + 5 + 10 + 9 − 9 − 10 + 8 + 6

6

8

10

9

5

11

3

2

4

7

12

1

Conjecture 5.11. For all p4 = (x⊗ b), ∂P3 ∂P4 p4 is trivial.

See the Appendix A for the way we hope that we could prove this conjecture in the

future.

B: q > 5 in this case the proof may seem long and somewhat complicated due to the large

number of symbols used. The twisted ∂Pq (x ⊗ bm) where x is the general generator

element in Ω̂CrsX will consist of four types of terms, and the square partial (∂P )2

will consists from 16 part, and to make the proof easier for read and understand we

will label each part by a number and each subparts which comes out from the square

partial to sub numbers.

∂Pq (x⊗ bm) =

m∑
i=1

(−1)i+|x|(x⊗ dibm) (27)
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+ (−1)|x|
m∑
i=1

(
x · s−1b0...i ⊗ bi...m

)∑
i Υi (28)

+
r∑

k=1

nk∑
i=1

(−1)
i+1+

k−1∑
`=1

n`( k−1∏
`=1

s−1a
(`)
n`+1 · s−1dia

(k)
nk+1 ·

r∏
`=k+1

s−1a
(`)
n`+1 ⊗ bm

)γ(k)i (29)

−
r∑

k=1

nk∑
i=1

(−1)
i+1+

k−1∑
`=1

n`

(
k−1∏
`=1

s−1a
(`)
n`+1 · s−1a

(k)
0...i · s−1a

(k)
i...nk+1 ·

r∏
`=k+1

s−1a
(`)
n`+1⊗ bm

)
(30)

we can see from above that the terms (27), (29), (30) are non-twisting version whose

we will symbolise them by d, and the twisting term 28, we will symbolise it by d′.

Now, the square partial ∂Pq−1∂
P
q (x⊗ bm) = ∂q−1(27) + ∂q−1(28) + ∂q−1(29) + ∂q−1(30)

have 16 types of terms, where each part of parts 27, 29, 30 consists of 3 non-twisting

terms and one twisting, so from the square partial of the three parts 27, 29, 30, we

have 9 terms which are non- twisting we symbolise by d·d, their second partial already

equal zero and three terms which are twisting we symbolise by d′ · d.

The square partial of the twisting term 28 has three types of twisting terms d · d′

and one type of term which is d′ · d′. So to prove (∂P )2 = 0, we need to prove that

d · d′ + d′ · d+ d′ · d′ = 0, and to make the proof more readable let us give a label for

these sub parts.

1. d · d′ are the twisting terms coming out from square twisting partial of the

non-twisting items of first partial.

i.
∑m

i=1

∑m−1
j=1 (−1)i

(
x · s−1b̂0...r ⊗ b̂r...m

)∑
r Υr

, b̂ = b0...̂i...m (27− 2),

ii. +(−1)|x|−1
∑m

j=1

∑r
k=1

∑nk

i=1(−1)
i+1+

k−1∑
`=1

n`(∏k−1
`=1 s

−1a
(`)
n`+1 · s−1â

(k)
nk+1

·
∏r

`=k+1 s
−1a

(`)
n`+1 ·s−1b0...j⊗bj...m

)γ(k)i +
∑

j Υj , â
(k)
nk+1 = a

(k)

0...̂i...nk+1
(29−2),
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iii. +(−1)|x|
∑m

j=1

∑r
k=1

∑nk

i=1(−1)
i+1+

k−1∑
`=1

n`

(
∏k−1

`=1 s
−1a

(`)
n`+1 · s−1a

(k)
0...i

· s−1a
(k)
i...nk+1 ·

∏r
`=k+1 s

−1a
(`)
n`+1 · s−1b0...j ⊗ bj...m

)∑
j Υj (30− 2)

2. d′ · d are the twisting terms coming out from square non-twist partial of the

twisting items of first partial. Here we also have three types of terms they are:

i.
∑m−i

j=1 (
∑m

i=1(−1)j
(
xs−1b0...i ⊗ djbi...m)

)∑
i Υi (28− 1),

ii. +
∑r+j−1

k=1

∑nk

i=1

∑m
j=1(−1)

i+1+
k−1∑
`=1

n`(∏k−1
`=1 s

−1a
(`)
n`+1 · s−1dia

(k)
nk+1

·
∏r

`=k+1 s
−1a

(`)
n`+1 · s−1b0...j ⊗ bj...m

)γ(k)i +
∑

j Υj , (28− 3),

iii. −
∑r+j−1

k=1

∑nk

i=1

∑m
j=1(−1)

i+1+
k−1∑
`=1

n`

(
∏k−1

`=1 s
−1a

(`)
n`+1 · s−1a

(k)
0...i

· s−1a
(k)
i...nk+1 ·

∏r
`=k+1 s

−1a
(`)
n`+1 · b0...j ⊗ bj...m

)∑
j Υj (28− 4)

3. and the final term will be d′ · d′ which is the twisted version of twisting term

(28) it has the form

+
∑m−i

j=1

∑m
i=1

(
x · s−1b0...i · s−1bi+1...j+i ⊗ bj+i...m

)∑
i Υi+

∑
j Υj (28− 2)

The elements which coming out of the terms (28 − 2) will cancel in pairs with elements

coming out of (28− 4) where j 6= m.

The other terms of (28−4) will have the same expression of some terms coming out (27−2)

but with opposite signs, and the other elements which coming out the term (27 − 2) will

have the same form of the elements coming out (28− 1) but with opposite sign.

The elements in both terms (29 − 2) and (30− 2) are similar to the elements in (28− 3),

so all terms in (29− 2), (30− 2) and (28− 3) cancel each other.
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6 Contracting homotopy

Introduction

In this Chapter, we define a contracting homotopy ηn : P Crs
n X → P Crs

n+1X, which raises the

dimension by one. We have h : id ' ∗, so P CrsX is contractible.

6.1 The structure of the contracting homotopy

For convenience we will repeat the definitions from Section 4.3

Definition 6.1. Two homomorphisms f, g : C → D are homotopic, if there exists a

homomorphism

h : π(∆[1])⊗ C → D

that satisfies hi0 = f and hi1 = g.

DC π(∆[1])⊗ C h

f

g

i0

i1

Definition 6.2. A crossed complex of groupoids is pointed if there is a specified object

∗ ∈ C0. If C is a pointed crossed complex of groupoids, then C is contractible to the

basepoint ∗ if there is a family of functions ηn : Cn → Cn+1 that define a contracting

homotopy

h : ∗ ' idC : π(∆[1])⊗ C → C

so

i. h(0⊗ c) = 0∗
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ii. h(1⊗ c) = c

and

iii. for c ∈ C, η(c) = h(σ ⊗ c)

In other words, the family ηn defines a homomorphism h that provides a homotopy

between the given trivial homomorphism C → {∗} → C and the identity homomorphism

idC : C
=−→ C. This gives a homotopy equivalence between the crossed complex C and the

trivial crossed complex {∗}.

∗ h' idC {∗}C

Proposition 6.3. A family of functions ηn : Cn → Cn+1, (n > 0) defines a contracting
homotopy via h(σ ⊗ cn) = ηn(cn) if and only if it satisfies

1. η0(c0) ∈ C1 has source ∗ and target c0,

2. η1(c1) ∈ C2 has basepoint ∗ and boundary:

∂2η1(c1) = −η0(targ(c1)) + c1 + η0(src(c1)),

∗ x

y

η0(x)

η0(y) c1

Figure 23:

3. If n > 2 then, ηn(cn) ∈ Cn+1 has basepoint ∗ and boundary:

∂n+1ηn(cn) = cη0(p)
n − ηn−1∂n(cn),

4. For all n > 1,
ηn(cn + c′n) = ηn(cn) + ηn(c′n)

5. For all n > 2,
ηn(cc1n ) = ηn(cn)
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Remark 6.4. Using Definition 6.2 (i,ii,iii), if we are given η we can define h from η, or if

we are given h then we can define η from h. The proposition means that the condition that

h : π(∆[1]) ⊗ C → C is a well defined homomorphism of crossed complexes of groupoids,

and commutes with the boundary ∂, holds if and only if η satisfies the properties (1− 5) of

Proposition 6.3.

Proof. ⇒) Let h : π(∆[1]) ⊗ C → C be a homomorphism satisfies that h(0 ⊗ c) = 0∗,

h(1⊗ c) = c, and h(σ ⊗ c) = η(c) which commutes with the boundary, ∂ and well defined.

We want to prove η : Cn → Cn+1 is a contracting homotopy.

1. Let c ∈ Cn, src(η(c)) = src(h(σ ⊗ c)) = h src(σ ⊗ c) = h(0⊗ c) = 0∗,

and the targ(η(c)) = targ(h(σ ⊗ c)) = h targ(σ ⊗ c) = h(1⊗ c) = c. (Definition 6.2)

2. Let c1 : a→ b ∈ C1, ∂η(c1) = ∂h(σ ⊗ c1) = h∂(σ ⊗ c1)

(0⊗ c1)

(1⊗ c1)

(σ
⊗
a
)

(σ
⊗
b)

h : ⇒

(id∗)

(c1)

η(a) η(b)

Figure 24: ∂η(c) in dimension 1 = −η(b) + c1 + η(a)

3. If n = r,

∂η(cr) = ∂h(σ ⊗ cr) = h∂(σ ⊗ cr)

= h
(
− (src σ ⊗ cr) + (targ σ ⊗ cr)(σ⊗pcr ) − (σ ⊗ ∂rcr)

)
(by Definition 2.33 and thus

the properties of ordinary tensor product of crossed complexes)

= c
η(pcr )
r − h(σ ⊗ ∂rcr) = c

η(pcr )
r − η∂(cr), (pcr is the base point of cr).
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4. Finally we have

η(cn + c′n) = h(σ ⊗ (cn + c′n)) = h
(
(σ ⊗ cn)(src σ⊗c′n) + (σ ⊗ c′n)

)
= h(σ ⊗ cn)(src σ⊗c′n) + h(σ ⊗ c′n) = η(cn)h(0⊗c′n) + η(c′n) = η(cn) + η(c′n),

and

η(ccnn ) = h(σ ⊗ ccnn ) = h((σ ⊗ cn)src (σ⊗b)) = η(cn).

⇐ ) Let η : Cn → Cn+1 be a family of functions satisfying 1 - 5 of Proposition 6.3 and

define h by (i) (ii) and (iii) of Definition 6.2. To show that this gives a homomorphism,

we need to show it is well defined and that it commutes with the boundary map, ∂. The

first is given as follows

h(σ ⊗ (cn + c′n)) = η(cn + c′n) = η(cn) + η(c′n) = h(σ ⊗ cn) + h(σ ⊗ c′n).

To see it commutes with the boundaries we note

∂h(σ ⊗ cn) = ∂η(cn) = cη(p)
n − η∂(cn)

whilst

h∂(σ ⊗ cn) = h(−(0⊗ cn) + (1⊗ cn)(σ⊗pcr ) − (σ ⊗ ∂cn)) = cη(p)
n − h(σ ⊗ ∂cn) = cη(p)

n − η∂cn

follows by Definition 2.33 and Definition 6.2.

6.2 Contracting homotopy for P CrsX

In this section we define the contracting homotopy maps ηn : P Crs
n X → P Crs

n+1X which

raise the dimension by one for a 0-reduced simplicial set X, for the group completed path

complex P CrsX = Ω̂CrsX ⊗φ πX that we have introduced in Definition 5.8.

We will define the contracting homotopy inductively. We start by defining it in degree

0, and once we have defined η0 we can define η1, and so on. We can use the following

definition for the partially-defined homotopies we will give:
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Definition 6.5. A k-contracting homotopy on a pointed crossed complex of groupoids C is

a family of functions

{ηn : Cn → Cn+1 : n = 0, 1, . . . k}

which satisfy the conditions (1-5) of Proposition 6.3 for all elements cn for n ≤ k.

The group completed path complex P CrsX = Ω̂CrsX ⊗φ πX is a free crossed complex,

with an infinite object set

P Crs
0 X = {(ω ⊗ ∗) : ω ∈ Ω̂Crs

0 X}.

We know that

ω = (s−1a
(1)
1 )ε1(s−1a

(2)
1 )ε2 · · · (s−1a

(r)
1 )εr (r > 0, a

(i)
1 ∈ X1 − {s0(∗)}, εi = ±1)

is a word given by a string of non-degenerate 1-dimensional simplices of X and their ‘formal’

inverses. We want to think of the group completed path complex P CrsX = Ω̂CrsX ⊗φ πX

as a pointed crossed complex of groupoids: we specify a particular basepoint ∅⊗ ∗.

For dimension 1, the generators of the free groupoid P Crs
1 X are the elements

• (ω ⊗ b1) with source (ω ⊗ ∗) and target (ωs−1b1 ⊗ ∗)

• (ωs−1a2ω
′ ⊗ ∗) with source (ωs−1a01s

−1a12ω
′ ⊗ ∗) and target (ωs−1a02ω

′ ⊗ ∗).

The general form of a generator in higher degrees is (x⊗ bm) ∈ P Crs
n+mX, where

x = ω(0)s−1a
(1)
n1+1ω

(1)a
(2)
n2+1ω

(2) · · ·ω(r−1)s−1a
(r)
nr+1ω

(r)

is a generator of Ω̂CrsX in degree n = |x| =
∑
ni, and b is a generator of πmX. The

basepoint p of this element is

p = src(x⊗ bm) = src(x)⊗ ∗ = ω(0)p(1)ω(1) · · ·ω(r−1)p(r)ω(r) ⊗ ∗

where p(i) =
∏ni

j=0 s
−1a

(i)
j j+1.
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Definition 6.6. Consider a general object ω ⊗ ∗ ∈ P Crs
0 X given by a string of r non-

degenerate one-simplices and their inverses,

ω = (s−1a
(1)
1 )ε1(s−1a

(2)
1 )ε2 · · · (s−1a

(r)
1 )εr : k > 0, a

(i)
1 ∈ X1 − {s0(∗)}, εi = ±1.

We define a function η0 : P Crs
0 → P Crs

1 in dimension 0 by:

1. If r = 0 then η0(∅⊗ ∗) = 0(∅⊗∗) ∈ P Crs
1 X,

2. If r > 1 and ω = ω′ · (s−1a
(r)
1 )εr where ω′ has length r − 1 then

η0(ω ⊗ ∗) : ∅⊗ ∗ // ω′ ⊗ ∗ // ω ⊗ ∗

can be defined inductively by:

η0(ω ⊗ ∗) = η0(ω′ · s−1a
(r)
1 ⊗ ∗) = (ω′ ⊗ a(r)

1 ) + η0(ω′ ⊗ ∗) if εr = +1

η0(ω ⊗ ∗) = η0(ω′ · (s−1a
(r)
1 )−1 ⊗ ∗) = −(ω ⊗ a(r)

1 ) + η0(ω′ ⊗ ∗) if εr = −1

Remark 6.7. To make it easier to read we have written out both of the two cases, for εr =

±1, in Definition 6.6. This is redundant, as each of the two cases is really a consequence

of the other one. If we are given the definition for ε = +1, for example, we may rearrange

it and write

−(ω′ ⊗ a(r)
1 ) + η0(ω′ · s−1a

(r)
1 ⊗ ∗) = η0(ω′ ⊗ ∗).

If ω′ = ω′′ · (s−1a
(r)
1 )−1 this says

−(ω′ ⊗ a(r)
1 ) + η0(ω′′ ⊗ ∗) = η0(ω′ ⊗ ∗)

This is just the definition for ε = −1.

Theorem 6.8. The function η0 : P Crs
0 → P Crs

1 in Definition 6.6 defines a 0-contracting

homotopy.
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Proof. We need to prove η0 is a well defined homomorphism that satisfies the properties

of Proposition (6.3) for elements of degree 0. If r = 0, we can see that the source of

η0(∅ ⊗ ∗) is (∅ ⊗ ∗) and the target is (∅ ⊗ ∗) so it satisfies property (1) of Proposition

6.3. If r > 1, we see the source of η(ω ⊗ ∗) is (∅ ⊗ ∗) = src(η(ω′ · (s−1a
(r)
1 )εr ⊗ ∗)), and

the target is (ω ⊗ ∗) (εr = ±1), so it satisfies Proposition 6.3 (1). For the generators of

the form (ωs−1a
(1)
1 ⊗ ∗) where ω is a word of length n, we assume η(ω ⊗ ∗) has source

(∅⊗ ∗) and target (ω ⊗ ∗), and since the source of (ω ⊗ a(1)
1 ) is (ω ⊗ ∗), and the target is

(ωs−1a
(1)
1 ⊗∗), we see η0(ωs−1a

(1)
1 ⊗∗) is well defined and hence η0 satisfies Proposition 6.3

(1) by inductively.

Definition 6.9. In dimension 1 we define a function η1 on the generators of the free

groupoid P Crs
1 X as follows.

1. For any generator (ω ⊗ b1) where ω ∈ Ω̂Crs
0 X and b1 is a non-degenerate 1-simplex of

X, define

η1(ω ⊗ b1) = 0(∅⊗∗) (31)

2. Consider a generator (ω s−1a2 ω
′⊗∗), where ω, ω′ ∈ Ω̂Crs

0 X and a2 is a non-degenerate

2-simplex of X.

If ω′ = ∅ then define

η1(ωs−1a2 ⊗ ∗) = (ω ⊗ a2)η0(ω⊗∗) (32)

If ω′ = ω′′ · s−1a1 then define inductively

η1(ωs−1a2ω
′ ⊗ ∗) = η1(ωs−1a2ω

′′ ⊗ ∗)− (ωs−1a2ω
′′ ⊗ a1)η0(src(ωs−1a2ω′′⊗∗)). (33)

If ω′ = ω′′ · (s−1a1)−1 then define inductively

η1(ωs−1a2ω
′ ⊗ ∗) = η1(ωs−1a2ω

′′ ⊗ ∗) + (ωs−1a2ω
′′ ⊗ a1)η0(src(ωs−1a2ω′′⊗∗)). (34)
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Remark 6.10. As in Remark 6.7, it is not necessary to give both of the last two definitions,

because they imply each other. For example, we can rearrange the definition (33) to write

it as

η1(ωs−1a2ω
′′s−1a1 ⊗ ∗) + (ωs−1a2ω

′′ ⊗ a1)η0(src(ωs−1a2ω′′⊗∗)) = η1(ωs−1a2ω
′′ ⊗ ∗).

If we substitute ω′′ = ω′′′(s−1a1)−1 into this we get

η1(ωs−1a2ω
′′′ ⊗ ∗) + (ωs−1a2ω

′′ ⊗ a1)η0(src(ωs−1a2ω′′⊗∗)) = η1(ωs−1a2ω
′′′(s−1a1)−1 ⊗ ∗).

This is the same as the definition (34).

Example 6.11. 1. Let we have the element c1 = (s−1a
(1)
1 s−1a2⊗∗), we use Proposition

6.3 to calculate η(s−1a
(1)
1 s−1a2 ⊗ ∗)

η(src(s−1a
(1)
1 s−1a2 ⊗ ∗)) = η(s−1a

(1)
1 s−1a01s

−1a12 ⊗ ∗)

= (s−1a
(1)
1 s−1a01 ⊗ a12) + (s−1a

(1)
1 ⊗ a01) + (∅⊗ a(1)

1 )

η(targ(s−1a
(1)
1 s−1a2 ⊗ ∗)) = (s−1a

(1)
1 ⊗ a02) + (∅⊗ a(1)

1 )

∂η(s−1a
(1)
1 s−1a2 ⊗ ∗) = −η(targ(s−1a

(1)
1 s−1a2 ⊗ ∗)) + (s−1a

(1)
1 s−1a2 ⊗ ∗)

+ η(src(s−1a
(1)
1 s−1a2 ⊗ ∗)) (by Proposition 6.3 (2)),

= −(∅⊗ a(1)
1 ) − (s−1a

(1)
1 ⊗ a02) + (s−1a

(1)
1 s−1a2 ⊗ ∗)

+ (s−1a
(1)
1 s−1a01 ⊗ a12) + (s−1a

(1)
1 ⊗ a01) + (∅⊗ a(1)

1 )

(s−1a
(1)
1 s−1a2⊗∗)

(s−1a
(1)
1 ⊗a01)

(s
−
1
a
(1

)
1
⊗
a
0
2
)

(s
−
1
a
(1

)
1
s−

1
a
0
1
⊗
a
1
2
)

(s−1a
(1)
1 ⊗a2)

Figure 25:
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= ∂(s−1a
(1)
1 ⊗ a2)(∅⊗a(1)1 )

⇔

η(s−1a
(1)
1 s−1a2 ⊗ ∗) = (s−1a

(1)
1 ⊗ a2)(∅⊗a(1)1 ).

2. let now calculate η(s−1a2s
−1a

(1)
1 s−1a

(2)
1 ⊗ ∗)

η(src(s−1a2s
−1a

(1)
1 s−1a

(2)
1 ⊗ ∗)) = (s−1a01s

−1a12s
−1a

(1)
1 ⊗ a

(2)
1 ) + (s−1a01s

−1a12 ⊗ a(1)
1 )

+ (s−1a01 ⊗ a12) + (∅⊗ a01)

η(targ(s−1a2s
−1a

(1)
1 s−1a

(2)
1 ⊗ ∗)) = (s−1a02s

−1a
(1)
1 ⊗ a

(2)
1 ) + (s−1a02 ⊗ a1

1) + (∅⊗ a02)

again from Proposition 6.3(2) (∂η(c1) = −η(targ c1) + c1 + η(src c1)) we have,

∂η(s−1a2s
−1a1

1s
−1a

(2)
1 ⊗∗) = −(∅⊗ a02) − (s−1a02⊗ a1

1) − (s−1a02s
−1a

(1)
1 ⊗ a

(2)
1 )

+ (s−1a2s
−1a

(1)
1 s−1a

(2)
1 ⊗∗) + (s−1a01s

−1a12s
−1a

(1)
1 ⊗ a

(2)
1 ) + (s−1a01s

−1a12⊗ a(1)
1 )

+ (s−1a01 ⊗ a12) + (∅⊗ a01)

s−1a02s−1a
(1)
1 ⊗a

(2)
1

s−1a01s−1a12s−1a
(1)
1 ⊗a

(2)
1

s−
1
a
2
s−

1
a
(1

)
1
s−

1
a
(2

)
1
⊗
∗

∅⊗a02

s−1a01⊗a12
∅
⊗
a
0
1

s−1a02⊗a(1)1

s−1a01s−1a12⊗a(1)1

s−
1
a
2
s−

1
a
(1

)
1
⊗
∗

s−
1
a
2
⊗
∗

s−1a2⊗a(1)1

∅⊗a2s−1a2s−1a
(1)
1 ⊗a

(2)
1

Figure 26:

= ∂

(
(∅⊗ a2)−

(
s−1a2 ⊗ a(1)

1

)(s−1a01⊗a12)+(∅⊗a01)

−
(
s−1a2s

−1a
(1)
1 ⊗ a

(2)
1

)(s−1a01s−1a12s−1a
(1)
1 ⊗a

(2)
1 )+(s−1a01⊗a12)+(∅⊗a01)

)
⇔

η(s−1a2s
−1a1

1s
−1a

(2)
1 ⊗ ∗) = (∅⊗ a2)−

(
s−1a2 ⊗ a(1)

1

)(s−1a01⊗a12)+(∅⊗a01)

−
(
s−1a2s

−1a
(1)
1 ⊗ a

(2)
1

)(s−1a01s−1a12s−1a
(1)
1 ⊗a

(2)
1 )+(s−1a01⊗a12)+(∅⊗a01)

.
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Proposition 6.12. The functions η0 : P Crs
0 X → P Crs

1 X and η1 : P Crs
1 X → P Crs

2 X in

Definitions 6.6 and 6.9 define a 1-contracting homotopy on P CrsX.

Proof. We need to show the function η1 which we defined in Definition 6.9 satisfies part

(2) of Proposition 6.3, that is, we need to show that

∂2η1(c1) = −η0 targ(c1) + c1 + η0 src(c1).

There are three cases.

In the first case, suppose that c1 = ω⊗b1, for some ω ∈ Ω̂Crs
0 X and some non-degenerate

1-simplex b1 of X:

By Definition 6.9 (1) we have

∂2η1(c1) = 0(∅⊗∗).

Also, from Definition 5.8, we know that c1 has source (ω⊗∗), and target (ωs−1b1⊗∗), and

from Definition 6.6 (2) we have

η0(src(c1)) = η0(ω ⊗ ∗)

η0(targ(c1)) = (ω ⊗ b1) + η0(ω ⊗ ∗)

−η0(targ(c1)) + c1 + η0(src(c1)) = −η0(ω ⊗ ∗)− (ω ⊗ b1) + (ω ⊗ b1) + η0(ω ⊗ ∗)

= 0src(η0(ω⊗∗))

= 0(∅⊗∗)

= ∂2η1(c1).

In the second case, suppose c1 = (ωs−1a2⊗∗), for some non-degenerate 2-simplex a2 of X:

From Definition 6.9 (2), we have η1(ωs−1a2 ⊗ ∗) = (ω ⊗ a2)η0(ω⊗∗)

∂2(η1(ωs−1a2 ⊗ ∗)) = ∂2(ω ⊗ a2)η0(ω⊗∗) = −η0(ω ⊗ ∗) + ∂(ω ⊗ a2) + η0(ω ⊗ ∗),

which by the Definition 5.8 equal to:
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= −η0(ω⊗∗)− (ω⊗ a02) + (ωs−1a2⊗∗) + (ω⊗ a01) + (ωs−1a01⊗ a12) + η0(ω⊗∗)

While, by Definition 6.6 we have

η0(targ(ωs−1a2 ⊗ ∗)) = η0(ωs−1a02 ⊗ ∗) = (ω ⊗ a02) + η0(ω ⊗ ∗),

and

η0(src(ωs−1a2 ⊗ ∗)) = η0(ωs−1a01s
−1a12 ⊗ ∗) = (ωs−1a01 ⊗ a12) + (ω ⊗ a01) + η0(ω ⊗ ∗)

so we can see

∂2(η1(ωs−1a2 ⊗ ∗)) = −η0(targ(ωs−1a2 ⊗ ∗)) + (ωs−1a2 ⊗ ∗) + η0(src(ωs−1a2 ⊗ ∗)) which

satisfies the Proposition 6.3(2).

For the third case, suppose that c1 = (x · s−1a1 ⊗ ∗) for some generator x of Ω̂CrsX in

degree 1. Let us write p for the source of x and q for the target of x in Ω̂Crs
0 X.

We assume, inductively, that condition (2) of Proposition 6.3 holds for the element

(x⊗ ∗),

∂2η1(x⊗ ∗) = −η0 targ(x⊗ ∗) + (x⊗ ∗) + η0 src(x⊗ ∗)

= −η0(q⊗ ∗) + (x⊗ ∗) + η0(p⊗ ∗).

From Definition 6.9, equation (33), we have

η1(c1) = η1(x⊗ ∗)− (x⊗ a1)η0(p⊗∗)

∂2(η1(c1)) = ∂2(η1(x⊗ ∗))− ∂2((x⊗ a1)η0(p⊗∗))

= −η0(q⊗ ∗) + (x⊗ ∗) + η0(p⊗ ∗)− (−η0(p⊗ ∗) + ∂2(x⊗ a1) + η0(p⊗ ∗))

by the inductive hypothesis and by Definition 2.25. Therefore

∂2(η1(c1)) = −η0(q⊗ ∗) + (x⊗ ∗)− ∂2(x⊗ a1) + η0(p⊗ ∗)

Now we need to use Definition of the boundary map, see Figure 20 in Definition 5.8:

∂2(x⊗ a1) = −(p⊗ a1)− c1 + (q⊗ a1) + (x⊗ ∗).
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Therefore,

∂2(η1(c1)) = −η0(q⊗ ∗)− (q⊗ a1) + (xs−1a1 ⊗ ∗) + (p⊗ a1) + η0(p⊗ ∗)

= −η0(q · s−1a1 ⊗ ∗) + (xs−1a1 ⊗ ∗) + η0(p · s−1a1 ⊗ ∗)

by Definition 6.6(2). But this says

∂2(η1(c1)) = −η0 targ(c1) + c1 + η0 src(c1),

and we have finished the proof.

Definition 6.13. We define functions ηn+m on the generators x⊗ b in degrees n+m > 2

of the free crossed complex P CrsX as follows.

1. If b is given by a non-degenerate m-simplex where m > 1 then define

ηn+m(x⊗ b) = 0(∅⊗∗) (35)

2. If b = ∗, the 0-simplex of X, then x 6= ∅ and we can suppose that it has the form

x = x′ · s−1ak+1

where ak+1 is a non-degenerate element of Xk+1 and |x′|+ k = n = |x|.

If k = 0 then define inductively

ηn(x⊗ ∗) = ηn(x′ ⊗ ∗) + (−1)n−k(x′ ⊗ a1)η0(β(x′⊗∗)). (36)

If k > 1 then define:

ηn(x⊗ ∗) = (−1)n−k(x′ ⊗ ak+1)η0(β(x′⊗∗)) (37)
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Remark 6.14. We have not given the definition of ηn(x′ · (s−1a1)−1 ⊗ ∗). As in Remarks

6.7 and 6.10, the definition is implied by (and implies) the definition in equation (36). If

we let x′ = x · (s−1a1)−1 so that x = x′ · s−1a1 then the definition in equation (36) says

ηn(x⊗ ∗) = ηn(x · (s−1a1)−1 ⊗ ∗) + (−1)n(x · (s−1a1)−1 ⊗ a1).

Therefore by rearranging this equation we can give the definition of ηn(x′ · (s−1a1)−1 ⊗ ∗)

inductively as

ηn(x · (s−1a1)−1 ⊗ ∗) = ηn(x⊗ ∗)− (−1)n(x · (s−1a1)−1 ⊗ a1). (38)

Theorem 6.15. The functions ηn+m which are given in Definition 6.13 define a contracting

homotopy.

Proof. Consider any element c = x⊗ b where b is a non-degenerate m-simplex of X and x

is a generator of degree n in Ω̂CrsX, as we have described in Definition 5.8.

We need to prove, for all n+m > 2, that η(c) satisfies property (3) of Proposition 6.3,

∂η(c) = cη0(β(c)) − η∂(c).

We will prove it by induction on the dimension of c.

Degree 2: To begin the induction, we will first consider an element c in degree 2. In this

degree we must be careful because ∂c, η∂(c) and ∂η(c) are non-abelian expressions.

There are three cases:

1. In the first case, suppose that m > 0. That is, b is not the basepoint of X.

2. In the second case, suppose m = 0. That is, c = x⊗∗. Suppose also that x = x′·s−1a1,

for some non-degenerate 1-simplex a1 of X.

3. In the third case, suppose that m = 0, c = x ⊗ ∗, where x = x′ · s−1ak+1 for some

non-degenerate (k + 1)-simplex ak+1 of X.
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In the first case, Definition 6.13 says that η(c) is trivial, so we need to prove that

0(∅⊗∗) = cη0(β(c)) − η1∂2(c)

where c = x0 ⊗ b2 or c = x1 ⊗ b1, so from definition 5.8, we have

∂2c = −(x0 ⊗ b02) + (x0s
−1b2 ⊗ ∗) + (x0s

−1b01 ⊗ b12) + (x0 ⊗ b01)

or ∂2c = −(srcx1 ⊗ b1)− (x1s
−1b1 ⊗ ∗) + (targ x1 ⊗ b1) + (x1 ⊗ ∗)

Then, by Proposition 6.3(4), and Definition 6.9, we have

η1∂2c = −η1(x0 ⊗ b02) + η1(x0s
−1b2 ⊗ ∗) + η1(x0s

−1b01 ⊗ b12) + η1(x0 ⊗ b01)

= 0(∅⊗∗) + (x0 ⊗ b2)η0(src(x0⊗∗)) + 0(∅⊗∗) + 0(∅⊗∗)

= (x0 ⊗ b2)η0(src(x0⊗∗)) = cη0(β(c))

or η1∂2c = −η1(srcx1 ⊗ b1)− η1(x1s
−1b1 ⊗ ∗) + η1(targ x1 ⊗ b1) + η1(x1 ⊗ ∗)

= 0(∅⊗∗) + (x1 ⊗ b1)η0(src(x1⊗∗)) − η1(x1 ⊗ ∗) + 0(∅⊗∗) + η1(x1 ⊗ ∗)

= (x1 ⊗ b1)η0(src(x1⊗∗)) = cη0(β(c))

and so we always have cη0(β(c)) − η1∂2(c), as we need.

In the second case, m = 0 and we can write

c = x⊗ ∗ = x′ · s−1a1 ⊗ ∗.

where a1 is a non-degnerate element of X1 and x′ has degree 2.
Therefore by Equation (33)

η2c = η2(x′ ⊗ ∗) + (x′ ⊗ a1)η0(srcx′⊗∗))

∂3η2c = ∂3η2(x′ ⊗ ∗) + ∂3(x′ ⊗ a1)η0(srcx′⊗∗)
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In this case, we have two possibilities for x′. The first possibility is that x′ = x′′s−1a3,

where x′′, has degree zero. Then

∂2(x′′s−1a3s
−1a1 ⊗ ∗) = −(x′′ · s−1a01 · s−1a123 · s−1a1 ⊗ ∗)

− (x′′s−1a013s
−1a1 ⊗ ∗) + (x′′ · s−1a023 · s−1a1 ⊗ ∗)

+ (x′′ · s−1a012 · s−1a23 · s−1a1 ⊗ ∗)

and so

η1∂2(x′′s−1a3s
−1a1 ⊗ ∗) =

+ (x′′ · s−1a01 · s−1a123 ⊗ a1)η0β(x′′s−1a3⊗∗)

− (x′′ · s−1a01 ⊗ a123)η0(x′′s−1a01⊗∗) + (x′′ · s−1a013 ⊗ a1)η0β(x′′·s−1a013⊗∗)

− (x′′ ⊗ a013)η0(x′′⊗∗) + (x′′ ⊗ a023)η0(x′′⊗∗)

− (x′′ · s−1a023 ⊗ a1)η0β(x′′·s−1a023⊗∗) + (x′′ ⊗ a012)η0(x′′⊗∗)

− (x′′ · s−1a012 ⊗ a23)(x′′·s−1a012⊗∗)

− (x′′ · s−1a012 · s−1a23 ⊗ a1)η0β(x′′s−1a3⊗∗)

while

η2(c) = η2(x′′s−1a3s
−1a1 ⊗ ∗) = (x′′ ⊗ a3)η0(x′′⊗∗) + (x′′s−1a3 ⊗ a1)η0β(x′′s−1a3⊗∗)

∂3η2(c) = +(x′′s−1a3s
−1a1 ⊗ ∗)η0β(x′′s−1a3⊗∗) + (x′′ · s−1a012 · s−1a23 ⊗ a1)η0β(x′′s−1a3⊗∗)

+ (x′′ · s−1a012 ⊗ a23)η0(x′′·s−1a012⊗∗) − (x′′ ⊗ a012)η0(x′′⊗∗) + (x′′s−1a023 ⊗ a1)η0β(x′′s−1a023⊗∗)

− (x′′ ⊗ a023)η0(x′′⊗∗) + (x′′ ⊗ a013)η0(x′′⊗∗) − (x′′s−1a013 ⊗ a1)η0β(x′′s−1a013⊗∗)

+ (x′′s−1a01 ⊗ a123)η0(x′′s−1a01⊗∗) − (x′′s−1a01s
−1a123 ⊗ a1)η0β(x′′s−1a3⊗∗)

The second possibility is that x′ = x′′ · s−1a2 · s−1a′2 and so
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∂2(c) = ∂2(x′′ · s−1a2 · s−1a′2 · s−1a1 ⊗ ∗) = −(x′′ · s−1a01 · s−1a12 · s−1a′2 · s−1a1 ⊗ ∗)

− (x′′ · s−1a2 · s−1a′02 · s−1a1 ⊗ ∗) + (x′′ · s−1a02 · s−1a′2 · s−1a1 ⊗ ∗)

+ (x′′ · s−1a2 · s−1a′01 · s−1a′12 · s−1a1 ⊗ ∗)

η1∂2(c) = +(x′′ · s−1a01 · s−1a12 · s−1a′2 ⊗ a1)η0 src(x′′·s−1a2·s−1a′2⊗∗)

− (x′′ · s−1a01 · s−1a12 ⊗ a′2)η0 src(x′′·s−1a2⊗∗)

+ (x′′ · s−1a2 · s−1a′02 ⊗ a1)η0 src(x′′·s−1a2·s−1a′02⊗∗) + (x′′ · s−1a2 ⊗ a′02)η0 src(x′′·s−1a2⊗∗)

− (x′′ ⊗ a2)η0(x′′⊗∗) + (x′′ · s−1a02 ⊗ a′2)η0(x′′·s−1a02⊗∗)

− (x′′ · s−1a02 · s−1a′2 ⊗ a1)η0(src(x′′·s−1a02·s−1a′2⊗∗)) + (x′′ ⊗ a2)η0(x′′⊗∗)

− (x′′ · s−1a2 ⊗ a′01)η0 src(x′′·s−1a2⊗∗) − (x′′ · s−1a2 · s−1a′01 ⊗ a′12)η0 src(x′′·s−1a2s−1a′01⊗∗)

− (x′′ · s−1a2 · s−1a′01 · s−1a′12 ⊗ a1)η0 src(x′′·s−1a2s−1a′2⊗∗))

η2(c) =η2(x′′ · s−1a2 · s−1a′2 · s−1a1 ⊗ ∗) = −(x′′ · s−1a2 ⊗ a′2)η0 src(x′′·s−1a2⊗∗)

+ (x′′ · s−1a2 · s−1a′2 ⊗ a1)η0 src(x′′·s−1a2·s−1a′2⊗∗)

∂3(η2(c)) = +(x′′ · s−1a2 · s−1a′2 · s−1a1 ⊗ ∗)η0 src(x′′·s−1a2·s−1a′2·s−1a1⊗∗)

+ (x′′ · s−1a2 · s−1a′01 · s−1a′12 ⊗ a1)η0 src((x′′·s−1a2·s−1a′2⊗∗)

+ (x′′ · s−1a2 · s−1a′01 ⊗ a′12)η0 src(x′′·s−1a2·s−1a′01⊗∗) + (x′′ · s−1a2 ⊗ a′01)η0 src(x′′·s−1a2⊗∗)

+ (x′′ · s−1a02 · s−1a′2 ⊗ a1)η0 src(x′′·s−1a02·s−1a′2⊗∗)+(x′′·s−1a2⊗∗)+η0 src(x′′s−1a2⊗∗)

− (x′′ · s−1a02 ⊗ a′2)(x′′s−1a2⊗∗)+η0 src((x′′·s−1a2⊗∗) − (x′′ · s−1a2 ⊗ a′02)η0 src(x′′·s−1a2⊗∗)

− (x′′ · s−1a2 · s−1a′02 ⊗ a1)η0 src(x′′·s−1a2·s−1a′02⊗∗)

+ (x′′ · s−1a01 · s−1a12 ⊗ a′2)η0 src(x′′·s−1a2⊗∗)

− (x′′ · s−1a01 · s−1a12 · s−1a′2 ⊗ a1)η0 src(x′′·s−1a2·s−1a′2⊗∗)

In the third case, m = 0 and we can write

c =x′s−1ak+1 ⊗ ∗
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where ak+1 is non-degnerate element of Xk+1 and k = 1 or 2 and x′ has degree 2− k.
If k = 1 then write p and q for the source and target of x′ in Ω̂Crs

1 X, so that

∂2c =∂2(x′s−1a2 ⊗ ∗) = −(ps−1a2 ⊗ ∗)− (x′s−1a02 ⊗ ∗) + (qs−1a2 ⊗ ∗) + (x′s−1a01s
−1a12 ⊗ ∗)

η1∂2c = −η1(ps−1a2 ⊗ ∗)− η1(x′s−1a02 ⊗ ∗) + η1(qs−1a2 ⊗ ∗) + η1(x′s−1a01s
−1a12 ⊗ ∗)

= −(p⊗ a2)η0(p⊗∗) + (x′ ⊗ a02)η0(p⊗∗) − η1(x′ ⊗ ∗) + (q⊗ a2)η0(q⊗∗) + η1(x′ ⊗ ∗)

− (x′ ⊗ a01)η0(p⊗∗) − (x′s−1a01 ⊗ a12)η0(ps−1a01⊗∗)

= −(p⊗ a2)η0(p⊗∗) + (x′ ⊗ a02)η0(p⊗∗) + (q⊗ a2)η0(q⊗∗)+∂2η1(x′⊗∗)

− (x′ ⊗ a01)η0(p⊗∗) − (x′s−1a01 ⊗ a12)η0(ps−1a01⊗∗)

= −(p⊗ a2)η0(p⊗∗) + (x′ ⊗ a02)η0(p⊗∗) + (q⊗ a2)(x′⊗∗)+η0(p⊗∗))

− (x′ ⊗ a01)η0(p⊗∗) − (x′s−1a01 ⊗ a12)(x′⊗a01)+η0(p⊗∗)

η2c =η2(x′s−1a2 ⊗ ∗) = −(x′ ⊗ a2)η0(p⊗∗))

∂3η2c =

(
(x′s−1a2 ⊗ ∗)(ps−1a01⊗a12)+(p⊗a01)

+ (x′s−1a01 ⊗ a12)(p⊗a01) + (x′ ⊗ a01)− (q⊗ a2)(x′⊗∗) − (x′ ⊗ a02) + (p⊗ a2)

)η0(p⊗∗))

= cη0βc − η1∂2c

If k = 2 then

∂2c =∂2(ωs−1a3 ⊗ ∗)

= −(ωs−1a01s
−1a123 ⊗ ∗)− (ωs−1a013 ⊗ ∗) + (ωs−1a023 ⊗ ∗) + (ωs−1a012s

−1a23 ⊗ ∗)

η1∂2c =

(
− (ωs−1a01 ⊗ a123)(ω⊗a01) − (ω ⊗ a013) + (ω ⊗ a023)

+ (ω ⊗ a012)− (ωs−1a012 ⊗ a23)(ωs−1a01⊗a12)+(ω⊗a01)

)η0(ω⊗∗)

η2c =η2(ωs−1a3 ⊗ ∗) = (ω ⊗ a3)η0(ω⊗∗)

∂3η2c =

(
+ (ωs−1a3 ⊗ ∗)(s−1a01s−1a12⊗a23)+(s−1a01⊗a12)+(ω⊗a01)
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+ (ωs−1a012 ⊗ a23)(s−1a01⊗a12)+(ω⊗a01) − (ω ⊗ a012)

− (ω ⊗ a023) + (ω ⊗ a013) + (ωs−1a01 ⊗ a123)(ω⊗a01)

)η0(ω⊗∗)

We can see that ∂3c2 = cη0βc2 −η1∂2c2, which satisfies property (3) of Proposition 6.3, hence

η(c2) define a contracting homotopy.

Degree n+m > 3: We now assume by induction that Property (3) of Proposition 6.3 holds

for any element c of degree < n + m. We will now prove it for elements of degree n + m.

Everything is abelian now.

As before, there are three cases:

1. In the first case, suppose that m > 0. That is, b is not the basepoint of X.

2. In the second case, suppose m = 0. That is, c = x⊗∗. Suppose also that x = x′·s−1a1,

for some non-degenerate 1-simplex a1 of X.

3. In the third case, suppose that m = 0, c = x ⊗ ∗, where x = x′ · s−1ak+1 for some

non-degenerate (k + 1)-simplex ak+1 of X.

In the first case, c = xn⊗ bm, where bm is a non-degenerate simplex of dimension m > 1

in X. Equation (35) in Definition 6.13 says that η(c) is trivial, so we need to prove that

0(∅⊗∗) = cη0(β(c)) − ηn+m−1∂n+m(c)

Suppose m = 1, so c = x⊗ b1. Then the terms in the expression for

∂n+1(x⊗ b1)

have the following form

(−1)n+1(x⊗ ∗) (39)
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(−1)n(x · s−1b1 ⊗ ∗)γ (40)

(y ⊗ b1) (41)

where y is any term in the formula for ∂Ω̂(x). Because of Proposition 6.3(4, 5), we can
ignore the action in the terms (40), and the terms in the expression for

ηn∂n+1(x⊗ b1)

will be

(−1)n+1η(x⊗ ∗) (42)

(−1)nη(x · s−1b1 ⊗ ∗) (43)

η(y ⊗ b1) (44)

But by our definition, the term (44) is trivial. Also we can expand (43) into two terms, by

the inductive definition of η, and one of these terms cancels with (42). That is:

ηn∂n+1(x⊗ b1) = (−1)|x|+1η(x⊗ ∗) + (−1)|x|η(x · s−1b01 ⊗ ∗)

= (−1)n+1η(x⊗ ∗) + (−1)nη(x⊗ ∗) + (x⊗ b1)η0(β(x⊗∗))

= (x⊗ b1)η0(β(x⊗∗))

Hence, η∂(c) = cη0βc as required.

Now suppose c = x⊗ bm, where m > 2. We will show that

ηn+m−1∂n+mc = cη0βc.

The terms of ∂n+m(x⊗ bm) have one of the following forms

(−1)n+ix⊗ dibm (45)

(−1)nx · s−1b0...i ⊗ bi...m (46)
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y ⊗ bm (47)

where y is any term in the formula for ∂Ω̂(x). The terms (45), (46), (47) might also have
actions, but because of Proposition 6.3(4, 5) we can ignore them, and the terms of

η∂n+m(x⊗ bm)

will be

(−1)n+iη(x⊗ dibm) (48)

(−1)nη(x · s−1b0...i ⊗ bi...m) (49)

η(y ⊗ bm) (50)

But by our Definition 6.13, equation (35) all of these are trivial, except

(−1)nη(x · s−1bm ⊗ ∗) (51)

and by equation (36) we therefore have

η(∂n+mc) = (−1)nη(x · s−1bm ⊗ ∗) = (−1)2n(x⊗ bm)η0β(x⊗∗) = (x⊗ bm)η0β(x⊗∗) (52)

= cη0(p) (53)

so that Proposition 6.3(3) holds.

In the second and third cases, we have

c = x⊗ ∗ = x′ · s−1ak+1 ⊗ ∗

and we want to prove that

∂n+1ηn(c) = cη0β(c) − ηn−1∂n(c). (54)

We will prove this by induction on the length of the word x.
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In the second case, we have k = 0, and from Equation (36) we know that

∂n+1ηn(c) = ∂n+1

(
ηn(x′ ⊗ ∗) + (−1)n(x′ ⊗ a1)η0β(x′⊗∗)

)
= ∂n+1ηn(x′ ⊗ ∗) + (−1)n∂n+1(x′ ⊗ a1)η0β(x′⊗∗)

= (x′ ⊗ ∗)η0β(x′⊗∗) − ηn−1∂n(x′ ⊗ ∗) + (−1)n∂n+1(x′ ⊗ a1)η0β(x′⊗∗) (A)

Here we have assumed (54) holds inductively, for c = x′⊗∗, since x′ is a shorter word than

x. We also know that

ηn−1∂n(c) = ηn−1∂n(x′ · s−1a1 ⊗ ∗)

=
∑

ηn−1(y · s−1a1 ⊗ ∗)

where we take the sum over all terms y in the expression for ∂Ω̂
n (x′), and we can ignore any

actions. Therefore from Equation (36) we know that

ηn−1∂n(c) =
∑

ηn−1(y ⊗ ∗) +
∑

(−1)n−1(y ⊗ a1)η0β(y⊗∗)

= ηn−1∂n(x′ ⊗ ∗) +
∑

(−1)n−1(y ⊗ a1)η0β(y⊗∗) (B)

If we combine (A) and (B) then we have

∂n+1ηn(c) + ηn−1∂n(c) = (−1)n
(
∂n+1(x′ ⊗ a1) + (−1)n(x′ ⊗ ∗)−

∑
(y ⊗ a1)

)η0β(x′⊗∗)

=
(

(x′ · s−1a1 ⊗ ∗)(βx′)⊗a1
)η0β(x′⊗∗)

= (x⊗ ∗)η0β(x⊗∗) = cη0βc

Finally, in the third case, c = x′ · s−1ak+1 ⊗ ∗ where k > 1. From our definition of

the boundary of the cobar construction we can see that the terms in the expression for

∂n(x′ · s−1ak+1 ⊗ ∗) have one of the following forms

(y · s−1ak+1 ⊗ ∗) (55)

(−1)|x|+i+1(x′ · s−1diak+1 ⊗ ∗) (56)
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(−1)|x|+i+2(x′ · s−1a0...i · s−1ai...k+1 ⊗ ∗) (57)

Here y denotes terms in the expression for ∂Ω̂(x′), and 1 ≤ i ≤ k. We do not write down

the actions because they will disappear when we apply η. If k > 2 then by Equations (36)

and (37)

ηn−1(y · s−1ak+1 ⊗ ∗) = (−1)|y|(y ⊗ ak+1)η0β(y⊗∗) (58)

ηn−1(x′ · s−1diak+1 ⊗ ∗) = (−1)|x
′|(x′ ⊗ diak+1)η0β(x′⊗∗) (59)

ηn−1(x′s−1a0...is
−1ai...k+1 ⊗ ∗) = (−1)|x

′|+i−1(x′s−1a0...i ⊗ ai...k+1)η0β(x′s−1a0...i⊗∗) (60)

ηn−1(x′s−1a0...ks
−1ak k+1 ⊗ ∗) = ηn−1(x′s−1a0...k ⊗ ∗)

+ (−1)n−1(x′s−1a0...k ⊗ ak k+1)η0β(x′s−1a0...k⊗∗)

= (−1)|x
′|(x′ ⊗ a0...k)

η0β(x′⊗∗)

+ (−1)n−1(x′s−1a0...k ⊗ ak k+1)η0β(x′s−1a0...k⊗∗) (61)

where (60) is only for 1 ≤ i < k. If k = 1 then

ηn−1(y · s−1a2 ⊗ ∗) = (−1)n−2(y ⊗ a2)η0β(y⊗∗) (62)

ηn−1(x′ · s−1d1a2 ⊗ ∗) = ηn−1(x′ ⊗ ∗) + (−1)n−1(x′ ⊗ d1a2)η0β(x′⊗∗) (63)

ηn−1(x′s−1a01s
−1a12 ⊗ ∗) = ηn−1(x′ ⊗ ∗) + (−1)n−1(x′ ⊗ a01)η0β(x′⊗∗) (64)

+ (−1)n−1(x′s−1a01 ⊗ a12)η0β(x′s−1a01⊗∗) (65)

In the end we can see that the terms in the expression for ηn−1∂n(x′ · s−1ak+1 ⊗ ∗) are

exactly the same as the terms in the expression for

cη0β(c) − ∂n+1ηn(c) = (x′s−1ak+1 ⊗ ∗)η0β(x′s−1ak+1⊗∗) − (−1)|x
′|∂n+1(x′ ⊗ ak+1)η0β(x′⊗∗)
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A Some data for the proof of the conjecture

We would like to try and prove Conjecture 5.11 by comparing the terms in the formulas

for

∂⊗3 ∂
⊗
4 (x⊗ b) (66)

with the terms in the formulas for

∂P3 ∂
P
4 (x⊗ b) (67)

We know that the terms in (66) all cancel. We also know that the terms in (67) are quite

similar to the terms in (66). We hope that this will give us enough insight to prove that

the terms in (67) also all cancel. Unfortunately there are 48 terms (each 4-dimensional

cube has 8 faces, and each of these cubes has 6 square faces) and we have not been able to

prove they cancel yet.

So we collect below some of the data we have found so far. We think that we might

need a good computer to check all of the possibilities and prove the conjecture.

The first two formulas are abelian,

∂⊗4 (s−1a2 ⊗ b3) = (s−1a02 ⊗ b3)(s−1a2⊗∗) − (s−1a01 · s−1a12 ⊗ b3)

+ (s−1a2 ⊗ b012)− (s−1a2 ⊗ b013) + (s−1a2 ⊗ b023)− (s−1a2 ⊗ b123)(s−1a01s−1a12⊗b01)

= Aγ −B + C −D + E − FΥ1

∂P4 (s−1a2 ⊗ b3) = Aγ −B + C −D + E − F̂Υ1 − ĜΥ2+Υ1 − ĤΥ3+Υ2+Υ1

F̂ = (s−1a2 · s−1b01 ⊗ b123)

Ĝ = (s−1a2 · s−1b012 ⊗ b23)
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Ĥ = (s−1a2 · s−1b3 ⊗ ∗)

The following formulas are not abelian but they are central. Their terms can be permuted

cyclically, for example.

∂⊗3 (Aγ) = −(s−1a02 ⊗ b023) + (s−1a02 ⊗ b013) + (s−1a02 ⊗ b123)(s−1a02⊗b01) − (s−1a02 ⊗ b012)

= −A1 + A2 + A
Υ1(A)
3 − A4

∂P3 (Aγ) = −A1 + A2 + Â
Υ1(A)
3 + Â

Υ3(A)+Υ2(A)+Υ1(A)
5 + Â

Υ2(A)+Υ1(A)
6 − A4

Â3 = (s−1a02s
−1b01 ⊗ b123)

Â5 = (s−1a02s
−1b3 ⊗ ∗)

Â6 = (s−1a02s
−1b012 ⊗ b23)

∂⊗3 (B) = +(s−1a01s
−1a12 ⊗ b012)− (s−1a01s

−1a12 ⊗ b123)(s−1a01s−1a12⊗b01)

− (s−1a01s
−1a12 ⊗ b013) + (s−1a01s

−1a12 ⊗ b023)

= B1 −BΥ1(B)
2 −B3 +B4

∂P3 (B) = B1 − B̂Υ1(B)=Υ1

2 −B3 +B4 + B̂
Υ3(B)+Υ2(B)+Υ1(B)
5 + B̂

Υ2(B)+Υ1(B)
6

B̂2 = (s−1a01s
−1a12s

−1b01 ⊗ b123)

B̂5 = (s−1a01s
−1a12s

−1b3 ⊗ ∗)

B̂6 = (s−1a01s
−1a12s

−1b012 ⊗ b23)

∂⊗3 (C) = −(s−1a01 · s−1a12 ⊗ b012) + (s−1a2 ⊗ b02)

+ (s−1a02 ⊗ b012)(s−1a2⊗∗) − (s−1a2 ⊗ b01)− (s−1a2 ⊗ b12)Υ1(C)=Υ1

= −C1 + C2 + C
γ(C)
3 − C4 − CΥ1(C)

5
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∂P3 (C) = −C1 + C2 + C
γ(C)
3 − C4 − ĈΥ1(C)

5 − ĈΥ2(C)+Υ1(C)
6

Ĉ5 = (s−1a2 · s−1b01 ⊗ b12)

Ĉ6 = (s−1a2 · s−1b012 ⊗ ∗)

∂⊗3 (D) = −(s−1a02 ⊗ b013)(s−1a2⊗∗) − (s−1a2 ⊗ b03) + (s−1a01 · s−1a12 ⊗ b013)

+ (s−1a2 ⊗ b13)(s−1a01s−1a12⊗b01) + (s−1a2 ⊗ b01)

= −Dγ(D)
1 −D2 +D3 +D

Υ1(D)
4 +D5

∂P3 (D) = −Dγ(D)
1 −D2 +D3 + D̂

Υ1(D)
4 +D5 + D̂

Υ2(D)+Υ1(D)
6

D̂4 = (s−1a2s
−1b01 ⊗ b13)

D̂6 = (s−1a2s
−1b013 ⊗ ∗)

∂⊗3 (E) = −(s−1a2 ⊗ b02)− (s−1a2 ⊗ b23)(s−1a01s−1a12⊗b02) − (s−1a01 · s−1a12 ⊗ b023)

+ (s−1a2 ⊗ b03) + (s−1a02 ⊗ b023)(s−1a2⊗∗)

∂⊗3 (E) = −E1 − EΥ1(E)
2 − E3 + E4 + E

γ(E)
5

∂P3 (E) = −E1 − ÊΥ1(E)
2 − E3 + E4 + E

γ(E)
5 − ÊΥ2(E)+Υ1(E)

6

Ê2 = (s−1a2s
−1b02 ⊗ b23)

Ê6 = (s−1a2 · s−1b023 ⊗ ∗)

∂P3 (F̂ )Υ1 = (s−1a2s
−1b01 ⊗ b12)− (s−1a02s

−1b01 ⊗ b123)(s−1a012⊗∗)

− (s−1a2s
−1b01 ⊗ b13) + (s−1a01s

−1a12s
−1b01 ⊗ b123)

+ (s−1a2s
−1b01s

−1b123 ⊗ ∗)(s−1a01s−1a12s−1b01s−1b12⊗b23)+(s−1a01s−1a12s−1b01⊗b12)

+ (s−1a2s
−1b01 ⊗ b23)(s−1a01s−1a12s−1b01⊗b12)
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∂P3 (F̂ ) = F1 − F γ(F )
2 − F3 + F4 + F

Υ2(F )+Υ1(F )
5 + F

Υ1(F )
6

∂P3 (Ĝ)Υ2+Υ1 = +(s−1a2s
−1b012 ⊗ ∗)− (s−1a02s

−1b012 ⊗ b23)(s−1a2s−1b01s−1b12⊗∗)

− (s−1a2s
−1b01s

−1b12 ⊗ b23)− (s−1a2s
−1b012s

−1b23 ⊗ ∗)Υ3

+ (s−1a01s
−1a12s

−1b012 ⊗ b23) + (s−1a2s
−1b02 ⊗ b23)(s−1a01s−1a12s−1b012⊗∗)

∂P3 (Ĥ)Υ2+Υ2+Υ1 = +(s−1a2s
−1b023 ⊗ ∗)−(s−1a01s−1a12s−1b012s−1b23⊗∗)

+ (s−1a2s
−1b012s

−1b23 ⊗ ∗)− (s−1a02s
−1b3 ⊗ ∗)(s−1a012s−1b01s−1b12s−1b23⊗∗)

+ (s−1a01s
−1a12s

−1b3 ⊗ ∗)

141


	Introduction
	Preliminaries
	Simplicial Objects and Homotopy
	The Classical Eilenberg-Zilber Theorem
	Chain complexes
	Tensor Products of Chain Complexes

	The Twisted Eilenberg- Zilber Theorem
	The Eilenberg–Zilber Theorem for crossed complexes
	Crossed modules and crossed complexes of groups
	Actions of groupoids and crossed modules of groupoids
	The equivalence of 2-groupoids and crossed modules
	Crossed complexes of groupoids
	Tensor product of crossed complexes
	Free crossed complexes
	Diagonal approximation and shuffles


	The cobar construction
	The cobar construction of Adams
	Kan's loop group and cobar construction
	The cobar construction of 0-reduced simplicial sets

	On the chain complex model of the path space

	A crossed complex of groups 
	The crossed cobar construction
	Construction of the path crossed complex P(X)
	Construction of the contracting homotopy

	The general path crossed complex 
	The crossed cobar construction for 0-reduced simplicial sets
	The general path crossed complex: an example
	The general path crossed complex: the definition
	The boundary of the non-twisted tensor product
	The boundary of the twisted tensor product


	Contracting homotopy
	The structure of the contracting homotopy
	Contracting homotopy for PCrsX

	Some data for the proof of the conjecture

