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Abstract

A Discontinuous Galerkin Finite Element Method

with Turbulence Modelling for Incompressible Flows

Luke Jolley

This thesis explores the use of an innovative interior penalty Discontinuous Galerkin Fi-

nite Element Method (DGFEM) for the Reynolds averaged, incompressible Navier-Stokes

equations, coupled with the k−ω turbulence model. The simulation of incompressible �ows

is relatively inexpensive computationally, and, with appropriate assumptions, provides a

good approximation to compressible �ows. This makes them useful for large simulations,

such as those required by the steam turbine industry.

Current generation industrial CFD solvers require ad hoc user intervention with regards to

solution re�nement, in order to achieve numerical results with a su�cient degree of accu-

racy. Accurate simulations of curved blade geometries rely on a dense packing of straight

edged elements in order to represent the geometry correctly. This results in extended

simulation times and non-optimised numerical results.

Curved boundary elements allow highly curved geometries to be represented by fewer

mesh elements, enabling e�ective mesh re�nement perpendicular to the boundary, without

increasing mesh density parallel to the boundary. To achieve this, we propose a novel

approach using inverse estimates to derive a new discontinuity-penalisation function which

stabilises the DGFEM for computations in both two and three dimensions, on meshes con-

sisting of standard shaped elements with general polynomial faces. Automated solution

re�nement is achieved by considering the dual-weighted-residual approach, de�ning a suit-

able numerical approximation for the dual solution, along with a target functional to drive

the re�nement. A novel continuation and re�nement algorithm, along with a prototype

DGFEM solver is developed, producing a number of interesting numerical results for high

Reynolds number �ows.
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These ideas are extended to incorporate the recent results in the literature for DGFEMs on

general computational meshes consisting of polygonal elements. For high Reynolds number

turbulent �ows, we show that polygonal elements can be used to signi�cantly reduce mesh

density and the computational resources required for �uid simulations through several

numerical experiments.
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ω Dissipation per unit turbulence kinetic energy. (1/s)

p Static pressure. (pa)

u∞ Freestream velocity. (m/s)

p∞ Freestream static pressure. (pa)

pt Total pressure. (pa)

q Dynamic pressure. (pa)
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Chapter 1

Introduction

The use of mathematics to model physical systems is one of the most important and inter-

esting applications of the subject. Indeed, whilst being a matter of academic fascination

for mathematicians, it is of special interest to those associated with the �eld of engineering,

especially those in the industrial sector. The modelling of physical phenomena often leads

to ordinary or partial di�erential equations (PDEs), equipped with the relevant boundary

and initial conditions to mimic the phenomena of interest. However, �nding solutions to

these equations is usually rather complicated, since it is uncommon for an analytical solu-

tion to these systems to be known. Therefore, scientists are required to focus their e�orts

on numerical approximations and, whilst the advent of computing clusters and ever more

powerful hardware has allowed them to tackle problems that would have been considered

intractable even a few years ago. Improvements to the underlying methods should also not

be neglected. Indeed, algorithmic improvements have the potential to provide the biggest

leap in computational accuracy, whilst reducing overall computation time. The reduction

of computational cost is a driving concern for the industrial sector, with cluster operat-

ing costs, in particular the price of electricity, directly impacting company pro�ts. For

instance, the power consumption of the ARCHER system operated by the EPSRC at the

University of Edinburgh is 3306 kW [8, 132]. In one hour, the ARCHER cluster will use

almost as much electricity as the average UK home consumed throughout 2017 [133].

General Electric (GE) [93], along with support and funding from the EPSRC, proposed new

research into �nding a more e�cient replacement for current generation numerical solvers.

In particular, they are concerned with �uid simulations for turbomachinery, aiding in the

development of next generation steam turbines for use in power generation. Within this

setting, a balance must be struck between computational accuracy and the cost of the

calculation; noting that, from a business point of view, it is often more important to have
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an approximation to the �ow, rather than a set of PDEs that cannot be solved for a

particular geometry within reasonable time constraints.

The current industry standard for �uid simulations are the long established Finite Volume

Methods (FVM), due to their ability to resolve problems on geometrically complex domains

whilst handling the types of non-self-adjoint PDEs associated with �uid mechanics. For

an in-depth overview of FVMs, we refer the reader to [60, 105, 111, 134] and the references

cited therein. Whilst the exact algorithms implemented within these industrial solvers are

typically closely guarded secrets, they can be considered as implementations of the ideas

presented in [111, 134] with added e�ciency improvements, such as for speci�c equations

[62], or particular boundary conditions [48]. However, it is known that these methods

rely heavily on user-de�ned meshes in order to accurately capture �ow features through

often complex geometries, with engineers required to manually adjust the mesh density

to improve the accuracy of the simulation. This is incredibly time-consuming and can

often lead to areas of the mesh which have been unnecessarily, over-, or under-re�ned.

Additionally, these FVM-based numerical solvers require a dense packing of straight-edge

mesh elements around curves in order to preserve the underlying geometry [134], increasing

the memory requirements of the computing cluster. This is made worse when pressure

corrected methods are employed, requiring the storage of an o�set mesh to handle the

pressure calculations [105].

The ine�ciencies mentioned above are some of the key areas that GE wishes to address

through the development of a replacement numerical solver for their day-to-day �uid sim-

ulations. They have suggested that a DGFEM may prove to be a viable alternative to

FVMs, with a special interest in automated solution re�nement for both accuracy and

e�ciency improvements. Representatives from GE have stated that the majority of their

�uid �ow modelling only requires steady-state (time independent) simulations that utilise

turbulence models coupled with the Reynolds-averaged Navier-Stokes equations (RANS).

As such, we develop a numerical method suitable for these purposes, addressing the dense

packing of straight edge elements through the implementation of curved boundaries, as

well as algorithms for automated solution re�nement suitable for turbomachinery �ows.

1.1 Discontinuous Galerkin Finite Element Methods

Finite Element Methods (FEMs) are an attractive alternative to FVMs, o�ering more op-

tions for solution re�nement and mesh design [126]. The construction of both FVMs and

FEMs begins by discretising the domain into a collection of elements (volumes in the FVM)

and then proceeds to �nd an approximate solution for the PDE across the mesh. FVMs

associate a volume averaged value of the solution with each element; then numerical �uxes
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must be introduced in order to ensure information is passed correctly between elements. On

the other hand, FEMs typically represent the solution using piecewise continuous polyno-

mials across each element, allowing for a potential increase in solution accuracy by altering

the polynomial degree on an element by element basis, without the need to increase the

mesh density.

Unfortunately, continuous FEMs have limited applicability to problems arising in �uid

dynamics, su�ering from di�culties in constructing stable discretisations of the advection

terms for general nonlinear PDEs [86, 111, 147]. The lack of stability presents itself in the

form of node to node oscillations when the advection terms become dominant. Attempts

have been made to remedy this, through the addition of arti�cial di�usion terms [110, 58],

or by the use of intractably �ne meshes. As a remedy, we consider instead the class of

FEMs known as discontinuous Galerkin FEMs (DGFEM).

The �rst DGFEM was introduced in 1973 by Reed and Hill [117] with the aim of comput-

ing solutions to the neutron transport problem, a �rst order hyperbolic equation. Analysis

of this new method was carried out by LeSaint and Raviart [104] utilising Fourier tech-

niques, and then later by Johnson and Pitkäranta [95]. Independently, around the same

time Babu²ka [18] developed a penalty method to �nd numerical solutions to second-

order elliptic problems; however it would not be until later that the name discontinuous

Galerkin became associated with his work. These techniques were originally known as

penalty methods, introducing terms to penalise the numerical solution for having disconti-

nuities or jumps across element boundaries. Babu²ka's method was based on on the work

of Nitsche [108], who suggested the weak imposition of boundary conditions for elliptic

problems within the realms of the classical �nite element method. However, Babu²ka's

penalty method su�ered consistency issues and it was not until the papers of Baker [20]

and Arnold [10] that these problems were fully resolved. In recent years, there has been

a whole host of DGFEMs developed, for a variety of problems. For a more in depth look

at the developmental history of these methods, see Arnold, Brezzi, Cockburn and Marini

[11, 12], and Cockburn, Karniadakis, and Shu [47]. In particular, this work focuses on the

symmetric interior penalty DGFEM for the discretisation of the elliptic terms, which o�ers

a good balance between implementation �exibility and conservation properties [82, 83].

In its simplest form, a DGFEM can be considered as a fusion of the classical FEM and

the FVM. For DGFEMs, the global continuity requirement is relaxed such that cross-

element continuity is only weakly imposed, opting instead for the use of numerical �uxes

in order to pass information between elements. However, rather than using volume aver-

aged values to represent the approximate solution, we proceed as in the continuous FEM,

selecting (high order) polynomials on each element instead. The �exibility of DGFEMs

to accommodate discontinuities in the numerical solution allows for the avoidance, or at
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least severely dampens, the non-physical oscillations typically associated with continuous

numerical approximations of boundary layer problems, without the need for a separate

stabilisation method.

Furthermore, DGFEMs are able to exploit the usual mesh, or h-re�nement, normally

associated with FEMs easily, without the need to take any special steps to resolve hanging

nodes. A hanging node is created when the vertex of one element lies on the edge or face of

a neighbouring element, a particularly common occurrence in automatic mesh re�nement.

DGFEMs also o�er the opportunity to adjust the polynomial degree of the numerical

solution in the same way continuous FEMs do, but without requiring special techniques

to enforce inter-element continuity. This is known as p-re�nement, and it increases the

accuracy of the numerical solution without altering the mesh size, resulting in a potentially

exponential decrease in the error of the approximate solution as the number of degrees of

freedom N , increases; i.e. O
(
e−βN

)
, β > 0 a constant depending on the regularity of

the solution. Whereas h-re�nement achieves only an algebraic error reduction rate, i.e.,

O(N−α), α > 0, at most.

1.2 Discontinuous Galerkin Finite Element Methods for Tur-

bomachinery Applications

Typically, �uid �ows around turbomachinery components are turbulent and of an ex-

tremely high Reynolds number, in the region of and above 1× 106 [93]. When simulating

these type of �ows, the set of nonlinear equations that describe the motion of the �uid

require a vast number of computational resources to compute their approximate numerical

solutions. As such, we seek to reduce the hardware requirements of these simulations by

considering steady-state, turbulent incompressible �ows. To simulate the �ow, we con-

struct a nonlinear system consisting of two conservation equations, mass and momentum,

coupled with the turbulence model equations. The alternative approach, is to consider

the compressible Navier-Stokes equations, which require an additional equation of state,

along with a further conservation of energy formulation, dramatically increasing the com-

putational requirements of any proposed numerical solver. Normally, the incompressible

Navier-Stokes equations are employed for hydrodynamic problems, but when coupled with

a suitable turbulence model and under the appropriate assumptions, they provide a good

approximation for compressible �ows in industrial applications [43]. In general, turboma-

chinery �ows tend to consist of large areas of almost laminar �ow requiring very few mesh

elements to accurately capture the average �ow behaviour, as well as turbulent boundary

layers and turbulent recirculation areas. The latter require a much denser packing of mesh
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elements to provide usable numerical results. As such, the proposed DGFEM requires an

algorithm to e�ectively control the mesh density and error values of the numerical solution.

In this work, we show that DGFEMs are well suited to problems arising in turbomachinery

design, able to utilise existing meshing techniques such as blocking, as well as unstructured

grids generated through algorithms like the Delaunay triangulation [113]. Traditionally,

FVMs use highly optimised structured grids with re�nement blocks in areas where the

underlying geometry is complex, such as blade edges. These improve the overall com-

putational e�ciency of the calculation at the expense of automated solution re�nement,

unable to accommodate mesh re�nement/coarsening. The hanging nodes that are gen-

erated by automated re�nement strategies require special adjustments to the FVM data

structures. These are organised for structured grids such that volume neighbour data is

intrinsic to the order of the matrix. However, this approach is unsuitable for both un-

structured grids and those that use automated re�nement strategies. On the other hand,

DGFEMs are able to handle these hanging nodes automatically, without any special treat-

ment or considerations. The interior penalty DGFEM is selected as the underlying method

for the proposed numerical solver, bene�ting from a reduced stencil size compared to the

Bassi-Rebay DGFEM [24, 66], with solutions on a speci�c element only dependent on the

information from neighbouring elements, rather than the neighbours of neighbours. The

reduced requirements of the interior penalty DGFEM complement the decision to focus

on turbulent incompressible �ows, ensuring that the proposed simulation tool is highly

e�cient. As we show, high Reynolds number, turbulent incompressible �ow problems are

extremely sti�, and, as such, require careful manipulations of the sti�ness matrix to solve

in a reasonable time frame. To combat this, DGFEMs can be easily parallelised, enabling

the use of multiple processing cores to improve simulation time.

Interior penalty implementations of DGFEMs commonly rely on mapping equations from

a de�ned reference element to the physical mesh elements. The solution on these elements

is then penalised according to the transformation that maps the reference to the physi-

cal element. Manipulation of this penalisation term has been explored most notably for

anisotropic elements [77, 67]. However, through a more considered approach, we demon-

strate that this concept can be extended to also include curved elements in a highly e�cient

manner. By implementing this new penalty parameter in a prototype numerical solver for

turbulent incompressible �ows, we show that we are able to capture the underlying geom-

etry of the problem, and in turn the numerical solution more accurately on coarse meshes.

Most recently, DGFEMs have been considered for general polytopic meshes (i.e. polygonal

in two dimensions and polyhedral in three dimensions) [36, 37, 38]. This methodology is

an alternative approach to the usual formulation of interior penalty methods, removing

the need for a reference element, de�ning instead, all quantities on the physical elements.
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Furthermore, this approach has demonstrated a reduction in computational cost compared

to standard elements [38], whilst maintaining a level of precision acceptable for engineering

applications. However, this approach is yet to be extended to high Reynolds number

turbulent �ows, and has the potential to provide a much more e�ective solution to the

mesh coarsening requirement for almost laminar �ow areas compared to using standard

elements alone.

The current approach to solution re�nement in industrial turbomachinery simulations is

one that requires ad-hoc user intervention. In order to improve the accuracy of a particular

numerical solution for a speci�ed geometry, scientists typically manually adjust the mesh

density after each progressive solve in a continuation type approach, until a desired density

or numerical accuracy is met [93]. This process requires submitting multiple jobs to a high-

performance computing (HPC) cluster for calculations to be performed, with potential

down-time if jobs �nish between working hours. This further extends the time necessary

to complete a single simulation on a speci�ed geometry. DGFEMs are able to utilise the

automated solution re�nement strategies, much like FEMs, by considering a posteriori

error analysis. That is to say, we are able to approximate the solution error using the

numerical solution alone, without knowing any information about the analytical solution.

This is crucial in the case of the incompressible Navier-Stokes equations where the general

solution is unknown. In particular, we manipulate the so called a posteriori error bound

into its elementwise contributions. These are then used to drive an automated mesh

modi�cation algorithm by re�ning the elements that contribute the largest values to the

error bound. In this work, we consider a specialised version of this known as the dual-

weighted-residual (DWR) approach [30, 31, 59]. In DWR, a target quantity is chosen,

and the numerical solution is re�ned in order to minimise the error associated with this

quantity. The key di�erence here is that the numerical solution is not re�ned to the solution

of the PDE system, meaning that we do not need to derive an a posteriori error bound for

our equations. In the literature, DWR technique for DGFEMs has been considered, with

high levels of success, for both laminar incompressible [46] and compressible �ows [80, 84].

Furthermore, this approach has also been shown to be e�ective for meshes consisting of

polytopic elements [38]. As such, in this work, we extend these ideas considerably to

include high Reynolds number turbulent �ows.

This work presents the following advancements to the ideas already discussed in the liter-

ature:

• a DGFEM for the incompressible Navier-Stokes equations with k − ω turbulence

modelling;

• a novel implementation of curvilinear mesh elements for the interior penalty DGFEM;
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• an adaptive DWR mesh re�nement and continuation algorithm for high Reynolds

number, turbulent, incompressible �ows on curvilinear meshes;

• an adaptive DWR mesh re�nement and continuation algorithm for high Reynolds

number, turbulent, incompressible �ows on polytopic meshes;

• the design and development of a prototype numerical solver for curvilinear and poly-

topic meshes to implement the ideas presented in this work, along with supporting

numerical test cases.

1.3 Research Outline

This work begins by discussing interior penalty DGFEMs in �ner detail. We consider

problems of mixed typed, speci�cally the advection-di�usion equation, introducing and

exploring key concepts such as Sobolev spaces, �nite element spaces and trace operators.

This introductory problem occupies Chapter 2, and serve to highlight many important

considerations that must be accounted for when developing DGFEMs for the incompressible

Navier-Stokes equations, especially when they are coupled with a turbulence model.

We then progress to introduce laminar �ows in Chapter 3, providing a DGFEM discreti-

sation of the incompressible Navier-Stokes equations. Laminar �ows are the simplest type

of �ows, characterised by a series of �uid layers moving in parallel directions. Whilst typ-

ically only low Reynolds number �ows are laminar, high Reynolds number �ows feature

almost-laminar sections in the free stream, so being able to calculate solutions to these

problems is extremely important. Secondly, this prototype solver is used as a basis upon

which turbulence models are incorporated, as well as capabilities for high Reynolds number

�ows. To compute numerical solutions to these problems, we need to explore the condi-

tions for which the method is stable using the, so called, inf-sup condition, �rst proposed

by Babu²ka [17] and Brezzi [35]. These equations are nonlinear and require the addition

of a damped Newton Solver to calculate the numerical solution. As such, precondition-

ing methods for linear systems that arise are discussed in Section 3.3, as it is important

that the proposed solvers can handle the sti�ness of the �nal problem, especially when we

introduce the turbulence model in Chapter 4. Finally, some simple two-dimensional test

cases are considered in order to demonstrate the e�ectiveness of the prototype solver.

In Chapter 4 we extend the previous discussion to include turbulence models, focusing in

particular on the k − ω model, due to its use in current generation industrial software.

The k − ω model has the added bene�t of being able to be applied throughout the turbu-

lent boundary layer, without any special modi�cations, unlike those required by, e.g. the
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k − ε model. Turbulence modelling provides an added layer of di�culty since it increases

sti�ness of the PDE system, reducing the rate at which both nonlinear and linear solvers

converge. In order to overcome this challenge, we introduce continuation methods, solving

a low Reynolds number �ow on the desired geometry, before slowly increasing the Reynolds

number for successive solves on the same mesh. We assume that if the increase in Reynolds

number is su�ciently small, then the new solution should resemble the previous solution,

with special consideration for the transition from laminar to fully turbulent �ows. In par-

ticular, these lower Reynolds number solutions act as an initial estimate for the nonlinear

solver, improving the likelihood that the solver converges to a solution. We conclude the

chapter with some validation results for the new DGFEM, considering a two-dimensional

turbulent �ow through a channel domain, comparing the numerical results to those from

the ODE solver presented in Wilcox [145]. This is signi�cant, as this is the �rst interior

penalty DGFEM solver for turbulent incompressible �ows, and demonstrates the potential

of DGFEM as a replacement for FVMs in industrial numerical solvers.

Chapter 5 is concerned with the development of a new interior penalty DGFEM capable

of handling mesh elements with curved boundaries (curvilinear elements). In particular,

we analyse inverse estimates of anisotropic elements to deduce a better approximation for

the minimal value of the interior penalty parameter, capable of providing stability to a

DGFEM that is stable for meshes consisting of both standard and curvilinear elements.

It is important to note that both types of elements are required to accurately capture the

intricate features of boundary layers in high Reynolds number turbulent �ows for compli-

cated geometries. Further numerical examples are considered in order to provide validation

and analysis of the new parameter with respect to existing isotropic and anisotropic param-

eters. The choice of discontinuity-penalisation function is crucial for the behaviour of the

method; too large and it will converge to the solution at a suboptimal rate, too small, the

method will be unstable and fail to converge altogether. We conclude this chapter with

a number of numerical experiments that demonstrate the e�ectiveness of the proposed

penalty parameter for meshes containing standard elements with general polynomial faces.

Following the initial validation of the proposed DGFEM, we discuss the development of

an automated mesh re�nement strategy in Chapter 6. Then, following [80], we discuss

the goal-oriented, dual-weighted-residual (DWR) a posteriori error estimation technique,

applying it to high Reynolds number, turbulent incompressible �ows. In particular, we

derive a weighted a posteriori error bound, a numerical approximation to the dual solution,

and discuss suitable target functionals for turbomachinery applications, such as pro�le

drag. We also consider the use of mesh re�nement coupled with continuation techniques,

discussing the advantages of re�ning the solution at lower Reynolds numbers in order to

improve the converge rate of the nonlinear solver for high Reynolds numbers. Then, we

move to discuss di�erent types of mesh re�nement before validating the results with further
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numerical experiments. In the particular scenario we consider, we show that adaptivity

reduces signi�cantly the error per numerical degree of freedom and that this e�ciency can

be extended to general polygonal meshes as well.

Chapter 7 discusses the advantages associated with implementing polygonal meshes within

the interior penalty DGFEM setting for high Reynolds number, turbulent, incompressible

�ows. We consider the di�erent approaches that exist within the literature for the de�-

nition of polygonal elements, as well as methods to generate them. Furthermore, we also

consider the relationship between standard triangular/quadrilateral elements and their

exotic polygonal counterparts, deriving and comparing inverse estimates on these di�er-

ent element types in order to calculate the required discontinuity-penalisation parameter.

The discussion then moves to consider the di�culties of implementing an interior penalty

DGFEM on a general computational mesh, as well as the approaches in the literature to

overcome these challenges. These di�culties include de�ning suitable basis functions for

polygonal elements, along with suitably accurate quadrature rules for element integration.

Chapter 7 concludes with some �nal numerical experiments, as well as an implementation

of an interior penalty DGFEM for high Reynolds number, turbulent incompressible �ows

on a general computational mesh consisting of polygonal elements, with an adaptive mesh

re�nement strategy based upon the DWR a posteriori error indicator derived in Chapter

6.

Lastly, in Chapter 8 we draw the �nal conclusions from this work, discussing the real world

applicability of the proposed DGFEM for current and future industrial applications. We

discuss the e�ectiveness, as a prototype for industrial steam turbine applications, of the

functioning numerical solver we have developed, along with the associated algorithms we

have created. We consider some possible avenues of further research, proposing a number

of natural extensions to the work presented in this volume, including the implementation of

mixing planes for industrial meshes, as well as the applicability of time-dependent models

such as Large Eddy Simulation for industrial type problems.
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Chapter 2

Discontinuous Galerkin Methods for

Problems of Mixed Type

We consider the construction of DGFEMs in detail, using the general second-order linear

PDEs of mixed type as a model problem. For further information see [38, 130], as well

as the references cited therein. We begin by introducing the general class of second-order

PDEs with nonnegative characteristic form [91, 109]. The speci�c PDE considered here is

more commonly referred to as the steady-state advection-di�usion-reaction equation, and

serves to model natural �uid systems. In particular, it models how physical quantities are

transferred within a physical system, using a combination of the two processes; advection

and di�usion. These types of PDEs are referred to as mixed since they may exhibit

characteristics of either hyperbolic, parabolic, or elliptic PDEs, depending on the PDE

coe�cients locally in di�erent parts of the problem's domain. This formalism allows us

to explore key concepts in the construction of DGFEMs, in particular, the construction

of �nite element spaces and operators, along with the existence and uniqueness of the

approximate solution. It is instructive to consider the detail of these components before we

study more complicated problems in subsequent chapters. Moreover, this class of equations

and the respective DGFEMs form the basis of constructing the numerical approximation

of the turbulent model equations, which is a particular focus of this work.

2.1 PDEs with Nonnegative Characteristic Form

PDEs of nonnegative characteristic form are a class of equation that encompasses a large

variety of PDEs, including second-order elliptic and parabolic PDEs, ultra-parabolic equa-

tions, �rst-order hyperbolic problems, the Kolmogorov-Fokker-Planck equations of Brown-

ian motion [23], the equations of boundary layer theory in hydrodynamics, and numerous
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other degenerate equations. Of particular interest is the advection-di�usion-reaction equa-

tion; one of the simplest models of a natural �uid system. The advection term references

the movement of substances or particles within a surrounding �uid such as air or wa-

ter, whilst the di�usion terms describe the movement of particles from an area of high

concentration to areas of lower concentration.

We de�ne the problem on a bounded open Lipschitz domain in Rd, d = 2, 3, 4, denoted

by Ω. Let c, s : Rd → R be real valued functions, b ∈ Rd be a vector function such

that its entries are all Lipschitz continuous real-valued functions, and a be a matrix such

that a = {aij}di,j=1, with aij Lipschitz continuous real-valued functions with aij = aji,

i, j = 1, ..., d. Here a is the di�usivity or di�usion coe�cient, b is the velocity �eld (a

function of space and time) of u the quantity of interest, and s is the `sources' or `sinks' of

u. Consider the following PDE:

−∇ · (a∇u) +∇ · (bu) + cu = s; (2.1.1)

this is referred to as an equation with nonnegative characteristic form on the set Ω ⊂ Rd

if for each x ∈ Ω,
d∑

i,j=1

aij (x) ξiξj ≥ 0,

for any vector ξ = (ξi, ..., ξj) in Rd. Let Γ represent the boundary of the domain Ω, and

further de�ne
Γ0 =

{
x ∈ Γ : n(x)>a(x)n(x) > 0

}
,

Γ− = {x ∈ Γ \ Γ0 : b(x) · n(x) < 0} ,
Γ+ = {x ∈ Γ \ Γ0 : b(x) · n(x) ≥ 0} ,

where n(x) is the unit outward normal vector to the boundary Γ at the point x ∈ Γ. We

refer to Γ− as the in�ow, and Γ+ as the out�ow boundary. Clearly the above sets are such

that Γ = Γ0∪Γ−∪Γ+. If the set Γ0 is non-empty, we may split it into two disjoint subsets

ΓD and ΓN, such that ΓD is non-empty. Respectively, ΓD and ΓN represent the Dirichlet

and Neumann boundary conditions where we prescribe:

u = gD on ΓD ∪ Γ−,

n· (a∇u) = gN on ΓN.
(2.1.2)

We now provide some introductory examples relevant for CFD applications.

1. Selecting a = Id, b = 0, and c = 0, with Id denoting the d× d identity matrix and 0

11



the zero vector/matrix whose dimension will always be clear in a given context; we

recover the Poisson equation −∆u = s in Ω.

2. Let a ∈ Rd×d and b ∈ Rd such that

a =

(
0 0

0 Id−1

)
, b =

(
1

0

)
,

and c = 0. This gives rise to the heat equation with the �rst coordinate direction

representing the time direction.

3. De�ne a = 0, b ∈
[
W 1,∞ (Ω)

]d, and c ∈ L∞ (Ω); this choice gives rise to the �rst-

order transport equation ∇ · (bu) + cu = s, with one variable possibly signifying the

time direction.

4. For d = 2, let

a =

(
x 0

0 1

)
,

with b = 0 and c = 0. Then, assuming the domain contains the line x = 0, the

equation is hyperbolic when x < 0, elliptic when x > 0, and degenerates on the line

x = 0. This is known as Keldy² equation [74, 97], which arises when modeling weak

shock re�ections o� a wedge [41].

2.2 Sobolev Spaces

The solutions of PDEs are naturally found in Sobolev spaces, rather than in spaces of

continuous functions with classical derivatives. The notion of a Sobolev space is based on

that of a Lebesgue space Lp(Ω), where Ω ⊂ Rd, d ≥ 1 and p ∈ [1,∞].

De�nition 2.2.1. Let Ω be an open domain in Rd, d ≥ 1, then Lp(Ω), p ∈ [1,∞] is de�ned

as the Lebesgue space of real-valued functions for which the norm de�ned by

‖u‖Lp(Ω) :=

{ (´
Ω |u(x)|p dx

) 1
p , 1 ≤ p <∞,

ess sup {|u(x)| : x∈Ω} , p =∞,

is �nite. For k∈N∪{0}, the Sobolev spaceW k
p (Ω) is de�ned over the open domain Ω ⊂ Rd,

d ≥ 1 by

W k
p (Ω) := {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) for |α| ≤ k} ,
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where Dα is the weak derivative of order α = (α1, ..., αd), with α being a standard multi-

index notation; we associate the following norm ‖·‖Wk
p (Ω), and semi-norm |·|Wk

p (Ω):

‖u‖Wk
p (Ω) :=

(∑
|α|≤k ‖Dαu‖pLp(Ω)

) 1
p
,

|u|Wk
p (Ω) :=

(∑
|α|=k ‖Dαu‖pLp(Ω)

) 1
p
,

for p = [1,∞). For p =∞, we de�ne instead

‖u‖Wk
∞(Ω) := max|α|≤k ‖Dαu‖L∞(Ω) ,

|u|Wk
∞(Ω) := max|α|=k ‖Dαu‖L∞(Ω) .

We refer to k as the Sobolev index. In the particular case when p = 2, the space W k
2 (Ω)

with standard inner product is a Hilbert space, which we denote as W k
2 (Ω) =: Hk (Ω).

Finally, if we also have that k = 0, then we are left with the standard L2 space where

H0 (Ω) = L2 (Ω).

2.3 Existence and Uniqueness of the Solution

Before we progress to solve (2.1.1), we must �rst be con�dent in the knowledge that a

solution does indeed exist, and that it is unique. Existence and uniqueness in the weak

setting was �rst considered by Ole��nik and Radkevi£ [109] in various settings with certain

regularity assumptions presented therein. Later Houston, Schwab and Süli were able to

replicate this work with more relaxed regularity constraints [90]. It is these results we

consider here. We simplify the analysis by �rst setting gN = 0. We de�ne the space

V :=
{
v ∈ H1 (Ω) : v (x) = 0 ∀x ∈ ΓD

}
.

Let H be the closure of V in L2(Ω) with respect to the norm ‖·‖H :=
√

(·, ·)H, where (·, ·)H
is an inner product de�ned by

(w, v)H := (a∇w,∇v) + (cw, v) + 〈w, v〉Γ−∪Γ+∪ΓN
.

In this setting, (·, ·) and 〈·, ·〉γ are inner products de�ned, respectively, by

(w, v) =
´

Ωwv dx,

〈w, v〉γ =
´
γ |b · n|wv ds.
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It can be shown that H is a Hilbert space. We de�ne the bilinear form B (·, ·) : H×V → R,
as well as the linear functional l : V → R by

B (w, v) = (a∇w,∇v)− (w,b · ∇v) + (cw, v) + 〈w, v〉Γ+∪ΓN
,

l (v) = (s, v) .

We say that u ∈ H is a weak solution to the boundary value problem (2.1.1) with boundary

conditions; u = gD on ΓD ∪ Γ− and (a∇u) · n = gN on ΓN if

B (u, v) = l (v) ∀v ∈ V.

Theorem 2.3.1. [91] Let (2.1.1) together with the respective boundary conditions (2.1.2)

be given. Furthermore, suppose that b · n ≥ 0 on ΓN, and that there exists a positive

constant γ0 such that

c (x) +
1

2
∇ · b (x) ≥ γ0, x ∈ Ω.

Then, for every s ∈ L2(Ω), there exists u ∈ H such that B (u, v) = l (v). Moreover, there

exists a Hilbert subspace H′ of H such that u ∈ H′ and u is the unique element of H′ such
that B (u, v) = l (v).

2.4 Mesh Design

We partition the domain Ω into a subdivision Th = {κ}, where κ are disjoint open element

domains and hκ is the local mesh size, such that Ω = ∪κ∈Thκ. These are de�ned such that

there exists an a�ne mapping Fκ : κ̂ → κ from the reference element κ̂ to the physical

element κ. For the purposes of this example, we assume that κ̂ is the unit hypercube

(−1, 1)d, see Figure 2.4.1, but this could also be the unit d-simplex. In Chapter 7, however,

we show that we may do away with this mapping altogether, de�ning all quantities on a

general polytope instead.
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Figure 2.4.1: The mapping Fκ from the reference element κ̂ to the physical element κ.

Consider two adjacent elements κi, κj ∈ Th with boundaries ∂κi and ∂κj respectively. We

de�ne an interior face of Th to be the non-empty set ∂κi ∩ ∂κj and de�ne Γint to be the

union of all interior faces of Th. One further concept we require before proceeding, is that
of shape regularity.

De�nition 2.4.1. (Shape Regularity) A family of subdivisions Th is said to be shape-

regular if there exists a positive constant Cr such that, for all κ ∈ Th, we have

hκ
ρκ
≤ Cr. (2.4.1)

The constant Cr is independent of the varying mesh parameters. Hence, ρκ denotes the

diameter of the largest ball contained in κ, and hκ is the diameter of κ.

As we show throughout this work, DGFEMs can consider very general meshes making

them perfectly suited for turbomachinery problems. Traditionally, FVMs for industrial

applications make use of highly optimised structured grids with re�nement blocks in areas

where the underlying geometry is complex, i.e., around blade edges. DGFEMs are able

to both utilise these pre-existing meshing methods, as well as the unstructured grids con-

structed through algorithms such as the Delaunay triangulation [113]. In Chapter 5, and

subsequently Chapter 6, we also demonstrate that the proposed interior penalty method

may do away with the need for block-structured grids altogether, as well as make use of

di�ering polynomial orders to represent the numerical solution.

De�nition 2.4.2. For an open set Ω with corresponding subdivision Th, the broken

Sobolev space of composite order m is de�ned as

Hm(Ω, Th) =
{
u ∈ L2 (Ω) : u|κ ∈ Hmκ (κ) ∀κ ∈ Th

}
,
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where m := {mκ}κ∈Th ; the associated norm and seminorm are then de�ned, respectively,

as

‖u‖m,Th =

∑
κ∈Th

‖u‖2Hmκ (κ)

 1
2

,

‖u‖m,Th =

∑
κ∈Th

|u|2Hmκ (κ)

 1
2

.

Let u ∈ H1 (Ω, Th) and τ ∈
[
H1 (Ω, Th)

]d, then the broken gradient ∇Thu of u and the

broken divergence ∇Th · τ of τ are de�ned element wise, as

(∇Thu)|κ = ∇ (u|κ) , κ ∈ Th,

(∇Th · τ)|κ = ∇ · (τ |κ) , κ ∈ Th.

2.5 Trace Operators

Consider a function v ∈ H1(Ω, Th). We introduce a set of operators on the function v to

de�ne the behaviour on v|∂κ. For an element κi and its neighbour κj that share a face

f ∈ Γint, the jump of v across f , and the mean value of v on f , are given respectively as

[v] = v|∂κi∩f − v|∂κj∩f ,

〈v〉 =
1

2
(v|∂κi∩f + v|∂κj∩f ).

When f ∈ Γ \ Γint then the following de�nitions are used instead:

[v] = v|∂κ∩f ,

〈v〉 = v|∂κ∩f .

Also, for every κ ∈ Th, let v+
h and v−h denote the interior and exterior traces, respectively,

of the function v on ∂κ and ∂κ ∩ Γ 6= ∅.
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2.6 Finite Element Spaces

Consider an element κ̂ ∈ Th, for polynomial degree p, we de�ne two polynomial spaces by

Qp := span

{
d∏
i=1

x̂αii : 0 ≤ αi ≤ pi

}
,

Pp := span

{
d∏
i=1

x̂αii : 0 ≤
d∑
i=1

αi ≤ p

}
.

We associate a polynomial degree pκ ≥ 1 with every κ ∈ Th. Furthermore, for conciseness

we introduce the notation

Rp :=

Qp if κ̂ is the unit hypercube,

Pp if κ̂ is the unit simplex,

thereby, if κ̂ is a simplex we use polynomials from Pp, otherwise if κ̂ is a hypercube we

use polynomials from Qp. Introducing p = {pκ : κ ∈ Th} and Fκ : κ ∈ Th, we are able to
concisely de�ne the discontinuous �nite element space

Sp (Ω, Th,F) :=
{
u ∈ L2 (Ω) : u |κ ◦Fκ ∈ Rpκ

}
. (2.6.1)

2.7 A DGFEM for PDEs with Nonnegative Characteristic

Form

We now return to the model problem de�ned previously, and are interested in deriving a

suitable interior penalty DGFEM. On each element κ ∈ Th, we de�ne an in�ow and an

out�ow boundary denoted, respectively, by

∂−κ = {x ∈ ∂κ : b(x) · n(x) < 0} ,
∂+κ = {x ∈ ∂κ : b(x) · n(x) ≥ 0} ,

(2.7.1)

where n(x) is the unit outward normal vector to κ at the point x ∈ ∂κ.

The �rst stage in deriving a DGFEM is to convert the advection-di�usion-reaction equation

(2.1.1) into a system of two �rst order equations

Φ− a∇u = 0,

−∇Φ +∇ · (bu) + cu = s.
(2.7.2)
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We now introduce suitably smooth test functions, the vector τ and scalar v, multiplying

each equation of (2.7.2), respectively, and integrating by parts over κ ∈ Th, we obtain
ˆ
κ

Φ · τ dx +

ˆ
κ
∇ · (aτ )u dx +

ˆ
∂κ

(aτ ) · nu ds = 0,

ˆ
κ

Φ · ∇v dx−
ˆ
∂κ\ΓN

Φ · nv ds−
ˆ
∂κ∩ΓN

gNv ds

−
ˆ
κ
ub · ∇v dx +

ˆ
∂κ

b · nuv ds +

ˆ
κ
cuv dx =

ˆ
κ
sv dx.

We aim to restrict the problem to a �nite-dimensional one. Therefore, we proceed by

restricting the choice of trial and test functions to subspaces based on Sp (Ω, Th,F). Then,

summing over all elements κ of the domain, and introducing the following numerical �uxes

ûh, H
(
u+
h , u

−
h , nκ

)
and Φ̂h · nf we are able to de�ne the �ux formulation of the problem.

Numerical �uxes are an important aspect for the construction of a DGFEM, since they are

the method by which information is passed across element boundaries. Indeed, di�erent

numerical �uxes gives rise to di�erent DGFEM formulations [12]. It is these �uxes that

allow us to weakly enforce continuity between neighbouring elements. Here the �uxes ûh,

H
(
u+
h , u

−
h , nκ

)
and Φ̂h · nf represent consistent approximations to u, b ·nu and a∇u ·n on

the faces of elements, respectively. In particular, we say the numerical �uxes are consistent

if
ûh
(
v+, v−

)
|f = v,

H
(
v+, v−, nκ

)
|∂κ = b · nv,

Φ̂h · nf
(
v+.∇v+. v−.∇v−

)
|f = a∇v · nf ,

for any smooth function v satisfying the boundary conditions. Further, the numerical

�uxes are conservative if they are single-valued on every face f in the mesh.

Consequently, summing over all the elements we have the following

∑
κ∈Tκ

(ˆ
κ

Φh · τ dx +

ˆ
κ
∇ · (aτ)uh dx

)
−
ˆ

Γint∪Γ0

[(aτ) · nf ] ûh ds = 0, (2.7.3)

∑
κ∈Tκ

(ˆ
κ

Φ · ∇v dx−
ˆ
κ
uhb · ∇v dx−

ˆ
κ
cuhv dx +

ˆ
∂κ
H
(
u+
h , u

−
h , nκ

)
v+ ds

)
−
ˆ

Γint∪ΓD

Φ̂h · nf [v] ds =
∑
κ∈Tκ

(ˆ
κ
sv dx +

ˆ
∂κ∩ΓN

gNv ds
)
. (2.7.4)
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The numerical �uxes we shall use are de�ned as follows

H
(
u+
h , u

−
h , nκ

)
|∂κ=

 b · nκgD
b · nκ limm→0+ uh(x−mb)

x ∈ ∂κ ∩ (ΓD ∪ Γ−) ,

otherwise,

ûh =

 〈uh〉gD

f ⊂ Γint ∪ ΓN,

f ⊂ ΓD,

Φ̂h · nf =

 〈(a∇uh) · ne〉 − σ [uh]

(a∇uh|f ) · nf − σ (uh|f − gD)

f ⊂ Γint,

f ⊂ ΓD.

H
(
u+
h , u

−
h , nκ

)
represents the upwind �ux and is chosen in an upwind fashion aiming to

make the method stable. It takes on the value found upstream, or upwind of the current

position x, and a DGFEM discretisation based on this �ux is both stable and consistent.

σ is known as the discontinuity-penalisation function and it has the purpose of penalising

any jump discontinuities across element boundaries, i.e., on f ∈ Γint, and also the task of

weakly imposing the Dirichlet boundary conditions on f ∈ ΓD. Later, we discuss how to

select a more precise value for this parameter, but for the purposes of this initial study, we

choose

σ = Cσ
p2

h
,

with Cσ large enough according to [70]. With the above choice of �uxes, we have the

interior penalty DGFEM of Houston, Schwab and Süli [92].

Whilst it is acceptable to leave (2.7.3) and (2.7.4) in their current form, we proceed instead

by eliminating the variable Φh through setting τ = ∇v in (2.7.3), and integrating by

parts. Then, substituting for the term
´
k Φh ·τdx, we combine (2.7.3) and (2.7.4) to arrive

at the primal form: �nd uDG ∈ Sp (Ω, Th,F) such that BDG(uDG, v) = lDG(v), for all

v ∈ Sp (Ω, Th,F), where

BDG(w, v) = BA(w, v) +BB(w, v) +BC(w, v) +BD(w, v) +BE(w, v),

lDG(v) = lA(v) + lB(v),
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with

BA(w, v) =
∑
κ∈Th

(ˆ
κ
a∇w · ∇v dx

)
,

BB(w, v) =
∑
κ∈Th

(
−
ˆ
κ

(wb · ∇v − cwv) dx
)
,

BC(w, v) =
∑
κ∈Th

(ˆ
∂+κ

(b · nκ)w+v+ ds +

ˆ
∂−κ\Γ

(b · nκ)w−v+ ds

)
,

BD(w, v) = θ

ˆ
Γint∪ΓD

〈(a∇w) · nf 〉 [v] ds−
ˆ

Γint∪ΓD

〈(a∇v) · nf 〉 [w] ds,

BE(w, v) =

ˆ
Γint∪ΓD

σ [w] [v] ds,

and

lA(v) =
∑
κ∈Th

(ˆ
κ
sv dx−

ˆ
∂−κ∩(ΓD∪Γ−)

(b · nκ) gDv
+ ds +

ˆ
∂−κ∩ΓD

θgD
((
a∇v+

)
· nκ

)
ds

)
,

lB(v) =
∑
κ∈Th

(ˆ
∂κ∩ΓN

gNv
+ ds +

ˆ
∂κ∩ΓD

σgDv
+ ds

)
.

For the symmetric interior penalty method, we set the parameter θ to be equal to −1,

resulting in a bilinear form which is symmetric in its di�usive terms, BA(w, v)+BC(w, v)+

BD(w, v) + BE(w, v). Other interior penalty methods can be produced through di�erent

choices of numerical �uxes and by setting θ = 0 for the incomplete penalty method, or

θ = 1 for the non-symmetric interior penalty method.

2.8 Stability

We now explore the stability of the above DGFEM we have just presented. We wish to

know if the DGFEM approximate solution to (2.1.1) exists and whether it is unique. This

brings into question the coercivity of the bilinear form.

De�nition 2.8.1. A bilinear form B(·, ·) on a normed linear space H, equipped with norm

‖· ‖H , is said to be continuous if there exists a constant C <∞ such that

|B(w, v)| ≤ C ‖w‖H ‖v‖H ∀w, v ∈ H. (2.8.1)

The bilinear form B(·, ·) is said to be coercive on H ×H if there exists a constant α > 0

such that

B(w,w) ≥ α ‖w‖2H ∀w ∈ H. (2.8.2)
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Theorem 2.8.2. If B(·, ·) is a coercive bilinear form on a normed, linear, �nite-dimensional

space, H, then for any linear functional l(·) there exists a unique u ∈ H such that

B(u, v) = l(v) ∀w ∈ H. (2.8.3)

Proof. Coercivity of the bilinear form B(·, ·), over H × H, implies that if B(w,w) = 0,

then w ≡ 0. This therefore implies the uniqueness of the solution. Formally, suppose we

have two di�erent solutions of (2.8.3), say u and u∗. Then

B(u, v)−B(u∗, v) = B(u− u∗, v) = l (v)− l (v) = 0 ∀v ∈ H.

Choosing v such that v = u − u∗, yields B(u − u∗, u − u∗) = 0, thus u ≡ u∗. Since the

space H is �nite-dimensional and (2.8.3) is a linear problem, the existence of a solution to

(2.8.3) is guaranteed by the fact that its homogeneous counterpart has the unique solution

uDG ≡ 0.

Therefore, if we are able to prove coercivity of the bilinear form BDG(· , · ) on the space

Sp (Ω, Th,F), then existence and uniqueness of the solution follow. Note that we only con-

sider the case of isotropic elements for the purposes of this introductory chapter, although

anisotropic [67, 68, 77] and most recently polytopic elements [36, 38] have been considered

in the literature. We make one further simpli�cation before proceeding, and assume that

the entries of the matrix a are constant on each element κ ∈ Th, i.e.

a ∈
[
S0 (Ω, Th,F)

]d×d
sym

and let aκ := a |κ. We also de�ne ā =
∣∣√a∣∣2

2
, where |· |2 denotes the matrix norm

subordinate to the l2-vector norm on Rd:

|A|2 := max
v∈Rd\{0}

‖Av‖2
‖v‖2

A ∈ Rd×d.

We now seek to prove coercivity by �rst considering the following result.

Lemma 2.8.3. Let κ̂ be either the unit d-hypercube or the unit d-simplex, d = 2, 3, then

for any function v̂ ∈ Rp (κ̂), p ≥ 1, there exists a positive constant, C ′inv independent of û

such that for any element face f̂ ⊂ ∂κ̂, we have

‖v̂‖2
f̂
≤ C ′invp2 ‖v̂‖2L2(κ̂) . (2.8.4)

Proof. A proof of (2.8.4) is omitted here; see [124] for details.
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We now need to scale (2.8.4) to the physical element κ.

Lemma 2.8.4. Let κ be an element contained in the mesh Th and let f denote one of its

faces. Then, the following inverse inequality holds

‖v‖2L2(f) ≤ Cinv

p2

h
‖v‖2L2(κ) , (2.8.5)

for all v such that v ◦ Fκ ∈ Rp (κ̂), where Cinv is a constant which depends only on the

dimension d.

Proof. We employ (2.8.4) and re-scale both the left- and right-hand sides. In particular, for

the left-hand side of (2.8.5), we make use of the a�ne mapping Fκ between the reference

and physical element.

‖v‖2L2(f) ≤ C1 ‖v̂‖2L2(f̂) (2.8.6)

For the right-hand side we have

‖v̂‖2L2(κ̂) = det
(
F−1
κ

)
‖v‖2L2(κ) =

1

h
‖v‖2L2(κ) ≤

C2

h
‖v‖2L2(κ) (2.8.7)

where C1 and C2 are positive real constants. Finally, inserting (2.8.6) and (2.8.7) into

(2.8.4) yields the desired result.

We are now in a position to state and prove the following coercivity result for the bilinear

form BDG(·, ·) over Sp (Ω, Th,F)×Sp (Ω, Th,F). Before proceeding however, it is required

that we de�ne a norm on the space Sp (Ω, Th,F). Following [78], we de�ne the DG-norm

‖· ‖DG by

‖w‖2DG =
∑
κ∈Tκ

(
‖√a∇w‖2L2(κ) + ‖c0w‖2L2(κ) +

1

2

∥∥w+
∥∥2

∂−κ∩(ΓD∪Γ−)

+
1

2

∥∥w+ − w−
∥∥2

∂−κ\Γ +
1

2

∥∥w+
∥∥2

∂+κ∩Γ

)
+

ˆ
Γint∪ΓD

θ [w]2 ds +

ˆ
Γint∪ΓD

1

θ
〈(a∇w) ·nf 〉2 ds,

where ‖· ‖τ , τ ⊂ ∂κ is the norm induced from the inner product

(v, w)τ =

ˆ
τ
|b·nκ| vw ds,
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and c0 is de�ned as

(c0 (x))2 = c (x) +
1

2
∇ · b (x) , ∀x ∈ Ω.

Additionally, we de�ne the function a ∈ L∞ (Γint ∪ ΓD) by a (x) = max
{
āκ1 , āκ2

}
if x is

in the interior of f = ∂κ1 ∩ κ2, and a (x) = āκ if x is in the interior of ∂κ ∩ ΓD. Similarly,

we de�ne the function p ∈ L∞ (Γint ∪ ΓD) by p (x) = max {pκ1 , pκ2} if x is in the interior

of f = ∂κ1 ∩ κ2, and p (x) = pκ if x is in the interior of ∂κ ∩ ΓD.

Theorem 2.8.5. If σ is de�ned as

σ |f= σf = Cσ
ap2

h
for f ⊂ ΓD ∪ Γint, (2.8.8)

then there exists a positive constant Cs, which depends only on the dimension d and the

shape regularity of Th, such that

BDG(v, v) ≥ Cs ‖v‖2DG ∀v ∈ S
p (Ω, Th,F) , (2.8.9)

provided that the constant Cσ is chosen such that Cσ > C ′σ > 0, where C ′σ is a su�ciently

large positive constant.

Proof. The proof is well known, but we prefer to present it here as it is instructive on the

importance of inverse estimates in the stability of DGFEMs of interior penalty type. Let

Cs be an arbitrary real number and pick v ∈ Sp (Ω, Th,F). Then,

BDG(v, v)− Cs ‖v‖2DG = (1− Cs) (BA(v, v) +BB(v, v) +BC(v, v))

− 2

ˆ
Γint∪ΓD

〈(a∇v) · nf 〉 [v] ds

− Cs
ˆ

Γint∪ΓD

1

σ
〈(a∇v) · nf 〉2 ds.

(2.8.10)

Restricted to the face f ⊂ Γint, the interface between the elements κi and κj the last term

on the right-hand side of (2.8.10) can be bounded as follows:

ˆ
f

1

σ
〈(a∇v) · nf 〉2 ds ≤

ˆ
f

1

2σ

[
((aκi∇v) · nf )2 +

((
aκj∇v

)
· nf

)2] ds (2.8.11)

23



As σ is constant on each face, and using (2.8.5) we are able to derive the following bound

ˆ
f

1

σ
((aκi∇v) · nf )2 ds =

1

σ
‖aκi∇v‖

2
L2(f)

≤ Cinv

σ

p2
κi

hκi
‖aκi∇v‖

2
L2(κi)

≤ Cinv

σ

p2
κi

hκi
āκi
∥∥√aκi∇v∥∥2

L2(κi)
.

Therefore, setting σ |f= Cσ
ap2

h yields

ˆ
f

1

σ
((aκi∇v) · nf )2 ds ≤ Cinv

Cσ

∥∥√aκi∇v∥∥2

L2(κi)
.

Hence ˆ
f

1

σ
〈(a∇v) · nf 〉2 ds ≤ Cinv

2Cσ

[
‖√a∇v‖2L2(κi)

+ ‖√a∇v‖2L2(κj)

]
.

By employing (2.8.8) an analogous argument for f ∈ ΓD yields

ˆ
f

1

σ
〈(a∇v) · nf 〉2 ds ≤ Cinv

Cσ

∥∥√a∇v∥∥2

L2(κ)
.

Hence ˆ
Γint∪ΓD

1

σ
〈(a∇v) · nf 〉2 ds ≤

CinvCf
Cσ

BA (v, v) , (2.8.12)

where Cf is dependent on the maximum number of element interactions on an element

boundary, that is

Cf = max
κ∈τh

card {f ∈ Γint ∪ ΓD : f ⊂ ∂κ} .

For a face f ∈ Γint ∪ ΓD the following bound holds:

2

ˆ
f
〈(a∇v) · nf 〉 [v] ds ≤ 2

√ˆ
f

1

σ
〈(a∇v) · nf 〉2 ds

√ˆ
f
σ [v]2 ds

≤ ε
ˆ
f

1

σ
〈(a∇v) · nf 〉2 ds +

1

ε

ˆ
f
σ [v]2 ds,

for any ε > 0. Summing over all faces f ∈ Γint ∪ ΓD and utilising (2.8.12) we obtain

2

ˆ
Γint∪ΓD

〈(a∇v) · nf 〉 [v] ds ≤ ε
CinvCf
Cσ

BA (v, v) +
1

ε
BE (v, v) ,
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and, therefore,

BDG(v, v)− Cs ‖v‖2DG ≥
(

1− Cs − (Cs + ε)
CinvCf
Cσ

)
BA (v, v)

+ (1− Cs) (BB (v, v) +BC (v, v)) +

(
1− Cs −

1

ε

)
BE (v, v) .

Evidently BA (v, v) and BE (v, v) are non-negative, and similarly

BB (v, v) +BC (v, v) ≥ 0,

due to Theorem 2.8.2. Hence, it follows that if(
1− Cs − (Cs + ε)

CinvCf
Cσ

)
> 0, (1− Cs) > 0,

(
1− Cs −

1

ε

)
> 0, (2.8.13)

then, coercivity holds. However, the last inequality only holds provided ε > 1, while the

�rst inequality implies that

0 < Cs <
1− εCinvCfCσ

1 +
CinvCf
Cσ

<
1− CinvCf

Cσ

1 +
CinvCf
Cσ

=
Cσ − CinvCf
Cσ + CinvCf

.

Therefore, in order for Cs to exist, Cσ must be taken su�ciently large, that is

Cσ > CinvCf , (2.8.14)

in which case the second inequality in (2.8.13) automatically holds. As such, the method

is coercive.

2.9 Concluding Remarks

In this chapter we have demonstrated how the interior penalty DGFEM is derived for a

second order linear scalar PDE. We also arrived at an analysis of the method to show

existence and uniqueness (2.8.9) of the solution, with the main ideas and concepts that

underpin the method. These ideas are extended to the case of the incompressible Navier-

Stokes equations in Chapter 3, where the concept of coercivity is replaced by the weaker

notion of inf-sup stability to accommodate the inde�niteness of the discrete linear system

arising there.
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The main tool in proving coercivity was the inverse estimate (2.8.5), which directly in-

�uences the choice of penalty parameter. In Chapter 5 we extend the discussion of the

correct choice of penalty parameter, considering a elements with curved faces, as well as

an improved estimate for the value that satis�es (2.8.14). It is through this discussion that

a penalty parameter suitable for use with curved mesh elements is derived. We then pro-

vide an alternative approach to de�ning IP DGFEMs in Chapter 7, considering polytopic

elements without the need for element transformations [38]. This requires the de�nition of

new inverse inequalities suitable for general polytopic elements, thus altering the value of

the discontinuity penalisation function.
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Chapter 3

Discontinuous Galerkin Methods for

Incompressible Laminar Flows

The Stokes system is traditionally used to model slow moving or highly viscous �uids

[112], whilst the Navier-Stokes equations are used to model fast moving �ows, such as those

readily encountered in aerodynamic or aeroacoustic modelling. One key di�erence between

the steady-state Navier-Stokes equations and the advection-di�usion problem studied in

the previous chapter, is these are nonlinear equations. Discontinuous Galerkin methods

have numerous advantages over conforming or classical �nite element methods, especially

in transport dominated problems due to their �exibility and stability. In this chapter,

we introduce the steady-state incompressible Navier-Stokes equations for laminar �ows, as

well as deriving a discontinuous Galerkin discretisation for this system of PDEs.

A laminar, or streamline �ow, is de�ned as one in which the �uid appears to move through

the domain with no mixing between parallel �ows or `layers'. There are no cross-currents

perpendicular to the �ow direction, nor eddies, (a swirling of the �uid). In particular,

laminar �ows tend to be very orderly, with particles close to solid surfaces moving parallel

to that surface. They tend to occur naturally at lower Reynolds numbers (see De�nition

3.1.1 below), generally below a critical value of approximately 2, 000 for a ��ow through

a pipe� system. However, turbulent transition typically happens in the range of 1, 800 to

2, 100 [14]. Incompressible �ows are those in which the material density is constant within

an in�nitesimal volume that moves with the �ow velocity. An equivalent statement, is

that the divergence of the �ow velocity is zero. In general, an incompressible �ow does not

imply that the �uid itself is incompressible, just that the density remains constant within

a de�ned volume. As such, under the correct conditions, incompressible �ows can be used

to give good approximations to the �ow of compressible �uids.
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3.1 The Incompressible Navier-Stokes Equations

Let Ω be de�ned as before, a bounded open Lipschitz domain in Rd, d = 2, 3. We maintain

the same notation in this chapter, letting Γ represent the boundary of the domain Ω.

De�nition 3.1.1. The Reynolds number Re is the ratio of inertial forces to viscous forces

within a �uid which is subjected to relative internal movement due to di�erent �uid veloc-

ities:

Re =
LCu

ν
,

where u is the velocity of the �uid with respect to the object/surface in contact with the

�ow, ν is the kinematic viscosity, and LC is the characteristic linear dimension.

For two matrices, A, c× d, and B, s× t, the Kronecker product A⊗B is the cs× dt block
matrix:

A⊗B :=


a11B · · · a1dB
...

. . .
...

ac1B · · · acdB

 .

The relative movement within the �uid generates �uid friction, which is a factor in de-

veloping a turbulent �ow. The Reynolds number itself indicates at which �uid velocities

a turbulent �ow develops for a particular situation or domain. The non-dimensionalised

steady-state incompressible Navier-Stokes equations read

− 1

Re
∇2u +∇ · (u⊗u) +∇p = 0,

∇ · u = 0,
(3.1.1)

in Ω; here u ∈ Rd is the �ow velocity and p the pressure of the �uid. The �rst line in

equation (3.1.1) expresses the conservation of momentum of the �ow, whilst the second

is the incompressibility condition which arises from the conservation of mass equations.

In �uid dynamics, the divergence of the velocity vector measures the net �ow out of a

given point. For the velocity of a �ow to have zero divergence, it means via the divergence

theorem, that the amount of �uid entering a point or region is equal to the amount of �uid

leaving that same region. That is to say, as before, the �uid does not compress. We note,

that for the incompressible Navier-Stokes equations, the energy conservation equation, or

as it is typically written, the temperature equation, is completely decoupled from (3.1.1) if

the viscosity does not depend on the temperature. That is to say, we neglect the e�ect of

heating due to viscous dissipation, and assume that the �uid is Newtonian. If information
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about the temperature �eld is required, the energy equation may be solved separately using

a di�erent DGFEM discretisation. As this is not the focus of our work, and following the

guidance of GE [93], we do not consider these results here. The notation u⊗u is used to

represent the standard Kronecker product, with the �ux de�ned such that F := u⊗u.

We couple the Navier-Stokes system with the following boundary conditions [46], where n

is the unit outward normal vector to the boundary

u = gD on ΓD, (3.1.2)

1

Re

∂u

∂n
− pn = 0 on ΓN. (3.1.3)

3.2 Discontinuous Galerkin Discretisation

We proceed similar to Section 2.6, considering a triangulation Th of the domain Ω, de�ning

the new discontinuous �nite element spaces

Vh,m =
{
v ∈

[
L2 (Ω)

]d
: v |κ∈ [Rm (κ)]d , κ ∈ Th

}
,

Qh,m =
{
q ∈ L2 (Ω) : q |κ∈ Rm−1 (κ) , κ ∈ Th

}
,

(3.2.1)

d = 2, 3, m ≥ 1, with Vh,m related to the velocity approximation and Qh,m related to

the pressure. We also de�ne the jumps and averages for both vector and tensor valued

functions. Let q, v, τ represent scalar, vector and matrix valued functions respectively,

which are su�ciently smooth inside each element κ±. Then let (q±,v±, τ±) denote the

traces of (q,v, τ ) on an interior face f = ∂κ+ ∩ ∂κ− ⊂ Γint, taken from within the interior

of κ±. Then we de�ne the following averages and jumps

〈q〉 =
(q+ + q−)

2
, 〈v〉 =

(v+ + v−)

2
, 〈τ 〉 =

(τ+ + τ−)

2
,

[q] = q+nκ+ + q−nκ− , [v] = v+ · nκ+ + v− · nκ− ,

[v] = v+ ⊗ nκ+ + v− ⊗ nκ− , [τ ] = τ+nκ+ + τ−nκ− .

On boundary edges f ∈ Γ, we set 〈q〉 = q, 〈v〉 = v, 〈τ 〉 = τ , [q] = qn, [v] = v · n,
[v] = v ⊗ n, and [τ ] = τn, where n is the unit outward normal vector to the boundary

Γ. Next, we introduce a suitably smooth test function v, multiplying (3.1.1) through by v

and integrating by parts. The derivation of the weak form here, follows in the same vein

as the scalar mixed-type PDE considered in Chapter 2. De�ne the following bilinear forms
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Ah(u,v) and Bh(u,v), along with nonlinear form Ch(u,v) [46]:

Ah (u,v) =
1

Re

(ˆ
Ω
∇hu : ∇hv dx−

ˆ
Γint∪ΓD

(〈∇hv〉 : [u] + 〈∇hu〉 : [v]) ds

+

ˆ
Γint∪ΓD

σ [u] [v] ds
)
,

Bh (v, q) = −
ˆ

Ω
q∇h · v dx +

ˆ
Γint∪ΓD

〈q〉 [v] ds,

Ch (u,v) = −
ˆ

Ω
F (u) : ∇hv dx +

ˆ
Γint

H
(
u+,u−,n

)
[v] ds

+

ˆ
Γ
H
(
u+,uΓ

(
u+
)
,n
)

[v] ds.

(3.2.2)

for u,v ∈ Vh,m and q ∈ Qh,m. In this setting, � : � denotes the usual colon product,

such that for matrices A =
∑

i aibi and B =
∑

j cjdj , where a, b, c and d are vectors,

A : B :=
∑

i

∑
j (ai · dj) (bi · cj). F is the �ux de�ned in Section 3.1. Following [46], we

make use of the Lax-Friedrichs �ux to approximate the nonlinear convective terms:

H (v,w,n) :=
1

2
(F (v) · n + F (w) · n− α (w − v)) .

with α := max (φ+, φ−), whereby φ+ and φ− are the largest eigenvalues in absolute mag-

nitude of the Jacobi matrices ∂
∂u (F (·) · n) computed at v and w, respectively [46]. The

boundary function in the Lax-Friedrichs �ux is dependent upon the boundary it is com-

puted on: uΓ (u) = gD on a Dirichlet boundary and uΓ (u) = u+ on a Neumann boundary.

In the case of �ows which feature shocks or sharp changes in gradient, such as those

that arise in the compressible setting, the Lax-Friedrichs �ux can be considered to be too

dissipative in certain regimes, and could be replaced with another, more suitable choice,

e.g., the Vijayasundaram �ux [61]. However, since we are considering the incompressible

Navier-Stokes equations, this choice of numerical �ux is su�cient. Nonetheless, any other

stable �ux can be used instead in what follows.

Next, we set σ = Cσm
2/h, where h is the local mesh size and the constant Cσ > 0 is

chosen independently of the polynomial degree m and the mesh size. The exact value of

σ is considered in more detail in Chapter 5, where we discuss any potential �exibility in

the choice of the discontinuity-penalisation function σ. For now, the choice of σ is selected

inline with the literature for isotropic meshes [70].
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Finally, we de�ne

l1 (v) = − 1

Re

ˆ
ΓD

((gD ⊗ n) : ∇hv − σgD · v) ds,

l2 (q) =

ˆ
ΓD

qgD · nds.

The DGFEM then reads: �nd (uh, ph) ∈ Vh,m ×Qh,m such that for all (vh, qh) ∈ Vh,m ×
Qh,m:

Ah (uh,vh) +Bh (vh, ph) + Ch (uh,vh) = l1 (vh) ,

Bh (uh, qh) = l2 (qh) .
(3.2.3)

The only decision that remains is the choice of suitable polynomial degrees for our approxi-

mations to the velocity u, and the pressure p. We wish to choose the degrees in such a way

as to ensure that the proposed DGFEM is both stable and also converges to the correct

solution. This brings around the notion of stable pairs, choices of the �nite element spaces

that represent the variables u and p such that the inf-sup condition is satis�ed. Arbitrary

choices for these spaces often yield instabilities, and indeed only special choices are suitable.

It is possible to create a stable method whilst violating the inf-sup condition, however this

requires special adjustments through the application of altered pressure projections [54].

3.3 The Inf-Sup Condition

The inf-sup condition was proposed by Babu²ka [17] and Brezzi [35], as a generalisation

of the conditions for the well-posedness of a �nite element problem. For the �nite element

spaces (3.2.1), the inf-sup condition holds if there exists a constant β > 0, such that for

every v ∈ Vh,m and for every p ∈ Qh,m, the following condition holds

inf
p∈Qh,m

sup
v∈Vh,m

Bh (v, p)

‖v‖Vh,m
‖p‖Qh,m

≥ β; (3.3.1)

β is independent of h,m,v, p. This implies that the choice of approximation spaces for the

velocity and pressure are dependent upon one another. In the remainder of this work, we

choose the �nite element spaces such that the velocity u is approximated by second order

piece-wise continuous polynomials, whilst the pressure p by piecewise linear functions.

Before proceeding to solve (3.2.3), we �rst need to know that a solution exists, as well as

whether the method converges to a unique solution. In order to do this, consider for the
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moment the simpli�ed version of (3.2.3), where l2 (qh) is set to zero, i.e. gD = 0. Thus, we

have
Ah (uh,vh) +Bh (vh, ph) = l1 (vh) ,

Bh (uh, qh) = 0,
(3.3.2)

where Ah (uh,vh) = Ah (uh,vh) +Ch (uh,vh). Ah (uh,vh) is nonlinear; however in practi-

cal computations, for each iteration of the Newton solver we consider a linear perturbation

of Ah (uh,vh) and then proceed with the standard analysis used for the Stokes problem.

However, for the purposes of the theory, we proceed instead by preserving the nonlin-

earity of Ah (uh,vh), following Girault and Raviart [72]. As before, given l1, we seek

(uh, ph) ∈ Vh,m ×Qh,m such that equation (3.3.2) is satis�ed.

First we introduce the following linear operators A(w) ∈ L (V;V′) for w ∈ V, and B ∈
L (V;Q′), where V′, Q′ denote the corresponding dual spaces, such that ∀uh,vh ∈ Vh,m

and qh ∈ Qh,m

〈A (w)uh,vh〉
〈Bvh, qh〉

= Ah (uh,vh) ,

= Bh (vh, qh) .

Then, we can rewrite problem (3.3.2) using the following notation: �nd (uh, ph) ∈ Vh,m×
Qh,m such that

A (uh)uh +B′ph

Buh

= l1,

= 0.
(3.3.3)

Proceeding as we would if problem (3.3.2) was linear, we set Vh,m = Kerdf (Bh), the kernel

of the divergence free vector �eld, and associate the following problem with (3.3.2). Find

uh ∈ Vh,m such that ∀vh ∈ Vh,m

Ah (uh,vh) = l1 (vh) . (3.3.4)

One �nal piece of notation is the L2-orthogonal projection of the bilinear form. Consider

the linear operator π ∈ L (V;V′) which is de�ned by 〈πl1,vh〉 = 〈l1,vh〉, ∀vh ∈ Vh,m.

This allows us to rewrite problem (3.3.4) in the following equivalent form in V′, where V′

is the subspace of V

πA (uh)uh = πl1.

Clearly if (uh, ph) is a solution of (3.3.2), then uh is a solution of (3.3.4). The converse

of this can be proved as in the linear case, so long as the inf-sup condition holds [72].
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Therefore, the only di�culty that remains here is �nding a solution to the nonlinear prob-

lem (3.3.4). To begin to address this issue, we proceed by stating the classical �xed-point

theorem of Brouwer.

Theorem 3.3.1. Let Y denote a non-empty, convex and compact subset of a �nite-

dimensional space and let F be a continuous mapping from Y into Y . Then, F has at

least one �xed point.

Following on from this, we consider the corollary set out in [72].

Corollary 3.3.2. Let H be a �nite-dimensional Hilbert space whose scalar product is

denoted by (·, ·) and the corresponding norm by |·|. Let Φ be a continuous mapping from

H into H with the following property:

there exists µ > 0 such that (Φ (f ) , f ) ≥ 0 for all f ∈ H with |f | = µ.

Then, there exists an element f in H such that Φ (f ) = 0, |f | ≤ µ.

We also need the following existence result for the solution to (3.3.3).

Theorem 3.3.3. Assume that the following hypotheses hold:

1) there exists a constant α > 0 such that Ah (vh,vh) ≥ α ‖v‖V, ∀vh ∈ Vh,m.

2) the space V is separable and, for all v ∈ Vh,m, the mapping uh → Ah (uh,vh) is

sequentially weakly continuous on V, i.e.,

weak lim
t→∞

ut = u in V implies lim
t→∞

Ah (ut,vh) = Ah (uh,vh), ∀vh ∈ Vh,m.

Then, problem (3.3.4) has at least one solution uh ∈ Vh,m.

Proof. Omitted here for conciseness, but available in [72].

Then, as l1 ∈ V′, there exists at least one element uh ∈ Vh,m such that Ah (uh,vh) =

l1 (vh), for every vh ∈ Vh,m. Therefore the above theorem shows us that a solution to

(3.3.4) exists, so we now turn our attention to the uniqueness of this solution.
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Theorem 3.3.4. Assume that the following hold:

1) The bilinear form Ah (w;uh,vh) is uniformly V -elliptic with respect to w, i.e., there

exists a constant α > 0 such that Ah (w;uh,vh) ≥ α ‖vh‖2Vh,m
, ∀vh,w ∈ Vh,m.

2) The mapping w → πA (w) is locally Lipschitz-continuous in V, i.e., there exists a

continuous and monotonically increasing function L : R+ → R+ such that for all

qh > 0

∣∣Ah (w1;uh,vh)−Ah (w2;uh,vh)
∣∣ ≤ L (qh) ‖uh‖Vh,m

‖vh‖Vh,m
‖w1 −w2‖Vh,m

∀uh,vh ∈ Vh,m and ∀w1,w2 ∈ Sqh =
{
w ∈ Vh,m; ‖w‖Vh,m

≤ qh
}
.

Then, under the condition
[
‖πl‖V′ /α2

]
L (‖πl‖V′ /α) < 1, problem (3.3.3) has a unique

solution uh ∈ Vh,m.

Proof. For the proof see [72].

Then all that remains is to solve problem (3.3.2) in the same fashion as we would for the

linear case.

Theorem 3.3.5. Assume that the bilinear form Bh (·, ·) satis�es the inf-sup condition

inf
ph∈Qh,m

sup
vh∈Vh,m

Bh (vh, ph)

‖v‖Vh,m
‖p‖Qh,m

≥ β > 0

Then for each solution uh of (3.3.3), there exists a unique ph ∈ Qh,m such that the pair

(uh, ph) is a solution of (3.3.2).

Proof. Assume that uh ∈ Vh,m is a solution of (3.3.4). Then we must �nd ph ∈ Qh,m which

satis�es (3.3.3). However, l1−A (uh)uh belongs to the polar set V 0 of V . Additionally, the

inf-sup condition implies that B′ is an isomorphism from Qh,m onto V 0. Hence there exists

a unique ph ∈ Qh,m such that (uh, ph) is a solution of (3.3.3), and, in turn, of (3.3.2).
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3.4 Computing Numerical Solutions

It is necessary to employ specialised software libraries to construct the various data-

structures associated with DGFEM discretisation of PDEs, as well as to compute the

numerical solution in an e�cient manner. In this section we provide details on the cre-

ation of computational meshes, the construction of the mass matrix and right-hand side

vectors, along with a method of computing numerical solutions for systems of PDEs.

In this work, we employ the AptoFEM package created by Houston, Hall, Antonietti, Giani

and Krahl [88]. It is a general purpose �nite element software toolkit with a strong empha-

sis on applications arising in CFD. In particular, non-conforming DGFEM and standard

conforming FEM can be used, along with a posteriori error estimation and hp-adaptivity.

Also, a variety of structured and unstructured grids in several di�erent �le formats may

be read in for mesh construction. Speci�cally for this work, routines have been written

to compute the matrices and nonlinear functions associated with the DGFEM for incom-

pressible laminar and turbulent �ows. Further, we have developed the routines required

for the DWR method detailed in Chapter 6, supplemented with pre-existing a posteriori

error estimation routines, along with a new routine to compute the proposed penalty pa-

rameter in Chapter 5. In total, around 30, 000 lines of code have been written in order

to produce the numerical results found within this work. A number of other supplemen-

tary routines were created within the MATLAB programing environment to perform tasks

such as calculating cubic splines for the domain boundaries, and removing duplicate nodes

from computational meshes. These tasks only needed to be performed once, so the ease

of implementation associated with languages such as MATLAB was chosen over the in-

creased speed of execution associated with compiled languages such as Fortran and C++.

In total, around 30 di�erent MATLAB routines were written to supplement the Fortran

90 implementation of AptoFEM.

3.4.1 Mesh Generation

Various meshing programs exist and are suitable for the creation of industrial type meshes.

However, to ensure that the mesh density is acceptable across the entire domain, a manual

blocking approach is undertaken, employing the ANSYS ICEM CFD software package. In

this manner, we are able to �nely control the particular details of the mesh, allowing or

disallowing hanging-nodes as required. The meshes for the numerical examples found in

Chapters 5, 6, 7 were created in this manner, whilst the numerical examples 3.5.1 and 3.5.3

were produced using mesh generation routines written within the AptoFEM framework.

All meshes read into the AptoFEM solver are stored in a tree structure. More precisely,

two-dimensional meshes are stored in two separate trees, one containing the mesh elements,
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and another containing the mesh faces. In the case of three-dimensional meshes, a third

tree is created to store the mesh edges. Extraction of the computational mesh from this

data structure is carried out by means of a �tree walk.� The process begins by considering

the �rst node in the �rst level of the tree structure. If no children nodes are present,

then this node must be part of the computational mesh. In the case when there are

children associated with a particular node, each child is considered sequentially and levels

descended until there are no further children and the nodes are terminal. In this fashion,

mesh re�nement and coarsening is handled seamlessly, creating new branches in the tree for

re�ned elements, and stepping back up levels to coarsen. However, it should be noted that

this system does not allow for coarsening beyond the initial mesh, so extra considerations

must be made during the design of the mesh.

We remark, that when we de�ne the boundary conditions of a domain, we must consider

the point where two di�erent boundaries meet. The discretisation (3.2.2) is an integral

form which may omit �nitely mainly points from the computation. Therefore, in theory, we

automatically avoid any concerns associated with the de�nition of such a point. However,

in practice we must ensure that the numerical solver only computes one value for the

solution at these points.

3.4.2 Quadrature

Numerical integration of functions is carried out by way of quadrature rules. As such, each

type of mesh element, quadrilateral or simplex, requires its own quadrature de�ned upon

it. More precisely, a set of points, xq, and weights wq such that for a function f ,

ˆ
κ
f dx ≈

∑
q

f (xq)wq.

Therefore, quadrature routines for each element are all based on performing tensor prod-

uct manipulations of the one-dimensional quadrature on the interval [−1, 1]. In particular,

consider the set of one-dimensional quadrature points ρi, i = 1, ..., n, with a set of corre-

sponding weights wi. Then, for a quadrilateral element, the set of points and weights are

given by

{x,w}ij = {(ρi, ρj) , wi, wj} .

For a simplex element, the quadrature points and weights are found by mapping the ref-
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erence quadrilateral to the reference simplex via the mapping

xS =

(
1 + xQ

) (
1− yQ

)
2

− 1,

yS =yQ,

where
(
xQ, yQ

)
are the coordinates of the quadrature points in the quadrilateral refer-

ence frame, and
(
xS , yS

)
are the coordinates in the simplex reference frame. The weights

associated with the simplex reference frame are found by way of multiplication of the

quadrilateral weights by the Jacobian of the above mapping at the corresponding coor-

dinates. We note that this mapping collapses the line yS = 1 to a single point, and is

therefore singular. However, if the one-dimensional quadrature does not include the end-

points of the interval, quadrature on a triangle is well de�ned. Analogous arguments can

be performed for three-dimensional elements to construct quadratures. The particular im-

plementation we use in this work is Gauss quadrature, where the quadrature points are

the roots of the Legendre polynomials.

3.4.3 Iterative Solvers

Unlike the advection-di�usion problem studied in the previous chapter, the incompressible

Navier-Stokes equations contain nonlinear terms in their weak form, and as such require

iterative techniques to �nd a solution. Speci�cally, we use a damped Newton method.

Consider the following nonlinear problem

N (uh) = 0. (3.4.1)

This is representative of the nonlinear problem in (3.2.3). Given an initial estimate u0
h

of the numerical solution uh, we are able to generate a sequence of progressively better

approximations unh, n = 0, 1, ..., to the numerical solution. Following [82], for a �xed

vh ∈ Vh,m, we take the Fréchet derivative dnh ∈ Vh,m of (3.4.1) at unh, such that

dnh = −J−1
F (N (unh))

This, along with a corresponding damping parameter θn, provides the solution update

values for the sequence. In particular

un+1
h = unh + θndnh.

θn is dynamically chosen to ensure that the discrete L2-norm of the residual computed
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with un+1
h is less than the same quantity computed with unh. The e�cient implementation

of this method requires solving a system of linear equations in order to �nd the update

value dnh. Whilst a direct solver software package such as MUMPS (Multifrontal Massively

Parallel Sparse Direct Solver) [3] may be e�ective for solving systems which are not too

large, we now discuss the structure of these matrices, as well as, consider an alternative

approach suitable for full scale industrial problems.

3.4.4 Construction of DGFEM Data Structures

The matrices associated with DGFEM discretisations are often very large due to the num-

bers of degrees of freedom associated with each element. Fortunately, the matrices are

also very sparse naturally and exhibit a block-type structure; characterised by non-zero

blocks along the diagonals. In particular, the blocks on the central diagonal describe the

interaction of element degrees of freedom with itself, and o�-diagonal blocks describe in-

teractions across mesh faces. In the case of nonlinear problems, especially those which

involve turbulence modelling, the Jacobian of the mass-matrix becomes increasingly less

sparse and more di�cult to work with. As such, to avoid problems with computer memory,

AptoFEM stores these main data structures in Compressed Sparse Row format.

3.4.5 Linear Solvers and Preconditioning

Consider the system of linear algebraic equations:

Au = f , (3.4.2)

where u is the solution vector, A is the matrix of the linear system, and f is the right-hand

side vector.

Iterative solvers such as the generalised minimal residual method (GMRES) are employed

to handle (3.4.2) when A has a large number of degrees of freedom. To improve the rate

of convergence of iterative solvers, we introduce the preconditioning matrix P, such that

the matrix P−1A has a smaller condition number than that of A. Formally, the condition

number is the maximum ratio of relative error in u, divided by the relative error in f . We

now proceed to discuss the preconditioner that is most appropriate for our system. We

note that other preconditioners may also be suitable; however, we omit there discussion

and refer to [58].
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3.4.5.1 Incomplete LU Factorisation

The Incomplete LU Factorisation (ILU) method is an approximation to traditional LU

factorisation for matrices. The matrix A must be sparse, and we seek the lower triangular

matrix L, and upper triangular matrix U such that A ≈ LU. The solution to LUu = f

can be computed quickly using forward and backward substitution; however, this does not

yield the exact solution to (3.4.2). This is because we wish to preserve the sparsity pattern

of matrix A in the triangular matrices L and U, rather than adding extra entries to them

to ensure A = LU. This is known as the ILU(0) preconditioner. However, we may wish to

re�ect the underlying structure of higher order matrices, thus other preconditioners known

generally as ILU(k) exist, which share the structure of the matrix Ak+1. The factorisations

ILU(k), become steadily more accurate and less sparse as k increases in value, but the trade

o� between computation time and number of iterations for the iterative solver to converge

becomes less and less favourable. Hence a balance must be struck when choosing the value

of k, and this is quite often chosen based upon the linear system that needs to be solved.

In all circumstances however, we let P = LU, and use P as a preconditioner for other

iterative methods such as the GMRES. The method for producing such a preconditioner

is the same as the usual LU factorisation of matrix A, but every time a new nonzero entry

appears in either L or U which is zero in the matrix of interest Ak+1, we disregard its

value and write a zero in its place instead. This preserves the underlying structure of the

matrix Ak+1.

3.5 Numerical Experiments

We present a number of numerical experiments to validate the e�ectiveness of the DGFEM.

Initially, we simulate a low Reynolds number, laminar, two-dimensional channel �ow in Sec-

tion 3.5.1 to provide an early proof of concept for the proposed numerical solver.Then, in

Section 3.5.2, we consider a backwards-facing step test case, comparing experimental data

[9], with the results calculated using the DGFEM. Further, in Section 3.5.3, we produce

simulations of the experimental results presented in [44, 56]. These initial simulations are

rather simplistic, however, they do provide a good indication of the accuracy and e�ec-

tiveness of the solver. Later, we progress to tackle more advanced test cases with suitable

turbulence models. In particular, a high Reynolds number blade cascade in Chapter 5, as

well as the �ow around an aerofoil in Chapters 6 and 7.

The simulations presented in Sections 3.5.1, 3.5.2 and 3.5.3 use the usual setup of boundary

conditions. The standard no-slip condition (3.1.2) in the form of the Dirichlet boundary is

used to model the domain walls, as well as to prescribe the �ow inlet conditions. Whereas
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for the domain outlet, the stress-free out�ow condition (3.1.3) is applied, as the �nal �ow

velocity and pressure are unknown prior to the calculation of the numerical solution. We

note that the stress-free condition is only valid once the �ow has fully developed, since

it assumes a zero normal gradient for all �ow variables except pressure. Therefore it is

important that any constructed mesh has adequate space after any obstructions to ensure

that the �ow has time to properly recover before passing through the outlet boundary. This

is of particular importance in Chapter 4 and beyond, since turbulent �ows take longer to

fully develop after passing an obstruction.

The following calculations are carried out as detailed in Section 3.4, using the AptoFEM

software package, supplemented with MUMPS to solve the linear systems, and ParMETIS

to partition the mesh and reorder the matrices.

3.5.1 Channel

All quantities in this numerical experiment are non-dimensional, as this is a purely theo-

retical test case, used primarily to identify any problems with the numerical solver. We

consider comparisons to experimental data in Section 3.5.2. A such, we de�ne a two-

dimensional rectangular channel domain Ω ⊂ R2 on the usual Cartesian plane, with a

horizontal x-axis and a vertical y-axis. The channel is orientated parallel to the horizontal

axis, channel length L = 10, and half width R = 1. We de�ne the domain boundaries Γ,

such that Γ = ΓD ∪ ΓN. The in�ow boundary, located at x = 0, is a Dirichlet boundary

modelling Poiseuille �ow with a peak velocity equal to 1. No-slip conditions are used for

the channel walls positioned at y = −1 and y = 1, and the out-�ow boundary, x = 10, is

equipped with the stress-free Neumann condition. For reference, see Figure 3.5.1.

Figure 3.5.1: Channel geometry. R = 1, L = 10.
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The domain is partitioned into a mesh, with 11 equally spaced nodes spanning the width,

and 21 equally spaced nodes covering the length of the channel. The mesh Th, consisting
of 200 uniform quadrilateral elements is shown in Figure 3.5.2.

Figure 3.5.2: Uniform channel mesh, 21× 11 nodes.

All variables in these initial experiments are �xed, except for the kinematic viscosity ν,

which is varied in order to adjust the Reynolds number of the simulated �ow. The Reynolds

number is calculated using a characteristic length scale LC := R, the channel half width.

For low Reynolds number laminar �ows, we wish to observe a constant �ow speed down the

length of the channel. The velocity is scaled according to the shear velocity with u+ = u
uτ
,

where uτ =
√

τw
ρ is the shear velocity, and τw is the local wall shear stress.

Figure 3.5.3: Colour plot of the scaled axial velocity u+, Re = 100.
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Figure 3.5.4: Colour plot of the scaled axial velocity u+, Re = 300.

The preliminary results presented in Figures 3.5.3 and 3.5.4, show the scaled axial velocity

of the numerical solution along the length of channel. As expected, the �ow speed remains

constant in the x-direction, denoted by coloured bands of constant width. This is shown

in greater detail in Figure 3.5.5, where the solution in Figure 3.5.4 is sampled by way of a

cross section of the �ow at x = 8.

Figure 3.5.5: Cross section of the �ow at x = 8, showing the scaled axial velocity pro�le
u+, Re = 300.

Since the �ow is constant along the length of the channel, and Figure 3.5.5 mirrors the

Poiseuille �ow inlet conditions, we can be certain that the DGFEM solver is performing as

expected for laminar �ows in this simple geometry. We remark, that since we use quadratic

basis functions to represent the velocity solution, it is indeed possible to compute Poiseuille
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�ow through a rectangular channel, by using a single element to cover the domain. In

Section 3.5.2, we consider experimental results to more carefully compare the accuracy of

DGFEM solver.

3.5.2 Backwards-Facing Step

The backwards facing step experiment is commonly used in the literature for the devel-

opment and validation of numerical methods, due to the high level of understanding sur-

rounding the �ow features, as well as, the numerous accurate experimental readings that

have been collected. We follow [73, 141], considering the experimental results collected in

[9]. In particular, we consider a two dimensional test case for �ows with Re = 100 and

Re = 389. The data for these Reynolds numbers has been collected using the three di-

mensional apparatus detailed in [9]. We note, that the two-dimensional numerical solution

should agree closely with the three-dimensional experiment, as long as, Re ≤ 400. Beyond

this value, it is postulated that a longitudinal wave develops in the three-dimensional case,

causing the �ow to deviate from the expected two-dimensional result [141].

We consider the domain Ω ⊂ R2, shown in Figure 3.5.6, on the usual Cartesian plane, with

a horizontal x-axis and a vertical y-axis. We introduce the inlet height h = 5.2mm, the

inlet length l = 5mm, the step height S = 4.9mm, channel length L = 300mm and the

channel height H = 10.1mm.

Figure 3.5.6: Backward-facing step geometry [141], l = 5mm, h = 5.2mm, S = 4.9mm,
L = 300mm and H = 10.1mm.

The boundaries of the domain are such that the inlet and walls use Dirichlet boundary

conditions, with a Neumann boundary condition for the outlet. In particular, the domain

inlet located on the left most edge of Figure 3.5.6, is simple Poiseuille �ow. The domain

outlet, the far right edge of Figure 3.5.6, is the stress free Neumann condition. Finally, all

other edges are domain boundaries are walls, described using the no-slip Dirichlet boundary

condition. Next, the domain is partitioned into the non-uniform mesh Th shown in Figure
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3.5.7, consisting of 6100 elements, with grading in the x and y directions about the step

corner.

Figure 3.5.7: Two-dimensional non-uniform mesh Th, 6100 elements.

Following [9], the test cases for Re = 100 and Re = 389, use peak inlet velocities upeak, of

21.1 cm/s and 88.0 cm/s, respectively. The Reynolds number is calculated using De�nition

3.1.1, with u = 2
3upeak, and LC = 2h, the hydraulic diameter of the inlet. The following

numerical results were obtained using the proposed DGFEM solver.

Figure 3.5.8: Colour plot of axial velocity u1, Re = 100.

Figure 3.5.9: Colour plot of axial velocity u1, Re = 389.
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As we expected, the area of recirculation after the step on the lower wall becomes larger

as we increase the Reynolds number; as shown in Figures 3.5.8 and 3.5.9. We limit the

numerical experiments to Re ≤ 400 in order to suppress the three-dimensional e�ects of

the �ow, but, as such, are unable to ascertain whether the DGFEM is able to predict

the secondary recirculation area on the upper wall for larger Reynolds numbers. This

area appears to be developing in Figure 3.5.9 at x = 50mm, which would agree with the

�ndings in [73], which suggests that it is possible for laminar RANS simulations to capture

this �ow region. On the other hand, it is di�cult for simulations that utilise RANS with

turbulence modelling at these Reynolds numbers to do so. Therefore, in the interest of

accuracy, so long as the Reynolds number is below the turbulent transitional value for the

geometry, (Re < 1200 in this case,) then it is more accurate to use laminar simulations.

However, this is a side note for our work, as we target Reynolds numbers in the region of

Re = 1× 106 for industrial �ow problems.

Further, we present a comparison between the axial velocity calculated by the DGFEM

solver and the experimental results in [9]. In particular, the velocity is recorded at a series

of stations x/S, once the �ow has passed over the step edge. These stations are represented

by a numerical value, equal to the distance from the step wall, divided by the step height

S.

Figure 3.5.10: Comparison of experimental [9] and numerical, axial velocity pro�les, Re =
100.
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Figure 3.5.11: Comparison of experimental [9] and numerical, axial velocity pro�les, Re =
389.

The numerical solution in Figure 3.5.10 agrees remarkably well with the experimental data

for Re = 100, capturing the recirculation velocity at x/S = 3.06 accurately. There was a

concern regarding the Lax-Friedrichs numerical �ux being too dissipative to capture these

�ow features well, but this does not seem to be the case at these low Reynolds numbers.

Figure 3.5.11 shows the second test case with Re = 389. Again, the DGFEM solution

approximates the experimental data well, accurately capturing the recirculation region on

the lower wall. However, there is some disagreement with the data for x/S = 6.12, with the

peak velocity predicted to be higher up in the outlet channel following the step. This also

appears to be the case in the literature [73], with laminar RANS simulations exhibiting the

same problem. This could be due to the three-dimensional e�ects of the �ow beginning

to take hold as the Reynolds number approaches the agreed upon value, Re = 400 [141].

However, since the DGFEM predicts the axial velocities for x/S = 9.18 and x/S = 13.57

well following this discrepancy, we can be sure that the DGFEM is performing as expected

for laminar �ows.
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3.5.3 Channel with a Sudden Expansion

Following the success of the DGFEM solver in Section 3.5.2, we now explore one �nal

laminar test case, with the aim of adjusting the solver parameters to �nd di�erent phys-

ical solutions. Typically, in experiments involving symmetric domains, a symmetric �ow

solution is stable only for speci�c Reynolds numbers. Whereas, numerical solvers tend to

consistently �nd these unstable symmetric solutions for a wide range of Reynolds numbers.

As such, in this test case, we show that using the proposed DGFEM, we are able to �nd

the non-symmetric solution if it is required. Following [44, 56], we have identi�ed that a

non-symmetric �ow through a channel with a sudden expansion is stable, i.e. physical, for

Re = 350.

Consider the two-dimensional channel with a sudden expansion part way along its length,

shown in Figure 3.5.12. In the same vein as [46], and continuing the notation developed in

previous test cases, we de�ne no-slip Dirichlet boundaries for the domain walls, a Poiseuille

�ow inlet condition, and the stress free Neumann boundary condition for the outlet. In

particular, Γ = ΓD ∪ ΓN, with a peak inlet velocity upeak = 0.25. Again, this numerical

experiment is non-dimensional, as we are only interested in the behaviour of the axial �ow

velocity for a chosen Reynolds number. We de�ne the inlet length l = 1, the inlet radius

r = 0.5, the channel length L = 10, and the channel radius R = 1.5.

Figure 3.5.12: Two-dimensional channel domain with a sudden expansion. l = 1, r = 0.5,
L = 10 and R = 1.5.

The domain Ω ⊂ R2 is partitioned into a mesh Th consisting of 496 quadrilateral elements.

The inlet channel is subdivided by 5 uniformly spaced nodes in each coordinate direction,

whilst the outlet channel is partitioned by 41 equally spaced x-direction nodes, and 13

equally spaced y-direction nodes. The mesh is shown in Figure 3.5.13.
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Figure 3.5.13: Two-dimensional mesh Th, 496 elements.

We present two numerical results, Re = 300, where the expected solution is symmetric,

and Re = 350, where the expected solution is non-symmetric. To achieve the variation in

Reynolds number, the kinematic viscosity ν is altered according to De�nition 3.1.1.

Figure 3.5.14: Colour plot of the scaled axial velocities u+, Re = 300.

Figure 3.5.13 shows the axial velocity of the �uid �ow for a Reynolds number Re = 300.

It is calculated using a symmetric initial estimate for the solution in the Newton method

detailed in Section 3.4.4. However, when a non-symmetric initial estimate is chosen for the

Newton solver, we still observe the same symmetric numerical solution shown in Figure

3.5.14. This is expected, as the �uid �ow is physically stable for this geometry, and is

therefore, what is observed in real world experiments.
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Figure 3.5.15: Colour plot of the scaled axial velocities u+, Re = 350.

Similarly, a non-symmetric �uid �ow is observed in experiments with a Reynolds number

Re = 350, such as Durst, Cherdron, Melling and Whitelaw [44, 56]. Therefore, by selecting

a non-symmetric initial estimate for the Newton solver, we generate the results shown in

Figure 3.5.15. However, when a symmetric initial estimate is chosen, the physically unsta-

ble symmetric solution is produced, comparable to that of Figure 3.5.14. This symmetric

numerical solution is not necessarily incorrect, but its physical instability means that it

is unlikely to be observed in experiments. Therefore, in such cases where the physical

stability of the solution is not clear, we suggest carrying out an initial simulation with a

symmetric initial estimate, before perturbing the initial estimate and resolving. If both

�nal solutions are in agreement then we can be sure that the solution is physically stable.

Alternatively, a stability analysis can be found in Cli�e, Hall, and Houston [46].

3.5.4 Sudden Expansion Validation Experiment

In this numerical experiment we consider the results presented in [55], of the �ow over

a backward facing step in three dimensions. We seek to validate the DGFEM solver for

three-dimensional domains. This is important as it enables us to consider problems which

contain three-dimensional �ow patterns. That is, �ows which cannot be approximated

correctly by only considering two-dimensional cross sections of a three-dimensional prob-

lem. Consider Ω ⊂ R3 shown in Figure 3.5.16, with a horizontal x-axis, a vertical y-axis

and a perpendicular z-axis. We introduce the inlet height h = 9.6 cm, the inlet length

l = 46 cm, the step height S = 0.96 cm, channel length L = 135 cm and the channel height

H = 11.5 cm. The rectangular duct is 30.5 cm wide.
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Figure 3.5.16: Schematic of the step geometry.

The boundaries of the domain are such that the inlet and walls use Dirichlet boundary

conditions, with a Neumann boundary condition for the outlet. In particular, the domain

inlet located on the left most edge of Figure 3.5.16, is Poiseuille �ow with peak inlet velocity

upeak = 11.58m/s, giving the required average velocity u0 = 7.72m/s. The domain outlet,

the far right edge of Figure 3.5.16, is the stress free Neumann condition (3.1.3). Finally, all

other edges are domain boundaries are walls, described using the no-slip Dirichlet boundary

condition (3.1.2). Next, the domain is partitioned into the graded mesh Th shown in Figure

3.5.17 and 3.5.18, consisting of 1896 elements.

Figure 3.5.17: Three-dimensional graded mesh consisting of 1896 hexahedral elements.

Figure 3.5.18: Cross-section of the mesh, z = 15.25 cm.

According to [55], the Reynolds number based on the step height is calculated to be Re =

5000. The streamwise velocity is sampled in the centre of the duct z = 15.25 cm at a number
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of stations denoted by x
S along the bottom of the duct, and compared to the results in [55].

The experimental measurements in [55] are time averaged streamwise velocities, making

them a good point of comparison for the RANS simulation. These are presented in Figure

3.5.19.

Figure 3.5.19: Comparison of streamwise velocity pro�les at z = 15.25 cm between [55]
(blue circles) and the DGFEM solver (red lines).

For reference, we include colour plots of the axial velocity in Figure 3.5.20 and the static

pressure in 3.5.21.

Figure 3.5.20: Colour plot of the axial velocity u1 at z = 15.25 cm. Re = 5000. The dashed
lines denote the locations of the measurement stations x

S .
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Figure 3.5.21: Colour plot of the static pressure p at z = 15.25 cm. Re = 5000.

This numerical experiment demonstrates the ability of the proposed DGFEM solver to

handle three-dimensional �ows. This is an important attribute of the solver, as turboma-

chinery simulations typically contain three-dimensional �ow patterns. These �ows cannot

be accurately represented by considering two-dimensional cross sections of the domain, and

instead require a solver capable of resolving in three dimensions to simulate them correctly.

Figure 3.5.19 shows some agreement between the experimental data [55] and the DGFEM

solution. However, the coarseness of the mesh, combined with the experimental turbulent

�ow, means that we are unable to properly capture the boundary layer using the laminar

DGFEM solver. The relatively coarse mesh, particularly in the recirculation region, is the

cause of some of solution inaccuracy at station x
S = 4.0, predicting a much more gradual

change in velocity close to the wall than is observed in the experimental data, see Figure

3.5.19. In particular, we note that the recirculation velocity is simulated to be smaller

than what is observed at station x
S = 4.0, as well as making the transition from negative

to positive velocity more gradual as we move towards the centre of the duct.

However, in this example, the lack of a turbulence model has a far greater a�ect on the

overall accuracy of the numerical solution. Due to this, we see a reduced rate at which the

velocity changes close to the wall, as well as a much earlier �ow recover than is observed

in the experimental data [55]. It is clear from Figure 3.5.19, that as the �ow moves down

stream, we recover Poiseuille �ow much sooner than the experimental �ows recovers. In

particular, the laminar solution recovers by station x
S = 10.0, whereas the experimental

�ow does not until station x
S = 19.0 is reached. Therefore, before we are able to con-

sider more complicated geometries where the �ow undergoes greater physical changes, we

must �rst consider a method to model turbulent �ows. As such, in Chapter 4 we explore

the development of a suitable turbulence model in order to more accurately capture the

boundary layer, before considering automated solution re�nement techniques in Chapter

6 to improve mesh density, and, in turn, solution accuracy.
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3.6 Concluding Remarks

In this chapter we introduced the DGFEM we use throughout this work to model incom-

pressible �ows. In particular, we derived the DGFEM discretisation in Section 3.2, as well

as, choosing the numerical �ux. We followed [46], using the Lax-Friedrichs �ux to ap-

proximate the nonlinear convective terms. It is suggested that for compressible �ows, the

Lax-Friedrichs �ux is too dissipative, and there is no mention of its performance for tur-

bulent incompressible �ows. As such, when we introduce the turbulence model in Chapter

4, we reassess this choice.

The numerical experiments carried out in Section 3.5 have served to validate the DGFEM

for laminar �ow test cases. In particular, Figures 3.5.10 and 3.5.11 demonstrated a good

agreement between the axial velocities recorded in experiments [9] and the numerical sim-

ulation. Figure 3.5.11 showed some discrepancies between the data and the simulation.

However, since the simulated �ow resolved to the experimental data further along the

channel once Poiseuille �ow had been recovered, these di�erences are likely due to three-

dimensional �ows beginning to develop in the experimental apparatus. The accuracy of

the numerical solution suggests that the choice of numerical �ux is indeed appropriate

for laminar incompressible �ows. This �nding is rea�rmed in Section 3.5.3, which shows

the ability of the DGFEM to capture both the symmetric and non-symmetric solutions

for the chosen geometry. Section 3.5.4 demonstrates the ability of the DGFEM to handle

three-dimensional �ow problems, providing reasonably accurate �ow predictions without

the use of a turbulence model.

We found that as the Reynolds number of the �ow increased, the nonlinear solver converged

to the numerical solution in a greater number of Newton iterations. While this is a minor

concern for laminar �ows, it does present a problem for high Reynolds number turbulent

�ows, as the nonlinear solver may not converge if the initial solution estimate is too far from

the �nal numerical solution. As such, we devise an algorithm to address these di�culties

in Section 4.4.3, ensuring that industrially relevant, high Reynolds number solutions can

be found reliably. Therefore, we now progress to study turbulent �ows in Chapter 4, with

the aim of validating the DGFEM for turbulent simulations.
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Chapter 4

Discontinuous Galerkin Methods for

Incompressible Turbulent Flows

Turbulence is a naturally occurring physical phenomenon characterised by the creation

and dissipation of unsteady vortices or eddies during �uid �ow. These eddies occur on

all scales, with energy passed from the larger down to the smaller until it is completely

dissipated. Turbulent �ows are chaotic, possessing an inherently complicated nature with

a large amount of information being passed on all time and length scales. This makes

them almost impossible to model using direct numerical simulation (DNS), where mesh

and time scales are required to be too �ne for modern computers to handle e�ectively.

We seek to understand and model only the average �ow behaviour using the Reynolds-

averaged Navier-Stokes (RANS) equations [2, 25]. Other approaches include Large Eddy

Simulation (LES) and model only the largest of the eddies, those which characterise the

overall �ow and behaviour of the �uid; LES was �rst proposed in 1963 by Smagorinsky

[127], before later being explored in greater detail by Deardor� [49]. These methods are

used for simulating time-dependent problems, and as such, require more computational

resources compared to the steady-state solutions produced by RANS. Before moving to

such transient simulations in the future, we follow the recommendations and requirements

of G.E. representatives, by considering steady-state simulations using the RANS equations

coupled with a turbulence model.

The incompressible, steady state RANS equations can be written in the following diver-

gence form on the domain Ω ⊂ Rd, d = 2, 3:

∇ · (τ ) +∇ · (u⊗ u) = 0,

∇ · u = 0.
(4.0.1)
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Here, the matrix τ represents the stress tensor whose value vary depending on the particular

turbulence model that is being implemented. As such, we begin our discussion by analysing

the various merits of competing turbulence models.

4.1 The Mixing Length Model

In 1925, Prandtl [115] proposed the mixing length hypothesis in order to describe turbulent

�ows in a simple manner. He suggested that the particles that make up the �uid, group

together into larger bodies and then move as uniform masses. Further to this, in a shear

�ow, the bodies maintain their initial, say x1 direction momenta for a speci�ed distance

in the x2 direction. This is known as the mixing length and denoted as lm. In the mixing

length model, the only signi�cant velocity gradient is ∂u1/∂x2 (maintaining the previous

notation). In the laminar, two-dimensional case, the stress tensor τ is a matrix of the

form:

τ =

[
−ν ∂u1∂x1

+ p −ν ∂u1∂x2

−ν ∂u2∂x1
−ν ∂u2∂x2

+ p

]
, (4.1.1)

where ν is the kinematic viscosity, and p is the pressure scaled by 1
ρ . In order to incorporate

the mixing length turbulence model into the laminar equations, we can simply introduce

a turbulent viscosity term µt, writing:

τij = − (ν + µt)
∂ui
∂xj

+ δijp,

with δ being the Kronecker delta. As such, in the two-dimensional case we have

τ =

[
− (ν + µt)

∂u1
∂x1

+ p − (ν + µt)
∂u1
∂x2

− (ν + µt)
∂u2
∂x1

− (ν + µt)
∂u2
∂x2

+ p

]
. (4.1.2)

We de�ne the turbulent viscosity for the mixing length model as

µt = ρl2m

∣∣∣∣∂u1

∂x2

∣∣∣∣ .
The value of lm for a particular �ow through a speci�ed geometry is chosen based upon

established experimental results [145]; these values are summarised in Table 4.1, where y

represents the distance from the wall. y+ is the scaled distance from the wall, detailed in

Section 4.4.1.

55



Flow Mixing Length lm Lm

Mixing Layer 0.07Lm Layer width
Jet 0.09Lm Jet half

width
Wake 0.16Lm Wake half

width
Axisymmetric

Jet
0.075Lm Jet half

width
Boundary
Layer

(Viscous
sublayer and
Log law
layer)

Ky (1− exp (−y+/26)) Boundary
layer

thickness (K
is the eddy
di�usion
coe�cient)

Boundary
Layer (Outer

layer)

0.09Lm Boundary
layer

thickness

Pipes and
Channels
(Fully

developed
�ow)

Lm

(
0.14− 0.08 (1− y/Lm)2 − 0.06 (1− y/Lm)4

)
Pipe radius
or Channel
half width

Table 4.1: Mixing Length lm values [145].

The Mixing Length Model brings with it a certain simplicity, as we are not introducing

any extra PDEs to describe the creation and dissipation of turbulent eddies, and are just

adding an algebraic expression into the viscosity term. We are, though, making some rather

abrupt assumptions about the nature of the �ow in question. For instance, Prandtl's model

assumes that the local intensity of the turbulence depends only on the local generation

and dissipation rates. Whereas, in reality, turbulent eddies may be created elsewhere and

carried to areas of the �ow which were otherwise laminar, i.e., turbulence is not always

generated locally. Secondly, for geometries with non-planar walls, it becomes particularly

di�cult to estimate the distribution of mixing-length magnitudes to a su�cient degree

of accuracy. As such, this makes the mixing length model inappropriate for our uses in

turbine geometries, which are typically curved.
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4.2 The k − ω Turbulence Model

The k − ω model, �rst proposed by Kolmogorov [99] in 1942, is a two-equation turbu-

lence model. This means that it adds an extra two PDEs to the original Navier-Stokes

system, making it far more computationally expensive. The �rst equation describes k,

the kinetic energy of the turbulence, whereas the second equation describes the dissipa-

tion per unit turbulence kinetic energy, denoted as ω. In 1970, Sa�man [123] proposed

an improved version of Kolmogorov's model, which he developed without prior knowledge

of Kolmogorov's work. Sa�man's model overcame many of the shortcomings of the orig-

inal model, and indeed proved to be superior. Further developments by Spalding [102],

Wilcox [144], Traci [140] and Rubesin [143] have helped to re�ne the model and improve

its accuracy, particularly on complex geometries.

The particular model [144] implemented here can be seen detailed below. Once again, we

consider (4.0.1), but with Reynolds stresses given by

τij = − (µ+ µt)

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
kδijρ.

In the two-dimensional case, the stress tensor may be written as

τ =

 − (µ+ µt)
(
∂u1
∂x1

+ ∂u1
∂x1

)
− 2

3kρ − (µ+ µt)
(
∂u1
∂x2

+ ∂u2
∂x1

)
− (µ+ µt)

(
∂u2
∂x1

+ ∂u1
∂x2

)
− (µ+ µt)

(
∂u2
∂x2

+ ∂u2
∂x2

)
− 2

3kρ

 .
Here, µ is the molecular viscosity, µt represents the turbulent viscosity, and ρ the density.

Then, making use of the standard Einstein summation notation and the Kronecker delta

δ, the transport equations for k and ω for high Reynolds number �ows are given as

∇ · (ρku) =∇ ·
[(
µ+

µt
σk

)
∇k
]

+ Pk − β∗ρkω,

∇ · (ρωu) =∇ ·
[(
µ+

µt
σω

)
∇ω
]

+ γ1

(
2ρSij · Sij −

2

3
ρω

∂ui
∂xj

δij

)
− β1ρω

2,

(4.2.1)

where Pk, Sij and µt are given by:

Pk =

(
2µtSij · Sij −

2

3
ρk
∂ui
∂xj

δij

)
, Sij =

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3

∂uk
∂xk

δij , i, j = 1, 2,

with

µt = Cµρ
k

ω
.
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The model constants are set according to [145], with Cµ = 1.0, σk = 2.0, σω = 2.0,

γ1 = 0.553, β1 = 0.075 and β∗ = 0.09. We remark that (4.2.1) are advection-di�usion

equations of the form (2.1.1). These transport equations become increasingly convection

dominated at high Reynolds numbers, rendering them unsuitable for solving using tra-

ditional continuous FEM techniques. On the other hand, DGFEMs handle the lack of

solution �smoothness� associated with convection dominated problems without the need

for any special considerations.

Following, as per [25, 145], our model uses ω̃ = ln (ω) rather than simply ω. This is in

order to ensure a smoother near-wall distribution, as well as to guarantee the positivity

of the variable ω. Furthermore, we also introduce realizability conditions on the turbulent

stresses, constraining k = max (k, 0) and ω̃r = max (ω̃, ω̃r0). As proposed in [25, 26, 118],

let ω̃r0 represent the lower bound on ω̃ that ensures the positivity of the normal turbulent

stresses, as well as the satisfaction of the following inequalities:

eω̃r0 − 3

2
CµSii ≥ 0, i = 1, ..., d,

(
eω̃r0

)2 − 3

2
Cµ (Sii + Sjj) e

ω̃r0 +
9

4
C2
µ

(
SiiSjj − S2

ij

)
≥ 0, i, j = 1, ..., d, i 6= j.

Therefore, the limited turbulent viscosity is given by

µ̄t = Cµρke
−ω̃r .

Since we are considering here the incompressible Navier-Stokes equations, we are able to

make use of the incompressibility condition and eliminate the constant density ρ. One

major advantage over other turbulence models, especially for the purpose of a DGFEM

implementation, is that it allows for the standard Dirichlet boundary conditions to be used

to model �ow inlets and boundary walls. It is important to note that other turbulence

models were considered in this work before settling upon the k − ω model; in particular

the k− ε model [103]. We prefer to work with the k−ω model due to the straight-forward

nature of the model's implementation, being able to apply it throughout the boundary

layer without near-wall modi�cations, as well as its high performance in industrial turbo-

machinery applications [145].

We apply boundary conditions similar to those used in Chapter 3, with

u = gD on ΓD,

(µ+ µt)
∂u

∂n
− pn = 0 on ΓN.

The speci�c values of k and ω̃ on these boundaries are discussed in Section 4.4.
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4.3 DGFEM Discretisation

We derive an interior penalty DGFEM discretisation of the incompressible Navier-Stokes

equations with the k − ω model turbulence model. As such, we �rst write the system in a

compact form as follows on a domain Ω ⊂ Rd, d = 2, 3:

∇ · FC −∇ · FV − S = 0, (4.3.1)

∇ · u = 0, (4.3.2)

where

u =

 ui

k

ω̃

 , FCj (u) =

 uiuj

kuj

ω̃uj

 , FVj (u,∇hu) =

 −τij
(µ+ σkµt) kxj
(µ+ σωµt) ω̃xj

 ,

S (u,∇u) =

 0

−τRij − βkkeω̃r

−αω ωk τ
R
ijui,xj − βωeω̃r + (µ+ σωµt) ω̃xk ω̃xk

 , i, j = 1, ..., d,

and

τRij = −µt
(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
kδij .

The weak form may be derived upon multiplication of (4.3.1) by a suitable smooth test

function v and integrating by parts over the domain Ω,

−
ˆ

Ω
∇vT · F (u,∇u) dx +

ˆ
∂Ω

vTF (u,∇u) · n ds−
ˆ

Ω
vTS (u,∇u) dx = 0,

for all v ∈
(
H1 (Ω)

)d+2
. Similarly, we multiply (4.3.2) by a suitable smooth test function

q and integrate by parts,

−
ˆ

Ω
∇q · u dx +

ˆ
∂Ω
q (u · n) ds = 0,

for all q ∈ H1 (Ω) .

For readability, the symbol F represents the algebraic sum of the �uxes, F = FC − FV .

Then, the test function and the solution space are de�ned such that

Vh,m =
{

(v, k, ω̃) ∈
[
L2 (Ω)

]d+2
: (v, k, ω̃) |κ∈ [Rm (κ)]d ×

[
Rm−1 (κ)

]2
, κ ∈ Th

}
,

Qh,m =
{
q ∈ L2 (Ω) : q |κ∈ Rm−1 (κ) , κ ∈ Th

}
.

(4.3.3)
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Once again, we make the choice of stable pairs, employing second order piece-wise con-

tinuous polynomials to approximate the velocity u, and piece-wise linear functions for the

pressure p. We remark here that the choice of approximation space of the turbulent vari-

ables k and ω̃ is important to the computational e�ciency, but not to the stability of the

proposed DGFEM as u and p are. Therefore, since we are not directly concerned with the

speci�c values of k and ω̃, only the e�ect they have on the physical variables u and p, we

use piece-wise linear functions to represent them also. In general, the choice of polynomial

degree is arbitrary and should be at most m [118].

The choice of numerical �ux remains the Lax-Friedrichs �ux denoted by

H (v,w,n) :=
1

2
(F (v) · n + F (w) · n− γ (w − v)) ,

with γ := max (φ+, φ−), whereby φ+ and φ− are the largest eigenvalues in absolute mag-

nitude of the Jacobi matrices ∂
∂u (F (·) · n) computed at v and w respectively [46]. The

boundary function is dependent upon the boundary it is computed on: uΓ (u) = gD on a

Dirichlet boundary and uΓ (u) = u+ on a Neumann boundary.

Hence the discrete problem becomes: �nd (uh, ph) ∈ Vh,m × Qh,m such that for all

(vh, qh) ∈ Vh,m ×Qh,m:

Ah (u,v) =

(ˆ
Ω

(
−FC (u) + FV (u,∇hu)

)
: ∇hv − S (u,∇hu) · v dx

+

ˆ
Γint

H
(
u+,u−,n

)
[v] ds+

ˆ
Γint

〈
FV (u,∇hu)

〉
: [v] ds

−
ˆ

Γint

〈
GT (u)∇hv

〉
: [u] ds+

ˆ
Γint

σ [u] [v] ds+NΓ (u,v)

)
= 0,

Bh (v, q) = −
ˆ

Ω
q∇h · v dx +

ˆ
Γint∪ΓD

〈q〉 [v] ds = 0,

(4.3.4)

where

NΓ (u,v) =

ˆ
Γ
H
(
u+,uΓ

(
u+
)
,n
)
· v+ ds−

ˆ
Γ
n · FVΓ

(
u+,∇hu+

)
v+ ds

+

ˆ
Γ
σu+v+ ds−

ˆ
Γ

(
GT

Γ

(
u+
)
∇hv+

)
:
(
u+ − uΓ

(
u+
))
⊗ n ds,

with

GT (u)∇hv : u⊗ n =

(
∂FVi (u,∇hu)

∂uxj

)
ji

∂vk
∂xi

ukni, i, j, k = 1, ..., d,
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and

G (u) =

(
∂FVi (u,∇hu)

∂uxj

)
ij

, i, j = 1, ..., d.

4.4 Numerical Experiments

We consider some further numerical examples in order to both validate the proposed

DGFEM for turbulent �ows, and to develop a reliable method to raise the Reynolds num-

ber of a numerical solution. In Section 4.4.1, we in introduce �the law of the wall,� to

better analyse the interaction between the turbulent �ow and the boundary walls. We

provide comparisons between the DGFEM and the results of Wilcox [145] in Section 4.4.2,

evaluating the ability of the scheme to simulate simple turbulent �ows. These initial com-

parisons indicate the appropriateness of the Lax-Friedrichs numerical �ux for turbulent

�ows, as well as allowing for any adjustments to the scheme to be made before considering

industrially relevant geometries in Chapter 5. We build on the ideas developed in Section

3.4, again, with all numerical calculations carried out using AptoFEM, in conjunction with

both MUMPS and ParMETIS.

In Section 4.4.3, we develop a highly e�cient algorithm to reliably produce simulations of

high Reynolds number turbulent �ows. In particular, we consider a continuation type ap-

proach, manipulating the nonlinear solver using low Reynolds number numerical solutions

to increase the rate at which the solver converges for high Reynolds number �ows. We

remark that, for industrial simulations that require a number of CPU days to complete,

failure of the nonlinear solver to converge at all is unacceptable. As such, this algorithm

is of the utmost importance to the overall success of this work.

Finally, in Section 4.4.4, we consider the experimental results presented in [107], employing

the algorithm developed in Section 4.4.3 to improve the reliability of the numerical solver.

We compare the near wall velocities, assessing the behaviour of the numerical solution close

to the wall. This is important as it provides an insight into the accuracy of the numerical

�ux and the turbulence model, showing if the velocity of the �ow is being a�ected in the

correct manner.

4.4.1 The Law of the Wall

The �law of the wall� is a valuable tool in understanding and analysing turbulent �ows.

The result is obtained by dimensional analysis of the near-wall �ow, and was �rst proposed

by Theodore von Kármán in 1930 [136]. It states that the average velocity of a turbulent
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�ow at a point close to the wall, is proportional to the logarithm of the distance from

the wall to the same point. In particular, the two dimensionless quantities of interest are

y+ = yuτ
ν and u+ = u

uτ
, where y is the measured distance from the wall, uτ =

√
τw
ρ is

the shear velocity, and τw is the local wall shear stress. Indeed, plotting u+ against y+,

we expect to see a distinctive viscous sublayer close to the wall where u+ ≈ y+, a log-law

region where u+ = 1
κ ln (y+) +C+ holds for a constant C+ and the Von Kármán constant

κ, as well as a bu�er layer separating the two regions.

4.4.2 Turbulent Channel

In this section, we consider a simple channel domain, to compare the results generated

from the companion software provided in Wilcox [145], and those from the DGFEM. The

software from [145] is useful in developing or modifying turbulence models, as it provides

a turbulent ordinary di�erential equation (ODE) solver, as well as, a range of test cases

for simple �ow problems, most notably for incompressible turbulent �ows. This test case

provides an initial indication on the accuracy of the proposed DGFEM for turbulent �ows.

Formally, consider a two-dimensional rectangular channel domain Ω ⊂ R2, with a half

width R = 1 and a length of L = 60. This is shown in Figure 4.4.1. As in Sections

3.5.1 and 3.5.3, this test case is dimensionless, as we are only interested in the behaviour

of the �ow at the chosen Reynolds numbers, rather than attempting to model a physical

experiment. We de�ne boundaries such that Γ = ΓD ∪ ΓN.

Figure 4.4.1: Rectangular channel domain, with a length of 60 and a half width R = 1.

The channel walls are modelled using the no-slip Dirichlet boundary condition, that is,

u1, u2 = 0 at the wall. Following [145], we de�ne k = 0 and ω̃ = ln
(

60ν
β1d21

)
at the wall;

where d1 is the width (measured perpendicular to the wall) of the boundary element of

the computational mesh. The inlet conditions for u1, u2, k and ω are provided by the

Wilcox software, and the out�ow is modelled using the stress-free Neumann condition
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(3.1.3). The comparison is made by sampling a slice of the DGFEM solution at x = 54,

such that the �ow is allowed to fully develop. A point before the out�ow boundary is

chosen, as to eliminate any inaccuracies associated with the domain out�ow conditions.

Then, a comparison is drawn between the solution produced by the Wilcox software and

the DGFEM slice, analysing their near-wall behaviour. In this test case, calculations are

carried out on a graded triangular mesh Th, consisting of 720 elements. In particular, 31

equally spaced nodes subdivide the x-axis, while 13 nodes are placed across the channel

width, as shown in Figure 4.4.2.

Figure 4.4.2: Two-dimensional graded mesh Th, 720 triangular elements.

In order to provide a useful comparison, the turbulent �ow is simulated for Reynolds

numbers Re = 50, Re = 1, 500, Re = 20, 130, and Re = 258, 300. A sample of 101

uniformly spaced points is collected across the domain at the point x = 54. Then, a

comparative sample is taken from the Wilcox solution, and the quantities of u+ and y+are

calculated. Figures 4.4.3, 4.4.4, 4.4.5 and 4.4.6 show the Wilcox solution using a broken

black line, whilst the DGFEM solution is represented by the solid red line.
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Figure 4.4.3: Semi-log plot comparing the scaled axial velocity u+, to the scaled distance
from the domain wall y+, Re = 50. DGFEM solution is shown by a solid red line, whilst
the Wilcox solution is denoted by a broken black line.

Figure 4.4.4: Semi-log plot comparing the scaled axial velocity u+, to the scaled distance
from the domain wall y+, Re = 1, 500. DGFEM solution is shown by a solid red line,
whilst the Wilcox solution is denoted by a broken black line.
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Figure 4.4.5: Semi-log plot comparing the scaled axial velocity u+, to the scaled distance
from the domain wall y+, Re = 20, 130. DGFEM solution is shown by a solid red line,
whilst the Wilcox solution is denoted by a broken black line.

Figure 4.4.6: Semi-log plot comparing the scaled axial velocity u+, to the scaled distance
from the domain wall y+, Re = 258, 300. DGFEM solution is shown by a solid red line,
whilst the Wilcox solution is denoted by a broken black line.
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The DGFEM appears to approximate the turbulent �ow well, shown in Figures 4.4.3

and 4.4.4. However, as the Reynolds number increases, both the Wilcox solver and the

DGFEMs ability to correctly capture the viscous sublayer, diminishes. The familiar S-

shaped curve expected in Figures 4.4.5 and 4.4.6 is completely missing. See Figure 4.4.10

for the expected graph shape. This is due to a lack of resolution at the domain wall,

indicated by the di�ering length scales of the y+ variable, particularly in Figures 4.4.5 and

4.4.6. To resolve this, in the case of the DGFEM, we would increase the mesh density at

the wall, allowing us to capture the viscous sublayer correctly. However, as the Wilcox

solver is restricted to the current mesh density, we do not do this here.

Secondly, as the Reynolds number is increased, the DGFEM solution begins to exhibit

some di�erences compared to the Wilcox solution. This is most notable in Figure 4.4.6,

with the DGFEM predicting larger u+ values. This overshoot could be explained by the

di�erences between the methods of the DGFEM and the Wilcox solver. In particular, the

Wilcox solver uses a one-dimensional ODE solution [145] to approximate a cross section of

the two-dimensional �ow, rather than calculating solution values at appropriately spaced

intervals in the domain, such as in FVM and DGFEM. This method assumes that the �ow

is constant along the length of the domain. Whilst this is appropriate for low Reynolds

number �ows, for high Reynolds number �ows, the solution may be somewhat a�ected by

forces acting parallel to the �ow [141].

These numerical experiments have shown that the Lax-Friedrichs �ux is indeed suitable

for incompressible turbulent �ows, showing good agreement overall between the velocity

pro�les for the Wilcox and DGFEM solutions. The inability of the DGFEM to capture

accurately, the viscous sublayer for high Reynolds number �ows suggests that the distance

between the channel wall and the �rst internal mesh node should decrease, as the Reynolds

number increases. Indeed, this makes incompressible �ows ideally suited for automatic h-

re�nement. We explore the most e�ective uses of this re�nement strategy in Chapter

6.

4.4.3 Continuation Experiment

In this numerical experiment, we develop an algorithm to reliably produce accurate solu-

tions to high Reynolds number �ows. Large scale industrial simulations typically require

several days of CPU time to complete. They are usually carried out under strict time

constraints, with little to no time for overrun. In the case of DGFEMs, which rely on non-

linear solvers to iteratively progress an initial estimate into the true solution, this concern

is particularly poignant. Failure of the nonlinear solver to converge could invalidate hours,

if not days of CPU time, which is simply unacceptable from a business perspective. As

such, in this numerical experiment, we seek to address these concerns.
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In the case of high Reynolds number turbulent �ows, if the initial estimate of the numerical

solution is too di�erent from the actual numerical solution, then it is highly unlikely that

the nonlinear solver will converge due to the sti�ness of the system. As such, we present

a continuation type approach, using a lower Reynolds number solution to approximate a

higher Reynolds number solution. This is a variation on the natural parameter continuation

method. Alternative approaches include, pseudo-arclength and Gauss�Newton methods,

but these are not explored in this work due to the additional computational requirements

associated with these methods. For our natural approach, a domain with appropriate

boundary conditions is selected. Then, the initial Reynolds number of the �ow is chosen

through adjustments to the kinematic viscosity. An initial estimate of zero is selected for

the nonlinear solver, and a laminar numerical solution is calculated. Next, a turbulent

solution is calculated for the same Reynolds number, using the laminar solution as an

initial estimate for the nonlinear solver. The Reynolds number of the �ow is increased,

and another turbulent solution is calculated using the previous lower Reynolds number

turbulent solution as an initial estimate for the nonlinear solver. The amount by which

the Reynolds number can be increased between progressive solves without the nonlinear

solver failing to converge is unclear. As such, we explore for the remainder of this work,

particularly in Chapters 6 and 7, the optimum way to choose this value.

Additionally, we wish to address the concerns arising in Section 4.4.2, namely, the DGFEM

failing to capture the viscous sublayer for high Reynolds number �ows. Therefore, in this

section, we generate our own in�ow conditions and increase the mesh density at the domain

boundaries. As such, we consider a channel domain Ω ⊂ R2, with channel half width R = 1,

and length L = 120, as shown in Figure 4.4.7. The channel walls are modelled using the

Dirichlet no-slip condition, while the outlet uses a stress free Neumann condition. Initially,

the Reynolds number is set to Re = 300, and a Poiseuille �ow inlet condition located

at x = 0, with peak velocity upeak = 13.88. Recall, the Reynolds number is calculated

according to De�nition 3.1.1, with characteristic length scale LC := R.

Figure 4.4.7: Channel geometry. R = 1, L = 10.
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The solution is calculated on a graded mesh Th, consisting of 10, 000 triangular elements,

as shown in Figure 4.4.8. In particular, 51 uniformly spaced nodes divide the x-axis, while

101 nodes divide the y-axis.

Figure 4.4.8: Two-dimensional graded mesh Th, 10, 000 triangular elements.

Once the solution is calculated, a slice sample is taken at x = 110, to provide turbulent inlet

conditions for the next numerical experiment. For the �rst turbulent solve, uniform values

of 1 were chosen for the initial inlet conditions of k and ω, while subsequent solves used the

values taken from the solution slice. The Reynolds number is increased by 10% for each

successive solve. We found this value su�cient for the channel geometry, with the nonlinear

solver always converging to the solution. However, we note that for more complicated

geometries, this value may be too large, and may need to be adjusted to ensure solver

reliability. In order to satisfy the inf-sup condition of stable pairs, a polynomial degree

of two was selected for the velocity components of the solution, whilst linear polynomials

represented the pressure and turbulent terms.

Figure 4.4.9: Colour plot of the scaled axial velocity u+, Re = 115, 966.
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Figure 4.4.9 is a colour plot of the scaled axial velocity, Re = 115, 966. Importantly, the

peak axial velocity is very similiar to the peak inlet condition, suggesting that the solution

is correct. If the peak velocity increases signi�cantly as the Reynolds number is raised,

then this suggests a lack of mesh resolution at the domain wall, resulting in an incorrect

�nal numerical solution. Finally, we sample the solution slice at x = 110, and consider

the �law of the wall,� plotting y+ against u+ in Figure 4.4.10. In particular, Figure 4.4.10

demonstrates that through progressive increases in Reynolds number, the DGFEM solution

is able to retain the correct viscous sublayer representation even when the Reynolds number

is very large. The characteristic S-curve is shown, with a viscous sublayer close to the wall

where u+ ≈ y+, and a straight line representing the log-law region at 102 ≤ y+ ≤ 103.

Figure 4.4.10: Semi-log plot comparing the scaled axial velocity u+, to the scaled distance
from the domain wall y+, Re = 115, 966.

Additionally, the continuation algorithm we proposed, ensured that the nonlinear solver

converged for each Reynolds number attempted, up to the target of Re = 115, 966. This is

signi�cant, because in the case of large scale industrial simulations, it is not uncommon for

the solver to be left unattended for up to a week [93]. Should the nonlinear solver fail to

converge for a particular Reynolds number, then this will result in severe delays elsewhere

in the production queue. We continue to develop and re�ne this algorithm throughout this

work, especially when we consider more complicated geometries in Chapters 5, 6 and 7.
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4.4.4 Channel Flow Validation

Following the development of the DGFEM in Section 4.4.3, and the successful addition of

the continuation algorithm, we now seek to validate our work against experimental test

data. We consider the results presented in [107], a time averaged turbulent �ow through

a channel domain with Reynolds number Re = 2, 777. We carry out a two-dimensional

numerical simulation, approximating the three-dimensional experiment, by considering a

longitudinal cross section of the three dimensional �ow. Consider a channel domain Ω ⊂ R2,

with channel half width R = 2.04 cm, and length L = 1060 cm, as shown in Figure 4.4.11.

No-slip boundary conditions are used to model the walls of the channel, and the stress free

Neumann condition is employed for the domain outlet located at x = 1060 cm.

Figure 4.4.11: Channel geometry. R = 2.04 cm, L = 1060 cm.

The domain is partitioned into a mesh Th, graded towards the channel walls and consist-

ing of 50, 000 triangular elements. In particular, the horizontal x-axis is divided by 251

uniformly spaced nodes; while the y-axis is partitioned with 101 nodes. This is shown in

Figure 4.4.12.

Figure 4.4.12: Two-dimensional graded mesh Th, 50, 000 triangular elements.

We follow the experimental conditions prescribed in [107], setting the peak inlet veloc-

ity upeak = 11.8 cm/s, and the kinematic viscosity υ = 0.008930 cS. We implement the
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continuation algorithm outlined in Section 4.4.3, setting the initial kinematic viscosity

υinitial = 1.0 cS. We then reduce this value by 10% for each successive solve, increasing

the Reynolds number until the target value of Re = 2, 777. Finally, the axial velocity

is sampled by way of a cross sectional slice located at x = 1016 cm, 200 channel heights

downstream from the inlet. The velocity is made dimensionless by calculating u+, then

plotted against the scaled distance from the wall y+ in Figure 4.4.13.

Figure 4.4.13: Semi-log plot comparing the scaled axial velocity u+, to the scaled distance
from the domain wall y+, Re = 2, 777. The experimental data [107] is shown with blue
dots, while the DGFEM solution is represented by a solid red line.

The numerical solution is a good approximation the experimental data, especially towards

the centre of the channel. However, the solution also appears to under approximate the

�ow velocity close to the channel wall. This could be a result of the choice of numerical

�ux, indicating that a new choice may need to be considered as we move to consider more

complicated geometries. On the other hand, since we are considering a two-dimensional

approximation to the three-dimensional experiment, the variation may simply be due to

some subtle three-dimensional �ow features. In general, Figure 4.4.13 suggests that the

turbulence model and numerical �ux are combining to produce numerical solutions that are

representative of the physical experiment, correctly representing the near wall behaviour

of the �ow.
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The implementation of the continuation algorithm proposed in Section 4.4.3 has proven to

be very successful for this simple geometry, ensuring that the nonlinear solver converged

for each of the intermediary Reynolds numbers up to the target value. This is shown in

Table 4.2, which details the number of iterations required by the nonlinear Newton solver

at particular Reynolds numbers in the continuation process.

Reynolds Number Re Number of Newton iterations

24 (Laminar model) 4

24 (Turbulent model) 6

100 3

500 3

1, 900 4

2, 100 4

2, 777 3

Table 4.2: Number of Newton iterations required for each Reynolds number, Re.

As shown in Table 4.2, the number of Newton iterations is reduced signi�cantly by the

use of a more accurate solution estimate. Once the initial turbulent solution is obtained,

Re = 24, the number of nonlinear iterations reduces to around 2 − 3 for the majority

of the continuation process. There is an increase in the number of nonlinear iterations

around the turbulent transition value, Re ≈ 2, 000, as the �ow undergoes a number of

physical changes. This increase in the number of Newton iterations is driven by a decrease

in accuracy of the solution estimate compared to the numerical solution, thus requiring

additional nonlinear iterations at these Reynolds numbers. However, as expected, once the

�ow is fully turbulent, the number of iterations returns to the usual number.

The continuation algorithm is re�ned and developed as the geometries become more com-

plicated, as well as to include h-re�nement passes in Chapter 6 and 7. However, the

performance in these initial experiments, indicates that it may address the concerns voiced

by industry representatives regarding DGFEM for turbulent high Reynolds number �ows.

4.5 Concluding Remarks

We have considered an implementation of the k − ω turbulence model for the RANS

equations, using the interior penalty DGFEM framework. The choice of turbulence model

was clear when we considered both the preferences of industry representatives [93], as well

as the k−ω models straight-forward implementation, being able to apply it throughout the
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boundary layer without near-wall modi�cations. This greatly simpli�ed the development

of the DGFEM, allowing us to employ the techniques discussed in [25, 26, 118]. We use

ω̃ = ln (ω) to ensure a smoother near-wall distribution of ω , as well as, k = max (k, 0)

and ω̃r = max (ω̃, ω̃r0), such that we guarantee the positivity of the normal turbulent

stresses. These improvements enhance the stability of the numerical solver, with Figure

4.4.13 demonstrating that the DGFEM implementation of the turbulence model correctly

represents the physics of turbulent �ows, with accurate near wall �ow velocities.

The initial test cases presented in Section 4.4 demonstrate the performance of the DGFEM

solver for simple turbulent �ows. Overall, they suggest that the choice of numerical �ux is

suitable for low to medium Reynolds number �ows. In particular, the numerical solution

demonstrates good agreement with the expected velocity pro�le in Figure 4.4.10, and the

experimental data in Figure 4.4.13, despite the two-dimensional approximation of the �ow.

However, while the Lax-Friedrichs �ux appears to be suitable for these simple geometries,

further testing is required in order to validate its use on industrial test cases. As such, in

Chapter 5, we move to consider more complicated geometries at higher Reynolds numbers.

The continuation algorithm proposed in Section 4.4.3 is e�ective at enhancing the numerical

solver, enabling the reliable simulation of turbulent �ows. The di�culty arises when we

consider high Reynolds number �ows, as they require numerical solutions to be found for

extremely sti� systems. This means that we are unable to simply input the �ow parameters

and �nd the desired solution, as the nonlinear solver fails to converge to a solution. The

initial estimate of the numerical solution is too di�erent from the actual numerical solution.

As such, we use low Reynolds number solutions to approximate high Reynolds number ones.

We remark, that once an initial low Reynolds number turbulent solution has been found,

the amount by which the Reynolds number can be increased for the next solve, such that

we still ensure that the nonlinear solver converges, is unclear. In these initial test cases,

we found that a value of 10% worked well, with larger values causing the nonlinear solver

to converge slowly or not all. This problem was worst around the Reynolds numbers

associated with the transition of the �ow from laminar to turbulent, suggesting that the

value by which the Reynolds number is increased should not be constant. We reassess the

algorithm when we consider more complicated geometries and h-re�nement in Chapter 6,

with further adjustments for polytopic meshes in Chapter 7.
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Chapter 5

Curvilinear Elements

In this chapter, we set out to build upon the results of the previous chapter by developing

a computationally inexpensive approach to curvilinear elements. DGFEMs o�er many

advantages over current generation industrial FVM solvers, among which is there ability

to handle complex curved geometries. As discussed previously, near wall representation of

the �ow is crucial to producing an accurate numerical approximation to the average �ow,

since the value of ω changes very rapidly as we approach the wall. Therefore, the use of

elements with polynomial isosurfaces as faces is of much interest to industry representatives,

since the current methods typically employ faceting of many linear elements in areas of

high curvature. This is both ine�ective and computationally expensive, especially in the

present context of RANS.

5.1 Mesh Design

Consider a domain Ω ⊂ Rd, and let Th be a triangulation of Ω consisting of quadrilateral

elements κ ∈ Th. Previously, we only considered a single a�ne mapping, Fκ, between the

reference element κ̂, and the physical element κ ∈ Th. Now let us further consider some

transitional element κ̃ and another transformation mapping Qκ, such that Qκ (Fκ (κ̂)) =

Qκ (κ̃) = κ. In order to achieve the desired curvilinear physical element, let Fκ produce a

standard anisotropic element by way of an a�ne mapping, whilst Qκ is a di�eomorphism

such that it produces the correct warping of κ̃ to represent κ. Roughly speaking, therefore,

Fκ introduces the size of the element and Qκ perturbs its shape, but does not change its

size substantially, as shown in Figure 5.1.1.
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Figure 5.1.1: The mappings Fκ from the reference element κ̂ to the transitional element κ̃,
and Qκ from κ̃ to the physical element κ.

Further, let f̂ , f̃ and f denote a face on the element κ̂, κ̃ and κ, respectively. Also, let ∂κ

be the set of all element faces of the triangulation Th, such that f ∈ ∂κ.

5.2 The Discontinuity-Penalisation Function

Next, we consider in greater detail the discontinuity-penalisation function denoted by σ in

(4.3.4). Following the previous notation, we de�ne the discontinuity-penalisation function

as σ : ∂κ → R. The precise de�nition of σ is dependent upon the local mesh size and the

local polynomial degree. Assuming that the mesh Th is shape regular, and the polynomial

degree is constant over Th, we chose σ = O
(
m2

h

)
in (4.3.4), where, m is the polynomial

degree and h is the mesh size. Generally speaking, in order to ensure convergence of the

proposed DGFEM, σ must be chosen su�ciently large; however, smaller values of σ can

lead to better conditioning of the sti�ness matrix and also, possibly, smaller numerical error

in certain instances. The remainder of this chapter is dedicated to discussing a balanced

choice of σ such that the DGFEM remains stable when we introduce curvilinear elements

into the mesh Th. A good choice of σ is crucial for the success of the proposed approach.
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5.3 Inverse Estimates

Inverse estimates are widely used in the error analysis of numerical methods for the dis-

cretisation of PDEs. Consider a simplicial or tensor product element κ ∈ Th, and let(
X (κ) , ‖·‖X(κ)

)
and

(
Y (κ) , ‖·‖Y (κ)

)
be two normed function spaces such that Rm ⊂

X (κ) ⊂ Y (κ). Then, classical inverse estimates are bounds of the form

‖v‖X(κ) ≤ C (Cr,m)h−sκ ‖v‖Y (κ) (5.3.1)

for all v ∈ Rm and some s ≥ 0. The constant C (Cr,m) depends at most on the shape

regularity constant Cr and the polynomial degree m. Clearly if m → ∞, then we expect

C (Cr,m) → ∞. For speci�c knowledge of the dependence of the constant C (Cr,m) on

the polynomial degree m for various pairs of spaces X (κ) and Y (κ), we refer to [34, 42,

124, 139] and the references cited therein.

In order to progress with our analysis of the penalty parameter, we recall Lemma 2.8.4, in

particular

‖v̂‖2
f̂
≤ Cinvm

2 ‖v̂‖2L2(κ̂) , (5.3.2)

which is of a similar form to (5.3.1). Then, for element κ ∈ Th, we have

‖v̂‖2
f̂

=

ˆ
f
v2
∣∣∣J−1
Ff

∣∣∣ ∣∣∣J−1
Qf

∣∣∣ ds ≤ Cinvm
2

ˆ
κ
v2
∣∣J−1
Fκ

∣∣ ∣∣∣J−1
Qκ

∣∣∣ dx = Cinvm
2 ‖v̂‖2L2(κ̂) . (5.3.3)

Using mf and mκ to denote the volume of the face f and the volume of the element

κ, respectively. The Jacobians of the a�ne mapping Fκ and Ff may be represented as∣∣J−1
Fκ

∣∣ = mκ̂
mκ̃

and
∣∣∣J−1
Ff

∣∣∣ =
m
f̂

m
f̃
, since this is essentially a scaling of the element κ and face

f . As
∣∣∣J−1
Qκ

∣∣∣ and ∣∣∣J−1
Qf

∣∣∣ are not constant, we consider the maximum and minimum values

in order to bound the left- and right-hand sides.

We bound the left-hand side of (5.3.3) from below:

‖v̂‖2
f̂
≥ min

x∈f

∣∣∣J−1
Qf

∣∣∣ mf̂

m
f̃

ˆ
f
v2 ds,

and rearrange to the form

‖v̂‖2
f̂
≥ 1

max
x∈f

∣∣JQf ∣∣
m
f̂

m
f̃

ˆ
f
v2 ds.
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Similarly, we may bound the right-hand side of (5.3.3) from above

‖v̂‖2L2(κ̂) ≤
1

min
x∈κ
|JQκ |

mκ̂

mκ̃

ˆ
κ
v2 dx.

Finally, combining the above upper and lower bounds together and applying (5.3.3), we

are left with
1

max
x∈f

∣∣JQf ∣∣
m
f̂

m
f̃

‖v‖2f ≤ Cinvm
2 1

min
x∈κ
|JQκ |

mκ̂

mκ̃
‖v‖2L2(κ) ,

or

‖v‖2f ≤ Cγm
2 ‖v‖2L2(κ) , (5.3.4)

with

Cγ = Cinv

max
∣∣JQf ∣∣

min |JQκ |
m
f̃

mκ̃

mκ̂

m
f̂

.

Since (5.3.4) is derived from the inverse estimate taken in the isotropic setting, we may

therefore de�ne the new penalty parameter such that σ = Cσ
m2

h , with Cσ ≥ CγCf . Here,

Cf is the cardinality of the element neighbours, de�ned as Cf = max
κ∈Th

card {f ∈ Γint ∪ ΓD :

f ⊂ ∂κ}. Hence, Cσ is of the same form as the standard isotropic penalty parameter

derived in Section 2.8, but is able to account for the curvature of the element.

Since Qκ is a nonlinear di�eomorphism, the Jacobians |JQκ |,
∣∣JQf ∣∣ are not constant with

respect to the spatial variables. Thus, in order to ensure that (5.3.4) holds, we must �nd

a bound on the term
max

∣∣JQf ∣∣
min |JQκ |

. We do this by limiting the choice of Qκ to polynomial

functions with real coe�cients. This ensures that the Jacobians exist for all points x ∈
κ ∪ ∂κ, and that κ is a non-degenerate element. Therefore, simply by the properties of

polynomials, the term
max

∣∣JQf ∣∣
min |JQκ |

is bounded from above and below on the domain κ, as

all the entries in the Jacobian matrices JQf and JQκ are polynomials. Note that the degree

of polynomials in Qf can be su�ciently high to ensure general enough element shapes to

capture curved geometries.

The only remaining question is how to �x a value of Cinv. We refer to Schwab [124], who

places a lower bound of Cinv =
√

6, for a two-dimensional quadrilateral reference element κ̂.

In order to ensure coercivity, we select Cinv = 2.5, following the consensus in the literature

of Cσ = 10 for isotropic mesh elements.

Within the literature there exists two distinct choices for the discontinuity-penalisation

function: one suitable for isotropic elements, de�ned as σ = Cσ
m2

h , and the anisotropic
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parameter detailed in [67, 77]. By setting Cγ = Cinv
mf
mκ

in the approach proposed above,

where mf = min {mf1 ...mfd}, i = 1, ..., d, we recover the anisotropic penalty parameter of

[67, 77]. Indeed, [77] shows that this parameter is stable for a�ne mappings combined with

C1−di�eomorphisms, as long as the Jacobian of the di�eomorphism is su�ciently close to

the identity matrix. Therefore, for a discontinuity-penalisation function de�ned by

σ = Cσ
m2

h
, Cσ ≥ CγCf ;

we recover the isotropic parameter if

Cγ = Cinv,

and the anisotropic parameter if

Cγ = Cinv

mf

mκ
.

5.4 Numerical Experiments

With the addition of a more precise discontinuity-penalisation function, we are able to con-

sider more complex geometries, representing domain boundaries with curvilinear elements.

In particular, we allow the use of cubic polynomials to approximate element boundaries,

allowing for meshes to be generated from point cloud data using cubic splines. In the

case of industrial meshes, machine parts are typically designed with piece-wise quadratic

boundaries, and, as such, we normally only need to consider elements with quadratic faces.

We note here, that for the following test cases, we limit the use of curvilinear mesh elements

to those whose faces intersect the domain boundary, i.e., ∂κ ⊂ ∂Ω.

We introduce the industrial numerical test case in Section 5.4.1, the 1.5 Stage Aachen

Turbine [135, 138, 65]. We consider the �ow through a stator passage, as we are, presently,

unable to represent the mixing plane required to transition from a stationary to rotational

�ow. However, this serves to validate the DGFEM on industrial type meshes. Addtionally,

in Section 5.4.2, we consider a three-dimesnsional backwards-facing step test case, in order

to validate the DGFEM scheme on three-dimensional meshes.

5.4.1 Turbine Stator Cascade

We consider the �ow through the 1.5 Stage Aachen Turbine [135, 138, 65]; a reference gas

turbine used for power generation. The 1.5 stage has cylindrical end walls, with hub and tip

radii of 0.245m and 0.30m, respectively. Further, the turbine blade span, H = 0.055m.
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The stator blades are pitchwise stacked at the trailing edge, while the rotor blades are

pitchwise stacked at their centroid, located at x = 0.025265m and y = 0.013456m from

the rotor blade leading edge. The stator blades have a chord length cs = 0.062m, an axial

chord length cx = 0.04425m, and a pitch to chord ratio ss
cs

= 0.77; giving 36 blades around

the cascade. The rotor blades have a chord length cr = 0.060m and a pitch to chord ratio
sr
cr

= 0.67; giving 41 blades around the cascade. The downstream stator blades are clocked

by 3◦ in the positive direction of rotation of the rotor, with respect to the upstream stator

blades.

The two-dimensional cacsade schematic is shown in Figure 5.4.1. In this numerical example,

we consider the �ow through the �rst stator passage only, as inclusion of the rotar passage

and second stator, would require the developement of a mixing plane to transition the �ow

from a stationary to rotaional frame of reference; which is beyond the scope of this work.

Figure 5.4.1: Schematic of the Aachen Turbine on the cascade plane [138]. All lengths are
stated in metres. The angle subtended by the y-axis and the stator and rotor chords are
λ1 = 45.5◦ and λ2 = 62◦ respectively.

In particular, we consider the mid-height �ow between the initial stator baldes, with a

pitch ss = 0.0476m. The initial stator section is designed to receive an inlet �ow parallel

to the horizontal axis, such that the �ow is axial. The design Reynolds number, based on

the chord length and exit velocity is Re = 6.8× 105.

The mesh for this test case consists of an inlet channel of length lin = 0.143m, and an

outlet channel of length lout = 0.18575m. The outlet length is chosen such that the �ow

may fully develop before passing through the domain out�ow boundary. The blade passage

is speci�ed using a cloud of point data [137], detailing the dimensions of the pressure and
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suction side of the blade. These data points are then used as nodes to create piecewise-

cubic splines to approximate the curvature of the physical stator blade. Figure 5.4.2 details

the geometry of the stator passage to be simulated. The pressure side of the blade (the

upper boundary), requires that a discontinuity be introduced into the spline at the point

x = 0.04398m and y = −0.00042m, due to the shape of the boundary. As such, two

separate cubic splines are required to completely de�ne the geometry of the pressure side.

Figure 5.4.2: Geometry of a single blade domain for a stator cascade. All lengths are stated
in metres.

The computational domain Ω is subdivided into a mesh Th, consisting of 53, 000 quadrilat-

eral elements. Elements with faces that intersect the domain boundary are chosen to have

cubic approximations for these faces, matching closely the geometry of the stator blade.

That is to say, the blade geometry is represented by piecewise cubic polynomials. The

computational mesh Th is shown in Figures 5.4.3 and 5.4.4.

Figure 5.4.3: Computational mesh for the Aachen Turbine stator passage, (53, 000 ele-
ments).
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Figure 5.4.4: Central portion of the computational mesh.

Periodic boundary conditions, denoted ΓP, are introduced for the straight horizontal

boundaries, representing the geometry of the three-dimensional stator section of the tur-

bine. In particular, we set

u (x, 0.043047) = u (x, 0.004052) on ΓP1 ,

u (x, 0) = u (x,−0.047560) on ΓP2 .
(5.4.1)

The blade edges are de�ned using a no-slip condition (3.1.2), and the stress-free condition

(3.1.3) is used on the domain outlet located at x = 0.23m. The domain inlet located at

x = −0.143m, is a turbulent free-stream condition with an average inlet velocity u∞ =

45.0m/s [13]. These are summarised in Figure 5.4.5.
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Figure 5.4.5: Boundary diagram of the computational domain.

We employ the continuation algorithm outlined in Section 4.4, increasing the Reynolds

number by 10% between successive nonlinear solves until the target Reynolds number

Re = 6.8× 105 is reached. In particular, we use the Newton based iterative solver detailed

in Section 3.4, where the stopping condition is de�ned such that the l2-norm of the nonlinear

residual vector is reduced by 8 orders of magnitude. Each linear problem that arises is

handled by the MUMPS nonsymmetric direct solver in combination with a ParMETIS

reordering of the associated Jacobian matrix, along with the libraries supplied by the

OpenBLAS software.

To better approximate the blade edges, we use cubic approximations for the element faces

along the blade boundary, stabilising the jumps via the proposed curvilinear penalty pa-

rameter. We present colour plots of the simulated �ow in Figures 5.4.6, 5.4.7 and 5.4.8;

with a Reynolds number Re = 6.8× 105.
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Figure 5.4.6: Colour plot of the axial velocity u1, computed on Th. Re = 680, 000.

Figure 5.4.7: Colour plot of the vertical velocity u2, computed on Th. Re = 680, 000.
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Figure 5.4.8: Colour plot of the static pressure p, computed on Th. Re = 680, 000.

The computed solutions approximate the turbulent �ow well, capturing the long thin

boundary layer. In particular, the absolute pitchwise �ow angle at the midspan of the

blades, measured in the centre of the �ow passage, 0.008m behind the �rst stator, is

observed to be 19.4◦ [100]. Sampling the data in Figures 5.4.6 and 5.4.7, the numerical

simulation approximates this value to be 19.86◦. This approximation is reasonably close

to the experimental value, especially as in the literature [100], the value of the �ow angle

is often overestimated by steady state numerical models. In Chapter 6, we see if this

approximation can be improved by way of adaptive mesh re�nement.

To illustrate the e�ectiveness of choosing the penalty parameter using the technique de-

scribed as opposed to the traditional isotropic or anisotropic parameter, we consider �ows

through the stator cascade in Figures 5.4.9, 5.4.10 and 5.4.11, with target Reynolds num-

bers 9, 000, 36, 000 and 680, 000, respectively. The continuation algorithm allows the

Reynolds number to increase by 10% between successive nonlinear solves. As such, we

compute solutions for the continuation algorithm using the curvilinear parameter, then, 5

solves before the target Reynolds number is reached, we switch to the penalty parameter

that is being tested. If the initial estimate of the nonlinear solver is too similar to the nu-

merical solution at the new Reynolds Number, then the nonlinear solver will overcome the

instabilities associated with using the incorrect penalty parameter and converge regardless.
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By considering the 5 previous Reynolds numbers, we achieve a better representation of the

perfomance of the di�erent parameters on meshes with curved boundaries. Additionally,

for this testing, the stopping condition of the nonlinear solver is de�ned such that the

l2-norm of the nonlinear residual vector is reduced by 6 orders of magnitude.

Figure 5.4.9: Newton solver residual values for isotropic, anisotropic and curvilinear penalty
parameters, Re = 9, 000.
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Figure 5.4.10: Newton solver residual values for isotropic, anisotropic and curvilinear
penalty parameters, Re = 36, 000.

Figure 5.4.11: Newton solver residual values for isotropic, anisotropic and curvilinear
penalty parameters, Re = 680, 000.
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Figure 5.4.8 shows a similiar performance between the anisotropic and curvilinear penalty

parameters, with the isotropic parameter inhibiting the e�ciency of the nonlinear solver.

This is due to the overwhelmingly large proportion of anisotropic type elements in the

computational mesh, (Figure 5.4.3), compared to isotropic type elements. As such, the

isotropic parameter is unable to stabilise the DGFEM su�ciently. Further, when the

Reynolds number increases, the small proportion of curvilinear elements, combined with

the increased sti�ness of the mass matrix due to the higher Reynolds numbers, means

that a disparity emerges between the anisotropic and curvilinear parameters. Due to the

small proportion of curvilinear elements compared to anisotropic elements, the anisotropic

parameter performs reasonably well, stabilising the method enough to ensure solution con-

vergence. However, the curvilinear parameter provides better conditioning of the sti�ness

matrix, meaning that solutions require fewer nonlinear iterations. This is shown in Figures

5.4.10 and 5.4.11.

5.5 Concluding Remarks

In Chapter 5, we have demonstrated that it is possible to create a highly e�cient implemen-

tation of the Interior Penalty DGFEM method that is stable on meshes with curvilinear

elements. In particular, the proposed alterations to the de�nition of the penalty parameter

(5.3.4) stabilise the DGFEM for elements with general polynomial faces. Additionally, to

do so, we do not require the computation of any new quantities which are not already cal-

culated by the computer implementation of the DGFEM method. As such, we achieve a

far better representation of the domain geometry, avoiding the need to facet large numbers

of standard straight edged elements in areas of the mesh with high curvature boundaries.

To demonstrate the e�ectiveness of choosing the penalty parameter in this way, we con-

sidered as an industrial relevant test case, the �ow through the 1.5 Stage Aachen Turbine

stator cascade in Section 5.4.1. We showed that the continuation algorithm proposed

in Section 4.4.3, could be successfully applied to high Reynolds number turbulent �ows

through complex geometries. Figures 5.4.9, 5.4.10 and 5.4.11 demonstrate the bene�ts

of choosing the penalty parameter in this way for meshes with curved elements. As the

Reynolds number, and, consequently, the sti�ness of the problem increases, the method by

which the penalty parameter is chosen becomes more and more important. The stator mesh

in Figure 5.4.3, contains a relatively low percentage of isotropic and curvilinear elements,

compared to anisotropic elements. As such, the isotropic parameter failed to stabilise the

curved mesh su�ciently, once the Reynolds number reached Re ≈ 10, 000. For the target

Reynolds number Re = 680, 000, there was a clear bene�t to using the curvilinear param-

eter over the anisotropic one, reducing the number of iterations required by the nonlinear
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solver. The apparent success of the anisotropic parameter in Figures 5.4.10 and 5.4.11,

is due to the low percentage of curvilinear elements in Figure 5.4.3. However, if a larger

percentage of elements were of the curvilinear variety, we would expect to see a far greater

bene�t to choosing the curvilinear parameter, with the anisotropic parameter performing

much like the isotropic parameter does in Figures 5.4.9, 5.4.10 and 5.4.11.

Simulating high Reynolds number �ows for industrial problems typically requires a �ne

packing of mesh elements close to blade boundaries in order to accurately represent the

boundary layer. While, on the other hand, typically needing only a relatively coarse mesh

compared to the boundary layer region, to represent laminar �ow areas. An e�cient

method of generating these types of meshes is by using automated re�nement strategies.

However, the increased number of degrees of freedom comes with the trade o� of extended

computation time. Therefore, by combining the e�ciency of curvilinear elements, which

are better able to capture the underlying geometry of domain compared to straight edged

elements, with a suitable re�nement strategy, we seek to improve the overall e�ciency of

the DGFEM solver. This is the discussion of Chapter 6.
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Chapter 6

Adaptive Mesh Re�nement

In this chapter we present an adaptive mesh re�nement technique based upon a goal-

oriented, dual-weighted-residual (DWR) a posteriori error estimate. In particular, we

seek to approximate the error with respect to a speci�ed target functional, which in turn

may be used to drive a mesh re�nement algorithm through the minimisation of the this

error. The choice of functional should be relevant to the user's need and the structure

of the underlying PDEs. Examples include, point values, local averages, �ux integrals of

the solution, lift or drag coe�cients of an aerofoil, and so on. The idea was originally

introduced by Eriksson, Estep, Hansbo and Johnson [59], with subsequent contributions

from Becker and Rannacher [30, 31] and others. The method is derived via a duality

argument, comparable to those employed for the derivation of a priori error bounds for

FEMs.

In the present context, the aim of an adaptive mesh re�nement routine is to decrease the

error of the target functional; which, if chosen correctly, will lead to better approximations

of boundary layer �ows around aerofoils.

6.1 DWR a Posteriori Error Estimation

We begin by considering the discontinuous Galerkin discretisation of the turbulent incom-

pressible �ow equations (4.3.4). We rewrite (4.3.4) in a concise form notationally, that is,

�nd uh ∈ Vh,m, such that for all vh ∈ Vh,m, we have

N (uh,vh) = 0. (6.1.1)
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Further, we assume that the discretisation (6.1.1) is consistent. That is to say, that the

analytical solution u satis�es

N (u,v) = 0

∀v ∈ V. Here, V is a suitably chosen function space that includes the analytical solution u

to (4.3.1) and (4.3.2), and satis�es Vh,m ⊂ V. Further to this, consider a target functional

J : V → R. In particular, J (u) is the true value of the functional computed on the

analytical solution u. In order to derive an error representation formula for J (u), we

follow the procedure in [84]. Assuming that J (·) is di�erentiable, we introduce the mean

value linearisation J̄ (·, ·; ·) of J (·)

J̄ (u,uh;u− uh) = J (u)− J (uh) =

1ˆ

0

J ′ [θu + (1− θ)uh] (u− uh) dθ. (6.1.2)

Here J ′ [w] (·) denotes the Fréchet derivative of J (·) evaluated at some w ∈ V. We then

proceed as in [84], introducing the mean value linearisation of N (·, ·), given by

M (u,uh;u− uh,v) = N (u,v)−N (uh,v)

=

1ˆ

0

N ′u [θu + (1− θ)uh] (u− uh,v) dθ ∀v ∈ V.
(6.1.3)

Similarly to before, N ′u [w] (·,v) denotes the Fréchet derivative of u→ N (u,v), for v ∈ V

�xed, and for some w ∈ V. In practice, a suitable approximation to N ′u [w] (·, ·) may

need to be computed. For a more comprehensive review, we refer to [79, 80, 82], and

the references cited therein. In order to proceed in this formal setting, we assume that

the linearisation (6.1.3) is well-de�ned in this instance. As such, we introduce the dual

problem: �nd z ∈ V such that

M (u,uh;w, z) = J̄ (u,uh;w) ∀w ∈ V. (6.1.4)

Next, we assume that the solution to (6.1.4) is unique, noting that the validity of this

assumption depends on the de�nition ofM (u,uh; ·, ·) and the choice of target functional

[81]. Following [80], we have the subsequent error analysis, under the assumption that the

dual problem (6.1.4) is well-posed.

Theorem 6.1.1. Let u and uh denote the solutions of (4.0.1) and (4.3.4) respectively, and

suppose that the dual problem (6.1.4) is well-posed. Then the error representation formula

90



is

J (u)− J (uh) = −N (uh, z− zh) , (6.1.5)

for all zh ∈ Vh,m.

Proof. The proof here follows as in [80]. Choosing w = u − uh in (6.1.4), recalling the

linearisation performed in (6.1.2) and using the Galerkin orthogonality property [80], that

is to say, by consistency, N (u,vh)−N (uh,vh) = 0 for all vh ∈ Vh,m, we have

J (u)− J (uh) = J̄ (u,uh;u− uh) =M (u,uh;u− uh, z)

=M (u,uh;u− uh, z− zh) = −N (uh, z− zh) ,

for all zh ∈ Vh,m.

We now de�ne, for each κ ∈ Th, the local error estimator ηκ, which contains the face and

element residuals multiplied by the dual solution. Therefore, we have

J (u)− J (uh) = −N (uh, z− zh) ≡
∑
κ∈Th

ηκ. (6.1.6)

where

ηκ =

ˆ
κ
R (uh) · φh dx +

ˆ
∂κ\Γ

(
FC (uh) · nκ −H

(
u+
h ,u

−
h ,nκ

))
· φ+

h ds

+

ˆ
∂κ∩Γ

(
FC (uh) · nκ −H

(
u+
h ,uΓ

(
u+
h

)
,nκ
))
· φ+

h ds

+
1

2

ˆ
∂κ\Γ

((
GT

Γ

(
u+
h

)
∇hφ+

h

)
: [uh]−

[
FV (uh,∇uh)

]
· φ+

h

)
ds

−
ˆ
∂κ\Γ

σ [uh] : φ+
h ⊗ nκ ds−

ˆ
∂κ∩(Γ\ΓN)

σ
(
u+
h − uΓ

(
u+
h

))
· φ+

h ds

−
ˆ
∂κ∩ΓN

(
FV
(
u+
h∇u

+
h

)
· nκ − gN

)
· φ+

h ds

+

ˆ
∂κ∩(Γ\ΓN)

(
GT

Γ

(
u+
h

)
∇hφ+

h

)
:
(
u+
h − uΓ

(
u+
h

))
⊗ nκ ds.

(6.1.7)

where φh = z − zh, ∀zh ∈ Vh,m. R (uh) | κ = −∇FC (uh) + ∇ · FV (uh,∇uh), κ ∈ Th,
denotes the elementwise residual.

A straightforward method of constructing meshes that are speci�cally designed for the

e�cient control of the error in the computed target functional J (·), is to apply the triangle
inequality to the result of Theorem 6.1.1. This allows us to deduce the so-called weighted

error estimator.
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Theorem 6.1.2. Let u and uh denote the solutions of (4.0.1) and (4.3.4) respectively, and

suppose that the dual problem (6.1.4) is well-posed. Then, the following error bound holds

|J (u)− J (uh)| ≤
∑
κ∈Th

|ηκ| , (6.1.8)

for all zh ∈ Vh,m, and for ηκ de�ned in (6.1.6) and (6.1.7).

We remark that the error representation formula (6.1.5) and the error bound (6.1.8) depend

on the unknown analytical solutions u and z, to the primal and dual problems, respectively.

Therefore, the next section will be concerned with deriving suitable approximations to these

quantities.

6.2 Approximating the Dual Solution

This section is dedicated to the discussion of the various methods by which we can make

these approximations. We proceed as [80], de�ning ẑ ∈ V to be the solution of the

linearised dual problem. We note that the linearisations that lead to M (u,uh; ·, ·) and

J̄ (u,uh; ·) are performed about uh, and result in N ′ [uh] (·, ·) and J ′ [uh] (·), respectively.
Therefore, the linearised dual problem is de�ned as: �nd ẑ ∈ V such that

N ′ [uh] (w, ẑ) = J ′ [uh] (w) ∀w ∈ V. (6.2.1)

We then construct a discretisation using discontinuous Galerkin �nite elements, approxi-

mating the dual problem as: �nd ẑh ∈ V̂h such that

N ′ [uh] (wh, ẑh) = J ′ [uh] (wh) ∀wh ∈ V̂h. (6.2.2)

We remark that there are several approaches to producing numerical approximations to the

solution of the dual problem ẑh. It is important to note here that, ẑh cannot be computed

on the same �nite element space as was employed for the primal problem, due to the de�-

nition of uh. Since any resulting error representation formula will be the same, producing

an error estimate that is zero. In particular, N (uh, ẑh) = 0 in this case. Therefore, we

now discuss the three main approaches [87] to approximating ẑh. The �rst method is to

�x the polynomial degree m such that it is constant in both the calculation of uh and

ẑh, but evaluate ẑh on a sequence of dual �nite element meshes, which, in general, di�er

from the one used to calculate the primal solution. The second technique is to compute ẑh

92



using piecewise polynomials of higher degree m̂ > m than those used in the numerical ap-

proximation of the primal solution uh. Here, the underlying mesh Th is the same for both

calculations. Finally, a variant of the second method exists, in which the approximate dual

solution is calculated on the same underlying mesh Th, with the same polynomial degree

m; however, patchwise recovery techniques are employed to improve the accuracy of ẑh
[21, 22, 31].

In this work we focus on the second technique, because it generally leads to highly e�cient

error estimation without excessive computational overhead [87]. In particular, if the mesh

re�nement parameters are chosen such that the number of degrees of freedom employed

in the dual �nite element space is approximately the same as the number of degrees of

freedom in the new primal �nite element space after adaptive mesh re�nement has taken

place, then the computational cost of calculating the dual solution is nearly equivalent to

the cost of a single Newton step in the computation of uh on the newly generated adaptive

mesh. Speci�cally, the calculation of the dual solution is a linear problem. Let

V̂h =
{
v ∈

[
L2 (Ω)

]d+2
: v |κ∈ [Qm̂ (κ)]d+2 ∀κ ∈ Th

}
,

Q̂h =
{
q ∈ L2 (Ω) : q |κ∈ Qm̂−1 (κ) ∀κ ∈ Th

}
,

with m̂ > m. We recall that we seek solutions for the d velocity variables, as well as

the two turbulent variables, k and ω̃. A question to ask is whether the error introduced

by the linearisation about the discrete solution uh, and the approximation ẑh of the dual

solution z, severely a�ects the e�ciency of the DWR method. As such, we proceed as in

[80], introducing three terms

J (u)− J (uh) = −N (uh, z− zh)

= −N (uh, z− ẑ)−N (uh, ẑ− ẑh)−N (uh, ẑh − zh) ,
(6.2.3)

noting that the above are indeed strict equalities. The �rst term, −N (uh, z− ẑ), rep-

resents the error incurred through the linearisation of the dual problem, and is expected

to be small in cases where the analytical solution u is smooth [83]. The second term,

−N (uh, ẑ− ẑh), represents the error due to the numerical approximation of the linearised

dual solution. This error term is of a higher-order than the approximate error repre-

sentation if the dual solution is su�ciently regular and is approximated by higher order

polynomials than those used in the primal problem. The �nal term is the approximate

error representation formula that is actually computed in practice. We remark, that since

we are considering incompressible �ows, the analytical solution u is expected to be formally

smooth everywhere (although in practice one may witness steep gradients). However, when

considering compressible �ows, in particular those containing shocks, where the analytical
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solution u is not smooth, the dual solution often is, allowing the error to be controlled

remarkably well [80].

Thus, replacing the dual solution z in (6.1.5) with our approximation ẑh, we have the

following approximate error representation formula

J (u)− J (uh) ≈ −N (uh, ẑh − zh) ≡
∑
κ∈Th

η̂κ. (6.2.4)

This in turn leads to an analogous formula for the approximate error bound:

|J (u)− J (uh)| .
∑
κ∈Th

|η̂κ| . (6.2.5)

Finally, we de�ne the absolute error with respect to the target functional as |J (u)− J (uh)|,
and the relative error as |J(u)−J(uh)|

|J(u)| .

6.3 The Adaptive Re�nement Strategy

We now discuss the development of an adaptive re�nement and coarsening algorithm that

is able to e�ciently control the error of a target functional J (·). As such, we employ

the approximate error bound de�ned in (6.2.5), to determine (approximately) whether the

desired degree of accuracy has been reached. In particular, we introduce a tolerance TOL,

with the aim of the computation being the reduction of the error, so that |J (u)− J (uh)| ≤
TOL. Therefore, we introduce the algorithm's stopping criterion of∑

κ∈Th

|η̂κ| ≤ TOL. (6.3.1)

If the stopping criterion (6.3.1) is not met for a particular �nite element mesh Th, then the

element-wise error indicators η̂κ are used to drive mesh re�nement and coarsening.

The complete algorithm follows the cycle described below:

1. Construct the initial mesh Th.

2. Compute the solution uh ∈ Vh,m on the current mesh.

3. Compute the approximation ẑh ∈ V̂h on the current mesh, where V̂h,m̂ is a �nite ele-

ment space de�ned analogous to Vh,m, except consisting of piecewise (discontinuous)

polynomials of degree m̂ > m.
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4. Evaluate the error bound
∑

κ∈Th |η̂κ|.

5. If
∑

κ∈Th |η̂κ| ≤ TOL then stop. Else, re�ne and coarsen a �xed fraction of the total

number of elements of the current mesh according to the elementwise error indicators

|η̂κ|, hence constructing a new mesh. Go to 2.

The algorithm, therefore, requires three user de�ned parameters: TOL, the percentage of

elements to be re�ned, U%, and the percentage of elements to be coarsened, L%. This

known commonly as �xed fraction re�nement, and we limit the number of hanging nodes

per element face to one. Other strategies could be employed in place of this, such as

re�ning the elements which contribute to a user-de�ned percentage of the total error.

6.4 Isotropic h-Re�nement

Various isotropic subdivisions of elements are by far the most widely used mesh modi-

�cations. They involve the subdivision of a mesh element κ into smaller, similar sized,

elements aiming to retain shape regularity. The popularity of this strategy is due to its

ease of use, since the maximum angle condition for the standard FEM is never violated,

and, in the case of triangles, the removal of hanging nodes is also possible by splitting the

neighbouring element. We refer to Figures 6.4.1, 6.4.2 and 6.4.3 for illustration.

Figure 6.4.1: Isotropic re�nement of a quadrilateral element.

Figure 6.4.2: Isotropic re�nement of a triangular element.
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Figure 6.4.3: Removal of a hanging node in a triangular mesh.

We now introduce some mesh smoothing techniques. These are applied after the creation

of each new �nite element mesh, and serve the purpose of producing a more monotonic

error convergence, especially in the functional estimation setting. The �rst is the removal

of re�ned islands in the mesh, and the second is the re�nement of unre�ned islands. These

techniques are detailed below in Figures 6.4.4 and 6.4.5, respectively.

Figure 6.4.4: Removal of a re�nement island.

Figure 6.4.5: Re�nement of an unre�ned island.

However, it should be noted that even though we are considering an isotropic approach to

h-re�nement, we do not limit our re�nement to only isotropic type elements. In particular,

the majority of elements in Figure 5.4.3 are quite anisotropic, yet are still considered for

re�nement in the isotropic approach proposed above. We make the following distinction,

with isotropic re�nement splitting an element into similar shaped sub-elements of equal
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size. Whereas, anisotropic re�nement is the division of an element with the aim of creating

anisotropic sub-elements, i.e. Figure 6.4.6 and 6.4.7.

Figure 6.4.6: Anisotropic re�nement of a quadrilateral element. (Type 1).

Figure 6.4.7: Anisotropic re�nement of a quadrilateral element. (Type 2).

This of particular importance with respect to the polytopic meshes seen in Chapter 7, as

the choice of penalty parameter (7.3.2) also allows for anisotropic elements. The re�nement

of polytopic elements is carried out by calculating the element centroid, then the element

is split along the coordinate axes. In the case where the polygonal mesh is constructed

via mesh agglomeration, the point chosen is a node close to the centroid in the underlying

mesh. This is shown in Figure 6.4.7.

Figure 6.4.8: Re�nement of general polygonal elements.
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6.5 Target Functionals

In general, the choice of target functional is dependent upon the physical properties of the

underlying system or the particular concerns of the user. For instance, if we are considering

a domain containing an aircraft wing, we may be interested in the lift coe�cients, or indeed

the drag at a certain point on the wing surface. When considering turbulent incompressible

�ows, we are conscious of the rapid change in pressure and ω close to boundary walls. As

such, a target functional could be chosen such that the adaptive algorithm prioritises mesh

re�nement close to boundary walls. For this study, we consider the pro�le drag as a

target functional. We refer to [114] and the references cited therein for a discussion of the

suitability of various in-�ight pro�le-drag measurements. In particular, the de�cit in total

pressure is related to the pro�le drag coe�cient cd by the following expression

cd =
1

cq0

ˆ
wake

(pt0 − pt) ds, (6.5.1)

where c is the aerofoil chord length, q0 is the initial dynamic pressure, pt0 is the total

pressure up stream of the aerofoil and pt is the total pressure measured down stream of

the aerofoil. The wake integral refers to an integral calculated on a cross section of the

domain behind the aerofoil, and is only valid when the wake pressure de�cit is measured

su�ciently far from the trailing edge. The laws of continuity in the free-stream �ow mean

that measurements of static and total pressures may be taken anywhere in the free-stream.

As such, in the following numerical experiments, we use the domain inlet conditions to

measure the initial pressures pt0 , and calculate the wake pressure de�cit pt on the domain

outlet.

6.6 Numerical Experiments

In this section, we conduct numerical experiments to analyse the e�ectiveness of the choice

of target functional J (u), as well as the e�ectiveness of employing a DWR approach

for solution re�nement. All numerical calculations are carried out using AptoFEM, in

conjunction with both MUMPS and ParMETIS. These experiments also incorporate the

proposed penalty parameter detailed in Chapter 5, enabling us to better handle the curved

boundaries of the various domains.
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6.6.1 NACA 0012 Aerofoil

The NACA aerofoils are a series of aircraft wings developed by the National Advisory

Committee of Aeronautics. The numerical classi�cation of each wing describes the param-

eters of the equation used to generate the aerofoil shape. The 0012 denotes a symmetric

wing with a maximum thickness of 12% of the chord length. Whilst having very limited

real world uses, this aerofoil is a common test case for �uid simulations, and, as such, is of

interest to us. The formula describing the shape of a general NACA 00′t′ aerofoil is given

by

yt = 5t
(
0.2969

√
x− 0.1260x− 0.3516x2 + 0.2843x3 − 0.1015x4

)
, (6.6.1)

x denotes the position along the aerofoil between 0 and 1, whilst yt is the distance of the

wing surface from the central axis. We note here, that for the purposes of this numeri-

cal simulation we have made the usual correction to (6.6.1), switching the �nal term for

−0.1036x4 to account for the lack of a trailing edge design. This modi�cation results in the

smallest change to the overall shape of the aerofoil, whilst still achieving the desired result

of a zero thickness trailing edge. Consider an incompressible, turbulent, free-stream �ow

around a NACA 0012 aerofoil. Figure 6.6.1 shows the usual schematic of the aerofoil, with

a chord length c = 1. We consider dimensionless quantities for this numerical experiment,

analysing the performance of the DGFEM solver in correctly representing the turbulent

boundary layer of the aerofoil.

Figure 6.6.1: Schematic of the NACA 0012 aerofoil. Chord length c = 1, angle-of-attack
α = 0◦.
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The simulation domain Ω ⊂ R2 is de�ned as the rectangle [−2.0 2.0] × [−2.0 4.0], with

the aerofoil located along the central axis between x = 0. The angle-of-attack α◦ (the

angle between the aerofoil chord and the horizontal x-axis) is adjusted by way of the inlet

conditions, changing the direction of the inlet �ow accordingly. An initial validation test

case is carried out using the data collected in [98], comparing the time-averaged velocity

measurements of the boundary layer on the suction side of the aerofoil for di�ering angles-

of-attack, α = 3◦ and α = 6◦. The Reynolds number for the simulation, based on the

aerofoil chord length, is Re = 23, 000. Following [98], the velocity is measured at pre-

de�ned points along the aerofoil, shown as �lled circles in Figure 6.6.2, then normalised

using the free stream velocity to produce the mean velocity.

Figure 6.6.2: Schematic of the NACA 0012 aerofoil, showing measurement points with
�lled circles.

For this validation test case, we consider a triangulation T initial
h consisting of 11, 000 quadri-

lateral elements shown in Figure 6.6.3. We de�ne the inlet boundary located at x = −2.0,

to be a turbulent free stream with average velocity u∞ = 13.909. The direction of the

inlet velocity is adjusted to represent the di�ering angles of attack. The aerofoil is faceted

with curved elements as detailed in Chapter 5, with a no-slip boundary condition. Peri-

odic boundaries are used for the domain out�ows at y = −2.0 and y = 2.0, and the main

out�ow at x = 4.0, uses the stress-free Neumann condition.
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Figure 6.6.3: Two-dimensional mesh of the NACA 0012 aerofoil T initial
h , consisting of 11, 000

quadrilateral elements.

In order to achieve the target Reynolds number Re = 23, 000, the continuation algorithm

outlined in in Section 4.4.3 is used, along with the curvilinear penalty parameter (5.3.4). We

consider the performance of the DGFEM method on the initial mesh, before applying the

DWR re�nement approach, with the aim of improving the accuracy of the boundary layer

representation. We note that the initial mesh T initial
h , has a rather coarse mesh resolution in

the direction perpendicular to the wall, as shown in Figure 6.6.3. This signi�cantly reduces

the number of solution data points within the boundary layer measurement, prompting the

need for solution re�nement.

Figure 6.6.4: Near-wall close-up of NACA 0012 aerofoil mesh T initial
h .
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Figures 6.6.5 and 6.6.6 show the boundary layer mean velocities at di�erent distances S
c ,

from the aerofoil's leading edge. In particular, S
c is the normalised distance along the

aerofoil surface from the leading edge to the boundary layer measurement stations, while
h
c is the normalised perpendicular distance of the measurement station from the aerofoil

surface. Figure 6.6.5 has an angle-of-attack α = 3◦, while Figure 6.6.6 has an angle-of-

attack α = 6◦.

Figure 6.6.5: Mean boundary layer velocities calculated on the mesh, T initial
h . Angle-of-

attack α = 3◦. The DGFEM solution is shown with a solid red line, and the experimental
data points [98] are represented with blue circles.

Figure 6.6.6: Mean boundary layer velocities calculated on the mesh, T initial
h . Angle-of-

attack α = 6◦. The DGFEM solution is shown with a solid red line, and the experimental
data points [98] are represented with blue circles.

As expected, in both Figures 6.6.5 and 6.6.6, the lack of mesh resolution severely a�ects

the accuracy of the DGFEM solution close to the aerofoil. The polynomial representation

of the DGFEM solution, quadratic polynomials in the case of the velocities, allows for a

reasonable approximation of the near-wall behaviour. However, the relatively large distance
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between the �rst mesh node and the aerofoil surface, clearly a�ects the accuracy of the

approximation close to the leading edge, with the DGFEM solution under approximating

the near-wall velocities for both angles-of-attack. Speci�cally, the DGFEM solver creates

a quadratic representation of the solution, joining the zero velocity at the aerofoil surface

with a positive velocity at the �rst mesh node. However, it appears that the velocity pro�le

between the two nodes is too complex to be represented by a single quadratic, and, as such,

we consider mesh re�nement to improve the accuracy of the DGFEM solution.

We apply 5 passes of the DWR re�nement algorithm, re�ning the 20% of elements with

the largest approximate absolute error value according to (6.5.1), whilst coarsening the

10% of elements with the lowest approximate absolute error value. The value of (6.5.1) is

calculated on the domain outlet for ease of implementation, although in reality, any point

su�ciently far downstream from the aerofoil would be suitable. Figures 6.6.7 and 6.6.8

show the re�ned meshes for α = 3◦ and α = 6◦, respectively.

Figure 6.6.7: Two-dimensional re�ned mesh T re�ned,3
h after 5 h-re�nement passes. Angle-

of-attack α = 3◦.

Figure 6.6.8: Two-dimensional re�ned mesh T re�ned,6
h after 5 h-re�nement passes. Angle-

of-attack α = 6◦.

The re�ned mean velocity pro�les shown in Figures 6.6.9 and 6.6.10, are extracted from

the solutions calculated on the re�ned meshes shown in Figures 6.6.7 and 6.6.8.

103



Figure 6.6.9: Mean boundary layer velocities calculated on the mesh, T re�ned,3
h , following 5

h-re�nement passes. Angle-of-attack α = 3◦. The DGFEM solution is shown with a solid
red line, and the experimental data points [98] are represented with blue circles.

Figure 6.6.10: Mean boundary layer velocities calculated on the mesh, T re�ned,6
h , following

5 h-re�nement passes. Angle-of-attack α = 6◦. The DGFEM solution is shown with a
solid red line, and the experimental data points [98] are represented with blue circles.

Figures 6.6.9 and 6.6.10 show a signi�cant improvement in the accuracy of the mean

velocity pro�les across the boundary layer. This is due to the increased number of mesh

nodes within the boundary layer region, as shown in Figures 6.6.7 and 6.6.8, compared

to the initial mesh T initial
h shown in Figure 6.6.4. Close to the aerofoil leading edge, the

representation of the velocity pro�le is markedly more accurate, capturing the `cubic-

like' curve that develops in the pro�le as we move towards the trailing edge of the wing.

However, even after re�nement, the DGFEM is still under representing the boundary

layer, over-estimating the velocity of the �ow close to the aerofoil leading edge. This issue

is apparent at both angles-of-attack, see Figures 6.6.9 and 6.6.10, suggesting that the issue

is associated with the choice of turbulence model or numerical �ux. Also, the proposed

DGFEM uses a RANS implementation, which may smooth the velocity transition from
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boundary layer to free stream conditions, contributing to the reduced size of the boundary

layer in the numerical simulation.

A clear advantage of the DGFEM is the ability to use the same symmetric initial mesh

T initial
h , for simulations with di�erent boundary conditions/angles-of-attack. The �exibility

of the DWR approach, along with the proposed re�nement algorithm, allows us to create

automatically customised meshes that increase the accuracy of the DGFEM solution, with-

out resorting to the use of mesh creation programs. This feature is particularly important

from an industrially perspective, allowing multiple simulations of blades and aerofoils at

di�erent angles-of-attack to be carried out, without additional input from engineers, further

automating the blade design process.

We now wish to explore the performance of the DWR algorithm with respect to the target

functional (6.5.1). As such, we consider a neutral angle-of-attack α = 0◦, a turbulent

free stream inlet with an average velocity u∞ = 13.909, and an improved continuation

algorithm.

In this numerical experiment, we incorporate the continuation algorithm proposed in Chap-

ter 4, with the re�nement algorithm in Section 6.3. We balance the increase in Reynolds

number with the reduction in absolute error according to the target functional (6.5.1). To

do this, we calculate the low Reynolds number laminar solution to begin the continuation

process, as detailed in Section 4.4.3. However, once the Reynolds number has increased to

Re = 1, 200, we apply an isotropic h-re�nement of the mesh, re�ning 20% of the elements

with the highest approximate absolute error value according to (6.5.1), whilst coarsening

the 10% of elements with the lowest approximate absolute error value. Once again, the

value of (6.5.1) is calculated on the domain outlet for ease of implementation. The con-

tinuation algorithm continues, increasing the Reynolds number by 10% between successive

solves, until the target Reynolds number Re = 23, 000 is reached, with two further mesh

re�nement passes being made at Re = 10, 000 and Re = 20, 000. Following the �ndings

of these numerical experiments, a fully detailed explanation of the DWR continuation

algorithm can be found in Section 6.7, as well as, in its �nal form, in Section 8.1.

We begin with the initial mesh T initial
h shown in Figures 6.6.1, 6.6.3 and 6.6.4, consisting of

11, 000 quadrilateral elements. Via the above, proposed continuation method, we produce

the �nal continuation mesh T re�ned,0
h , consisting of 23, 500 elements shown in Figure 6.6.11.
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Figure 6.6.11: Final continuation mesh T re�ned,0
h , consisting of 23, 500 elements.

As mentioned above, the Reynolds number is increased by 10% between successive non-

linear solves. However, if the DGFEM fails to converge for a particular Reynolds number,

the percentage by which we increase the value is halved until the DGFEM converges;

after which, the value is set back to 10% for the next solve. Incorporating mesh re�ne-

ment/coarsening into the continuation process, we achieved a Reynolds number of 23, 000

in 40 nonlinear solves, compared to the 81 solves required when using continuation alone,

as in Section 4.4.3. The �nal continuation mesh T re�ned,0
h does have some unexpected re-

�nement around the domain out�ow boundary. This is due to the position we chose to

sample the target functional and not representative of any underlying �ow features.

As we are considering an angle-of-attack α = 0◦, we present solutions of the scaled axial ve-

locity u1 in Figure 6.6.12, and the scaled static pressure p in Figure 6.6.13. These solutions

provide the most useful information, with the axial velocity in Figure 6.6.12 showing the

turbulent boundary layer along the aerofoil trailing edge. Figure 6.6.13 demonstrates one

of the major challenges of the DGFEM in this numerical test case: resolving the pressure

at the tip of the aerofoil leading edge.
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Figure 6.6.12: Colour plot of the scaled axial velocity u1
u∞

on the �nal continuation mesh

T re�ned,0
h . Re = 23, 000.

Figure 6.6.13: Colour plot of scaled static pressure p
p∞

on the �nal continuation mesh

T re�ned,0
h . Re = 23, 000.
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Figure 6.6.13 shows, as expected, a large spike in the pressure at the leading edge of

the aerofoil. The numerical solution is su�ciently accurate for engineering applications,

with comparable mesh density to the results shown in Figure 6.6.9 and 6.6.10. However,

the sudden increase in pressure at the wing tip, suggests that further mesh re�nement

would improve the solution resolution close to the aerofoil. Therefore, we re�ne the �nal

result reducing the error further for the target Reynolds number of 23, 000. For industrial

applications we would repeat this process until a user-speci�ed tolerance is met. However,

in this purely academic setting, we wish to analyse the e�ectiveness of (6.5.1) as a target

functional. As before, after each successful solve we coarsen the 10% of elements with the

smallest approximate absolute error value, and re�ne isotropically the 20% of elements

with the largest approximate absolute error value.

We note that it is possible in this test case to consider the value of the relative error with

respect to the target functional, but this value is not readily available and �rst requires

evaluating a solution to the problem on a very �ne mesh. In general, for large-scale

industrial problems, the number of degrees of freedom is often very large, and as such, it

is not always possible to consider a �ner mesh due to restrictions placed on the number of

computational resources. However, in this academic setting we are able to �rst compute a

solution to the problem on a �ne uniform mesh consisting of 176, 000 quadrilateral elements,

and then calculate an approximation J (uh,�ne) to the target functional J (u). We compute

J (uh,�ne) = 1553.564681 with a Reynolds number of 23, 000. This value is representative

of the order of magnitude of J (u), and serves to validate the re�nement technique we have

proposed by approximating the relative error. Additionally, we consider the total error

with respect to the target functional, |J (u)− J (uh)| ≈
∣∣∣∑κ∈Th η̂κ

∣∣∣, as well as the error

bound,
∑

κ∈Th |η̂κ|.

Number of Degrees of Freedom
∑

κ∈Th |η̂κ|
∑
κ∈Th

|η̂κ|

|J(uh,�ne)|

∣∣∣∑κ∈Th η̂κ

∣∣∣
958, 220 2.516973 1.620128× 10−3 7.764768× 10−2

1, 385, 140 0.554820 3.571271× 10−4 4.393811× 10−3

1, 795, 780 0.218668 1.407524× 10−4 1.529754× 10−3

2, 338, 800 0.195745 1.240663× 10−4 9.151673× 10−4

Table 6.1: The approximate absolute and relative error values with respect to the target
functional (6.5.1).

In the literature, DWR a posteriori error estimation has been studied for compressible �ows

[80, 83, 84], as well as for laminar incompressible �ows [36, 46] with high levels of success.

As such, having applied these ideas to turbulent incompressible �ows, we expect similar
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error convergence rates. In general, as the number of degrees of freedom is increased, we

observe a reduction in the error of the target functional, as shown in Table 6.1. The mesh

density in Figures 6.6.14 and 6.6.15, demonstrates the e�ciency of the proposed approach

to solution re�nement, with targeted re�nement along the blade edges. This is re�ected in

the numerical solutions of Figures 6.6.16, 6.6.17, 6.6.18 and 6.6.19, with changes to solution

values occurring close to the aerofoil boundary. In particular, the value of ω̃ requires a far

greater mesh density in order to be accurately represented, due to the rate at which the

solution value increases as it approaches the aerofoil boundary. We also note the behaviour

of the static pressure solution in Figure 6.6.19, requiring additional packing of elements

around the aerofoil leading edge to accommodate the spike in pressure, see Figure 6.6.15.

Figure 6.6.14: Final re�nement mesh T �nal
h , 2, 338, 800 degrees of freedom.
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Figure 6.6.15: Close-up of the blade leading edge of T �nal
h .

We present the re�ned solutions computed on the mesh T �nal
h shown in Figures 6.6.14

and 6.6.15 for a Reynolds number of 23, 000. Figure 6.6.16, 6.6.17, 6.6.18 and 6.6.19 are

colour plots of the scaled axial velocity u1
u∞

, the turbulent kinetic energy k, the logarithm

of the dissipation per unit turbulence kinetic energy ω̃, and the scaled static pressure p
p∞

,

respectively.

110



Figure 6.6.16: Colour plot of the scaled axial velocity u1
u∞

, computed on T �nal
h . Re =

23, 000.

Figure 6.6.17: Colour plot of the non-dimensional turbulent kinetic energy k, computed
on T �nal

h . Re = 23, 000.
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Figure 6.6.18: Colour plot of the non-dimensional logarithm of the dissipation per unit
turbulence kinetic energy ω̃, computed on T �nal

h . Re = 23, 000.

Figure 6.6.19: Colour plot of the scaled static pressure p
p∞

, computed on T �nal
h . Re =

23, 000.
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Observation of the numerical results in Figures 6.6.16, 6.6.17, 6.6.18 and 6.6.19, compared

to the mesh density of T �nal
h in Figure 6.6.15, show good agreement between rapid changes

in solution values and increased mesh density. In particular, the tip of the aerofoil leading

edge is heavily targeted by the re�nement algorithm to account for the spike in static

pressure p. A comparison of these results is shown in Figure 6.6.20. Upstream from this

mesh area, another patch of re�nement accounts for the high turbulent kinetic energy k

ahead of the aerofoil tip. However, due to restrictions placed on computational resources,

we were unable to allow further re�nement of the mesh around the blade edge to better

represent the solution of ω̃.

Additionally, Figure 6.6.20 demonstrates the improvement in solution accuracy through

utilising the proposed automatic re�nement technique; see Section 6.3. The area of the

domain around the blade tip is notorious for large and very rapid changes in pressure,

making capturing an accurate solution here very di�cult. With regards to compressible

�ows, this is also the area where shocks are likely to develop, presenting further challenges

to any proposed techniques.

Figure 6.6.20: Colour plot of the scaled static pressure p
p∞

, Re = 23, 000. Left - 958, 219
degrees of freedom. Right - 2, 338, 800 degrees of freedom.

To complete the analysis, we consider laminar �ows to validate the e�ectiveness of (6.5.1) as

a target functional. By removing the turbulent variables, in particular ω̃, we require fewer

mesh elements perpendicular to the aerofoil edge to accurately represent the numerical

solution, since the velocity and pressure solutions change more gradually as they approach

the boundary.

In this numerical experiment, the inlet conditions are replaced with a laminar free stream

�ow, with mean velocity u∞ = 13.909 in the axial direction. The angle-of-attack re�ects
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the previous experiment with α = 0◦. The continuation algorithm proposed in Section

4.4.3 is used, except that we do not calculate a turbulent solution, and instead evolve

the initial laminar solution until the target Reynolds number Re = 23, 000 is reached.

The setup of the numerical experiment mirrors the previous, with the schematic shown in

Figure 6.6.1, and the initial mesh T initial
h shown in Figures 6.6.3 and 6.6.4.

The continuation solution is then re�ned according to the algorithm in Section 6.6.3,

coarsen the 10% of elements with the smallest approximate absolute error value, and re�ne

isotropically the 20% of elements with the largest approximate absolute error value. The

approximate absolute error value, for each new mesh that the solution is calculated on, is

displayed in Table 6.2 and plotted in Figure 6.6.21.

Degrees of Freedom
∑

κ∈Th |η̂κ|
704, 310 0.260202

918, 690 0.111816

1, 191, 930 0.077346

1, 558, 050 0.059951

2, 031, 000 0.048782

Table 6.2: Table showing the error bound with respect to the target functional (6.5.1) for
a laminar �ow with Re = 23, 000.

Figure 6.6.21: Convergence of the adaptive re�nement algorithm, in particular, the ap-
proximate absolute error in the functional of interest.
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Table 6.2 shows a decrease in the approximate absolute error value as the number of degrees

of freedom increases. This is expected, since the near-wall velocity and pressure solutions

vary far less as they approach the aerofoil edges compared to the turbulent variable ω̃

shown in Figure 6.6.18. Fewer mesh elements perpendicular to the boundary are required

to accurately represent the velocity and pressure solutions compared to the number required

for the ω̃ solution. As such, we see a continued reduction in error values of the laminar

solution (Table 6.2), as there is su�cient mesh density to represent the numerical solution

of all the computed variables (u1, u2 and p). Whereas, in the case of the turbulent �ow, a

far greater mesh density is required to represent the ω̃ solution accurately, resulting in the

larger error values shown in Table 6.1. The performance of the re�nement algorithm in

Table 6.2 suggests that it is behaving as expected, increasing the accuracy of the numerical

solution as the number of degrees of freedom is increased.

We now consider the performance of the re�nement algorithm on an industrially relevant

numerical example.

6.6.2 Turbine Stator Cascade

In this numerical test case, we seek to improve the accuracy of the DGFEM on the 1.5

Stage Aachen Turbine test case [135, 138, 65], presented initially in Section 5.4.1.

Consider the numerical test case previously presented in Section 5.4.1. We proceed in a

similar fashion as in Section 5.4.1, de�ning the geometry of the two-dimensional stator

blade passage of the 1.5 Stage Aachen Turbine. See Figure 6.6.22. In particular, we

consider the mid-height �ow between the initial stator blades, with a pitch ss = 0.0476m.

The initial stator section is designed to receive an inlet �ow parallel to the horizontal axis,

such that the �ow is axial. The design Reynolds number, based on the chord length and

exit velocity is Re = 6.8× 105.

Figure 6.6.22: Aachen turbine stator cascade geometry [138]. All lengths are stated in
metres.
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The mesh for this test case consists of an inlet channel of length lin = 0.143m, and an

outlet channel of length lout = 0.18575m. The outlet length is chosen such that the �ow

may fully develop before passing through the domain out�ow boundary. The blade passage

is speci�ed using a cloud of point data [137], detailing the dimensions of the pressure and

suction side of the blade. These data points are then used as nodes to create piecewise-cubic

splines to approximate the curvature of the physical stator blade.

We partition the domain Ω ⊂ R2 into a coarse mesh T initial
h consisting of 13, 250 quadri-

lateral elements, see Figure 6.6.23. Again, periodic boundary conditions are used for the

straight horizontal boundaries, whilst the blade edges are de�ned using a no-slip condition.

A stress-free condition is applied to the domain outlet and a free-stream turbulent �ow

condition is used on the inlet located at x = −0.143m.

Figure 6.6.23: Initial mesh T initial
h consisting of 13, 250 quadrilateral elements.

As proposed in Section 6.6.1, we employ a continuation strategy increasing the Reynolds

number of the �ow by 10% after each successive solve, along with a mesh re�nement/coarsening

strategy after every 10 successive solves. We coarsen the 5% of elements with the smallest

approximate absolute error values according to (6.5.1), and re�ne isotropically the 10%

of elements with the largest error values. We remark that the reduced re�nement values

compared to Section 6.6.1 is due to the number of elements positioned between the stator

blades compared to the rest of mesh. The reduced values ensure that any re�nement is

targeted in the correct areas of the mesh, preventing over re�ning of the solution. The

target functional is then computed on the domain outlet located at x = 0.22998m. The

numerical solution at each continuation step is calculated using a Newton based iterative

solver, where the stopping condition is de�ned such that the l2-norm of the nonlinear

residual vector is reduced by 8 orders of magnitude.

The �nal mesh T re�ned
h consists of 34, 788 quadrilateral elements and is shown in Figure

6.6.24, alongside a comparison to the initial mesh T initial
h .
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Figure 6.6.24: Comparison of initial mesh T initial
h consisting of 13, 250 quadrilateral ele-

ments (top), and the �nal re�ned mesh T re�ned
h with 34, 788 quadrilateral elements (bot-

tom).

Due to the manner in which the blade pro�le has been de�ned using cubic spline approxi-

mations, we needed to place a discontinuity close to the blade trailing edge on the pressure

side. This is located at at the point x = 0.04398m and y = −0.00042m. As such, the

mesh re�nement algorithm has identi�ed this as a source of numerical error, resulting in a

dense packing of elements close to it. However, the algorithm also re�ned, as expected, the

blade edges where the boundary layer forms, as well as, behind the stator trailing edge,

where we expect to see vortices forming in the physical experiment. We present colour

plots of the numerical solution in Figures 6.6.25, 6.6.26 and 6.6.27, of the axial velocity

u1, the vertical velocity u2 and the static pressure p, respectively.
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Figure 6.6.25: Colour plot of the axial velocity in the region of interest of T re�ned
h . Re =

6.8× 105.

Figure 6.6.26: Colour plot of the vertical velocity in the region of interest of T re�ned
h .

Re = 6.8× 105.
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Figure 6.6.27: Colour plot of the static pressure in the region of interest of T re�ned
h . Re =

6.8× 105.

Additionally we compute the absolute pitchwise �ow angle at the midspan of the blades,

from the centre of the �ow passage, 0.008m behind the �rst stator, to be 19.55◦. Compared

to the numerical results presented in Section 5.4.1, we see an improvement in the numerical

approximation of the �ow direction, down from 19.86◦. This is still an over estimate of the

experimental value of 19.4◦[138], but we are limited in this test case to a two-dimensional

approximation of a three-dimensional �ow. As such, various three-dimensional �ow features

are not represented in the solutions in Figures 6.6.25, 6.6.26 and 6.6.27, contributing to

the numerical inaccuracy.

Further, we compute an approximation J (uh,�ne) = 224.218977 to the target functional

J (u) on a �ne uniform mesh consisting of 212, 000 quadrilateral elements. Approximations

to the absolute and relative error values are shown in Table 6.3.

Degrees of Freedom
∑

κ∈Th |η̂κ|
∑
κ∈Th

|η̂κ|

|J(uh,�ne)|
1, 590, 000 (Original mesh, Figure 5.4.3) 2.651334 1.182475× 10−2

1, 046, 310 (Final mesh T re�ned
h , Figure 6.6.24) 1.523670 6.795455× 10−3

Table 6.3: Comparison of the approximate absolute and relative error values compared to
the functional of interest.
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This numerical experiment demonstrates that we are able to achieve a greater degree of

numerical accuracy with fewer degrees of freedom compared to the results in Section 5.4.1,

through a targeted h-re�nement strategy. In particular, we allow signi�cant coarsening

of the mesh in the in�ow x < 0, and out�ow x > 0.05 sections, resulting in a denser

mesh around the blade edges and behind the trailing edge. This has the added bene�t of

requiring fewer degrees of freedom overall, compared to the original mesh in Figure 5.4.3.

Additionally, Table 6.3 shows a signi�cant reduction in numerical error using the DWR

re�nement method.

The use of standard elements limits the degree to which we are able to coarsen the mesh,

particularly at the domain inlet and outlet boundaries, as we are unable to coarsen beyond

the initial mesh density. Additionally, due to the mesh construction method, we require a

single mesh element face to connect two data points from the cloud of data representing

the blade geometry. As these points are packed relatively close together, the initial mesh

has a far denser packing of elements parallel to the blade edges than we require. Also, as

we do not know the exact equation describing the blade edges, we are unable to reduce

the mesh density during the construction of the initial mesh, as this would likely result in

misrepresentation of the blade geometry. Therefore, following the implementation of the

re�nement algorithm, we have a �nal mesh T re�ned
h which has large areas of over-re�nement.

To tackle this issue, we consider polygonal mesh elements in Chapter 7, which are able to

be coarsened beyond the initial mesh, by way of mesh agglomeration.

6.7 Concluding Remarks

The numerical experiments conducted in Section 6.6 suggest that the DWR approach to

solution re�nement is e�ective for turbulent incompressible �ows. In particular, the re�ne-

ment algorithm outlined in Section 6.3, is useful from an industrial perspective, allowing

engineers to calibrate the solver to produce solutions of a required degree of accuracy.

Additionally, the ability to switch the target functional to suit the problem, adds another

layer of �exibility to the DGFEM.

The �rst numerical experiment in Section 6.6 validated the numerical solver on the NACA

0012 aerofoil for various angles of attack, with the re�nement algorithm providing better

approximations to the boundary layer �ow, as shown in Figures 6.6.9 and 6.6.10. The

coupling of the re�nement algorithm with the continuation algorithm from Chapter 4

proved to be e�ective, reducing the number of nonlinear solves required by the numerical

solver. It seems that the ability of the DGFEM to capture �ow features as they develop with

the increasing Reynolds number, is far more e�ective than simply re�ning the numerical

solution once the target Reynolds number has been reached. We do note here, that there
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is some trade o� with the �nal solution accuracy, with the possibility of the re�nement

passes at low Reynolds numbers capturing features that do not exist in the �ow at the target

Reynolds number. Areas of the mesh that have been needlessly re�ned at low Reynolds

numbers, are not necessarily coarsened in later re�nement passes, with areas of laminar

�ow far away from the aerofoil taking priority. As such, moving forward, we wish to reduce

the possibility of this a�ecting the e�ciency of the numerical solver. Therefore, we limit

the number of re�nement passes made while the Reynolds number of the �ow is below the

fully turbulent threshold. We allow a single pass below this threshold, which orientates the

mesh density of the initial mesh, to account for the di�ering angles-of-attack. In the case

where we use a symmetric mesh for a zero angle-of-attack α = 0◦ aerofoil, we skip this step

as the mesh density is suitable to achieve a fully turbulent �ow. An alternative approach

would be to increase the percentage of elements that are coarsened by the algorithm to

try to counteract this over-re�nement of the �nal mesh. However, during development,

we found that if the percentage of coarsened elements was too high, the Newton solver

would fail to converge on the new mesh. Detailed below, is the hybrid DWR continuation

algorithm we have developed.

Hybrid Continuation Algorithm

1. Choose a target Reynolds number and decide upon the inlet conditions for the �nal

simulated �ow. Generate the initial mesh of the geometry. Consider the angle-of-

attack of the blade/aerofoil.

2. Solve on the initial mesh with the inlet conditions chosen above, a low Reynolds num-

ber (50 ≤ Re ≤ 300) laminar �ow, without calculating the turbulence model variables

k and ω̃. The initial estimate of the numerical solution required for the nonlinear

solver should be 0 for all variables.

3. Solve on the initial mesh, with the same inlet conditions and Reynolds number, a

turbulent �ow using the previous laminar solve as the initial guess for the nonlin-

ear solver. The boundary conditions for the turbulent variable ω̃ should be chosen

according to the channel �ow results for the appropriate Reynolds number.

4. Find the Reynolds number for which the �ow transitions to be fully turbulent for the

chosen geometry. Select a suitable target functional, as well as, a mesh re�nement

percentage, U%, and a coarsening percentage, L%.

5. Increase the Reynolds number of the �ow, adjust the boundary conditions for ω̃ and

solve on the previous mesh. The value by which one is able to increase the Reynolds

number varies depending on how similar the previous numerical solution is to the

new solution. In general, we found an increase of 10% to be suitable. However, if
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the nonlinear solver fails to converge, this value should be decreased by 50% until it

converges. Repeat this step until the Reynolds number reaches the value for the �rst

mesh re�nement pass.

6. If the angle-of-attack α 6= 0◦, consider whether the mesh density of the initial mesh

is suited to the current angle-of-attack. In particular, consider whether there is

su�cient mesh density at the point where the aerofoil �rst meets the inlet �ow. If

there is not, re�ne the solution before the Reynolds number exceeds the value at

which the �ow becomes fully turbulent. Based on experience, we recommend a value

Re ≥ 1000, but less than the turbulent transition value.

7. Decide how many re�nement passes are required in total, according to the choice

of U% and L%. Choose Reynolds numbers at which to perform each re�nement

pass, such that they are spaced uniformly up to the target Reynolds number. We

recommend that the �rst of these re�nements should be carried out soon after the

fully turbulent transition value, Re ≈ 3, 500.

8. Re�ne the mesh. Calculate the numerical error according to the chosen target func-

tional using the DWR method. Then, re�ne the U% of elements with the largest

error values, and coarsen the L% of elements with the smallest error values.

9. Solve on the new re�ned mesh for the same �ow parameters.

10. Increase the Reynolds number of the �ow and solve. Repeat until the Reynolds

number of the next re�nement pass is reached, then repeat steps 8, 9 and 10; or until

the target Reynolds number is reached.

The proposed algorithm is e�ective in producing accurate numerical results, as shown in

Figures 6.6.9 and 6.6.10. However, the �nal mesh does still bene�t from additional re�ne-

ment passes, as shown in Table 6.1. In particular, the numerical solution of ω̃ requires

a signi�cantly higher mesh density in order to represent all the �ow features, with the

solution changing rapidly close to the aerofoil boundaries. This point is reinforced when

we consider laminar �ows around the aerofoil, eliminating the turbulent variables, demon-

strating signi�cantly lower absolute error values in Table 6.2 than in Table 6.1. This is

due to the physical variables, the velocity u and pressure p, not requiring the same mesh

density as the turbulent variables, meaning that the error decreases at a much higher rate

than it does for turbulent �ows.

In Section 6.6.2, we applied the techniques developed in the previous numerical example

to the 1.5 Stage Aachen Turbine test case [135, 138, 65]. This test case is representative of

high Reynolds number industrial �ow problems, and presents a number of challenges for

DGFEM methods. The creation of the initial coarse mesh was particularly challenging,

122



requiring cubic approximations to the blade boundary in order to guide the adaptive re-

�nement algorithm. The use of a discontinuity along the blade edge provided an unwanted

source of numerical error, resulting in an overly dense packing of mesh elements around

the trailing edge of the blade. However, through the proposed algorithm, we were able to

reduce both the numerical error according to the target functional (6.5.1), as well as reduce

the number of degrees of freedom of the problem. Additionally, we note some improvement

in the accuracy of the physical �ow parameters approximated by the DGFEM.

The e�ectiveness of the hybrid continuation algorithm is dependent on the quality of the

initial mesh, limited in its ability to coarsen beyond the initial mesh width h. As such,

further improvements to the accuracy of the numerical solution are limited by the amount

of computational resources available. In order to reduce the memory demands of the

DGFEM method, we consider an approach using polygonal meshes in Chapter 7.
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Chapter 7

Extension to Polytopic Meshes

We now consider an extension of the previous developments to DGFEMs on computational

meshes consisting of general polygonal, or polyhedral elements in two and three dimensions,

respectively. From this point on, we shall simply refer to them as polytopic elements for

brevity.

The design of computational meshes is clearly an important part of any �uid simulation, be

it for FEMs or FVMs. The mesh must be �ne enough to provide suitable resolution of the

�ow features, whilst representing the domain geometry to a required degree of accuracy, all

whilst being coarse enough to be solved in reasonable time constraints. Traditional mesh

generators create a triangulation on a domain that consists of triangular or quadrilateral

elements in two dimensions, or tetrahedral, hexahedral, prismatic, or pyramidal elements

in three dimensions. These are collectively referred to as standard mesh generators, and

are a staple of industrial FEM/FVM solvers. These meshing techniques typically have

problems in areas of the geometry with high curvature, where mesh re�nement is likely

to be concentrated, sometimes resulting in elements that self intersect (Figure 7.0.1). In

order to avoid these problems, the mesh must either be designed with a dense packing of

elements in these areas, or through the computationally expensive, isoparametric element

mappings, that ensure the careful propagation of the domain geometry onto the interior

elements. In an ideal situation, we would wish to avoid both these scenarios.
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Figure 7.0.1: Self intersecting mesh around a pipe bend.

The use of polytopic elements on complicated geometries allows for a coarser mesh to

be used, whilst allowing the use of higher order polynomials in the numerical solution

to still achieve high accuracy. This increases the accuracy of the solution, without need-

lessly adding extra degrees of freedom in the form of more mesh elements. In many such

situations, an extremely large number of standard elements may be required to produce

a mesh, without accounting for geometrical substructures or �ow features. This is very

expensive computationally, and is often the case with aerodynamic models, such as those

used to model the �ow around aerofoils cf. [25, 80, 84]. In general, polytopic elements

allow for coarser meshes to be used, and in turn, the better exploitation of DGFEMs

computational �exibility, especially in areas of high geometry curvature and domains with

microstructures. They also o�er advantages in moving domains, such as those used in

�uid-structure interaction [7], geophysical problems such as earthquake engineering [5, 7],

and �ows through fractured, porous media [38, 39].

A number of prominent techniques have been proposed for the design of FEMs posed on

polytopic meshes. Composite Finite Elements (CFEs) were originally proposed by Hack-

busch and Sauter [75, 76] for the discretisation of PDEs in complex geometries, within

the conformal setting. These techniques have since been generalised to the discontinuous

setting in [4, 5, 71]. CFEs are de�ned on general meshes that consist of polytopic elements

which are generated via the agglomeration of standard elements. Another technique, much

in the same vein as CFEs, is agglomerated DGFEMs [27, 28, 29]. These methods are very

closely related to the DGFEM CFE developed in [4], although the CFE methodology

admits more general classes of elemental shape functions. An alternative approach, sup-

porting the use of general meshes, is the so called Hybrid High-Order method [51, 52, 53].

There are also two further approaches within the conformal setting, the Polygonal FEM

and the Extended FEM [64, 129]; whereby, conformity is achieved by enriching the stan-
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dard polynomial �nite element spaces, similar to the original work of Babu²ka and Osborn

[19]. Usually, the ability to handle general meshes is coupled with an increased compu-

tational workload. However, this problem was overcome with the newly proposed Virtual

Element Method [1, 32, 33, 40], which navigates this di�culty, extending conforming FEMs

to polytopic meshes, whilst maintaining many features associated with traditional FEMs.

In this chapter, we brie�y introduce the tools required to formalise, and make mathemati-

cally rigorous, the concept of polytopic meshes in the DGFEM setting. Through the use of

inverse estimates, we study the stability and convergence properties of DGFEMs on poly-

topic meshes, before considering the implementation of these techniques through the use

of numerical examples. The key question of the discontinuity-penalisation function de�ni-

tion in the context of polytopic meshes, possibly containing very small spaces is of central

importance in the discussion, as a poor choice can lead to either unstable or inaccurate

discretisations.

7.1 Mesh Generation

We begin by de�ning a general class of computational mesh consisting of polytopic ele-

ments. Let Th be a partitioning of the computational domain Ω ⊂ Rd, d ∈ N, into disjoint

open polytopic elements κ constructed in such a manner that the union of the closures of

elements κ ∈ Th forms a covering of the closure of Ω, that is Ω̄ = ∪κ∈Th κ̄. We also de�ne

hκ := diam (κ) as the diameter of the element κ ∈ Th. One advantage of DGFEMs, is that

they can naturally handle meshes containing hanging nodes. As such, we de�ne Th in such

a manner, that it may contain several hanging nodes on their (d− k)-dimensional facets,

k = 1, 2, 3, ..., d− 1. Therefore, hanging nodes are revamped as normal nodes of polytopic

elements between two faces of angle π [38]. A crucial attribute of the DGFEM described

below is that it can handle elements of arbitrary angles between faces, because physical

polynomial element spaces are used as opposed to mapped spaces from some reference

element.
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Figure 7.1.1: A polygonal element κ, along with its neighbours. Hanging nodes are denoted
by a �lled black circle.

In order to derive stability and approximation theorems, we proceed as in [38], considering

each polygonal element as a collection of standard element shapes; in particular, as sim-

plices. To this end, we de�ne both element interfaces and element faces. Firstly, we de�ne

element faces as simplices in Rd−1. Then, in order to allow for hanging nodes, we de�ne

the interfaces of the computational mesh Th to be the intersection of (d− 1)-dimensional

facets of neighbouring elements. In the two-dimensional setting, the mesh interfaces are

piecewise linear line segments. In general, an element interface consists of a set of (d− 1)-

dimensional simplices. Each element interface may be broken down into a collection of

element faces, whose union forms the faces of the computation mesh Th. This union is

denoted as Fh in the following analysis.

There are a number of practical solutions to the problem of generating general meshes con-

sisting of polytopic elements. One such method, is through creating a Voronoi tessellation

of the underlying geometry, [57, 131]. However, this approach also has the problem that it

is not trivially extendable to three dimensional meshes. Often a far more �exible approach

to producing such meshes, is to take advantage of existing mesh generators using stan-

dard elements. A geometry-conforming, �ne mesh T �ne
h , consisting of standard elements is

generated initially. Then the polytopic elements are formed through agglomeration of the

existing standard element faces, as shown in Figure 7.1.2.
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Figure 7.1.2: Agglomeration of a computational mesh T fineh , consisting of quadrilateral
elements.

Formally, there exist two key approaches to polytopic mesh generation. The �rst is a hier-

archy of overlapping reference and logical meshes consisting of standard shaped elements,

which are constructed based on successive adaptive re�nement of elements that intersect

the boundary ∂Ω of the computational domain Ω. Then, once a suitably �ne mesh has been

constructed, possibly by moving nodes onto ∂Ω, a sequence of coarse geometry-conforming

physical meshes, consisting of general polytopic elements, may be derived via agglomerat-

ing elements, which share the same parent within the underlying re�nement tree. Examples

of this approach can be found in [4, 5, 75, 76]. On the other hand, a �ne mesh T �ne
h which

consists of standard shaped elements may be constructed using a standard mesh generator,

then, subsequently, elements can be agglomerated to form polytopes using graph partition-

ing algorithms. For the purposes of this study, we favour the second approach, utilising

ParMETIS [96] to create a polytopic partition of the computational domain.

7.2 Inverse Estimates on Polytopic Meshes

In this section, we follow [38] in deriving new inverse inequalities on general polytopic

elements. These inequalities must be robust enough to allow for element face degeneration,

especially during mesh re�nement, but also not result in excessively large penalisation terms

in the underlying scheme. This is important as large penalisation in this context may lead

to loss of accuracy and severe ill-conditioning. On the other hand, too small penalisation

may not be enough to ensure the stability of the method. We begin this discussion by

introducing the following inverse inequalities de�ned on simplices, before extending them

to general polytopic elements.
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Lemma 7.2.1. Given a simplex ϕ in Rd, d = 2, 3, we write f ⊂ ∂ϕ to denote one of its

faces. Then, for v ∈ Pp (ϕ), the following inverse inequality holds

‖v‖2L2(f) ≤ Cinv,1p
2 |f |
|ϕ|
‖v‖2L2(ϕ) , (7.2.1)

where Cinv,1, is a positive constant, that is independent of v, p and hκ.

Proof. The proof of (7.2.1) can be found in [139], whereby the precise estimate

‖v‖2L2(f) ≤
(p+ 1) (p+ d)

d

|f |
|ϕ|
‖v‖2L2(ϕ) , (7.2.2)

is proven.

Following [38], we now proceed to generalise (7.2.1) to general meshes consisting of poly-

topic elements. In order to do so, we must �rst introduce the following family of overlapping

simplices associated with each face f ⊂ ∂κ.

De�nition 7.2.2. For each element κ in the computational mesh Th, we de�ne the family

Ψκb of all possible d-dimensional simplices contained in κ and having at least one face in

common with κ. Moreover, we write κfb to denote a simplex belonging to Ψκb which shares

with κ ∈ Th the speci�c face f ⊂ ∂κ.

With the above de�nition, we may now employ (7.2.1) directly in order to deduce the

corresponding inverse estimate on a general polytopic element. Therefore, given κ ∈ Th,
and a face f ∈ Ψh, such that f ⊂ ∂κ, consider κfb ∈ Ψ

κ
b given in de�nition 7.2.2. Then, for

v ∈ Pp (κ), applying (7.2.1) on κfb , we immediately deduce that

‖v‖2L2(f) ≤ Cinv,1p
2 |f |∣∣∣κfb ∣∣∣ ‖v‖2L2

(
κfb

) ≤ Cinv,1p
2 |f |∣∣∣κfb ∣∣∣ ‖v‖2L2(κ) (7.2.3)

where Cinv,1 is a positive constant, independent of v, |f |,
∣∣∣κfb ∣∣∣, and p. Clearly, the choice

of κfb is not unique, and as such, we may select κfb to have the largest possible measure∣∣∣κfb ∣∣∣. Hence, on the basis of (7.2.3), the following inverse inequality holds:

‖v‖2L2(f) ≤ Cinv,1p
2 |f |

sup
κfb⊂κ

∣∣∣κfb ∣∣∣ ‖v‖2L2(κ) . (7.2.4)
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We note that for a �xed element size hκ, the inverse inequality (7.2.4) is sharp with respect

to the polynomial degree p [139]. However, for a �xed polynomial order p, (7.2.4) lacks the

sharpness with respect to (d− k)-dimensional facet degeneration, k = 1, ..., d − 1. More

precisely, it is not sensitive to the magnitude of the face measure relative to the measure

of the polytopic element κ. To demonstrate this, we consider the two-dimensional example

from [36].

Example 7.2.3. In order to demonstrate the lack of sharpness of the inverse inequality

(7.2.4) with respect to one of its lower-dimensional facets degenerating, we consider the

quadrilateral domain κ given by

κ :=
{

(x, y) ∈ R2 : x > 0, y > 0, x+ y < 1
}

∪
{(

(x, y) ∈ R2 : x > 0, y ≤ 0, x− y < ε
)}
,

for some ε > 0, see Figure 7.2.1.

Figure 7.2.1: The quadrilateral element κ.

Given v ∈ Pp (κ), let f :=
{

(x, y) ∈ R2 : x− y < ε
}
and using (7.2.4), we have

‖v‖2L2(f) ≤ Cinv,1

√
2p2ε∣∣∣κfb ∣∣∣ ‖v‖2L2(κ) , (7.2.5)

where κfb :=
{

(x, y) ∈ R2 : x > 0, x+ εy < ε, x− y < ε
}
. We remark that

∣∣∣κfb ∣∣∣ = ε(1+ε)
2 ,

which means that (7.2.5) becomes

‖v‖2L2(f) ≤ Cinv,1
2
√

2p2

(1 + ε)
‖v‖2L2(κ) .

Hence if we let ε → 0, the left-hand side ‖v‖2L2(f) → 0, whereas the right-hand side
2
√

2p2

(1+ε) ‖v‖
2
L2(κ) → 2

√
2p2 ‖v‖2L2(κ) 6= 0 in general.

130



The above suggests that the inverse inequality (7.2.4) may not be sharp with respect to

element facets of degenerating measure. Therefore, if we were to employ such a bound to

deduce the stability of the DGFEM approximation, it would typically lead to an exces-

sively large penalisation term within the underlying scheme. This in turn may result in ill

conditioning of the resulting system of equations and, possibly, loss of accuracy.

Therefore, we proceed by deriving an alternative inverse inequality under suitable mesh

assumptions. We begin by noting that since f ⊂ ∂κfb , we have

‖v‖2L2(f) ≤ |f | ‖v‖
2

L∞
(
κfb

) . (7.2.6)

In order to bound the right-hand side of (7.2.6), we need to introduce some additional

requirements on the elements κ ∈ Th. These are based on the following result which

represents the generalisation of Lemma 3.7 in [69] (see [38] for details).

Lemma 7.2.4. Let K be a shape-regular simplex in Rd, d = 2, 3. Then, for each v ∈
Pp (K), there exists a simplex κ̂ ⊂ K, having the same shape as K and faces parallel to the

faces of K, with dist (∂κ̂, ∂K) > Casdiam(K)
p2

, where Cas is a positive constant, independent

of v, K, and p, such that

‖v‖2L2(κ̂) ≥
1

2
‖v‖2L2(K) (7.2.7)

(We note that dist (∂κ̂, ∂K) denotes the Haussdor� distance between ∂κ̂ and ∂K. That is

to say, given two sets X and Y in Rd, d ≥ 1, we de�ne the Hausdor� distance between X

and Y as dist (X,Y ) := supx∈X infy∈Y |x− y|).

Proof. We omit the proof here for conciseness, but it can be found in [38].

As such, we proceed by recalling the following de�nition, before de�ning the inverse in-

equality on polytopic elements that allows for facet degeneration.

De�nition 7.2.5. An element κ ∈ Th is said to be p-coverable with respect to p ∈ N, if
there exists a set of mκ overlapping shape regular simplices Ki, i = 1, ...,mκ, mκ ∈ N,
such that

dist (κ, ∂Ki) < Cas
diam (Ki)

p2
and |Ki| ≥ cas |κ| ,

for all i = 1, ...,mκ, where Cas and cas are positive constants, independent of κ and Th.
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Figure 7.2.2: Illustration of De�nition 7.2.5. This polygon is p-coverable for p su�ciently
small, but not all p.

Following [36], in Figure 7.2.2 we present a polytopic element κ in R2 which may be covered

by two trianglesK1 andK2 withmκ = 2. We note that De�nition 7.2.5 admits very general

polytopic elements κ ∈ Th which may contain (d− k)-dimensional facets, k = 1, ..., d − 1,

whose measure is arbitrarily small, relative to the measure of κ itself. We note that the

element in Figure 7.2.1 is p-coverable when ε < Cas
p2

for some constant Cas > 0.

Combining (7.2.4), (7.2.6), Lemma 7.2.4 and De�nition 7.2.5, we may now present the

following inverse inequality de�ned for general polytopic elements which directly accounts

for elemental facet degeneration.

Lemma 7.2.6. Let κ ∈ Th, f ⊂ ∂κ denote one of its faces. Then, for each v ∈ Pp (κ), the

following inverse inequality holds

‖v‖2L2(f) ≤ Cinvp
2 |f |
|κ|
‖v‖2L2(κ) , (7.2.8)

where

Cinv :=


Cinv,4 min

{
|κ|

sup
κ
f
b
⊂κ

∣∣∣κfb ∣∣∣ , p2(d−1)

}
if κ is p− coverable,

Cinv,1
|κ|

sup
κ
f
b
⊂κ

∣∣∣κfb ∣∣∣ , otherwise,

(7.2.9)

with κfb ∈ Ψ
κ
b , and Cinv,1 and Cinv,4 positive constants which are independent of

|κ|
sup

κ
f
b
⊂κ

∣∣∣κfb ∣∣∣ ,
|f |, p, and v.

Proof. The proof is available in Lemma 11 in [38].
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We remark, that (7.2.8) is sensitive with respect to (d− k)-dimensional facet degeneration,

k = 1, ..., d−1. Recalling �gure (7.2.1), the left- and right-hand sides of (7.2.8) degenerate

at the same rate as ε→ 0, for a �xed p.

7.3 The Discontinuity-Penalisation Function

For the partitioning of a domain Ω, we de�ne Fh as the set of open (d− 1)-dimensional

element faces associated with Th, and we write Fh = F I
h

⋃
FB
h , where F I

h denotes the set

of all element faces f ∈ Fh that are contained in Ω, and FB
h is the set of boundary element

faces. We decompose FB
h = F−h

⋃
F+
h

⋃
FD
h

⋃
FN
h , where F−h ,F

+
h ,F

D
h ,F

N
h ⊂ FB

h

denote the subsets of boundary faces belonging to ∂Ω−, ∂Ω+, ∂ΩD, and ∂ΩN, respectively.

Continuing the notation developed in Chapter 2, ∂Ω− and ∂Ω+denote the in�ow and

out�ow boundaries, whilst ∂ΩD and ∂ΩN denote the Dirichlet and Neumann boundaries,

such that ∂Ω = ∂Ω−
⋃
∂Ω+

⋃
∂ΩD

⋃
∂ΩN.

For each element κ ∈ Th, we de�ne:

Cκ = card {f ∈ Fh : f ⊂ ∂κ} .

We assume that there exists a positive constant Cf , independent of the mesh parameters,

such that

max
κ∈Th

Cκ ≤ Cf (7.3.1)

We are now in a position to introduce the discontinuity-penalisation function for polytopic

elements, using the inverse inequalities de�ned in the previous section.

De�nition 7.3.1. Given that assumption (7.3.1) holds, we de�ne the discontinuity-penalisation

function σ : F I
h

⋃
FD
h → R by

σ (x) :=


Cσ max

κ∈{κ+,κ−}

{
Cinv (µ+ µt)

p2|f |
|κ|

}
, x ∈ f ∈ F I

h , f ⊂ ∂κ+
⋂
∂κ−

CσCinv (µ+ µt)
p2|f |
|κ| , x ∈ f ∈ FD

h , f ⊂ ∂κ
(7.3.2)

where µ is the molecular viscosity, µt is the turbulent viscosity, and Cσ is a su�ciently

large positive constant [38].
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7.4 Implementation

Before we proceed with some numerical experiments, we brie�y discuss some of the im-

plementation aspects of an interior penalty DGFEM for general computational meshes

consisting of polytopic elements. Indeed, the construction of the elemental polynomial

basis functions, as well as the quadrature rules governing the numerical integration, are

not straightforward.

7.4.1 Basis Functions on Polytopes

In the usual setting, when the computational mesh Th consists of standard shaped elements,

the construction of the underlying �nite element space is typically undertaken by mapping

each element κ ∈ Th to a speci�ed reference element denoted by κ̂ as in Figure 2.4.1. As

such, local spaces of polynomials may be constructed on κ̂ in a simple manner, subject

to the enforcement of any inter-element continuity constraints. This approach is widely

used in FEM software packages, even though the calculation of high-order derivatives of

the computed numerical solution can be quite costly when non-a�ne element mappings

are used.

However, DGFEMs can allow for elemental basis to be constructed within the physical

element, without the need to map to a given reference element [28]. In particular, this

allows them to admit general polytopic elements in a simple fashion. This attribute is of

crucial importance as it allows for very general element shapes, containing even re-entrant

corners, to admit optimal approximation properties. In particular, no maximum angle

condition which is pertinent in �nite element theory, is required.

In [28], basis functions are constructed on general meshes consisting of agglomerated ele-

ments, through the implementation of a Gram-Schmidt orthogonalisation process applied

to a given set of polynomial functions de�ned on each κ ∈ Th. Alternatively, one could

de�ne polynomial spaces over a suitably chosen bounding box of the physical element κ;

then construction of the element basis is achieved by restricting this space to κ. We use

the latter approach for the remainder of this chapter.

Therefore, given a physical element κ ∈ Th, we de�ne the Cartesian bounding box of κ,

denoted by Bκ. That is to say, that the sides of the bounding box Bκ are aligned with

the Cartesian axes, allowing for the simple construction of κ̄ ⊆ B̄κ, where κ is a polytopic

element.
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Figure 7.4.1: Bounding box Bκ of a polygonal element κ ∈ Th.

Further to this, we de�ne on the bounding box Bκ, the standard polynomial space Pp (Bκ)

spanned by a set of basis functions {φi,κ} , i = 1, ..., dim (Pp (Bκ)). We remark here, that

the tensor-product polynomial spacesQp (Bκ) may also be employed, though in the absence

of non-a�ne element mappings, the approximation order of both spaces is identical [38].

Then, writing Bκ := ψ1 × ψ2 × ... × ψd, where ψj :=
(
xj1, x

j
2

)
, j = 1, ..., d, and selecting

κ̂ := (−1, 1)d to be the reference hypercube, the bounding box Bκ may be a�nely mapped

to κ̂, via the mapping

x = Jκx̂ + c, (7.4.1)

where Jκ := diag (h1, ..., hd), c := (m1, ...,md)
T , and x̂ is a general point in κ̂. We remark

that hj , j = 1, ..., d, is half the length of the jth side of Bκ respectively. We then follow

[38], employing tensor-product Legendre polynomials,
{
L̂i (x̂)

}∞
i=0

which are chosen to be

L2 (−1, 1)-orthogonal, cf [124]. As such, the space of polynomials Pp (κ̂) of total degree p

over κ̂ is given by

Pp (κ̂) := span {φi,κ : i = 1, ..., dim (Pp (κ̂))} , (7.4.2)

where φ̂i,κ (x̂) = L̂i1 (x̂1) L̂i2 (x̂2) ...L̂id (x̂d), i1 + i2 + ... + id ≤ p, ik ≥ 0, k = 1, ..., d, and

x̂ = (x̂1, x̂2, ..., x̂d). Writing L̂i1 ((x−mj) /hj), under the transformation (7.4.1), the space

of polynomials Pp (Bκ) of total degree p over Bκ is given by

Pp (Bκ) := span {φi,κ : i = 1, ..., dim (Pp (Bκ))} . (7.4.3)

It is important to note however, that the choice of bounding box Bκ is arbitrary, and that

the choice of the Cartesian bounding box may be replaced with any other suitable choice,

provided that the construction of the underlying polynomial basis remains simple. Other

examples of bounding boxes, that may be considered, are ones for anisotropic polytopic

135



elements, where it may be advantageous to align the axes of the bounding box with the

principle axes of the element.

7.4.2 Quadrature Rules

We also require the de�nition of a new quadrature rule for computational meshes consisting

of polytopic elements. This is a particularly challenging task, and is discussed below,

highlighting the three most prominent approaches.

7.4.2.1 Sub-Tessellation

The most general approach to the problem of quadrature over polytopic elements is to

subdivide the elements into standard shapes, triangles and quadrilaterals in R2, hexahedra,

tetrahedra, prisms and pyramids in R3. Then, standard quadrature rules may be applied

to the sub-tessellation [36, 37, 94]. Consider an element κ ∈ Th, and let κT be a non-

overlapping sub-tessellation of κ consisting of standard elements, such that κT := {τκ}.
In particular, a general hybrid sub-tessellation consisting of triangular and quadrilateral

elements in R2, and tetrahedral, hexahedral, prismatic and pyramidal elements in R3

may be constructed. When making use of mesh agglomeration, the sub-tessellation is

readily available; however, we may still wish to construct an alternative sub-tessellation,

comprising a minimal number of sub-elements, as this improves computational e�ciency.

In general, however, quadrature schemes based on employing a sub-tessellation of each

element often prove to be expensive, since if the cardinality of the sub-tessellation is large,

then the required number of function evaluations tends to be large. This is the case when

the background mesh T �ne
h , which is agglomerated to form the coarse polytopic mesh Th,

is also used to provide the sub-tessellation of each polytopic element. On the other hand,

sub-tessellation may be the only option in the presence of heterogeneous PDE coe�cients.

7.4.2.2 Moment Quadratures

Moment quadratures is one approach that employs a node elimination scheme, along with

the least squares Newton method to try to boost the e�ciency of quadrature rules based

on sub-tessellation [146]. Here, we discuss the approach of [146] in greater detail.

Consider a polytopic element κ ∈ Th, along with a set of user de�ned functions Φκ =

{φ1, φ2, ..., φn}, n ≥ 1, de�ned over κ, as well as a quadrature rule (xj , wj)
qκ
j=1 on κ,
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qκ ≥ n, which is assumed to integrate all functions in Φκ exactly. Therefore, we have the

following system of equations

Aw = I, (7.4.4)

where A is an n × qκ matrix with all entries Aij := φi (xj), i = 1, ..., n, j = 1, ..., qκ,

w := (w1, ..., wqκ)T is a vector of quadrature weights, and I is a vector of dimension n,

with entries Ii :=
´
κ φidx, i = 1, ..., n. We note that a weight function ω is included in the

integral in [146], but here for simplicity, we have set ω ≡ 1.

The general approach of this method is to optimise an initial quadrature rule through

continuously eliminating points until the solution of (7.4.4) can no longer be determined.

There are a number of di�erent ways of selecting the initial quadrature rule (xj , wj)
qκ
j=1,

indeed, the sub-tessellation approach discussed in the previous section may be employed.

Formally, for each quadrature point and weight, the corresponding signi�cance index sj ,

j = 1, ..., qκ is computed via one of the following expressions as proposed in [146].

sj := wj

n∑
i=1

φ2
i (xj) , or sj :=

n∑
i=1

φ2
i (xj)

Then, the quadrature point and weight (xj , wj) which has the smallest signi�cance factor

is removed from the quadrature rule. The least-squares version of Newton's method is

then applied to (7.4.4) to determine a new quadrature (xj , wj)
qκ−1
j=1 with (qκ − 1) points

and weights. This technique is continuously repeated until the Newton algorithm fails to

converge, resulting in an optimised quadrature rule that can precisely integrate all of the

functions present in the space Φκ.

An alternate approach is presented in [106] in which a set of �xed quadrature points are

selected from the initial set, and (7.4.4) is solved to determine the corresponding weights.

We note that while this general approach may seem appealing, quadrature rules must be

calculated and stored on an element by element basis for all elements in the polytopic mesh

before calculation of the underlying matrix system can begin. We also note that whilst the

optimised quadrature rule is exact for the set of functions in the space Φκ, the accuracy in

terms of integrating general functions is unclear.

7.4.2.3 Integration of Homogeneous Functions

We now move to consider Lasserre's method for integrating homogeneous functions over

general polytopes. The method was �rst introduced in [101] for convex polytopes, and
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later extended to general polytopes in [45]. The underlying idea here is to utilise Stokes'

Theorem, together with Euler's Homogeneous Function theorem. In particular, consider a

polytopic element κ ∈ Th, and a su�ciently regular function f , de�ned over κ, we wish to

evaluate ˆ
κ
f dx.

Assuming that f is a positively homogeneous function of degree q, such that f (λx) =

λqf (x), for λ > 0. Then, assuming that f is continuously di�erentiable, Euler's Homoge-

neous Function Theorem states that

qf (x) = x · ∇f (x) . (7.4.5)

Moreover, given any vector-valued function g that is su�ciently smooth, Stokes' Theorem

states that ˆ
κ

(∇ · g) f dx =

ˆ
∂κ

(g · nκ) f ds−
ˆ
κ
g · ∇f dx, (7.4.6)

where nκ denotes the unit outward normal vector to the boundary ∂κ of κ. Then, setting

g = x in (7.4.6) and employing (7.4.5), we deduce that

ˆ
κ
f dx =

1

d+ q

nF∑
i=1

ˆ
Fi

(x · nFi) f ds, (7.4.7)

where nFi denotes the restriction of the unit outward normal vector nκ to the facet Fi,

i = 1, ..., nF . We note that this process can be repeated to produce a formula which

involves integration on lower-dimensional facets. For example, given Fi, for some �xed i,

1 ≤ i ≤ nF , we write

∂Fi = {Fij = Fi ∩ Fj : Fi ∩ Fj 6= ∅, i 6= j} ,

to denote the set of (d− 2)-dimensional facets of κ. As an example, Fij is an edge of a

polyhedron in R3 which lies on the boundary of the face Fi. Furthermore, de�ne nFij to

be the unit normal vector to Fij which lies in the plane Fi. Given a point xi ∈ Fi and a

(d− 1)-dimensional orthonormal basis
{
eij

}d−1

j=1
on the facet Fi, any x ∈ Fi may be written

in the form

x = xi +

d−1∑
k=1

αke
i
k,

for some scalars αk, k = 1, ..., d − 1. Then, applying (7.4.6) to a speci�ed facet Fi,
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1 ≤ i ≤ nF , with g = x− xi, we deduce

ˆ
Fi

f ds =
1

d+ q − 1

 ∑
Fij⊂∂Fi

ˆ
Fij

(
(x− xi) · nFij

)
f ds +

ˆ
Fi

(xi · ∇f) ds

 . (7.4.8)

In R2, the right-hand side of (7.4.8) only involves evaluations of the integrand at the points

which form the underlying face Fi, 1 ≤ i ≤ nF . Therefore, for the integration of polynomial

functions, the repeated application of (7.4.8) yields an exact integration rule which only

requires the evaluation of f and its partial derivatives at the vertices of κ ∈ Th. In R3, we

rewrite the integral over Fij to be an integral over its (d− 2)-dimensional facets (points),

and an integral involving the derivative of f over Fij . Thus, for polynomial functions,

the recursive application of this formula only requires the evaluation of f and its partial

derivatives at the vertices of κ in order to precisely evaluate the integral of f over κ ∈ Th,
which shows that this approach is extremely e�cient. However, the disadvantage of this

approach is that it can only be applied to PDE problems with slowly varying coe�cients,

which can be approximated well and quickly by polynomial interpolation.

Following the experimental results disclosed in [38], we exploit the integration of homoge-

neous functions in order to provide a quadrature rule for our DGFEM on polytopic meshes.

This method o�ers the best balance between performance and numerical accuracy.

7.5 Numerical Experiments

In our �rst example we present a number of computational experiments highlighting the

practical performance of exploiting polytopic meshes for turbulent �ows. All polytopic

meshes in this section are generated by agglomerating a �ne mesh T �ne
h using the parti-

tioning algorithm provided in the ParMETIS software package.

7.5.1 NACA 0012 Aerofoil

We consider the test case presented in Section 6.6.1, with the aim of achieving comparable

numerical results for turbulent �ows, while exploiting polytopic meshes to signi�cantly

reduce the number of degrees of freedom associated with the problem. As such, consider

a NACA 0012 aerofoil with unit chord length c = 1 as shown in Figure 7.5.1. The domain

Ω ⊂ R2 is de�ned as the rectangle [−2.0 2.0] × [−2.0 4.0], with the aerofoil located along

the central axis between x = 0.
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Figure 7.5.1: Schematic of the NACA 0012 aerofoil. Chord length c = 1, angle-of-attack
α = 0◦.

We de�ne the inlet boundary located at x = −2.0, to be a turbulent free stream with

average velocity u∞ = 13.909. The direction of the inlet velocity is adjusted to represent

the di�ering angles of attack. A no-slip boundary condition is used for the aerofoil edges,

while periodic boundaries are used for the domain out�ows at y = −2.0 and y = 2.0. The

main out�ow at x = 4.0, is described by the stress-free Neumann condition.

The domain is subdivided into a �ne mesh T �ne
h consisting of isotropic and anisotropic,

quadrilateral elements. The quadrilateral mesh is then agglomerated into an initial polyg-

onal mesh T p-initial
h consisting of 1, 000 elements. This is shown in Figure 7.5.2. The `p-'

notation is used to signify a polygonal mesh.
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Figure 7.5.2: Initial mesh T p-initial
h , consisting of 1, 000 general polygonal elements.

In order to achieve the target Reynolds number of Re = 23, 000, we apply the hybrid

continuation algorithm outlined in Section 6.7. To make the algorithm suitable for poly-

topic meshes, we adjust the Reynolds number values at which we re�ne the mesh. The

polytopic mesh allows us to mesh the same geometry with fewer elements, compared to

using meshes consisting of standard elements. However, the numerical test case in Section

6.6.1 suggests that we require a far higher mesh density at the aerofoil edges compared to

the rest of the domain, to account for the behaviour of the variable ω̃. As such, we carry

out the h-re�nement in a slightly di�erent fashion, re�ning/coarsening the mesh each time

the Reynolds number is increased by 800 if Re < 4, 000, and by 2, 500 if Re > 4, 000. The

coarseness of the initial mesh T p-initial
h , means that it is unlikely that we will observe ar-

eas of over re�nement in the �nal continuation mesh, allowing for additional h-re�nement

passes before the �ow has become fully turbulent. This will ensure that the mesh has

suitable density close to the aerofoil edges to correctly represent the turbulent boundary

layer. We continue the DWR approach according to the target functional (6.5.1), re�n-

ing the 20% of elements with the greatest approximate absolute error, whilst coarsening

the 10% of elements with the smallest error. An alternative approach would be to re�ne

the mesh each time the Reynolds number is increased, ensuring that for a given tolerance

TOL,
∑

κ∈Th |η̂κ| ≤ TOL. However, this is unsuitable for industrial applications due to

the increased computational demand compared to the approach proposed above.
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Figure 7.5.3: Final polygonal continuation mesh T p-re�ned,0
h after 10 passes of h-re�nement.

2, 112 elements.

The �nal polygonal continuation mesh is shown in Figure 7.5.3. Colour plots of the non-

dimensionalised velocity solutions for Re = 23, 000 are shown in Figures 7.5.4 and 7.5.5.

Figure 7.5.4: Colour plot of the scaled axial velocity u1
u∞

, computed on T p-re�ned,0
h . Re =

23, 000.
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Figure 7.5.5: Colour plot of the scaled vertical velocity u2
u∞

, computed on T p-re�ned,0
h .

Re = 23, 000.

Figure7.5.5 has a degree of asymmetry in the numerical solution for the vertical velocity

u2. This is highlighted by the scale of the colour plot, but is in reality much more subtle.

This may be due, in part, to the asymmetric initial polygonal mesh, meaning that careful

consideration should be taken when designing future polygonal meshes, mindful of the

symmetries of the geometry that is being represented. As such, the simple agglomeration of

standard elements may be unsuitable for turbulent incompressible �ows through symmetric

domains, and a tailored initial polygonal mesh preserving the geometry's symmetry may

be better suited.

In spite of this, using polygonal meshes produces remarkably precise numerical solutions,

while allowing a signi�cant reduction in the degrees of freedom of the mesh. Additionally,

we are able to re�ne the mesh further using the re�nement strategy presented in Section

6.3, while maintaining fewer degrees of freedom than are required for the standard meshes

presented in Section 6.6.1. These meshes are presented below in Figures 7.5.6, 7.5.7 and

7.5.8, with 217, 500, 240, 000 and 330, 000 degrees of freedom, respectively.
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Figure 7.5.6: Polygonal mesh with 217, 500 degrees of freedom.

Figure 7.5.7: Polygonal mesh with 240, 000 degrees of freedom.
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Figure 7.5.8: Polygonal mesh with 330, 000 degrees of freedom.

We use the approximation to the target functional J (uh,�ne) = 1553.564681, proposed

in Section 6.6.1, to compute the approximate absolute and relative error values for the

polygonal DGFEM. These are summarised in Table 7.1, along with comparisons against

results computed on meshes consisting of standard elements generated from T initial
h , see

Figure 6.6.3, using the hybrid continuation algorithm in Section 6.7.

Degrees of
Freedom
(Polygonal
Mesh)

Degrees of
Freedom
(Standard
Mesh)

∑
κ∈Th |η̂κ|

( Polygonal
Mesh)

∑
κ∈Th |η̂κ|

(Standard
Mesh)

∑
κ∈Th

|η̂κ|

|J(uh,�ne)|
( Polygonal

Mesh)

147, 930 958, 220 2.716821 2.516973 1.748766× 10−3

217, 500 1, 096, 610 1.096843 1.138894 7.060170× 10−4

240, 000 1, 202, 490 0.956189 0.936661 6.154807× 10−4

330, 000 1, 385, 140 0.533870 0.554820 3.436420× 10−4

Table 7.1: The approximate absolute and relative error values with respect to the target
functional (6.5.1).

Polygonal meshes produce remarkably precise numerical solutions, while allowing a sig-

ni�cant reduction in the number of degrees of freedom of the problem. In particular,

solutions with accuracy su�cient for practical/engineering applications can be obtained
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from polygonal meshes with a relatively small number of degrees of freedom [38]. This

is evident in Table 7.1, which clearly demonstrates a signi�cant reduction in computer

memory requirements using a polygonal mesh, compared to one consisting of standard

shaped elements alone. Further, we are able to maintain a similar degree of computational

accuracy with regards to the proposed target functional (6.5.1), mirroring the error values

of the standard mesh solutions. This suggests that polygonal meshes are suitable for use

on problems involving turbulent incompressible �ows, and that they respond su�ciently

well to DWR h-re�nement. This is notable from an industrial perspective, as we have

demonstrated that we are able to reduce signi�cantly, the memory requirements of �uid

computations, potentially allowing larger and more complicated problems to be tackled

without additional HPC hardware upgrades. We further explore this concept in Section

7.5.2.

The adjustments made to the hybrid continuation algorithm for use with polygonal meshes,

have been successful. The additional re�nement passes before the �ow becomes fully

turbulent, are useful in ensuring a su�ciently high mesh density close to the aerofoil edges,

enabling accurate represent of the numerical solution. To highlight this, we provide a close

up of the polygonal mesh with 330, 000 degrees of freedom in Figure 7.5.9.

Figure 7.5.9: Close-up of polygonal mesh with 330, 000 degrees of freedom.

We now consider an industrially relevant numerical test case in Section 7.5.2, with the aim

of validating the DGFEM for polygonal meshes at high Reynolds numbers.
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7.5.2 Turbine Stator Cascade

In this section we present an industrially relevant test case, with the goal of reducing the

computational load required to achieve a fully turbulent �ow with Re = 6.8 × 105. As

such, we consider the 1.5 Stage Aachen turbine stator cascade [138] in Figure 7.5.10.

Figure 7.5.10: Schematic of the Aachen Turbine on the cascade plane [138]. All lengths
are stated in meters. The angles subtend by the y-axis and the stator and rotor chords are
λ1 = 45.5◦ and λ2 = 62◦ respectively.

In particular, we consider the mid-height �ow between the initial stator blades, with a

pitch ss = 0.0476m. The initial stator section is designed to receive an inlet �ow parallel

to the horizontal axis, such that the �ow is axial. The design Reynolds number, based on

the chord length and exit velocity is Re = 6.8× 105. This is shown in Figure 7.5.11.

Figure 7.5.11: Stator cascade mesh geometry. All lengths are stated in metres.
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The domain Ω is subdivided using standard, non-overlapping, isotropic and anisotropic

elements forming T �ne
h . These elements are then agglomerated using the partitioning algo-

rithm provided in the ParMETIS software package to form a new mesh T p-initial
h , consisting

of 300 polygonal elements. In the same fashion as Section 7.5.1, additional mesh re�ne-

ment passes are carried out before the �ow exceeds the Reynolds number indicating that

it is fully turbulent. This ensures that there is su�cient mesh density close to the blade

edges in order to capture the solutions of k and ω correctly, ensuring that the nonlinear

solver continues to converge as the Reynolds number increases. Therefore, h-re�nement

passes are carried out each time the Reynolds number is increased by 800 if Re < 4, 000,

2, 500 if Re < 5, 000, 20000 if Re < 100, 000, and 100, 000 if Re > 100, 000. The change in

re�nement values is made to re�ect the high target Reynolds number of the �ow, ensuring

that computational accuracy is balanced against hardware memory requirements. At each

re�nement pass, we re�ne the 10% of elements with the largest approximate absolute error

values, and the 5% of elements with the smallest error values.

Figures 7.5.12 and 7.5.13, show the �nal continuation mesh T p-re�ned
h , consisting of 4, 482

polygonal elements.

Figure 7.5.12: Final mesh T p-re�ned
h consisting of 4, 482 polygonal elements.
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Figure 7.5.13: Close-up of the out�ow of T p-re�ned
h .

The purpose of this numerical experiment is to demonstrate the computational e�ciency of

employing an agglomerated polygonal mesh over one consisting solely of standard shaped

elements. We are able to achieve more accurate numerical results to those in Section 5.4.1,

but with far fewer computational resources, measured in the form of degrees of freedom. In

Figures 7.5.14 and 7.5.15, we present the velocity solutions with units m/s, and the static

pressure p in Figure 7.5.16 with units pa.
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Figure 7.5.14: Colour plot of the axial velocity u1 (m/s), computed on T p-re�ned
h . Re =

680, 000.

Figure 7.5.15: Colour plot of the vertical velocity u2 (m/s), computed on T p-re�ned
h . Re =

680, 000.
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Figure 7.5.16: Colour plot of the static pressure p (pa), computed on T p-re�ned
h . Re =

680, 000.

Due to the reduced computational demand of polygonal meshes, we are able to consider

further h-re�nement passes of the �nal solution shown in Figures 7.5.14,7.5.15 and 7.5.16.

In particular, we carry out a single h-re�nement pass, re�ning the 10% of elements with

the largest numerical error values, creating the mesh T p-re�ned,a
h with 161, 340 degrees

of freedom. This process is repeated on the new mesh T p-re�ned,a
h , creating T p-re�ned,b

h ,

consisting of 193, 620 degrees of freedom. A close-up of T p-re�ned,b
h is shown in Figure

7.5.17.
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Figure 7.5.17: Polygonal mesh T p-re�ned,b
h , with 193, 620 degrees of freedom.

Figure 7.5.18: Close up of polygonal mesh T p-re�ned,b
h . 193, 620 degrees of freedom.
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To facilitate the comparison between standard and polygonal meshes for turbomachinery

�ows, we approximate the target functional J (u) as in Section 6.6.2, with J (uh,�ne) =

224.218977 . Table 7.2 provides a summary of the absolute and relative error values with

respect to the target functional, with solutions computed on both, standard and polygonal

meshes.

Mesh Type Degrees of Freedom
∑

κ∈Th |η̂κ|
∑
κ∈Th

|η̂κ|

|J(uh,�ne)|
Standard Elements,

Figure 5.4.3.
1, 590, 000 2.651334 1.182475× 10−2

Standard Elements
with h-re�nement,
Figure 6.6.24.

1, 046, 310 1.523670 6.795455× 10−3

Polygonal Elements
with h-re�nement,

T p-re�ned
h , Figure 7.5.12.

134, 460 1.814689 8.0893378× 10−3

Polygonal Elements
with h-re�nement,
T p-re�ned,a
h .

161, 340 1.294611 5.773869× 10−3

Polygonal Elements
with h-re�nement,
T p-re�ned,b
h , Figure

7.5.17.

193, 620 1.036973 4.624823× 10−3

Table 7.2: Comparison of the approximate absolute error values compared to the functional
of interest for standard and polygonal meshes.

Table 7.2 demonstrates the advantages of using polygonal meshes in combination with

the hybrid continuation algorithm, compared to meshes consisting of standard elements

alone. In particular, Table 7.2 shows a reduction in numerical error beyond that which

is achievable on standard meshes with comparable computational hardware. The hybrid

continuation algorithm, initially produced a polygonal mesh, see Figures 7.5.12 and 7.5.13,

with a larger numerical error compared to the isotropic continuation mesh in Figure 6.6.24.

However, the reduced memory requirements associated with polygonal meshes, allows fur-

ther re�nement of the solution, reducing the approximate absolute error by 32%, compared

to the solution on the standard mesh in Figure 6.6.24. Additionally, the polygonal solu-

tion computed on T p-re�ned,b
h , only requires around 20% of the computational resources

compared to the solution on the standard mesh in Figure 6.6.24.
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7.6 Concluding Remarks

Chapter 7 has been concerned with the development of a DGFEM suitable for turbo-

machinery �ow problems on polygonal meshes. In particular, we investigated whether

the hybrid continuation algorithm outlined in Section 6.7, could be used e�ectively with

polygonal meshes. In Section 7.5.1, we adjusted the original algorithm, allowing additional

re�nement passes while the Reynolds number of the �ow was below the turbulent transi-

tion value. This is to compensate for the coarse initial polygonal mesh not having enough

elements close to the aerofoil/blade edges to accurately represent the solution of ω̃, which

increases rapidly close to no-slip boundaries. Additionally, as the �ow accelerates, the

turbulent boundary layer elongates and narrows along the aerofoil edge, quickly requiring

a mesh resolution �ner than that of the initial mesh in Figure 7.5.2. This approach worked

well, e�ectively controlling the numerical error while signi�cantly reducing the memory

requirements of the problem. This suggested that this approach would be e�ective for high

Reynolds number turbomachinery problems, such as those in Section 6.6.2, where the high

density of the initial mesh, limited the degree to which the numerical solution could be

re�ned.

The 1.5 Stage Aachen turbine stator cascade present in Section 7.5.2, is representative

of industrial turbomachinery problem. We seeked to apply the ideas developed in Section

7.5.1, to overcome the di�culties experienced in terms of mesh design/re�nement in Section

6.6.2, by allowing coarsening of the initial mesh by way of element agglomeration. Table

7.2 shows that this approach was reasonably successful, reducing the number of degrees

of freedom of the �nal continuation solve from 1, 046, 310 using standard elements, Figure

6.6.24, to 134, 460 using polygonal elements, Figure 7.5.12. The approximate absolute error

value is larger on the polygonal continuation mesh, but with signi�cantly fewer degrees of

freedom. This allowed for further h-re�nement passes once the target Reynolds number

had been reached, which was able to produce meshes, T p-re�ned,a
h and T p-re�ned,b

h , which

controlled the numerical error e�ectively.

The combination of the continuation and DWR re�nement algorithms, along with the use

of polygonal computational meshes, has been successful in reducing the memory require-

ments of turbulent incompressible �ow problems, whilst maintaining the level of numerical

accuracy required by industry. In particular, the polygonal mesh elements are more e�ec-

tive at reducing the mesh density in areas of laminar �ow, as shown in Figures 6.6.14 and

7.5.3. As such, it is the recommendation of this work, that polygonal mesh support should

be added to any large scale industrial implementation of the proposed DGFEM method.
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Chapter 8

Conclusions and Outlook

In this work, we developed an interior penalty Discontinuous Galerkin Finite Element

Method for the discretisation of the turbulent, incompressible Navier-Stokes equations,

with a novel approach that maintains stability on meshes consisting of curvilinear elements.

Through careful analysis of the numerical algorithms, we have developed a methodology

that incorporates adaptive re�nement, to capture with a high degree of accuracy, high

Reynolds number �ows. In Chapter 7, we presented some of the most recent DGFEM

results, employing an interior penalty method that is stable on general computational

meshes consisting of polytopic elements. In particular, we extended the existing results

presented in [38], further re�ning the continuation algorithm introduced in Chapter 6, to

resolve high Reynolds number, turbulent, incompressible �ows on general polytopic meshes.

We considered the interior penalty DGFEM for PDEs with non-negative characteristic

form in Chapter 2, in particular, the steady-state advection-di�usion-reaction equation.

This served as an introduction to DGFEMs, allowing for the derivation and analysis of the

required function spaces and trace operators. A discussion concerning the stability of the

method, along with the derivation of the discontinuity-penalisation function then followed.

Chapter 2 provided a summary of the technical ideas and concepts that are used regularly

within the literature, with the established understanding required for the discretisation of

the turbulence model in Chapter 4.

In Chapter 3, we discussed the DGFEM discretisation of the incompressible Navier-Stokes

equations, presenting the required function spaces and discussed the stability of the nonlin-

ear forms. The notion of coercivity was replaced with the inf-sup stability of Babuska [17],

Brezzi [35], Girault and Raviart [72], to accommodate the inde�niteness of the resulting

discrete nonlinear system (3.2.3). We then considered the implementation of the numerical

method, discussing preconditioning techniques designed to reduce the computational cost

of the numerical scheme.
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The initial numerical results presented in Section 3.5.1, 3.5.2, 3.5.3 and 3.5.4, demonstrate

the suitability of the numerical solver for simplistic �ow problems. Whilst these are far

from the complex turbulent �ows resolved in Chapters 5, 6 and 7, they did allow us to

resolve some potential concerns with the solver. Firstly, when de�ning the boundary condi-

tions of the domain it is not immediately clear how to resolve the point where two di�erent

boundaries join, such as the corners of the channel in Figure 3.5.1. The discretisation

(3.2.2) is an integral form, and as such, may omit �nitely mainly points from the computa-

tion. However, whether this property would naturally translate into the computer program

written to perform the calculations, or would require additional coding was unclear. For-

tunately, this issue was resolved without di�culty because of the way the quadrature rules

are coded in the AptoFEM package.

Secondly, the choice of numerical �ux was a further concern, since it a�ects signi�cantly,

the behaviour of the simulated �ow. The literature suggests that the Lax-Friedrichs �ux

[46] is suitable for incompressible �ows, which agrees with the laminar numerical results

presented in Chapter 3. However, from these results, it is unclear whether the choice of �ux

is suitable for turbulent �ows, and that further numerical experiments would be needed to

determine this. In general, the numerical results presented in Chapter 3 are agreeable with

real world test cases, indicating that the solver is producing industrially useful laminar

results, even if the Reynolds numbers are rather low for industrial turbomachinery �ows.

In Chapter 4, we extended the results of Chapter 3, introducing turbulence models for

incompressible �ows, with the aim of producing industrially relevant numerical results. To

this end, we created a novel DGFEM discretisation of the incompressible Navier-Stokes

equations, based on the interior penalty method, which includes the k − ω turbulence

model. To the authors knowledge, this is the �rst such DGFEM for the incompressible

Navier-Stokes equations with turbulence modelling. Further, we developed a continua-

tion type algorithm to increase the Reynolds number of the simulated �ow in order to

produce industrially relevant results. The numerical experiments presented in Section 4.4

demonstrated the numerical scheme's ability to handle turbulent �ows and produce accu-

rate results. These simplistic initial test cases were necessary to develop the method, as it

was unclear whether any of the existing approaches in the literature for compressible �ows

[25, 80, 82, 83], would be applicable turbulent incompressible �ows.

The continuation algorithm proved most e�ective when the initial solve was undertaken for

low Reynolds number, laminar �ows. This provided a su�ciently close initial approxima-

tion for the nonlinear Newton solver, such that the turbulence model could be incorporated

into the calculations. For the simple geometries seen in Section 4.4, this approach was very

successful in accelerating �ows through the region of Reynolds numbers associated with

the laminar to turbulent transition. However, the approach of a �xed percentage increase
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in Reynolds number for each successful �ow simulation appears to be too strict. Instead, a

methodology of relatively small increases in Reynolds number when approaching and pass-

ing through the �laminar to turbulent �ow transition� should be implemented, since these

are the values for which the calculated �ow changes most signi�cantly between successive

solves. Then, larger increases in Reynolds number may be used once the turbulent �ow is

fully developed. As such, this algorithm was revisited and revised in Chapters 6 and 7 to

implement these �ndings.

Through the careful analysis of inverse estimates, we were able to extend interior penalty

DGFEMs to computational meshes consisting of anisotropic curvilinear elements in Chap-

ter 5. This novel extension of the DGFEM allowed us to handle the industrially relevant

Aachen turbine cascade test case in Section 5.4. The proposed new method for estimating

the value of the discontinuity penalisation parameter is a re�nement of the approach in

[67, 77]. The only restriction we place on the element shape, is that each of its edges

must be able to be described using only polynomials, allowing for maximum and minimum

bounds to be placed on the Jacobian of the element transformation. In practice, this allows

for elements to adhere exactly to blade and structure edges, with these often de�ned, for

manufacturing purposes, with piecewise quadratic curves. Further, the relatively low, ex-

tra computational cost of the proposed implementation, compared to the standard interior

penalty DGFEM, makes it ideal for use on large scale industrial �ow problems.

In Chapter 6, we developed an a posteriori error indicator based on the dual-weighted-

residual approach, in order to drive a mesh re�nement algorithm. In particular, we followed

Hartmann [80], applying approximations to the dual solution in order to derive a weighted

error bound. After careful analysis of the errors of these approximations, we presented

a suitable target functional based upon the wake pressure de�cit [114]. The numerical

experiments in Section 6.6 demonstrate the viability of the DWR approach for use on high

Reynolds number, turbulent incompressible �ows. Further, we improved the continuation

algorithm proposed in Chapter 4, incorporating the �ndings presented there, as well as

mesh re�nement/coarsening to improve the overall accuracy of the numerical solution.

An alternative approach would be to employ the continuation algorithm as it is proposed

in Chapter 4, then re�ne the solution once the desired Reynolds number has been met.

However, particularly in the case of high Reynolds number �ows, the system of equations

are extremely sti�, limiting re�nement to very small changes in mesh density before a

further calculation of the numerical solution is required. This a�ects the overall e�ciency

of the DGFEM solver, increasing the number of computations required to simulate �ows

for a given Reynolds number and target error value. As such, for industrial applications,

we recommend carrying out mesh re�nement passes during the continuation process in

order to balance the reduction in numerical error with the increase in Reynolds number.

On the other hand, as noted in Chapter 4, the �ow changes most signi�cantly when the
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Reynolds number passes through the �laminar to turbulent �ow transition,� so the level

of mesh re�nement should considered carefully if the �ow is not yet fully turbulent. This

issue was further addressed in Chapter 7, following the introduction of polytopic meshes.

Finally, in Chapter 7, we extended our work and the knowledge in the literature to consider

an interior penalty DGFEM suitable for high Reynolds number, turbulent, incompressible

�ows on computational meshes consisting of general polytopic elements. We introduced the

construction of such meshes in both two and three dimensions, demonstrating DGFEMs

�exibility to naturally handle hanging nodes. We then derived a suitable discontinuity-

penalisation function to stabilise the method, through the use of inverse estimates on

standard triangular and quadrilateral elements. Further to this, we discussed some ap-

proximations required for the implementation of this method, namely the choice of basis

functions and the quadrature rule. We presented a number of alternative methods which

are popular in the literature, before deciding upon a Cartesian bounding box approach for

the basis functions, and the integration of homogeneous functions for the quadrature rule.

In Section 7.5 we presented a number of numerical experiments that extended the a pos-

teriori error indicator results of Chapter 6 to general computational meshes consisting of

polytopic elements. We made further improvements to the re�nement and continuation

algorithms, focusing the continuation steps close to the Reynolds numbers associated with

the laminar to turbulent transition of the �ow, and reducing the number of mesh re�ne-

ment passes until the �ow is fully turbulent. This approach has proven to be most e�ective,

reducing the amount of unnecessary mesh re�nement associated with re�ning laminar or

transient �ows before the Reynolds number could be increased to make the �ow turbulent.

The use of polytopic elements reduced signi�cantly the number of degrees of freedom

required to represent the numerical solution for a given Reynolds number, as shown in

Sections 7.5.1 and 7.5.2. This is most clear when we compare the meshes in Figure 7.5.2

with Figure 6.6.2. The mesh agglomeration in Figure 7.5.2 allows for far larger mesh

elements to develop in areas of almost laminar �ow in fewer re�nement passes. Additionally,

Table 7.2 shows that in using these more e�cient polytopic mesh elements, we are not

sacri�cing the accuracy of the numerical solution.
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8.1 Contributions of this Work

The contributions of the work are summarised below.

An Interior Penalty DGFEM for the Incompressible Navier-Stokes Equa-

tions with the k − ω Turbulence Model

We have discussed a number of developments and advantages of using an interior penalty

DGFEM for the types of high Reynolds number �ows common in industrial turbomachin-

ery applications. The reduced stencil compared to other DGFEMs, along with the e�cient

manner with which we are able to incorporate isotropic, anisotropic and curvilinear el-

ements, means that we are able to consider very general geometries without sacri�cing

computational e�ciency.

A DGFEM for High Reynolds Number, Turbulent, Incompressible Flows

on Polytopic Meshes

This work has demonstrated the e�ectiveness of polytopic meshes for turbomachinery �ow

problems. The ability to agglomerate mesh elements in near laminar areas of the domain

more e�ectively than with standard elements, greatly reduces the number of degrees of

freedom required to achieve accuracy su�cient for engineering applications.

A Continuation Type Algorithm to Find Numerical Solutions for High

Reynolds Number, Turbulent, Incompressible Flows

1. Choose a target Reynolds number and decide upon the inlet conditions for the �nal

simulated �ow. Generate the initial mesh of the geometry.

2. Solve on the initial mesh with the inlet conditions chosen above, a low Reynolds num-

ber (50 ≤ Re ≤ 300) laminar �ow, without calculating the turbulence model variables

k and ω̃. The initial estimate of the numerical solution required for the nonlinear

solver should be 0 for all variables.

3. Solve on the initial mesh, with the same inlet conditions and Reynolds number, a

turbulent �ow using the previous laminar solve as the initial guess for the nonlin-

ear solver. The boundary conditions for the turbulent variable ω̃ should be chosen

according to the channel �ow results for the appropriate Reynolds number.
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4. Find the Reynolds number for which the �ow transitions to be fully turbulent for the

chosen geometry. Select a suitable target functional, as well as, a mesh re�nement

percentage, U%, and a coarsening percentage, L%.

5. Increase the Reynolds number of the �ow, adjust the boundary conditions for ω̃ and

solve on the previous mesh. The value by which you are able to increase the Reynolds

number varies depending on how similar the previous numerical solution is to the

new solution. In general, we found an increase of 10% to be suitable. However, if

the nonlinear solver fails to converge, this value should be decreased and the step

repeated until it does.

6. Re�ne the mesh. Calculate the numerical error according to the chosen target func-

tional using the DWR method in Chapter 6. Then, re�ne the U% of elements with

the largest error values, and coarsen the L% of elements with the smallest error

values. Mesh re�nement should be carried out once the �ow reaches predetermined

Reynolds numbers. These values are chosen such that re�nement passes are more

frequent when the Reynolds number is approaching the target value set out in Step 1.

Additionally, we limit the total number of mesh re�nement passes until the Reynolds

number has increased beyond the turbulent transition value. We found 4 passes to

be a reasonable balance between numerical accuracy and computational e�ciency.

Additional re�nement passes at these lower Reynolds numbers left the �nal mesh

over re�ned in areas we expect to have almost laminar �ow.

7. Solve on the new re�ned mesh for the same �ow parameters.

8. Repeat Steps 5,6 and 7 until the target Reynolds number is met. Then, continue

re�ning the �nal numerical solution until a desired degree of numerical accuracy is

met according to the chosen target functional.

8.2 Future Developments

This work has demonstrated the viability of interior penalty DGFEMs for industrial ap-

plications. Whilst this research has been restricted to the computation of turbulent in-

compressible �ows on various mesh types, it would be interesting to extend this to include

compressible �ows. Incompressible �ows are used widely in the turbomachinery industry,

often for modelling �ows through seals and pressure outlets. However, in order to take

advantage of DGFEMs natural ability to remain stable and to handle adverse solution gra-

dients such as those generated by shock waves in supersonic �ows, one should eventually

consider the compressible Navier-Stokes equations. Whilst the compressible Navier-Stokes

equations are discussed at length in the literature [80], this type of problem has not yet been
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considered for turbulent �ows on general computational meshes consisting of polytopic or

curvilinear elements.

In order to improve the continuation type algorithm detailed above, we may wish to con-

sider anisotropic mesh re�nement. Placing long, thin elements along aerofoil or blade edges

will better capture boundary layer �ows. These �ows change and develop very quickly when

the observer is moving perpendicular to a boundary wall, but change reasonably slowly

when the observer is moving parallel to the boundary wall. Therefore, by exploiting the

stability a�orded by the curvilinear penalty parameter proposed in Chapter 5, we are able

to maintain the geometry of the boundary, as well as improve the e�ciency of the DGFEM

solver compared to using standard isotropic re�nement. This is because the value of Cγ ,

allows for elements to be scaled in either of the coordinate directions, allowing e�ective

re�nement of very general aerofoil geometries. The implementation of this strategy is

detailed in Figures 8.2.1,8.2.2 and 8.2.3.

Figure 8.2.1: Anisotropic re�nement parallel to the boundary wall.

Figure 8.2.2: Anisotropic re�nement of a quadrilateral element. (Type 1).

Figure 8.2.3: Anisotropic re�nement of a quadrilateral element. (Type 2).
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Other types of anisotropic re�nement could also be considered, including weighted node

placement [77]. This is particularly useful when trying to capture streamlines in a solution.

For a complete review of these techniques, we refer to [77] and the references cited therein.

The numerical results presented in Chapters 5 and 6 are calculated on meshes that contain

curvilinear boundary elements only. Whilst this does address the issue of current generation

FVM solvers, which employ piecewise-linear polynomials to approximate what are often

quadratic curves in the underlying geometry we have been able to extend this concept

further into polytopic meshes. The next natural extension is to employ a mesh which

consists of only curvilinear elements, directed such that they capture laminar streamlines

parallel to their largest principal axis. The current discontinuity-penalisation function

does allow for the construction of a stable DGFEM in this setting, but the automatic mesh

re�nement algorithm must be updated. A node shifting algorithm would also need to be

considered in order to implement this concept, see Figure 8.2.4.

Figure 8.2.4: Mesh re�nement about streamlines.

In this work, we only considered the control of the error in some target functional. We

did not consider the use of norm based error estimates for Chapters 6 and 7 . It would

be very informative to industry representatives to present a comparison between the two

approaches, and to see how applicable the di�ering re�nement algorithms are for high

Reynolds number turbulent �ows.

Another point of consideration for industrial applications is the correct method of resolv-

ing rotational frames of reference within computational meshes. A full turbine stage is

traditionally modelled by three separate computational meshes as shown in Figure 8.2.5,

with periodic boundary conditions analogous to those in Section 5.4.1, and mixing planes

(red) introduced where the meshes join. This is to re�ect the design of industrial turbo-

machinery, with a set of rotating turbine blades between two stages of stationary stator

blades. Flow passes through the domain from left to right, with the mixing planes used
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to correct the �ow as it moves from a stationary to a rotational frame of reference, and

then back again before exiting. However, implementation of this mixing interface in the

interior penalty DGFEM for the RANS equations is unclear, in particular, the de�nition of

the discontinuity-penalisation parameter across the interface. This would therefore prove

to be a useful avenue of future research, especially for validating DGFEMs for industrial

purposes.

Figure 8.2.5: Three-dimensional 1.5 stage turbomachinery domain.

The approaches to mesh design and to the de�nition of the discontinuity-penalisation

parameter could be extended further to consider other techniques for turbulence modelling.

With ever-increasing computing power, especially in terms of computing clusters, Large

Eddy Simulation (LES) is becoming more attractive for industrial applications. The ability

to resolve the largest of the turbulent eddies, compared to RANS, which resolves none and

only approximates the �ow, is very appealing to industry leaders such as General Electric.

This then o�ers the opportunity to resolve more of the �ow features, dependent only on

the time available to carry out the simulation. DGFEMs for LES have been considered

in the literature [63], but have never been considered for polytopic meshes. This would

involve the construction of a new DGFEM discretisation for the time-dependent Navier-

Stokes equations, as well as considerations for new boundary conditions. We believe that

this type of problem would bene�t greatly from the application of polytopic meshes, with

elements of arbitrary shape able to accurately capture the complicated geometry of the

swirling eddies.

Through the exploration of an interior penalty DGFEM for LES, we would also need

to explore the question of time step adaptivity. By their very nature, time dependent

problems must be solved for each time step. However, this has a very high computational

cost associated, and as such, is a worry for the industrial sector due to the time constraints

they place on numerical simulations. A time step adaptive method allows for variation

in the length of the time steps of the calculation, extending the length during intervals
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of almost laminar �ows, whilst contracting them during intervals of high turbulence. As

such, adaptivity in space, as well as time, would go a considerable way to resolving the

practical issues associated with LES for large-scale industrial applications.
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