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They said an analytics man does not have
a heart. But I ran the numbers, and nothing
could be farther from the truth.

«Trust the Process.»



Abstract

Multilevel Modelling of
Electronic Health Records

by

Alessandro Gasparini

The use of electronic health records (EHRs) is increasingly common in applied research,
providing the opportunity to answer more relevant and detailed clinical questions.
Among others, assessing the quality of routine care, enabling pragmatic clinical trials,
investigating temporal trends and the natural evolution of diseases. The e�ective use of
EHRs in medical research provides several opportunities, but challenges persist.

The principal aim of this Thesis consists of investigating methodological challenges, with
focus on the multilevel structure of EHRs. First, I studied shared frailty survival models
for clustered survival data and the impact of model misspeci�cation on estimates of
risk and heterogeneity. Then, I investigated joint models for longitudinal and survival
data and their use to account for the drop-out and observation processes in the analysis
of longitudinal data. Drop-out and the timing between observations are likely not
independent of the outcome of interest in the settings of EHRs, therefore violating
common assumptions of traditional methods. Focussing on the observation process, I
compared the joint modelling approach to other methods previously proposed in the
literature via Monte Carlo simulation. Lastly, given the use of simulation methods
throughout this Thesis, I introduced newly-developed software in R to aid, support,
and supplement their analysis.

The results of this Thesis highlight the importance of properly modelling the baseline
hazard, frailty distribution, and assessing model �t in shared frailty survival models, as
clinically-relevant biases may arise otherwise. Moreover, the joint modelling approach
showed superior performance and �exibility when modelling the observation process,
with a consistent pattern across all simulated scenarios.

I illustrated the above-mentioned results in practice using real-world data on chronic
kidney disease and intensive care medicine, emphasising once again the requirement
for appropriate statistical methods that can accommodate the complexities commonly
encountered in the settings of EHRs.
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1 Introduction

1.1 Electronic Health Records in Medical Research

The use of electronic health records (EHRs) is increasingly common in applied

epidemiological research. EHRs consist of longitudinal data collected and recorded

during the routine delivery of healthcare to patients and stored in a digital format. The

following information is generally included, although there may be variations between

countries:

• Demographics;

• Biomarkers such as blood pressure, cholesterol levels, etc.;

• Diagnostic codes, stored as part of a physician’s diagnosis of a given disease or

condition;

• Pharmacy prescription and utilisation data;

• Billing codes, collected e.g. for repayment purposes or resources allocation;

• Any other information arising as part of health care delivery and stored by

physicians, nurses, etc.

Further to that, EHRs can be linked to other data sources such as nationwide

disease-speci�c registries to conduct observational and clinical research at a previously

unattainable scale; examples of cohorts constructed in such way are CALIBER

(CArdiovascular disease research using LInked BEspoke studies and electronic health

Records [1], the Stockholm CREAtinine Measurements (SCREAM) project [2], and the

Clinical Practice Research Datalink (CPRD) [3]. For instance, CPRD included individual

patient data from a network of GP practices across the United Kingdom and linked

primary care data to - among other data sources - hospital episode statistics, outpatient

data, cancer data from Public Health England, deprivation data, and so on.
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The amount of EHR data being digitally generated and collected every day is growing

at an unprecedented pace and presents several opportunities to enhance and transform

medical practice and research. For instance, the high-resolution data with a complete

longitudinal follow-up that can be created by extracting EHRs and linking with other

relevant data sources is a feature that is completely unattainable with traditional

observational study designs. EHRs cohorts include (potentially) millions of individuals

with repeated measures over time, and do not require investigators to wait and collect

data for several years before being able to answer the questions that lead to the inception

of the study. Further to that, EHRs cohorts allow researchers to examine the entire

medical history of patients, potentially including data across all of their lifespans. By

doing so, innovative and more detailed questions can be answered: among others,

how do diseases evolve over time? Are there noteworthy temporal trends in disease

incidence or severity? Is there a sequence of preliminary, minor events leading to more

serious adverse outcomes, and if so, can this sequence be detected, and serious outcomes

avoided or accurately forecasted? Can treatments be applied earlier, and if so, would

that bene�t patients?

Another bene�t emerging from the use of EHRs cohorts is the possibility to study

interventions in real-world settings. For instance, using EHRs it would be possible to

study whether treatments are safe in patients that are commonly excluded in clinical

trials but end up receiving the drug in clinical practice (e.g. because of lack of guidelines).

As an example, a link between medications commonly prescribed to inhibit the secretion

of gastric acid (proton pump inhibitors, PPIs) and kidney failure was recently observed

[4].

Rare disease can also bene�t from the use of EHRs in research. The large amount of data

at hand allows including a larger number of events (compared to traditional study designs)

and therefore alleviates the methodological constraints of studying rare outcomes. As

an example, chickenpox as a risk factor for stroke in children was investigated using

UK-based EHRs cohorts [5]; the authors concluded that indeed children experiencing

chickenpox were at increased risk of stroke during the subsequent 6 months.

Finally, EHRs can not only improve observational research but also help to enhance

clinical trials and to enable pragmatic clinical trials [6]. EHRs can directly inform the
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design of clinical trials, enable the identi�cation of optimal target populations, and allow

the accurate estimation of event rates (as observed in clinical practice). Moreover, data

extracted from EHRs could be linked to trial data at a fraction of the cost, increasing the

generalisability of trial results to external populations.

However, data sources constructed by extracting EHRs present several challenges

that need to be addressed. The challenges arising from the use of EHRs could be

broadly classi�ed in methodological, computational, technical, and privacy, data security

and consent-related issues. The innovative nature of EHRs-based research yields

methodological issues, as traditional methods may not be valid (or their assumptions

may be violated) in the settings of EHRs. Some of these issues form the core of this

Thesis, as described in more detail in Section 1.2. For instance, new observations are

recorded in EHRs every time individuals are visiting their doctor or are attending

specialist visits. The existence of EHRs is therefore likely correlated with the underlying

disease severity: patients with more severe conditions (or showing early symptoms of a

disease) tend to visit their doctor or go to the hospital more often than those with milder

conditions (and no symptoms). Their worse disease status is also likely to be re�ected in

worse biomarker values being recorded as such visits, causing abnormal values of such

biomarkers to be over-represented and normal values to be under-represented.

Computational and technical issues arise as the amount of available data often requires

ad-hoc storage and access systems, and powerful high-performance cluster computers

to run the most demanding analyses. With millions of observations, computationally

expensive statistical methods become unfeasible to apply: for instance, methods that

require numerical integration (e.g. joint models for longitudinal and survival data) are

almost impossible to �t with more than a few thousand individuals, in practice. Technical

issues arise as clinical conditions are often not clearly de�ned in EHRs, and researchers

are faced with the challenge of de�ning which individuals have been diagnosed with

a particular condition. The task of de�ning medical conditions from data is known as

phenotyping, and it becomes extremely challenging when multiple sources of data are

linked together as in the case of EHRs. Diagnostic codes may be present, but they may

be primary or secondary codes; conditions may be recorded at di�erent moments in

time, and several related conditions may be covered by single codes. To make the matter

worse, there are no standard methodologies to help researchers de�ne, share, and evaluate
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phenotypes de�ned from electronic health records, although research in the area is very

active; note for instance the eMERGE consortium, a network that aims to combine DNA

biorepositories with electronic medical record systems for large scale, high-throughput

genetic research in support of implementing genomic medicine [7]. Another technical

issue is the de�nition of the research cohort for a given project, requiring the description

of the population from which individuals are sampled, inclusion and exclusion criteria,

follow-up, and handling of missing data. In the settings of EHRs, it is necessary to report

as well which data sources were included, information on the quality of the administrative

records, phenotyping algorithms. The reporting of all of those details can be described

to some extent in published manuscripts but is often lacking despite the emergence of

reporting guidelines (e.g. the RECORD statement [8]).

Finally, privacy, data security and consent-related issues. This aspect is among the most

complex, as regulations and attitude towards it vary noticeably around the world. The

security of data is of high priority, but access should not be restricted to the extent that

data becomes of limited utility. Distributed analyses of potentially multi-national cohorts

have the advantage of allowing data to remain with the individual site, but they require

systems to be put in place and appropriate analysis methods. Assuring the security and

privacy of patients’ data is of primary interest, to preserve the trust of the public in EHRs

systems. Informed consent is also problematic, as individuals are not recruited directly,

and informed consent cannot be sought on an individual basis. A recent survey in the UK

concluded that 91% of respondents expected to be explicitly asked for consent for their

identi�able records to be accessed for health provision, research or planning, while half

the respondents (49%) did not expect to be asked for consent before their de-identi�ed

records were accessed [9].

In conclusion, using EHRs for research purposes has the potential to transform medical

research, with several exciting opportunities to answer new questions and apply

innovative designs. However, this potential comes at the cost of new challenges that

need to be meaningfully addressed. Challenges and opportunities following from

EHRs-based research are further described elsewhere [10–13].
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1.2 Aims of the Thesis

With this Thesis, I will focus on methodological challenges encountered when analysing

EHR data. In particular, I will focus on the multilevel (hierarchical) structure of EHRs and

I will investigate statistical methods that can be used to analyse survival and longitudinal

data in the settings of EHRs.

To illustrate examples of the multilevel structure of EHRs data and how it �ts in the

settings of survival and longitudinal data, consider the following examples. In routine

health care, patients generally visit their primary care practice as the �rst line of access

to health care (e.g. for more general inquiries). Every time a subject attends a visit, their

medical pro�le is updated, and a new record is added to the database of health records;

furthermore, a single individual can attend multiple visits, yielding several repeated

records over time. When extracting EHRs from the primary care practices for research

use, two hierarchical structures can be identi�ed. First and foremost, individuals are

nested within practices: this leads to (potentially) signi�cant homogeneity between

individuals registered at a given practice (e.g. people living in the same neighbourhood),

and heterogeneity between practices. Assuming the aim of the analysis is the time

until the occurrence of an event of interest, it is necessary to take into account the

multilevel structure of the survival data being analysed. The second hierarchical structure

arises as a consequence of the repeated measures recorded each time an individual is

attending a visit at their practice: the measurements from a given individual are correlated

(with substantial within-subject homogeneity), while there is heterogeneity between

individuals. In this scenario, geographical nesting within e.g. primary care practices still

apply.

The work described in this Thesis is two-fold. First, I am investigating how model

misspeci�cation a�ects survival models that take into account the hierarchical structure

depicted in the �rst example above. Then, I focus on the second setting described above

and how models for longitudinal data perform in the settings of EHRs. In particular, I am

studying how the violation of common modelling assumptions - violations that are likely

encountered in the settings of EHRs - a�ect the analysis of repeated measurements data.

Further details are presented in the next Section, where I will be outlining the structure

of this Thesis.
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1.3 Structure of the Thesis

The Thesis is organised as follows.

First, I introduce the basics of longitudinal and survival data analysis in Chapter 2.

Relevant notation that will be used throughout the whole Thesis is introduced, as well

as common methodologies used to analyse this kind of data that will form the basis of

methodological work described later on.

Then, in Chapter 3 I describe two motivating clinical examples that will be used to

illustrate the methodological developments of this Thesis in practice.

Next, in Chapter 4 I will introduce Monte Carlo simulation studies, the rationale for their

use, and details on how to plan, run, and analyse them. Monte Carlo simulations are

heavily used throughout this Thesis, hence the importance of carefully planning and

analysing their results. In the same Chapter I will also introduce open source software

that I developed during my PhD to aid the analysis and the dissemination of results from

Monte Carlo simulation studies.

Chapter 5 describes methods used to analyse multilevel survival data. Multilevel survival

data arises often in EHRs, e.g. as patients are often clustered within GP practices, which

are clustered within regions, and so on. This multilevel structure induces correlation

between patients within the same cluster, correlation that needs to be accounted for in

the analysis. I will focus on survival models with random e�ects (e.g. survival models

with shared frailty terms), and I will illustrate the results of a thorough investigation of

the impact of model misspeci�cation in shared frailty survival models. To the best of my

knowledge, this is the most extensive investigation on the topic in the current literature.

Chapter 6 introduces the joint modelling of longitudinal and survival data. EHRs often

include information on survival and repeated measures of biomarkers recorded over time;

joint models for longitudinal and survival data (referred to as joint models in short) bring

those two components together, allowing them to inform each other. Joint models are

also useful when modelling longitudinal data where the assumption of independence

between values of the longitudinal outcome and drop-out from the study is violated; such

violation is likely to happen with EHRs data and will be discussed in more detail.
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Chapter 7 will further investigate the use of joint models to overcome another limitation

of models for longitudinal data. Speci�cally, they assume independence between the

value of the longitudinal outcome and the timing of each measurement. In the setting

of EHRs, that assumption is likely violated as individuals often visit their doctor (and

trigger new observations to be recorded) when they feel unwell; this leads to the

overrepresentation of sicker individuals compared to the general population and needs

to be accounted for in the analysis.

Finally, I will conclude with a summary of the Thesis and a discussion on future work

in Chapter 8. In particular, I will introduce the natural extension of the joint modelling

approach described in Chapter 7: a multivariate joint modelling framework that can

account for both an informative observation process and informative drop-out at the

same time.
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2 General Methods for the Analysis of Survival

and Longitudinal Data

2.1 Outline

This Chapter will introduce the foundations of survival analysis, including de�ning

characteristics of survival data and methods and models commonly used to analyse

survival data. Analogously, I will also introduce longitudinal data, its de�ning

characteristics, motivating examples, and methods to analyse repeated measurements

data. This chapter will (1) lay foundations and de�ne notation that will be used later on

throughout the Thesis, and (2) form the basis for methodological developments of this

Thesis, especially Chapters 5 and 7.

2.2 Analysis of Survival Data

The term survival data denotes data that measures the time until the occurrence of an

event. Examples of events that may be of interest in biomedical research are death, disease

onset, disease recurrence. However, survival data is not restricted to biomedical research:

for instance, time to failure of a mechanical component is survival data commonly

encountered in industrial settings, and time to acceptance of a job o�er for an unemployed

person is survival data encountered in economics. From now onwards, I will focus on

examples in biomedical settings for simplicity. In some cases, the event of interest may be

the transition from a state to another, e.g. the transition from alive to dead or the transition

from healthy to diseased. The branch of survival analysis that focuses on modelling the

probabilities of transitioning from one state to another is named multi-state modelling

and is outside the scope of this Thesis. Nevertheless, a simple survival setting can be
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considered as a simpli�ed version of multi-state modelling.

2.2.1 Censoring and Truncation

One of the de�ning characteristics of survival data is that one has to wait for the event

of interest to happen, hence not all study subjects may have experienced the event of

interest by the end of the study. Such individuals may experience the events later on,

but such knowledge is generally not available. Consequently, the outcome of survival

data is generally only observed for a subset of individuals, therefore it is not possible to

use standard methodology (such as ordinary linear regression) and it is necessary to use

ad-hoc methods.

The fact that observations may be incomplete is denoted censoring, and it is illustrated in

Figure 2.1. Say I have 5 study subjects recruited over 2 years, allocating a total of up to

10 years of follow-up for each study subject. Individuals are included over time; hence

they start being observed at irregular times. I stop observing people after they have been

in the study for 10 years: events that happen before that time point are observed (study

subjects A, B, C), while individuals event-free at the end follow-up (D, E) are denoted as

censored. In particular, this kind of censoring is denoted as right censoring, as survival

times are cut o� on the right side: the true, unobserved survival time is equal to or greater

than the observed time. Beside right censoring, survival times can be left censored or

interval censored. Left censoring occurs when the true survival time is less than or equal

to the observed survival time, for instance when a subject tests positive for a disease: in

other words, if a person is left-censored at time t , it is known that they had an event

between time 0 and t , but the exact time of event is unknown. Interval censoring occurs

when the true survival time lays within a known time interval: if a subject tests negative

for a disease at time t1 and positive at time t2, I would know that the true survival time

of the subject lays in the interval (t1, t2) but I do not know the exact time of disease onset.

Further details on censoring are presented in Chapter 1 of Kleinbaum and Klein [14].

Another feature of survival data often confused with censoring is truncation. Similarly

to censoring, it is possible to identify di�erent types truncation: left, right and interval

truncation; I focus on left truncation which is more common alongside right censoring.

Left truncation, also referred to as delayed entry, arises when subjects have been at risk
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Figure 2.1: Example of survival data for 5 subjects; the left panel depicts the survival data on a
calendar timescale, while the right panel depicts the data on a study timescale

before entering the study. For instance, assuming that subjects enter a study at time

t0 > 0, left truncated subjects are not observed between time 0 and t0.

It is possible to identify two types of left truncation:

1. The �rst type of left truncation occurs when the subject has the event before t0

and thus is not included in the study;

2. The second type of left truncation occurs when the subject survives (loosely

speaking) beyond t0 and is therefore observed in the study.

For instance, delayed entry is common when using age as the time scale in

epidemiological studies, as a way of controlling for age rather than adjusting for

it at baseline [15, 16]: in this setting, patients become at risk at the age that they

e.g. are diagnosed with a given disease rather than when they are �rst observed. As a

consequence of that, analysis methods need to account for delayed entry by conditioning

on survival up to entry time. This topic is further discussed elsewhere [14].

If considering the �ve individuals depicted in Figure 2.1, it is immediately obvious that ad

hoc statistical methods are required to analyse this kind of data. The true survival time of

subjects D and E is unknown; therefore, it is not possible to calculate the mean, standard

error, or apply any statistical test. In Section 2.2.3 I will introduce non-parametric
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methods that can be applied to survival data, while in Section 2.2.4 I will introduce

regression models commonly �tted to survival data.

2.2.2 Notation

I denote the random variable for an individual’s survival time with T ∗; it denotes time and

can, therefore, assume any non-negative value. Lower-case t ∗ represents a realisation

of T ∗ for a given individual. In the case of right censoring, I denote with C the random

variable representing censoring time, and c its realisation. The observed time is denoted

with T = min(T ∗, C), and its realisation is t . Finally, I denote with D = I (T ∗ ≤ C)

the random variable indicating either occurrence of the event of interest or censoring;

analogously as before, its realisation is lower-case d .

Next, I will de�ne two of the main quantities of interest in survival analysis, the survival

function and the hazard function. They are both functions of the observed time t and

are denoted by S(t) and ℎ(t), respectively.

The survival function is the complement of the cumulative distribution function of the

observed time T and represents the probability that a given individual survives (loosely

speaking) longer than t :

S(t) = 1 − FT (t) = 1 − P (T ≤ t) = P (T > t) (2.1)

t ranges (theoretically) between zero and in�nity, hence the survival function can be

plotted as a smooth, continuous function that tends to zero as t goes to in�nity. An

example survival function is plotted in Figure 2.2, panel A.

The hazard function ℎ(t) is the limit of the probability of the survival time T laying within

an interval [t, t + Δt) given that an individual survived up to time t divided by the length

of the interval Δt , for Δt approaching zero:

ℎ(t) = lim
Δt→0

P (t ≤ T < t + Δt |T ≥ t)
Δt

(2.2)

It represents the instantaneous potential (e.g. risk) for the event to occur within the

interval [t, t + Δt) (with Δt → 0), given that the individual survived up to time t . The

hazard function is always non-negative, it can assume di�erent shapes over time, and it
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Figure 2.2: Example of survival (panel A) and hazard (panel B) function.

has no upper bound. An example hazard function is plotted in Figure 2.2, panel B.

The survival function and the hazard function are strictly related. In fact, there is a clearly

de�ned mathematical relationship between them, and it is possible to derive the form of

S(t) when knowing the form of ℎ(t) (and vice versa). Formally:

S(t) = exp [− ∫
t

0
ℎ(u) du] (2.3)

ℎ(t) = − [
)S(t)/)t
S(t) ] (2.4)

A third quantity of interest strictly related to the survival and hazard functions is

the cumulative hazard function H (t). The cumulative hazard function represents the

accumulation of hazard ℎ(t) over time, and is de�ned as

H (t) = ∫
t

0
ℎ(u) du; (2.5)

it can be expressed in terms of survival function, via the relationships H (t) = − log S(t)

or alternatively S(t) = exp(−H (t)).

The notation presented in this Chapter follows Collett [17], where further details can be

found. The hazard function ℎ(t) and the survival function S(t) form building blocks for
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the methods that I will be presenting in the following Sections and Chapters.

2.2.3 Non-Parametric Methods

The survival function can be estimated from survival data using a non-parametric method

known as the Kaplan-Meier product-limit method [18]. Let ti be the distinct failure times,

nti the number of individuals at risk before time ti , and dti the number of events observed

at time ti . The Kaplan-Meier non-parametric estimate of the survival function is then:

Ŝ(t) = ∏
i|ti≤t

(
ni − di
ni ) (2.6)

In practice, the Kaplan-Meier estimate of the survival function appears as a step function

as individuals can be observed at discrete times only and not all individuals may

experience the event before the end of the study.

It is possible to obtain a standard error for the estimate above using the Greenwood

formula [19]:

V̂ar(Ŝ(t)) = Ŝ2(t)∑
i|ti≤t

dj
nj(nj − dj)

(2.7)

Another analysis often of interest when dealing with survival data consists of comparing

the survival times obtained from two (or more) groups of individuals. Say for instance that

I am interested in comparing the survival function of two distinct groups, e.g. treated and

non-treated individuals. It is possible to plot the Kaplan-Meier estimate of the survival

function for each group as in Figure 2.3. The two functions largely overlap, showing that

the survival function is similar between the two groups.

However, the next step requires using some hypothesis testing procedure to formally

assess whether the two survival functions are statistically signi�cantly di�erent. An

appropriate test to compare two groups of survival data is the so-called log-rank test

[20].

Consider the two groups depicted in Figure 2.3; say there are r distinct death times,

denoted as t(1) < t(2) < ⋯ < t(r) across the two groups, and that at time tj there are d1j

deaths in group 1 (e.g. treated) and d2j in group 2 (e.g. untreated), for j = 1, 2,… , r . Say

there are n1j and n2j individuals at risk just before time t(j) for group 1 and 2, respectively.
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Figure 2.3: Kaplan-Meier estimate of the survival function for two study groups, e.g. treated
and untreated individuals.

Consequently, there are dj = d1j + d2j events out of nj = n1j +n2j individuals at risk at time

t(j). Consider the null hypothesis of no di�erence between the two survival functions;

a way of assessing the validity of this hypothesis consists in comparing the observed

number of events at each distinct events time in each group against the expected number

of events under the null hypothesis. The expected number of events in group 1 at time

t(j) under the null hypothesis can be computed as

e1j =
n1jdj
nj

, (2.8)

and analogously for group 2.

We can then construct the following test statistic:

WL =
U 2
L

VL
∼ � 21 , (2.9)

where

UL =
r

∑
j=1
(d1j − e1j) (2.10)
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and

VL = Var(UL) =
r

∑
j=1

n1jn2jdj(nj − dj)
n2j (nj − 1)

. (2.11)

The test statisticWL follows a � 2 distribution with one degree of freedom and summarises

the extent to which the observed survival times in the two groups deviate from the

expected number of events under the null hypothesis.

In the applied example of Figure 2.3, the observed test statistics isW = 0.03. By comparing

the observed value of the test statistics with the quantiles of a � 21 distribution I obtain

a p-value of 0.86, showing that there is not enough empirical evidence against the null

hypothesis of no di�erence between the two groups.

2.2.4 Regression Models for Survival Data

The non-parametric methods presented in Section 2.2.3 can be useful for simple analyses

of a single group of individuals, or to compare the survival function of two or more groups.

However, more complex scenarios often arise. For instance, several characteristics of

the study subjects are routinely recorded, and applying methods such as the log-rank

test in those settings becomes increasingly complex. Including several covariates at once

becomes unfeasible, as does including continuous covariates without categorising them.

To study the relationship between a set of observed covariates and a survival outcome,

several approaches based on regression modelling are routinely used.

Regression models used to estimate the e�ect of covariates on survival times can be

broadly classi�ed into two families: accelerated failure time (AFT) and proportional

hazards (PH) models.

Using the accelerated failure time notation, the logarithm of time t is expressed as a

linear combination of the covariates, yielding a linear model:

log(ti) = xi� + "i , (2.12)

where xi is a vector of covariates for the ith individual, � is a vector of regression

coe�cients, and "i is a residual component with a given density function. The density of

the residual component "i determines the model.
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Conversely, assuming a proportional hazards model, the covariates a�ect the hazard

function multiplicatively:

ℎi(t) = ℎ0(t) exp(xi�), (2.13)

where ℎ0(t) is a baseline hazard function that can be left unspeci�ed or take a given

parametric form. Speci�cally, the baseline hazard function represents the hazard when

all covariates are set to zero (or to the reference level in the case of categorical covariates).

Proportional hazards models where the baseline hazard follows a parametric distribution

are presented in Section 2.2.4.2, while survival models where the baseline hazard function

is left unspeci�ed are presented in Section 2.2.4.1. In addition to that, I will introduce

survival models where the baseline hazard is modelled �exibly in Section 2.2.4.3. Finally,

I will assume the proportional hazards formulation throughout this Thesis.

2.2.4.1 Semi-Parametric Survival Models

The most commonly used regression model for survival data in applied epidemiological

research is the Cox model [21], also known as the Cox proportional hazards model:

ℎi(t) = ℎ0(t) exp(xi�) (2.14)

As illustrated in the previous Section, this model is a proportional hazards model,

analogous to Equation (2.13). Assuming a single binary covariate, the model from

Equation (2.14) becomes:

ℎi(t) =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

ℎ0(t) exp(�) if xi = 1

ℎ0(t) if xi = 0

Comparing the two groups by taking the ratio of the hazard from the two groups, the

resulting hazard ratio (HR) is:

HR =
ℎ0(t) exp(�)

ℎ0(t)
= exp(�)

Consequently, the regression coe�cient � can be interpreted as a log-hazard ratio, that

is, the e�ect of covariates xi on the hazard; this interpretation generalises to multiple

covariates and associated regression coe�cients.
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Fitting a regression model to the observed survival data requires estimating the regression

coe�cients � and the baseline hazard function ℎ0(t). Interestingly, Cox [22] showed that

it is possible to make inference on � without needing to estimate the baseline hazard

function: the Cox model is therefore regarded as semi-parametric, as it is not necessary

to specify a parametric form of the baseline hazard to make inference on the regression

coe�cients.

Estimation of the regression coe�cients � is via the maximum likelihood method. Say

there are n study subjects that experience r events (with n − r censored observations).

Say the r ordered event times are t(1) < t(2) < ⋯ < t(r), and there are no ties. The group of

individuals at risk at time t(j) are denoted with R(t(j)), that is, R(t(j)) represents the number

of individuals event-free immediately before t(j). Cox showed that the relevant likelihood

function for the model above is:

L(�) =
r

∏
j=1

exp(x(j)�)
∑l∈R(t(j)) exp(xl�)

, (2.15)

where x(j) is the covariates vector for the individual experiencing the event at t(j). The

likelihood function in Equation (2.15) is not a true likelihood as it does not use of all

the observed survival times, censored and uncensored; it depends on the ranking of the

observed event times only, and for this reason, it is often referred to as partial likelihood.

Supposing the observed data consists of n survival times (t1, t2,… , tn) paired with a binary

indicator variable di that takes the value zero when the ith survival time is censored,

one otherwise. In this setting the partial likelihood function of Equation (2.15) can be

re-written as follows:

partial L(�) =
n

∏
i=1

[
exp(xi�)

∑l∈R(ti ) exp(xl�)]

di

, (2.16)

where R(ti) is the risk set at time ti . The corresponding partial log-likelihood is:

log partial L(�) =
n

∑
i=1

di [
xi� − log ∑

l∈R(ti )
exp(xl�)]

, (2.17)

which can be directly maximised using any general-purpose optimiser.

So far I illustrated how to estimate the regression coe�cients of a Cox model,

17



i.e. measures that quantify relative risk. However, sometimes it is necessary to estimate

the baseline hazard function ℎ0(t) as well: say for instance that the aim of the analysis

requires estimating the hazard or the survival function. Let �̂ be the estimated regression

coe�cient from a Cox model; the estimated hazard function for the ith individual is:

ℎ̂i(t) = ℎ̂0(t) exp(xi�̂), (2.18)

requiring an estimation of the baseline hazard function ℎ0(t).

An estimate of the baseline hazard function based on the maximum likelihood method

was derived by Kalb�eisch and Prentice [23]. Their method requires an iterative scheme;

hence an approximation of the baseline hazard function is often used. An estimate of the

survival function is given by

S̃0(t) =
k

∏
j=1

exp
(

−dj
∑l∈R(t(j)) exp(xl �̂))

, (2.19)

for t(k) ≤ t < t(k+1), k = 1, 2,… , r − 1. When there are no covariates in the model, the

estimator of Equation (2.19) simpli�es to

S̃(t) =
k

∏
j=1

exp(−dj/nj), (2.20)

which is also known as the Nelson-Aalen estimator of the survival function, a competing

estimator to the Kaplan-Meier estimator from Equation (2.6).

From S̃0(t) it is possible to obtain an estimate for the cumulative baseline hazard function

Ĥ0(t):

Ĥ0(t) = − log(S̃0(t)) =
k

∑
j=1 (

dj
∑l∈R(t(j)) exp(xl �̂))

. (2.21)

This estimate is known as the Breslow estimate (or Nelson-Aalen estimate) of the

cumulative baseline hazard function.

The estimated baseline hazard function follows as

ℎ̂0(t) =
dj

(t(j+1) − t(j))∑l∈R(t(j)) exp(xl �̂)
(2.22)
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for the interval between t(j) and t(j+1). It is possible to see that di�erences in successive

values of the estimated cumulative baseline hazard function Ĥ0(t) provide an

approximation of the baseline hazard function in a given interval.

Further details on the Cox model, including how to compare alternative models, model

selection, interpretation of model parameters, and others are included in Chapter 3

of Collett [17]. Methods to assess the �t of a Cox model and test the assumption of

proportional hazards are included in Chapter 4 of Collett [17].

2.2.4.2 Parametric Survival Models

Proportional hazards models where the baseline hazard function is assumed to follow a

parametric distribution are commonly referred to as parametric survival models. With

the Cox model introduced in Section 2.2.4.1 it is straightforward to estimate measures of

relative risk without the need to model the baseline hazard function. However, when the

assumption of a particular distribution for the baseline hazard function holds inference

will be more precise. In addition to that, parametric survival models provide some

advantages compared to the Cox model. Among others:

1. Parametric models provide smooth estimates of the hazard and survival function

for any combination of covariates;

2. With parametric models it is possible to obtain any type of estimate as a function

of the estimated model parameters;

3. With parametric models it is straightforward to include time-dependent e�ects;

4. Modelling on di�erent scales and implementing multiple time-scales is supported;

5. It is easier to obtain out-of-sample predictions and extrapolation with parametric

survival models compared to the Cox model.

If any of the above is not of interest, though, the Cox model retains the appealing

characteristic of allowing to estimate relative risk without specifying the baseline hazard

function.

Commonly used distribution functions assumed for the baseline hazard are the

exponential, Weibull, and Gompertz distributions. The exponential distribution is
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assuming the following baseline hazard function:

ℎ0(t) = �, (2.23)

with � a positive parameter that can be estimated from data. Exponential hazard functions

with varying values of � are depicted in Figure 2.4. The corresponding survival function

is:

S(t) = exp(− ∫
t

0
� du) = exp(−�t) (2.24)

The Weibull distribution is assuming the following baseline hazard function:

ℎ0(t) = �t−1, (2.25)

with � and  positive parameters, also estimated from data. The  parameter determines

the shape of the distribution, adapting to a wide variety of scenarios; further to that,

when  = 1 the Weibull distribution simpli�es to the exponential distribution. Weibull

hazard functions with varying shape parameters are depicted in Figure 2.4.

The corresponding survival function is:

S(t) = exp(− ∫
t

0
�u−1 du) = exp(−�t ) (2.26)

Finally, the Gompertz distribution is assuming the following baseline hazard function:

ℎ0(t) = � exp(�t), (2.27)

with � and � parameters estimated from data. � is constrained to be a positive parameter,

while � can assume any value yielding hazard functions that are decreasing, stable, or

increasing. Analogously as with the Weibull distribution, by altering the � parameter it

is possible to cover a wide variety of scenarios: Gompertz hazard functions are depicted

in Figure 2.4. The corresponding survival function is:

S(t) = exp(− ∫
t

0
� exp(�u) du) = exp{−��−1[exp(�t) − 1]} (2.28)

The Gompertz model has been often applied in demography and biological sciences, as

20



the Gompertz distribution was �rst introduced as a model for human mortality.

The proportional hazard parametric model follows the same formulation outlined in

Equation (2.13):

ℎi(t) = ℎ0(t) exp(xi�) (2.29)

Assuming e.g. a Weibull distribution for the baseline hazard, the model from Equation

(2.29) can be written as:

ℎi(t) = �t−1 exp(xi�) (2.30)

The corresponding survival function is:

Si(t) = exp[− exp(xi�)�t ] (2.31)

Analogous equations can be derived for the remaining distributions as well.

Parametric survival models can be �tted using the maximum likelihood method. The

likelihood function (assuming right censoring only, and no delayed entry) can be written

as:

L(�) =
n

∏
i=1

ℎ(ti)diS(ti) (2.32)

The log-likelihood follows as

log L(�) =
n

∑
i=1
[di log ℎ(ti) + log S(ti)] , (2.33)

and can be maximised using e.g. the Newton-Raphson method.

2.2.4.3 Flexible Parametric Survival Models

I outlined in Section 2.2.4.2 the advantages of parametric regression models compared

to the Cox model. However, simple parametric functions (such as those introduced in

Section 2.2.4.2) may not be �exible enough to adequately represent the hazard function.

For instance, standard parametric functions are monotonic: the hazard function is stable,

always increasing or always decreasing. Many real-life datasets have hazards that peak

after some time and then decrease: in all of these scenarios, using a simple parametric

distribution would not �t the data well.
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Figure 2.4: Hazard functions following an exponential distribution with given � parameters
(panel A), a Weibull distribution with given � and  parameters (panel B), or a Gompertz
distribution with given � and � parameters (panel C)
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An alternative to parametric regression models for survival data is given by

Royston-Parmar (RP) models, also known as �exible parametric models [24]. RP

models have greater �exibility with respect to the shapes of the survival distributions

they can model, as the baseline hazard is modelled using restricted cubic splines. In

particular, RP models are formulated by modelling the survival times on the cumulative

hazard scale:

logHi(t) = logH0(t) + xi�

The baseline log cumulative hazard function can be modelled by using a restricted cubic

spline function of log-time, logH0(t) = s(log t ;  ):

logHi(t) = logH0(t) + xi� = s(log t,  ) + xi� (2.34)

It can be shown that the model from Equation (2.34) is also a proportional hazards model.

Transforming to the survival scale:

Si(t) = exp{− exp[s(log t,  ) + xi�]},

and consequently to the hazard scale:

ℎi(t) =
)s(log t,  )

)t
exp xi�

However, this involves calculating the derivatives of the restricted cubic spline functions,

which are easy to calculate obtaining closed-form formulæ.

A restricted cubic spline is a cubic spline function that is restricted to be linear before the

�rst knot and after the last knot. Let s(x) be a restricted cubic spline function of x with m

internal knots (k1,… , km), with boundary knots kmin and kmax. Let  be the parameters of

the spline function, and z1,… , zm+1 be newly created variable denoted as basis functions

of the spline. Formally, the restricted cubic spline function of x is de�ned as

s(x) = 0 + 1z1 +⋯ + m+1zm+1, (2.35)

where

z1 = x,
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Table 2.1: Number and location of internal knots for the
spline modelling the cumulative baseline hazard function in
Royston-Parmar models

Knots df Centiles

1 2 50

2 3 33, 67

3 4 25, 50, 75

4 5 20, 40, 60, 80

5 6 17, 33, 50, 67, 83

6 7 14, 29, 43, 57, 71, 86

7 8 12.5, 25, 37.5, 50, 62.5, 75, 87.5

8 9 11.1, 22.2, 33.3, 44.4, 55.6, 66.7, 77.8, 88.9

9 10 10, 20, 30, 40, 50, 60, 70, 80, 90

zj = (x − kj)3+ − �j(x − kmin)3+ − (1 − �j)(x − kmax)3+,

and

�j =
kmax − kj
kmax − kmin

When �tting a RP model, it is necessary to choose the number of internal knots and

the location of the boundary and internal knots. A sensible choice for the boundary

knots kmin, kmax is the smallest and largest uncensored survival time. Conversely, for the

number and location of internal knots, Royston and Parmar suggested knot positions

based on empirical centiles of the distribution of log-time (Table 2.1); these locations are

essentially those recommended by Durrleman and Simon for �exible regression models

with restricted cubic splines [25].

In practice, the number of knots can be selected empirically by �tting several RP models

with varying number of degrees of freedom and then picking the best �tting model using

information criteria such as the Akaike Information Criterion (AIC) and the Bayesian

Information Criterion (BIC) [26, 27], together with evaluating the behaviour of the model

in terms of stability of estimates and convergence properties. However, some authors

suggest that estimates of relative and absolute risk obtained by �tting RP models are

insensitive to the number of degrees of freedom used for the spline function [28, 29].
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Further details on RP and �exible parametric models, including alternative

parametrisations (e.g. proportional odds) and practical applications, are presented in

Royston and Lambert [30].

2.3 Analysis of Longitudinal Data

The de�ning characteristic of longitudinal data is that it consists of repeated

measurements over time for each study subject. In univariate statistics, each study

subject returns a single value for the outcome of interest. Conversely, with longitudinal

data, each individual yields a vector of values collected over time. Therefore, with

longitudinal data:

1. Each study subject yields a vector of observations;

2. The repeated measurements are collected over time.

Example of longitudinal measurements collected over time are body weight, blood

pressure, kidney function, and so on. An advantage of longitudinal studies compared

to cross-sectional studies is that it allows distinguishing changes over time within

individuals from di�erences between individuals at baseline. The ability to partition

the variation in the outcome in within-individual variation and between-individuals

variation is one of the advantages of analysing longitudinal data.

Longitudinal data can be collected prospectively, following subjects over time, or

retrospectively, e.g. by extracting historical records. Clinical trials are prospective

studies where longitudinal data is collected prospectively, while the analysis of

electronic health records is an example of studies where longitudinal data is collected

retrospectively. In addition to that, longitudinal data can be collected using a pre-de�ned

observation pattern (e.g. in clinical trials where measurements are taken at pre-de�ned

follow-up times) or as observed (e.g. when extracting EHRs).

The simplest example of a longitudinal study consists of a study with two repeated

measurements. Say there are 10 children and their weight is recorded at two time points,

as depicted in Figure 2.5. Analysing this longitudinal data it is possible to appreciate

the change over time for each study individual (depicted in black) and for the overall

population (in grey): although the body weight increases over time for the overall
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Figure 2.5: Example of a longitudinal study with 10 individuals and 2 time points, assuming
repeated measurement of body weight. Individual values are depicted in black, with a
super-imposed regression line in grey

population, each individual varies in a subject-speci�c way. This would not be possible by

analysing the body weights measured at each time point using a cross-sectional design.

With the previous example, I assumed that every study individual was measured at the

same point in time. As I mentioned before, this assumption may not always hold e.g. in

analysing EHRs. Generalising the previous example, say a study consists of extracting

the EHRs of 10 children born in 2010. Such study is presented in Figure 2.6 using a

cohort (i.e. study) time scale: individuals are enrolled in the study when they are �rst

observed, and all consequent measurements are relative to that index date. It is possible

to present the same study using a di�erent time scale: the age time scale (Figure 2.6).

With the age time scale, individuals are still enrolled when �rst observed but by plotting

each measurement against the age at which it was taken the comparison is fairer, as the

observation time does not depend any more on when individuals are �rst observed.

Finally, the analysis of longitudinal data requires methods that can properly account

for the within-subject correlation as the measurements are collected over time for each

individual. If the correlation between measurements belonging to the same individual is

ignored, then inference can be invalid.
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Figure 2.6: Example of a longitudinal study with irregular observation pattern using a study
time scale (panel A) or an age time scale (panel B); the grey dashed line is a super-imposed
regression line
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2.3.1 Notation

The notation I will use throughout this Thesis follows that of Diggle et al. [31].

Let Yij be the response variable and Xij a vector of p covariates observed at time tij ,

for observation j = 1,… , ni and subject i = 1,… , m. The mean and variance of Yij are

represented by E(Yij) = �ij and Var(Yij) = vij . The repeated outcomes for the ith subject

are represented by the vector Yi = {Y1i ,… , Yni} with E(Yi) = �i and variance-covariance

matrix Var(Yi) = Vi of size ni × ni . The {j, k}th element of Vi is the covariance between

Yij and Yik , denoted by Cov(Yij , Yik). Finally, Ri represents the ni × ni correlation matrix

of Yi.

2.3.2 Approaches to Longitudinal Data Analysis

There are several approaches to analyse longitudinal data. I will introduce two popular

approaches: modelling the marginal mean as in a cross-sectional study and modelling the

correlation within individuals by assuming that the regression coe�cients vary between

study subjects. The former approach will be introduced in Section 2.3.3. The latter

approach is also known as the random e�ects approach, and models that include both

�xed and random e�ects are named mixed-e�ects models; I will introduce the approach

and further explain the di�erences between �xed and random e�ects in Section 2.3.4.

I will not cover older methods such as repeated-measures analysis of variance (ANOVA)

or covariance (ANCOVA) or the analysis of derived variables (e.g. the patient-speci�c

slope). These methods are described and illustrated in practice elsewhere [31–33].

2.3.3 Modelling the Marginal Mean

Marginal models focus on estimating the marginal expectation of the outcome, which

is modelled separately from the within-person correlation. The general framework for

this kind of models is given in Liang and Zeger [34, 35], and it extends generalised linear

models to account for the within-person correlation arising from repeated measurements

from a given individual.

Within this framework, the mean response for the jth observation of the ith subject �ij is
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related to a set of covariates via a link function ℎ:

g(�ij) = g[E(Yij)] = Xij� (2.36)

In addition to that, the relationship between mean and variance is speci�ed as:

var(Yij) = �w(�ij),

and the within-individual correlation is speci�ed as:

corr(Yij , Yij′ ) = �(�).

This framework is quite �exible, as it can accommodate a variety of common distributions:

for instance, by choosing g to be the identity, logit, and log link function (with appropriate

function w) it is possible to model Gaussian, binary, and count data, respectively. These

models would retain an interpretation that is analogous to linear, logistic, and Poisson

regression models.

The estimation process extends the concept of quasi-likelihood [36] to settings where

observations are correlated. In particular, Liang and Zeger proposed the Generalised

estimating equations (GEE) method. The GEE method consists of solving the following

set of estimating equations

m

∑
i=1
D

′

i(�)Vi(�)
−1(Yi − �i(�)) = 0 (2.37)

for � , where Yi is the vector of responses for the ith individual, �i is the modelled response

from the model in Equation (2.36), Di = )�i/)� , Vi = Var(Yi) = �A1/2
i R(�)A1/2

i , and Ai =

diag(g(�i1,⋯ , �ini )). R(�) is the correlation structure, such as the independent correlation

structure:

R(�) =

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0

0 1 0

0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

,
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the exchangeable correlation structure:

R(�) =

⎡
⎢
⎢
⎢
⎢
⎣

1 � �

� 1 �

� � 1

⎤
⎥
⎥
⎥
⎥
⎦

,

or the unstructured correlation structure:

R(�) =

⎡
⎢
⎢
⎢
⎢
⎣

1 �1 �2

�1 1 �3

�2 �3 1

⎤
⎥
⎥
⎥
⎥
⎦

.

Another possibility is the autoregressive of order 1 (AR(1)) correlation structure, where

Corr(Yij , Yij+t) = � t ∀ t = 1, 2,… , t − 1. Several criteria have been suggested for selecting

the working correlation structure in GEE models: for instance, the QIC criterion

(Quasi-likelihood Information Criterion) has been developed to extend the AIC by

replacing the likelihood for the quasi-likelihood [37]. A comprehensive comparison of

selection criteria for GEE models is given in Pardo et al. [38].

The estimating equations for � are solved using a modi�ed Fisher scoring algorithm;

Liang and Zeger showed that � is consistent even when the correlation structure is

misspeci�ed. Analogously, they proposed a robust estimator for the Var(�) that is

consistent even when the correlation structure is misspeci�ed. Using these estimators it

is possible to obtain valid inference under any assumed correlation structure; however,

specifying an appropriate model for the correlation structure results in more e�cient

inference.

2.3.4 Mixed-e�ects Models

GEE models introduced in Section 2.3.3 are considered to be population-averaged models,

as they model the marginal mean response. Conversely, mixed-e�ects models assume

that the between-patients variability arises from unobserved covariates that are added

to the linear predictor in the regression model, accounting for the natural heterogeneity

between patients. The unobserved covariates are named random e�ects, as they are

assumed to follow a given distribution; it is often assumed that the random e�ects follow
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a normal distribution with mean 0 and variance �B.

Beside the unobserved random e�ects, �xed coe�cients are almost always included in

a mixed e�ect model for analysing longitudinal data; in fact, the �xed e�ects are often

the coe�cients of primary interest as they represent the e�ect of changing the value of

a covariate on the average longitudinal response.

A mixed-e�ects model is formalised by modelling the average response, conditional on

the random e�ects B:

ℎ[E(Yij |Bi)] = Xij� + ZijBi , (2.38)

where Z is a vector of covariates with associated random e�ects B; X and Z may overlap.

Analogously as before, ℎ is a link function and by appropriately choosing ℎ it is possible

to model e.g. Gaussian, binary, and count data. For instance, let’s assume ℎ is the identity

function; the resulting model is a linear mixed-e�ects model:

E(Yij |Bi) = Xij� + ZijBi (2.39)

The individual-speci�c model can be written as

Yij = Xij� + ZijBi + �ij ,

where �ij is a within-subject error term (e.g. measurement error), with �ij ∼ N (0, � 2). The

random e�ects B are assumed to follow a multivariate normal distribution:

B ∼ N (0,�B),

with �B a variance-covariance matrix that follows a given correlation structure, e.g. one

of those introduced in Section 2.3.3.

Assuming a model with a single covariate and a random intercept only, the model above

becomes:

Yij = �0 + �1Xi1 + bi0 + �ij

In brief, it is possible to �t a population-level regression line (for an average individual),

and individual-speci�c regression lines as well; given that I only included a random
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intercept in the model, the resulting individual-speci�c lines are parallel. This example is

depicted in Figure 2.7 (panel A), using the data described in Figure 2.6; the linear mixed

model is:

(Body weight)ij = �0 + �1Timeij + bi0 + �ij

It is possible to appreciate how the individual variation is modelled by including a random

intercept, resulting in individual-speci�c lines that are parallel, as mentioned before.

This example can be further expanded by including a random slope of time as well; the

model becomes

(Body weight)ij = �0 + �1Timeij + bi0 + bi1Timeij + �ij ,

and it is depicted in Figure 2.7, panel B. Compared to the model of Figure 2.7 (panel A),

each individual-speci�c �tted line has a di�erent slope, allowing the model to capture a

larger portion of heterogeneity between individuals.

These two examples illustrate in practice how mixed-e�ects models are considered to be

subject-speci�c models: by modelling the unobserved heterogeneity between individuals

and the mix of between- and within-subject data a regression line (if linearity is

assumed) that optimally �ts the observations of each individual is �tted. Regardless, the

models introduced in these two examples are still subject to the modelling assumptions

introduced at the beginning of this Section.

Several estimation procedures have been proposed for mixed-e�ects models. In the

settings of linear mixed-e�ects models, where the link function ℎ is assumed to be the

identity function, it is possible to de�ne a maximum likelihood estimation procedure (as

described in Chapter 4 of Diggle et al. [31]). However, the maximum likelihood estimator

is biased for the estimation of variance components. To overcome this limitation, the

restricted maximum likelihood (REML) method has been developed. REML takes into

account the loss in degrees of freedom resulting from the estimation of the �xed e�ects

and is therefore recommended (especially for small sample sizes) [39]. The downside

of using the REML method is that likelihood ratio tests require exactly the same �xed

e�ects speci�cation, and it therefore does not allow the comparison of nested models.

In settings where the outcome does not follow a Gaussian distribution, however, the
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Figure 2.7: Population-level (solid black) and subject-speci�c (dashed) regression lines, �tted
using a linear mixed-e�ects model with a random intercept only (panel A) or a random intercept
and slope (panel B)
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estimation procedure is more complex; methods such as the expectation-maximisation

(EM) algorithm [40] and direct likelihood maximisation [41] can be used instead. Finally,

all of the approaches outlined above are from a frequentist point of view; Bayesian

approaches to estimation (e.g. using the probabilistic programming language Stan) could

be used as well [42].

2.3.5 Marginal Versus Mixed-e�ects Models

Marginal and mixed-e�ects models described in Sections 2.3.3 and 2.3.4 have common

advantages for the analysis of longitudinal data, but there are notable di�erences between

the methods as well. Both methods are suitable to analyse longitudinal data as they

account for the within-subject correlation, although to a di�erent degree. GEE models can

accommodate a single level of clustering and treat it as a nuisance parameter not giving

an estimate of the heterogeneity; conversely, mixed-e�ects models can accommodate

multiple levels of clustering and do provide estimates of the heterogeneity at each level,

allowing explicit modelling of the hierarchical structure.

Another important di�erence is the interpretation of the regression coe�cients.

Coe�cients of GEE models have a marginal interpretation, e.g. re�ect the change in

the outcome in the whole population. Coe�cients of mixed-e�ects models have a

conditional interpretation, e.g. re�ect the change in the outcome for a given individual

with a given covariates pattern; as mentioned before, the estimates from mixed-e�ects

models are subject-speci�c. The choice of marginal versus mixed-e�ects models,

therefore, depends on the aims of the analysis: if the interest is the average e�ect

of covariates on the outcome in a population, then marginal models are the choice.

Conversely, if the interest is the subject-speci�c e�ect of covariates, mixed-e�ects

models are more appropriate. The fact that parameters from marginal and mixed-e�ects

models require a completely di�erent interpretation shows that the choice between

these model families has important consequences and should be re�ected upon very

carefully.

Despite that, given that the random e�ects approach yields a fully-speci�ed marginal

likelihood, it is possible to derive marginal estimates by averaging of the distribution of

the random e�ects B (as described in Chapter 16 of Molenberghs and Verbeke [43]). The
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comparison of marginal and mixed-e�ects models is discussed in more detail elsewhere

[43–45].
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3 Motivating Clinical Examples

3.1 Outline

The methods investigated throughout this Thesis are illustrated in practice using a variety

of datasets that present the critical issues of health care records. In particular, I will

utilise data with an underlying hierarchical structure that needs to be accounted for and

data with a possible association between longitudinal outcomes and either the drop-out

process or the observation process. The datasets used within this Thesis are described

in this Chapter.

3.2 The Primary-Secondary Care Partnership to

Prevent Adverse Outcomes in Chronic Kidney

Disease (PSP-CKD) Study

Kidney disease is de�ned as an abnormality of kidney structure or function with

implications for health; kidney disease is denoted as chronic when the abnormalities

persist for 3 months or more [46]. Early diagnosis of chronic kidney disease (CKD) has

relevant implications for the health of an individual, as early identi�cation allows prompt

treatment and strategic planning. However, early stages of CKD are often asymptomatic,

and disease may progress faster leading to kidney failure and consequently needing renal

replacement therapy (such as dialysis). At the same time, several comorbid conditions

emerge as renal function (de�ned as estimated glomerular �ltration rate, eGFR) worsen,

such as diabetes and cardiovascular disease. CKD has no cure, but treatment can help

reduce symptoms and slow down disease progression: many individuals with CKD can

live long and largely normal lives. Despite that, worldwide data is showing a large and
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increasing burden of CKD, putting increasing strain on healthcare systems across the

world [47].

The Primary-Secondary Care Partnership to Prevent Adverse Outcomes in Chronic Kidney

Disease (PSP-CKD) study (ClinicalTrials.gov Identi�er: NCT01688141) is a cluster

randomised controlled pragmatic trial of enhanced chronic kidney disease (CKD) care

against usual primary care management [48]. Forty-nine primary care practices in

Northamptonshire, United Kingdom, were randomised to either routine care or enhanced

care; informed consent was provided at the practice level. Adult individuals with CKD

were identi�ed from each practice by using a research version of the web-based CKD

management and audit tool IMPAKT [49], and all data was anonymised prior to removal

from the primary care practice. Individuals were included if a recorded eGFR value

below 60 ml/min/1.73m2 was found during 5 years before the date of randomisation;

eGFR was estimated using the MDRD equation [50]. PSP-CKD investigators concluded

that CKD management programs in primary care did not slow disease progression, but

improved care and have the potential to decrease cardiovascular disease burden and

related costs.

Using data extracted from the PSP-CKD study, I constructed two study datasets for

the applied examples of this Thesis: a dataset with a time to event outcome and a

dataset with a longitudinal outcome. The dataset with a time to event outcome was

constructed by extracting all individuals at randomisation date and following them until

the event of interest or December 31th, 2013; the event of interest was kidney failure,

de�ned as the �rst eGFR measurement below 15 ml/min/1.73m2. The main exposure was

treatment (as de�ned above), and information on which practice individuals belonged

to was extracted as well - alongside with data on demographics (age and gender). The

second dataset was constructed by extracting all eGFR measurements recorded on or

after randomisation date; eGFR measurements above 90 ml/min/1.73m2 were discarded

to focus on individuals with abnormal kidney function [46]. Besides the longitudinal

eGFR measurements, information on treatment and demographics (gender and age at

baseline) was extracted.

The �rst dataset will be used in Chapter 5 to illustrate the analysis of time to event

outcomes with observations clustered within groups, in this case the primary care

37



0

2,000

4,000

6,000

0 20 40 60 80
Number of observations per individual

C
ou

nt

Figure 3.1: Distribution of number of observations per individual, dataset constructed by
extracting longitudinal data from the PSP-CKD study and used for the applied example of Chapter
7

practices. It included 25,884 individuals clustered within 46 practices; median age

was 75.80, and 61.58% were females. 12,724 individuals (49.16%) received enhanced

care, the intervention being studied. Median follow-up, estimated via the inverse

Kaplan-Meier method [51] and disregarding clustering, was 3.24 years; 458 individuals

(1.77%) experienced the event of interest during follow-up.

The second dataset will be used in Chapter 7 to illustrate the analysis of longitudinal

data where the timing of each measurement is (potentially) associated with the outcome

itself. The dataset consists of 187,671 longitudinal measurements for 35,822 individuals;

the median number of observations per individual is 4 (inter-quartile interval: 2 - 6), as

depicted in Figure 3.1. 21,674 individuals were females (60.50%), median age was 74.60,

and 17,952 individuals received enhanced care (50.11%). The median gap time between

observations was 0.61, inter-quartile interval: 0.23 - 1.06.
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3.3 The VAsopressin Versus Norepinephrine in

Septic Shock Trial (VASST)

Sepsis is the serious complication of an infection that could lead to multiple organ failure

and death. In particular, septic shock is the most common cause of death in intensive

care units (ICUs) [52, 53]. Intravenous �uids and catecholamines such as norepinephrine

are routinely used to resuscitate patients, although they can have signi�cant side e�ects.

Vasopressin, an endogenously released peptide hormone, has been suggested as a

potential treatment option for patients with severe septic shock.

The randomised controlled trial of VAsopressin versus norepinephrine in Septic Shock

(VASST) is a multicentre, randomised, strati�ed, double-blind trial among patients

who had septic shock and were receiving usual care to determine whether the

additional treatment with vasopressin decreased mortality. The control group received

norepinephrine only as part of usual care. VASST was run between 2001 and 2006 in

Canada, Australia, and the United States, and was registered in the ISRCTN registry

(Current Controlled Trials number: ISRCTN94845869, [54]). The results of the trial

were negative, with vasopressin not showing reduced mortality rates compared to

norepinephrine [55].

The data from VASST that I will be using consists of daily measurements of the

Sepsis-related Organ Failure Assessment [SOFA] score [56]; survival information

will be used as well. The SOFA score consists of six organ subscales (cardiovascular,

central nervous system, coagulation, liver, renal, and respiration) that range from

0 to 4, representing no organ dysfunction and a high degree of dysfunction/failure,

respectively; the total SOFA score can range therefore from 0 to 24. The SOFA score is

commonly analysed as a secondary outcome in sepsis trials; for instance, a systematic

review and meta-regression of 87 randomised controlled trials (RCTs) found that

treatment-associated changes in SOFA from baseline were reliably and consistently

associated with observed mortality [57].

The analysis dataset includes 6,934 SOFA score measurements for 763 individuals, with

a median number of observations per individual of 21 (inter-quartile interval: 10 - 29).

389 individuals (50.98%) received vasopressin, while the remaining individuals received
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norepinephrine.

Median follow-up was 28 days; 284 individuals (37.22%) died during follow-up. The

Kaplan-Meier estimate of the survival function by treatment arm is depicted in Figure

3.2: the log-rank test yields a p-value of 0.32, showing that the observed di�erence in

survival between treatment arms is not statistically signi�cant. This result is in agreement

with the published results of VASST [55].

An issue with longitudinal data from VASST is informative drop-out: characteristics of

septic shock patients that died before the end of the study may be di�erent than the

characteristic of patients surviving the whole follow-up; in Chapter 6 I will illustrate

how di�erential drop-out can a�ect analysis methods and needs to be accounted for. In

particular, I will re-analyse data from VASST following the hypothesis that - although

the results of the trial showed that vasopressin did not decrease the mortality rate - it

may have a di�erential e�ect on decreasing the SOFA score compared to norepinephrine.
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4 Monte Carlo Simulation Studies

4.1 Outline

In this Chapter, I introduce Monte Carlo simulation studies and the rationale for their

use; Monte Carlo simulation studies are heavily used throughout this Thesis, especially

in Chapters 5 and 7. I outline considerations on the design and analysis of Monte Carlo

simulation studies, including summary statistics and their Monte Carlo errors in Section

4.3; I also describe methods that can be used to simulate complex survival data in Section

4.4. In Section 4.5 I introduce open source software that I developed during my PhD to

analyse and report Monte Carlo simulation studies. In Section 4.6 I illustrate a case study

of designing, running, and analysing a simulation study using the tools introduced in

this Chapter. Finally, I conclude the Chapter with a brief discussion in Section 4.7.

4.2 Rationale for Monte Carlo Simulation Studies

Monte Carlo simulation studies are computer experiments based on generating

pseudo-random samples from a given probability distribution. Most interestingly, by

running this process multiple times it is possible to collect experimental data supporting,

for example, the comparison of methods included in a study. Whilst case studies are

important and also useful when comparing methods in relative terms, with Monte

Carlo simulation studies the truth is pre-de�ned: by doing so, it is possible to compare

the results of a Monte Carlo simulation study with the truth to understand e.g. which

method included in the study performs best. In other words, Monte Carlo simulation

studies represent the only way to understand whether a method provides the right

answer given that the truth is known in advance. Statisticians usually mean Monte Carlo

simulation study when they refer to Simulation study; throughout this Thesis, I will use
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the two terms interchangeably.

Simulation studies have several applications and represent an invaluable tool for

statistical research nowadays: in statistics, establishing properties of current methods is

extremely important to allow their use with con�dence. However, sometimes it is very

hard (if not impossible) to derive exact analytical properties; large sample approximation

is possible but evaluating the goodness of the approximation to �nite samples is required.

Approximations often require assumptions as well: what are the consequences of

violating such assumptions? Monte Carlo simulation studies come to the rescue and can

help answer these questions. They can also help to answer questions such as:

• Is an estimator biased in a �nite sample?

• Do con�dence intervals for a given parameter achieve the desired nominal level of

coverage?

• How does a newly developed method compare to an established one?

• What is the power to detect a desired e�ect size under complex experimental

settings and analysis methods?

Simulation studies are used increasingly often in statistical research, due to the increased

availability of powerful computational tools (both personal and high-performance

cluster computers), the perceived e�cacy, and the emergence of specialist courses and

tutorial papers on simulation studies [58]. For instance, searching on the database of

peer-reviewed research literature Scopus [59] with the simple query string TITLE-ABS-KEY

("Monte Carlo simulation study") yields almost 3,000 results with a 15-fold increase

during the last 30 years, from 18 documents in 1988 to 277 in 2018 (Figure 4.1).

Despite the increased popularity, simulation studies are often poorly designed, analysed,

and reported [58]. Information on data-generating mechanisms (DGMs), number of

repetitions, software, estimands are often lacking or poorly reported, making critical

appraisal and replication of published studies a di�cult task. Another aspect of simulation

studies that is often poorly reported or not reported at all is the Monte Carlo error of

summary statistics, de�ned as the standard deviation of the estimated quantity over

repeated simulation studies. Monte Carlo errors play an important role in understanding

the role of chance in the results of simulation studies and have been shown to be severely

underreported [60]. In the next Section I will describe a structured approach that can
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Figure 4.1: Number of documents identi�ed from Scopus using the query string TITLE-ABS-KEY
("Monte Carlo simulation study") between the years 1979 and 2018

be applied to the design and planning of Monte Carlo simulation study and was �rst

introduced by Morris, White, and Crowther in 2019 [58]. I will also introduce (1) summary

statistics and performance measures that can be computed to characterise the behaviour

of methods included in a simulation study and (2) Monte Carlo standard errors that are

useful to quantify the uncertainty arising from the estimation of performance measures.

4.3 Design and Analysis of Monte Carlo Simulation

Studies

I will begin by introducing some notation. First of all, nobs is the sample size of a given

simulated dataset, nsim is the number of replications of the simulation procedure, and

i = 1,… , nsim indexes each replication. � denotes an estimand, �̂ is its estimator, �̂i is the

estimate of � from the ith replication, and �̄ is the mean of �̂i across repetitions. Var(�̂) is

the true variance of �̂ , and V̂ar(�̂i) is the estimate of Var(�̂) from the ith replication.

Next, I will introduce the ADEMP structured approach to planning, designing, and

running simulation studies, �rst proposed by Morris, White, and Crowther [58]. ADEMP

stands for Aims, Data-generating mechanisms, Estimands, Methods, Performance measures

and argues that by carefully designing, describing, and reporting each one of these aspects
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the clarity, reproducibility, and reporting of simulation studies could be greatly improved.

The �rst step of a simulation study consists of carefully de�ning the aims of the study;

for instance, one may want to study and learn about the precision or e�ciency of a new

method. Possible aims of a simulation study can be broadly categorised into three groups:

1. Simulation studies that aim to prove that it is possible to apply a method in given

settings;

2. Simulation studies that aim to stretch or break methods, e.g. to discover settings

in which a given method performs well (or not);

3. Simulation studies that aim to compare the performance of competing methods and

identify in which settings a given method is preferable compared to a competing

one.

The second step of a simulation study consists of de�ning the data-generating

mechanism(s) (DGMs). DGMs denote the processes used to simulate data, either via a

parametric formulation or resampling from an existing dataset. When resampling from a

dataset, the true data-generating model remains unknown; conversely, when simulating

data from a parametric, user-de�ned model the truth is known and it becomes feasible to

explore a plethora of DGMs. It is important to de�ne several DGMs to ensure coverage

of di�erent scenarios and increase the generalisability of the results, and it is important

to carefully de�ne DGMs to help to achieve the aims of the study.

The third step of a simulation study consists of de�ning the estimand of interest. The

estimand of interest, denoted with � , is usually a parameter of the data-generating model

(e.g. a regression coe�cient) but it could be some other quantity as well (such as measures

of predictive ability). However, sometimes a simulation study may not target an estimand

and may be targeting a procedure instead, e.g. the choice of an analysis method based

on preliminary results on the same data [61, 62].

The fourth step of a simulation study consists of de�ning the methods being studied;

the term method is generic, and it refers to anything being studied via simulation. In

some simulation studies a single method is su�cient, e.g. when evaluating the feasibility

of applying a given method in some settings. In others, however, it is necessary to

include at least another method e.g. when comparing several methods to identify which

one performs best in some settings. In these settings, it is important to choose a serious
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contender (in the words of Morris, White, and Crowther) such as the current gold standard

or a method commonly used in practice.

Finally, the �fth step consists of de�ning the performance measures of interest.

Performance measures are, broadly speaking, every numerical quantity that can be used

to assess the performance of a method; the choice of performance measures for a given

study depends on the aims of the study. An important point that is often overlooked

when analysing Monte Carlo simulation studies is that performance measures are

estimates themselves and therefore subject to error. Monte Carlo standard errors

quantify the uncertainty arising from the estimation of performance measures, and as

mentioned before they are severely underreported [60]. I present the most common

performance measures including their de�nition, estimate, and Monte Carlo standard

error in Table 4.1.

Brie�y describing each performance measure:

• Bias quanti�es whether a method targets � on average. Sometimes the average

estimate of �̂i is reported instead, and sometimes relative bias is preferable;

• The empirical standard error measures precision or e�ciency of the estimator of � ;

it depends only on �i and does not require knowledge of � . Intuitively, the empirical

SE estimates the long-run standard deviation of �i over the nsim replications;

• Given that the empirical standard error is sometimes hard to interpret, relative

precision is often of interest;

• Mean squared error (MSE) is a measure that takes into account bias and variance

of �̂ , and appears to be a natural way of integrating both measures into a single

summary value;

• The average model-based standard error is the average standard error returned

from a given method. It targets the empirical standard error;

• Relative error in model-based standard error compares empirical standard error

and model-based standard error, illustrating the performance of the estimator for

model-based standard error (in relative terms);

• Coverage probability is de�ned as the probability that a con�dence interval

contains the true value � ;

• Bias-corrected coverage probability takes bias into account as a source of under-
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or over-coverage, and removes bias from the calculation of coverage probability

by targeting �̄ rather than � ;

• Power describes the performance of a test (and a simulation study) that targets a

null hypothesis.

Further details on each performance measure are included in Morris, White, and

Crowther [58].

In conclusion, I introduced the ADEMP structured approach for designing and running

Monte Carlo simulation studies; the reporting steps outlined by ADEMP should be

followed to ensure a simulation study can be easily understood and replicated (if needed).

In addition to the aspects de�ned above, Monte Carlo simulation studies require careful

considerations in terms of computational and programming issues (such as controlling

the process that generates pseudo-random numbers and the use of di�erent software

packages for di�erent methods); once again, details on these aspects are discussed in

more detail elsewhere [58].
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Table 4.1: Performance measures commonly used with Monte Carlo simulation studies; this table follows from Morris et al. [58]

Performance Measure De�nition Estimate Monte Carlo SE of Estimate

Bias E(�̂) − � 1
nsim

∑nsim
i=1 �̂i − �

√
1

nsim(nsim−1) ∑
nsim
i=1 (�̂i − �̄)2

Empirical SE (EmpSE)
√

Var(�̂)
√

1
nsim−1 ∑

nsim
i=1 (�̂i − �̄)2

̂EmpSE√
2(nsim−1)

Relative % increase in precision (B vs A)* 100(
Var(�̂A)
Var(�̂B)

− 1) 100((
̂EmpSEA
̂EmpSEB)

2
− 1) 200(

̂EmpSEA
̂EmpSEB)

2√
1−Corr(�̂A,�̂B)2

nsim−1

Mean squared error (MSE) E[(�̂ − �)2] 1
nsim

∑nsim
i=1 (�̂i − �)2

√
∑nsim
i=1 [(�̂i−�)2− ̂MSE]2

nsim(nsim−1)

Average model-based SE (ModSE)*
√
E[V̂ar(�̂)]

√
1

nsim
∑nsim

i=1 V̂ar(�̂i)
√

V̂ar[V̂ar(�̂)]
4nsimM̂odSE

2
†

Relative % error in ModSE* 100(
ModSE
EmpSE − 1) 100(

M̂odSE
̂EmpSE

− 1) 100(
M̂odSE
̂EmpSE)

√
V̂ar[V̂ar(�̂)]
4nsimM̂odSE

4 + 1
2(n−1)

†

Coverage P (�̂low ≤ � ≤ �̂upp) 1
nsim

∑nsim
i=1 1(�̂low,i ≤ � ≤ �̂upp,i)

√
Ĉover(1−Ĉover)

nsim

Bias-eliminated coverage P (�̂low ≤ �̄ ≤ �̂upp) 1
nsim

∑nsim
i=1 1(�̂low,i ≤ �̄ ≤ �̂upp,i)

√
B̂-E Cover(1−B̂-E Cover)

nsim

Rejection % (power of type I error) P (pi ≤ �) 1
nsim

∑nsim
i=1 1(pi ≤ �)

√
̂Power(1− ̂Power)

nsim

*]Monte Carlo SEs are approximate for Relative % increase in precision, Average ModSE, and Relative % error in ModSE †]V̂ar[V̂ar(�̂)] = 1
nsim−1 ∑

nsim
i=1 {V̂ar(�̂i) − 1

nsim
∑nsim
j=1 V̂ar(�̂j )}2
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4.4 Simulating Survival Data

The generation of biologically plausible survival times assumed to follow a given

distribution to run Monte Carlo simulation studies is of primary importance. In fact,

this Thesis (and especially Chapters 5 and 7) will rely on simulating survival data. In

this Section, I will introduce methods that have been proposed to simulate biologically

plausible survival times straightforwardly and e�ciently.

First, Bender et al. described how to apply the inversion method to simulate survival

times from a given model with known regression coe�cients, covariates, and any

non-zero baseline hazard rate following a parametric distribution (exponential, Weibull,

or Gompertz) [63]. This method is computationally e�cient and easy to implement

and can be described as follows. Say I want to simulate survival times from a given

proportional hazards survival model:

ℎ(t) = ℎ0(t) exp(X�),

where ℎ0(t) is a given parametric baseline hazard function and X is a vector of regression

coe�cients with associated vector of regression parameters � . The corresponding

cumulative hazard function H (t), survival function S(t), and cumulative distribution

function F (t) follows (as de�ned in Chapter 2):

H (t |X ) = H0(t) exp(X�), with H0(t) = ∫
t

0
ℎ0(u) du

S(t |X ) = exp[−H (t |X )]

F (t |X ) = 1 − exp[−H (t |X )]

Let T be the simulated survival time; by letting

F (T |X ) = 1 − exp[−H (T |X )] = u (4.1)
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Figure 4.2: Example application of the inversion method to simulate survival times

with u ∼ Unif(0, 1), or alternatively:

S(T |X ) = u (4.2)

If ℎ0(T ) > 0 then Equation (4.2) can be re-arranged and solved for T as long as H0(t) can

be directly inverted:

T = H −1
0 [−

log(u)
exp(X�)]

(4.3)

Practically speaking, u represents a simulated quantile from a given cumulative

distribution function (CDF); simulating a survival time follows by drawing from a

uniform distribution and applying Equation (4.3). This approach is illustrated in practice

in Figure 4.2: �rst, three values of u are drawn (on the vertical axis), 0.09, 0.54, and 0.93.

The three values have a unique corresponding value of the CDF, consequently yielding

a given simulated survival time (on the horizontal axis).

Interestingly, Bender et al. showed that it is possible to obtain closed-form formulæ for

the three parametric distributions introduced in Chapter 2 (Table 4.2).

To simulate survival data following a given distribution (and a given model formulation)

it is then su�cient to be able to draw from a uniform U (0, 1) distribution (e.g. using the

runif() function in R) and then applying the formulæ from Table 4.2; the whole process
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Table 4.2: Formulæ to simulate survival times following an exponential, Weibull, or Gompertz
distribution

Exponential Weibull Gompertz

Survival time T = − log(u)
� exp(X�) T = −(

log(u)
� expX�)

1/
T = 1

 log [1 −
 log(u)
� exp(X�)]

Hazard function ℎ(t) = � exp(X�) ℎ(t) = �t−1 exp(X�) ℎ(t) = � exp( t) exp(X�)

does not require complex calculations and is therefore very fast.

One of the limitations of the method outlined above is that it requires the cumulative

baseline hazard function to be easily invertible: when that is not the case, it is not possible

to obtain closed-form formulæ for the survival time to be simulated. Furthermore, the

exponential, Weibull, and Gompertz distribution - being monotonic functions - are not

�exible enough to capture the underlying complexities often encountered in clinical data,

where turning points in the baseline hazard can be observed (e.g. the hazard could be

high early on, decreasing after a few days, and ultimately increasing again to a moderate

level).

Crowther and Lambert [64] demonstrated that is is possible to extend the inversion

method by using numerical methods to simulate a large variety of more biologically

plausible survival times. For instance, Crowther and Lambert illustrate how to simulate

from complex baseline hazard functions: their method consists of selecting a baseline

hazard function with a closed-form cumulative baseline hazard function H0(t). Assuming

H0(t) cannot be inverted analytically, a numerical root-�nding method can be used to

solve Equation (4.2) for t .

In more detail, say I am assuming a two-components mixture Weibull distribution for

the baseline hazard. The mixture Weibull distribution, used in standard survival analysis

and in models with statistical cure [65, 66], de�nes the two components additively on the

survival scale. The resulting baseline survival function for a two-components mixture is:

S0(t) = �S01(t) + (� − 1)S02,

where S01(t) and S02(t) are the survival functions of each component (in this case,

the survival function following from a Weibull baseline hazard) and � is the mixing
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probability (0 ≤ � ≤ 1). The survival function can be expanded as

S0(t) = p exp(−�1t1) + (1 − p) exp(−�2t2)

with �1, �2 and 1, 2 being the scale and shape parameters of the Weibull components.

The next step consists of introducing covariates in the model:

S(t) = S0(t)exp(X�)

= [p exp(−�1t1) + (1 − p) exp(−�2t2)]exp(X�) (4.4)

Then, Equation (4.4) can be substituted into Equation (4.2):

[p exp(−�1t1) + (1 − p) exp(−�2t2)]exp(X�) − u = 0, (4.5)

with u being a value drawn from a U (0, 1) distribution. Equation (4.5) cannot be solved

analytically for t , hence Crowther and Lambert suggest using a numerical method

such as Brent’s method [67]. Implementation using standard statistical software is

straightforward: in fact, the authors have released their implementation in Stata and a

version in R is available as well [68, 69].

Finally, the work by Crowther and Lambert further extend methods to simulate

biologically plausible survival times e.g. by allowing the simulation of time-dependent

e�ects, time-dependent covariates, delayed entry, censoring distributions, and even

user-de�ned log-hazard function (for increased �exibility) [68].

4.5 Open Source Software to Analyse Monte

Carlo Simulation Studies

In this Section I will describe open-source software that I have developed to aid and

support the analysis of Monte Carlo simulation studies. First, I will introduce the R

package rsimsum in Section 4.5.1; then, I will introduce the Shiny app INTEREST in Section

4.5.2. Both have been released publicly (on the Comprehensive R Archive Network,

CRAN, and/or on GitHub) and are openly available for users to test and use. Further to
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that, an article for rsimsum has been published in the Journal of Open Source Software

and is included in Appendix A, while a manuscript introducing INTEREST is currently

under review in the Journal of Data Science, Statistics, and Visualisation (with a pre-print

included in Appendix ??).

4.5.1 rsimsum

rsimsum is an R package that can be used to analyse Monte Carlo simulation studies and

compute summary statistics. The package is published on CRAN, and can be installed

from within R as follows:

install.packages("rsimsum")

In addition to that, the source code and the current development version is published

online on GitHub at https://github.com/ellessenne/rsimsum.

rsimsum is modelled upon a similar package available in Stata, the user-written command

simsum [70]: to the best of my knowledge, there is no similar package in R.

The aim of rsimsum is to help reporting simulation studies, including understanding the

role of chance in results of simulation studies: Monte Carlo standard errors are computed

and reported by default to the user. The summary statistics supported by rsimsum are

those included in Table 4.1: bias, empirical and model-based standard errors, relative

precision, relative error in model standard error, mean squared error, coverage, bias.

The main function of rsimsum is called simsum and can handle simulation studies with a

single estimand of interest at a time. The arguments of the simsum function are:

args(rsimsum::simsum)

# function (data, estvarname, true, se, methodvar = NULL, ref = NULL,

# by = NULL, ci.limits = NULL, dropbig = FALSE, x = FALSE,

# control = list())

# NULL

• data is a data.frame in which variable names are interpreted. It has to be in tidy

format [71];

• estvarname is the column in data that contains the point estimates;
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• true is the true value of the estimand, e.g. � ;

• se is the column in data that contains the standard error of the point estimate;

• methodvar is the column in data that contains the methods to compare. For instance,

methods could be the models compared within a simulation study. This argument

is not required, e.g. when a simulation study included a single method only;

• ref speci�es the reference method against which relative precision will be

calculated. Only useful if methodvar is speci�ed;

• by is a vector of column names that de�nes the data-generating mechanisms. As

with methodvar, this argument is not required e.g. if there is a single data-generating

mechanism;

• ci.limits is a numeric vector of length 2 specifying the limits (lower and upper)

of con�dence intervals used to calculate coverage. This feature is experimental;

• dropbig speci�es whether point estimates or standard errors beyond the maximum

acceptable values should be dropped. Defaults to FALSE, and acceptable values can

be set via the control argument;

• x de�nes whether the �nal dataset used to calculate the summary statistics (i.e. after

all pre-processing steps) should be returned or not. Defaults to FALSE, as the size

of the returned object increases considerably;

• control is a list of arguments that control the default behaviour of simsum. For

instance:

– mcse, whether to calculate Monte Carlo standard errors. Defaults to TRUE;

– level, the signi�cance level used for coverage, bias-eliminated coverage, and

power. Defaults to 0.95;

– df, whether to use robust critical values from a t distribution with df degrees

of freedom when calculating coverage, bias-eliminated coverage, and power.

Defaults to NULL, in which case a Gaussian distribution is used;

– na.rm, whether to remove point estimates or standard errors where either (or

both) is missing. Defaults to TRUE;

– char.sep, a character utilised when splitting the input dataset data. Generally,

this should not be changed;

– dropbig.max, speci�es the maximum acceptable absolute value of the point

estimates, after standardisation. Defaults to 10;
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– dropbig.semax, speci�es the maximum acceptable absolute value of the

standard error, after standardisation. Defaults to 100

– dropbig.robust, speci�es whether to use robust standardisation (using median

and inter-quartile range) rather than normal standardisation (using mean and

standard deviation). Defaults to TRUE, in which case robust standardisation

will be used for dropbig.

rsimsum also provides a function to analyse Monte Carlo simulation studies with multiple

estimands: multisimsum.

args(rsimsum::multisimsum)

# function (data, par, estvarname, true, se, methodvar = NULL,

# ref = NULL, by = NULL, ci.limits = NULL, dropbig = FALSE,

# x = FALSE, control = list())

# NULL

The arguments of multisimum are mostly the same of simsum, with two exceptions: �rst,

an argument named par has been added, identifying the column in data that de�nes

estimands. Second, the true argument now has to be a named vector, de�ning the true

value of each estimand being analysed.

Finally, an important step of reporting a simulation study consists in visualising the

results. rsimsum implements the autoplot method for simsum and multisimsum objects,

exploiting the R package ggplot2 [72] to produce a set of opinionated data visualisations

useful to quickly and easily explore the results of simulation studies. Supported plots

are: scatter plots for method-wise comparison of point estimates (or standard errors),

Bland-Altman plots for method-wise comparison of point estimates (or standard error),

ridgeline plots, forest plots, lolly plots, zipper plots, heat maps, and nested loop plots

[73]. The latter is a visualisation type that aims to include all results in a single plot by

ordering all simulation scenarios and arranging them consecutively on the horizontal

axis; the summary statistics of interest is then included on the vertical axis, with a line for

each method included in the simulation study. The �rst three plot types allow comparing

the point estimates (or standard errors) between methods, allowing e.g. the identi�cation

of serial trends (when a method constantly produces standard errors that are larger

than those of a comparator). Conversely, the remaining plots are useful to plot summary
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Figure 4.3: Nested loop plot for the comparison of bias across all data-generating mechanisms,
example dataset included in rsimsum on survival modelling

statistics such as bias and coverage probability; uncertainty in the estimation of summary

statistics can be included as well, resulting in (some) plots including con�dence intervals

based on Monte Carlo standard errors. The autoplot method returns ggplot2-type objects,

which can be combined with additional components and easily styled to �t taste and

requirements. All the aforementioned plots are presented in practice in the case study

of Section 4.6; however, nested loop plots are not really relevant with a small number of

scenarios, e.g. in the above-mentioned case study (with only 2 distinct data-generating

mechanisms). Therefore, I will use an example dataset included in rsimsum to illustrate

nested loop plots here: in particular, the example data originates from a simulation study

on modelling survival data across 150 distinct scenarios (more details can be obtained

by typing help("nlp", package = "rsimsum") in the R console). An example nested loop

plot (e.g. for bias) is depicted in Figure 4.3.

4.5.2 INTEREST

The possibility of replicating, reproducing and independently verifying results from

scienti�c studies is a fundamental aspect of science [74]; as a consequence, several

reporting guidelines have emerged (e.g. CONSORT and STROBE [75, 76]). Despite

similar calls for harmonised reporting to allow for greater reproducibility in the area of
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computational science [77] and several articles advocating for more rigour in speci�c

aspects of simulation studies [70, 78–82], design and reporting guidelines for simulation

studies are lacking. Morris, White, and Crowther introduced the ADEMP framework

described in Section 4.3, aiming to �ll precisely that gap [58]: in their review, they

outline several ways of reporting results that they observed: including results in text

for small simulation studies, tabulating and plotting results, and even the nested-loop

plot for fully factorial simulation studies with several data-generating mechanisms

[73]. They conclude by arguing that there is no correct way to present results, but we

encourage careful thought to facilitate readability, considering the comparisons that need

to be made. An exciting opportunity to aid the understanding of data visualisations

consists of adding a layer of interactivity allowing users to adjust the output to �t

their requirements, as outlined by Spiegelhalter et al. [83]; the recent advent of tools

such as Data-Driven Documents (D3) [84] and R Shiny [85] has further facilitated

the development of interactive visualisations. The increased availability of powerful

computational tools not only contributed to the rise in popularity of simulation studies,

it also allowed researchers to simulate an ever-growing number of data-generating

mechanisms and include several estimands and methods to compare: up to 6 × 1011, 32,

and 33, respectively, in the review or Morris, White, and Crowther [58]. With a large

number of data-generating mechanisms, estimands, and methods the analysis and report

of results of a simulation study becomes cumbersome. For instance:

1. What results should be the main results to focus on?

2. Which estimands and methods should be included in tables and plots?

3. How could plots or tables illustrate several data-generating mechanisms at once?

To solve this problem, I developed INTEREST (an acronym for INteractive Tool for

Exploring REsults from Simulation sTudies), an interactive web app to analyse results

of Monte Carlo simulation studies. INTEREST requires �rst uploading a dataset with

results from a simulation study; then, it computes summary statistics and creates a

variety of tables and plots automatically. The user can vary data-generating mechanisms,

estimands, and methods: tables and plots are updated automatically. I will describe the

implementation details and features and functionality of INTEREST in the next few

Sections.
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4.5.2.1 Implementation of INTEREST

INTEREST was developed using R [86] and the Shiny framework [85]. Shiny is a

framework in R that allows building interactive web apps using R code: the resulting

applications can be hosted on a web page, embedded in reports and dashboards,

or just run as stand-alone apps. Further details on Shiny are available online

(https://shiny.rstudio.com). The front-end of INTEREST has been built using the

shinydashboard package [87]; shinydashboard is based upon AdminLTE [88], an open-source

admin control panel built on top of the Bootstrap framework [89]. The back-end

functionality of INTEREST is mostly implemented through the rsimsum package

(described in Section 4.5.1), with ad-hoc additions for more advanced functionalities. By

separating the front-end and the back-end, long-term maintainability should be easier.

INTEREST is available as an online application and as a stand-alone version for o�ine

use. The online version is hosted at https://interest.shinyapps.io/interest/ and can

be accessed via any web browser on any device (desktop computers, laptops, tablets,

smartphones, etc.). The stand-alone o�ine version can be obtained from GitHub at

https://github.com/ellessenne/interest/ and can be run on any desktop computer and

laptop, with the only requirement being a functioning installation of R. INTEREST can

be installed locally by typing the following commands in the R console:

## Install the 'remotes' package if not available

# install.packages("remotes")

remotes::install_github("ellessenne/interest")

Then, the web app can be launched by typing the following code in the R console:

library(interest)

interest()

This will launch INTEREST using the default web browser, ready to be utilised.

4.5.2.2 Features and Functionality of INTEREST

The main interface of INTEREST is introduced in Figure 4.4. The interface is divided into

two sections: the main body on the right-hand side with a sidebar on the left. The body

contains the controls and the input/output of the web app; the sidebar contains menu
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Figure 4.4: Homepage and main interface of the INTEREST web app

items that behave like tabs, allowing to navigate the various sections of INTEREST.

The use of INTEREST starts by providing a tidy dataset (variables form columns,

observations are in rows [71]) with results from a simulation study via the Data tab from

the sidebar (Figure 4.5). A dataset can be provided to INTEREST in three di�erent ways:

1. The user can upload a dataset. The uploaded �le can be a comma-separated �le

(.csv), a Stata dataset (.dta), an SPSS dataset (.sav), a SAS dataset (.sas7bdat), or

an R serialised object (.rds); the format will be inferred automatically from the

extension of the �le, and the whole process is transparent to the user; further to

that, the autodetection is case-insensitive. It is also possible to upload compressed

�les (formats allowed: .gz, .bz2, .xz, or .zip) that are automatically decompressed;

2. The user can provide a URL link to a dataset hosted elsewhere. All considerations

relative to the �le format from the previous point are also valid here;

3. Finally, the user can paste a dataset (e.g. from Microsoft Excel) in a text box. The

pasted data is assumed to be tab-separated.

Once a dataset has been uploaded via one of the three methods outlined, the user will
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Figure 4.5: App interface to upload and de�ne data for INTEREST

have to de�ne the variables required by INTEREST and some optional variables. The

names of each column (i.e. variable) from the uploaded dataset automatically populate a

set of select list inputs to assist the user. A variable de�ning a point estimate from the

simulation study and a variable representing the standard error of such estimates are

required, and the user has to de�ne the true value of the estimand of interest as well.

Additionally, a user can de�ne a variable representing methods being compared with

the current simulation study (and choose the default one), and one or more variables

de�ning data-generating mechanisms (e.g. sample size, true correlation, true baseline

hazard function for survival models, etc.).

The View uploaded data tab in INTEREST displays the dataset uploaded by the user using

an interactive table that can be sorted and �ltered at will by the user (Figure 4.6). As

a good practice, it is recommended to check that the uploaded dataset is correct before

continuing with the analysis and any visual exploration.

INTEREST includes a section for exploring missingness of estimates and/or standard

errors from each replication of a simulation study. Missing values need to be carefully
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Figure 4.6: App interface to inspect the dataset uploaded to INTEREST
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explored and handled at the initial stage of any analysis, and may originate as a software

failure (in which case the code should be made more robust to ensure fewer or no failures).

Conversely, missing data may arise as a consequence of characteristics of the simulated

data, yielding to non-convergence of the estimation procedures. In other words, missing

values may not be missing completely at random [58, 90].

The missing data functionality is based on the R package naniar [91], and can be

accessed via the Missing data tab. It comprises visual and tabular summaries; missing

data visualisations available in INTEREST are the following:

• Bar plots of number (or proportion) of missing values by method and

data-generating mechanism (if de�ned). Number and proportion of missing values

are produced for each variable included in the data uploaded to INTEREST;

• A plot to visualise missing data in the whole dataset;

• A scatter plot with missing status depicted with di�erent colours; in order to be able

to plot missing values, they are replaced with values 10% lower than the minimum

value in that variable. This plot allows identifying trends and patterns between

variables in missing values (e.g. all estimates with a very large point estimate have

a missing standard error);

• A heat map with methods on the X-axis and the remaining variables on the Y-axis,

with the colour �ll representing the percentage of missingness in each tile.

Each plot can be further customised and exported (e.g. for use in slides and reports);

more details are discussed later on when introducing the plotting functionality.

Finally, INTEREST computes and outputs a table with the number, proportion, and

the cumulative number of missing values per variable stratifying by method and

data-generating mechanisms; the table can be easily exported in LATEX format for further

use.

Summary statistics are computed automatically as soon as the user de�nes the required

variables in the Data tab, and displayed in the Performance measures tab (Figure 4.7).

The summary statistics computed by INTEREST are all the summary statistics supported

by rsimsum, and are included in Table 4.1; Monte Carlo standard errors are computed

and returned by default. Estimated summary statistics are tabulated for a given

data-generating mechanism, which can be selected by the user; furthermore, results can
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be exported in two ways:

1. Export the table in LATEX format, e.g. for use in reports and articles. It is possible to

customise the caption of the table;

2. Export summary statistics as a dataset, e.g. for use in other software packages. It

is possible to export the table of summary statistics as displayed in INTEREST or

in tidy format, and in a variety of formats: comma-separated (.csv), tab-separated

(.tsv), R (.rds), Stata (.dta), SPSS (.sav), or SAS (.sas7bdat).

INTEREST can also automatically produce a variety of plots to visualise results from

simulation studies. Plots produced by INTEREST can be categorised into two broad

groups: plots of estimated values (and standard errors) and plots of summary statistics.

The app interface and sample plots are depicted in Figures 4.8 and 4.9.

Plots for estimated values and standard errors are:

• Scatter plots with a method-wise comparison of point estimates (or standard errors);

• Bland-Altman plots with a method-wise comparison of point estimates (or standard

errors);

• Ridgelines plots with the method-wise comparison of the distribution of point

estimates (or standard errors).

Conversely, the following plots are supported for performance measures:

• Plots of summary statistics with con�dence intervals based on Monte Carlo

standard errors. There are two types of this plot: forest plots and lolly plots;

• Heat plots of summary statistics: these plots are mosaic plots where the factor on

the x-axis is represented by methods (if de�ned) and the factor on the y-axis is

represented by a DGM, as selected by the user;

• Zipper plots to visually explain the summary statistic coverage by plotting

the con�dence intervals directly. This visualisation is described in more detail

elsewhere [58].

Further to that, plots can be customised and exported for use in manuscript, reports,

presentations via the Options tab (Figure 4.10). In terms of customisation, it is possible to

de�ne custom labels for the x-axis and the y-axis and to change the overall appearance

of the plot by applying one of the prede�ned themes.
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Figure 4.7: App interface to explore and export summary statistics of a Monte Carlo simulation
study using tabular representations
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Figure 4.8: App interface to plot estimates (or standard errors), with a sample scatter plot of
point estimates that is produced by INTEREST
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Figure 4.9: App interface to plot summary statistics, with a sample forest plot for bias that is
produced by INTEREST
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Figure 4.10: App interface to customise plot appearance and exporting options

In terms of exporting plots, it is possible to de�ne the width, height, and resolution of the

plot to export, and the format of the �le to export. To suit a wide variety of possible use

cases, INTEREST supports several image formats: among others, .pdf, .png, .svg, and

.eps.

In conclusion, INTEREST allows researchers to upload a dataset with the results

of their Monte Carlo simulation study obtaining summary statistics in a quick and

straightforward way. This is very appealing, especially with simulation studies with

several data-generating mechanisms where it could be confusing to investigate all

scenarios at once. Using the app it is possible to vary data-generating mechanisms and

obtain updated tables and plots in real-time, therefore allowing to quickly iterate and

take into consideration all possible scenarios.

One of the intended usage scenarios for INTEREST consists of supplementing reporting

of simulation studies. This is especially useful with large simulation studies, where it

is most cumbersome to summarise all results in a manuscript: it is common to include

in the main manuscript only a subset of results for the sake of brevity. The remaining
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results are then relegated to supplementary material, web appendices, or not published

at all - undermining dissemination and replicability of a study.

Being now common practice to publish the code produced to run a simulation study,

one could publish the dataset with the results alongside the code used to obtain it. That

dataset could then be uploaded to INTEREST by readers, who could then explore the

full results of the study as they wish. Given the ubiquity of web services like GitHub

(https://github.com) and data-sharing repositories such as Zenodo (https://zenodo.org/),

this practice is encouraged and strongly recommended.

As outlined above, Monte Carlo simulation studies are too often poorly analysed and

reported [58]. Given the increased use in methodological statistical research, I believe that

INTEREST could improve reporting and disseminating results from simulation studies

to a large extent. To the best of my knowledge, there is no similar application readily

available for researchers to use.

4.6 A Case Study Using Flexible Parametric

Survival Models

In this Section I will present a case study that involves planning a simulation study

using the ADEMP structure introduced in section 4.3 and analysing its results using the

software introduced in Section 4.5. For illustrative purposes, I will mimic the settings of

a published Monte Carlo simulation study [28].

The aim of the study consists of investigating the robustness of �exible parametric

survival models (as introduced in Section 2.2.4.3) to the modelling choice of how many

degrees of freedom are used to model the baseline hazard. It is therefore possible to

broadly categorise the aims of this simulation as (1) comparing competing methods and

(2) evaluating if and when they break.

I simulate survival data for 300 study subjects using the approaches outlined in Section 4.4,

with a binary covariate (e.g. a treatment variable) simulated from a Bernoulli distribution

with success probability equal to 50%. The binary covariate has an associated coe�cient

(e.g. a log treatment e�ect) of -0.50. Censoring is simulated by applying administrative

censoring after 10 years of follow-up. The shape of the baseline hazard function will
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Figure 4.11: Baseline hazard functions assumed for the simulated scenario of the case study
on �exible parametric survival models. The Weibull baseline hazard is assuming � = 0.60,  =
0.80, while the mixture Weibull-Weibull baseline hazard is assuming � = {1.00, 1.00},  =
{1.50, 0.50}, � = 0.50

vary, to assess whether the complexity of the underlying hazard function a�ects the

robustness of the models. Speci�cally, I simulate two scenarios: a monotonic baseline

hazard function simulated from a Weibull distribution with � = 0.60 and  = 0.80,

and a baseline hazard function with turning points simulated from a mixture Weibull

distribution with � = {1.00, 1.00},  = {1.50, 0.50}, and � = 0.50 (Figure 4.11). This leads

to 2 distinct data-generating mechanisms.

The estimand of interest is the regression coe�cient � associated with the binary

covariate, i.e. the log treatment e�ect (as an estimate of relative risk).

The methods included in this comparison are �exible parametric survival models

following the formulation of Royston and Parmar [24], as introduced in Section 2.2.4.3.

The �tted models only vary in terms of the number of degrees of freedom used to model

the baseline hazard: 2, 5, and 10, respectively.

Finally, the performance measures of interest are bias, mean squared error, and coverage

probability. Rutherford et al. run 1,000 replications of each simulated scenario, which

would yield an expected Monte Carlo error for bias of 0.01 or lower assuming a variance

of the estimated regression coe�cient Var(�̂) ≤ 0.1. Analogously, the expected Monte
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Carlo standard error for coverage, assuming a worst-case scenario of coverage = 0.50,

would be 0.02. Therefore, I run 1,000 replications per scenario as well.

The simulation study is coded using R, and all the code required to replicate the analysis

is included in Appendix C.

After running the simulation study, its results can be analysed using the software

introduced in Section 4.5 as follows.

First, I load the rsimsum R package:

library(rsimsum)

If rsimsum is not installed, it can be installed with:

install.packages("rsimsum")

The dataset with the results of the simulation study contains 6,000 rows and 6 columns

and it is named db; describing the content of the dataset:

dplyr::glimpse(db)

# Observations: 6,000

# Variables: 6

# $ i <int> 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7...

# $ dgm <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1...

# $ b <dbl> -0.6378815, -0.6422050, -0.6426656, -0.6571888, -0.6568290, -...

# $ se <dbl> 0.1226920, 0.1233417, 0.1233309, 0.1231681, 0.1236395, 0.1236...

# $ model <fct> M1 (2df), M2 (5df), M3 (10df), M1 (2df), M2 (5df), M3 (10df),...

# $ h <fct> Weibull, Weibull, Weibull, Weibull, Weibull, Weibull, Weibull...

The dgm column identi�es the two data-generating mechanisms, with 1 identifying the

scenario with a Weibull baseline hazard function and 2 the other scenario with a mixture

Weibull-Weibull baseline hazard function.

Then, I use the rsimsum::simsum function to de�ne the simulation study to analyse. I set

the argument x = TRUE as it will be required for plotting later on:

simstudy <- rsimsum::simsum(

data = db,
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estvarname = "b", se = "se", true = -0.50,

methodvar = "model", by = "dgm",

x = TRUE

)

simstudy

# Summary of a simulation study with a single estimand.

#

# Method variable: model

# Unique methods: M1 (2df), M2 (5df), M3 (10df)

# Reference method: M1 (2df)

#

# By factors: dgm

#

# Monte Carlo standard errors were computed.

Printing the simstudy object returns some information on the characteristics of the

simulation study being analysed. For instance, the column that de�nes the methods

included in this comparison is method, and the possible methods are M1 (2df), M2 (5df),

M3 (10df). The column that de�nes the two data-generating mechanisms is dgm. The

�exible parametric model with 2 df (denoted as M1 (2df)) was automatically selected as

the reference method, given that no ref argument was passed to the rsimsum::simsum

function.

The next step consists in summarising the simulation study, using the summary method.

I select the following summary statistics via the stats argument: the median estimate

(thetamedian), the median squared standard error (se2median), bias (bias), mean squared

error (mse), and coverage probability (cover):

summary(simstudy,

stats = c("thetamedian", "se2median", "bias", "mse", "cover")

)

# Values are:

# Point Estimate (Monte Carlo Standard Error)

#
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# Median point estimate:

# dgm M1 (2df) M2 (5df) M3 (10df)

# 1 -0.5019 -0.5020 -0.5024

# 2 -0.5326 -0.4992 -0.4986

#

# Median variance:

# dgm M1 (2df) M2 (5df) M3 (10df)

# 1 0.0147 0.0148 0.0148

# 2 0.0149 0.0147 0.0147

#

# Bias in point estimate:

# dgm M1 (2df) M2 (5df) M3 (10df)

# 1 -0.0052 (0.0039) -0.0061 (0.0039) -0.0062 (0.0039)

# 2 -0.0365 (0.0043) -0.0055 (0.0040) -0.0053 (0.0040)

#

# Mean squared error:

# dgm M1 (2df) M2 (5df) M3 (10df)

# 1 0.0153 (0.0007) 0.0154 (0.0007) 0.0154 (0.0007)

# 2 0.0200 (0.0010) 0.0160 (0.0008) 0.0160 (0.0008)

#

# Coverage of nominal 95% confidence interval:

# dgm M1 (2df) M2 (5df) M3 (10df)

# 1 0.9450 (0.0072) 0.9470 (0.0071) 0.9460 (0.0071)

# 2 0.9230 (0.0084) 0.9520 (0.0068) 0.9530 (0.0067)

The median estimate for the parameter of interest is close to the true value of -0.50 across

all models and simulated scenarios, with the exception of the model with 2 degrees of

freedom in the DGM with a mixture Weibull-Weibull baseline hazard: in that setting,

the median estimate resulted to be considerably lower than the more �exible models

(with a higher number of degrees of freedom). The model-wise comparison of point

estimates from each model using scatter plots can be obtained via the autoplot method

and requesting the type = "est" plot:

autoplot(simstudy, type = "est")
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The resulting plot is depicted in Figure 4.12. Analogously, as outlined in Section 4.5.1,

rsimsum can produce Bland-Altman and ridgeline plots (Figures 4.13 and 4.14, respectively)

for point estimates.

autoplot(simstudy, type = "est_ba")

autoplot(simstudy, type = "est_ridge")

rsimsum can also produce similar plots for the estimated standard errors. For instance, a

scatter plot is included as Figure 4.15, showing how the estimated standard errors from

each model-scenario combination are very similar: the estimated regression line (the

blue line) overlaps quite well with the diagonal line (dashed black line). This plot can be

produced as follows:

autoplot(simstudy, type = "se")

Next, the estimated bias by method and data-generating mechanism can be found in the

summary above and can be plotted using rsimsum as follows.

p1 <- autoplot(summary(simstudy), type = "forest", stats = "bias")

p2 <- autoplot(summary(simstudy), type = "lolly", stats = "bias")

cowplot::plot_grid(p1, p2,

labels = LETTERS,

ncol = 1,

align = "hv",

axis = "lrtb"

)

By analysing the forest plot (Figure 4.16, Panel A) or the lolly plot (Figure 4.16, Panel

B) it is possible to identify the scenarios where bias is signi�cant, as the uncertainty in

estimating the summary statistic is incorporated through con�dence intervals based on

Monte Carlo standard errors. In particular, it is possible to appreciate how the �exible

parametric model with 2 degrees of freedom yields signi�cant bias when the true baseline

hazard followed a mixture Weibull-Weibull distribution.

The remaining summary statistics can be plotted analogously, and are included as Figures

4.17 and 4.18:
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Figure 4.12: Method-wise comparison of point estimates from each simulated scenario by
data-generating mechanism using scatter plots, case study using �exible parametric survival
models.
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Figure 4.13: Method-wise comparison of point estimates from each simulated scenario by
data-generating mechanism using Bland-Altman plots, case study using �exible parametric
survival models.
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Figure 4.14: Method-wise comparison of point estimates from each simulated scenario by
data-generating mechanism using ridgeline plots, case study using �exible parametric survival
models.

p3 <- autoplot(simstudy, type = "forest", stats = "mse")

p4 <- autoplot(simstudy, type = "lolly", stats = "mse")

cowplot::plot_grid(p3, p4,

labels = LETTERS,

ncol = 1,

align = "hv",

axis = "lrtb"

)

p5 <- autoplot(summary(simstudy), type = "forest", stats = "cover")

p6 <- autoplot(summary(simstudy), type = "lolly", stats = "cover")

cowplot::plot_grid(p5, p6,

labels = LETTERS,

ncol = 1,

align = "hv",

axis = "lrtb"

)
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Figure 4.15: Method-wise comparison of estimated standard errors from each simulated
scenario by data-generating mechanism using scatter plots, case study using �exible parametric
survival models.
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Figure 4.16: Method-wise comparison of bias across all data-generating mechanisms, case study
using �exible parametric survival models. Panel A is a forest plot and Panel B is a so-called lolly
plot. Both plots can be produced by rsimsum using the autoplot method.
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Figure 4.17: Method-wise comparison of mean-squared error (MSE) across all data-generating
mechanisms, case study using �exible parametric survival models. Panel A is a forest plot and
Panel B is a so-called lolly plot. Both plots can be produced by rsimsum using the autoplot method.
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Figure 4.18: Method-wise comparison of coverage probability across all data-generating
mechanisms, case study using �exible parametric survival models. Panel A is a forest plot and
Panel B is a so-called lolly plot. Both plots can be produced by rsimsum using the autoplot method.
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Figure 4.19: Zipper plot for the comparison of coverage probability across all data-generating
mechanisms, case study using �exible parametric survival models.

Finally, rsimsum can also produce zipper plots to present coverage probability (Figure

4.19), and heat maps for any summary statistic (e.g. MSE, as in Figure 4.20).

autoplot(simstudy, type = "zip")

autoplot(simstudy, type = "heat", stats = "mse")

Interestingly, all plots obtained via the autoplot method can be easily customised by

adding other ggplot2 features. For instance, replacing the default colour palette from

the heat map of Figure 4.20 with the viridis colour palette [92] and replacing the

default ggplot2 theme with a minimalistic theme with no background annotations is

straightforward:

autoplot(simstudy, type = "heat", stats = "mse") +

viridis::scale_fill_viridis() +

ggplot2::theme_minimal()

The resulting plot is included as Figure 4.21.
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Figure 4.20: Heat map comparing mean squared error across all data-generating mechanisms,
case study using �exible parametric survival models.
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Figure 4.21: Heat map comparing mean squared error across all data-generating mechanisms
with customised style, case study using �exible parametric survival models.
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4.7 Discussion

In this Chapter, I introduced Monte Carlo simulation studies and motivated their use

as an invaluable tool for statistical and biostatistical research. I introduced the ADEMP

structured approach proposed by Morris, White, and Crowther [58] and described each

component, including the most important performance measures; a structured approach

to simulation studies is crucial to guarantee clarity when reporting the results of a study

and enhance reproducibility.

Then, I described approaches that can be used to simulate survival data from a given

hazard function, including both simple, monotonic baseline hazards and complex

formulations with turning points. These methods will be used in Chapters 5 and 7

extensively.

Finally, I introduced the rsimsum package and the INTEREST Shiny app. rsimsum and

INTEREST have been developed during my PhD to support the analysis of Monte Carlo

simulation studies and enhance the reporting of their results. Both packages provide an

easy-to-use and intuitive option that automates most of the calculations required when

computing performance measures. Most importantly, rsimsum vastly reduces the amount

of error-prone coding required to analyse a simulation study. Monte Carlo standard

errors are computed and returned by default, allowing researchers to quantify the degree

of uncertainty in the estimation of the performance measures of interest. rsimsum has

been used throughout this Thesis, especially when analysing the results of the Monte

Carlo simulation studies of Chapters 5 and 7.

rsimsum and INTEREST are open-source software, and their source code is available from

GitHub. rsimsum is also available from the Comprehensive R Archive Network (CRAN),

while INTEREST can be accessed on-line at https://interest.shinyapps.io/interest/ or

downloaded from GitHub for o�ine use.
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5 Multilevel Survival Data Analysis

5.1 Outline

In this Chapter, I introduce the topic of survival data with a multilevel hierarchical

structure. First, in Section 5.2 I describe examples of multilevel survival data and how

a hierarchy may arise. I describe examples of clustering relevant to the settings of EHR

data and focus on the case of recurrent events data (a special case of clustering with

observations nested within individuals). Second, I describe methods that can be used to

analyse multilevel survival data in Section 5.3 and 5.4, where I describe methods for the

analysis of recurrent events data and frailty survival models that can account for broader

clustering settings, respectively. Then, I investigate the impact of model misspeci�cation

in shared frailty survival models in Section 5.5 via Monte Carlo simulation. In particular,

I focus on misspeci�cation of the baseline hazard and/or the distribution of the frailty,

and I investigate relative and absolute measures of risk and measures of heterogeneity.

The material included in this Section has been published in Statistics in Medicine and

is included in Appendix D [93]. In Section 5.6 I apply the methods included in the

comparison from Section 5.5 to data from PSP-CKD (described in Section 3.2) to illustrate

the impact of model misspeci�cation in practice. Finally, I conclude the Chapter in Section

5.7 with a discussion.

5.2 Multilevel Survival Data

Multilevel survival data occurs frequently in a variety of research areas, and especially

with EHRs. A hierarchy in the analysis dataset can arise as the result of

1. Clustering, arising from groups of individuals that share common features such as
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genetic traits or environmental factors;

2. Events that occur multiple times, commonly termed recurrent events.

Clustering becomes apparent when considering geographical clusters: for instance,

individuals included in EHR data can be divided into groups such as hospitals or

primary care units. The case of recurrent events is a special case of clustering where the

clustering unit is the individual: in many biomedical studies the event of interest can

occur more than once per study subject. Examples of recurrent events are: admissions

to the hospital, falls in elderly patients, migraines, cancer recurrences, infections,

bleeding events, and so on. An example of recurring events data for ten study subjects is

presented in Figure 5.1: individuals can experience several events, denoted with a solid

black dot, until the end of the study (or censoring, denoted by an empty dot).
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Figure 5.1: Example of recurrent events survival data

Conventional regression models for the analysis of survival data (as described in

Section 2.2) assume independence between observations. However, the hierarchical

structure that I just described yields clusters that include subjects (observations) that

are likely correlated - thus violating the above-mentioned assumption of independence.

Regression models for multilevel survival data allow analysing survival data that exhibit

a given multilevel structure while accounting for clustering, as described in the following

Sections.
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5.3 Modelling Recurrent Events Data

Within-subject correlation is a key feature of recurrent events data, alongside the ordering

of the events and the fact that each subject can be at risk for only one event at a time.

Traditional methods applied to recurrent events data are not wrong per se, but they do

not make use of all available information and require strong assumptions. For instance:

1. Logistic regression with event or not as outcome ignores time and all events after

the �rst one;

2. Count data models (Poisson or negative binomial regression) model the number of

events over time, and the total exposure time can be included in the model as an

o�set. However, the time between events is ignored;

3. A traditional Cox model ignores all events after the �rst one by modelling time to

the �rst event only.

Several methods have been proposed in the literature to model recurrent events data.

Broadly speaking, they can be categorised in two families: marginal models that account

for the correlation by using a robust sandwich-type estimator for the variance-covariance

matrix, and methods based on random e�ects. In particular, the Andersen-Gill (AG) model

[94] and the Prentice, Williams and Peterson (PWP) model [95] are considered marginal

models. Conversely, the frailty approach is based on the inclusion of a subject-speci�c

random e�ect that models the within-subject correlation [96]. These methods di�er

in assumptions, data layout for analysis, and interpretation of the estimated model

coe�cients e.g. some methods assume that future events depend on the present only

(Markov assumption), some models assume dependency via shared random e�ects, and

some models assume that the order of events is important.

5.3.1 The Andersen-Gill Model

The AG model is probably the most often applied model for recurrent events data and

generalises the Cox model by modelling the time between recurrent events on the total

timescale, i.e. since entry in the study. The total timescale is then split in smaller gap

times, where the starting time of a new event is the ending time of the preceding one
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Figure 5.2: Illustration of time splitting in the Andersen-Gill model for recurrent events

(Figure 5.2). The AG model assumes a common baseline hazard function for all events

and estimates a global parameter for the covariates included in the model; the underlying

assumption is then that the instantaneous risk to experience an event is not a�ected

by whether the previous event occurred or not. The dataset for analysis needs to be

in start-stop notation, e.g. each subject has a distinct row for each occurrence of the

event of interest (or censoring). Thus, a single patient contributes more than one piece of

information depending on the number of individually observed events. Applying the Cox

model is then straightforward, using standard statistical software: a Cox model is �tted

using a cluster-robust sandwich variance-covariance matrix, where each study individual

identi�es a cluster. The robust estimator takes into account the correlation between

observations originating from the same study subject. The AG model is appropriate

when the main aim of the analysis is on the overall e�ect of covariates on the rate of

occurrence of a given event, and when the above-mentioned assumption is believed to

hold.

5.3.2 The Prentice, Williams and Peterson Model

The PWP model is also a generalisation of the Cox model (although it can be applied

to parametric and �exible parametric models as well) and is based on ordering multiple

events by strati�cation based on the prior number of events. This is the main di�erence
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Figure 5.3: Illustration of time splitting in the Prentice, Williams and Peterson model for
recurrent events data. Panel A illustrates the total time scale approach (PWP-TT), while panel B
illustrates the gap time scale approach (PWP-GT)

with the AG model: with the PWP model, the analysis is strati�ed by each event. This

means that only individuals that experience the �rst event are at risk for the second one,

only individuals that experience the second event are at risk for the third one, and so

on. The baseline hazard function is therefore allowed to vary between each subsequent

event, and it is possible to include stratum-speci�c e�ects in the model as well.

Interestingly, the PWP model can be de�ned on two time scales: the total time scale

(PWP-TT), and the gap time scale (PWP-GT). The time scale of the PWP-TT model is

the same in the AG model, that is, the starting time of a new event is the ending time

of the one before. Conversely, the time scale of the PWP-GT model di�ers as the time

index is reset at the occurrence of each event. This means that in the PWP-GT model the

starting time of a new event is always zero: hence, the gap times approach is also termed

resetting the clock. A visual comparison of the two approaches is included in Figure 5.3.

Compared to the AG model, the PWP model is preferred when the e�ects of covariates

can vary between subsequent events as well as the baseline rate of occurrence of the

recurrent events process. For instance, this may occur when dealing with viral infections,

as each individual develops immunity after the �rst event which greatly modi�es the risk

of experiencing the event again.
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5.3.3 The Frailty Model

The �nal approach that I describe for modelling recurrent events data is the random

e�ects approach. Survival models with an individual-speci�c random intercept are also

known as shared frailty models, where the random e�ect induces dependence among the

recurrent event times for a given individual. The random intercept (also known as frailty)

has a multiplicative e�ect on the hazard and it describes the excess risk (frailty) for a

subject compared to the population average. In other words, the frailty term accounts

for the unmeasured heterogeneity between individuals in the analysis. Finally, the frailty

model could use either the total time scale or the gap time scale (as described for the

PWP model in Section 5.3.2, Figure 5.3), with interpretation of the results that varies

accordingly. This class of models for multilevel survival data is described in more detail

in Section 5.4 and forms the main focus of this Chapter.

5.4 Frailty Survival Models

The frailty approach was �rst proposed by Vaupel et al. and Lancaster to model

heterogeneity among individuals in univariate data [97, 98]; the resulting frailty survival

models are commonly denoted as univariate frailty survival models.

However, as described before, it is common to encounter clustered survival data where

the overall study population can be divided into heterogeneous clusters of homogeneous

observations. With such data, the outcome variable is generally recorded at the lowest

hierarchical level while covariates can be measured on units at any level of the hierarchy.

As a consequence, survival times of individuals within a cluster are likely to be correlated

and need to be analysed as such. Unfortunately, covariates that contribute to explaining

the heterogeneity between clusters are often not measured, e.g. for practical reasons.

The frailty approach aims to account for the unobserved heterogeneity by including a

random e�ect that acts multiplicatively on the baseline hazard and is shared within a

cluster. The univariate frailty approach was extended by Hougaard to accommodate

clustered survival data, as in the settings of EHRs [99, 100]; in fact, when considering

repeated event-times or clustered data the shared frailty approach yields survival times

that are conditionally independent given the frailty [101]. In other words, the presence of

88



this random e�ect explains the dependence in the sense that had the frailty been known,

the survival times would have been independent. The resulting models are commonly

referred to as shared frailty survival models and are described in Section 5.4.1.

Several extensions of frailty survival models have been developed. For instance Rondeau

et al. included two nested frailty terms that allow multiple levels of clustering [102], and

developed additive frailty models that allow studying both heterogeneity across trials

and treatment-by-trial heterogeneity [103]. They also developed joint frailty models for

recurrent events and a dependent terminal event to jointly study the evolution of the two

processes or account for violations of the proportional hazards assumption [104–106].

Finally, most of these methods assume independence of the frailty terms; Ha et al. further

relaxed that assumption by developing frailty models that can incorporate correlated

frailty e�ects and/or individual-speci�c frailty terms within the h-likelihood framework

[107].

5.4.1 Shared Frailty Survival Models

Shared frailty survival models are de�ned by a frailty term that introduces a multiplicative

e�ect �i on the hazard:

ℎij(t |�i) = �iℎ0(t) (5.1)

for the jth observation in the ith cluster; speci�cally, individuals within the same ith cluster

share the frailty e�ect �i .

The frailty term is chosen to have a distribution f (�) with expectation E(�) = 1 and

variance Var(�) = � 2. Var(�) is interpretable as a measure of heterogeneity across the

population in baseline risk: as � 2 increases the values of �i are more dispersed, with

greater heterogeneity in �iℎ0(t). Underlying assumptions of this model are: the frailty is

time-independent, and it acts multiplicatively on the underlying baseline hazard function.

Introducing observed covariates into the model from Equation (5.1) and inducing

proportional hazards:

ℎij(t |�i) = �iℎ0(t) exp(xij�) = �iℎ(t |xij), (5.2)

with xij and � covariates and regression coe�cients, respectively.
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Any distribution or functional form can be assumed for ℎ0(t) [108], or it is possible

to leave it unspeci�ed altogether yielding a semi-parametric Cox model with random

e�ects [109, 110]. Advantages and disadvantages of modelling the baseline hazard in

frailty survival models are the same described in Section 2.2.4 in the settings of standard

regression models for survival data.

Given the relationship between hazard and survival function, it can be shown that the

individual survival function conditional on the frailty is:

Sij(t |�i) = Sij(t)�i (5.3)

The cluster-speci�c contribution to the likelihood (assuming no left truncation for

simplicity) is obtained by calculating the cluster-speci�c likelihood conditional on the

frailty, consequently integrating out the frailty itself:

Li = ∫
A
Li(�i)f (�i) d�, (5.4)

with f (�) the distribution of the frailty, A its domain, and Li(�i) the cluster-speci�c

contribution to the likelihood, conditional on the frailty. The cluster-speci�c contribution

to the likelihood is

Li(�i) = �Dii
ni
∏
j=1

Sij(tij)�iℎij(tij)dij , (5.5)

with Di = ∑ni
j=1 dij .

Di�erent choices for the frailty distribution are possible, as described in more details by

Hougaard [111, 112]. Assigning a probability distribution implies that the frailty can be

integrated out of the likelihood function. After this integration, the likelihood can be

maximized in the usual way if an explicit form exists. Otherwise, more sophisticated

approaches such as numerical integration are required.

The Gamma distribution is widely used, being mathematically very convenient; the

inverse Gaussian distribution is also common. A main di�erence between the two

is that a Gamma frailty yields a time-independent heterogeneity, while an inverse

Gaussian frailty yields heterogeneity that decays over time, making the population

more homogeneous as time goes by; in general, the relative shapes of the individual
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and population hazard functions could di�er greatly because of the frailty e�ect.

Additionally, Hougaard presents a family of distributions with in�nite mean, such as the

reciprocal Gamma distribution and the positive stable distribution. It is possible to use a

log-normal frailty as well; however, that leads to analytically intractable formulæ and

additional computational complexity.

Assuming that the frailty � has a Gamma distribution is practical: it has the appropriate

range (0,∞) and it is mathematically tractable. A Gamma distribution with parameters

a and b has density

f (x) =
xa−1 exp(−x/b)

Γ(a)ba
; (5.6)

by choosing a = 1/� and b = � the resulting distribution has expectation 1 and �nite

variance � . In these settings, the model is analytically tractable: the population survival

function takes the form

S(t) = [1 − � log(S(t))]−1/� (5.7)

with the likelihood following by substitution:

Li = [

ni
∏
j=1

ℎij(tij)dij]
Γ(1/� + Di)
Γ(1/�) [

1 − �
ni
∑
j=1
log Sij(tij)]

−1/�−Di

(5.8)

Estimating such model becomes therefore straightforward, which likely contributed to

the popularity of Gamma frailty models.

Together with the Gamma distribution, the log-normal distribution is one of the most

commonly used frailty distribution, given its strong ties to random e�ect models.

Assuming a log-normal distribution with a single parameter � > 0 (for comparison with

the mathematically tractable Gamma frailty model) with density

f (x) = (2��)−
1
2x−1 exp(−

(log x)2

2� ) , (5.9)

the resulting model has a frailty whose expectation is �nite. Despite that, this frailty

distribution cannot be integrated out of the survival function analytically to obtain

the population survival function or the likelihood, requiring additional computational

complexity (for instance, numerical quadrature or stochastic integration is required).

Computational issues in frailty models are discussed in more detail in Section 5.4.2.
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As above-mentioned, a shared frailty model assuming a log-normal distribution for the

frailty term has strong ties to random-e�ects models. A log-normal frailty model is

formulated as

ℎij(t |�i) = �iℎ(t |xij) = �iℎ0(t) exp(xij�), (5.10)

with �i following a log-normal distribution. On the log-hazard scale:

ℎij(t |�i) = ℎ0(t) exp(xij� + �i), (5.11)

with �i = log �i . �i is therefore normally distributed with parameters � and � 2 related to

those of the log-normal distribution by the relationship

E(�i) = exp(� + � 2/2) (5.12)

and

Var(�i) = exp(2� + � 2)(exp(� 2) − 1) (5.13)

By formulating the model on the log-hazard scale, the frailty term has a direct

interpretation as a random intercept in the model. It is possible to further extend

this model by allowing multiple random covariates e�ects, potentially ranging over

multiple levels of clustering, as described by Crowther et al. [108]. Borrowing the usual

mixed-e�ects model notation from Section 2.3, and assuming a single level of clustering:

ℎij(t |bi) = ℎ0(t) exp(xij� + zibi), (5.14)

with xij the �xed e�ects and zi the cluster-speci�c random e�ects, with associated

coe�cients � and bi , respectively. Under this more general formulation, a survival model

can include not only a random intercept but also random e�ects of other covariates

included in the model, potentially over multiple levels of clustering (e.g. patients nested

into hospitals nested into Countries).

5.4.2 Computational Challenges

I mentioned in Section 5.4.1 that frailty survival models with a log-Normal frailty

(and consequently survival models with normally-distributed random e�ects) require
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additional computational complexity during the estimation procedure.

For instance, the distribution of the frailty has to be integrated out of the likelihood

function (Equation (5.4)) to obtain the marginal likelihood to be maximised, or to obtain

the marginal hazard and survival function.

In this Section I will describe Gaussian quadrature, a numerical method that can be

used to approximate intractable integrals (such as those mentioned above). Simple

Gauss-Hermite quadrature [113, 114] can be used to evaluate analytically intractable

integrals of the form

∫
+∞

−∞
e−x

2
f (x) dx ≈

m

∑
q=1

w1f (xq) (5.15)

with xq and wq quadrature nodes and weights, respectively. The quadrature nodes xq are

the qth root of the Hermite polynomial Hm(x), while the quadrature weights wq can be

calculated as

wq =
2m−1m!

√
�

m2[Hm−1(xq)]2
(5.16)

This approximation is exact for polynomials of degree 2m − 1.

Following Naylor and Smith [113] and Tuerlinckx et al. [115], it is possible to replace the

weighting function e−x2 in Equation (5.15) with a normal density �(⋅) with mean � and

standard deviation � :

∫
+∞

−∞
f (x)�(x |�, � 2) dx =

1√
2�� ∫

+∞

−∞
f (x) exp [−

(x − �)2

2� 2 ] dx (5.17)

Then, undertaking a change of variable and setting x = � + �
√
2r with r = (x − �)/(

√
2� ),

Equation (5.17) becomes:

∫
+∞

−∞
f (x)�(x |�, � 2) dx =

√
2�√
2�� ∫

+∞

−∞
f (� + �

√
2r)e−r

2
dr

≈
m

∑
q=1

f (� + �
√
2r)

wq√
�

(5.18)

This is a Gauss-Hermite quadrature evaluation based on the normal kernel, with nodes

dq = � + �
√
2xq and weights vq = wq/

√
� .

The Gauss-Hermite integration introduced so far only applies for a univariate function,

e.g. for a single random e�ect or a frailty term. With a multivariate function (such as in
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Figure 5.4: Gauss-Hermite quadrature nodes for a bi-dimensional Normal kernel. Panel A
depicts quadrature nodes when the two dimensions are independent, while panel B depicts
quadrature nodes for correlated dimensions.

the settings of multiple random e�ects, e.g. a random intercept and slope) the integration

procedure can be easily extended to the Q-dimensional case [116]; this will be most

relevant in Chapters 6 and 7. For instance, in the multivariate case I have a vector of

quadrature nodes dq1,…,qQ = (dq1 ,… , dqQ ). The di�erence with the univariate case is that

the vector of nodes has to be pre-multiplied by Ω1/2, the Cholesky decomposition (or the

spectral decomposition) of the variance-covariance matrix of the multivariate Normal

distribution used as kernel to account for correlation.

The grid of nodes for multivariate Gauss-Hermite quadrature is illustrated in Figure 5.4,

assuming Q = 2 dimensions for simplicity and m = 9 nodes. Panel A depicts the grid

of quadrature nodes without accounting for the correlation with the two dimensions;

conversely, panel B depicts the grid of quadrature nodes assuming the following

variance-covariance matrix:
⎡
⎢
⎢
⎣

1 0.5

0.5 1

⎤
⎥
⎥
⎦

By accounting for the correlation between the two dimensions the grid of quadrature

nodes is therefore rotated to better approximate the bivariate distribution.

The accuracy of the approximation of the integral in Equation (5.18) depends on the
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number of quadrature points m; a standard practice when utilising Gauss-Hermite

quadrature to approximate a likelihood function consists of �tting models with an

increasing number of quadrature nodes, until the di�erence between estimates is small

enough. However, the computational burden grows considerably as m increases, a

burden that further grows exponentially with an increasing number of dimensions Q.

Using the same grid of nodes for each cluster e.g. in a shared frailty model with a

random e�ect is, however, ine�cient: when the heterogeneity between clusters is large,

the nodes will likely not be placed in the optimal position hence failing to capture key

information from the likelihood function. To improve the performance of standard

Gauss-Hermite quadrature in the settings that I just described, Pinheiro and Bates

proposed an adaptive quadrature method that allows cluster-speci�c centring and

scaling of the quadrature nodes [117]. This procedure, named adaptive Gauss-Hermite

quadrature, achieves the goal of placing the nodes at the most appropriate position

of the integral function for each cluster reducing the computational burden as fewer

nodes are required to obtain the same accuracy level of standard Gauss-Hermite

quadrature. Adaptive Gauss-Hermite quadrature uses an alternative Normal kernel

density with nodes appropriately transformed using the formula ri = b̂i + 
̂
1/2
i db1,…,bQ :

rather than centring the quadrature nodes on zero and scaling using the overall

Choleski decomposition of the variance-covariance matrix, cluster-speci�c means and

variance-covariance matrices are used for centring and scaling. An example of adaptive

Gauss-Hermite quadrature is illustrated in Figure 5.5.

5.5 Impact of Model Misspecification in Shared

Frailty Survival Models

Survival models as described in Section 2.2.4 require a modelling choice regarding the

shape of the baseline hazard function ℎ0(t).

The standard, most common approach consists of leaving the baseline hazard unspeci�ed

(e.g. in a Cox model), especially when relative e�ect estimates are of interest. Nonetheless,

the aim of the analysis often includes obtaining and reporting absolute measures of risk:

in that context, modelling the baseline hazard has favourable properties and it can be
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Figure 5.5: Example of Adaptive Gauss-Hermite quadrature. In panel A I depict standard
Gauss-Hermite quadrature, with the overall distribution; however, as depicted in panel B, each
cluster deviates from the overall distribution. Therefore, adaptive Gauss-Hermite quadrature
centres the quadrature nodes on each cluster’s estimated mean (panel C) and re-scales the nodes
using the estimated variance (panel D). The centring and scaling is depicted only for cluster 1 to
reduce clutter

achieved by using standard parametric distributions for the baseline hazard (as described

in Section 2.2.4.2). Alternatively, one could use the �exible parametric modelling

approach of Royston and Parmar [24] to better capture the shape of complex hazard

functions. The latter approach requires choosing the number of degrees of freedom for

the spline term used to approximate the baseline hazard: in practice, sensitivity analyses

and information criteria (AIC, BIC) have been used to select the best model. Rutherford

et al. showed via simulation that, assuming a su�cient number of degrees of freedom

is used, the approximated hazard function given by restricted cubic splines �ts well for

several complex hazard shapes and the hazard ratios estimation is insensitive to the

correct speci�cation of the baseline hazard [28]. Using a su�cient number of degrees

of freedom, the spline-based approach is able to capture the underlying shape of the

hazard function with minimal bias; AIC and BIC can guide the choice of the best �tting

model, but they tend to agree to within 1 or 2 degrees of freedom in practice.

The modelling choice regarding the shape of the baseline hazard is required in the settings

of shared frailty survival models as well. On top of that, shared frailty survival models

require choosing an appropriate distribution for the frailty term: as described above,
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assuming a Gamma distribution has favourable mathematical properties and, despite

that, the log-Normal distribution is commonly assumed as well given its strong ties with

random-e�ects models.

The choice of a particular parametric frailty distribution is known to have a marginal

impact on the estimation and testing of regression coe�cients. Pickles and Crouchley

[118] showed how the estimated values and the distribution of the likelihood ratio

test statistic do not di�er much comparing a variety of models such as the Weibull

survival model with a Gamma or log-Normal frailty. They conclude by arguing that

the convenience and generality of the baseline hazard would seem more important than

generality of the frailty distribution when �tting a frailty model. Glidden and Vittingho�

reached the same conclusions, highlighting how di�erent frailty distributions can lead to

appreciably di�erent association structures despite not greatly a�ecting the estimation

of regression coe�cients [119]. Lee and Thompson [120] showed how violations of

the normality assumption for random e�ects in hierarchical models do not a�ect �xed

e�ects substantially while having a substantial impact on inference regarding the random

e�ects. Thus, they advocate the use of more �exible distributions such as the t or the

skewed t for the random e�ects when the distribution of the random e�ects is of interest

- e.g. in the context of meta-analysis - despite the increased complexity. Liu et al. [121]

showed that �exible parametric survival models with frailties perform well, both in terms

of estimating the regression coe�cients and the variance of the frailty; in comparison,

semiparametric frailty models with a log-Normal frailty underestimated the variance

of the frailty. They also showed that model misspeci�cation could lead to an in�ated

estimated variance of the frailty and a biased estimated survival function. Duchateau et

al. [122] showed via simulation that the number of centres and the number of patients per

centre in�uence the quality of the estimates, and they argue (in the context of multi-centre

clinical trials) the importance of making sure that a trial is su�ciently large for the

estimated heterogeneity parameter to actually describe the true heterogeneity between

centres and not just random variability. Finally, Ha et al. showed (in the h-likelihood

framework) that misspecifying the baseline hazards results in larger bias than assuming

the wrong frailty distribution [123]. In conclusion, the small impact of misspecifying the

frailty distribution on regression coe�cients seems to be well established in the literature,

with some evidence pointing towards biased absolute measures of risk. Nevertheless, the
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structure of the frailty can be as important as the choice of the baseline hazard given that

it gets easier to distinguish between unobserved heterogeneity and non-proportional

hazards when more information on the correlation structure is available [124, 125].

However, little is known about the impact of misspecifying the baseline hazard in

survival models with frailty terms, and the impact of model misspeci�cation on model

predictions. Throughout this Section, I will investigate the impact of misspecifying the

baseline hazard, the distribution of the frailty, or both on measures of relative (regression

coe�cients) and absolute (loss in life expectancy [126]) risk, and on heterogeneity

measures such as the estimated variance of the frailty component. Absolute measures

of risk are particularly important when communicating the results of a study, as it

provides additional information that is especially useful to patients and policy-makers.

It has been argued that both relative and absolute measures of risk should be reported,

as together they provide a complete picture of the e�ect and its implications [127];

therefore, assessing the impact of model misspeci�cation on such measures is crucial as

well. Absolute risk predictions are unfortunately often not implemented in statistical

software packages, hence this simulation study will require ad-hoc coding to compute

the loss in life expectancy (and its standard error). I will compare a large set of models

under di�erent data-generating mechanisms: semiparametric and fully parametric

survival models with frailties, models with �exible baseline hazard, and models with

�exible baseline hazard and a penalty for the complexity of the spline. The settings of

this Monte Carlo simulation study are described in Sections 5.5.1 to 5.5.6, using the

ADEMP structure introduced in Section 4.3. Finally, the results are described in Section

5.5.7.

5.5.1 Aims

The impact of misspecifying the baseline hazard, the frailty distribution, or both in

survival models with shared frailty is not fully understood. Therefore, the primary aim of

this simulation study consists in assessing the consequences of such misspeci�cation on

estimates of risk, both relative and absolute. This is particularly relevant as parametric

survival models are being increasingly used in applied settings, with �exible frameworks

and software readily available [108].
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Figure 5.6: Simulated baseline hazard functions

I will simulate clinically plausible clustered survival data, aiming to mimic real data

scenarios with each data-generating mechanism: clustered studies such as multi-centre

clinical trials, individual patient data meta-analysis, paired organ studies, twin studies,

and so on.

5.5.2 Data-Generating Mechanisms

I simulate data from the following data-generating model:

ℎij(t) = �iℎ0(t) exp(xij�),

where xij is a binary treatment variable simulated from a Bernoulli random variable with

probability p = 0.50 and an associated log-hazard ratio log(�) = −0.50 and cluster-speci�c

frailty terms following either a Gamma or a log-Normal distribution with variance � , � ∈

{0.25, 0.75, 1.25}. I simulate survival times under �ve di�erent baseline hazard functions

using the methods described in Section 4.4; speci�cally, I chose the exponential, Weibull,

Gompertz hazard functions, and two di�erent two-components Weibull-Weibull mixture

distribution (Figure 5.6, Table 5.1). Administrative censoring is applied at 5 years.

Then, for each baseline hazard function, I simulated clustered data for 750 clusters of

2 individuals each and 20 clusters of 150 individuals each. I also simulated a mixture
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Table 5.1: Parameters of data-generating baseline hazard functions

Baseline hazard function Parameters

Exponential � = 0.5

Weibull � = 0.5,  = 0.8

Gompertz � = 0.5,  = 0.2

Weibull-Weibull (1) �1 = 0.3, �2 = 0.5, 1 = 1.5, 2 = 2.5, � = 0.7

Weibull-Weibull (2) �1 = 0.5, �2 = 0.5, 1 = 1.3, 2 = 0.7, � = 0.5
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Figure 5.7: Simulated settings for the scenarios with a frailty term following a mixture Normal
distribution with � ∈ {0.25, 0.75, 1.25} frailty

Normal frailty distribution: as a motivation for this distribution, assume the presence of

G = 2 hidden groups in each cluster (e.g. an unmeasured binary covariate). Formally, let

g = {1, 2} be an index over the groups, with �g being the proportion in the groups and

∑g �g = 1. Let the hazard for the ith individual in the jth cluster (and gth hidden group)

be:

ℎgij(t) = ℎ0(t) exp(xgij� +∑
g
�gHg),

where ∑g �gHg follows a mixture Normal distribution with mixing probabilities �g and

Hg ∼ N (�g , � 2g ). I assume �1 = �2 = 0.5, � = {−3
√
�, +3

√
�}, and � 21 = � 22 = � for the

purposes of these simulations: this yields very distinct hidden groups, with group-speci�c

means that are 6-standard deviations apart (as illustrated in Figure 5.7).
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In conclusion, I simulated clustered survival data for 2 di�erent sample sizes (number

of individuals and clusters), 3 possible distribution of the frailty component, 3 frailty

variances, and 5 baseline hazard functions. Given that I am using a fully factorial design,

this adds up to 90 distinct data-generating mechanisms.

5.5.3 Estimands

The estimands of interest are estimates of relative risk, absolute risk, and heterogeneity.

Besides, I will monitor and report on convergence rates of each model as well.

Relative Risk

The relative risk estimate of interest is the regression coe�cient � associated with

the binary treatment; this coe�cient can be interpreted as the log-treatment e�ect,

conditional on the unobserved value of the frailty term. Notably, the hazard ratio in

a frailty model carries the usual interpretation only when comparing two hazards

conditional on a given frailty; unconditionally, at a population level, the proportionality

of hazards is not guaranteed to hold even under the proportional hazards parametrisation.

For most frailty distributions (including the Gamma and log-Normal) the conditional

hazard ratio is a true hazard ratio only at time t = 0, as the e�ect of the covariates on the

hazard varies over time depending on the actual distribution of the frailty [100, 112, 125].

Absolute Risk

The absolute risk estimate of interest is the 5-years loss in life expectancy (LLE)

(associated with the treatment of interest), de�ned as the di�erence in life expectancy

between exposed and non-exposed individuals. The marginal 5-years life expectancy

(LE) for exposed individuals (X = 1) is de�ned as

LE(X = 1) = ∫
5

0
S(u|X = 1) du

= ∫
5

0
∫
A
S(u|X = 1, �) p(�) d� du,

(5.19)

where A is the domain of the frailty � and p(�) its density function. The marginal 5-years

LE as de�ned in Equation (5.19) is also known as restricted mean survival time [128].

101



Consequently, the LLE for exposed versus non-exposed individuals is de�ned as

LLE = ∫
5

0
S(u|X = 1) du − ∫

5

0
S(u|X = 0) du. (5.20)

Analogously as before, LLE as de�ned in Equation (5.20) is also known as di�erence in

restricted mean survival times [128].

The inner integral in Equation (5.19) has a closed-form when the frailty follows a Gamma

distribution; with a log-Normal frailty (and with a mixture Normal frailty), numerical

integration is required.

I use the quadinf function from the pracma package in R to perform numerical integration,

which implements the double exponential method for fast numerical integration of

smooth real functions on �nite intervals [129, 130]. For in�nite intervals, the tanh-sinh

quadrature scheme is applied [131]. The outer integral in Equation (5.19), however, is

approximated using spline-based integration as follows. First, I estimate LE over 1,000

values of t between the minimum and the maximum observed survival times; then, I

�t an interpolating natural spline function over the 1,000 LE estimates from step (1),

which I �nally integrate between 0 and 5 (years) using the double exponential method

of quadinf. LLE follows by computing the di�erence between the two integrals. Finally,

the standard error of the estimated LLE is computed using the numerical delta method

(as implemented in the predictnl function from the rstpm2 R package [132]).

Heterogeneity

With this simulation study I mainly focus on estimates of risk; despite that, measures

of heterogeneity are sometimes used to quantify dependence between clustered

observations. Therefore, I will report the results of the simulation study regarding the

frailty variance as well; as the frailty variance estimated by models assuming either a

Gamma or a log-Normal distribution are not directly comparable (being modelled on

di�erent scales, hazard versus log-hazard), I will not include summary statistics for the

frailty variance where the frailty distribution is misspeci�ed.
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5.5.4 Methods and Software

Methods included in this comparison are shared frailty models, de�ned as in Section

5.4.1; as mentioned above, assumptions regarding the shape of the baseline hazard and

the distribution of the frailty are required. Therefore, I will compare a variety of shared

frailty models, described in the following paragraphs and summarised in Table 5.2.

First, I �t semiparametric shared frailty models by leaving the baseline hazard function

unspeci�ed and assuming either a Gamma or a log-Normal frailty (Model 1–2, denoted

by Cox in plots). The Cox shared frailty model with a Gamma frailty can be �t

using the frailtyEM R package, which uses maximum likelihood estimation via the

Expectation-Maximization algorithm [40] and uses exact formulæ; the Cox shared

frailty model with a log-Normal frailty can be �t using the coxme R package, and relies

on penalised likelihood estimation [109] and the Laplace approximation to integrate

out the distribution of the frailty. Hirsch and Wienke compared several R packages for

�tting semiparametric frailty models, and coxme emerged as the most robust package

[133]; I chose to use frailtyEM over competing packages for semiparametric shared

frailty models with a Gamma frailty as it implements predictions for the marginal

survival function, and it is being actively maintained. Other packages that support

semiparametric shared frailty models (using di�erent estimation algorithms) are for

instance frailtySurv [134] and frailtyHL [135].

Second, I �t fully parametric survival models by assuming that the baseline hazard

function follows an exponential, Weibull, or Gompertz distribution; each of the three

models is �t assuming both a Gamma and a log-Normal frailty distribution (Model 3–8,

denoted by Exp, Wei, and Gom). These models are �t using the parfm R package [136]. As a

comparison, I also �t the Weibull model with both Gamma and log-Normal frailties using

the frailtypack R package (Model 17–18, denoted by FP(W)). parfm uses the Laplace

approximation when �tting models with a log-Normal frailty, while frailtypack uses

Gaussian quadrature.

Third, I �t Royston-Parmar �exible parametric survival models generalised by Liu et al.

to account for clustered and correlated survival data [24, 121, 137], as implemented in

the rstpm2 R package [132]. Using the generalised survival model formulation, the model
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is formulated as

S(tij |xij , �i) = {G[�(tij , xij ; �)]}�i (5.21)

with G(⋅) = g−1(⋅) an inverse link function and �(⋅) a linear predictor function of time and

covariates.

When choosing the log-log link function, the model is a proportional hazards model;

modelling the log of time with natural splines, the resulting model is a Royston-Parmar

model whose parameters can be �t using fully parametric maximum likelihood. I �t

models with 3, 5, or 9 degrees of freedom for the natural spline of time, and I assume

both Gamma and log-Normal shared frailties (Model 9-14, denoted by RP(df) where df

is the number of degrees of freedom).

Liu et al. also developed a penalised likelihood estimation procedure that does not require

choosing the number of degrees of freedom for the spline term [121]. The penalty term

accounts for the complexity of the smoother of time to avoid over�tting the data; however,

additional computational complexity is required to select the smoothing parameter (or

parameters). The estimation procedure for penalised models is described in detail in

Liu et al. [121]. Hence, I �t the same Royston-Parmar model with shared frailties using

penalised likelihood and either a Gamma or log-Normal frailty (Model 15-16, denoted by

RP(P)). rstpm2 uses adaptive Gaussian quadrature to approximate the intractable integrals

in shared frailty models with a log-Normal frailty.

Finally, I �t shared frailty models where the baseline hazard function is approximated by

cubic M-splines on the hazard scale, as implemented in the frailtypack R package [138].

Such models are �tted using a penalised likelihood estimation procedure, and it requires

either �xing the smoothing parameter � or maximizing a likelihood cross-validation

criterion to �nd the optimal value [139]. I choose the former approach and �x the value

of � to the arbitrary values 10 and 10,000, as in the simulations of Liu et al. [121] (Model

19-22, denoted by FP(k=kappa), with kappa the smoothing parameter �). As mentioned

above, frailtypack uses Gaussian quadrature to approximate intractable integrals.

All models included in this simulation study are �tted without tweaking any of the

convergence parameters utilised for declaring convergence of the estimation algorithm

or any precision setting. All packages but coxme returned a standard error for the estimated
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Table 5.2: Models included in the Monte Carlo stimulation study on model misspeci�cation
in shared frailty survival models

Model Baseline hazard function Frailty distribution R package Version

1 Unspeci�ed Gamma frailtyEM 0.8.8

2 Unspeci�ed Log-Normal coxme 2.2-10

3 Exponential Gamma parfm 2.7-6

4 Exponential Log-Normal parfm 2.7.6

5 Weibull Gamma parfm 2.7.6

6 Weibull Log-Normal parfm 2.7.6

7 Gompertz Gamma parfm 2.7.6

8 Gompertz Log-Normal parfm 2.7.6

9 Royston-Parmar, 3 df Gamma rstpm2 1.4.5

10 Royston-Parmar, 3 df Log-Normal rstpm2 1.4.5

11 Royston-Parmar, 5 df Gamma rstpm2 1.4.5

12 Royston-Parmar, 5 df Log-Normal rstpm2 1.4.5

13 Royston-Parmar, 9 df Gamma rstpm2 1.4.5

14 Royston-Parmar, 9 df Log-Normal rstpm2 1.4.5

15 Royston-Parmar, penalised Gamma rstpm2 1.4.5

16 Royston-Parmar, penalised Log-Normal rstpm2 1.4.5

17 Weibull Gamma frailtypack 3.0.2.1

18 Weibull Log-Normal frailtypack 3.0.2.1

19 M-splines, � = 10 Gamma frailtypack 3.0.2.1

20 M-splines, � = 10 Log-Normal frailtypack 3.0.2.1

21 M-splines, � = 10,000 Gamma frailtypack 3.0.2.1

22 M-splines, � = 10,000 Log-Normal frailtypack 3.0.2.1

105



variance of the frailty term; therefore, when �tting a semiparametric shared frailty

model with a log-Normal frailty, I used non-parametric bootstrap with 1,000 replications

(resampling at the cluster level to preserve the within-cluster correlation) to estimate the

variance of the frailty [140]. Lastly, only frailtyEM, rstpm2, and frailtypack implemented

a function to predict marginal survival; for coxme and parfm, I manually wrote ad-hoc

R functions to estimate marginal survival, using numerical integration when required

(quadinf function from the pracma package [130]). All the code required to re-run this

simulation study is openly available on my GitHub page: https://github.com/ellessenn

e/frailtymcsim.

5.5.5 Performance Measures

The �rst performance measure of interest is bias, quantifying whether an estimator

targets the true value on average. Formally, it is de�ned as E(�̂) − � , with �̂ estimates

of the parameter � . Second, I am interested in coverage, i.e. the proportion of times

the 100 × (1 − �)% con�dence interval �̂ ± Z1−�/2 × SE(�̂) includes the true value � . This

allows assessing whether the empirical coverage rate approaches the nominal coverage

rate (100 × (1 − �)%). Finally, I am interested in mean squared error (MSE); MSE is the

sum of the squared bias and variance of �̂ and represents a natural way to integrate both

performance measures into one. However, the relative in�uence of bias and variance of

�̂ varies with the number of simulations making generalising results di�cult. Further

details on each performance measure are given in Chapter 4 and elsewhere [58, 81].

I also report on convergence rates for each model, and I will include Monte Carlo

standard errors for bias, coverage, and MSE to quantify the uncertainty in estimating

such performance measures [58, 70].

Finally, to avoid the in�ation of summary statistics caused by software packages

spuriously declaring convergence, I manually declared as non-converged all the model

�ts that returned standardised point estimates or standardised standard errors larger

than 10 in absolute value. I standardised values using median and interquartile range

for robustness.
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Figure 5.8: Monte Carlo standard error for bias under various combinations of expected bias
variance and number of replications

5.5.6 Number of Simulations

The choice of the number of replications for this simulations is related to the required

degree of precision (and hence the required Monte Carlo standard error).

The key performance measures are bias and coverage; starting with bias, its Monte Carlo

standard error can be written as

MCSE =
√

Var
nsim

(5.22)

Re-arranging the equation, I obtain

nsim =
Var

MCSE2
(5.23)

The expected Monte Carlo standard error for bias as a function of nsim and expected

variance is illustrated in Figure 5.8. Assuming a variance of 0.1 for the estimated bias,

the expected Monte Carlo standard error with 1,000 replications would be 0.01: I deem

this to be acceptable.
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Figure 5.9: Monte Carlo standard error for coverage probability under various combinations of
expected coverage and number of replications

Analogously for coverage, the Monte Carlo standard error can be written as

MCSE =
√

Coverage × (1 − Coverage)
nsim

(5.24)

Re-arranging the equation, I obtain

nsim =
Coverage × (1 − Coverage)

MCSE2
(5.25)

The expected Monte Carlo standard error for coverage as a function of nsim and expected

coverage probability is illustrated in Figure 5.9. The Monte Carlo standard error for

coverage is maximised when coverage is 50%; with 1, 000 replications, the expected

Monte Carlo standard error for coverage in the worst-case scenario would be 1.58%.

Should coverage be optimal at 95%, the expected Monte Carlo standard error would be

0.68%: I deem this expected Monte Carlo standard error acceptable.

In conclusion, I run 1,000 replications for each scenario of this simulation study; the

expected Monte Carlo standard error for bias is 0.01, while the expected Monte Carlo

standard error for coverage probability is ≤ 1.58%.
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5.5.7 Results

Convergence Rates

Convergence rates were good for most models and scenarios, with 75% of

model–scenarios combinations showing a convergence rate of 98% or above (Figure

5.10). However, some exceptions could be found (Figure 5.11):

1. Parametric models with a Gompertz baseline hazard had the worst convergence

rates, with a median convergence rate of 43.20% (inter-quartile range: 29.25% –

55.85%);

2. Parametric models with a Weibull baseline hazard and a log-Normal frailty �tted

using the frailtypack package caused R to hang inde�nitely in several scenarios,

yielding a median convergence rate of 81.00% (inter-quartile range: 65.30% –

97.30%);

3. frailtypack models with a smooth baseline hazard modelled using M-splines

showed low convergence rates for other scenarios as well, especially when

simulating heterogeneity from a mixture Normal frailty distribution;

4. Some frailtypack models and some parametric models with a Gompertz baseline

hazard did not converge at all in some scenarios with simulated data assuming a

mixture Normal frailty.

Furthermore, I include in Figure 5.12 convergence rate ratios for each data-generating

mechanism and model included in this simulation study. Convergence rate ratios

were estimated using a Poisson model, �tted using quasi-likelihood to account for

over-dispersion, and using robust standard errors [36]; I set as reference levels all levels

of each DGM with the highest average convergence rate (sample size of 750 clusters of 2

individuals each, frailty variance of 0.25, Gamma frailty distribution, Gompertz baseline

hazard function, and Weibull parametric model with a Gamma frailty). Using a type-II

Anova based on the F-test (as suggested by Hastie and Pregibon [141] for settings where

a dispersion parameter is estimated from data), the following factors result associated

with the convergence rate: sample size (p-value of 0.04), frailty variance (p-value of <

0.01), frailty distribution (p-value of < 0.01), and model (p-value of < 0.01). The Gompertz

models showed the worst convergence rate ratios (< 0.50), with the M-splines model
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with a Gamma frailty and � = 10,000 and the Weibull model with a log-Normal frailty �t

using the frailtypack being second and third worst, respectively. The Royston-Parmar

model with 9 degrees of freedom and a Gamma frailty, the M-splines model with either

� = 10, 10,000 and a log-Normal frailty, and the exponential model with a log-Normal

frailty showed reduced convergence rate ratios compared to the reference as well.

The rate ratios of convergence also decreased as the variance of the frailty increased,

and when simulating from a mixture Normal distribution. Finally, simulating from a

Weibull or Weibull-Weibull (2) baseline hazard function and simulating 20 clusters of

150 individuals each also yielded slightly reduced convergence rate ratios.

Finally, Figure 5.13 depicts convergence rates for every scenario against the average

proportion of observed events. Models with worse convergence rates showed an

association between non-convergence and the average proportion of events, with

stronger right censoring being associated with worse convergence rates.

Ultimately, the factors that seemed to be associated with convergence rates were the

censoring proportion, the variance of the frailty, and the distribution of the frailty.

Nevertheless, the software implementation and the algorithms used for �tting each model

seem to play an important role, with some software implementations being more robust

than others to variations in the factors outlined before.

Results for the Regression Coe�cient

Bias, and coverage probability for scenarios with 20 clusters of 150 individuals each and

scenarios with 750 clusters of 2 individuals each are presented in Figures 5.14, 5.16, and

5.15, 5.17, respectively.

With a simple, exponential true baseline hazard all models performed equally well in

terms of bias and coverage, with minimal bias in scenarios simulated from a mixture

Normal frailty distribution and consequently sub-optimal coverage in the same settings.

Conversely, assuming a too simple parametric distribution with a more complex true

baseline hazard (or misspecifying the baseline hazard) yielded a biased regression

coe�cient: signi�cant positive bias up to 0.20 and negative bias up to -0.12 for models

assuming an exponential baseline hazard, and positive bias up to 0.21 and negative

bias up to -0.12 for models assuming a Gompertz baseline hazard. A positive bias of
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Figure 5.13: Convergence rates versus average proportion of events per simulated scenario.
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0.21 on the log-hazard ratio scale corresponds to a 23% relative risk overestimation; a

negative bias of -0.12 corresponds to an 11% relative risk underestimation. Conversely,

models assuming a Weibull baseline hazard performed slightly better in these simulated

settings, with positive bias up to 0.05 and negative bias up to -0.06. The semiparametric

Cox models and all the �exible parametric models (irrespectively of the number of

degrees of freedom employed and of the estimation procedure) yielded unbiased results,

with the exception of the model with 9 degrees of freedom and a log-Normal frailty

in four scenarios with a frailty simulated from a mixture Normal distribution with

component-speci�c variances of 1.25 and assuming a Weibull and a mixture Weibull

(2) true baseline hazard. In those scenarios, the �exible parametric model yielded large

biases of 0.18 to 0.40, although this seems to be a somewhat spurious result given the

performance of the same method in other scenarios. All models using M-splines on

the hazard scale performed similarly to the parametric Weibull, with little to no bias;

however, the performance of models using M-splines worsened with a true mixture

Normal frailty distribution. Coverage was optimal for all models producing unbiased

estimates; conversely, coverage dropped considerably for models that yielded biased

estimates with coverage values as low as 5% for models showing the largest bias.

Interestingly, misspeci�cation of the frailty distribution did not a�ect much the pattern

of results; despite that, bias seemed to worsen when the frailty was simulated from

a log-Normal or mixture Normal distribution compared to a Gamma distribution,

exacerbating the e�ect of misspecifying the baseline hazard. In addition to that, in

scenarios with 750 clusters of 2 individuals each the performance of most methods

worsened compared to the settings of 20 clusters of 150 individuals, especially when

simulating from a mixture Normal frailty distribution. For instance, the Cox model with

a log-Normal frailty yielded positive bias up to 0.12 in scenarios with a frailty simulated

from a mixture Normal distribution with component-speci�c variances of 1.25. Other

than that, the patterns of results from scenarios with di�erent sample sizes are pretty

much comparable.

Finally, mean squared errors are presented in Appendix E, as Figures E.1 and E.2. The

models that showed the lowest MSE were the semiparametric models, the �exible

parametric models, and the models using M-splines - irrespectively of the true baseline

hazard and distribution of the frailty. The exponential and Gompertz parametric models
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showed a larger MSE - up to 10-fold larger - when the baseline hazard was misspeci�ed,

with the Gompertz model showing an MSE larger than semiparametric and �exible

parametric models even when well speci�ed. The Weibull model, as observed before,

performed similarly to semiparametric and �exible parametric models.

Results for the 5-years LLE

Bias and coverage probability for the 5-years LLE are presented in Figures 5.18, 5.20 for

scenarios with 20 clusters of 150 individuals each, and in Figures 5.19, 5.21 for scenarios

with 750 clusters of 2 individuals each.

The pattern of results for LLE mirrors the pattern observed for the regression coe�cient:

models with a misspeci�ed baseline hazard (or a baseline hazard not �exible enough to

capture the underlying shape) yielded biased results, both positive and negative. Negative

bias was up to -0.06 and positive bias was up to 0.20: this corresponds, respectively, to a

di�erence of approximately (minus) 1 month and 2 and a half months in the estimated LLE.

The Weibull model with a log-Normal frailty �t with frailtypack largely underestimated

the 5-years LLE in all scenarios with a true Gamma or log-Normal frailty and a sample

size of 20 clusters of 150 individuals (negative bias between -0.18 and -0.10); in scenarios

with 750 clusters of 20 individuals, the same model performed better with minimal to no

bias. In the same aforementioned settings, M-splines model with smoothing parameter

� = 10,000 and a Gamma distribution performed even worse when the true baseline

hazard followed a Weibull-Weibull (1) distribution (negative bias between -0.46 and

-0.17). The large bias observed for this M-splines model in these scenarios seems to be

spurious - analogously as before with the �exible parametric model. Interestingly, models

with a well-speci�ed frailty seemed to perform better than models with a misspeci�ed

frailty, both for a true Gamma and log-Normal frailty, and especially when the frailty

variance was large (1.25). When simulating from a mixture Normal distribution all models

performed poorly with positively biased results (up to 0.26, e.g. 3 months) with exceptions

being the frailtypack models described before, where underestimation of the results still

applied. Coverage followed a similar pattern, with optimal coverage for models with

small bias and reduced coverage for models that yielded biased results; overall, coverage

was better when the frailty distribution was well speci�ed. As a consequence of the large

positive bias, coverage in scenarios simulated from a mixture Normal distribution was
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Figure 5.14: Bias of regression coe�cient, scenarios with 20 clusters of 150 individuals each.
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Figure 5.15: Bias of regression coe�cient, scenarios with 750 clusters of 2 individuals each.
Colours represent the model frailty, and each subplot includes results for a given combination of
data-generating baseline hazard and frailty

117



Mix.N(1.25), Exp Mix.N(1.25), Wei Mix.N(1.25), Gom Mix.N(1.25), WW(1) Mix.N(1.25), WW(2)

Mix.N(0.75), Exp Mix.N(0.75), Wei Mix.N(0.75), Gom Mix.N(0.75), WW(1) Mix.N(0.75), WW(2)

Mix.N(0.25), Exp Mix.N(0.25), Wei Mix.N(0.25), Gom Mix.N(0.25), WW(1) Mix.N(0.25), WW(2)

log-N(1.25), Exp log-N(1.25), Wei log-N(1.25), Gom log-N(1.25), WW(1) log-N(1.25), WW(2)

log-N(0.75), Exp log-N(0.75), Wei log-N(0.75), Gom log-N(0.75), WW(1) log-N(0.75), WW(2)

log-N(0.25), Exp log-N(0.25), Wei log-N(0.25), Gom log-N(0.25), WW(1) log-N(0.25), WW(2)

Gamma(1.25), Exp Gamma(1.25), Wei Gamma(1.25), Gom Gamma(1.25), WW(1) Gamma(1.25), WW(2)

Gamma(0.75), Exp Gamma(0.75), Wei Gamma(0.75), Gom Gamma(0.75), WW(1) Gamma(0.75), WW(2)

Gamma(0.25), Exp Gamma(0.25), Wei Gamma(0.25), Gom Gamma(0.25), WW(1) Gamma(0.25), WW(2)

C
ox

Exp
W

eibull
G

om
pertz

R
P (3)

R
P (5)

R
P (9)

R
P (P)

FP (W
)

FP (k=10)
FP (k=10000)

C
ox

Exp
W

eibull
G

om
pertz

R
P (3)

R
P (5)

R
P (9)

R
P (P)

FP (W
)

FP (k=10)
FP (k=10000)

C
ox

Exp
W

eibull
G

om
pertz

R
P (3)

R
P (5)

R
P (9)

R
P (P)

FP (W
)

FP (k=10)
FP (k=10000)

C
ox

Exp
W

eibull
G

om
pertz

R
P (3)

R
P (5)

R
P (9)

R
P (P)

FP (W
)

FP (k=10)
FP (k=10000)

C
ox

Exp
W

eibull
G

om
pertz

R
P (3)

R
P (5)

R
P (9)

R
P (P)

FP (W
)

FP (k=10)
FP (k=10000)

0%
25%
50%
75%

100%

0%
25%
50%
75%

100%

0%
25%
50%
75%

100%

0%
25%
50%
75%

100%

0%
25%
50%
75%

100%

0%
25%
50%
75%

100%

0%
25%
50%
75%

100%

0%
25%
50%
75%

100%

0%
25%
50%
75%

100%

Model Baseline

C
ov

er
ag

e 
of

 re
gr

es
si

on
 c

oe
ffi

ci
en

t

Model Frailty Gamma log-Normal

Figure 5.16: Coverage of regression coe�cient, scenarios with 20 clusters of 150 individuals
each. Colours represent the model frailty, and each subplot includes results for a given
combination of data-generating baseline hazard and frailty
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Figure 5.17: Coverage of regression coe�cient, scenarios with 750 clusters of 2 individuals each.
Colours represent the model frailty, and each subplot includes results for a given combination of
data-generating baseline hazard and frailty
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poor.

Sample size seemed to a�ect some patterns, as described above; however, misspeci�cation

of the baseline hazard and/or the frailty distribution seemed to matter more. Higher

degrees of heterogeneity seemed to exacerbate the impact of misspecifying the frailty

distribution.

Mean squared errors are included in Appendix E as before, as Figures E.3 and E.4. MSE

was similar across all scenarios with variability following the pattern described above

for bias - which seemed to be the main component driving the magnitude of MSE. For

instance, models �tted using M-splines for the baseline hazard and a log-Normal frailty

had a much higher MSE - approximately 10 times larger - in the aforementioned scenarios.

Once again, in scenarios simulated from a mixture Normal frailty, MSE was the largest

across the board.

Results for the Frailty Variance

Results for the frailty variance are included in Appendix E. In particular, bias and coverage

probabilities for scenarios with 20 clusters of 150 individuals each are presented in Figures

E.5 and E.7, while bias and coverage probabilities for scenarios with 750 clusters of 2

individuals each are presented in Figures clusters E.6 and E.8. Mean squared errors are

included in Figures E.9 and E.10. As I mentioned in Section 5.5.3, results for when the

frailty variance is misspeci�ed are not included since the frailty is modelled on di�erent

scales.

The variance of Gamma frailties was generally well estimated, with slight bias or no bias

at all; the exception was the model with M-splines and � = 10,000, which yielded largely

biased results when the true baseline hazard function followed a Weibull-Weibull (1)

distribution. Parametric frailty models, especially the exponential and Gompertz models,

were the methods that yielded slight bias when the baseline hazard did not follow an

exponential distribution.

A similar pattern of results could be observed for log-Normal frailties, with exponential

and Gompertz models yielding slightly biased results. Models with M-splines and

� = 10,000 yielded biases of similar magnitude when the baseline hazard followed a

Weibull-Weibull (1) distribution. Interestingly, the Weibull model �tted using frailtypack
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Figure 5.18: Bias of LLE, scenarios with 20 clusters of 150 individuals each. Colours represent
the model frailty, and each subplot includes results for a given combination of data-generating
baseline hazard and frailty
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Figure 5.19: Bias of LLE, scenarios with 750 clusters of 2 individuals each. Colours represent
the model frailty, and each subplot includes results for a given combination of data-generating
baseline hazard and frailty
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Figure 5.20: Coverage of LLE, scenarios with 20 clusters of 150 individuals each. Colours
represent the model frailty, and each subplot includes results for a given combination of
data-generating baseline hazard and frailty
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Figure 5.21: Coverage of LLE, scenarios with 750 clusters of 2 individuals each. Colours
represent the model frailty, and each subplot includes results for a given combination of
data-generating baseline hazard and frailty
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yielded large bias in scenarios with 20 clusters of 150 individuals each, up to 2.53.

Coverage probabilities were generally good, except for scenarios with misspeci�ed

parametric baseline hazard functions and scenarios with large biases described above.

In these settings, coverage was poor and even null (0%) in some scenarios. Overall,

coverage was best when the true baseline hazard followed an exponential distribution,

and with �exible parametric models (irrespectively of degrees of freedom and estimation

method).

Mean squared errors are also included in Appendix E, and depicted in Figures E.9 and

E.10; once again, MSEs were mostly driven by the large biases of some models (in some

scenarios), with comparable values everywhere else.

5.6 Application to PSP-CKD Data

In this Section I will illustrate the results of the simulation study in practice using data

from the PSP-CKD study, a pragmatic trial on chronic kidney disease previously described

in Chapter 3.

The outcome of interest here is kidney failure, focussing on the cause-speci�c hazard for

simplicity. The exposure of interest is enhanced CKD care (against standard care), and I

will include age at baseline and sex as covariates. Data is clustered within primary care

practices, hence I will include a frailty term to account for the correlation of individuals

belonging to the same practice.

I will report estimates of treatment e�ect and three-years LLE; LLE can be interpreted as

the di�erence in expected time to kidney failure between individuals receiving enhanced

CKD care and individuals receiving traditional care over three years. I will estimate

LLE for individuals with a given covariates pattern: in particular, I estimate LLE for

individuals with median age (75 years) and the most frequent gender (females).

I �t a model of the kind:

ℎ(tij) = �jℎ0(tij) exp(�1 × treatmentj + �2 × ageij + �3 × sexij),

with i and j identifying individuals and clusters, respectively. treatmentj is the treatment
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modality that the jth practice was randomised to, ageij and sexij are age at baseline and

sex for the ith individual in the jth practice. �j is the frailty for the jth practice.

I model the baseline hazard ℎ0(⋅) via fully parametric and �exible parametric distributions

or by leaving it unspeci�ed, as in the simulations of Section 5.5. The �exible parametric

models are modelled on the log-cumulative hazard scale:

logH (tij) = s(log(tij)| , k0) + �1 × treatmentj + �2 × ageij + �3 × sexij + �i ,

with s(⋅) a spline function of log-time with parameter vector  and knot vector k0. Despite

being on the log-cumulative hazard scale, the aforementioned model is still a proportional

hazards model. I model the frailty distribution assuming either a Gamma or log-Normal

distribution.

Finally, I also �t models with the baseline hazard modelled using M-splines and a

smoothing parameter � selected via cross-validation, assuming either a Gamma or

log-Normal frailty. This model can be �t using the R package frailtypack.

Results from each model �t are included in Table 5.3 and plotted in Figure 5.22. Most

models yield comparable estimates for the log-treatment e�ect (and therefore the

corresponding hazard ratio), except models �tted using the frailtypack package: models

with a log-Normal frailty yielded a lower estimate, while models with a Gamma frailty

yielded larger estimates - with the only exception being the Weibull model with a

Gamma frailty which yielded comparable results to other methods. Estimates for LLE

followed a similar pattern; however, Gompertz and Exponential models yielded larger

estimates irrespectively of the frailty distribution.

AIC and BIC for models using full likelihood are included in Table 5.4, with best AIC and

BIC in bold. The best model according to AIC is the �exible parametric model with 3

degrees of freedom and a Gamma frailty; conversely, according to the BIC, the best model

is the Weibull model with a log-Normal frailty. However, other information criteria are

available - especially for models with random e�ects: for instance, Vaida and Blanchard

[142] suggested the use of conditional AIC (cAIC) for model selection in linear mixed

models. They demonstrated that a classical AIC (i.e. a marginal AIC) and its small sample

correction are inappropriate when the interest is on clusters, see also Liang, Wu, and
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Figure 5.22: Results: application of shared frailty survival models to PSP-CKD data
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Table 5.3: Results: application of shared frailty models to PSP-CKD data. Values in brackets are
standard errors for each estimate

Baseline Log-treatment e�ect Hazard ratio LLE

Gamma frailty:
Cox 0.0463 (0.1052) 1.0473 (0.1101) -0.0013 (0.0029)

Exponential 0.0434 (0.1046) 1.0444 (0.1092) -0.0009 (0.0022)
Weibull 0.0451 (0.1048) 1.0461 (0.1097) -0.0012 (0.0027)

Gompertz 0.0434 (0.1046) 1.0444 (0.1092) -0.0009 (0.0022)
RP(3) 0.0456 (0.1050) 1.0466 (0.1099) -0.0012 (0.0028)
RP(5) 0.0454 (0.1050) 1.0465 (0.1099) -0.0012 (0.0028)
RP(9) 0.0456 (0.1051) 1.0467 (0.1100) -0.0012 (0.0028)
RP(P) 0.0454 (0.1050) 1.0465 (0.1099) -0.0012 (0.0028)

FP(W) 0.0451 (0.1051) 1.0462 (0.1099) -0.0012 (0.0028)
FP(k=10) 0.0527 (0.1050) 1.0542 (0.1107) -0.0014 (0.0030)

FP(k=10,000) 0.0704 (0.1039) 1.0730 (0.1115) -0.0019 (0.0029)
FP(CV) 0.0671 (0.1041) 1.0694 (0.1113) -0.0018 (0.0029)

Log-normal frailty:
Cox 0.0457 (0.1067) 1.0468 (0.1117) -0.0012 (0.0030)

Exponential 0.0436 (0.1049) 1.0446 (0.1096) -0.0009 (0.0022)
Weibull 0.0454 (0.1051) 1.0464 (0.1100) -0.0012 (0.0027)

Gompertz 0.0434 (0.1050) 1.0444 (0.1096) -0.0009 (0.0022)
RP(3) 0.0459 (0.1051) 1.0469 (0.1100) -0.0012 (0.0028)
RP(5) 0.0457 (0.1051) 1.0468 (0.1100) -0.0012 (0.0028)
RP(9) 0.0459 (0.1051) 1.0470 (0.1101) -0.0012 (0.0028)
RP(P) 0.0459 (0.1051) 1.0470 (0.1100) -0.0012 (0.0028)

FP(W) 0.0302 (0.1166) 1.0306 (0.1202) -0.0008 (0.0031)
FP(k=10) 0.0226 (0.1251) 1.0229 (0.1280) -0.0006 (0.0034)

FP(k=10,000) 0.0488 (0.1240) 1.0500 (0.1302) -0.0013 (0.0034)
FP(CV) 0.0439 (0.1242) 1.0449 (0.1298) -0.0012 (0.0034)
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Table 5.4: Results: application of shared frailty models to PSP-CKD data, comparison of
AIC/BIC. Best AIC/BIC values are in bold

Baseline AIC BIC

Gamma frailty:
Cox — —

Exponential 5,654.16 5,694.96
Weibull 5,563.91 5,612.88

Gompertz 5,656.16 5,705.13
RP(3) 5,554.48 5,619.77
RP(5) 5,557.33 5,638.94
RP(9) 5,564.54 5,678.80
RP(P) — —

FP(W) 5,563.91 5,612.88
FP(k=10) — —

FP(k=10,000) — —
FP(CV) — —

Log-normal frailty:
Cox — —

Exponential 5,654.14 5,694.94
Weibull 5,563.89 5,612.86

Gompertz 5,656.14 5,705.11
RP(3) 5,554.48 5,619.77
RP(5) 5,557.34 5,638.95
RP(9) 5,564.55 5,678.81
RP(P) — —

FP(W) 5,564.94 5,613.91
FP(k=10) — —

FP(k=10,000) — —
FP(CV) — —

Zou [143]. Unfortunately, the cAIC is not routinely reported by software �tting shared

frailty models (except for frailtyHL [135]), making the use of cAIC for selecting the best

�tting model a much harder task.

To decide which model to select as the model that �ts the data best, I present

non-parametric smoothed hazard using the method of Rebora et al. [144]. Smoothed

overall hazard and treatment-speci�c hazards are included in Figure 5.23. Assuming a

Weibull hazard function would �t the data fairly well; however, (1) the hazard seems to

almost plateau towards the end of follow-up, (2) the �exible parametric model with 3

degrees of freedom and a Gamma frailty performs second best in terms of BIC (excluding

models with a Weibull baseline hazard), (3) �exible parametric models provide additional

advantages e.g. in terms of extrapolation, and (4) the rstpm2 package is much more
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Figure 5.23: Application of shared frailty models to PSP-CKD data, smoothed non-parametric
hazard estimate overall and by treatment modality

�exible than parfm in terms of predictions. For all of the reasons above, I choose the

�exible parametric model with 3 degrees of freedom and a Gamma frailty as the best

model for this applied example.

The best model yields a hazard ratio for treatment of 1.05 (95% con�dence interval: 0.83 –

1.26). The risk of kidney failure seems to not be signi�cantly a�ected by enhanced CKD

care, and in fact the estimated 3-years LLE is -0.0012 with a 95% con�dence interval of

-0.0068 – 0.0043, assuming years as the unit of time. For instance, the corresponding LLE

in days would be -0.45, a number that can be deemed not clinically meaningful.

The �exible parametric model can easily be extended to include time-dependent e�ects,

e.g. to test a time-dependent treatment e�ect. For instance, I can include an interaction

between treatment and the natural logarithm of time, modelled using a natural spline:

logH (tij) =s(log(tij)| , k0) + �1 × treatmentj + �2 × ageij + �3 × sexij

+ �∗ × treatmentj × s(log(tij)|�, l0) + �i ,

where the treatment variable is interacting with a spline function of log-time with

associated coe�cient vector � , knots vector l0, and regression coe�cients �∗. Flexible

parametric models have been shown to be insensitive to the number of knots utilised
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Figure 5.24: Application of shared frailty models to PSP-CKD data, comparison of
time-dependent and time-independent marginal hazard ratio for treatment

to model time-varying e�ects, therefore I am using 3 degrees of freedom for simplicity

[145]. The di�erence between the marginal hazard ratio estimated using the model

with a time-dependent treatment e�ect and the model without is depicted in Figure 5.24,

while the di�erence between the marginal survival di�erence is included in Figure 5.25.

The marginal hazard ratio seems to be higher early on, then decreasing over time until

it �attens at approximately 3 years of follow-up; analogously, the marginal survival

di�erence shows a similar pattern.

Despite that, the di�erence with time-invariant e�ects of treatment does not seem to

be large: I could, therefore, test whether the time-treatment interaction is statistically

signi�cant using a likelihood ratio test. The resulting � 2 test statistic is 2.56 with a

p-value of 0.46: this suggest that there is not enough evidence to support the presence

of a time-dependent treatment e�ect.

5.7 Discussion

In observational studies and clinical trials with survival outcomes and an intrinsic

hierarchical structure, survival models with shared frailty terms and/or random e�ects

have moved from being a speciality rarely used that requires ad hoc software to being
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Figure 5.25: Application of shared frailty models to PSP-CKD data, comparison of
time-dependent and time-independent marginal survival di�erence for treatment

mainstream methods that can be utilised with any general-purpose statistical software

such as R and Stata. This is especially relevant in the settings of electronic health records,

where it is common to encounter hierarchical survival data such as individuals clustered

within e.g. primary care practice.

Compared to a marginal approach (i.e. accounting for clustering by using a robust

estimator of the variance-covariance matrix of the estimated coe�cients), the frailty

approach allows focussing on inference within the clusters and quantifying the amount

of heterogeneity between clusters by directly modelling it. Additionally, the frailty

approach can be used to model recurrent events data, assuming that the recurrent event

times are independent conditional on the covariates and random e�ects [146, 147].

Consequently, the adoption and use of such models have been steadily increasing in

all �elds of application: for instance, psychiatry [148], orthodontia [149], diabetes

[150, 151], healthcare research [152], and even animal ecology [153].

Glidden and Vittingho� [119] showed the bene�t of using frailty models instead of models

with �xed e�ects only or strati�ed approaches in the setting of multi-centre clinical trials,

which may have driven adoption and use. Despite the increasing use of such methods,

however, there has been little research on the impact of violating modelling assumptions

- especially regarding the shape of the baseline hazard. Much research has focussed
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on misspeci�cation of the frailty distribution, and the consensus is that relative risk

estimates are largely una�ected by it [118–121, 123]. However, little was known about

e.g. the impact of misspecifying the frailty on measures of absolute risk, or the impact

of misspecifying the baseline hazard on estimated measures of heterogeneity. With

this simulation study, I aimed to shed further light on the topic and ultimately provide

additional guidance to applied researchers.

I simulated clustered survival data under a variety of clinically plausible scenarios,

assuming di�erent shapes for the baseline hazard function and di�erent distributions

for the shared frailty. I varied the amount of heterogeneity (in terms of variance of

the frailty), and I also varied sample size - both in terms of number of clusters and

number of individuals per cluster. I then �tted a large variety of survival models with

shared frailty terms: assuming standard parametric distributions for the baseline hazard,

�exibly modelling the baseline hazard via restricted cubic splines, and also leaving

the baseline hazard unspeci�ed. Each model was �t assuming both a Gamma and a

log-Normal distribution for the frailty, arguably the most common choices in literature:

the Gamma frailty has convenient mathematical features and it is analytically tractable,

while the log-Normal frailty has a direct interpretation as a random intercept in a

multilevel mixed-e�ects survival model. To the best of my knowledge, this is the most

extensive simulation study on the impact of misspecifying the baseline hazard, the

frailty distribution, or both in shared frailty survival models: Rutherford et al. studied

the robustness of �exible parametric models without considering frailty terms, while

Pickles and Crouchley, Glidden and Vittingho�, and Lee and Thompson only studied

misspeci�cation of the random e�ects distribution [28, 118–120]. Liu et al. focussed

on generalised survival model [121], and Ha et al. studied both misspeci�cation of

the baseline hazard and the frailty distribution but included fewer models in their

comparison and simulated a small amount of scenarios [123].

The results of this extensive simulation study con�rm the robustness of regression

coe�cients to misspeci�cation of the frailty distribution, irrespectively of sample size

and amount of heterogeneity in the data. However, the results also show the importance

of properly modelling the baseline hazard. For instance, as shown in Section 5.5.7, the

bias induced by assuming a standard parametric distribution with a true complex baseline

hazard can be clinically relevant. In practical terms, this means that by failing to model
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the baseline hazard the e�ect of interest could be largely over- or under-estimated. I

showed that absolute measures of risk such as the loss in expectation of life are a�ected

by misspeci�cation of both the baseline hazard and the frailty distribution: assuming a

baseline hazard that is too simple or misspecifying the frailty distribution yields biased

estimates and larger mean squared errors compared to well-speci�ed models. Further to

that, estimation of the frailty variance is also a�ected by poorly modelling the baseline

hazard, with misspeci�ed parametric models yielding biased estimates of heterogeneity.

This highlights once again the necessity of using models that are �exible enough and

the importance of assessing model �t regarding the distribution of the frailty by using

information criteria (e.g. the AIC, BIC, cAIC) if no previous biological knowledge is

available. The loss in life expectancy is a measure that is rarely implemented in statistical

software, therefore I produced code in R to estimate such quantity using each model

included in the simulation study. This code is openly available on-line for everyone to

use at https://github.com/ellessenne/frailtymcsim.

The performance of semiparametric Cox models and �exible parametric models in the

settings of this simulation study is comparable, as they produce largely unbiased relative

risk estimates. However, the necessity of estimating the baseline hazard (e.g. by using the

Breslow estimator) heavily a�ects the usage of semiparametric models when absolute risk

measures are of interest. The Cox model is, de facto, the standard model �tted by applied

researchers when dealing with time to event data; despite that, Sir David Cox himself

argued in favour of parametric models [154], especially when interested in predicting the

outcome for a given individual. Parametric models are indeed known to have desirable

features in terms of prediction, extrapolation, quanti�cation of absolute risk measures.

Flexible parametric models represent an attractive alternative to semiparametric and

fully parametric survival models: they retain both the robustness to misspeci�cation of

the baseline hazard and the appealing advantages of parametric models for prediction,

extrapolation, quanti�cation. Since their introduction by Royston and Parmar [24] in

2002, �exible parametric models have entered the statistical mainstream and have been

extended to accommodate (among other) relative survival [155], random e�ects [108, 121],

and generalised link functions [137]. The advantage of using �exible parametric models

compared to semiparametric models by modelling the baseline hazard is particularly

noteworthy: this allows translating relative risk measures on the absolute scale in a
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straightforward way, aiding interpretation.

In the applied example of Section 5.6, all models but those �tted using the frailtypack

package yield comparable estimates in term of treatment e�ect. Conversely, when

estimating the 3-years LLE models with models assuming an exponential or Gompertz

baseline hazard (or with the aforementioned models from the frailtypack package) the

di�erence was more noticeable, despite still not being clinically relevant. The models

assuming a Weibull baseline hazard performed better than models with an exponential

or Gompertz baseline hazard, which could be explained by the smooth, monotonic

underlying hazard (Figure 5.23) that could �t well a Weibull baseline hazard distribution.

Putting the results of the best-�tting model in perspective, they are consistent with the

results of the PSP-CKD pragmatic trial [48]: PSP-CKD investigators concluded that after

42 months of follow-up the estimated renal function did not di�er signi�cantly between

control and intervention groups.

The wide variety of simulated data-generating mechanisms (90) is one of the advantages

of this simulation study. I also included the most common frailty distributions (Gamma

and log-Normal), and I simulated survival data under many di�erent and clinically

plausible baseline hazards. This is particularly important, as if I only simulated data

from a Weibull model, I would have been assuming a baseline hazard that increases

or decreased monotonically. While such an assumption could be reasonable in some

settings, sometimes fully parametric distributions are just not �exible enough to capture

complex baseline hazards with turning points that are often observed in clinical datasets

[28, 64].

This simulation study has also some limitations. First, I only simulated clusters of

equal size and I did not include all the frailty distributions that have been proposed

in the literature, e.g. positive stable or inverse Gaussian. Second, I only simulated

right-censored survival data; settings with delayed entry or interval censoring require

further investigation. Third, all methods use maximum likelihood which returns

negatively biased estimates of the variance components; such bias decreases as the

number of clusters increases and can be observed (for instance) with the results of

the scenarios with 20 clusters of 150 individuals each (Figure E.6). The restricted

maximum likelihood method could be used with a small number of clusters to obtain
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unbiased estimates of the variance components [156]. Fourth, I designed and analysed

this simulation study using a fully factorial design; even though I simulated a large

number of scenarios, incomplete designs and meta-modelling could be implemented

to further increase the external validity and the ability to generalise the results, as

described in more detail in Chapter 8. Finally, I heavily rely on the performances and R

implementation of the models included in this comparison. Hirsch and Wienke [133]

compared several implementations of the semiparametric Cox model with frailty terms

and found coxme (the R package I chose to �t semiparametric log-Normal frailty models)

to be among the most robust. Regardless, all the packages I chose are well established

and utilised in practice, and I mimicked applied research by applying these methods as

they are intended to be used, i.e. without modifying convergence criteria and/or starting

values of the estimation procedure.

The work presented in this Chapter has been published in Statistics in Medicine [93],

and can also be found in Appendix D.
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6 Joint Modelling of Longitudinal and Time to

Event Data

6.1 Outline

In this Chapter, I introduce the topic of joint modelling of longitudinal and survival data.

I will introduce the rationale behind joint modelling in Section 6.2, and the formulation of

a standard joint model for longitudinal and survival data (joint model in brief) in Section

6.3. Then, I will describe association structures between the longitudinal and the survival

components of the joint model that have been introduced in the literature in Section 6.4,

and the estimation process in Section 6.5. I will continue by describing in Section 6.6 the

issue of informative drop-out in longitudinal studies, introducing methods that have been

proposed in the literature to account for it in the analysis, with an illustrative applied

example using data from VASST in Chapter 6.7. Finally, I will conclude the Chapter with

a discussion in Section 6.8.

6.2 Introduction to Joint Modelling of Longitudinal

and Survival Data

Routinely collected EHRs are being used more and more for research purposes, as outlined

in Chapter 1. One of the de�ning characteristics of EHRs is the presence of repeated

measures recorded over time as individuals access health care: when they attend a visit

and have e.g. a blood test, new measurements are recorded and added to the system. This

is increasingly common in observational studies and clinical trials as well, as participants

are followed over time and abundant data on clinical features is recorded throughout the
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study. One of the main challenges when analysing longitudinal data is the clustering

structure, e.g. the correlation between observations from a given individual needs to

be taken into account; mixed-e�ects models achieve so by including latent terms (the

random e�ects), as described in Section 2.3.

Alongside longitudinal data, time to the occurrence of an event is often the outcome

of interest - either when analysing EHRs or even data from clinical studies and trials.

As a consequence, researchers often encounter longitudinally recorded covariates that

they need to account for when studying the clinical outcome of interest. Researchers

then face two options: (1) select only one of the multiple values per individual and

analyse as such (e.g. values recorded at baseline), ignoring much of the available data, or

(2) take into account the potential dependency and association between the repeatedly

measured covariates and the clinical outcome. The latter is usually the most sensible

choice, as the longitudinal data can contain important predictors or surrogates of the time

to event outcome. A powerful tool to achieve so is given by joint models for longitudinal

and survival data, in which the longitudinal and survival processes are modelled jointly

into a single model allowing to infer their association. Previous attempts to tackle this

problem consisted in (1) �tting a time-dependent Cox model [22] by splitting individual

rows every time a new observation from the longitudinal covariate becomes available,

and (2) by using two-stage methods in which the longitudinal and survival data are

modelled separately [157]. These two methods could be easily applied using standard

statistical software; nevertheless, it has been shown that joint modelling provides several

advantages in terms of increased e�ciency, bias reduction, and improved predictions at

the same time [158, 159].

Conversely, this problem could also be observed from a di�erent angle. Longitudinal

studies are often a�ected by drop-out, and general methods for the analysis of such data

(as those described in Section 2.3) assume that the longitudinal outcome and the drop-out

process are independent. This assumption is often unreasonable: it is not hard to imagine

settings where drop-out is associated with the underlying pro�le of a biomarker, e.g. when

abnormal values are associated with an increased risk of mortality. It can be shown that

ignoring the drop-out process can a�ect the results of the longitudinal analysis [160, 161];

more details are included in Section 6.6.
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Seminal work on joint modelling of longitudinal and survival data was motivated by

clinical trials on zidovudine for the treatment of human immunode�ciency virus (HIV)

[157, 162–164]. In those settings, CD4 lymphocyte counts were recorded throughout the

study: CD4 counts are known to be associated with clinical outcomes, and the aim of the

analysis consisted of understanding CD4 trajectories and the degree of the association

with survival from a prognostic point of view. Another seminal paper by Henderson et

al. [165] was motivated by a clinical trial on drug therapy for schizophrenia patients

[166]. Speci�cally, the outcome of interest was mean scores for each of three treatment

groups on a particular measure of psychiatric disorder; not all patients completed the

trial, and in fact, the analysis of survival curves showed that a substantial proportion of

each treatment group withdrew before completing the measurement schedule. It was

therefore not clear whether the apparent decrease in scores pro�les re�ected a genuine

change over time, or was an artefact caused by di�erential drop-out.

More recent discussions on the topic are presented in Ibrahim et al. [167], Rizopoulos

[168], and Gould et al. [169]. Applications of joint models for longitudinal and survival

data to answer complex study questions using complex clinical data are also increasingly

common in medical literature, in a variety of settings: among others, cardiology [170],

nephrology [171], and intensive care medicine [172].

Several extensions of the standard joint model with a single longitudinal outcome

and a single survival outcome have recently appeared in the literature. The standard

joint model formulations required a proportional hazards model for the time to event

component [163, 165]; Tseng et al. developed an alternative joint model where the

time to event sub-model is an accelerated failure time (AFT) model, as described

in Section 2.2.4 [173]. The standard joint model also left the baseline hazard of the

survival sub-model unspeci�ed; as described in Section 2.2.4, this has advantages and

disadvantages. Further to that, Hsieh et al. [174] showed that in the settings of joint

modelling, leaving the baseline hazard unspeci�ed results in under-estimation of the

parameter standard errors, requiring bootstrapping to obtain appropriate standard

errors. Crowther et al. showed that it is possible to port �exible parametric models to

the joint modelling framework, providing the advantages of fully modelling the baseline

hazard and removing the need for bootstrapping [175]. Proust-Lima et al. showed that

it is also possible to formalise a joint longitudinal-survival model using the joint latent
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class approach, which consists in assuming that a latent class structure entirely captures

the correlation between the longitudinal marker trajectory and the risk of the event

[176]. Finally, joint models have been extended to accommodate competing risks and

multiple longitudinal trajectories, with more details provided elsewhere [177–179].

6.3 Model Formulation

Throughout this Chapter I will focus on the standard formulation of the joint model. As

mentioned in Section 6.2, this formulation consists of a joint model with two components:

a sub-model for the longitudinal trajectory, and a sub-model for the time to event outcome.

These two components will then share one or more parameters: the most common

formulation in the literature assumes the components share a latent structure that will

describe the association between the two processes, therefore linking them.

Building on the notation from Chapter 2 and from Rizopoulos [168], let ti = min(t ∗i , ci) be

the observed survival time with t ∗i the true survival time and ci the censoring time. Let

di be an event indicator variable, which takes the value 1 if t ∗i < ci and 0 otherwise. Let

yij = {yij(tij) ∀ j = 1,… , ni} be the observed longitudinal response for the ith subject, with

yij(tij) the observed response at time tij and ni the number of longitudinal observations.

Let Ui be a vector of time-independent baseline covariates.

The longitudinal component of the joint model is modelled within the mixed-e�ects

framework [31], as longitudinal data is generally measured intermittently and with error.

Therefore:

yi(ti) = mi(ti) + �i(ti), �i(ti) ∼ N (0, � 2� ) (6.1)

with

mi(ti) = Xi(ti)� + Zi(ti)bi , bi ∼ N (0,Σ) (6.2)

with Xi(ti) and Zi(ti) the (possibly) time-dependent design matrices for the �xed and

random e�ects � and bi , respectively. yi(ti) represents the observed longitudinal

trajectory at time t , which could be decomposed into the true longitudinal trajectory

mi(ti) plus the measurement error �i(ti). I also assume that the measurement error

�i(ti) is normally distributed with variance � 2� , independent of the random e�ects, and

that Cov(�i(ti), �i(ui)) = 0 ∀ti ≠ ui . Flexibility in the longitudinal submodel can be
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incorporated by modelling the e�ect of time e.g. using fractional polynomials, B-splines,

or restricted cubic splines [180–182].

The survival component of the joint model is modelled using a proportional hazards

time to event model, given the true unobserved longitudinal trajectory up to time ti ,

i.e. Mi(ti) = {mi(si) ∀ 0 ≤ si ≤ ti}:

ℎ(ti |Mi(ti),Wi) = ℎ0(ti) exp(Wi + �mi(ti)), (6.3)

where ℎ0(ti) is the baseline hazard function and Wi ∈ Ui is a vector of time-�xed

covariates with regression parameters  . � is the association parameter that links the

true unobserved trajectory function mi(ti) and the survival submodel. The association

parameter � can be interpreted as the log-hazard ratio for a unit increase in the true

longitudinal trajectory mi(ti), at time ti; in this setting, the association is based on the

current value of the longitudinal response at time ti . Additional association structures

are available and further described in Section 6.4.

The survival function follows as

S(ti |Mi(ti),Wi) = exp(− ∫
ti

0
ℎ0(u) exp(Wi + �mi(u)) du) , (6.4)

and it is clear that the survival function (according to this de�nition) depends on the

entire history of the longitudinal trajectory up to time ti .

Finally, the choice of the baseline hazard ℎ0(ti) follows the usual rationale (as mentioned

before). Traditionally, in the joint modelling settings the baseline hazard function has

been left unspeci�ed [163, 165]; however, as mentioned in Section 6.2, it has been shown

that leaving the baseline hazard unspeci�ed yields standard errors for the regression

parameters that are underestimated [174]. Bootstrapping is therefore required to obtain

appropriate standard errors, with additional computational complexity. Alternatively,

it is possible to assume a parametric distribution for the baseline hazard, or even use

�exible parametric formulations as described in Crowther et al. [175].
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Figure 6.1: Longitudinal pro�le of a biomarker for two distinct individuals with di�erent current
value and the same rate of change

6.4 Association Structures

Several alternative, clinically meaningful association structures are available in the joint

modelling framework and described throughout this Section.

The association structure that links the longitudinal and time to event components of the

joint model described in the previous Section relates the true unobserved value of the

longitudinal trajectory at time ti directly to the risk of event at time ti: this is often referred

to as the current value association structure. In practice, this association structure states

that only the current level of a biomarker is predictive of future outcomes; individuals

with a di�erent current value of a biomarker e.g. after 5 years of follow-up - as in Figure

6.1 - will have a di�erent predicted survival.

First, it is possible to allow for di�erent values of the association parameter for di�erent

sub-groups of patients by including interaction terms with the true unobserved

longitudinal trajectory as follows:

ℎ(ti |Mi(ti),Wi1,Wi2) = ℎ0(ti) exp(Wi1 + (Wi2mi(ti))�), (6.5)

with Wi1,Wi2 ∈ Ui . This yields a vector of association parameters � , providing di�erent
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association parameters for di�erent covariate patterns; for instance, the association

between e.g. the current value of the biomarker and survival could di�er between

e.g. treated and non-treated individuals.

Second, the association structures described so far link the current value of the

longitudinal trajectory to the survival submodel. It is possible to de�ne an association

structure that links the rate of change (or slope) of the longitudinal trajectory:

ℎ(ti |Mi(ti),Wi) = ℎ0(ti) exp(Wi + �m′
i (ti)), (6.6)

with

m′
i (ti) =

)mi(ti)
)ti

=
)(Xi(ti)� + Zi(ti)bi)

)ti

This association structure is often referred to as slope association structure, and states

that the rate at which the biomarker change is predictive of future outcomes. For

instance, individuals whose longitudinal trajectory rises sharply may have worse

predicted survival than individuals with a stable biomarker (Figure 6.2). The slope

association structure can also be combined with the current value association structure

to yield a current value and slope association structure:

ℎ(ti |Mi(ti),Wi) = ℎ0(ti) exp(Wi + �1mi(ti) + �2m′
i (ti)) (6.7)

In this setting, individuals with di�erent current value of a biomarker and a di�erent rate

of change will have a di�erent predicted survival (Figure 6.3).

Next, the cumulative e�ect association structure links the risk of event with the

cumulative e�ect of a longitudinal trajectory, calculated as the area under the curve:

ℎ(ti |Mi(ti),Wi) = ℎ0(ti) exp(Wi + � ∫
ti

0
mi(u) du) (6.8)

In practice, the cumulative exposure to the biomarker is assumed to be predictive of

future outcomes; for instance, the cumulative e�ect of in�ammatory response biomarkers

(e.g. C-reactive protein) could be a risk factor for cardiovascular disease.

Interestingly, the association structures described so far link the current (at time ti) value

(or slope, cumulative e�ect) of the longitudinal trajectory to the risk of event at time ti:
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Figure 6.2: Longitudinal pro�le of a biomarker for two distinct individuals with the same current
value and a di�erent rate of change
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Figure 6.3: Longitudinal pro�le of a biomarker for two distinct individuals with di�erent current
value and rate of change
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this can be further generalised by allowing lagged e�ects, e.g. linking the current value

(or slope, cumulative e�ect, etc.) at time ui < ti of the longitudinal trajectory to the risk

of event at time ti .

Finally, the random e�ects association structure is a time-independent association

structure that includes only the random e�ects of the longitudinal trajectory in the

linear predictor of the survival sub-model:

ℎ(ti |Mi(ti),Wi) = ℎ0(ti) exp(Wi + (� + bi)�) (6.9)

Equation (6.9) includes both the population-level mean of the random e�ect (�) and

the subject-speci�c deviation bi . Alternatively, it is possible to include only the

subject-speci�c deviation:

ℎ(ti |Mi(ti),Wi) = ℎ0(ti) exp(Wi + bi�) (6.10)

Interpretation of the association parameter will di�er depending on whether the

population-level mean is included or not. For instance, if the population-level mean is

included then the association parameter represents the change in risk for a unit increase

in the overall trajectory; conversely, the association parameter represents the change in

risk for a unit increase in the deviation from the population mean.

6.5 Model Estimation

Estimation of a joint model for longitudinal and survival data is a non-trivial task.

The complexity of jointly modelling the longitudinal component and the survival

component motivated the use of two-stages procedures as mentioned in Section 6.2:

with that approach, the longitudinal component is modelled and estimated separately;

consequently, subject-speci�c predictions from the longitudinal model are produced and

plugged into the survival model as time-varying covariates. Despite the simplicity of

this approach, it has been shown that it produces substantial bias and poor coverage

[170, 183]; therefore, an approach that models both processes jointly is required. In

particular, two approaches are predominant: a full likelihood approach, and a Bayesian

approach; both have appealing characteristics, but they share the feature of being
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computationally intensive.

Focusing on the full likelihood approach, it is possible to formulate the joint likelihood

for the overall parameter vector � = {�t , �y , �b}, formed by the parameters of the

survival component, the parameters of the longitudinal component, and the elements

of the variance-covariance matrix of the random e�ects, respectively [168]. The joint

distribution of the observed survival time ti , the event indicator di , and the longitudinal

response yi , conditional on the random e�ects bi , can be expressed as:

f (ti , di , yi |bi , �) = f (ti , di |bi , �)f (yi |bi , �), (6.11)

with

f (yi |bi , �) =
ni
∏
j=1

f (yi(tij)|bi , �). (6.12)

It is important to note that the survival process and the longitudinal process are assumed

to be independent, conditionally on the random e�ects bi . It follows that the contribution

to the log-likelihood for the ith patient is

log Li(�) = log ∫
+∞

−∞
f (ti , di , yi , bi; �) dbi

= log ∫
+∞

−∞
f (ti , di |bi , �t) [

ni
∏
j=1

f (yi(tij)|bi , �y)]
f (bi |�b) dbi

(6.13)

with f (ti , di |bi , �t) the contribution to the likelihood relative to the survival component

of the model (assuming the current value association structure):

f (ti , di |bi , �t) = ℎ(ti |Mi(ti),Wi , �t)diS(ti |Mi(ti),Wi , �t)

= [ℎ0(ti) exp(Wi + �mi(ti))]di exp [− ∫
ti

0
ℎ0(u) exp(Wi + �mi(u)) du] ,

(6.14)

f (yi(tij)|bi , �y) the contribution to the likelihood of the longitudinal process:

f (yi(tij)|bi , �y) = (2�� 2� )
−1/2 exp [−

(yi(tij) −mi(tij))2

2� 2� ] , (6.15)
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and f (bi |�b) the density of the random e�ects:

f (bi |�b) = (2� )−qb/2|Σ|−1/2 exp [−
bTi Σ−1bi

2 ] , (6.16)

with qb being the dimension of the random e�ects.

Historically, the predominant method for maximising the full joint likelihood has

been the Expectation-Maximisation algorithm, where the random e�ects are treated

as missing values [40]. Alternatively, within the maximum likelihood framework, it

is possible to directly maximise the full joint likelihood using any general-purpose

optimiser and standard maximisation algorithms such as the Newton-Raphson algorithm.

This approach is computationally intensive, as the integral in Equation (6.13) does not

have a closed-form and therefore requires a numerical approximation to be computed.

The computational e�ort for joint models with a single random e�ect (e.g. a random

intercept only) is similar to the computational e�ort required to �t shared frailty

models, as described in Section 5.4.2. Methods such as standard Gaussian quadrature

and adaptive Gaussian quadrature are routinely used in the joint modelling settings,

with the latter method vastly preferred. However, as the number of random e�ects

included in the model increases the computational burden required to �t a joint model

grows exponentially: for instance, the multi-dimensional integral in Equation (6.13)

requires kq function evaluations, where k is the number of quadrature nodes and q is the

number of random e�ects. Finally, under a parametric survival submodel, the integral

in Equation (6.14) requires numerical integration to be evaluated as well when using

a time-dependent association structure (e.g. the current value association structure);

Gauss-Legendre quadrature can be used for that purpose [184]. Interestingly, by

choosing a time-independent association structure (e.g. the random e�ects association

structure) the requirement for numerical integration can be avoided as the cumulative

hazard function has a closed-form, providing direct computational bene�ts.

Overall, it is clear that given the requirement of numerical integration to calculate

the survival function which is nested within (possibly multi-dimensional) numerical

integration to integrate over the random e�ects, estimation of a joint model is a

computationally demanding and challenging task.
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6.6 Modelling the Drop-out Process

Most of the current work on joint models for longitudinal and time to event data has

traditionally focussed on the survival outcome, adjusting for a time-varying covariate

measured with error (the longitudinal outcome of the joint model). Despite that, as

mentioned in Section 6.2, the interest of the analysis often lays in the longitudinal

outcome: for instance, one may be interested in studying the evolution over time of

a given biomarker and how it may be a�ected by a given treatment. Methods for

the analysis of longitudinal data over time (as described in Section 2.3) rely on the

assumption that factors that a�ect drop-out from the study (and truncation of the

longitudinal trajectory) are not related to the study outcome. This assumption is often

unreasonable, as drop-out may be a�ected by e.g. adverse reactions to treatment, lack

of e�ectiveness, or concurrent health status. Hence, drop-out is often informative or

non-ignorable [185, 186], being a potential source of bias in the analysis of longitudinal

data.

A recent review in the settings of clinical trials concluded that 36% of studies did not

account for potentially informative drop-out and carried out just a complete-case analysis

[187]: the authors speculate that the under-utilisation of methods that account for

informative drop-out could be due to lack of awareness or lack of research demonstrating

the methods in practice.

I will start by de�ning the characteristics of the drop-out process. Following the

terminology of Diggle and Kenward [160], the drop-out mechanism can be classi�ed as:

1. Drop-out completely at random, when the drop-out process and longitudinal

process are independent;

2. Drop-out at random, when the drop-out process depends on the observed

longitudinal process;

3. Informative drop-out (or drop-out not at random), when the drop-out depends on

unobserved characteristics of the longitudinal process.

This de�nition of the drop-out process is analogous to missingness mechanisms described

in Rubin [185], and can be formalised as in Rizopoulos [168].
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First, a missing data indicator can be de�ned as

rij =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

1 if yij is observed

0 otherwise
(6.17)

Then, the complete response vector for the ith subject yi can be partitioned into its observed

partyoi (where rij = 1) and unobserved partymi . When missingness is restricted to drop-out,

the missing data indicator has always the form (1,… , 1, 0,… , 0) and can hence be replaced

by a scalar variable rdi :

rdi = 1 +
ni
∑
j=1

rij (6.18)

rdi represents the occasion at which drop-out occurred in incomplete trajectories, ni + 1

otherwise.

Consequently, the drop-out mechanisms previously described can be formalised by

de�ning the probability model with parameters vector �r that describes the relationship

between the drop-out process rdi and the complete response vector yi:

1. Drop-out completely at random assumes that the probability of drop-out is

unrelated to both observed and unobserved data:

P (rdi |y
o
i , y

m
i ; �r ) = P (r

d
i ; �r ) (6.19)

2. Drop-out at random assumes that the probability of drop-out is related to observed

data only:

P (rdi |y
o
i , y

m
i ; �r ) = P (r

d
i |y

o
i ; �r ) (6.20)

3. Finally, informative drop-out assumes that the probability of drop-out depends on

unobserved data, even if conditioning on the observed data:

P (rdi |y
m
i ; �r ) or P (rdi |y

o
i , y

m
i ; �r ) (6.21)

Kolamunnage-Dona et al. [188] illustrate how joint models for longitudinal and survival

can be utilised to account for the drop-out process in the analysis of longitudinal data,

assuming the drop-out process is at least at random. In particular, the drop-out process

149



can be modelled via the time to event component of the joint model, and competing

causes of drop-out can be accommodated as well (if required). Ibrahim et al. [167] show

that in their applied example on quality of life in cancer patients the model coe�cients

for the longitudinal trajectory resulting from two-stage methods di�er from the model

coe�cients obtained from the joint model that includes the time-to-event component.

Li and Su [189] showed similar results in their analysis of longitudinal CD4 cell count

pro�les from the HIV Epidemiology Research Study, with the linear mixed model that

disregards the drop-out process underestimating the CD4 cell time slope as patients who

stayed in the study tended to have a less rapid decline of CD4 cell count.

Other methods have been suggested to account for drop-out in longitudinal data

analysis. The method of generalised estimating equations (GEE) assumes that drop-out

is completely at random, but Robins et al. showed that it is possible to restore the

unbiasedness of the GEE method by properly weighting the analysis by the probability

of dropping out of the study [190]. The estimator they propose is commonly referred to

as inverse probability of censoring weighted estimator, and it can accommodate drop-out

at random but not drop-out not at random. Diggle and Kenward [160] suggested an

approach based on modelling the longitudinal outcome and the drop-out probability that

yields a likelihood-based inference on the coe�cients of the longitudinal model that can

ignore the drop-out process; this approach is also referred to as selection models. Next,

pattern mixture models factorise the joint distribution of the longitudinal and drop-out

process into the marginal distribution of the drop-out process and the conditional

distribution of the longitudinal outcome, given the drop-out process [191]. However,

pattern mixture models yield identi�ability issues in the settings of informative drop-out,

as described in Molenberghs et al. [192]. Finally, random e�ects models arise from

the intuitive idea that drop-out is likely related to subjects’ characteristics, including

some which are unobserved. A subject’s propensity to drop-out can then be modelled

by including a random e�ect which accounts for the above-mentioned unobserved

characteristics [193]. The joint distribution of the longitudinal outcome and the

drop-out process can be formulated, and it can be shown that the two components are

conditionally independent given the random e�ects. All of the methods just mentioned

are described in more detail in Chapter 13 of Diggle et al. [31].

Joint models for longitudinal and survival data lay in the class of random e�ects models
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described above; I will focus on the use of joint models for longitudinal and survival data

to account for drop-out, and in particular I will illustrate the use of joint modelling with

a posthoc analysis of data from VASST in the next Section.

6.7 Application to VASST Data

The application in this Section is an unplanned posthoc analysis of VASST, a multi-centre,

double-blind randomised controlled trial that assigned patients who had septic shock

and were receiving a minimum of 5 �g/min of norepinephrine to receive either low-dose

vasopressin (0.01 to 0.03 U/min.) or norepinephrine (5 to 15 �g/min) plus open-label

vasopressors. The primary end-point was mortality rate 28 days after treatment

initiation, and VASST investigators found that there was no signi�cant di�erence

between treatments arms (35.4% and 39.3%, respectively; p-value: 0.26) [55].

Nevertheless, SOFA score is considered to be a relevant clinical outcome given that

treatment-associated changes in SOFA score from baseline have been shown to be

reliably and consistently associated with observed mortality [57]. A challenge in using

non-mortal outcomes, however, is that bias may occur when such end-points are

informatively missing (or censored) due to mortality: the observed slope of change in

the outcome may be associated with censoring, which is generally worse for those who

die. If the censoring process is associated with the intervention, then the truncated

observation of the outcome will be informative, as described in Section 6.6.

Therefore, the aim of this analysis is two-fold. First, I aim to compare the e�ect of

vasopressin versus norepinephrine on the SOFA score over 28 days of follow-up using a

joint longitudinal-survival model to account for potentially informative drop-out. Second,

I aim to compare the results obtained from the joint model with results obtained from a

standard linear mixed model that disregards the drop-out process completely.

I extracted from VASST all individuals with at least one SOFA score measurement, which

yielded 763 study subjects: 389 in the vasopressin arm and 374 in the norepinephrine arm.

The SOFA score was calculated daily using the six organ subscales using data recorded

in the VASST case report form.

Possible causes of drop-out from the study were death within 28 days, or discharge
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Table 6.1: Summary of drop-out by treatment, application to VASST data

Status Vasopressin Norepinephrine Overall

N. of study subjects 389 (50.98%) 374 (49.02%) 763
Completed follow-up 151 (38.82%) 140 (37.43%) 291 (38.14%)
Overall drop-out 238 (61.18%) 234 (62.57%) 472 (61.86%)
Case 1: Drop-out due to death 137 (35.22%) 147 (39.30%) 284 (37.22%)
Case 2: Drop-out due to discharge 101 (25.96%) 87 (23.26%) 188 (24.64%)

from the intensive care unit (ICU); the drop-out process is summarised in Table 6.1. It

is possible to see that more individuals completed follow-up in the vasopressin group,

38.82% versus 37.43% in the norepinephrine arm. The main reason for drop-out was death,

with 37.22% of individuals dying during follow-up; as a comparison, 24.64% of individuals

dropped out because of discharge from the ICU. Comparing the two treatment arms, the

norepinephrine arm had a higher percentage of study subject dropping out because of

death compared to the vasopressin arm (39.30% vs 35.22%), while the opposite was true

for discharge (23.26% in the norepinephrine arm compared to 25.96% in the vasopressin

arm).

Raw, unadjusted SOFA score trajectories by completion of follow-up (or not) are

depicted in Figures 6.4 and 6.5. Figure 6.4 depicts trajectories for each possible cause of

drop-out, while in Figure 6.5 all causes of drop-out are pooled together for simplicity.

The trajectories are clearly di�erent between individuals that completed follow-up

and individuals that did not: for instance, individuals dropping out because of death

showed a sharp rise in SOFA score right before their death, while individuals dropping

out because of discharge showed a steady, linear decrease in SOFA score values. As a

comparison, individuals that completed follow-up showed a sharp decrease in SOFA

score early on, with a �at trajectory thereafter. Finally, di�erences were small when

comparing treatment arms.

The sharp di�erence in raw trajectories between individuals completing follow-up

and individuals dropping out, together with (arguably small) di�erences in drop-out

proportions between treatment arms motivate the use of joint longitudinal-survival

modelling to account for potentially informative drop-out. In particular, I include

treatment e�ect in the time to event sub-model, and the e�ect of time plus a

time-treatment interaction in the longitudinal sub-model; by not including the main
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Figure 6.4: Subject-speci�c and smoothed trajectories by completion of follow-up or
cause-speci�c drop-out, application to VASST data. Smoothed trajectories were obtained by
�tting a generalised additive model with a penalised cubic spline smoother, as implemented in
mgcv::gam with bs = "cs".
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Figure 6.5: Subject-speci�c and smoothed trajectories by completion of follow-up or overall
drop-out, application to VASST data. Smoothed trajectories were obtained by �tting a generalised
additive model with a penalised cubic spline smoother, as implemented in mgcv::gam with bs =
"cs".
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e�ect of treatment in the longitudinal sub-model, I am assuming that randomisation

yielded a balanced distribution of SOFA scores at baseline. I model overall drop-out

using the time to event submodel, pooling together all possible causes of drop-out for

simplicity; individual causes of drop-out could be studied as well by �tting cause-speci�c

survival sub-models [177, 188].

The joint model I use follows the formulation of Henderson et al. [165], as implemented

in the joineRML R package [194, 195]. Under this formulation, the longitudinal outcome

is assumed to follow the model

yi(ti) = Xi(ti)� + Λ1i(ti) + �i(ti), (6.22)

where Xi(ti)� is the mean response and �i(ti) is an error term assumed to be independent

and identically distributed normal with zero-mean and variance � 2� . The covariates Xi(ti)

are possibly time-varying, and have associated regression coe�cients � . Λ1i(ti) is a latent

term describing the random e�ects included in the model:

Λ1i(ti) = Zi(ti)bi , (6.23)

with bi assumed to follow a zero-mean multivariate normal distribution with

variance-covariance matrix Σ. Zi(ti) represents covariates with random e�ects bi , and

it is assumed that Zi(ti) ⊆ Xi(ti). Note that Xi(ti)� + Λ1i(ti) = mi(ti) from Equations (6.1)

and (6.2). Correlation between random e�ects is allowed, and it is also assumed that the

random e�ects bi and the error term �i(ti) are independent.

The time to event sub-model is given by the hazard function

ℎ(ti) = ℎ0(ti) exp(Wi(ti) + Λ2i(ti)), (6.24)

with ℎ0(ti) an unspeci�ed baseline hazard function and Wi(ti) possibly time-varying

covariates with associated regression coe�cients  . By de�ning Λ2i(ti) as a linear

combination of Λ1i(ti) a latent association is established; in particular, the joint model

assumes that

Λ2i(ti) = �Λ1i(ti), (6.25)
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with � representing the association between the longitudinal and the survival sub-models.

The joint model is �tted using the EM algorithm as described by Lin et al. for the

settings of multivariate joint modelling [196]; the intractable integrals in the likelihood

computation are approximated via Monte Carlo integration with antithetic simulation

for variance reduction, as originally suggested by Henderson et al. [165].

To identify the model formulation that best �ts the observed data, I �t several joint

models with di�erent model formulations in terms of �xed and random e�ect of time. In

particular, I investigate:

1. A linear, quadratic, cubic, or splined (with 2 to 7 degrees of freedom) �xed e�ect

of time;

2. A random intercept only, or a random intercept plus a linear, quadratic, or splined

(2 degrees of freedom) random e�ect of time.

I �t every possible combination of �xed and random e�ects, for a total of 36 models; the �t

of each model in terms of AIC and BIC is presented in Table 6.2. Zhang et al. [197] showed

how it is possible to decompose the AIC and BIC of a joint model into additive components

that allow assessing the �t of each component of the joint model (e.g. longitudinal and

survival components, separately). Unfortunately, this decomposition is currently not

implemented in joineRML.

The model that �ts the data best is the model with a �xed e�ect of time modelled via a

restricted cubic spline with 7 degrees of freedom, a random intercept, and a random e�ect

of time modelled via a restricted cubic spline with 2 degrees of freedom. The resulting

longitudinal sub-model is therefore:

yi(ti) = �0 + �T1−7s(Time, 7) + �T8−14s(Time, 7) × Treat + b0,i + bT1−2,is(Time, 2) + �i(t), (6.26)

where s(Time, k) represents a restricted cubic spline expansion of time with k degrees

of freedom, for conciseness. Analogously, �m−l represents the mth to l th regression

coe�cients associated with the spline terms and bm−l,i the mth to l th random e�ect. The

survival submodel is

ℎ(ti) = ℎ0(ti) exp{Treat + �[b0i + bT1−2,is(Time, 2)]} (6.27)
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Table 6.2: Comparison of model �t (AIC/BIC), application to VASST data

Fixed e�ect Random e�ect AIC BIC

Linear Random intercept 38,058.72 38,091.18
Linear Random intercept + slope 36,296.23 36,337.97
Linear Random intercept + quadratic slope 35,243.55 35,299.20
Linear Random intercept + splined slope (2df) 35,123.16 35,178.81
Squared Random intercept 37,114.27 37,156.00
Squared Random intercept + slope 35,581.99 35,633.00
Squared Random intercept + quadratic slope 35,092.27 35,157.19
Squared Random intercept + splined slope (2df) 35,079.04 35,143.96
Cubic Random intercept 36,963.58 37,014.59
Cubic Random intercept + slope 35,426.43 35,486.72
Cubic Random intercept + quadratic slope 34,989.19 35,063.39
Cubic Random intercept + splined slope (2df) 34,953.99 35,028.19
Spline (2df) Random intercept 37,009.70 37,051.43
Spline (2df) Random intercept + slope 35,464.20 35,515.21
Spline (2df) Random intercept + quadratic slope 34,968.61 35,033.53
Spline (2df) Random intercept + splined slope (2df) 34,963.26 35,028.18
Spline (3df) Random intercept 36,965.11 37,016.12
Spline (3df) Random intercept + slope 35,415.10 35,475.38
Spline (3df) Random intercept + quadratic slope 34,939.57 35,013.77
Spline (3df) Random intercept + splined slope (2df) 34,930.19 35,004.39
Spline (4df) Random intercept 36,810.21 36,870.49
Spline (4df) Random intercept + slope 35,193.12 35,262.68
Spline (4df) Random intercept + quadratic slope 34,724.26 34,807.73
Spline (4df) Random intercept + splined slope (2df) 34,684.71 34,768.18
Spline (5df) Random intercept 36,779.19 36,848.75
Spline (5df) Random intercept + slope 35,143.63 35,222.47
Spline (5df) Random intercept + quadratic slope 34,670.60 34,763.35
Spline (5df) Random intercept + splined slope (2df) 34,633.04 34,725.78
Spline (6df) Random intercept 36,681.60 36,760.44
Spline (6df) Random intercept + slope 34,998.78 35,086.89
Spline (6df) Random intercept + quadratic slope 34,505.46 34,607.48
Spline (6df) Random intercept + splined slope (2df) 34,461.01 34,563.03
Spline (7df) Random intercept 36,636.48 36,724.59
Spline (7df) Random intercept + slope 34,927.75 35,025.14
Spline (7df) Random intercept + quadratic slope 34,420.46 34,531.76
Spline (7df) Random intercept + splined slope (2df) 34,374.32 34,485.61

Given that ℎ0(t) in Equation (6.27) is left unspeci�ed, I use 1,000 non-parametric bootstrap

replications (resampling at the cluster level) to estimate standard errors for all regression

coe�cients. Finally, I �t the equivalent linear mixed model (Equation (6.26)) disregarding

the drop-out process using the nlme R package [198] for comparison purposes.

Focussing �rst on the survival sub-model, the estimated hazard ratio of drop-out
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Figure 6.6: Predicted longitudinal trajectories by treatment arm, application to VASST data.
Solid lines represent trajectories �tted using a joint model, while dashed lines represent
trajectories �tted using a linear mixed model

for norepinephrine versus vasopressin is 1.04 (95% C.I.: (0.85–1.23)), showing a

non-signi�cant di�erence in the risk of drop-out between the two treatment arms.

The association parameter � takes a positive value (0.14, with 95% C.I.: 0.10–0.17)

showing a signi�cant positive association between the longitudinal and the time to

event outcomes. In particular, the association parameter can be interpreted as follows:

larger subject-speci�c deviations from the average longitudinal trajectory are associated

with an increased risk of drop-out. This result is consistent with the pattern observed in

the raw trajectories of Figure 6.5.

Coe�cients for the longitudinal sub-model are omitted, given their di�cult interpretation

due to the interaction with spline terms; instead, I include predicted trajectories for each

treatment arm in Figure 6.6. Testing the joint signi�cance of the regression coe�cients

associated with the main �xed e�ect of time using a Wald test, I obtain a � 2 test statistic

value of 901.11 with a p-value of < 0.01. Analogously for the interaction between time

and treatment, the � 2 test statistic value of 1,683.08 yields a p-value of < 0.01. This shows

that the longitudinal SOFA score trajectory di�ers signi�cantly between treatment arms,

as depicted in Figure 6.6.

Despite the time–treatment interaction being statistically signi�cant, the di�erence
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Figure 6.7: Di�erence in predicted SOFA score between treatment arms, application to VASST
data. The solid line is obtained from a joint model, while the dashed line is obtained from a linear
mixed model

between treatment arms does not seem to be clinically relevant. For instance, there

is a advantage of vasopressin early on with a maximum di�erence of 1.17 at day 3.

Nevertheless, the advantage of vasopressin fades quickly, with no signi�cant di�erence

between arms from day 4 onwards. The di�erence in SOFA score between treatment

arms over time is depicted in Figure 6.7.

Finally, in Figures 6.6 and 6.7 I also include trajectories and di�erence between trajectories

estimated using a plain linear mixed model. Longitudinal trajectories estimated with

either a joint model or a mixed model are almost identical early on; however, as time

goes by, more and more individuals drop-out of the study and the di�erence between

the trajectories increases. In particular, individuals dropping out have (on average)

higher SOFA score values (as depicted in Figure 6.5), hence the longitudinal trajectories

are under-estimated by the plain mixed model. Interestingly, the estimated di�erence

between treatment arms was very similar between the joint model and the plain mixed

model, with the di�erence between methods being not relevant in clinical terms.

In conclusion, the results from the joint model show that there is a statistically signi�cant

di�erence in the evolution of SOFA score over time between subjects receiving

vasopressin and individuals receiving norepinephrine. Despite that, the di�erence
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between treatment arms is perhaps not clinically relevant, with a maximum di�erence

of approximately 1 SOFA score point early on during follow-up and no di�erence later

on; thus, the more rapid decline in the SOFA score in norepinephrine compared to the

vasopressin group would not likely change current practice. Furthermore, I showed that

by using a joint model the estimated trajectories di�er compared to a plain linear mixed

model that disregards the drop-out process: in the settings of VASST, the mixed model

under-estimated the longitudinal trajectories late during follow-up as more individuals

dropped out of the study - even though the di�erence between the joint models and the

plain linear mixed model was not clinically meaningful.

6.8 Discussion

The topic of joint modelling of longitudinal and time to event data has received

considerable interest in the past years since the seminal papers by Wulfsohn and Tsiatis

and Henderson et al. [163, 165]. This methodology provides an attractive framework for

assessing the association between a longitudinal and a survival outcome (or vice-versa),

given the opportunity to study and model their relationship in a variety of clinically

meaningful formulations.

Despite that, the application in practice is scarce - possibly because of the complex

technicalities and computational requirements. The availability of user-friendly software

and excellent review papers and books on the topic [167–169] has surely contributed

to the adoption of this methodology; regardless, the heavy computational requirements

still stand.

Throughout this Chapter I introduced and formalised joint models for longitudinal

and survival data, focussing on the standard joint model formulation with a single

longitudinal outcome and a single time to event outcome. I illustrated commonly used

association structures and the estimation process, highlighting the heavy computational

requirements of this methodology.

I approached the topic of joint modelling from the (arguably) less common point of

view of focussing on the longitudinal outcome as the primary outcome of interest. In

the settings of longitudinal data analysis, it has been shown that truncation of the
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longitudinal trajectory (i.e. because of drop-out from the study) leads to biased results

if the truncation process and the outcome of interest are not independent. This issue

is commonly referred to as informative drop-out, and I described it in more detail in

Section 6.6; in particular, I de�ned characteristics of the drop-out process and formalised

the problem within a missing data framework. Finally, in Sections 6.6 and 6.7 I described

how the joint modelling approach introduced in this Chapter can be used to jointly

model the longitudinal outcome of interest and the drop-out process: by doing so, the

longitudinal analysis accounts for the truncation of the longitudinal trajectory avoiding

the biases that would otherwise arise.

The applied example of Section 6.7 using data from VASST illustrates the joint modelling

approach in practice, including a comparison with a standard mixed-e�ects model that

ignores the drop-out process. The results of the application motivate the use of joint

modelling in these settings, as the predicted trajectories that are obtained from the two

approaches (Figure 6.6) diverge more and more as time goes by and more individuals

drop-out of the study. A manuscript based on these results is currently under review for

publication in Critical Care Medicine, including a tutorial on the use of joint modelling

in the settings of intensive care medicine.

The joint modelling framework will be used further in Chapter 7, where I will describe

how a joint longitudinal-survival model can be used to model longitudinal data when the

assumption of independence between the outcome and the timing between observations

does not hold. More details on the issue of informative observation times are also included

in Chapter 7, complementing the issue of informative drop-out discussed within this

Chapter.
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7 Modelling the Observation Process

7.1 Outline

The analysis of longitudinal data is essential to understand the evolution of a disease

and the e�ect of interventions over time. As outlined in Chapter 1, longitudinal data

is prevalent in the settings of EHRs; however, methodological challenges arise when

applying traditional analysis methods in these settings. First and foremost, observation

times are likely to be correlated with the underlying disease severity in healthcare

consumption datasets: individuals tend to have irregular observation times as patients

with more severe conditions (or showing early symptoms of a disease) tend to seek

medical care more often than those with milder conditions (and no symptoms). Their

worse disease status is also likely to be re�ected in worse biomarkers being recorded

at such visits, causing abnormal values of such biomarkers to be overrepresented and

normal values to be under-represented.

Traditional methods used to analyse longitudinal data rely - among others - on the

following assumptions:

1. Study drop-out is independent of disease severity, as discussed in Section 6.6;

2. The underlying mechanism that controls the observation time must be independent

of disease severity.

Unfortunately, these assumptions are unlikely to hold in the settings of EHRs. In the

previous Chapter, I discussed how failing to account for informative drop-out in a

longitudinal study could yield biased estimates of the model parameters [193]; in this

Chapter I will focus on the problem of informative observation times, as it can be shown

that bias ensues if naively applying traditional methods when the follow-up is irregular

and associated with the outcome [199]. Despite the potential for bias, there is some
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evidence pointing towards a lack of awareness in longitudinal studies with healthcare

data irregularly collected over time: a recent literature review on the topic showed that

86% of the included studies did not report enough information to evaluate whether the

visiting process was informative or not, and only one study used a method capable of

dealing with an informative observation process [200]. This is especially concerning

when the aim of a research project is aetiology.

As mentioned above, in this Chapter I focus on the problem of informative observation

times and the biases that may arise when data on covariates and outcomes is collected

at irregular, subject-speci�c intervals: in fact, when analysing data originating from

electronic health records, data is collected only when study subjects consume health care

(e.g. by visiting their doctor or going to the hospital). As a consequence, visit times are

likely to be informative and to depend on the clinical history and/or health status of an

individual. Characteristics of the observation process and biases that arise when the

observation process can be deemed informative are discussed in Section 7.2.

Methods that have been developed to deal with this problem and published in the current

literature are discussed in Section 7.3. In particular, I will focus on two broad families of

methods, methods based on inverse probability weighting and methods based on joint

modelling. Further to that, I will describe a more general joint modelling approach to

the issue of informative observation times in Section 7.4, and compare the performance

of some of the methods in simulated settings in Section 7.5. The Monte Carlo simulation

study has been published in Statistica Neerlandica, featuring in a Special Issue on the

2018 Survival Analysis for Junior Researchers conference, with more details included

in Appendix F [201]. The results of the simulation study are also illustrated in practice

using data from the PSP-CKD study in Section 7.6.

Finally, I will conclude the Chapter with a discussion in Section 7.7.

7.2 Characteristics of the Observation Process

An observation process can have regular or irregular visits. With regular visits, the jth

visit time for the ith individual Tij is the same for all individuals: Tij = tj ∀ i, j, with

i = 1, 2,… , n and j = 1, 2,… , ni . Conversely, with irregular visits that is no longer true.
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I start by de�ning the observation process Ni(t) using counting process notation. A

counting process Ni(t) is a stochastic process with values that are non-negative, integer,

and non-decreasing:
⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

Ni(t) ≥ 0

Ni(t) is an integer

Ni(s) ≤ Ni(t) if s ≤ t

(7.1)

Practically speaking, the observation process is a counting process that increments every

time a new observation is recorded.

When the visiting pattern is irregular, Ni(t) can be de�ned to be completely at random

when visit times and outcome(s) are independent [199]:

E[ΔNi(t)|Ȳi(∞), X̄i(∞)] = E[ΔNi(t)], (7.2)

where ΔNi(t) = Ni(t) − Ni(t−), with t− being the instant of time right before t . Ȳi(∞) and

X̄i(∞) denote the values of outcome and covariates for any t > 0.

The observation process can be deemed informative when it is not completely at random,

i.e. when the condition above is not veri�ed. In that case, it is possible to identify the

following two scenarios:

• Observation process at random, when visiting at time t is independent of the

outcome at time t given data recorded up to time t :

E[ΔNi(t)|X̄i(t), N̄i(t−), Ȳ obs
i (t−), Yi(t)] = E[ΔNi(t)|X̄ obs

i (t), N̄i(t−), Ȳ obs
i (t−)], (7.3)

where X̄i(t) and X̄ obs
i (t) denote the covariates history up to time t and its observed

values, N̄i(t−) denotes the history of the observation process up to time t−, and

Ȳ obs
i (t−) the observed values of the outcome up to time t−;

• Observation process not at random, where the de�nition of missing at random

does not hold. That is, the scenario where visiting at time t is not independent of

the outcome at time t , even after conditioning on data recorded up to time t :

E[ΔNi(t)|X̄i(t), N̄i(t−), Ȳ obs
i (t−), Yi(t)] ≠ E[ΔNi(t)|X̄ obs

i (t), N̄i(t−), Ȳ obs
i (t−)] (7.4)
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Gruger et al. [202] illustrate four possible models that could be linked to the

above-mentioned scenarios:

1. The examination at regular intervals model, consisting of observation times that

are pre-de�ned and equal for all patients (as in clinical trials). This scenario yields

so-called balanced panel data;

2. The random sampling model, consisting of a sampling scheme (e.g. an observation

process) that is not pre-de�ned, but still independent of the disease history of the

study subjects;

3. The doctor’s care model, consisting of an observation process that depends on the

characteristics of the patient at the moment of the current doctor’s examination.

For instance, a doctor could require stricter monitoring for subjects with more

advanced disease status, or with abnormal values of a biomarker;

4. The patient self-selection model, yielding observations that are triggered by the

patients themselves. According to this model, patients may choose to visit

their doctor when they feel unwell, or they may choose to skip a visit that was

pre-planned when they feel the treatment they are receiving is not bene�cial to

their health status. Unfortunately, the factors that cause patients to self-select

themselves are generally unknown or not recorded.

Models (1) and (2) could be characterised as observation completely at random; model (3)

could be characterised as observation at random; �nally, model (4) could be characterised

as observation not at random.

The bias that one may encounter when the observation process is informative can be

classi�ed into two types: selection bias and confounding [203]. Selection bias arises

because of the inclusion of only observed individuals in the analysis. This bias is the

same bias induced by informative censoring due to loss to follow-up [204]: censoring is

the extreme case of an observation process where an individual is not observed ever again.

Conversely, confounding arises when there are common causes of both the exposure and

the outcome, where I consider the exposure to be the observation process. For instance,

when visit times are decided by a physician or by the patient itself based on e.g. current

health status, which itself is associated with the observed longitudinal outcome, then

ignoring the observation process in the analysis yields confounding. The settings of
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dynamic observation processes are discussed in more detail elsewhere, including directed

acyclic graphs (DAGs) that illustrate the underlying causal mechanisms [203].

7.3 Methods to Account for an Informative

Observation Process

Standard methods for the analysis of longitudinal data (such as those described in Section

2.3) can be used when the visiting process can be deemed completely at random, according

to the de�nition introduced in the previous Section. Conversely, the analysis method

needs to explicitly account for the visiting process; a general overview of methods that

can be used in the settings of informative visiting processes is presented in Pullenayegum

and Lim [199].

In particular, methods can be broadly classi�ed into methods based on inverse intensity

of visiting weighting, and methods based on joint modelling the longitudinal outcome

and the visiting process. These two approaches are described in more detail in Sections

7.3.1 and 7.3.2, respectively.

7.3.1 Inverse Intensity of Visiting Weighting

Inverse intensity of visiting weighting (IIVW) was �rst proposed by Lin et al. and Robins

et al. and further extended by Buzkova and Lumley [190, 205, 206]. The IIVW approach

accommodates an informative observation process in a marginal regression model by

weighting each observation by the inverse of the probability of each measurement to

be recorded; consequently, this approach creates a pseudo-population in which the

observation process is static (e.g. completely at random) and can, therefore, be ignored.

The weights can be estimated by �tting a regression model including all covariates that

inform the observation process and further stabilised to increase e�ciency [207].

This method assumes a general link function g for the marginal model for the longitudinal

outcome, generally a GEE model, and possibly time varying covariates X (t):

g[�i(t)] = Xi(t)� (7.5)
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Then, it is assumed that there are auxiliary variables Zi(t) (which may include functions

of Ni(s), Xi(s), Ȳ obs(s) for any s < t) such that the visiting process is independent of the

current outcome given the observed auxiliary variables at time t :

lim
�→0

E[Ni(t) − Ni(t − �)|Xi(t), Zi(t), Yi(t)]
�

= lim
�→0

E[Ni(t) − Ni(t − �)|Zi(t)]
�

= ℎ(t |Zi(t))

(7.6)

ℎ(t, Zi(t)) represents then the intensity of visiting, which is assumed to follow a

proportional hazards model (such as those discussed in Section 2.2):

ℎ(t, Zi(t)) = ℎ0(t) exp(Zi(t) ) (7.7)

This proportional hazards model is used to estimate the following weights:

wi(t) =
s(t)

ℎ0(t) exp(Zi(t) )
, (7.8)

where s(t) is a stabilising function. By choosing the baseline hazard function ℎ0(t) as

stabilising function, the weights become 1/ exp(Zi(t) ) therefore removing the need to

estimate the baseline hazard. These stabilised weights are then used to weight the GEE

analysis and can account for the settings of observation processes at random (according

to the de�nition introduced in the previous section).

In addition to weighting a GEE analysis, this method could be used to weight the Lin and

Ying estimating equations for irregular longitudinal data [208, 209]. In brief, the Lin and

Ying estimating equations have been proposed to accommodate irregular longitudinal

data and extend the traditional GEE approach by allowing for a non-parametric intercept

in the semi-parametric model; more details on this method are presented elsewhere [199].

Finally, doubly robust estimating equations have been proposed for the settings of

irregularly recorded longitudinal data [210]. The bene�t of doubly robust inference is

that it gives consistent estimates of the regression coe�cients if either the model for the

visiting process or the model for the outcome is correctly speci�ed; that is, this method

is robust to misspeci�cation of one (but not both) of the models.
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7.3.2 Joint Modelling

Semiparametric and parametric joint models for the longitudinal outcome and the visiting

process are discussed in Pullenayegum and Lim [199].

Several semiparametric joint models have been proposed in the literature [211–214], with

each formulation di�ering in terms of modelling assumptions:

1. Whether time-independent or time-dependent covariates can be included in the

model;

2. Whether covariates included in the longitudinal and visiting process models are

constrained to be the same;

3. The parametrisation of the random e�ects.

All semiparametric models aim to capture the correlation between the outcome and

visit processes via shared or correlated random e�ects, without requiring the explicit

speci�cation of a parametric model for either process or the random e�ects; all models use

nonparametric intercepts in the longitudinal model. Nevertheless, this class of models

o�ers considerable �exibility in modelling the visit and outcome models.

Another assumption of semiparametric joint models is that the random e�ects are

time-invariant; some authors show that this assumption could be relaxed in some

settings, e.g. when assuming that the conditional mean of the random e�ects given

the covariates is zero and that the covariance of the random e�ects at time t does not

depend on the values of the observed covariates at time t .

If willing to specify a parametric model for the outcomes (including the distribution

of the random e�ects), a more general dependence structure between outcomes can

be speci�ed; this yields the possibility to do inference via maximum likelihood. An

example of a parametric joint model is given in Liu et al. [215]: they illustrate a trivariate

joint model that accommodates a longitudinal outcome, the observation process, and

the drop-out process as well. Their model assumes that the random e�ects follow a

multivariate normal distribution and that the baseline intensity functions (for the visiting

and drop-out processes) follow a piece-wise constant function.

The major drawback of the joint models introduced in this section is that they are not

readily usable in practice: they are not implemented in standard statistical software
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packages, and the code required to �t the models is often non-trivial and/or not openly

available at all. In the next Section, I will introduce a joint modelling approach to

modelling the longitudinal outcome and the observation process based on the joint

modelling formulation of Chapter 6; most interestingly, the joint models under this

approach can be �t using readily available statistical software and can be easily extended

to accommodate additional complexity.

7.4 An Extended Joint Modelling Approach

The joint modelling approach to account for the observation process in the analysis

of longitudinal data can be formulated in the joint modelling framework described in

Chapter 6. Let Dij(t) = I (Tij = t) denote the presence of an observation at time t for the

ith individual: at each Dij(t) = 1 a new observation of the longitudinal outcome Yij is

recorded. Let t̃ij be the gap time between the jth and (j + 1)th measurement for the ith

individual. Let d̃ij be the binary indicator variable that denotes whether the gap-time t̃ij is

observed (or not). In practice, gap-time are always observed except when the observation

process is censored at the end of follow-up, e.g. the date when the data extraction occurs.

Let zij be the covariate vector for the longitudinal outcome, and wi the covariate vector

for the observation process; zij and wi do not necessarily overlap, and it is assumed that

both could be extended to include time-dependent exogenous covariates (e.g. wij). The

observation process and the repeated measures process are modelled jointly using a joint

longitudinal-survival model as described in Chapter 6.

Conditional on the random e�ect ui , the submodel for the time to each observation is a

proportional hazards model with hazard for gap time t̃ij :

r(t̃ij |wij , ui , �t) = r0(t̃ij) exp(wij� + ui), (1)

where �t = � . This is a recurrent events model where the within-individual correlation is

accounted for via the frailty, as described in Section 5.4. r0(t̃ij) can be any parametric or

�exible parametric [24] baseline hazard function (also referred to as baseline intensity, I

will use the terms hazard and intensity interchangeably).

168



The submodel for the jth longitudinal observation of the ith individual is

(yij |Dij(t) = 1, zij , ui , vi , �y) = mij + �ij = zij� + ui + vi + �ij , (2)

where �ij ∼ N (0, � 2� ) and �y = {�,  , � 2� }. This is a mixed-e�ects model that can be used

to model longitudinal data, as described in Section 2.3, with a random intercept vi .

The two processes are linked together via the shared, individual-speci�c, random e�ect ui .

Including the  parameter in the longitudinal model allows for an association between

the two equations that will be estimated from data. When  = 0, the two processes

are independent of each other. Finally, the random e�ects are assumed to follow a

multivariate normal distribution with null mean vector and variance-covariance matrix

Σu,v .

The model is �tted using maximum likelihood; the individual-speci�c contribution to

the likelihood can be written as:

Li(�) = ∫ p(t̃ij , d̃ij , yij , bi; �) dbi

= ∫
ni
∏
j=1

[p(t̃ij , d̃ij |bi , �t)p(yij |bi , �y)] p(bi |�b) dbi
(7.9)

where � = {�t , �y , �b} is the overall parameters vector, bi = {ui , vi} is the vector of random

e�ects,

p(t̃ij , d̃ij |bi , �t) = r(t̃ij |wij , ui , �t)d̃ij exp(− ∫
t̃ij

0
r(s|wij , ui , �t) ds) (7.10)

is the contribution to the likelihood of the time to the jth observation in individual i,

p(yij |bi , �y) = (2�� 2� )
−1/2 exp(−

(yij −mij)2

2� 2� ) (7.11)

is the contribution of the jth longitudinal observation, and p(bi |�b) is the density of the

random e�ects. The likelihood does not have a closed-form, as outlined in Section 6.5;

therefore, it is necessary to integrate out the distribution of the random e�ects using

methods outlined in Section 5.4.2.

A simpli�ed DAG that illustrates how the joint model accounts for the correlation

between a longitudinal outcome Y and its observation process R is included as Figure
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Figure 7.1: Simpli�ed DAG depicting a joint model for a longitudinal outcome and its
observation process.

7.1 [137]; X represents covariates included in the model, and U represents the shared

random e�ects. After adjusting for all covariates X , the longitudinal outcome and

the observation process are associated only through the shared U . However, when

estimating the joint model the random e�ects U are assumed to follow a given

distribution (e.g. Gaussian) and are then integrated out of the marginal likelihood,

blocking the path between Y and R. Therefore, for the joint model to be valid the

observation process has to be at least at random, according to the de�nition of Section

7.2.

I will focus on the aforementioned model for (1) simplicity and (2) as it is comparable with

the trivariate joint model suggested by Liu et al. and mentioned in the previous Section

[215]. However, this model is nested within a wide family of multivariate generalised

linear and non-linear mixed-e�ects models [216] and can be easily extended. For instance:

1. Multiple random e�ects, with potentially di�erent levels of nesting, can be

included;

2. Di�erent distributions for the baseline hazard can be assumed, ranging from

standard parametric distributions (such as exponential, Weibull, Gompertz) to

spline-based formulations on the log-cumulative hazard or log-hazard scale;

3. Additional outcomes can be accommodated, such as multiple longitudinal

outcomes or a drop-out process;

4. The association structure between sub-models can be extended to any of the

association structures described in Section 6.4.

Most interestingly, the joint model I will focus on (and several extensions) can easily be

�tted using the user-written command merlin in Stata and R [217, 218].
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7.5 A Methods Comparison Using Monte Carlo

Simulation

As described in the previous Section, several methods have been proposed in the current

literature to account for the observation process in the analysis of longitudinal data.

Despite that, Farzanfar et al. showed that such methods are not routinely used in applied

research [200]: they described a low proportion of studies reporting on the potential

informativeness of visit times, and they concluded by arguing that there is a need for

guidance to researchers on the potential for bias and the reporting of longitudinal studies

subject to irregular follow-up.

The lack of awareness of methods to account for informative visiting times in the analysis

could also stem from the lack of methods comparisons in the literature: in order to choose

the appropriate analysis method, researchers need to understand assumptions, bene�ts,

and potential pitfalls underlying each method. A qualitative comparison of methods

was published by Pullenayegum and Lim [199], but to the best of my knowledge, there

is only one quantitative comparison existing in the current literature. Moreover, that

comparison yielded negative results: Neuhaus et al. concluded that �tting ordinary linear

mixed models that disregard the observation process completely yielded the smallest bias

and showed that adding regular visits to the observation schedule (if possible) reduced

that bias even more [219].

Therefore, I set out to design and run a Monte Carlo simulation study aimed at assessing

the impact of ignoring the observation process in the analysis of longitudinal data. The

simulation study is described in Sections 7.5.1 to 7.5.6 using the ADEMP structure; its

results are summarised in Section 7.5.7.

7.5.1 Aims

As mentioned before, the aim of this simulation study consists of assessing the impact

of ignoring the observation process in longitudinal mixed-e�ects models when the

observation process is informative, while at the same time comparing methods that have

been proposed to account for the observation process in the analysis.
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7.5.2 Data-Generating Mechanisms

I simulate data from the following joint model:

r(t̃) = r0(t̃) exp(Zi� + ui)

yij |(Dij(t) = 1) = �0 + Zi�1 + tij�2 + ui + vi + �ij
(7.12)

Zi is a time-invariant covariate (for simplicity) representing a binary treatment, simulated

from a Bernoulli random variable with probability 0.5: Zi ∼ Bern(1, 0.5). The coe�cient

associated to the treatment variable is � = 1 for the observation process, �1 = 1 for the

longitudinal process. The �xed intercept of the longitudinal model is �0 = 0, and the

�xed e�ect of time is �2 = 0.2. The random e�ects ui and vi are simulated from a Normal

random variable with null mean and variance � 2u = 1 and � 2v = 0.5, respectively. The

residual error of the longitudinal model is assumed to follow a Normal distribution with

null mean and variance � 2� = 1.

I assume independence between the random e�ects and the residual variance, and

between random e�ects (i.e. Σu,v is a diagonal matrix with diag(Σu,v) = {� 2u , � 2v}); further

to that, I assume independent random e�ects for simplicity - however, it would be

possible to accommodate correlated random e�ects within the data-generating model.

The joint model with correlated random e�ects can be thought of as a reparameterization

of the joint model with independent random e�ects, where the association parameter 

is related to the correlation between the two random e�ects in the bivariate version.

The baseline hazard from the recurrent visit process is assumed to follow a Weibull

distribution with shape parameter p = 1.05; I vary the scale parameter � and therefore

the baseline intensity of the visiting process, with � = {0.10, 0.30, 1.00}. This baseline

intensities along with the value of � correspond to an expected median gap time between

observations of 5.83 and 2.25 years for unexposed and exposed individuals if � = 0.10,

2.05 and 0.79 years if � = 0.30, and 0.65 and 0.25 years if � = 1.00, respectively. Each

observation time is simulated using the inversion method described in Section 4.4,

assuming a gap time scale (where the time index is reset to zero after the occurrence of

each observation; the resulting recurrent events model is then a semi-Markov model).

I vary the association parameter  between the two sub-models, with  = {0.00, 1.50};
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I expect all methods to perform similarly when  = 0, that is, when the longitudinal

process is independent of the observation process.

In addition to simulating data from the joint model above, I also generate the observation

process by drawing from a Gamma distribution. Speci�cally, I draw the observation

times from a Gamma distribution with shape = 2.00 and scale:

exp(− �Zi + �i), (7.13)

where �i is simulated from a Normal distribution with null mean and variance � 2� = 0.1.

Zi is the same binary treatment covariate as before, with the same associated parameter

� = 1. The value of  de�nes the association between the observation, e.g. when  = 0

the observation process is not informative; I vary and set  = {0.00, 2.00}. I also simulate

a scenario where the observation process depends on the treatment and previous values

of the longitudinal outcome Y . In this setting, observation times are drawn from a

Gamma distribution with shape = 2.00 and scale:

exp(− �Zi + !yi,j−1 + �i) (7.14)

for the jth observation time of the ith individual, with  = 2.00 and ! = 0.20.

Finally, I simulate a scenario from a joint model to which regular (i.e. planned) visits are

added every year, as suggested by Neuhaus et al. [219]. This scenario is simulated from

the above-mentioned joint model, with  = 3.00 and � = 0.05 to obtain an observation

process that is sparse and strongly associated with the longitudinal outcome.

200 study individuals are simulated under each data-generating mechanism, and the

recurrent observation process continues for each individual until the occurrence of

administrative censoring - which is simulated from a Unif(5, 10) random variable. The

last gap time for each individual is de�ned as the di�erence between the last observation

and the censoring time.

7.5.3 Estimands

The main estimand of interest is the vector of regression coe�cients � = {�0, �1, �2}, with

speci�c focus on the treatment e�ect �1. I will also report on the estimated association

173



parameter  and on the estimated variance of the random e�ects and the residual errors:

� 2u , � 2v , and � 2� .

7.5.4 Methods and Software

I �t �ve competing models to each simulated dataset:

1. Model A, the joint model described above (at the beginning of the “Data-generating

mechanisms” Section) and corresponding to the true data-generating mechanisms

when simulating data from a joint model;

2. Model B, a linear mixed model including the number of visits (centred on the mean

value) as a �xed e�ect in the model;

3. Model C, a linear mixed model including the cumulative number of visits as a �xed

e�ect in the model;

4. Model D, a linear mixed model that disregards the observation process completely;

5. Model E, a marginal model �tted using generalised estimating equations and

inverse intensity of visiting weights.

Model A is described in more detail in Section 7.4 and �t using merlin [217] and gsem in

Stata.

Model B follows from previous work by Goldstein et al. [220], where they demonstrate

that conditioning on the number of health-care encounters it is possible to remove bias

due to an informative observation process (they denote this bias as informed presence

bias). I therefore include the number of observations per individual, centred on the mean

value, in a mixed-e�ects model for the longitudinal outcome:

yij = �0 + Zi�1 + tij�2 + nci �3 + vi + �ij , (7.15)

with vi a random intercept and nci the number of observations for the ith individual.

Model C is analogous to model B, adjusting for the cumulative number of measurements

up to time j instead, denoted as n̄itj :

yij = �0 + Zi�1 + tij�2 + n̄itj�3 + vi + �ij (7.16)
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Sun et al. [221] suggest that a straightforward approach would be including variable

that records the number of visits prior to the current observation time in the model for

the longitudinal response of interest. Intuitively, one would expect that responses from

individuals with several previous visits would di�er from individuals with only a few

visits, and therefore including the number of prior visits as a covariate could control for

these di�erences.

Model D is a standard mixed model that does not account for the visiting process,

i.e. analogous to model B and C but assuming �3 = 0.

Models B, C, and D are �t using the mixed command in Stata; models A, B, C, D are �t

assuming an independent structure for the variance-covariance matrix of the random

e�ects.

Finally, model E is �tted following the two-stage procedure described in Section 7.3.1, and

following Van Ness et al. [222]. The model used to estimate weights is an Andersen-Gill

recurrent events model [94] for the observation process, assuming a gap-time scale:

r(t̃ij) = r0(t̃ij) exp(zi�), (7.17)

where t̃ are gap-times between consecutive observations, ri(t̃) is the intensity of visit for

individual i at gap-time t̃ , r0(t̃) is the unspeci�ed baseline intensity at gap-time t̃ , and zi is

a vector of coe�cients that are assumed to accurately describe the observation process for

individual i. � is a vector of regression coe�cients that is estimated using the Cox partial

likelihood method and a robust jack-knife estimator for the variance of the regression

coe�cients. The inverse intensity of visit weights are estimated by taking the inverse of

the linear predictor exp(zi�̂) at each time point, and further normalised by subtracting

the mean inverse weight and adding the value 1 to each weight; the distribution of the

weights is therefore centred on the value 1. Next, two further adjustments are needed.

First, since the last data point for each individual represents the end of follow-up of the

study, each weight is shifted by one time point. Second, given that each individual is

observed at least once (i.e. at baseline), a weight of one is assigned to the �rst observation

of each individual.

The marginal model for the longitudinal outcome is then �t using generalised estimating
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equations and including the normalised inverse intensity of visit weights as probability

weights in the model. The model has the form:

E(yij) = �0 + Zi�1 + tij�2, (7.18)

and can be �t using readily available statistical software; for instance, I use the Stata

command glm.

In conclusion: the simulation study is coded and run using Stata version 15, built-in

functions (such as mixed, glm, gsem), and the user-written commands survsim and merlin

[68, 217]. Results of the simulation study are summarised using R [86] and the R package

rsimsum [223]. All the code required to simulate data, �t each model, and produce

summaries is available online (https://github.com/ellessenne/infobsmcsim).

7.5.5 Performance Measures

I will assess average estimates and standard errors, empirical standard errors, bias, and

coverage probability of �̂m, with m = {0, 1, 2}. However, the main performance measures

of interest are bias and coverage probability: the former quanti�es whether an estimator

targets the true value on average, while the latter represents the proportion of times

that a con�dence interval based on �̂m,k and ŜE(�̂m,k) contains the true value �m, with k

indexing each replication. Monte Carlo standard errors, useful to quantify the uncertainty

in estimating bias and coverage, are estimated and reported as well [58].

7.5.6 Number of Simulations

The process of de�ning the number of simulations is analogous to that of Section 5.5.6. If

assuming that Var(�̂m)≤ 0.1 (or, equivalently, SE(�̂m)≤ 0.32) and requiring a Monte Carlo

standard error for bias of 0.01 or lower, given that MCSE(Bias) =
√

Var(�̂m)/K , I would

require a number of replications K = 1,000. The assumed standard error is larger than

the standard errors reported by Liu et al. for a model similar to model A [215]. The

expected Monte Carlo standard error for coverage, assuming a worst-case scenario of

50% coverage, would be 1.58% - which I deem acceptable once again. Therefore, I proceed

by simulating 1,000 independent datasets for this simulation study.
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Table 7.1: Number and percentage of models converging under each data-generating
mechanism, Monte Carlo simulation study on modelling the observation process. Model A is
the joint model, model B is the mixed model adjusting for the total number of measurements,
model C is the mixed model adjusting for the cumulative number of measurements, model D is
the mixed model with no further adjustment, and model E is the marginal model �tted using GEE
and IIVW

Data-Generating Mechanism Model A Model B Model C Model D Model E

JM ( = 0.00, � = 0.10) 100.00% 100.00% 100.00% 100.00% 100.00%
JM ( = 0.00, � = 0.30) 100.00% 100.00% 100.00% 100.00% 100.00%
JM ( = 0.00, � = 1.00) 100.00% 100.00% 100.00% 100.00% 100.00%
JM ( = 1.50, � = 0.10) 95.50% 100.00% 100.00% 100.00% 100.00%
JM ( = 1.50, � = 0.30) 100.00% 100.00% 100.00% 100.00% 100.00%
JM ( = 1.50, � = 1.00) 100.00% 100.00% 100.00% 100.00% 100.00%

Γ not depending on treatment 100.00% 100.00% 100.00% 100.00% 100.00%
Γ depending on treatment 100.00% 100.00% 100.00% 100.00% 100.00%

Γ depending on treatment and previous Y 100.00% 100.00% 100.00% 100.00% 100.00%
JM ( = 3.00, � = 0.05) with regular visits 99.90% 100.00% 100.00% 100.00% 100.00%

7.5.7 Results

Convergence Rates

Convergence rates for each model under each data-generating mechanism are presented

in Table 7.1. Most models showed a perfect convergence rate of 100%, except for the joint

model (model A). The joint model showed a lower convergence rate of 96% and 99% in

two simulated scenarios, both with an informative observation process. However, the

remaining scenarios showed perfect convergence rates for the joint model as well.

Results for Regression Coe�cients

Bias of regression coe�cients is presented in Figure 7.2, while coverage probability is

presented in Figure 7.3; MSEs are included in Figure G.1. Bias, coverage probability, and

MSEs for the variance components are included as Figures G.2, G.3, and G.4 in Appendix

G.

When the observation process was not informative, all models estimated regression

coe�cients with null to negligible bias. Coverage probability of the regression coe�cients

was also optimal, with slight under coverage for the intercept term �0 and the treatment

e�ect �1 for estimates originating from the marginal weighted model. Mean squared

errors were similar across the range of scenarios with a non-informative observation

process. Bias for the variance of the residual error term was null to negligible as well, with
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good coverage. Conversely, the variability of the random intercept v was estimated with

slight negative bias from all models, with sub-par coverage (between 90% and 95 %); this is

expected as all methods use maximum likelihood and not restricted maximum likelihood.

Finally, the estimated variance of the random e�ect linking the two outcomes in the joint

model was positively biased with coverage between 74% and 90%; the magnitude of bias

decreased as the baseline intensity � increased.

When the observation process was informative, the models included in this comparison

performed quite di�erently. When generating data from a Γ distribution depending

on treatment only, all models were able to estimate the regression coe�cients with

no bias, optimal coverage probability, and comparable mean squared errors. However,

di�erences were marked in the remaining scenarios. In the scenario with observation

times simulated from a Γ distribution depending on treatment and previous values of the

longitudinal outcome, all models but model B (adjusting for the number of measurements)

could estimate the treatment e�ect with null or minimal bias; model B overestimated the

treatment e�ect. The same pattern was observed for coverage of the treatment e�ect,

with model B under-covering (29%), and for the mean squared errors. The e�ect of time

was estimated with small bias and good coverage from all models, with model E (IIVW

model) performing slightly worse; mean squared errors were comparable. In scenarios

simulated from a joint model, as expected, the joint model (model A) performed best

overall, with minimal to no bias, optimal coverage, and the lowest mean squared errors.

Model C (adjusting for the cumulative number of measurements) and model D (standard

mixed model) overestimated the intercept term and underestimated the treatment e�ect

while showing small bias when estimating the e�ect of time. Both models showed that the

bias when estimating the e�ect of time decreased as the baseline intensity � increased: as

expected, the inclusion of more measurements allows to better estimate the e�ect of time.

Model B performed worst when estimating the e�ect of treatment, with large negative

bias. It also yielded biased intercept and e�ect of time, however, as with model C and

D, bias for the estimate of time decreased as more measurements were available. Finally,

model E slightly overestimated the e�ect of treatment. Model E showed increasing bias

when estimating the intercept as the visiting process was denser, while (analogously as

with model B, C, D) showed less biased estimates of the e�ect of time as the baseline

intensity increased. All models with the largest biases showed also poor coverage and
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the largest standard errors. Overall, in settings simulated from a joint model, model B

and model E performed worse and showed the largest biases. In the scenario simulated

from a joint model with a sparse observation process and regular yearly visits, the joint

model (model A) and the standard mixed model (model D) performed best, managing to

recover the true values of all regression coe�cients with no bias, and optimal coverage

probabilities and mean squared errors. Model B managed to estimate the e�ect of time

with small bias, but largely overestimated the intercept and underestimated the treatment

e�ect. Model C managed to estimate the intercept and the treatment e�ect with small

or no bias, but severely underestimated the e�ect of time. Coverage and mean squared

errors followed the same pattern.

Results for the Association Parameter 

Bias, coverage probability, and MSEs of the association parameter  are presented in

Figure 7.4.

The estimating procedure worked well when the two sub-models were not associated,

with no bias, optimal coverage probabilities, and small mean squared errors -

irrespectively of the baseline intensity of visit �. Conversely, when the sub models were

associated ( = 1.50) the estimated association parameter was slightly negatively biased

(−0.11 to −0.06), with sub-optimal coverage (75% to 83%). Mean squared error decreased

when the baseline intensity of visit increased. Finally, the scenario simulated from a

joint model with a strong association parameter  = 3.00 and regular visits showed

the worst performance, with large negative bias (-3.73), poor coverage (12%), and large

mean squared error. Including regular visits caused  to shrink towards the null, with a

median estimate of -0.7289.

7.6 Application to PSP-CKD Data

The results of the Monte Carlo simulation study of Section 7.5 are illustrated in practice

using data extracted from the PSP-CKD study [48]. In particular, I will be using the second

dataset that was described in Section 3.2; it consists of 187,671 observations for 35,822

individuals, over approximately 3 years of follow-up since each practice was randomised

to either regular or enhanced CKD care (the latter being the intervention studied with
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Figure 7.2: Bias of regression coe�cients, Monte Carlo simulation study on modelling the
observation process. Labelled values (with points in black) are statistically signi�cant values,
determined via Z tests based on Monte Carlo standard errors
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Model JM ME (Total) ME (Cumulative) ME (No adjustment) GEE (IIVW)
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Figure 7.3: Coverage probability of regression coe�cients, Monte Carlo simulation study
on modelling the observation process. Labelled values (with points in black) are statistically
signi�cant values, determined via Z tests based on Monte Carlo standard errors
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Figure 7.4: Bias, coverage probability, and MSEs of association parameter  , Monte Carlo
simulation study on modelling the observation process. Only results from the joint model are
included, as it is the only model that estimates the association parameter  . Labelled values (with
points in black) are statistically signi�cant values, determined via Z tests based on Monte Carlo
standard errors
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Figure 7.5: Distribution of gap times between longitudinal observations, application to
PSP-CKD data.

PSP-CKD).

I start by evaluating whether the visiting process could be deemed informative. First,

the median gap time between observations was 91 days (interquartile interval: 28 –

221 days); the distribution of gap times is depicted in Figure 7.5. Next, the Spearman’s

rank correlations between gap time and treatment (� = −0.01), gap time and age at

baseline (� = 0.04), gap time and sex (� = 0.01) are statistically signi�cant (all p-values

≤ 0.001), despite the small magnitude. Then, �tting a linear mixed model for gap time

versus treatment, age at baseline and gender with a random intercept yielded signi�cant

associations. On average: females had 12.23-days longer gap times (95% C.I.: 9.44 –

15.02), treated individuals had 3.41-days shorter gap-times (95% C.I.: 0.68 – 6.14), and

each 5-years di�erence in age at baseline was associated with 2.74-days shorter gap

times (95% C.I.: 2.16 – 3.32). Finally, �tting the Andersen-Gill model for the observation

process (as described above) with gender, age at baseline, and treatment as covariates

included in the model yielded hazard ratios of 0.949 (95% C.I.: 0.926 – 0.973), 0.996 (95%

C.I.: 0.995 – 0.997), and 1.058 (95% C.I.: 1.032 – 1.084), respectively. In conclusion, gap

times seem to be associated with gender, age at baseline, and treatment modality; hence,

the observation process is likely to be informative.
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I �t the models included in the simulation study (and described in Section 7.5.4), including

treatment as the exposure of interest and age at baseline and gender as covariates; I

assume a linear e�ect of time for simplicity (and consistency with the simulation study).

The joint model includes treatment, gender, and age at baseline as covariates included

in the sub-model for the observation process, and so did the recurrent events model

utilised to �t weights for the IIVW model. The estimated �xed e�ects for the longitudinal

trajectory from each model are presented in Figure 7.6.

All �ve models estimated a similar, non-statistically signi�cant e�ect of treatment at

baseline, after adjusting for the remaining factors; the e�ect of time was negative, which

is expected as kidney function generally declines over time. The magnitude of the

interaction between time and treatment was negligible and non-statistically signi�cant,

showing that enhanced CKD care did not signi�cantly alter the longitudinal eGFR

trajectory compared to ordinary CKD care. In other words, the longitudinal decline of

eGFR did not di�er signi�cantly between treatment arms.

The marginal model estimated an intercept, e�ect of gender, and e�ect of time noticeably

di�erent than the other four models; furthermore, the direction of the estimated

coe�cient for the interaction between time and treatment was reversed for the marginal

model compared to the other models, although (as above-mentioned) the magnitude of

the interaction remained negligible.

The estimated e�ect of time was similar between all models (approximately -1.10 per unit

of time), except for the marginal model; predicted longitudinal trajectories based on the

�xed e�ects (and for females with 75 years of age) are depicted in Figure 7.7. Overall all

models estimated a similar longitudinal trajectory, with the exception of the IIVW model

and the mixed-e�ects model adjusting for the total number of measurements; this result

is consistent with the results of the simulations of Section 7.5: the mixed model adjusting

for the total number of measurements performed worst overall, while the IIVW model

yielded biased results for the exposure and the intercept of the longitudinal model under

a variety of scenarios. This di�erence can be observed in these applied setting as well.

The di�erence between methods can be further appreciated when comparing the

estimated di�erence between treatment arms, as depicted in Figure 7.8. The mixed

model adjusting for the centred number of measurements over-estimates the di�erence
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Figure 7.6: Estimated �xed e�ects for the longitudinal trajectory, application to PSP-CKD data;
the vertical grey dotted line is placed at a value of zero
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Figure 7.8: Di�erence between treatment arms over time, application to PSP-CKD data

between treatment arms compared to the joint model and the remaining mixed-e�ects

models; despite that, the direction seems to be consistent, with an increasing di�erence

between treatment arms as time goes by. Conversely, the di�erence between trajectories

estimated by the marginal model has the opposite direction, decreasing rather than

increasing over time.

The estimated coe�cient for the observation process from the joint model shows a

reduced risk of having a new observation for females compared to males (approximately

8%, hazard ratio of 0.920 with 95% C.I.: 0.902 – 0.938), an increased risk for treated

individuals (7%, hazard ratio of 1.069 with 95% C.I.: 1.048 – 1.090), and a reduced risk

for higher age at baseline (hazard ratio for a 5-years increase: 0.993, 95% C.I.: 0.989 –

0.997). This estimated hazard ratios together with the estimated value of the association

parameter  (-2.682, 95% CI: -2.900 to -2.468) seem to con�rm that the observation process

is non-random in these settings.

The joint model used so far can be further extended: in particular, I will describe how

additional random e�ects and �exibility in modelling the longitudinal trajectory can be

easily incorporated within the framework outlined in Section 7.4.
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Figure 7.9: Observed eGFR trajectories, application to PSP-CKD data. Smoothed trajectories
were obtained by �tting a generalised additive model with a penalised cubic spline smoother, as
implemented in mgcv::gam with bs = "cs"

First, I include a random slope of time in the joint model, allowing for correlation between

the random intercept and slope; despite that, both random e�ects are independent with

the random e�ect linking the sub-model for the longitudinal outcome and the sub-model

for the observation process. As described in previous Chapters of this Thesis, including

a random slope as well as a random intercept allows modelling a second source of

between-subjects heterogeneity.

Second, I relax the assumption of linearity for the �xed e�ect of time by using a restricted

cubic spline with 4 degrees of freedom: in fact, the raw trajectories of eGFR by treatment

arm, smoothed by �tting a generalised additive model with a penalised cubic spline (as

implemented in mgcv::gam with bs = "cs"), show a certain degree of nonlinearity (Figure

7.9).

Finally, I �t a joint model that incorporates both a random slope of time and a spline

function for the �xed e�ect of time.

The resulting predicted longitudinal trajectories for an individual with given

characteristics (75 years old and female, analogously as before) from each of the

three above-mentioned joint models, including the original joint model for comparison
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Figure 7.10: Longitudinal trajectories by treatment arm based on the �xed e�ects, application
to PSP-CKD data and comparison of competing joint models. JM(1) is the original joint model,
JM(2) is the original joint model plus a random slope of time, JM(3) is the original joint model
with the �xed e�ect of time modelled via a restricted cubic spline with 4 degrees of freedom, and
JM(4) is the original joint model plus the random slope of time and the splined �xed e�ect of
time. The predicted trajectories assume 75 years of age, female gender, and an average centred
number of measurement or total number of measurements (when relevant)

purposes, are plotted in Figure 7.10. The di�erence between treatment arms is depicted

in Figure 7.11.

AIC and BIC of each of the four joint models have been calculated, and are included in

Table 7.2: the best �tting model seems to be the most complex one, the joint model with a

random e�ect of time and the �xed e�ect of time modelled using a restricted cubic spline

with 4 degrees of freedom. In fact, the best �tting model yields predicted longitudinal

trajectories that match more closely the observed trajectories (despite being constantly

and slightly higher), as depicted in Figure 7.12. This result highlights once again the

importance of appropriately modelling the longitudinal trajectory, a common issue in

the analysis of longitudinal data irrespectively of the method being used.

7.7 Discussion

Throughout this Chapter, I discussed the issue of informative observation times and I

introduced methods that have been proposed in the literature to account for it. Further
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Figure 7.11: Di�erence between treatment arms over time, application to PSP-CKD data and
comparison of competing joint models. JM(1) is the original joint model, JM(2) is the original
joint model plus a random slope of time, JM(3) is the original joint model with the �xed e�ect of
time modelled via a restricted cubic spline with 4 degrees of freedom, and JM(4) is the original
joint model plus the random slope of time and the splined �xed e�ect of time

Table 7.2: Joint models comparison in terms of AIC and BIC, application to PSP-CKD data

Model AIC BIC

Original JM 1,416,709 1,416,862
Original JM + random slope 1,404,603 1,404,775

Original JM + splined e�ect of time 1,416,386 1,416,599
Original JM + random slope + splined e�ect of time 1,404,276 1,404,510
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Figure 7.12: Observed eGFR trajectories by treatment arm versus predicted trajectories using
the best �tting joint model, application to PSP-CKD data

to that, I introduced a joint modelling approach that can be formalised within a larger

mixed-e�ects modelling framework [216]. Then, I compared some of the methods that

have been previously suggested, the joint modelling approach, and the standard linear

mixed-e�ects model (that completely disregards the observation process) via Monte Carlo

simulation. I generated longitudinal data with an informative observation schedule by

using three distinct approaches:

1. The observation and longitudinal processes were simulated jointly from a given

joint model;

2. The observation process was simulated from a Gamma distribution with

parameters depending on the characteristics of each study subject;

3. The observation and longitudinal processes were simulated jointly from a given

joint model �rst, with pre-planned observations (once every year) added later on.

Then, I ran the simulation study by �tting the above-mentioned models to each of the

simulated scenarios, with 1,000 replications per scenario.

The results of the Monte Carlo simulation study of Section 7.5 show that ignoring an

informative visiting process leads to biased estimates of the regression coe�cient of a

longitudinal model; further to that, not all models included in this comparison performed
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equally.

To the best of my knowledge, the issue of informative observation times did not receive

as much attention as the issue of informative drop-out. For instance, there is only another

comparison currently published in the literature [219], albeit I include a di�erent set of

models in this simulation study and I simulate the observation process in continuous time,

while Neuhaus et al. simulate an informative observation process by �rst generating a

grid of potential observation times and then relating the probability of being observed

to a given functional form of current (or lagged) covariates. Notably, the joint modelling

approach that I described in Section 7.4 is not considered by Neuhaus et al. [219] and

had therefore never been compared to other methods before.

As expected, the joint model that accounts for the informative observation process by

modelling it via a recurrent events survival model performed best - especially in the

scenarios simulated from a joint model. An interesting point is that the mixed-e�ects

model that disregarded completely the observation process performed worse than

the joint model but outperformed other methods; the in�ation in the variance of the

random intercept of the standard mixed model seemed to capture part (if not most)

of the variability due to the observation process, although this result needs to be

thoroughly tested in more complex scenarios (e.g. with random e�ects of time, etc.). The

performance of the standard mixed model con�rms the results of Neuhaus et al. [219].

The mixed models adjusting for the total number of measurements or the cumulative

number of measurements (as a time-varying covariate) performed worst, and I would

not recommend their usage in practice. This �nding contrasts the �ndings of Goldstein

et al., although their settings are quite di�erent than those of this simulation study [220].

Further to that, they acknowledged the potential for collider bias (due to conditioning on a

collider, the number of measurements) when the phenotyping algorithm for determining

the exposure has high sensitivity; indeed, in my simulations the sensitivity is perfect as

there is no misspeci�cation of the exposure. An additional possible explanation could be

that in my settings the model adjusting for the total number of measurements is in fact

conditioning on the future, as the total number of observations is not determined at the

beginning of the study. This may be explaining the poor performance of this method in

the simulations of Section 7.5.
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The marginal model �tted using generalised estimating equations and inverse intensity

of visit weights performed in-between the standard mixed model and the other mixed

models; furthermore, its performance seemed to improve when the observation pattern

became denser, except for the intercept term �0. This pattern was generally observed

throughout all scenarios and models, as the performance seemed to increase with more

frequent observation patterns; this �nding is consistent with other results published in

the literature [203] and with those of Neuhaus et al. [219]: the IIVW approach showed

bias in all scenarios of their simulation where the observation process was informative,

even when adding regular visits to the study. To compute the weights of the IIVW

approach, applied researchers need to correctly specify the model for the visit process,

a challenging task - especially when not all the information required to �t the correctly

speci�ed model is observed (or known).

Most importantly, a key �nding of this simulation study is that under the null all

the approaches compared in this study produce unbiased estimates of the regression

coe�cients, the implication being that over modelling the observation process does

not seem to introduce bias in the analysis. In settings where it is not clear whether the

observation process is informative or not, �tting the joint model of Section 7.4 would

provide applied researchers with a method for estimating (and testing) the association

between the two outcomes. This could be especially useful e.g. as a sensitivity analysis

of standard mixed-e�ects models.

The results of the simulation study can be appreciated in practice with the application of

7.6. Interestingly, in the settings of the PSP-CKD study, all models performed somewhat

similarly except for the IIVW approach, which yielded completely di�erent �tted

trajectories. This highlights once again the importance of (1) choosing an appropriate

analysis method (2) sensitivity analyses to evaluate whether the method of choice a�ects

the results of a study. The results of the application are consistent with the results of

the PSP-CKD investigators [48] and with the results of the application of Chapter 5:

enhanced CKD care did not signi�cantly alter the longitudinal loss of renal function.

The joint model for the observation process and a longitudinal outcome described

in Section 7.4 can be further extended, as previously described. For instance, the

results of the simulation study of Chapter 5 highlighted the importance of modelling
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appropriately the baseline hazard: the best �tting joint model from the application could

be extended by using �exible parametric models (on the log- or log-cumulative scale)

for the observation process to better capture the baseline intensity of the observation

process. The baseline hazard for the observation process (estimated using the same

smoothing approach described in Chapter 5) shows that a more �exible baseline hazard

formulation that could accommodate turning points as well could be more appropriate

in the settings of the application (Figure 7.13). Additional random e�ects could be

introduced in the model to account for, say, heterogeneity in the trajectory of the

longitudinal outcome over time; in the application, I included a random e�ect of time

and that improved model �t. The functional form of the e�ect of time (both �xed and

random) could also be further generalised by using fractional polynomials or splines;

the longitudinal trajectories need to be modelled appropriately and best �t could be

assessed via information criteria such as the AIC/BIC or their decomposition into

additive components that allow assessing the goodness of �t for each component [197].

In the applied example of Section 7.6, modelling the �xed e�ect of time using splines

vastly improved model �t. Time-varying treatments could also be included in both the

observation process and longitudinal outcome sub-models, although the performance of

the joint model would need to be assessed in these settings. Finally, the joint model could

also be extended by modelling the drop-out process as well, as described in Chapter 6.

Most of these extensions (and several others) are discussed in more detail in Chapter 8.

This simulation study has also some limitations. First, I assumed the treatment to be

constant over time for simplicity; in real-life settings, however, individuals are likely

to start and stop treatment when deemed necessary by their physician. I assumed the

baseline hazard of the recurrent events model for the observation process to follow a

Weibull distribution: this assumption could be further relaxed, and one could assume

any parametric function, or even use �exible, spline-based formulations. Additionally,

for diseases with a high mortality rate, a terminal event that truncates observation of the

longitudinal process is likely to be informative in the sense that it likely correlates with

disease severity (as described in Section 6.6). That is, drop-out is likely to be informative

as the tendency to drop out after the occurrence of a terminal event is related to the

current level of the longitudinally recorded biomarker. The proposed model could be

easily extended to include a third equation with a second survival sub-model for the
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Figure 7.13: Smoothed non-parametric baseline hazard estimate, application to PSP-CKD data

drop-out process, as in the trivariate model of Liu et al. [215]. All of these extensions

(and more) can be �t within the general framework of merlin, as described in Chapter

8 [216, 217]. One could also explore and extend the association structure between the

two sub-models. For instance, the association structure could be reversed to include 

in the observation submodel: in that setting, assuming a positive association, higher

values of the longitudinal process would lead to a more frequent visiting process (and

vice-versa in the setting of negative association). The observation process could also

depend on lagged values of the longitudinal outcome or of the exposure; this would

relax the semi-Markov assumption of some of the data-generating mechanisms of this

simulation study. More biologically (and clinically) plausible association structures (such

as those described in Section 6.4) could also be investigated. Finally, taking the pattern

of informative observation processes (where healthy individuals are under-represented)

to the extreme, healthy individuals may not appear in health records at all, leading to

cohort selection bias.

In conclusion, it is important to account for the visiting process when analysing health

care utilisation data and I showed that ignoring it leads to biased estimates. Given the

wide range of applied settings in which this could be relevant, the review of Farzanfar

et al. [200] points towards a lack of awareness of the problem and the lack of readily
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available, user-friendly software to �t more complex joint models. With the extended

joint modelling framework described in Section 7.4 I outlined a framework in which

merlin could be easily used to �t complex joint models to help to reduce this translational

gap.

A manuscript based on the content of this Chapter has been published in Statistica

Neerlandica, and is included in Appendix F [201].
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8 Discussion

8.1 Outline

This Chapter concludes the Thesis by summarising the developments outlined in previous

Chapters; in particular, I will describe the main results of each Chapter in Section 8.2. I

will also consider the limitations of the work included in this Thesis in Section 8.3, and

potential extensions and future developments in Section 8.4. Finally, I will provide some

closing remarks in Section 8.5.

8.2 Summary of the Thesis

In this Thesis, I investigated statistical methods that can account for the multilevel

structure commonly encountered in electronic health records (EHRs); the methods have

been studied through simulation and applications to real-world data in the settings of

chronic kidney disease and intensive care medicine.

EHRs, their characteristics, and their use for research purposes have been described in

Chapter 1. Potentials and pitfalls of using EHRs in research have been described as well:

in particular, I focussed on the potential to answer innovative and more detailed clinical

questions, and on the opportunity to study interventions (such as novel medications

or medical devices) in real-life settings. Among the pitfalls, notably, I mentioned the

requirement of ad-hoc methodologies that allow accommodating the characteristics of

EHRs and avoid biases that would otherwise arise. Traditional statistical methods need

to be thoroughly studied and tested in the settings of EHRs to assess whether underlying

assumptions are met and whether their use is possible with EHR data.

Chapter 2 follows, where foundations of standard survival analysis and longitudinal data
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analysis are introduced. Fundamental relationships and terminology in survival analysis

are described, with additional details on non-parametric methods and regression models

(parametric, semi-parametric, and �exible parametric). Analogously, the notation for

longitudinal data is introduced alongside the most common regression-based methods for

the analysis of longitudinal data: marginal models estimated using generalised estimating

equations (GEE), and mixed-e�ects models.

In Chapter 3 I introduced two motivating examples that I used throughout the Thesis:

the PSP-CKD study and the VASST trial [48, 55]. The PSP-CKD study is a cluster

randomised controlled pragmatic trial comparing enhanced CKD care against routine

care in Northamptonshire, UK. PSP-CKD investigators concluded that the intervention

(i.e. enhanced CKD care) did not a�ect the rate of renal function decline, but it did lead to

signi�cant improvements in processes and quality of care [48]. Data extracted from the

PSP-CKD study has been used in the applied examples of Chapters 5 and 7, with results

closely matching those of the PSP-CKD investigators. Conversely, VASST is a randomised

controlled trial that compared vasopressin versus norepinephrine in patients with septic

shock; the results of the trial were negative, showing that administering vasopressin did

not reduce mortality rates [55]. One of the issues when analysing longitudinal data from

trials in the settings of intensive care medicine is drop-out that truncates the longitudinal

trajectories. Therefore, data extracted from VASST has been used in the applied example

of Chapter 6 to illustrate the use of joint modelling to account for non-random drop-out

in the analysis of longitudinal outcomes.

This Thesis broadly relies on Monte Carlo simulation methods. In Chapter 4, I

introduced and described newly developed open-source software in R to aid the analysis

of Monte Carlo simulation studies, the rsimsum package and the INTEREST Shiny app.

A manuscript on rsimsum has been published in the Journal of Open Source Software

[223], while a manuscript on INTEREST is currently under review in the Journal of

Data Science, Statistics, and Visualisation. rsimsum supports simulation studies with

a single or multiple estimands, with several methods being compared, and with any

number of data-generating mechanisms. All performance measures described in Chapter

4 are supported, and their Monte Carlo standard errors are computed and reported

by default. rsimsum also provides support for a variety of automated and opinionated

data-visualisation methods that enable quick explorations of results and that can be
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Figure 8.1: Rolling 7-days median of rsimsum downloads since its publication on CRAN, with
super-imposed linear trend

further customised by the user. Both software packages are freely available, and have

been presented at national and international conferences; rsimsum is also published on

the Comprehensive R Archive Network (CRAN), and it has been downloaded more

than 5,000 times since its availability with an increasing trend (Figures 8.1 and 8.2).

Furthermore, rsimsum and INTEREST �t well within the ADEMP structured approach

introduced by Morris, White, and Crowther [58] and also described in Chapter 4:

ADEMP argues that by carefully designing, describing, and reporting Monte Carlo

simulation studies clarity and reproducibility could be greatly improved. rsimsum

assists with the analysis of simulation studies, relaxing the requirement of ad-hoc (and

error-prone) code to compute all performance measures (and Monte Carlo errors) of

interest by automating the whole procedure. INTEREST supplements the reporting

and reproducibility of simulation studies by adding a layer of interactivity; this feature

is extremely important, especially in simulation studies with several methods and

simulated scenarios where dissemination of results is challenging at best. Chapter 4 also

described methodologies to simulate biologically plausible, complex survival data; such

methods are used extensively in Chapters 5 and 7.

In Chapter 5, I introduced multilevel survival data and described analysis methods that

can take into account the hierarchical structure. In particular, I described in Section 5.3
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Figure 8.2: Cumulative sum of rsimsum downloads since its publication on CRAN

methods that are commonly used to analyse recurrent events data (such as infections,

admissions to the hospital, etc.). Next, I introduced the frailty approach; I focussed on

this approach as it ties naturally with the joint modelling framework discussed in later

Chapters, and because it can easily accommodate di�erent clustering structures. I also

described how the frailty approach could be extended to accommodate multiple levels of

the hierarchical structure, such as patients nested within hospitals nested within regions.

One of the main challenges in regression modelling consists of choosing the correct

model speci�cation; otherwise, biases and/or ine�ciencies may arise. The topic of model

misspeci�cation in shared frailty survival models has been tackled by mostly focussing

on the distribution of the frailty: the literature on misspeci�cation of both the baseline

hazard and the distribution of the frailty is somewhat scarce. In Chapter 5, I designed and

conducted the most extensive simulation study (to the best of my knowledge) on the topic;

this study was published in Statistics in Medicine [93]. I studied misspeci�cation of the

baseline hazard, misspeci�cation of the frailty distribution, or both. 90 distinct simulation

scenarios were included, and several model formulations were explored: parametric,

semi-parametric, or �exible parametric baseline hazard functions (including penalised

approaches), and either Gamma or log-Normal frailty distributions. The results of these

simulations highlight the importance of properly modelling both the baseline hazard and

the frailty distribution, depending on the aims of the analysis. For instance, when the
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interest is on measures of relative risk, it is most important to properly model the baseline

hazard; regression coe�cients were con�rmed to be robust to misspeci�cation of the

frailty distribution, with a very marginal impact on relative risk estimates. Conversely,

measures of absolute risk (e.g. the loss in life expectancy) and measures of heterogeneity

(e.g. the estimated variance of the frailty) were a�ected by misspeci�cation of both the

baseline hazard and the frailty distribution. The advantages of using �exible parametric

models with a shared frailty term (as implemented in the R package rstpm2, for instance

[132]) resulted clear, given their overall robustness (e.g. to the number of degrees of

freedom used to model the baseline hazard) and the ease of extending standard model

formulations (e.g. with time-dependent e�ects). Semi-parametric models retain some of

the advantages of �exible parametric models when estimating measures of relative risk;

however, obtaining absolute risk estimates is noticeably easier with �exible parametric

models, aiding with the translation of relative risk measures to an absolute scale.

Chapter 6 introduces the topic of joint modelling of longitudinal and survival data. This

class of models is particularly interesting in the settings of EHRs, given that repeated

longitudinal measurements and time to event outcomes are often recorded in EHRs. I

introduced the standard joint model formulation and described the estimation procedure

(including computational challenges - some of which are shared with frailty models

as described in Section 5.4.2) and several possible association structures linking the

longitudinal and the survival components of the joint model. Joint longitudinal-survival

models have traditionally focussed on the survival sub-model; however, the main focus of

this Thesis was on the longitudinal component. When analysing longitudinal data, one of

the underlying assumptions is that the longitudinal outcome and drop-out from the study

(e.g. truncation of the longitudinal trajectory) are independent. This may not always be

the case with EHRs data: individuals with abnormal values of the longitudinal outcome

may be at higher risk of dropping out of the study, e.g. because of death. I described

this issue in more detail in Section 6.6. Joint models for longitudinal and survival data

can accommodate this scenario by jointly modelling the longitudinal outcome and the

drop-out process: the two sub-models account for each other in the analysis and yield

unbiased estimated coe�cients for the longitudinal trajectory. As an illustration, the

analysis of longitudinal organ failure (SOFA) scores from VASST - while accounting

for the fact that individuals with higher SOFA scores are at much higher risk of death -
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highlights how joint modelling could be a useful methodology to apply when drop-out

is believed to be non-random. The results of this application have been submitted for

publication in Critical Care Medicine, including a tutorial on the use of joint modelling

in the settings of intensive care medicine; the manuscript is currently under review.

Finally, in Chapter 7 I investigate the violation of another common assumption when

modelling longitudinal data, the assumption of independence between values of the

longitudinal outcome and the timing between measurements. Compared to the problem

of informative drop-out, the problem of informative observation times has received

considerably less attention in the current literature. Nevertheless, in the settings of

EHRs, this assumption is often violated: for instance, individuals with worse disease

status are likely to visit their doctor more often compared to healthy individuals. I

discuss the problem of informative observation in more detail in Section 7.2, describing

characteristics of the observation process and formalising the observation process using

counting process notation. Several methods have been proposed in the literature to

account for informative observation times, methods that can be broadly categorised in

methods based on inverse probability weighting and methods based on joint modelling.

However, their comparative performance is unclear: at the time of writing, I could only

�nd one simulation study in the literature, with results showing that completely ignoring

the observation process yielded the smallest bias [219]. In Chapter 7, I �rst formalised

a joint modelling approach that was previously proposed by Liu et al. [215] within

a multivariate mixed-e�ects modelling framework that easily allows incorporating

several extensions [216, 217]. The joint model assumes a mixed-e�ects model for

the longitudinal trajectory, and a frailty model for the observation process; the two

components are then linked via a shared random e�ect that captures the association

between the two processes. Notably, this joint model can be �t using readily available

statistical software. Then, I designed and conducted a Monte Carlo simulation study

that compared the aforementioned joint modelling approach, the approach based on

inverse probability weighting, the approach that completely ignores the observation

process, and two pragmatic approaches that had been proposed and based on adjusting

the standard mixed model for either the total or the cumulative number of observations

per individual. The results of my simulations show how the joint modelling approach

performed best, managing to estimate the coe�cients of the longitudinal model with
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the smallest bias while at the same time allowing to do inference on the observation

process. In fact, another advantage of the joint modelling approach is that it returns an

estimated value of the association between the observation process and the longitudinal

outcome. One of the most interesting results of my simulations in Chapter 7 is that

the joint model does not induce a spurious association when the two processes are

independent: thus, the joint modelling approach could be useful whenever it is not clear

whether the observation process is informative or not, e.g. as a sensitivity analysis. A

manuscript with the results of the work described in Chapter 7 has been published in

Statistica Neerlandica [201].

8.3 Limitations

The methodological developments introduced throughout this Thesis and summarised

in the previous Section present some limitations.

First, the development of the R package rsimsum and the INTEREST Shiny app (described

in Chapter 4) is not concluded. New functionalities are to be added, and both packages

could be improved in terms of computational speed, e�ciency, and robustness. Further

to that, it is not possible to exclude the presence of bugs that have not been detected yet.

The results of the Monte Carlo simulation study of Chapter 5 could be further generalised

by adding more data-generating scenarios: for instance, one could include more sample

size scenarios (in terms of individuals and clusters) and vary whether clusters are

balanced (in terms of subjects per cluster) or not. One could also explore more complex

model formulations (with multiple covariates), additional frailty distributions (such as

the positive stable and inverse Gaussian distribution, although I included the two most

commonly used frailty distributions in practice), and di�erent censoring mechanisms or

delayed entry. Nevertheless, the number of simulated scenarios (90 distinct scenarios)

and the variety of methods being compared yields - to the best of my knowledge -

the most extensive simulation study on the topic to date. Further to that, all methods

use maximum likelihood which returns negatively biased estimates of the variance

components with bias decreasing as the number of clusters increases. The restricted

maximum likelihood method could be used with a small number of clusters to obtain

unbiased estimates of the variance components [156]. The results are also highly
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dependent on the R implementation of each method: as such, they could vary if using a

di�erent statistical software package (e.g. Stata). Despite that, the packages that were

used are well established and commonly used in practice (Figure 8.3), and I applied

these methods as they are intended to be used i.e. without modifying convergence

criteria and/or starting values of the estimation procedure; more accurate results could

be obtained by requiring more stringent convergence criteria. Interestingly, though,

some of the methods compared with this simulation study have been implemented only

in R: the �exible parametric models with penalised splines (on either the log-hazard or

log-cumulative hazard scale), the Cox model with a log-normal frailty, and the �exible

parametric models with a Gamma frailty. This comparison would have not been possible

if using a di�erent statistical software package.

The applications of Chapters 5 and 6 relied on the traditional AIC and BIC information

criteria to select the model that �tted the data best. Vaida and Blanchard [142]

suggested the use of conditional AIC (cAIC) for model selection in linear mixed models,

demonstrating that the traditional AIC and its small sample correction are inappropriate

when the interest is on clusters; unfortunately, the cAIC is not routinely reported and

thus it was not possible to use this criterion. Further to that, in the joint modelling

settings, the AIC and BIC do not provide separate assessments of each component of

the joint model. Zhang et al. [197] developed an additive decomposition of AIC and BIC

that enables the assessment of the �t of each component of the joint model separately,

and in the settings of Chapter 6, using this decomposition would allow assessing the

�t of the longitudinal component (the outcome of interest) regardless of the survival

sub-model. Unfortunately, the methodology of Zhang et al. is not implemented in most

joint modelling software, with code developed using SAS software only and not publicly

available.

The Monte Carlo simulation study of Chapter 7 comparing methods for accommodating

the observation process in the analysis presents some limitations as well. For instance,

the treatment was assumed to be constant over time for simplicity; in real-life settings,

however, individuals are likely to be on and o� treatment, as deemed necessary. The

baseline hazard of the model for the observation process was assumed to follow a Weibull

distribution: this assumption could be relaxed by assuming any other fully parametric or

�exible formulation. The simulated scenarios of Chapter 7 also assumed that the drop-out
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Figure 8.3: Rolling 7-days median of downloads from CRAN for the packages included in the
simulation study on model misspeci�cation of shared frailty models during the last 12 months,
with super-imposed linear trend
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process was not informative (as described in Chapter 6); this assumption is unlikely to

hold in the settings of EHRs, especially for diseases with a high mortality rate where a

terminal event that truncates observation of the longitudinal process is likely correlated

with disease severity. I assumed all of the above for simplicity, and to focus on modelling

the observation process; however, the joint modelling framework described in Chapter 7

could easily be extended to accommodate the drop-out process. More details on future

work and extensions are included in Section 8.4.

Another assumption of the simulation study of Chapter 7 concerns the association

structure of the joint model; speci�cally, the joint model being investigated assumed that

the sub-models are linked through a shared random e�ect. Of course, several alternative

association structures could be explored. For instance, the association structure could

be reversed to include the association parameter  in the observation sub-model, or it

could depend on lagged values of the longitudinal outcome or of the exposure. More

biologically (and clinically) plausible association structures - such as those described in

Section 6.4 - could also be investigated.

All Monte Carlo simulation studies of this Thesis have been run following a fully factorial

design. Fully factorial designs for simulation studies a�ect generalisability of results, as

the number of simulated scenarios needs to be constrained to keep the computational

cost acceptable. Despite having simulated a large number of scenarios (especially in the

simulations of Chapter 5), incomplete designs and meta-modelling could be implemented

to further increase the external validity and the ability to generalise the results. These

approaches are also described in more detail when discussing future work and extensions

of this Thesis in Section 8.4.

Finally, the main limitation of the methods studied throughout this Thesis consists of the

computational complexity required to �t them. Shared frailty models (as discussed in

Chapter 5) require numerical integration when assuming a numerically intractable frailty

distribution, while joint longitudinal-survival models require di�erent layers of numerical

integration (for instance, when integrating over the random e�ects). In particular, the

complexity of the numerical integration required to �t joint longitudinal-survival models

grows exponentially as the number of random e�ects and/or outcomes included in the

model increases, as discussed in Section 6.5. This issue is further aggravated by the
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sample size: the thousands (if not millions) of measurements commonly available in the

settings of EHRs cause the computational burden to rapidly grow, even when applying

traditional statistical methods. Methodological and computational improvements need to

be sought to spread the use of more advanced methods in practice. For instance, the use of

e�cient sampling strategies (e.g. by exploiting the case-cohort study design, as in Baart

et al. [224]) could be instrumental in reducing the amount of data required for a given

analysis, and the development of more e�cient algorithms and estimation procedures

could yield additional computational bene�ts. Ultimately, these improvements would

greatly contribute to spreading the adoption and use of advanced statistical methods that

can accommodate the complexities of EHRs.

8.4 Future Work

The research presented throughout this Thesis focusses mainly on the assessment and

application of multilevel modelling techniques in the settings of EHRs. However, there

is still much scope for further work as described in the next few Sections.

8.4.1 Improvements of rsimsum and INTEREST

Although rsimsum and INTEREST are fully functional in their current state, several future

developments are being planned. First and foremost, both packages could be made more

robust and computationally e�cient. rsimsum requires a few seconds at most to analyse

Monte Carlo simulation studies with hundreds of scenarios and thousands of replications

per scenario, but every improvement in terms of computational speed and memory usage

is always welcome. Then, I aim to include support for multiple estimands at once in

INTEREST as currently supported by rsimsum via the multisimsum function. I also aim to

improve the �exibility of rsimsum and INTEREST in terms of customisation (of tables and

plots), e.g. by displaying the raw R code used to generate the plots behind the scenes;

that code could be then used by the user to fully re-build each plot and further modify

it if needed. More �exible methods to produce LATEX tables could also be implemented,

allowing users to de�ne the structure of a table and customise it as needed. Finally,

additional interactive features could be added to the app via HTML widgets, D3 [84], or

other approaches; several R packages allow incorporating interactive graphs into Shiny
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apps (e.g. htmlwidgets, plotly, r2d3 [225–227]).

8.4.2 Meta-modelling Results of Monte Carlo Simulation Studies

Much of the work of this Thesis has been conducted by utilising Monte Carlo simulation

methods. Given the current computational possibilities (e.g. the increasing availability

of cluster computing servers) it is tempting to simulate an ever-growing number of

scenarios by varying several data-generating mechanisms (DGMs) at once. For instance,

in the simulation study of Chapter 5 90 distinct DGMs were simulated; consequently, 22

models were �tted to each DGM. This yielded 1,980 summary data points that need to

be purposefully presented to the reader to communicate the full results of the simulation

study.

Rücker and Schwarzer [73] introduced the nested loop plot as a data visualisation that

could be used to present several data-generating scenarios at once (e.g. 768 in their

motivating example) by ordering all scenarios and then arranging them sequentially on

the horizontal axis of a plot, with the performance measure (or estimate) of interest on

the vertical axis. However, despite the nested loop plot being a promising alternative,

several shortcomings still persist: most importantly, it is cumbersome to accommodate

the performance measures of several methods in a single nested loop plot, and there is no

obvious way to include uncertainty (in the form of Monte Carlo standard errors) within

the data visualisation.

Skrondal [228] proposed to attack the conventional wisdom by specifying a meta-model

when analysing the output of a Monte Carlo simulation study, by exploiting incomplete

factorial designs, and by using variance reduction techniques. These techniques

jointly combined could allow, according to Skrondal, investigating an increased

number of experimental scenarios and improving external validity at the cost of the

conventionally excessive precision. However, despite being introduced almost 20 years

ago, this approach had not been widely adopted (if at all) in practice; interestingly, a

similar approach has been used in the settings of health technology assessment (HTA)

e.g. using Gaussian process regression and generalised additive models [229, 230]. The

trade-o� between precision and external validity remains a fundamental topic in Monte

Carlo simulation studies: increased computational capabilities allow investigating an
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ever-growing number of scenarios (and with a su�cient number of replications to

successfully control the Monte Carlo error). The downside of this brute force approach

consists of having to deal with results that are cumbersome to summarise, describe,

and disseminate (as in the example that motivated the nested loop plot of Rücker

and Schwarzer). Given the increasing popularity of simulation studies (as outlined

in Chapter 4 and Figure 4.1 speci�cally), the meta-modelling approach of Skrondal

could, therefore, be revised and made more accessible to researchers making use of

Monte Carlo simulation studies. Practically speaking, this would require describing

incomplete fractional design with applied examples, designing an example simulation

study using both approaches, and comparing the conclusions that one would draw from

such experiments. Further to that and most importantly, the bene�ts and limitations of

each approach need to be thoroughly discussed and contextualised.

8.4.3 Extensions of the Joint Modelling Approach for Longitudinal

Electronic Health Records

The joint modelling approach for analysing longitudinal data in the settings of EHRs, as

described in Chapter 7, could be further extended. The general framework that I illustrate

here enables the analysis of longitudinal EHRs, potentially multivariate and potentially

of di�erent types. Several layers of nesting are supported, e.g. patients nested within

hospitals nested within regions, and follows from the extended mixed-e�ects modelling

framework of Crowther [216].

The �rst, natural extension consists of modelling both the observation and the

drop-out process. As discussed in Chapter 6, modelling the drop-out process allows

accommodating informative drop-out processes in the analysis; this is particularly

relevant in the settings of EHRs, as individuals with worse recorded values of the

longitudinal biomarker are likely at higher risk of dropping out, e.g. because of death.

The drop-out process could be modelled using a parametric or �exible parametric

survival model, accommodating a wide variety of settings. The resulting joint model,

describing the sub-models with a simpli�ed notation for illustration purposes, follows
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in Equation (8.1):
⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

y = XY�y + ZYby + �y

ℎ(t) = ℎ0(t) exp(Xℎ +Wℎ(t |�, b)�ℎ)

r(t) = r0(t) exp(Xr� +Wr (t |�, b)�r )

(8.1)

where y is the longitudinal outcome, ℎ(t) is the drop-out process, r(t) is the observation

process, {Xy , Xℎ, Xr} and Zy are (potentially overlapping) covariates - �xed and random

e�ects, respectively. Wℎ(⋅),Wr (⋅) are any (possibly multivariate) function of the random

e�ects b describing the association between the longitudinal outcome and the drop-out

and observation processes.

The next extension of the joint model from Equation (8.1) consist of jointly modelling a

second longitudinal outcome, as in Equation (8.2):

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1 = Xy1�y1 + Zy1by1 + �y1

y2 = Xy2�y2 + Zy2by2 + �y2

ℎ(t) = ℎ0(t) exp(Xℎ +Wℎ(t |�, b)�ℎ)

r(t) = r0(t) exp(Xr� +Wr (t |�, b)�r )

(8.2)

where the longitudinal outcomes y1 and y2 can be thought to originate from a multivariate

distribution (e.g. bivariate normal), and the residual errors �yi are allowed to be correlated.

The joint model of Equation (8.2) is also assuming that the two longitudinal outcomes

share the same drop-out process ℎ(t) and observation process r(t). This assumption could

be further relaxed, e.g. by allowing distinct observation processes (Equation (8.3)):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1 = Xy1�y1 + Zy1by1 + �y1

y2 = Xy2�y2 + Zy2by2 + �y2

ℎ(t) = ℎ0(t) exp(Xℎ +Wℎ(t |�, b)�ℎ)

r1(t) = r0,1(t) exp(Xr1� +Wr1(t |�y1 , by1)�r1)

r2(t) = r0,2(t) exp(Xr2� +Wr2(t |�y2 , by2)�r2)

(8.3)

In this settings, there are two distinct ri(t) sub-models for each ith observation process
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relative to each longitudinal outcome yi . The model structure for each observation

process can therefore vary, e.g. di�erent subsets of covariates could be included in each

sub-model. Analogously, the joint model of Equation (8.3) can be modi�ed to allow

outcome-speci�c drop-out processes, e.g. by including two sub-models ℎ1(t) and ℎ2(t)

instead of ℎ(t). Finally, any number of longitudinal outcomes could be included in

the joint model, with sub-models for the drop-out and observation process that are

outcome-speci�c (or not); the correlation between the various sub-models is governed

by the association structure W , with the possibility of selecting outcome-speci�c

formulations (e.g. any combination of the association structures previously described in

Section 6.4).

Extensions of the joint modelling approach of Chapter 7 that I introduced and described

so far focussed on extending the number of outcomes that could be included in the

joint model, allowing (potentially) outcome-speci�c sub-models for the drop-out and

observation processes. The next obvious extension consists of allowing more general

formulations in the time to event sub-models: for instance, fully parametric and most

importantly �exible parametric formulations could be selected to model the baseline

hazard functions ℎ0(t) and r0(t).

Another extension consists of modelling the within-subject variability of longitudinal

biomarkers (e.g. blood pressure) within the joint model [231, 232]: the approaches

currently published in the literature disregard the observation and the drop-out

processes, which could lead to biased results (as discussed in Chapters 6 and 7). By

using the joint modelling framework described in Chapter 7 all of the above could be

accommodated within the analysis.

The joint modelling approach could also be used to plan additional longitudinal

measurements using personalised screening intervals [233, 234].

Finally, missing data in the joint modelling framework is an issue closely related to

that of modelling the drop-out process; in fact, as described in Chapter 6, drop-out

corresponds to a speci�c missingness pattern. There is considerable research interest

on the topic (e.g. Moreno-Betancur et al. [235]), especially in the settings of EHRs, and

further investigations are warranted.

A fundamental step of this future work requires the careful de�nition of the joint
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modelling framework within which all the above-mentioned extension are formulated

[216]. Next, the more complex joint models need to be fully and thoroughly compared

with more simple approaches (such as mixed-e�ects models that completely ignore the

drop-out and the observation process), e.g. via Monte Carlo simulation; models that

should be included in this comparison are also the joint models that disregard either

the drop-out or the observation process. This comparison is of primary interest, as

it is important to understand in practice the consequences of failing to account for

informative drop-out, informative observation times, or both in the analysis; it is also

important to understand the robustness of this joint modelling framework to model

misspeci�cation and modelling assumptions.

Further to that, the joint modelling approach needs to be compared with established

approaches such as the methods based on inverse probability weighting described by

Hernán et al. [203]. In brief, the inverse probability weighting approach consists of

estimating weights for the informative drop-out process and weights for the observation

process, obtaining overall weights by multiplying them together and using the overall

weights in the analysis of the longitudinal outcome of interest. This approach did not

perform well in the settings described in Chapter 7; hence, it would be interesting to see

if its performance improves in more complex settings.

Nevertheless, to the best of my knowledge, there is no other comprehensive framework

that would allow incorporating the drop-out process and the observation process directly

within the analysis of (potentially multivariate) longitudinal data, allowing to �exibly

de�ne the association structure between the outcomes and the formulation of each

sub-model. Most importantly, the joint models described in this Section can be �tted

using readily available statistical software [217, 218], despite the heavy computational

requirements (especially when the number of random e�ects increases). Alternative

approaches to Gaussian quadrature (e.g. Monte Carlo integration) need to be evaluated

in these settings to assess potential computational bene�ts.

Finally, applications using real-world data are necessary to illustrate the joint modelling

approach in practice and disseminate its use.
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8.4.4 Simulation of Realistic Longitudinal Electronic Health Records Data

The future developments highlighted as necessary in the previous Section relies on

being able to simulate longitudinal outcomes that realistically mimic the settings

of EHRs. This is a non-trivial task, as there is no established approach currently

published in the literature - especially when it comes to simulating clinically plausible

observation processes. Interestingly, the drop-out process could be simulated using

the approaches described by Crowther and Lambert and based on an underlying joint

longitudinal-survival model [68].

Neuhaus et al. [219] highlighted features of the observation process that clinicians-researchers

identi�ed as relevant when distinguishing between informative and non-informative

observation processes in the settings of EHRs:

1. Many visits are unplanned, and correlated with the health status of a patient

(e.g. feeling ill), with this information typically not available to data analysts;

2. Visits are missed, commonly for reasons related to their condition. This

information is not available to data analysts either;

3. The timing between visits is highly irregular, and seemingly not following any

stochastic process easily identi�able;

4. Visiting patterns are often clustered, e.g. individuals with a given disease and

treatment pattern seem to follow a more homogeneous visiting schedule (between

individuals).

Consequently, they introduced an approach for simulating longitudinal observations with

an informative (or not) observation process that can accommodate all the characteristics

outlined above. Their approach begins by generating a grid of possible observations for

a given number of study subjects, e.g. weekly measurements for �ve years of follow-up;

the true longitudinal trajectories are then simulated using e.g. a mixed-e�ects model.

Then, they de�ne a model for the probability of each observation being observed:

logit[P (Rij = 1|⋅)] = f (⋅), (8.4)

where Rij is an indicator variable that takes the value one when the ith observation for

the jth individual from the grid of possible observations is observed, zero otherwise. The
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probability of being observed then depends on any characteristic (⋅) of the true underlying

longitudinal process: as an example, it could include current values of the longitudinal

trajectory, lagged values, or a function of them (e.g. a rolling mean or the rate of change).

The parameters of f (⋅) govern the strength and the direction of the association between

characteristics of the longitudinal outcome and the observation process.

Despite allowing a large amount of �exibility when simulating longitudinal data with an

informative observation process, the approach of Neuhaus et al. requires pre-specifying

a grid of possible observation times (and values) and therefore yields an observation

process that is de�ned (and simulated) in discrete time. Conversely, in the simulation

study of Chapter 7, I simulated the observation process in continuous time via a recurrent

events survival model that modelled the within-individual correlation via a frailty

term. Compared to the approach of Neuhaus et al., the approach of the simulations of

Chapter 7 did not require the pre-speci�cation of a grid of possible observation times

and still retained �exibility in de�ning the association structure. Most interestingly,

the approach used in Chapter 7 could be traced to a well-de�ned joint model (i.e. the

true data-generating model), yielding the additional bene�t of being able to �t the true

data-generating model to the simulated data.

To allow the methods comparison of Section 8.4.3, a �exible framework that builds

on the approaches outlined so far needs to be developed. This framework needs

to allow simulating (potentially multivariate) longitudinal outcomes with a �exible

speci�cation of drop-out and observation processes and association structures. Ideally,

the drop-out and observation processes could depend on the characteristic of the

longitudinal outcomes (and/or a function of them), as in the approach of Neuhaus

et al.; the implications of simulating the observation process in discrete time versus

continuous time should be assessed as well (if any). Finally - and most importantly -, the

simulation framework should be implemented in readily available software packages to

enable other researchers to use the methodology with ease.

8.5 Final Conclusions

Electronic health records (EHRs) are being used increasingly often for clinical and

epidemiological research, providing the opportunity to answer innovative and more
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detailed clinical questions. Despite that, new challenges arise - especially when applying

traditional statistical methods that may see their assumptions violated in the settings of

EHRs. In this Thesis, I explored methods that can be used to accommodate the intrinsic

hierarchical structure of EHRs; in particular, I investigated multilevel survival models

and joint models for survival and longitudinal data (where the clustering unit is the

individual). The former methods can be used to model the within-cluster correlation,

while the latter can be used to account for a variety of violations in the assumptions

of traditional mixed-e�ects models for longitudinal data, or jointly accommodate

longitudinal and time to event outcomes. In particular, the joint modelling approach can

be used to jointly model the longitudinal outcome of interest and the drop-out process,

the observation process, or both. The use of these methods could help overcome the

limitations of traditional methods - especially in the settings of EHRs - and avoid biases

that would otherwise arise.

Acknowledging the need for advanced statistical methods to tackle more complex

applied settings and illustrating their use with practical examples are fundamental steps,

empowering epidemiologists, statisticians, and applied researchers alike to utilise EHRs

to their full potential and answer the above-mentioned innovative clinical questions.

Ultimately, this would lead to an increased understanding of disease conditions and

(new or established) treatments for the highest bene�t of patients and individuals within

a given health-care system.
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A Research Paper: rsimsum

The manuscript on the R package rsimsum, further described in Chapter 4, has been

published in the Journal of Open Source Software and is available at the following DOI:

10.21105/joss.00739. The manuscript is also included in this Appendix.

AG developed the software package and wrote the manuscript. Dr. LeBeau and Dr. Leeper

contributed to improving the manuscript and the software through the peer review

process for the Journal of Open Source Software, which is openly available online (https:

//github.com/openjournals/joss-reviews/issues/739).
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Summary

Monte Carlo simulation studies are numerical methods for conducting computer experi-
ments based on generating pseudo-random observations from a known truth. Monte Carlo
simulation studies - referred from now on as simulation studies for conciseness - represent
a powerful tool and have several practical applications in statistical and biostatistical
research: among others, evaluating new or existing statistical methods, comparing them,
assessing the impact of modelling assumption violations, and helping with the under-
standing of statistical concepts. Establishing properties of current methods is necessary
to allow using them with confidence; however, sometimes properties are very hard (if not
impossible) to derive analytically: large sample approximation is possible, but evaluating
the goodness of the approximation to finite samples is required. Approximations often
require assumptions as well: what are the consequences of violating such assumptions?
Simulation studies can help answer these questions. They can also help answer additional
questions such as: is an estimator biased in a finite sample? Do confidence intervals
for a given parameter achieve the desired nominal level of coverage? How does a newly
developed method compare to an established one? What is the power to detect a desired
effect size under complex experimental settings and analysis methods?
The increased availability of powerful computational tools (both personal and high-
performance cluster computers), the perceived efficacy, and the emergence of specialist
courses and tutorial papers on simulation studies (Morris, White, and Crowther 2017)
contributed to the rise of simulation studies in the current literature. Despite that,
simulation studies are often poorly designed, analysed, and reported (Morris, White,
and Crowther 2017): information on data-generating mechanisms (DGMs), number of
repetitions, software, estimands are often lacking or poorly reported, making critical
appraisal and replication of published studies a difficult task. Another aspect of
simulation studies that is often poorly reported or not reported at all is the Monte
Carlo error of summary statistics, defined as the standard deviation of the estimated
quantity over repeated simulation studies. Monte Carlo errors play an important role in
understanding the role of chance in results of simulation studies and have been showed
to be severely underreported (Koehler, Brown, and Haneuse 2009).
rsimsum is an R package that can compute summary statistics from simulation studies.
rsimsum is modelled upon a similar package available in Stata, the user-written command
simsum (White 2010), but - to the best of our knowledge - there is no similar package in
R. The aim of rsimsum is to help to report simulation studies, including understanding
the role of chance in results of simulation studies: Monte Carlo standard errors and
confidence intervals based on them are computed and presented to the user by default.
rsimsum can compute a wide variety of summary statistics: bias, empirical and model-
based standard errors, relative precision, relative error in model standard error, mean
squared error, coverage, bias. Further details on each summary statistic are presented
elsewhere (White 2010; Morris, White, and Crowther 2017).

Gasparini, (2018). rsimsum: Summarise results from Monte Carlo simulation studies. Journal of Open Source Software, 3(26), 739.
https://doi.org/10.21105/joss.00739
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The main function of rsimsum is called simsum and can handle simulation studies with
a single estimand of interest at a time. Missing values are excluded by default, and it is
possible to define boundary values to drop estimated values or standard errors exceeding
such limits (e.g. standardised values larger than 10). It is possible to define a variable
representing methods compared with the simulation study, and it is possible to define
factors that vary between the different simulated scenarios (data-generating mechanisms,
DGMs). However, methods and DGMs are not strictly required: in that case, a simulation
study with a single scenario and a single method is assumed. Finally, rsimsum provides a
function named multisimsum that allows summarising simulation studies with multiple
estimands as well.
An important step of reporting a simulation study consists in visualising the results;
therefore, rsimsum exploits the R package ggplot2 (Wickham 2009) to produce a portfolio
of opinionated data visualisations for quick exploration of results, inferring colours and
facetting by data-generating mechanisms. rsimsum includes methods to produce (1) plots
of summary statistics with confidence intervals based on Monte Carlo standard errors
(forest plots, bar plots, and lolly plots), (2) zip plots to graphically visualise coverage by
directly plotting confidence intervals (Morris, White, and Crowther 2017), and (3) heat
plots. The latter is a visualisation type that has not been traditionally used to present
results of simulation studies, and consists in a mosaic plot where the factor on the x-axis
is the methods compared with the current simulation study and the factor on the y-axis
is one of the data-generating factors, as selected by the user: see for instance Figure 1,
which can be obtained via a single function call with rsimsum. Each tile of the mosaic
plot is coloured according to the value of the summary statistic of interest, with a red
colour representing values above the target value and a blue colour representing values
below the target.

Figure 1: example of heat plot that can be obtained with rsimsum via a single function
call. The example data comes from a simulation study on model misspecification in
survival models, and it is bundled with rsimsum (see help("relhaz", package =
"rsimsum")).
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B Research Paper: INTEREST: INteractive Tool for

Exploring REsults from Simulation sTudies

The manuscript on the interactive web app INTEREST, further described in Chapter 4, has

been submitted for publication in the Journal of Data Science, Statistics, and Visualisation

and it is currently under review. A pre-print is also available from arXiv (https://arxiv.

org/abs/1909.03813), and is included in this Appendix.

All authors discussed the idea leading to the inception of INTEREST. AG led the

development of INTEREST, with constructive feedback from all co-authors. AG drafted

the manuscript, with input and feedback from all co-authors. TP and MJC wrote the

Stata code for the example simulation study used as a case study. All authors read and

approved the �nal manuscript.
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2 INTEREST

INTEREST: INteractive Tool for Exploring
REsults from Simulation sTudies

Alessandro Gasparini
University of Leicester

Tim P. Morris
MRC Clinical Trials Unit

at UCL

Michael J. Crowther
University of Leicester

Abstract

Simulation studies allow us to explore the properties of statistical methods.
They provide a powerful tool with a multiplicity of aims; among others: evalu-
ating and comparing new or existing statistical methods, assessing violations of
modelling assumptions, helping with the understanding of statistical concepts,
and supporting the design of clinical trials. The increased availability of powerful
computational tools and usable software has contributed to the rise of simulation
studies in the current literature. However, simulation studies involve increasingly
complex designs, making it difficult to provide all relevant results clearly. Dis-
semination of results plays a focal role in simulation studies: it can drive applied
analysts to use methods that have been shown to perform well in their settings,
guide researchers to develop new methods in a promising direction, and provide
insights into less established methods. It is crucial that we can digest relevant
results of simulation studies. Therefore, we developed INTEREST: an INter-
active Tool for Exploring REsults from Simulation sTudies. The tool has been
developed using the Shiny framework in R and is available as a web app or as a
standalone package. It requires uploading a tidy format dataset with the results
of a simulation study in R, Stata, SAS, SPSS, or comma-separated format. A
variety of performance measures are estimated automatically along with Monte
Carlo standard errors; results and performance summaries are displayed both
in tabular and graphical fashion, with a wide variety of available plots. Conse-
quently, the reader can focus on simulation parameters and estimands of most
interest. In conclusion, INTEREST can facilitate the investigation of results from
simulation studies and supplement the reporting of results, allowing researchers
to share detailed results from their simulations and readers to explore them freely.

Keywords: Simulation study, Monte Carlo, Visualisation, Reporting, R, Shiny, Repli-
cability.
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1. Background
Monte Carlo simulation studies are computer experiments based on generating pseudo-
random observations from a known truth. Statisticians usually mean Monte Carlo
simulation study when they say Simulation study; throughout this article, we will just
use simulation study but this encapsulates Monte Carlo simulation studies. Simulation
studies have several applications and represent an invaluable tool for statistical research
nowadays: in statistics, establishing properties of current methods is key to allow them
to be used – or not – with confidence. Sometimes it is not possible to derive exact
analytical properties; for example, a large sample approximation may be possible, but
evaluating the approximation in finite samples is required. Approximations often re-
quire assumptions as well: what are the consequences of violating such assumptions?
Monte Carlo simulation studies come to the rescue and can help to answer these ques-
tions. They also can help answer questions such as: is an estimator biased in a finite
sample? What are the consequences of model misspecification? Do confidence intervals
for a given parameter achieve the advertised/nominal level of coverage? How does a
newly developed method compare to an established one? What is the power to detect
a desired effect size under complex experimental settings and analysis methods?
Simulation studies are being used increasingly in a wide variety of settings. For in-
stance, searching on the database of peer-reviewed research literature Scopus (https://
www.scopus.com) with the query string TITLE-ABS-KEY ("simulation study") AND
SUBJAREA (math) yields more than 25000 results with a 25-fold increase during the
last 30 years, from 111 documents in 1988 to 2792 in 2018 (Figure 1). The increased
availability of powerful computational tools and ready-to-use software to researchers
surely contributed to the rise of simulation studies in the current literature.

Figure 1: Trend in published documents on simulation studies from 1960 onwards.
The number of documents was identified on Scopus via the search key TITLE-ABS-KEY
("simulation study") AND SUBJAREA (math), and the number of documents identi-
fied in 2018 is labelled on the plot.
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Despite the popularity of simulation studies, they are often poorly designed, analysed,
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and reported. Morris et al. reviewed 100 research articles published in Volume 34
of Statistics in Medicine (2015) with at least one simulation study and found that
information on data-generating mechanisms (DGMs), number of repetitions, software,
and estimands were often lacking or poorly reported, making critical appraise and
replication of published studies a difficult task (Morris et al. 2019) . Another aspect of
simulation studies that is often poorly reported or not reported at all is the Monte Carlo
error of estimated performance measures, defined as the standard error of estimated
performance, owing to the fact that a finite number of repetitions are used and so
performance is estimated with uncertainty. Monte Carlo errors play an important role
in understanding the role of chance in the results of simulation studies and have been
showed to be severely underreported (Koehler et al. 2009).
The possibility of independently verifying results from scientific studies is a fundamental
aspect of science (Laine et al. 2007); as a consequence, several reporting guidelines have
emerged under the banner of the EQUATORNetwork (http://www.equator-network.
org) (Schulz et al. 2010; von Elm et al. 2007). Despite similar calls for harmonised re-
porting to allow for greater reproducibility in the area of computation science (e.g.
Peng (Peng 2011)) and several articles advocating for more rigour in specific aspects
of simulation studies (Hoaglin and Andrews 1975; Hauck and Anderson 1984; Díaz-
Emparanza 2002; Burton et al. 2006; White 2010; Smith and Marshall 2011), design
and reporting guidelines for simulation studies are lacking; Morris et al. introduced the
ADEMP framework (Aims, Data-generating mechanisms, Estimands, Methods, Per-
formance measures) aiming to fill precisely that gap. In the Reporting section they
compared the several ways of reporting results that they observed in their reviews, in-
cluding results in text for small simulation studies, tabulating and plotting results, and
even the nested-loop plot proposed by Rücker and Schwarzer for fully-factorial simu-
lation studies with many data-generating mechanisms (Rücker and Schwarzer 2014).
They concluded by arguing that there is no correct way to present results, but we en-
courage careful thought to facilitate readability, considering the comparisons that need
to be made.
As outlined in Spiegelhalter et al., there is little experimental evidence on how differ-
ent types of visualisations are perceived (Spiegelhalter et al. 2011); despite that, they
highlight the ease of improving understanding via interactive visualisations that can
be adjusted by the user to best fit specific requirements. The recent advent of tools
such as Data-Driven Documents (D3, or D3.js) (Bostock et al. 2011) and Shiny (Chang
et al. 2019) has further facilitated the development of interactive visualisations.
The increased availability of powerful computational tools has not only contributed
to a rise in the popularity of simulation studies, it has also allowed researchers to
simulate an ever-growing number of data-generating mechanisms and include several
estimands and methods to compare: up to 4.2 × 1010, 32, and 33, respectively, in the
aforementioned review (Morris et al. 2019). With a large number of data-generating
mechanisms, estimands, or methods, analysing and reporting the results of a simulation
study becomes cumbersome: what results shall we focus on so as not to bewilder
readers? Which estimands and methods should we include in our tables and plots?
How should we plot or tabulate several data-generating mechanisms at once?
In an attempt to address these questions, we developed INTEREST, an INteractive
Tool for Exploring REsults from Simulation sTudies. INTEREST is a browser-based
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interactive tool, and it requires first uploading a dataset with results from a simulation
study; then, it estimates performance measures and it displays a variety of tables
and plots automatically. The user can focus on specific data-generating mechanisms,
estimands, and methods: tables and plots are updated automatically. This article will
introduce the implementation details of INTEREST in the Implementation section and
the main features in the Results and discussion section, where we will further discuss
its relevance. We also present a case study to motivate the use of INTEREST and
illustrate its use in practice. Finally, we conclude the manuscript with some ending
remarks in the Conclusions section.

2. Implementation
INTEREST was developed using the free statistical software R (R Core Team 2019) and
the R package Shiny (Chang et al. 2019). Shiny is an R package (and framework) that
allows building interactive web apps straight from within R: the resulting applications
can be hosted online, embedded in reports and dashboards, or just run as standalone
apps.
The front-end of INTEREST has been built using the shinydashboard package (Chang
and Borges Ribeiro 2018); shinydashboard is based upon AdminLTE (https://adminlte.
io/), an open-source admin control panel built on top of the Bootstrap framework (Ver-
sion 3.x) and released under the MIT license.
The back-end functionality of INTEREST is published as a standalone R package
named rsimsum for easier long-term maintainability (Gasparini 2018); rsimsum is freely
available on the Comprehensive R Archive Network (CRAN) under the GNU General
Public License Version 3 (https://www.gnu.org/licenses/gpl-3.0).
INTEREST is available as an online application and as a standalone version for offline
use. The online version is hosted at https://interest.shinyapps.io/interest/,
and can be accessed via any web browser on any device (desktop computers, laptops,
tablets, smartphones, etc.). The standalone offline version can be obtained from GitHub
(https://github.com/ellessenne/interest) and can be run on any desktop com-
puter and laptop with a local instance of R; if required, R can be downloaded for free
from the website of the R project (R Core Team 2019). INTEREST (as rsimsum) is
published under the GNU General Public License Version 3.

3. Results and discussion
The main interface of INTEREST is presented in Figure 2. The interface is composed
of a main area on the right and a navigation bar on the left; the navigation bar includes
sub-menus for customising plots or modifying the default behaviour of INTEREST. We
now introduce and describe the functionality of the application.

3.1. Data
The use of INTEREST starts by providing a tidy dataset (also known as long format,
with variables in columns and observations in rows (Wickham 2014); an example of
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6 INTEREST

Figure 2: Homepage of INTEREST. On the left, there is a navigation bar with sub-
menus useful to tune the default behaviour of the app. On the right, the main window
of INTEREST.
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Table 1: Example of dataset in tidy format, with each row identifying a replication for
each combination of data-generating me table directly exported from INTEREST, case
study DGM 2: true Weibull baseline hazard function.

Replication DGM Method Estimate
1 1 1 θ̂1,1,1

2 1 1 θ̂2,1,1

3 1 1 θ̂3,1,1

1 2 1 θ̂1,2,1

2 2 1 θ̂2,2,1

3 2 1 θ̂3,2,1

1 1 2 θ̂1,1,2

2 1 2 θ̂2,1,2

3 1 2 θ̂3,1,2

1 2 2 θ̂1,2,2

2 2 2 θ̂2,2,2

3 2 2 θ̂3,2,2
... ... ... ...

tidy data is included in Table 1) with results from a simulation study via the Data tab
from the side menu. A dataset can be provided to INTEREST in three different ways:

1. The user can upload a dataset. The uploaded file can be a comma-separated
file (.csv), a Stata dataset (version 8-15, .dta), an SPSS dataset (.sav), a SAS
dataset (.sas7bdat), or an R serialised object (.rds); the format will be inferred
automatically from the extension of the uploaded file, and the auto-detection is
case-insensitive. It is also possible to upload compressed files (ending in .gz,
.bz2, .xz, or .zip) that are automatically decompressed;

2. The user can provide a URL link to a dataset hosted elsewhere. All considerations
relative to the file format from point (1) are also valid here;

3. Finally, the user can paste a dataset (e.g. from Microsoft Excel) in a text box.
The pasted data is assumed to be tab-separated.

Once a dataset has been uploaded via one of the three methods outlined, the user
will have to define the variables required by INTEREST and some optional variables,
depending on the structure of the input dataset. The names of each column (i.e.
variable) from the uploaded dataset automatically populate a set of select-list inputs
to assist the user. A variable defining a point estimate from the simulation study and
a variable representing the standard error of such estimates are required, and the user
has to define the true value of the estimand of interest as well. Additionally, a user
can define a variable representing methods being compared with the current simulation
study (and choose the comparator), and one or more variables defining data-generating
mechanisms (DGMs, e.g. sample size, true correlation, true baseline hazard function
for survival models, etc.).
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The View uploaded data side tab in INTEREST displays the dataset uploaded by the
user using the R package DT, an R interface to the DataTables plug-in for jQuery (Xie
et al. 2019). The resulting table is interactive and can be sorted and filtered by the user.
It is good practice to verify that the uploaded dataset is as expected before continuing
with the analysis and any visual exploration.

3.2. Missing data
INTEREST includes a section for exploring missingness of estimates and/or standard
errors from each repetition of a simulation study, which may occur, for example, due
to non-convergence of some repetitions. Missing values need to be carefully explored
and handled at the initial stage of any analysis. Missingness may originate as a con-
sequence of software failures: if so, the code could (or should) be made more robust
to ensure fewer or no failures. Conversely, missing data may arise as a consequence
of characteristics of the simulated data, yielding to non-convergence of the estimation
procedures. In other words, missing values may not be missing completely at random.
A discussion on the interpretation of missing values can be found elsewhere (White
et al. 2011; Morris et al. 2019).
The missing data functionality is based on the R package naniar (Tierney et al. 2019),
and can be accessed via the Missing data tab. It comprises visual and tabular sum-
maries; missing data visualisations available in INTEREST are the following:

• Bar plots of number (or proportion) of missing values by method and data-
generating mechanism (if defined). Number and proportion of missing values
are produced for each variable included in the data uploaded to INTEREST;

• A plot to visualise the amount of missing data in the whole dataset;

• A scatter plot with missing status depicted with different colours; to be able to
plot missing values, they are replaced with values 10% lower than the minimum
value in that variable. This plot allows identifying trends and patterns between
variables in missing values (e.g. all estimates with a very large standard error
have a missing point estimate);

• A heat plot with methods on the horizontal axis and the data-generating mech-
anisms on the vertical axis, with the colour fill representing the percentage of
missingness in each tile.

Each plot can be further customised and exported (e.g. for use in slides and reports):
more details in the Plots section below. Finally, INTEREST computes and outputs
a table with the number, proportion, and the cumulative number of missing values
per variable, stratifying by method and data-generating mechanisms; the table can be
easily exported to LATEX format for further use (via the R package xtable (Dahl et al.
2019)).

3.3. Performance measures
INTEREST estimates performance measures automatically as soon as the user defines
the required variables via the Data tab. Supported performance measures are presented
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Table 2: Overview of performance measures estimated by INTEREST.

Performance measure Description
Bias Deviation between estimate and the

true value
Empirical standard error Log-run standard deviation of the esti-

mator
Relative precision against a reference Precision of a method B compared to a

reference method A
Mean squared error The sum of squared bias and variance

of the estimator
Model standard error Average estimated standard error

Coverage Probability that a confidence interval
contains the true value

Bias-eliminated coverage Coverage after removing bias, i.e. with
confidence intervals centered on the
estimated value rather than the true
value of the estimand

Power Power of a significance test

in Table 2, and discussed in more detail elsewhere (Burton et al. 2006; White 2010;
Morris et al. 2019). In addition to that, INTEREST returns mean and median estimate,
and mean and median squared error of the estimate. Finally, INTEREST computes
and returns Monte Carlo standard errors by default. The list of performance measures
estimated by INTEREST can be customised via the Options tab: by default, all are
included.

3.4. Tables
Estimated performance measures are presented in tabular form in the Performance
measures side tab, once again using the R package DT. The table of estimated per-
formance measures is relative to a given data-generating mechanism, which can be
modified using a select list input on the side. It is also possible to customise the num-
ber of significant digits and to select whether Monte Carlo standard errors should be
excluded in each table or not via the Options tab.
Finally, it is possible to export the tables in two ways:

1. Export the table in LATEX format, e.g. for use in reports, articles, or presentations,
via the Export table tab and the R package xtable (Dahl et al. 2019). The caption
of the table can be directly customised;

2. Export estimated performance measures as a dataset, e.g. to be used with a
different software package of choice. The table of estimated performance measures
can be exported as displayed by INTEREST or in tidy format, and in a variety of
formats: comma-separated (.csv), tab-separated (.tsv), R (.rds), Stata (version
8-15, .dta), SPSS (.sav), and SAS (.sas7bdat).
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3.5. Plots
INTEREST can produce a variety of plots to automatically visualise results from sim-
ulation studies. Plots produced by INTEREST can be categorised into two broad
groups: plots of estimates (and their estimated standard errors) and plots of perfor-
mance, following analysis. Plots for method-wise comparisons of estimated values and
standard errors are:

• Scatter plots;

• Bland-Altman plots (Altman and Bland 1983; Bland and Altman 1999);

• Ridgeline plots (Wilke 2018).

Each plot will include all data-generating mechanisms by default and allows comparing
serial trends and the relative performance of methods included in the simulation study.
Conversely, the following plots are supported for estimated performance:

• Plots of performance measures with confidence intervals based on Monte Carlo
standard errors. There are two variations of this plot: forest plots, and lolly plots.
Both methods display the estimated performance measure alongside confidence
intervals based on Monte Carlo standard errors; different methods are arranged
side by side, either on the horizontal or on the vertical axis;

• Heat plots of performance measures: these plots are mosaic plots where the several
methods being compared (if defined) are on the horizontal axis and the data-
generating mechanisms are on the vertical axis. Then, each tile of the mosaic
plot is coloured according to the value of a given performance measure. To the
best of our knowledge, this is a novel way of visualising results from simulation
studies, with an application in practice that can be found elsewhere (Gasparini
et al. 2019);

• Zip plots to visually explain coverage probabilities by plotting the confidence
intervals directly. More information on zip plots is presented elsewhere (Morris
et al. 2019);

• Nested loop plots, useful to compare performance measures from studies with
several DGMs at once. This visualisation is described in more detail elsewhere
(Rücker and Schwarzer 2014).

Finally, all plots can be exported for use in manuscript, reports, or presentations by
simply clicking the Save plot button underneath a plot; all plots are exported by default
in .png format, but other options are available via the Options tab. For instance, to
suit a wide variety of possible use cases, INTEREST supports several alternative image
formats such as pdf, svg, and eps. Through the Options tab it is also possible to
customise the resolution of the plot for non-vectorial format (in dots per inch, dpi) and
the physical size (height and width) of the plots to be exported. The Options tab allows
further customisations: for instance, it is possible to (1) define a custom label for the
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x-axis and the y-axis and (2) change the overall appearance of the plot by applying one
of the predefined themes (which are described in more detail in the User guide tab).

3.6. INTEREST for exploring results
INTEREST allows researchers to upload a dataset with the results of their Monte Carlo
simulation study obtaining estimates of performance in a quick and straightforward way.
This is very appealing, especially with simulation studies with several data-generating
mechanisms where it could be confusing to investigate all scenarios at once. Using the
app it is possible to vary data-generating mechanisms and obtain updated tables and
plots in real-time, therefore allowing to quickly iterate and take into consideration all
possible scenarios.

3.7. INTEREST for disseminating results
One of the intended usage scenarios for INTEREST consists of supplementing reporting
of simulation studies. This is especially useful with large simulation studies, where it
is most cumbersome to summarise all results in a manuscript: it is common to include
in the main manuscript only a subset of results for conciseness. The remaining results
are then relegated to supplementary material, web appendices, or not published at all
- undermining dissemination and replicability of a study.
Furthermore, given that it is becoming increasingly common to publish the code of
simulation study, one could publish the dataset with the results alongside the code
used to obtain it. That dataset could then be uploaded to INTEREST by readers,
who could then explore the full results of the study as they wish. Given the ubiquity
of web services like GitHub (https://github.com) and data-sharing repositories such
as Zenodo (https://zenodo.org/), we encourage INTEREST users to publish online
the full results of their simulation studies for other users to download and experiment
with.

4. Future developments
Although INTEREST is fully functional in its current state, several future develop-
ments are being planned. For instance, we aim to include support for multiple esti-
mands at once as currently supported by rsimsum via the multisimsum function. We
also aim to improve the flexibility of INTEREST in terms of customisation (of tables
and plots), e.g. by displaying the raw R code used to generate the plots behind the
scenes. Finally, we are considering adding additional interactive features to the app
via HTML widgets, D3, or other approaches; there are several R packages that allow
incorporating interactive graphs into Shiny apps such as htmlwidgets (Vaidyanathan
et al. 2018), plotly (Sievert 2018), and r2d3 (Luraschi and Allaire 2018).

5. Case study
The case study included in this Section illustrates the use of INTEREST to analyse
publicly available results of a simulation study. In particular, we will be using the
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results from the worked illustrative example included in Morris et al. (Morris et al.
2019).
The study dataset contains the results of a simulation study comparing three different
methods for estimating the hazard ratio in a randomised trial with a time to event
outcome. In particular, the methods being compared are proportional hazards survival
models of the kind:

hi(t) = h0(t) exp(Xiθ),
where θ is the log hazard ratio for the effect of a binary exposure (e.g. treatment).
This class of models requires an assumption regarding the shape of the baseline hazard
function h0(t): it can be assumed to follow a given parametric distribution, or it can
be left unspecified (yielding therefore a Cox model). The aim of this simulation study
consists of assessing the impact of such an assumption on the estimation of the log
hazard ratio.
Morris et al. consider two distinct data-generating mechanisms, varying the baseline
hazard function:

1. An exponential baseline hazard with λ = 0.1 (DGM = 1);

2. A Weibull baseline hazard with λ = 0.1, γ = 1.5 (DGM = 2).

In both settings, data are simulated on 300 patients with a binary covariate (e.g. treat-
ment) simulated using Xi ∼ Bern(0.5) - simple randomisation with an equal allocation
ratio. The log hazard ratio is set to be θ = −0.50; this is the true value of the estimand
of interest.
Three distinct methods are fit to each simulated scenario: a parametric survival model
that assumes an exponential baseline hazard, a parametric survival model that assumes
a Weibull baseline hazard, and a Cox semi-parametric survival model.
Finally, the performance measures of interest are bias, coverage, empirical and model-
based standard errors. Assuming that Var(θ̂) ≤ 0.04, 1600 repetitions are run to ensure
that the Monte Carlo standard error of bias (the key performance measure of interest)
is lower than 0.005.
The dataset with the results of this simulation study is publicly available, and can be
downloaded from GitHub: https://github.com/tpmorris/simtutorial/raw/master/
Stata/estimates.dta. Within the dataset published on GitHub, the exponential,
Weibull, and Cox models are coded as model 1, 2, and 3, respectively. The above-
mentioned dataset is in Stata format; an R version is available as well (https://
github.com/tpmorris/simtutorial/raw/master/R/estimates.rds), and INTEREST
supports both.
The workflow of INTEREST starts by providing the dataset with the results of the
simulation study. Given that the dataset is already available online, we can directly
pass the URL above to INTEREST and then define the required variables (as illustrated
in Figure 3); the uploaded dataset can then be verified via the View uploaded data tab
(Figure 4).
We can also customise the performance measures reported by INTEREST via the
Options tab (Figure 5), e.g. focussing on those outlined above as key performance
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Table 3: Example of LATEX table directly exported from INTEREST, case study DGM
2: true Weibull baseline hazard function.
Performance Measure 1 2 3
Bias in point estimate 0.0494 (0.0035) 0.0048 (0.0038) 0.0062 (0.0038)
Empirical standard error 0.1381 (0.0024) 0.1516 (0.0027) 0.1511 (0.0027)
Model-based standard error 0.1539 (0.0001) 0.1541 (0.0001) 0.1542 (0.0001)
Coverage of nominal 95% confidence interval 0.9600 (0.0049) 0.9556 (0.0051) 0.9575 (0.0050)

measures (bias, coverage probability, empirical standard errors, model-based standard
errors).
The next step of the workflow consists of investigating missing values: this can be
achieved via the Missing data tab. In particular, there is no missing data in the study
dataset (Figure 6). We can, therefore, continue the analysis knowing that there is no
pattern of serial missingness or non-convergence issues in our data.
The performance measures of interest are tabulated in the Performance measures tab,
e.g. for DGM = 2 (Figure 7). We can see that bias for the exponential model is much
larger than the Weibull and Cox models: approximately 10% of the true value (in
absolute terms) compared to less than 1%. Empirical and model-based standard errors
are quite similar for the Weibull and Cox models; conversely, the exponential model
seemed to overestimate the model-based standard error. Coverage was as advertised
for all methods, at approximately 95%. By comparison, all models performed equally
in the other scenario (DGM = 1); these results are omitted from the manuscript for
brevity, but we encourage readers to replicate this analysis and verify our statement.
The Performance measures tab provides a LATEX table ready to be pasted e.g. in a
manuscript: the resulting table is included as Table 3. A dataset with all the estimated
performance measures here tabulated can also be exported to be used elsewhere (Figure
8).
We can also visualise the results of this simulation study. First, we can produce a
method-wise comparison of point estimates from each method using e.g. scatter plots
(Figure 9) or Bland-Altman plots (Figure 10). With both plots, it is possible to appre-
ciate that for the DGM with γ = 1.5 the exponential model yields point estimates that
are quite different compared to the Weibull and Cox models. Analogous plots can be
obtained for estimated standard errors.
The performance measures tabulated in the Performance measures tab can also be
plotted via the Plots tab. For instance, it is straightforward to obtain a forest plot for
bias (as illustrated in Figure 11) which can be exported by clicking the Save plot button.
The plots’ appearance can also be customised via the Options tab, e.g. by modifying
the axes’ labels and the overall theme of the plot (Figure 12); the resulting forest plot,
exported in .pdf format, is included as Figure 13. Several other data visualisations are
supported by INTEREST, as described in the previous Sections: lolly plots, zip plots,
and so on.

6. Conclusions
As outlined in the introduction, Monte Carlo simulation studies are too often poorly
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14 INTEREST

Figure 3: App interface to load the dataset for the case study. INTEREST can import
datasets that are available online by simply pasting a link to it; then, the required
variables can be defined via a list of pre-populated select inputs.
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Figure 4: Verifying the dataset for the case study. After importing the study dataset,
it is recommended to verify that the uploaded data is correct.
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16 INTEREST

Figure 5: Customising the performance measures reported by INTEREST. It is possible
to focus on a subset of key performance measures by selecting them via the Options
tab.

236



Journal of Data Science, Statistics, and Visualisation 17

Figure 6: Investigating missing data. Missingness patterns in the study dataset need
to be assessed before continuing with the analysis. Several visualisations and tabular
displays are available from the Missing data tab.
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18 INTEREST

Figure 7: Table of performance measures for a given DGM. Performance measures of
interest are tabulated in the Performance measures tab, e.g. for the 2nd DGM (with a
Weibull baseline hazard function).
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Figure 8: Exporting options for estimated performance measures. Performance mea-
sures of interest can be exported in a variety of formats ready to be used elsewhere
(e.g. for dissemination purposes or to develop ad-hoc visualisations).
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Figure 9: Visual comparison of point estimates via scatter plots. Points estimates for
each method-DGM combination can be produced automatically using INTEREST.
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Figure 10: Visual comparison of point estimates via Bland-Altman plots. Points es-
timates for each method-DGM combination can be produced automatically using IN-
TEREST.
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Figure 11: Visual comparison of performance measures via forest plots. Estimated
performance measures such as bias can be easily plotted via the Plots tab.
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Figure 12: Customising the visual appearance of plots. INTEREST allows customising
the appearance of plots produced by the app via the Options tab, e.g. by modifying
the axes’ labels and/or the overall theme.
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Figure 13: Forest plot for bias, case study on survival regression modelling. This
forest plot produced by INTEREST and further customised via the Options tab can
be directly exported from the app.
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analysed and reported (Morris et al. 2019). Given the increased use in methodological
statistical research, we hope that INTEREST could improve reporting and disseminat-
ing results from simulation studies to a large extent. As illustrated in the case study,
the exploration and analysis of the Monte Carlo simulation study of Morris et al. can
be fully reproduced by using INTEREST. Estimated performance measures are tab-
ulated automatically, and plots can be used to visualise the performance measures of
interest. Moreover, the user is not constrained to a given set of plots and can fully
explore the results with ease e.g. by varying DGMs to focus on or by choosing different
data visualisations. Most interestingly, the only requirement to reproduce the simula-
tion study described in the case study is a device with a web browser and connection
to the Internet. To the best of our knowledge, there is no similar application readily
available to be used by researchers and readers of published Monte Carlo simulation
studies alike.
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C R Code for the Case Study on Flexible

Parametric Survival Models

The R code included in this Appendix is the code used to run the simulation study

described in the case study of Section 4.6.

It requires loading the following packages:

library(tidyverse)

library(rstpm2)

library(simsurv)

library(foreach)

rstpm2 [132] is used to �t �exible parametric models, and simsurv [69] is used to simulate

complex survival data. foreach [236] provides the foreach looping construct, which is

useful in the settings of simulation studies.

Then, I set the seed for reproducibility purposes:

set.seed(208779431)

I de�ne a data frame with the DGMs, and the number of replications B:

dgms <- tibble::tibble(

h = seq(2), # 1 = Weibull, 2 = Mixture Weibull

dgm = seq(2) # Sequential number of DGMs: 1, 2

)

B <- 1000 # Number of replications

Then, I wrote the following code to iterate over the 2 DGMs (outer foreach loop) and

then over B replications (inner foreach loop).
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Within each replication:

1. A dataset is simulated;

2. The 3 models included in this comparison are �tted;

3. The estimated log treatment e�ect from each model is stored in tidy format.

Finally, results are assembled and stored within a data frame named out.

out <- foreach::foreach(

dgm = dgms[["dgm"]],

.combine = dplyr::bind_rows

) %do% {

# Extract current DGM

current <- dgms[dgms[["dgm"]] == dgm, ]

# Run B replications for the current scenario

out.in <- foreach::foreach(

i = seq(B),

.combine = dplyr::bind_rows

) %do% {

# Simulate data

covs <- tibble::tibble(

id = seq(300),

trt = stats::rbinom(n = 300, size = 1, prob = 0.5)

)

if (current[["h"]] == 1) {

surv <- simsurv::simsurv(

dist = "weibull",

lambdas = 0.60,

gammas = 0.80,

betas = c(trt = -0.50),

x = covs,

maxt = 10,

interval = c(0, 500)
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)

} else {

surv <- simsurv::simsurv(

dist = "weibull",

lambdas = c(1.00, 1.00),

gammas = c(1.50, 0.50),

betas = c(trt = -0.50),

mixture = TRUE,

pmix = 0.50,

x = covs,

maxt = 10,

interval = c(0, 500)

)

}

x <- dplyr::left_join(x = covs, y = surv, by = "id")

# Transform simulated times < 1e-6 to avoid

# problems with finite differences

x[["eventtime"]][x[["eventtime"]] < 1e-6] <- 1e-6

# Fit the models included in this comparison

m1 <- rstpm2::stpm2(

formula = survival::Surv(eventtime, status) ~ trt,

data = x,

df = 2

)

m2 <- rstpm2::stpm2(

formula = survival::Surv(eventtime, status) ~ trt,

data = x,

df = 5

)

m3 <- rstpm2::stpm2(
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formula = survival::Surv(eventtime, status) ~ trt,

data = x,

df = 10

)

# Export results

res <- tibble::tibble(

i = i,

dgm = dgm,

b = vapply(

X = c(m1, m2, m3),

FUN = function(x) summary(x)@coef[2, 1],

FUN.VALUE = numeric(1)

),

se = vapply(

X = c(m1, m2, m3),

FUN = function(x) summary(x)@coef[2, 2],

FUN.VALUE = numeric(1)

),

model = seq(3)

)

res

}

out.in

}

The data frame with all information on DGMs is then merged with the results data set:

out <- dplyr::left_join(x = out, y = dgms, by = "dgm") %>%

dplyr::mutate(

model = factor(model,

levels = seq(3),

labels = c("M1 (2df)", "M2 (5df)", "M3 (10df)")

),
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h = factor(h,

levels = seq(2),

labels = c("Weibull", "Mixture Weibull")

)

)

Finally, the structure of the dataset with the results of this simulation study is the

following:

dplyr::glimpse(out)

# Observations: 6,000

# Variables: 6

# $ i <int> 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7...

# $ dgm <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1...

# $ b <dbl> -0.6378815, -0.6422050, -0.6426656, -0.6571888, -0.6568290, -...

# $ se <dbl> 0.1226920, 0.1233417, 0.1233309, 0.1231681, 0.1236395, 0.1236...

# $ model <fct> M1 (2df), M2 (5df), M3 (10df), M1 (2df), M2 (5df), M3 (10df),...

# $ h <fct> Weibull, Weibull, Weibull, Weibull, Weibull, Weibull, Weibull...

This dataset is then exported, to be used in Chapter 4, Section 4.6.

saveRDS(object = out, file = "data/case-study.RDS")
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D Research Paper: Impact of Model

Misspeci�cation in Shared Frailty Survival

Models

The research manuscript investigating the impact of model misspeci�cation in shared

frailty survival models has been published in Statistics in Medicine; it is omitted from

the e-Thesis due to copyright. The pre-prints history is available on arXiv (https://arxi

v.org/abs/1810.08140).

AG and MJC conceived and planned the study, with input from MSC; notably, MSC

suggested the interpretation of a mixture normal frailty as hidden groups. AG developed

all the code required to simulate data, �t each models, and obtain the predictions of

interest. AG analysed the results of the simulation study, and interpreted the results with

critical input from all co-authors. AG wrote the manuscript, with input and feedback

from all co-authors - especially during the revision process. Finally, the anonymous

reviewers and the editorial team of Statistics in Medicine greatly improved the clarity

and comprehensiveness of the manuscript during the peer review process.
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E Supplementary Results: Monte Carlo Simulation

on Impact of Model Misspeci�cation in Shared

Frailty Survival Models

This Appendix contains supplementary results from the Monte Carlo simulation on the

impact of model misspeci�cation in shared frailty survival models, introduced in Section

5.5.

Mean squared error for the regression coe�cient is included in Figures E.1 and E.2, while

mean squared error for the loss in life expectancy is included in Figures E.3 and E.4.

Finally, result for the estimated variance of the frailty (bias, coverage probability, and

mean squared error) are included in Figures E.5 to E.10.
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Figure E.1: MSE of regression coe�cient, scenarios with 20 clusters of 150 individuals each.
Colours represent the model frailty, and each subplot includes results for a given combination of
data-generating baseline hazard and frailty
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Figure E.2: MSE of regression coe�cient, scenarios with 750 clusters of 2 individuals each.
Colours represent the model frailty, and each subplot includes results for a given combination of
data-generating baseline hazard and frailty
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Figure E.3: MSE of LLE, scenarios with 20 clusters of 150 individuals each. Colours represent
the model frailty, and each subplot includes results for a given combination of data-generating
baseline hazard and frailty
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Figure E.4: MSE of LLE, scenarios with 750 clusters of 2 individuals each. Colours represent
the model frailty, and each subplot includes results for a given combination of data-generating
baseline hazard and frailty
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Figure E.5: Bias of frailty variance, scenarios with 20 clusters of 150 individuals each. Colours
represent the model frailty, and each subplot includes results for a given combination of
data-generating baseline hazard and frailty
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Figure E.6: Bias of frailty variance, scenarios with 750 clusters of 2 individuals each. Colours
represent the model frailty, and each subplot includes results for a given combination of
data-generating baseline hazard and frailty
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Figure E.7: Coverage of frailty variance, scenarios with 20 clusters of 150 individuals each.
Colours represent the model frailty, and each subplot includes results for a given combination of
data-generating baseline hazard and frailty
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Figure E.8: Coverage of frailty variance, scenarios with 750 clusters of 2 individuals each.
Colours represent the model frailty, and each subplot includes results for a given combination of
data-generating baseline hazard and frailty
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Figure E.9: MSE of frailty variance, scenarios with 20 clusters of 150 individuals each. Colours
represent the model frailty, and each subplot includes results for a given combination of
data-generating baseline hazard and frailty
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1 INTRODUCTION

The analysis of longitudinal data is essential to understand the evolution of disease and the effect
of interventions over time. A source of longitudinally recorded data that is being used increas-
ingly often in medical research is health care consumption data; that is, data sources that have
been constructed by extracting and linking electronic health records from primary, specialist, and
hospital care with other data sources such as nationwide registries for epidemiological surveil-
lance. Several examples of cohorts constructed in such a way are emerging in a variety of medical
fields: amongst others, kidney disease (Hemmelgarn et al., 2009; Runesson et al., 2016), cardio-
vascular disease (Denaxas et al., 2012), and end-of-life health care (Tanuseputro et al., 2015). Data
cohorts constructed by extracting medical records have thousands—if not millions—of individ-
uals with hundreds of measurements each: The availability to researchers of such vast amount
of data allows answering more relevant and detailed clinical questions but poses new challenges.
In terms of reporting, guidelines have emerged to improve discovery, transparency, and replica-
bility of research finding utilising routinely collected data (Benchimol et al., 2015). In terms of
methodological challenges, first and foremost, observation times are likely to be correlated with
the underlying disease severity in health care consumption data sets. For instance, individuals
tend to have irregular observation times as patients with more severe conditions (or showing early
symptoms of a disease) tend to visit their doctor or go to the hospital more often than those with
milder conditions (and no symptoms). Their worse disease status is also likely to be reflected in
worse biomarkers being recorded at such visits, causing abnormal values of such biomarkers to
be overrepresented and normal values to be underrepresented. Taking this pattern to the extreme,
healthy individuals may not appear in health records at all, leading to cohort selection bias; this
is a separate issue that is not dealt with in this manuscript.

Traditional methods used to analyse longitudinal data rely on the assumption that the under-
lying mechanism that controls the observation time is independent of disease severity; however,
that is unlikely with health care consumption data. It can be shown that failing to account for
informative dropout in a longitudinal study could yield biased estimates of the model parameters
(McCulloch, Neuhaus, & Olin, 2016; Wu & Carroll, 1988), and so does näively applying traditional
methods when the follow-up is irregular and related to the outcome (Pullenayegum & Lim, 2016).
Despite the potential for bias, there is some evidence pointing toward a lack of awareness of the
potential for bias in longitudinal studies with health care data irregularly collected over time: In
a recent literature review on the topic, Farzanfar et al. (2017) showed that 86% of studies did not
report enough information to evaluate whether the visiting process was informative or not, and
only one study used a method capable of dealing with an informative observation process. This is
concerning when the aim of a research project is aetiology.

Bias may arise when data on covariates and outcomes are collected at irregular,
subject-specific intervals; in fact, when analysing data originating from electronic health records,
data is collected only when study subjects consume health care (e.g., by visiting their doctor or
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going to the hospital). As a consequence, visit times are likely to be informative and to depend
on the clinical history of an individual. The visiting process in this setting is therefore deemed
to be informative (or dynamic, outcome dependent). The bias that one may encounter when the
observation process is informative can be classified in two types: selection bias or confounding
(Hernán, McAdams, McGrath, Lanoy, & Costagliola, 2009). Selection bias arises because of the
selection of observed individuals only in the analysis. This bias is the same bias induced by infor-
mative censoring due to loss to follow-up (Hernán, Hernández-Díaz, & Robin, 2004): Censoring
is the extreme case of an observation process where an individual is not observed ever again.
Conversely, confounding arises when there are common causes of both the exposure and the out-
come, for example, when the consequent visit times are decided by physicians or patients based
on, for example, current health status, which itself is associated with the observed longitudinal
outcome. Hernán et al. (2009) describe selection bias and confounding originating from dynamic
observation processes more in detail, including directed acyclic graphs (DAGs) that illustrate the
underlying causal mechanism.

In the past years, several methods have been developed to deal with longitudinal data ter-
minated by informative dropout (Kurland, Johnson, Egleston, & Diehr, 2009); conversely, the
problem of informative visit times has received considerably less attention. Despite that, a few
methods emerged that can be broadly categorised in two families: methods based on inverse inten-
sity of visit weighting (IIVW, an extension of inverse probability of treatment weighting [IPW];
Robins, Rotnitzky, & Zhao, 1995) and methods based on shared random effects (Liu, Huang, &
O'Quigley, 2008). An introduction to the various methods is presented elsewhere (Pullenayegum
& Lim, 2016). Nevertheless, to the best of our knowledge, there is only one comparison existing
in the current literature that yielded negative results: Neuhaus et al. (2018) conclude that fitting
ordinary linear mixed models disregarding the observation process yielded the smallest bias and
showed that adding regular visits to the observation schedule (if possible) reduced that bias even
further.

Throughout this paper, we focus on the problem of informative visiting process by assuming
that the dropout process is not informative. First, we describe characteristics of the observation
process and we define when it can be deemed informative in Section 2. Then, we introduce a
joint model for the observation and longitudinal processes that can be easily extended within a
multivariate generalised linear and nonlinear mixed-effects models framework (Crowther, 2017)
in Section 3, and introduce the IIVW method in more detail in Section 4. We compare the per-
formance of this model against other alternatives that have been introduced in the literature via
Monte Carlo simulation in Section 5. Finally, we illustrate the use of the joint model using data
from a pragmatic trial in chronic kidney disease (CKD) and discuss our conclusions in Sections 6
and 7, respectively.

2 CHARACTERISTICS OF THE OBSERVATION PROCESS

An observation process can have regular or irregular visits. With regular visits, the jth visit time
for the ith individual Tij is the same for all individuals: Tij = tj ∀ i, j, with i = 1, 2, … ,n and
j = 1, 2, … ,ni. Conversely, with irregular visits that is no longer true. With irregular visits, the
observation process—denoted by the counting process Ni(t)—can be defined to be completely at
random when visit times and outcomes are independent (Pullenayegum & Lim, 2016):

E[ΔNi(t)|Ȳi(∞), X̄i(∞)] = E[ΔNi(t)],
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where ΔNi(t) = Ni(t) − Ni(t−), with t− being the instant of time right before t. Ȳi(∞) and X̄i(∞)
denote the values of outcome and covariates for any t > 0.

The observation process can be deemed informative when it is not completely at random, that
is, when the condition above is not verified. In that case, it is possible to identify the following
two scenarios.

• Observation process at random, when visiting at time t is independent of the outcome at time
t given data recorded up to time t:

E
[
ΔNi(t)|X̄i(t), N̄i(t−), Ȳ obs

i (t−),Yi(t)
]
= E

[
ΔNi(t)|X̄obs

i (t), N̄i(t−), Ȳ obs
i (t−)

]
,

where X̄i(t) and X̄obs
i (t) denote the covariates history up to time t and its observed values, N̄i(t−)

denotes the history of the observation process up to time t−, and Ȳ obs
i (t−) denotes the observed

values of the outcome up to time t−.
• Observation process not at random, where the definition of missing at random does not hold.

That is, the scenario where visiting at time t is not independent of the outcome at time t, even
after conditioning on data recorded up to time t:

E
[
ΔNi(t)|X̄i(t), N̄i(t−), Ȳ obs

i (t−),Yi(t)
] ≠ E

[
ΔNi(t)|X̄obs

i (t), N̄i(t−), Ȳ obs
i (t−)

]
.

Gruger, Kay, and Schumacher (1991) illustrate four possible models that could be linked to
the abovementioned scenarios.

1. The examination at regular intervals model, consisting of observation times that are predefined
and equal for all patients. This scenario yields the so-called balanced panel data.

2. The random sampling model, consisting of a sampling scheme (e.g., an observation process)
that is not predefined, but still independent of the disease history of the study subjects.

3. The doctor's care model, consisting of an observation process that depends on the charac-
teristics of the patient at the moment of the current doctor's examination. For instance, a
doctor could require stricter monitoring for subjects with more advanced disease status or
with abnormal values of a biomarker.

4. The patient self-selection model, yielding observations that are triggered by the patients them-
selves. According to this model, patients may choose to visit their doctor when they feel
unwell, or they may choose to skip a visit that was preplanned when they feel the treatment
they are receiving is not beneficial to their health status. Unfortunately, the factors that cause
patients to self-select themselves are generally unknown or not recorded.

Models (1) and (2) could be characterised as observation completely at random; model (3) could
be characterised as observation at random; finally, model (4) could be characterised as observation
not at random.

3 A JOINT MODEL FOR THE OBSERVATION PROCESS AND
A LONGITUDINAL OUTCOME

Let Dij(t) = I(Tij = t) denote the presence of an observation at time t for the ith individual:
At each Dij(t) = 1, a new observation of the longitudinal outcome Yij is recorded. Let t̃i𝑗 be the
gap time between the jth and ( j + 1)th measurement for the ith individual. Let d̃i𝑗 be the binary

269



GASPARINI ET AL. 5

indicator variable that denotes whether the gap time t̃i𝑗 is observed (or not). In practice, gap times
are always observed except when the observation process is censored at the end of follow-up, for
example, the date when the data extraction occurs. Let zij be the covariate vector for the longi-
tudinal outcome, and let wi be the covariate vector for the observation process; zij and wi do not
necessarily overlap, and it is assumed that both could be extended to include time-dependent
exogenous covariates (e.g., wij). We model the observation process and the repeated measures
process using a joint longitudinal and survival model. Conditional on random effects ui, the sub-
model for the time to each observation is a proportional hazards model with hazard for gap
time t̃i𝑗 :

r
(

t̃i𝑗|wi𝑗 ,ui, 𝜃t
)
= r0(t̃i𝑗) exp(wi𝑗𝛽 + ui), (1)

where 𝜃t = 𝛽. The submodel for the jth longitudinal observation for the ith individual is

(𝑦i𝑗|Di𝑗(t) = 1, zi𝑗 ,ui, vi, 𝜃𝑦) = mi𝑗 + 𝜖i𝑗 = zi𝑗𝛼 + 𝛾ui + vi + 𝜖i𝑗 , (2)

where 𝜖i𝑗 ∼ N(0, 𝜎2
𝜖 ) and 𝜃𝑦 = {𝛼, 𝛾, 𝜎2

𝜖 }.
Equation (1) is a recurrent-events model for the observation process, with r0(t̃i𝑗) any para-

metric or flexible parametric (Royston & Parmar, 2002) baseline hazard function (also referred
to as baseline intensity—we use the terms hazard and intensity interchangeably throughout this
manuscript). Equation (2) is a linear mixed model for the longitudinal outcome with a random
intercept vi. The two processes are linked together via the shared, individual-specific, random
effect ui. Including the 𝛾 parameter in the longitudinal model allows for an association between
the two equations, association that will be estimated from data; when 𝛾 = 0, the two processes
are independent of each other; that is, the observation process is not informative. Finally, we
assume that the random effects follow a multivariate normal distribution with null mean vector
and variance–covariance matrix Σu,v.

The model is fitted using maximum likelihood; the individual-specific contribution to the
likelihood can be written as

Li(𝜃) = ∫ p
(

t̃i𝑗 , d̃i𝑗 , 𝑦i𝑗 , bi; 𝜃
)

dbi

= ∫
ni∏
𝑗=1

p
(

t̃i𝑗 , d̃i𝑗|bi, 𝜃t
)

p(𝑦i𝑗|bi, 𝜃𝑦)p(bi|𝜃b)dbi,

where 𝜃 = {𝜃t, 𝜃y, 𝜃b} is the overall parameters vector, bi = {ui, vi} is the vector of random effects,

p
(

t̃i𝑗 , d̃i𝑗|bi, 𝜃t
)
= r

(
t̃i𝑗|wi𝑗 ,ui, 𝜃t

)d̃i𝑗 exp

(
−∫

t̃i𝑗

0
r(s|wi𝑗 ,ui, 𝜃t)ds

)

is the contribution to the likelihood of the time to the jth observation in individual i,

p(𝑦i𝑗|bi, 𝜃𝑦) =
(
2𝜋𝜎2

𝜖

)−1∕2 exp
(
−
(𝑦i𝑗 − mi𝑗)2

2𝜎2
𝜖

)
is the contribution of the jth longitudinal observation, and p(bi|𝜃b) is the density of the random
effects. The likelihood does not have a closed form, as it is necessary to integrate out the distri-
bution of the random effects; methods such as Gaussian quadrature and Monte Carlo integration
can be used for that purpose (Pinheiro & Bates, 1995).
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FIGURE 1 Simplified directed acyclic graph depicting a joint model for a longitudinal
outcome and its observation process

A simplified DAG that illustrates how the joint model accounts for the correlation between
a longitudinal outcome Y and its observation process R is included as Figure 1 (Liu, Zheng, &
Kang, 2018); X represents covariates included in the model, and U represents the shared ran-
dom effects. After adjusting for all covariates (e.g., confounders) X, the longitudinal outcome
and the observation process are associated only through the shared U. However, when estimat-
ing the joint model, we assume a distribution for U (e.g., Gaussian) and we integrate it out of
the marginal likelihood, blocking the path between Y and R. Therefore, for the joint model to
be valid, the observation process has to be at least at random, according to the definition of
Section 2.

This model is nested within a wide family of multivariate generalised linear and nonlinear
mixed-effects models (Crowther, 2017). The model presented in this section can easily be extended
to multiple random effects (potentially nested within each other), to different parametric and
flexible parametric baseline hazard formulations for the recurrent-events model, and to include
other outcomes (e.g., a dropout process, or a second longitudinal outcome); we focus on the model
formulated in this section for simplicity. Finally, this joint model (and several extensions) can
be easily fitted in Stata using the user-written command merlin (Crowther, 2018). We produce
example code that is included in the Online Supplementary Material.

4 INVERSE INTENSITY OF VISIT WEIGHTING

The bias induced by an informative observation process can be adjusted by using the IIVW
method first proposed by Robins et al. (1995) as an extension of the IPW method (Cole & Hernán,
2008). This method was further developed by Båžková and Lumley (2007), and there are a few
examples of this method applied in practice (Båžková, Brown, & John-Stewart, 2010; Van Ness,
Allore, Fried, & Lin, 2009). The IIVW approach accommodates an informative observation pro-
cess in a marginal regression model by weighting each observation by the inverse of the probability
of each measurement to be recorded. This approach creates a pseudopopulation in which the
observation process is static and can be ignored. The weights can be estimated by fitting a regres-
sion model including all covariates that inform the observation process and further stabilised
to increase efficiency (Cole & Hernán, 2008). The weighting model could include current and
past values of any covariate that may affect the visiting process; however, as with IPW, all covari-
ates that might be related to the observation process should be included in the weighting model;
otherwise, bias will incur.

The approach we illustrate follows from Van Ness et al. (2009). The model used to estimate
weights is an Andersen-Gill recurrent-events model (Andersen & Gill, 1982) for the observation
process, assuming a gap-time scale (as described in Section 3):

r
(

t̃i𝑗
)
= r0

(
t̃i𝑗
)

exp(zi𝜂),
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where t̃ are gap times between consecutive observations, ri(t̃) is the intensity of visit for individual i
at gap time t̃, r0(t̃) is the unspecified baseline intensity at gap time t̃, and zi is a vector of coefficients
that are assumed to accurately describe the observation process for individual i. 𝜂 is a vector of
regression coefficients that is estimated using the Cox partial likelihood method and a robust
jack-knife estimator for the variance of the regression coefficients. The inverse intensity of visit
weights are estimated by taking the inverse of the linear predictor exp(zi�̂�) at each time point,
and further normalised by subtracting the mean inverse weight and adding the value 1 to each
weight; the distribution of the weights is therefore centred on the value 1. Finally, two further
adjustments are needed. First, because the last data entry for each individual represents the end of
follow-up of the study, each weight is shifted by one time point. Second, given that each individual
is observed at least once (i.e., at baseline), a weight of one is assigned to the first observation of
each individual.

The marginal model for the longitudinal outcome is then fit using generalised estimating
equations and including the normalised inverse intensity of visit weights as probability weights
in the model. The model has the form

E(𝑦i𝑗) = 𝛼0 + Zi𝛼1 + ti𝑗𝛼2,

and can be fit using readily available statistical software. We use the Stata command glm.

5 A MONTE CARLO SIMULATION STUDY

Aim
We design a simulation study aimed to assess the impact of ignoring the observation process in
longitudinal mixed-effects models when the observation process is informative.

Data-generating mechanisms
We simulate data from the following joint model:

r(t̃) = r0(t̃) exp(Zi𝛽 + ui)
𝑦i𝑗|(Di𝑗(t) = 1) = 𝛼0 + Zi𝛼1 + ti𝑗𝛼2 + 𝛾ui + vi + 𝜖i𝑗 .

Zi is a time-invariant covariate (for simplicity) representing a binary treatment, simulated from
a Bernoulli random variable with probability 0.5: Zi ∼ Bern(1, 0.5). The coefficient associated to
the treatment variable is 𝛽 = 1 for the observation process; 𝛼1 = 1 for the longitudinal process.
The fixed intercept of the longitudinal model is 𝛼0 = 0, and the fixed effect of time is 𝛼2 = 0.2. The
random effects ui and vi are simulated from a Normal random variable with null mean and vari-
ance 𝜎2

u = 1 and 𝜎2
v = 0.5, respectively. The residual error of the longitudinal model is assumed

to follow a Normal distribution with null mean and variance 𝜎2
𝜖 = 1. We assume independence

between the random effects and the residual variance, and between random effects (i.e., Σu,v is a
diagonal matrix with diag(Σu,v) = {𝜎2

u, 𝜎
2
v }). We assume independent random effects for simplic-

ity, but we show in the Online Supplementary Material how to fit a joint model with correlated
random effects. The joint model with correlated random effects can be thought of as a reparame-
terisation of the joint model with independent random effects, where the association parameter 𝛾
is related to the correlation between the two random effects in the bivariate version. The baseline
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hazard from the recurrent visit process is assumed to follow a Weibull distribution with shape
parameter p = 1.05; we vary the scale parameter 𝜆 and, therefore, the baseline intensity of the
visiting process, with 𝜆 = {0.10, 0.30, 1.00}. These baseline intensities along with the value of 𝛽
correspond to an expected median gap time between observations of 5.83 and 2.25 years for unex-
posed and exposed individuals if 𝜆 = 0.10, 2.05, and 0.79 years if 𝜆 = 0.30, and 0.65 and 0.25
years if 𝜆 = 1.00, respectively. Each observation time is simulated using the inversion method
of Bender, Augustin, and Blettner (2005), assuming a gap-time scale (where the time index is
reset to zero after the occurrence of each observation; the resulting recurrent-events model is
then a semi-Markov model). We vary the association parameter 𝛾 between the two submodels,
with 𝛾 = {0.00, 1.50}; we expect all models to perform similarly when 𝛾 = 0, that is, when the
longitudinal process is independent of the observation process.

In addition to simulating data from the joint model above, we generate the observation pro-
cess by drawing from a Gamma distribution. Specifically, we draw the observation times from a
Gamma distribution with shape = 2.00 and scale:

exp(−𝜓𝛽Zi + 𝜉i),

where 𝜉i is simulated from a Normal distribution with null mean and variance 𝜎2
𝜉
= 0.1. Zi is the

same binary treatment covariate as before, with the same associated parameter 𝛽 = 1. The value
of 𝜓 defines the association between the observation, for example, when 𝜓 = 0, the observation
process is not informative; we set 𝜓 = {0.00, 2.00}. We also simulate a scenario where the obser-
vation process depends on treatment and on previous values of the longitudinal outcome Y. In
this setting, we draw observation times from a Gamma distribution with shape = 2.00 and scale

exp(−𝜓𝛽Zi + 𝜔𝑦i,𝑗−1 + 𝜉i)

for the jth observation time of the ith individual, with𝜓 = 2.00 and𝜔 = 0.20. Finally, we simulate
a scenario from a joint model to which we add regular (i.e., planned) visits every year, as suggested
by Neuhaus et al. (2018). We simulate this scenario from the abovementioned joint model, and we
set 𝛾 = 3.00 and 𝜆 = 0.05 to obtain an observation process that is sparse and strongly associated
with the longitudinal outcome.

We simulate 200 study individuals under each data-generating mechanism and the recur-
rent observation process continues for each individual until the occurrence of administrative
censoring, which we simulated from a Unif(5, 10) random variable.

We define the last gap time for each individual as the difference between the last observation
and the censoring time.

Estimands
The main estimand of interest is the vector of regression coefficients 𝛼 = {𝛼0, 𝛼1, 𝛼2}, with specific
focus on the treatment effect 𝛼1. In the Online Supplementary Material, we also report on the
estimated association parameter 𝛾 and on the estimated variance of the random effects and the
residual errors: 𝜎2

u, 𝜎2
v , and 𝜎2

𝜖 .

Methods
We fit five competing models to each simulated data set:

1. Model A, the joint model described above (at the beginning of the “Data-generating mecha-
nisms” section) and corresponding to the true data-generating mechanisms when simulating
data from a joint model;
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2. Model B, a linear mixed model including the number of visits (centred on the mean value) as
a fixed effect in the model;

3. Model C, a linear mixed model including the cumulative number of visits as a fixed effect in
the model;

4. Model D, a linear mixed model that disregards the observation process completely;
5. Model E, a marginal model fitted using generalised estimating equations and inverse intensity

of visit weights.

Model A is fit using merlin (Crowther, 2018) and gsem in Stata. Model B follows from pre-
vious work by Goldstein, Bhavsar, Phelan, and Pencina (2016), where they demonstrate that,
conditioning on the number of health care encounters, it is possible to remove bias due to an
informative observation process (they denote this bias as “informed presence bias”). We therefore
include the number of observations per individual, centred on the mean value, in a mixed-effects
model for the longitudinal outcome:

𝑦i𝑗 = 𝛼0 + Zi𝛼1 + ti𝑗𝛼2 + nc
i𝛼3 + vi + 𝜖i𝑗 ,

with vi a random intercept and nc
i the number of observations for the ith individual. Model C is

analogous to Model B, adjusting for the cumulative number of measurements up to time j instead,
denoted as n̄it𝑗 :

𝑦i𝑗 = 𝛼0 + Zi𝛼1 + ti𝑗𝛼2 + n̄it𝑗 𝛼3 + vi + 𝜖i𝑗 .

Model D is analogous to Models B and C, assuming 𝛼3 = 0. Models B, C, and D are fit using
the mixed command in Stata. Models A, B, C, D are fit assuming an independent structure for
the variance–covariance matrix of the random effects. Finally, Model E is fitted following the
two-stage procedure presented in Van Ness et al. (2009) and illustrated in Section 4.

Performance measures
We will assess average estimates and standard errors, empirical standard errors, bias, and cover-
age probability of �̂�m, with m = {0, 1, 2}. However, the main performance measures of interest
are bias and coverage probability: the former quantifies whether an estimator targets the true
value on average, whereas the latter represents the proportion of times that a confidence inter-
val based on �̂�m,k and ŜE(�̂�m,k) contains the true value 𝛼m, with k indexing each replication.
We compute and report Monte Carlo standard errors to quantify the uncertainty in estimat-
ing bias and coverage (Morris, White, & Crowther, 2019). If we assume that Var(�̂�m) ≤ 0.1
(or, equivalently, SE(�̂�m) ≤ 0.32) and we require a Monte Carlo standard error for bias of
0.01 or lower, given that MCSE(Bias) =

√
Var(�̂�m)∕K, we would require a number of repli-

cations K = 1,000. The assumed standard error is larger than the standard errors reported by
Liu et al. (2008) for a model similar to Model A. The expected Monte Carlo standard error for
coverage, assuming a worst-case scenario of coverage = 0.50, would be 0.02, which we deem
acceptable. Therefore, we proceed by simulating 1,000 independent data sets for this simulation
study.

Software
The simulation study is coded and run using Stata version 15, built-in functions (such as mixed,
glm,gsem), and the user-written commandssurvsim (Crowther & Lambert, 2012) andmerlin
(Crowther, 2018); results of the simulation study are summarised using R (R Core Team, 2019)
and the R package rsimsum (Gasparini, 2018). All the codes required to simulate data, fit each
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model, and produce summary tables and figures are publicly available on the GitHub page of the
first author (https://github.com/ellessenne/infobsmcsim).

Results
We focus on results for the estimated treatment effect 𝛼1, which are depicted in Figure 2. Tab-
ulated values are included in the Online Supplementary Material, alongside results for the
other regression coefficients 𝛼0, 𝛼2, estimated variances of the random effects, summaries for
the association parameter 𝛾 , and convergence rates of each model under each data-generating
mechanism.

Descriptive results Each simulated data set had 200 distinct individuals; summary descrip-
tive statistics for each data-generating mechanism are included in Table 1. The median sample
size per simulated data set varied between 666 and 4,482, the median number of measurements
per individual varied between 2 and 13, and the median gap time between observations varied
between 0.13 and 1.31 (years). In simulated scenarios from the joint model, as expected, a higher
baseline intensity of visit process yielded more frequent measurements and a larger number of
measurements overall; values were not affected by the association parameter.

Results for noninformative observation processes When the observation process was not
informative, all models estimated regression coefficients with null to negligible bias. Coverage
probability of the regression coefficients was also optimal, with slight undercoverage for the
intercept term 𝛼0 and the treatment effect 𝛼1 for estimates originating from the IIVW model.
Mean squared errors were similar across the range of scenarios with a noninformative obser-
vation process. Bias for the variance of the residual error term was null to negligible as well,
with good coverage. Conversely, the variability of the random intercept v was estimated with
slight negative bias from all models, with subpar coverage (between 90% and 95 %); this is
expected as we use maximum likelihood and not restricted maximum likelihood. Finally, the
estimated variance of the random effect linking the two outcomes in the joint model was posi-
tively biased with coverage of approximately 75%; the magnitude of bias decreased as the baseline
intensity 𝜆 increased.

Results for informative observation processes When generating data from a Γ distribu-
tion depending on treatment only, all models were able to estimate the regression coefficients
with no bias, optimal coverage probability, and comparable mean squared errors. Conversely,
in all other scenarios, the models performed quite differently. In the scenario with observation
times simulated from a Γ distribution depending on treatment and previous values of the lon-
gitudinal outcome, all models but Model B (adjusting for the number of measurements) could
estimate the treatment effect with null or minimal bias; Model B overestimated the treatment
effect. The same pattern was observed for coverage of the treatment effect, with Model B under-
covering, and for the mean squared errors. The effect of time was estimated with small bias and
good coverage from all models, with Model E (IIVW model) performing slightly worst; mean
squared errors were comparable. In scenarios simulated from a joint model, as expected, the joint
model (Model A) performed best overall, with minimal to no bias, optimal coverage, and the low-
est mean squared errors. Model C (adjusting for the cumulative number of measurements) and
Model D (plain mixed model) overestimated the intercept term and underestimated the treat-
ment effect whilst showing small bias when estimating the effect of time. Interestingly, both
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FIGURE 2 Bias (a), coverage (b), and mean squared error (c) of the estimated treatment effect 𝛼1. The orange
colour identifies scenarios where the summary statistics were significantly different than the target value (0 for
bias, 95% for coverage) using Z-tests based on estimated Monte Carlo standard errors
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TABLE 1 Summary characteristics of simulated data under each data-generating mechanism

Data-generating mechanism Sample size No. of measurements Gap time

Γ distribution not 938 (918–957) 4 (3–6) 1.31 (0.74–2.17)
depending on treatment
JM (𝛾 = 0.00, 𝜆 = 0.10) 666 (634–705) 2 (1–4) 0.91 (0.33–2.12)
JM (𝛾 = 0.00, 𝜆 = 0.30) 1,564 (1,475–1,667) 5 (2–9) 0.37 (0.13–0.94)
JM (𝛾 = 0.00, 𝜆 = 1.00) 4,489 (4,188–4,815) 13 (6–27) 0.13 (0.04–0.33)
Γ distribution depending 3,444 (3,296–3,606) 11 (4–28) 0.23 (0.12–0.41)

on treatment
Γ distribution depending on Y 2,564 (2,457–2,670) 9 (4–20) 0.31 (0.16–0.60)

treatment and previous
JM (𝛾 = 1.50, 𝜆 = 0.10) 669 (637–707) 2 (1–4) 0.90 (0.33–2.11)
JM (𝛾 = 1.50, 𝜆 = 0.30) 1,556 (1,461–1,654) 5 (2–9) 0.37 (0.13–0.94)
JM (𝛾 = 1.50, 𝜆 = 1.00) 4,482 (4,218–4,794) 13 (6–26) 0.13 (0.04–0.33)
JM (𝛾 = 3.00, 𝜆 = 0.05) 1,842 (1,818–1,867) 9 (7–10) 1.00 (1.00–1.00)

with regular visits

Note. Values are median with interquartile interval.

models showed that the bias when estimating the effect of time decreased as the baseline inten-
sity 𝜆 increased: as expected, including more measurements allows to better estimate the effect
of time. Model B performed worst when estimating the effect of treatment, with large negative
bias. It also yielded biased intercept and effect of time; however, as with Models C and D, bias for
the estimate of time decreased as more measurements were available. Finally, Model E slightly
overestimated the effect of treatment. Model E showed increasing bias when estimating the inter-
cept as the visiting process was denser, whilst (analogously as with Models B, C, and D) showing
less biased estimates of the effect of time as the baseline intensity increased. All models with
the largest biases showed also poor coverage and the largest standard errors. Overall, in settings
simulated from a joint model, Model B and Model E performed worse and showed the largest
biases. In the scenario simulated from a joint model with a sparse observation process and reg-
ular yearly visits, the joint model (Model A) and the plain mixed model (Model D) performed
best, managing to recover the true values of all regression coefficients with no bias, and opti-
mal coverage probabilities and mean squared errors. Model B managed to estimate the effect of
time with small bias, but largely overestimated the intercept and underestimated the treatment
effect. Model C managed to estimate the intercept and the treatment effect with small or no bias,
but severely underestimated the effect of time. Coverage and mean squared errors followed the
same pattern.

Results for the association parameter 𝜸 The estimating procedure worked well when the
two submodels were not associated. For instance, there was no bias, coverage probabilities were
optimal, and mean squared errors were small, irrespectively of the baseline intensity of visit 𝜆.
Conversely, when the submodels were associated (𝛾 = 1.50), the estimated association parame-
ter was slightly negatively biased (−0.11 to −0.06), with suboptimal coverage (75% to 83%). Mean
squared error decreased when the baseline intensity of visit increased. Finally, the scenario sim-
ulated from a joint model with a strong association parameter 𝛾 = 3.00 and regular visits showed
the worst performance, with large negative bias (−3.7289), poor coverage, and large mean squared
error. Including regular visits caused 𝛾 to shrink toward the null, with a median estimate of
−0.7289.
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Convergence rates Convergence rates for all models included in this comparison were gen-
erally good. All models showed a perfect convergence rate of 100% except the joint model, which
showed a lower convergence rate of 96% and 99% in two simulated scenarios, both with an infor-
mative observation process. However, the remaining scenarios showed a perfect convergence rate
for the joint model as well.

6 APPLICATION

We fit the models included in this comparison to data obtained from the Primary–Secondary
Care Partnership to Prevent Adverse Outcomes in Chronic Kidney Disease (PSP-CKD) study
(ClinicalTrials.gov Identifier: NCT01688141; Major et al., 2019). PSP-CKD is a cluster-randomised
controlled pragmatic trial of enhanced CKD care against usual primary care management.
From the Nene Clinical Commissioning Group, Northamptonshire, UK, 49 primary care prac-
tices were randomised to either enhanced care or usual care; informed consent was provided
at the practice level. Adult individuals with CKD were identified from each practice by using
a research version of the web-based CKD management and audit tool IMPAKT (available
at http://www.impakt.org.uk/); all data were anonymised prior to removal from the primary
care practice. Individuals were included if a recorded estimated glomerular filtration rate
(eGFR) below 60 ml/min/1.73 m2 was found during 5 years before the date of randomisa-
tion; eGFR was estimated using the Modification of Diet in Renal Disease (MDRD) equation
(Levey et al., ).

We extracted baseline data (collected retrospectively at the date of randomisation and up
to 5 years prior) from the PSP-CKD study consisting of all longitudinal eGFR measurements
recorded during routine visits to the practices prior to randomisation; we also extracted the
gender of each participant. This resulted in 239,468 eGFR measurements for 36,527 individ-
uals, of which 14,268 (39%) were males and the remaining 22,259 (61%) were females. The
median gap time between observations was 0.35 years (129 days), with interquartile interval of
0.11 – 0.74 years (39 – 272 days). We aim to evaluate whether the longitudinal eGFR trajectory
before randomisation to treatment differs between males and females.

We start by evaluating whether the visiting process could be informative. First, we computed
Spearman's rank correlation between gap time and gender: (𝜌 = 0.01). The correlation coeffi-
cient was significantly different than zero. Second, we fitted a linear mixed model for gap time
versus gender with a random intercept and a random gender effect, and we found a significant
association, as females had an 8.56-day-longer gap time (95% CI: 5.58 – 11.54). Finally, fitting the
Andersen-Gill model for the observation process as described in Section 4 with gender as the only
covariate included in the model yielded a hazard ratio of 0.9589 (with 95% C.I.: 0.9398 – 0.9783)
for females compared with males. In conclusion, we found the gap time to be associated with
gender; hence, we deem the visiting process to likely be informative.

We fit the models included in the comparison, with gender as the binary exposure variable.
The joint model included gender as the only covariate in the observation process submodel, and
so did the recurrent-events model utilised to fit weights for the IIVW model.

The estimated coefficients for the longitudinal trajectory from each model are presented
in Figure 3. The marginal model estimated an intercept and gender effect significantly differ-
ent than the other four models: Specifically, the estimated intercept from the marginal model
was approximately two units lower, and the effect of gender was approximately seven times
higher and statistically significant, compared to a nonstatistically significant effect of gender
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estimated by the remaining models. The estimated effect of time was similar between all mod-
els (approximately -0.70 per unit of time), with the exception of the mixed model adjusting for
the cumulative number of measurements as a time-varying covariate (estimated effect of approx-
imately −0.60). The interaction between gender and time was similarly estimated by all models,
ranging between 0.4679 and 0.5158, and was statistically significant. This showed that females
had a slower decline in renal function over time compared to men. The estimated coefficient
for the observation process from the joint model shows a reduced risk of having a measured
value for females compared to males (approximately 6%, hazard ratio of 0.9417 with 95% CI:
0.9245 – 0.9589). This value, jointly with the estimated value of the association parameter 𝛾
(-3.8018, 95% CI: -3.9943 to -3.6092), seem to confirm that the observation process is informed
by gender.

Overall, all models estimated a similar longitudinal trajectory (Figure 4), with the IIVW model
being the exception. We saw in the results of our simulations in Section 5 that the IIVW model
yielded biased results for the exposure and the intercept of the longitudinal model under a variety
of scenarios, and we observe this difference in our applied setting as well. Interestingly, all other
models performed similarly, even the mixed model adjusting for the total number of measure-
ments; our simulations showed that the effect of a binary exposure was estimated with bias, but
we did not saw this difference in practice.
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FIGURE 3 Forest plot with estimated coefficients for the longitudinal component, models fit to the
application data from the PSP-CKD study. Each estimated coefficient is included as text placed on the leftmost
side of each subplot. PSP-CKD = Primary–Secondary Care Partnership to Prevent Adverse Outcomes in Chronic
Kidney Disease
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7 DISCUSSION

In this article, we formalise the problem of informative visiting process within a framework of
multivariate generalised linear and nonlinear mixed-effects models, including causal considera-
tions. Via Monte Carlo simulation, we illustrate (1) how ignoring an informative visiting process
leads to biased estimates of the regression coefficient of a longitudinal model and (2) we com-
pare some of the methods that have been proposed in the literature to account for it. To the best
of our knowledge, there is only one comparison currently in the literature (Neuhaus et al., 2018),
albeit they include different models in their comparison and simulate an informative observation
process differently by first generating a grid of potential observation times and then relating the
probability of being observed to a given functional form of current (or lagged) covariates. They also
do not include a joint model analogous to the model introduced in our manuscript in Section 3
in their comparison.

As expected, the joint model that accounts for the informative observation process by mod-
elling it via a recurrent-events survival model performed best. Interestingly, the mixed-effects
model that disregarded completely the observation process performed worse than the joint model,
but outperformed other methods; the inflation in the variance of the random intercept of the
plain mixed model seemed to capture part (if not most) of the variability due to the observation
process, although this result needs to be thoroughly tested in more complex scenarios (e.g., with
random effects of time, etc.). The mixed models adjusting for the total number of measurements or
the cumulative number of measurements (as a time-varying covariate) performed worst, and we
would not recommend their usage in practice in these settings; this finding contrasts the findings
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of Goldstein et al. (2016), although their settings were quite different than ours. Further to that,
they acknowledged the potential for collider bias (due to conditioning on a collider, the number of
measurements) when the phenotyping algorithm for determining the exposure has high sensitiv-
ity; indeed, in our settings, the sensitivity is perfect as there is no misspecification of the exposure.
An additional possible explanation could be that, in our settings, the model adjusting for the total
number of measurements is in fact conditioning on the future, as the total number of observations
is not determined at the beginning of the study. This may be explaining the poor performance of
this method in the settings of our simulations. The performance of the marginal model fitted using
generalised estimating equations and inverse intensity of visit weights laid between the plain
mixed model and the remaining mixed models; furthermore, its performance seemed to improve
when the observation pattern became denser, except for the intercept term 𝛼0. This pattern was
generally observed throughout all scenarios and models, as the performance seemed to increase
with more frequent observation patterns; this finding is consistent with Hernán et al. (2009). The
results of our simulations are consistent with those of Neuhaus et al. (2018): The IIVW approach
showed bias in all the settings of their simulation where the observation process was informa-
tive, even when adding regular visits to the study. To compute the weights of the IIVW approach,
applied researchers need to correctly specify the model for the visit process, a challenging task,
especially when not all the information required to fit the correctly specified model is observed
(or known). We also observed that the IIVW model performed quite differently than the other
methods in our applied example, although the observed difference does not seem to be clinically
relevant.

Most importantly, our simulations show that, under the null, all the approaches compared in
this study produce unbiased estimates of the regression coefficients, the implication being that
overmodelling the observation process does not seem to introduce bias in the analysis. In settings
where it is not clear whether the observation process is informative or not, fitting the joint model
would provide applied researchers with a method for estimating (and testing) the association
between the two outcomes: This could be especially useful, for example, as a sensitivity analysis
of standard mixed-effects models.

The joint model for the observation process and a longitudinal outcome that we described in
Section 3 can be further extended. For instance, additional random effects could be introduced
in the model to account for, say, heterogeneity in the trajectory of the longitudinal outcome over
time. The functional form of the effect of time (both fixed and random) could also be gener-
alised by using fractional polynomials or splines; the longitudinal trajectories need to be modelled
appropriately and best fit could be assessed via information criteria such as the Akaike informa-
tion criterion and Bayesian information criterion. In fact, in the applied example of Section 6, we
assumed a linear effect of time on eGFR for simplicity; in actual applied projects, one should assess
whether the final model is correctly specified. One could also extend the model to account for
time-varying treatments, in both the observation process and longitudinal outcome submodels.
That would however require further investigations to assess the performance of the joint model
in those settings.

We assumed the treatment to be constant over time for simplicity, but in real-life settings,
individuals are likely to start and drop treatment when deemed necessary by their treating physi-
cian. We assumed the baseline hazard of the recurrent-events model for the observation process
to follow a Weibull distribution: This assumption could be further relaxed, and one could assume
any parametric function, or even use flexible, spline-based formulations (e.g., Royston & Parmar,
2002). Additionally, for diseases with a high mortality rate, a terminal event that truncates obser-
vation of the longitudinal process is likely to be informative in the sense that it likely correlates
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with disease severity. That is, dropout is likely to be informative as the tendency to drop out after
the occurrence of a terminal event is related to the current level of the longitudinally recorded
biomarker. The proposed model could be easily extended to include a third equation with a
time-to-event submodel for the dropout process, as in Liu et al. (2008). All of these extensions
can be fit within the general framework of Crowther (2017) using the Stata command merlin.
Finally, we could explore the association structure between the two submodels. For instance,
we could reverse the association structure and include 𝛾 in the observation submodel: In that
setting, assuming a positive association, higher values of the longitudinal process would lead
to a more frequent visiting process (and vice-versa in the setting of negative association). The
observation process could also depend on lagged values of the longitudinal outcome or of the expo-
sure; this would relax the semi-Markov assumption in some of our data-generating mechanisms.
More biologically (and clinically), plausible association structures (such as the current value, cur-
rent slope, cumulative effect parametrisations) could also be investigated; more details are in
Rizopoulos (2012).

In conclusion, it is important to account for the visiting process when analysing health care
utilisation data, and we showed that ignoring it leads to biased estimates. Given the wide range
of applied settings in which this could be relevant, the review of Farzanfar et al. (2017) points
toward a lack of awareness of the problem and the lack of readily available, user-friendly soft-
ware to fit more complex joint models; throughout this paper, we outlined a framework in which
merlin could be easily used to fit complex joint model and help to reduce this translational gap.
We provide example code using Stata in the Online Supplementary Material.
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G Supplementary Results: Monte Carlo Simulation

on Modelling the Observation Process

This Appendix contains supplementary results from the Monte Carlo simulation on

modelling the observation process when analysing longitudinal data, introduced in

Section 7.5.

MSEs for the regression coe�cients are included in Figure G.1.

Bias, coverage probabilities, and MSEs for all variance components are included in Figures

G.2, G.3, and G.4, respectively.
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Figure G.1: MSEs of regression coe�cients, Monte Carlo simulation study on modelling the
observation process
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Figure G.2: Bias of variance components, Monte Carlo simulation study on modelling the
observation process. Labelled values (with points in black) are statistically signi�cant values,
determined via Z tests based on Monte Carlo standard errors
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Model JM ME (Total) ME (Cumulative) ME (No adjustment) GEE (IIVW)

81%74%

90%

86%

82%

91%
0%

Non-Informative Observation Process Informative Observation Process

0.25 0.50 0.75 0.95 0.25 0.50 0.75 0.95

Gamma not depending on treatment

JM (gamma = 0.00, lambda = 0.10)

JM (gamma = 0.00, lambda = 0.30)

JM (gamma = 0.00, lambda = 1.00)

Gamma depending on treatment

Gamma depending on treatment and previous Y

JM (gamma = 1.50, lambda = 0.10)

JM (gamma = 1.50, lambda = 0.30)

JM (gamma = 1.50, lambda = 1.00)

JM (gamma = 3.00, lambda = 0.05) with regular visits

Coverage of  Var(u)

A

93% 93%
93%92%

93%

93%
92%

93%

93% 93%

93%
92%

93%93%

76%37%

0%

0%0%

87%
0%

0%
0%

92%
0%0%0%

93%

0% 0%

0%0%

Non-Informative Observation Process Informative Observation Process

0.25 0.50 0.75 0.95 0.25 0.50 0.75 0.95

Gamma not depending on treatment

JM (gamma = 0.00, lambda = 0.10)

JM (gamma = 0.00, lambda = 0.30)

JM (gamma = 0.00, lambda = 1.00)

Gamma depending on treatment

Gamma depending on treatment and previous Y

JM (gamma = 1.50, lambda = 0.10)

JM (gamma = 1.50, lambda = 0.30)

JM (gamma = 1.50, lambda = 1.00)

JM (gamma = 3.00, lambda = 0.05) with regular visits

Coverage of Var(v)

B

93%

93%

93%

93%

Non-Informative Observation Process Informative Observation Process

0.25 0.50 0.75 0.95 0.25 0.50 0.75 0.95

Gamma not depending on treatment

JM (gamma = 0.00, lambda = 0.10)

JM (gamma = 0.00, lambda = 0.30)

JM (gamma = 0.00, lambda = 1.00)

Gamma depending on treatment

Gamma depending on treatment and previous Y

JM (gamma = 1.50, lambda = 0.10)

JM (gamma = 1.50, lambda = 0.30)

JM (gamma = 1.50, lambda = 1.00)

JM (gamma = 3.00, lambda = 0.05) with regular visits

Coverage of Var(e)

C

Figure G.3: Coverage probability of variance components, Monte Carlo simulation study
on modelling the observation process. Labelled values (with points in black) are statistically
signi�cant values, determined via Z tests based on Monte Carlo standard errors
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Figure G.4: MSEs of variance components, Monte Carlo simulation study on modelling the
observation process
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