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Abstract 
 
 
 

Mobile laser scanning in forests: mapping beneath the canopy 
 

Thomas L. Potter 
 

 

Laser scanning is a modern technique used in forest mapping and monitoring. Airborne laser 

scanning (ALS) has been extensively used in medium-resolution, wide-area mapping. Terrestrial 

laser scanning (TLS), which delivers high-resolution data, has increasingly been used to map 

precise forest structural detail in discrete forest plots. Handheld mobile laser scanning (HMLS), a 

medium-to-high-resolution technique, sits between ALS and TLS methods and was first assessed 

in forestry in 2015. This thesis builds on existing research in evaluating the utility of HMLS sensors 

in forest mapping.  

 

GeoSLAM ZEB-1 and ZEB-REVO HMLS sensors were deployed in a variety of UK forests and 

woodlands. Study sites were chosen to reflect a mixture of forest type, tree density, height, 

structural complexity and topographic variety. Scans were acquired alongside reference 

measurements and TLS scans. Experiments were devised to assess relative performance of HMLS 

sensors in the measurement of DBH, height, stem position, crown extent and volume with novel 

analyses performed in 3D Forest and CloudCompare.  

 

Results indicated DBH could be measured to accuracies of 0.016-0.026 m RMSE, agreeing with 

existing research. HMLS tree position compared with TLS was subject to 0.1-0.3 m error but 

superior to manual techniques. HMLS sensors could not resolve tree height or crown structure 

due to limited range, identified as 10-12 m from sensor. A combination of HMLS and ALS data 

fusion yielded more accurate results determining height, crown extent and crown volume. These 

findings indicate that HMLS are suitable for sub-canopy forest mapping. HMLS sensors with 

increased range are becoming widely available in tandem with increasingly lightweight portable 

mobile laser scanning (MLS) solutions attached to UAV platforms. This research contends that 

HMLS will play a major role in multi-sensor integrated forest mapping and is ideal in supporting 

remote and proximal airborne mapping by providing a rich and accurate ‘ground-up’ dataset. 
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1. Introduction 
 

 

There are in excess of two hundred and fifty definitions of ‘forest’ in the scientific 

literature. These range from binary ‘forest/non-forest’ classifications to complicated, 

fuzzy-set ecotone maps. Perhaps the most logical is that offered by Whittow (1984; In: 

Grainger, 2010) who described a forest as "a continuous tract of trees". Baccini et al. 

(2012), similarly, defined forests as areas of "live woody vegetation". However, there are 

circumstances where land can be classified as forest in the complete absence of trees 

(FAO, 2000).  

 

Forests cover over thirty per cent of the terrestrial environment, contribute to thirty-

three per cent of net terrestrial productivity (Chen et al., 2015) and play a vital role in 

carbon budget globally (Carvalhais et al., 2014; Ahmed et al., 2015; Mitchard, 2018). 

Forty-six per cent of Earth's forests lie in both the humid and dry tropics between the 

Tropic of Cancer and Tropic of Capricorn (Grainger, 2010) whilst in Great Britain, 

woodland coverage exceeds 3 170 000 Ha – some 13% of all land area (Forest Research, 

2018). With improved understanding of the carbon cycle (Herold et al., 2011; Mitchard, 

2018) and with increasing concern in the potential impacts of anthropogenic climate 

change (Carvalhais et al., 2014; Mitchard, 2018, forests have become a significant and 

very widely-discussed topic of scientific research (Baccini et al., 2012; Hansen et al., 2013; 

Mitchard, 2018). 

 

Forest mapping is well-represented in the scientific literature with decades of scientific 

research documenting approaches which have made use of satellite (Kaasalainen et al., 

2015), airborne (Lefsky et al., 2002; Mascaro et al., 2014; Adão et al., 2017) and terrestrial 

sensors in the microwave, optical and thermal domains. With the advent of programmes 

such as NASA’s Landsat and the recent ESA Sentinel constellation, the state-of-the-art 

focusses on deriving new information from established archives and the relatively-recent 

phenomenon of high temporal – as well as spatial – resolution between complementary 

sensors. In recent years, the advent of affordable LiDAR (light detection and ranging) 
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sensors has led to unparalleled detail and accuracy measuring forest structure from the 

air and the ground.  

 

Forests are of critical importance, both in terms of ecology and the global economy (de 

Sassi et al., 2015). Aboveground forest biomass – the amount of woody vegetation stored 

in forests globally – is an Essential Climate Variable under the framework of global efforts 

to account for the fluxes within the carbon cycle (Sileshi, 2014; Li et al., 2015; Sinha et al., 

2015). This variable is directly related to the volume of carbon currently stored in forests 

worldwide and thus it is imperative that we accurately and reliably understand and 

monitor carbon stocks as a huge piece of the climate change puzzle (Harris et al., 2012; 

Sileshi, 2014). 

 

Aboveground biomass has become more and more widely reported within ecological 

science in recent years, especially in studies which have allied forest ecology with remote 

sensing (Sileshi, 2014; Li et al., 2015). Key to this increase in scientific attention is the 

advent of multiple-scale LiDAR (Sinha et al., 2015) and the rapid development of RADAR 

analysis leading to all-weather, wide-area forest mapping capability (Le Toan et al., 2011; 

Woodhouse et al., 2012; Joshi et al., 2017). In the past five to ten years, high-profile 

studies by research groups at NASA (Saatchi et al., 2012; 2014) and other institutions have 

endeavoured to map aboveground biomass globally, regionally and locally using various 

combinations of remotely-sensed and ground-based datasets (Saatchi et al., 2007; Cartus 

et al., 2012; Baccini et al., 2012; Avitabile et al., 2012; Englund et al., 2017; Rodriguez-

Veiga et al., 2016; 2017).  

 

However, while there is a growing body of scientific publications reporting aboveground 

biomass magnitudes around the world (Grace et al., 2014), there is an increasingly 

complicated picture of disagreement and widely-divergent estimates (Mitchard et al., 

2014; Saatchi et al., 2014; Schimel et al., 2014; Sileshi, 2014; Avitabile et al., 2016; 

Rodriguez-Veiga et al., 2016; 2017). Numerous studies exist employing all manner of 

statistical, machine-learning and allometric modelling approaches to attempt to quantify 

biomass at the forest level, but comparatively few give much attention to ground-based 

validation (Clark and Kellner, 2012; Saatchi et al., 2012) and it can prove troublesome 
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making an informed decision as to which biomass map might be most-appropriate 

(Englund et al., 2017). Indeed, it is rare to find studies which even agree on the definition 

of ‘forest’. Given this lack of consensus at almost every level, it seems folly to claim 

biomass maps are accurate or precise (Woodhouse et al., 2012). 

 

Aboveground biomass is, to all intense and purposes, a measure of density. It attributes a 

variety of mass measurements or estimates – specifically, the variable of wood specific 

gravity – to an estimate of volume, usually at the individual tree level (Chave et al., 2014). 

These figures often derive from statistical models (Woodhouse et al., 2012), themselves 

based on highly selective sub-sampled ground data aggregated at the database level of a 

number of decades (Mitchard et al, 2014; Saatchi et al., 2014). Even assuming the 

samples used in allometric models are unbiased and entirely representative, the ground 

data collected within inventory plots and fed into these models is in itself biased and 

unrepresentative (Clark and Kellner, 2012; Sileshi, 2014; Sagang et al., 2018).  

 

There is a need to increase consistency of sampling, analysis and reporting of forest 

structure and biomass magnitude at tree, forest plot, forest stand, regional and global 

levels (Le Toan et al., 2011; Schimel et al., 2014). Key to this could be an approach that 

leverages a new generation of mobile mapping systems – handheld mobile laser scanners 

(HMLS) – to rapidly and accurately map areas of forest (Ryding et al., 2015; Talbot, 2017; 

Bienert et al., 2018; Liang et al., 2018; Pierzchala et al., 2018). It was hypothesised that by 

focussing solely on accurate measurement of forest structure and hence volume, biomass 

estimates could be refined (Liang et al., 2016; Paynter et al., 2016; Oveland et al., 2018). It 

was further proposed that the volume of all physical entities within a forest plot should 

be measured. Ratios of the constituent parts of a given forest biome could then be 

developed. Combined, this information could be of use in the calibration and validation of 

remotely sensed data products (Putman et al., 2018; Shendryk et al., 2018; Stovall et al., 

2018; Wilkes et al., 2018) such as COSMO-SkyMed, Sentinel-1 and ALOS-2 radar and 

Landsat 8, Sentinel-2 and other optical satellite sensors.  

The research presented in this thesis sought to determine how well HMLS systems work 

beneath the forest canopy. It assessed how they compared with ‘traditional’ forest 

inventory methods as well as measurements derived from tried-and-tested, tripod-
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mounted TLS systems. Novel two- and three-dimensional analyses were performed in 

cutting edge, open source software (3D Forest v0.42: Kruček, 2017; Trochta et al., 2017; 

CloudCompare v2.9.1: CloudCompare, 2018) and basic sensor fusion was explored, 

addressing technical limitations identified in current-generation HMLS sensors. Based on 

the results of this research, the most likely role HMLS technologies could play in forest 

mapping was proposed. Broadly, as part of an integrated forest inventory approach. 

 

1.1 Research aims and objectives 

 

The primary aim of this research was to explore the real-world performance of HMLS 

sensors in mapping areas of forest – specifically from the ground toward the crown. In 

recent years, there has been a swift rise in the number of research projects exploring 

airborne and then terrestrial LiDAR as a tool to measure and model forest structure. Yet 

in the four or five years in which HMLS sensors have been available, fewer than ten 

projects have critically assessed them in comparison with other forest mapping 

techniques. The primary objective of this thesis was to assess the accuracy and error of 

HMLS tree mensuration in comparison with TLS and forest inventory approaches. 

 

A secondary aim was to identify the factors that most influenced point density and 

distribution in point clouds acquired with HMLS instruments. In terrestrial laser scanning, 

maximum point density per scan decreases in a linear manner with distance and as a 

function of beam angle. In airborne LiDAR data, point density is a function of aircraft 

velocity, altitude and sensor frequency. At the time of writing, no studies had sought to 

characterise point distribution in HMLS data. As point density and distribution are key 

parameters influencing the biophysical parameters that can be extracted from a point 

cloud, an opportunity was identified to develop a ‘best practice’ field protocol. Therefore 

the second objective of this research was to devise a protocol to collect an optimal 

density and distribution of point data in a time-efficient, consistent and repeatable way. 
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Within this research, a final aim was to assess the extent to which ‘sensor fusion’ might 

address shortcomings identified when deploying HMLS sensors beneath the forest 

canopy. It became apparent that sensor range was the principle limitation. Whilst the 

manufacturer advertised a range of 20 to 30 m, in reality this fluctuated between 10 and 

15 m. Accordingly, HMLS data were acquired in areas where ALS data was also available 

and a process of data ‘fusion’ – alignment, vertical adjustment and merging of multi 

sensor point clouds – was designed. Biophysical parameters extracted from these 

datasets were compared with reference parameters extracted from coincident, reference 

TLS data. Therefore, the final objective of this thesis was to determine what tree and 

forest variables could be measured with a combination of HMLS and airborne datasets.  

 

1.2 Research questions 

 

Three research questions were posed: 

 

RQ1:  What forest inventory variables can be measured with HMLS sensors? 

What is the magnitude of error inherent in these measurements when 

compared with a reference, TLS-derived dataset? 

RQ2:  How does HMLS sensor range and proximity to a target influence point 

density and distribution? Is it possible to increase point density in areas of 

marginal sensor range by increasing scan repetition alone? 

RQ3:  To what extent can a fusion of HMLS and ALS data address limitations in 

the range of HMLS sensors? What 2D and 3D forest inventory 

measurements can be extracted from a fused dataset and how do they 

compare to TLS-derived measurements? 
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1.3 Thesis structure and organisation 

1.3.1 Thesis structure 
 

This thesis begins with a chapter dedicated to the comprehensive review of the scientific 

literature (Chapter 2, from page 21) undertaken throughout the research process. It is 

followed by a detailed chapter describing the methods (generic and bespoke) and 

materials (datasets and derived variables) used in the research (Chapter 3, starting on 

page 44).  

 

Three standalone research chapters then follow, with each reporting on analyses 

designed to answer a specific research question (Chapter 4, from page 101; Chapter 5, 

from page 148; and Chapter 6, from page 178).  

 

Chapter 7 (page 200 to 235) comprises a comprehensive discussion of all results, both in 

terms of specific research questions and in the context of the broader research aim. This 

chapter synthesises the full body of research presented here, highlights major findings 

and proposes areas of future research.  

 

A conclusion (Chapter 8) follows, then a full bibliography (Chapter 9 from pages 240 to 

265).  

 

Finally, an Appendix presents three tables of results not featured in Chapters 4 to 6 

directly. 
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2. Literature review 
 

2.1 Introduction 

 

In this chapter, the body of scientific literature encompassing various aspects of forest 

remote sensing is reviewed and the state-of-the-art in three-dimensional forest mapping 

explored. As of April 2019, many hundreds of papers can be found which have explored 

themes as diverse as forest biology (Chave et al., 2014), ecology (Shugart et al., 2010), 

health (Mitchard, 2018), history (Herold et al., 2011) and extent (Saatchi et al., 2012). Of 

these, many employed multiple remote sensing techniques to detect (Shimada et al., 

2015), measure and characterise (Hall et al., 2011; Ahmed et al., 2015) forests.  

 

In the course of delving into the body of knowledge for this literature review, a particular 

focus was placed on studies which used LiDAR or RADAR (often both) to measure 

structural forest parameters (Lucas et al., 2005; Cartus et al., 2012; Kaasalainen et al., 

2015; Ferraz et al., 2016). The majority of these leveraged airborne laser scanning (ALS) to 

derive forest metrics at continental, regional (Bolton et al., 2011; Wulder et al., 2011; 

Hansen et al., 2014), forest (Shendryk et al., 2018) and stand level. Such metrics were 

typically upscaled or extrapolated over larger areas of forest – either alone or in tandem 

with coarser-resolution data from satellite optical and radar platforms.  

 

From the mid-2000s (Hopkinson et al., 2004; Bienert et al., 2006; Danson et al., 2007), the 

emergence of terrestrial laser scanning (TLS) became apparent (Calders et al., 2015) with 

an ever-increasing volume of studies using this technology year-on-year. Increasingly, the 

focus of these studies has honed-in on the precision and data density afforded by survey-

grade LiDAR technology to glean new insights into forest structure and processes. This, 

and the advent of handheld mobile LiDAR systems, appeared to represent the ‘leading 

edge’ in what remains a very fast-paced area of active and international research (Liang et 

al., 2016; Liang et al., 2018). Over the following pages, ever-evolving sensor technologies 
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and their application in forestry are described in depth. Gaps in knowledge are identified, 

and research questions proposed and justified. 

 

2.2 Forest structural parameters 

 

Forest structure is best-detected with laser-based instruments (i.e. LiDAR) which offer 

dense, accurate and precise measurements of forest structure in three dimensions. Table 

1.1 (page 24) introduces key forest parameters measured directly or derived from a 

combination of LiDAR data, allometric models and third-party inventory data. Of the 

variables described in Table 1.1, aboveground biomass is most commonly cited as it is an 

Essential Climate Variable (Grainger, 2010; Hall et al., 2011) and a major parameter in the 

carbon cycle (Le Toan et al., 2011). In the terrestrial carbon cycle, forests are the 

dominant dynamic (Ahmed et al., 2015) with standing aboveground biomass (AGB) a 

major parameter (Chave et al., 2005; Le Toan et al., 2011; Baccini et al., 2012; Chen et al., 

2015; Kaasalainen et al., 2015).  

 

Aboveground carbon (AGC) comprises roughly 50 per cent of estimated standing AGB in a 

given forest (Grainger, 2010; Hall et al., 2011). Forests, in turn, store 46 to 50 per cent of 

the AGC associated with terrestrial vegetation (Grainger, 2010; Chen et al., 2015) - a total 

estimated at 228.7 Pg carbon (Baccini et al., 2012). AGB can be measured through 

destructive sampling, or estimated with non-destructive sampling (Brown et al., 1989; 

Calders et al., 2014; Stovall et al., 2018). For destructive sampling, entire trees are felled 

and their constituent parts (steam, branches, leaves, roots) weighed pre- and post-

heating at pre-defined temperatures (Calders et al., 2015a; 2015b) which determines wet 

and dry mass. Another form of destructive sampling requires extraction of small cores 

from tree stems (Brown et al., 1989; Chave et al., 2006). The resultant cylinder of wood is 

also weighed in wet and dry form. In both destructive and non-destructive sampling, tree 

parameters such as diameter at breast height (DBH), tree height and tree species are 

identified. These parameters are then input into allometric equations, usually on a per-

species or otherwise on a forest-type basis, to estimate aboveground live biomass and 
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aboveground carbon density based on established multiple regressions (Chave et al., 

2014). 

 

Brown et al. (1989) introduced a general model for calculation of AGB with required 

parameters including tree height, DBH, wood density and Holdridge life zone (Holdridge, 

1967) derived from a series of regressions established with data from over 5 000 trees 

collected from 43 plots. More recently, pantropical allometric models have been 

established and species wood density and biomass databases created (Chave et al., 2003; 

2004; 2006; 2014). These have all been very widely cited throughout the literature, 

although studies do not always reach consensus regarding the parameters required for in 

situ sampling (Mitchard et al., 2014; Saatchi et al., 2014). 

 

Many sub-canopy variables (DBH, basal area, stem density, growing stock volume, etc) 

are vital to forest applications such as biomass mapping, carbon accounting and 

understanding fuel balance in context of forest fires (Garcia et al., 2017). These variables 

are typically inferred from coarser datasets (e.g. airborne LiDAR; ALS; satellite data) or 

measured with high-precision TLS instruments. As such, there seem to be two ‘extremes’ 

represented in the literature: wide-area mapping at the expense of spatial resolution and 

absolute precision, and highly-precise but extremely-localised 3D mapping and modelling. 

Studies tend to map entire forests and forest stands - at an aggregate level - at one 

extreme. On the other extreme, research seems to focus on estimation of individual tree 

volume with highly precise data and sophisticated algorithms. There seems to be a clear 

‘gap’, which this thesis aims to help populate. 
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Table 1.1: Summary of tree and forest parameters that can be measured with remote sensing 

Parameter Brief definition  

A. Direct structural measurements 

Canopy 
cover 

Essentially the vertical distribution of the forest canopy within a profile from treetop to 
ground. Calculated by Bolton et al. (2013) as the ratio of first returns above 2 m to the 
total number of first returns for a given bin size. 

Canopy 
height 

Probably the most commonly cited metric. To calculate canopy height, first and last 
returns are gridded to create DSM and DTM layers respectively. A raster calculation is 
performed subtracting DTM heights from the DSM. The resultant grid represents the top 
of the forest canopy. 

Canopy 
profile 

A vertical profile through the canopy indicating the distribution of tree stems, branches 
and foliage relative to the ground. 

Crown 
radius 

The horizontal measurement of an individual tree crown, determined by measuring the 
radius of the crown circumference. In a gridded discrete-return dataset, this might 
require segmentation to determine which bins/raster cells relate to a particular tree. 

Canopy 
volume 

Derived from canopy profile information. This can be estimated through calculations 
based on the relationship between canopy profile area and field-based volume 
measurements, as established in multiple field studies. 

Leaf area 
index 

The ratio between leaf cover and gaps in leaf cover for a given bin, plot or hemispherical 
photographic image. A strong correspondence between LiDAR and hemispherical image 
estimates was demonstrated by Morsdorf et al. (2006). 

This is particularly useful in estimating the penetration of natural light within a forest 
canopy, e.g.: in determining photosynthesis and primary productivity. 

Tree 
height 

A simple measurement of the highest point(s) per tree, obviously in some part 
dependent on the ability to discriminate between individual trees. 

Tree height statistics calculated in forestry-related studies include mean, SD, percentile 
heights and relative frequency of points at predefined height intervals (Lu et al., 2014). 

Knowing tree height and species type, a forester can estimate timber volume. 

B. Parameters derived through further computation 

Basal area 
This can be estimated through analysis of tree height and various allometric 
relationships (see: Wulder et al., 2007). 

DBH 
Diameter at breast height is usually measured with a tape measure around a tree trunk 
1.37 m above the ground. With the use of field plots, this can be estimated from ALS 
through reference to tree height and other biophysical parameters. 

Stand 
complexity 

Inferred from point height variation (Bolton et al., 2013), this is in essence a 
measurement of the variability in return heights within the canopy – the ‘topography’ of 
the uppermost forest canopy surface. However, the literature recommends caution here 
as complexity is difficult to define in the field. 

Texture 
By considering the texture – or rugosity, i.e.: the complexity and shape - of the upper 
canopy surface, it is possible to better-estimate the volume of a given forest stand with 
ground classification. 

AGB 

Forest canopy height and density are correlated with AGB (Hansen et al., 2015). 
Numerous studies recommend use of 3D datasets over two-dimensional, field-based 
measurement in broader-scale AGB estimates, focussing on vertical and horizontal 
canopy structure (Lu et al., 2014). 

AGC AGC density is roughly 50% that of AGB, so estimated with a simple calculation. 
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2.3 Measuring forest structure with remote sensing 

 

Forest structure and aboveground biomass are routinely modelled with LiDAR and 

estimated with LiDAR parameters. Structure and AGB are often estimated from SAR 

backscatter intensity, too, albeit indirectly (Woodhouse et al., 2012). Backscatter intensity 

is in part determined by interactions of a radar pulse with components of trees (leaves, 

branches and stems) within a given footprint (Ulaby et al., 1988; Balzter, 2001; Balzter et 

al., 2003; Shugart et al., 2010) and is sensitive to scattering mechanisms outside 

interactions the with parts of a tree. Other important parameters include radar 

wavelength, signal polarisation, forest type, dielectric properties of tree components, soil 

roughness and soil moisture (Dobson et al., 1992; Le Toan et al., 1992; Balzter, 2001; 

Balzter et al., 2013; Shugart et al., 2010).  

 

Unlike LiDAR, which requires acquisition of data in strips analogous to the flightpath or 

orbit pattern of an air or spacecraft, SAR ‘looks’ cover vast areas (Kellndorfer et al., 2014) 

tens of km in dimension in periods no more than a few minutes per scene. This means 

SAR data offers a ‘snapshot’ of the state of all forested regions in a given scene at a 

known moment in time. LiDAR mosaics, whilst more precise, are generally a composite of 

data acquired on multiple dates – in some cases, dates covering periods of several years. 

Furthermore, with satellites such as Sentinel-1 operated by ESA (European Space Agency) 

and ALOS-PALSAR/ALOS-2 operated by JAXA (Japanese Space Agency) currently orbiting 

Earth, regular global coverage is made available (Kaasalainen et al., 2015). 

 

Fusion of SAR and LiDAR data is likely to be of greatest relevance and utility (Lucas et al., 

2005; Kellndorfer et al., 2010) in cases where field inventory data is patchy or non-

existent and climatic conditions preclude regular optical imagery (Tsui et al., 2013). 

However, estimates can vary significantly to the order of several hundred Mg.ha-1 

(Mitchard et al., 2014) depending on upscaling and extrapolation methods employed. 

Disney et al. (2006) developed one of the first three-dimensional structural models for 

modelling optical reflectance and microwave backscatter, in a study with yielded 

significant potential for modelling even needle-level SAR interaction. Several studies have 
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sought to characterise forest structure with SAR (Cartus et al., 2012; Englhart et al., 2012; 

Kellndorfer et al., 2014; Mermoz et al., 2015; Garcia et al., 2018; Santoro et al., 2018; 

Shendryk et al., 2018). In a comprehensive review paper, Kaasalainen et al. (2015) 

compared sixteen individual studies which combined LiDAR and synthetic aperture radar 

sensors to estimate AGB. They noted that synergy between LiDAR (ground elevation) and 

large area SAR-derived biomass estimates looked particularly promising. Knowing 

precisely how much – and where - biomass is stored should enable pixel-level precision in 

biomass maps where upscaling and extrapolation is applied. This synergy is given further 

credence by Mitchard et al. (2014, p. 942) who controversially claimed “wood density 

cannot be detected from space”, advocating use of regional algorithms for regional-scale 

studies. This was refuted by Saatchi et al. (2014), stating inappropriate use of field plot 

data which they alleged showed signs of sample bias. More recently, studies have 

examined the synergistic use of LiDAR and high-resolution SAR to model forest structure 

and contribute to calibration-validation activities (Qi et al., 2019). 

 

For optimal results, wide-area SAR mapping should be combined with a comprehensive 

series of regular ALS campaigns (Mascaro et al., 2014) or a carefully distributed, 

statistically robust network of TLS ground-truth plots. Garcia et al. (2015) employed both 

ALS and TLS techniques to appraise canopy clumping and assess the quantity of light 

penetrating the forest canopy, determining that the relatively low point density of ALS 

data precluded the use of certain analyses otherwise used with TLS data. It was 

contended that the use of discrete multiple-return or full-waveform ALS could 

compensate for relative deficiencies in point density (Garcia et al., 2015). It was also 

suggested that TLS is superior to ALS when estimating AGB density as forest variables 

derived from lower sections of the canopy were shown to explain a greater portion of 

AGB density than those derived from canopy height measurement (Hansen et al., 2015). 

 

Airborne laser scanning (ALS) is an active, laser-based sensing platform fitted to an aerial 

platform. These platforms are typically affixed to light fixed-wing or rotary aircraft and, in 

recent years, to small unmanned aerial vehicles (UAVs, sUAS or ‘drones’). Such systems 

scan a full swath perpendicular to the aircraft’s flight path multiple times per second and 

are typically closely coupled with an inertial measurement unit (IMU) combining 
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gyroscope, accelerometer and compass to measure pitch, yaw and roll. Further combined 

with real time kinematic (RTK) GNSS systems, the result is a three-dimensional point 

cloud dataset fully corrected for aircraft motion and accurately georeferenced to 

accuracies exceeding 0.01 m (Brede et al., 2017; Pierzchala et al., 2018). Whilst metrics 

such as tree height can be inconsistent and vary with forest type and structure (Disney et 

al., 2010; Simpson et al., 2017), data density and processing play an important role 

(Khorrami et al., 2018; Ørka et al., 2018). ALS systems typically fall into one of two common 

categories: full-waveform and discrete-return. Full-waveform systems emit a laser pulse 

and record the entire return signal to memory. Discrete-return systems differ in that 

several peaks in the pulse – usually four – are automatically digitised on-board (Heinzel 

and Koch, 2011). Full-waveform systems acquire the larger dataset of the two but at the 

expense of data utility (Reitberger et al., 2009). Discrete-return LiDAR data are more 

transferable and require much less memory but offer less structural insight as a 

compromise (Heinzel and Koch, 2011). 

 

Several major studies have used full-waveform ALS data to characterise tree and canopy 

structure (Wulder et al., 2007; 2009; Reitberger et al., 2009; Heinzel and Koch, 2011; 

Hansen et al., 2014) and characterise and estimate aboveground biomass (Yao et al., 

2012; Cao et al., 2014; Latifi et al., 2015). Discrete-return ALS systems have been similarly 

used in studies exploring forest canopy structure (Ferraz et al., 2012; Bolton et al., 2013; 

Görgens et al., 2015; Fisher et al., 2015; Palace et al., 2015), tree detection and 

classification (Dalponte et al., 2014; Saremi et al., 2014; Garcia et al., 2015; Gorgens et al., 

2015) and estimation of aboveground biomass (Ene et al., 2012; Asner et al, 2014; 

Sheridan, 2014; Hansen et al., 2015; Palace et al., 2015; Takagi et al., 2015). In particular, 

a comprehensive study by Ioki et al. (2014) and similar studies by Asner & Mascaro (2014) 

and Asner et al. (2018) utilised ALS to characterise AGB in different forest types 

undergoing differing processes of forest degradation in northern Borneo. ALS systems 

have also been used to determine tree species (Brandtberg, 2007; Mascaro et al., 2014a; 

2014b) and characterise the effects of wildfires on forested environments (Wulder et al., 

2009; Garcia et al., 2017).  
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2.4 Estimating AGB with Earth observation techniques 

 

The first high-resolution pantropical map of aboveground biomass was published by 

Saatchi et al. (2011) in a seminal paper much-discussed in subsequent literature. Utilising 

IceSAT/GLAS footprints converted to Lorey’s Height, local-scale information on biomass 

magnitude and maps of forest stratification, biomass density was estimated at a 

resolution of 1 km using the maximum entropy algorithm. Three-parameter allometric 

equations were used to estimate aboveground biomass as a function of tree height, basal 

area and generalised wood density for in excess of 4 000 individual plots, each at least 0.1 

ha in area (Saatchi et al., 2011). 

 

In another broadly similar and widely cited study, Baccini et al. (2012) used the Random 

Forest algorithm proposed by Breiman (2001) to classify a variety of optical and radar-

derived raster images, determine aboveground biomass density and output a wall-to-wall 

aboveground biomass map. In a similar vein, Cartus et al. (2014) also employed a 

maximum entropy algorithm to detect and quantify aboveground biomass and generate 

wall-to-wall biomass density and estimate uncertainty maps for Mexico. Tsui et al. (2013) 

combined C- and L-band SAR with discrete multiple-return LiDAR transects and a variety 

of co-kriging, regression kriging and regression co-kriging approaches to characterise AGB 

on the regional to national scale.  

 

In recent years, several major pantropical forest carbon maps derived from remotely-

sensed data fused with field inventory plots and upscaled through statistical techniques 

have been published at national, regional and global scales (Baccini et al., 2011; Harris et 

al., 2012; Saatchi et al., 2012; Cartus et al., 2014; Solberg et al., 2014; Avitabile et al., 

2016; Rodriguez-Veiga et al., 2017). Yet despite the undoubted value of these maps to 

science, there remains significant and at times robust disagreement in their 

interpretation - and use - of field plot data and the subsequent estimates of aboveground 

carbon densities (Mitchard et al., 2014; Saatchi et al., 2014) derived thereafter. More 

recently, de Sassi et al. (2015) noted the substantial utility in such pan-tropical maps but 
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emphasised the apparent disconnect between large-scale maps and finer-scale, plot-level 

inventory data. 

2.5 Terrestrial LiDAR in forestry 

 

Terrestrial laser scanning (TLS) in forests can trace its roots back to the mid-2000s 

(Hopkinson et al., 2004; Bienert et al., 2006; Danson et al., 2007). One of the earliest 

studies to use TLS in tree measurement was Hosoi and Omasa (2006) who modelled trees 

using voxel cells to calculate leaf area density. Tansey et al. (2009) explored the utility of 

TLS in estimating various structural tree and stand parameters including DBH, basal area 

and tree density. Reporting high degrees of accuracy, they also cautioned that in dense 

forest stands, TLS was unable to accurately determine tree height due to occlusion. A 

further limitation in the use of TLS is in the discrimination between tree saplings, shrubs 

and herbaceous vegetation - all broadly similar in detected structure within unfiltered, 

dense point clouds (Brolly et al., 2013). A potential solution might be in operating the TLS 

in ‘leaf off’ conditions, although this would preclude species identification and 

subsequent classification (Brolly et al., 2013; Calders at al., 2015). This leaf-off approach 

was supported by Lu et al. (2014) who adopted a bottom-up approach in the 

segmentation of individual trees within a stand of deciduous tree species. 

2.5.1 Estimating tree diameter at breast height 
 

DBH was derived from TLS data in numerous studies including Tansey et al. (2009), 

Pueschel et al., (2013), Aijazi et al. (2017), Blakey et al. (2017), Koreň et al. (2017), Muir et 

al. (2018), who reported R2 of 0.77, Bienert et al. (2018), Cabo et al. (2018a; 2018b) who 

quantified RMSE between 0.8 and 1.3 cm, Liang et al. (2018), Liu et al. (2018) and Oveland 

et al. (2018). The accuracy of estimated DBH often varied as a function of the chosen 

algorithm (Koreň et al., 2017; Liu et al., 2018; Cabo et al., 2018a; 2018b), software (Liang 

et al., 2018) and user-specified parameters. Evidently TLS offers a step change in accuracy 

compared to traditional, tape measured field inventory but results are only as good as the 

survey methodology and algorithm selection. Liang et al. (2018) further suggested that 

TLS sensors were the optimal hardware for forest scanning – superior to mobile sensors.  
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2.5.2 Estimating tree volume 
 

There is an increasing need to understand both the two – and three – dimensional 

structure of global forests. This is particularly the case in quantifying ecosystem dynamics 

including aboveground biomass, the carbon cycle and the potential impacts of climate 

change (Shugart et al., 2010; Wilkes et al., 2017; Asner et al., 2018; Calders et al., 2017; 

Coomes et al., 2018; Stovall et al., 2018). Chief among structural variables is tree volume. 

In one of the first tree volume-centred studies, Bienert et al. (2010) successfully 

demonstrated the separation of individual trees in a TLS-derived voxel space model 

through the application of eigensystems, with substantially higher rates of success in 

coniferous stands than broadleaf stands.  

 

Another early approach was to fit a polyline to each branch and use this to generate a 

sequential series of cylinders fitted to point cloud extent perpendicular to polyline 

orientation (Tansey et al., 2009; Dassot et al., 2012). An advantage of this approach was 

that it mitigated the effects of occlusion. Dassot et al. (2012) found that gaps between 

points did not necessarily limit the effectiveness of cylinder-fitting; TLS-derived estimates 

of solid wood volume of 42 trees fell within a range of +/- 10% compared with destructive 

samples. The concept was further-developed by Raumonen et al. (2013) who devised a 

scan-to-3D-model workflow ideally suited to precise estimation of tree volume. Calders et 

al. (2014b) used TLS to scan 65 trees within open Eucalypt forest. The same trees were 

then measured with traditional inventory techniques before destructively sampling to 

determine AGB density. Individual tree data was extracted from co-registered point 

clouds and parameters including tree volume, tree height and DBH were calculated 

through computation of quantitative structural models (QSM). In comparison with the 

reference AGB densities, TLS-derived analyses overestimated AGB by 98%; allometric 

equations derived from DBH and tree height, in contrast, underestimated AGB by up to 

36.57% (Calders et al., 2014b).  

 

Feliciano et al. (2014) assessed AGB in mangrove forests and reported strong results 

further advocating the use of TLS as a non-destructive means of estimating biomass. Kunz 

et al. (2017) performed similar work, estimating the volume of 24 young trees using both 
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a cylinder-fitting and voxel space approach. Estimates were compared with physical 

samples where volume was measured through water displacement. They found the voxel-

based approach most accurate (R2 = 0.98) with cylinder-fitting techniques achieving R2 of 

0.90 and 0.92. 

 

However, not all laser scans are equal and approaches such as QSM can falter. Issues 

commonly encountered include tree detection and segmentation in highly heterogeneous 

stands as well as occlusion (shadowing) in dense forest. Whilst multiple studies 

demonstrated strong performance in automating the detection of trees in TLS-derived 

datasets, few have established a robust protocol for the detection of smaller, younger 

trees (Brolly et al., 2013). Hess et al. (2015) explored the effect of occlusion on TLS-

derived, voxel-based small tree models and found volume estimates were very similar. 

However, they noted that in natural forests comprised of larger trees, occlusion may 

present a greater source of error in volume estimation. Errors in TLS-derived volume 

estimation also tend to be species-specific (Kunz et al., 2017). That said, error can be 

highly marginal. TLS sensors are sensitive to crenulations in tree bark; Cabo et al. (2018b) 

reported error of 0.001 to 0.004 m compared to reference, caliper-derived measurements 

attributed to presence of bark. 

2.5.3 Estimating aboveground biomass with TLS 
 

There is a pressing need to reduce uncertainty in our understanding of the role forests 

play in the carbon cycle (Wilkes et al., 2018). Using allometric models – transfer functions 

relating structural measurements such as DBH, tree height and crown dimension to 

individual tree biomass – researchers have been able to estimate AGB magnitude in 

multiple forest types around the world (Shugart et al., 2010; Calders et al., 2014a; 2014b). 

Quantitative structure models have increased in popularity in recent years and are a 

robust method for estimating tree and stem volume (Paynter et al., 2016; Kunz et al., 

2017; Bienert et al., 2018; Stovall et al., 2018; Wilkes et al., 2018). Combined with 

accurate wood density information, they offer the most promising means of estimating 

aboveground biomass (Calders et al., 2016; Wilkes et al., 2018). Several recent studies 

have leveraged TLS data and software like Computree (Raumonen et al., 2013; 
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Hackenberg et al., 2015; Calders et al., 2015; 2016; Sheppard et al., 2017; Stovall et al., 

2017; 2018; Putman et al., 2018; Wilkes et al., 2018) to build quantitative structure 

models. A leading study was published by Stovall et al. (2018) in which AGB for 329 trees, 

with DBH as large as 1.23 m, was estimated in a demonstration of non-destructive AGB 

estimation using TLS and QSM. The authors discovered that TLS-derived AGB estimates 

had lower RMSE and higher magnitude than those derived from national allometry. 

Stovall et al. (2018) also determined that modelling tree stems is especially appropriate in 

reducing uncertainty at larger scales (e.g. landscape).  

 

Wilkes et al. (2018) applied a similar approach, in tandem with ALS data, to urban trees in 

London. Biomass magnitude comparable to that of both temperate and tropical forests 

was reported. However, the authors also noted uncertainties associated with wood 

density data. Stovall and Shugert (2018), in turn, proposed that TLS-derived allometry 

could substitute the need to conduct TLS campaigns locally when calibrating and 

validating forthcoming SAR and LiDAR missions. Huerta-García et al. (2018) reported the 

first study exploring the utility of HMLS in estimating tree biomass, with an R2 of 0.945 

suggesting high accuracy compared with field data-derived estimates.  

 

Stovall et al. (2017) proposed a novel approach to biomass estimation in coniferous forest 

through an ‘Outer Hull Model (OHM)’. OHM was applied to tree stems whilst a voxel 

model was used to estimate the volume of branches and foliage. This approach is 

computationally similar to the crown volume tool in 3D Forest (Krůček et al., 2016; 

Trochta et al., 2017) in that both created convex hull mesh structures. Whole-tree 

biomass estimates were very accurate in comparison with destructive sampling (R2 = 0.98, 

RMSE = 20.4 kg) (Stovall et al., 2017), suggesting a powerful new approach to AGB 

estimation in pine forests. The state-of-the-art in TLS-based forest surveying lies in novel 

applications benefitting from very-high-resolution 3D forest data over wider areas than 

typical forest plots (Calders et al., 2018; Wilkes et al., 2018). These studies clearly 

demonstrate the potential for TLS technology to significantly improve AGB estimates in 

comparison with well-documented field protocols, offering substantial time and cost 

savings.  



33 
 

2.5.4 Further applications of TLS in forest research 
 

Airborne laser scanning is not consistent in its ability to penetrate forest canopies to 

detect canopy strata or understorey vegetation. TLS offers a considerable advantage in 

that it can detect multiple layers with minimal bias. Some studies have computed 

vegetation profiles (Ashcroft et al., 2014). These profiles may yield further insight into 

forest biomass, forest classification, canopy closure and may even facilitate improved 

radiative transfer modelling (Avitabile et al., 2016; Calders et al., 2018). Tree volume 

estimates are prone to the effect of tree complexity (Hess et al., 2015) and the effect of 

vegetation in ‘leaf on’ conditions can further complicate this (Calders et al., 2018). 

Vegetation profiles may therefore simplify otherwise-complex forest structure into 

metrics more suited to coarser-resolution sensors such as spaceborne SAR.  

 

TLS is now a mature technology widely utilised within forest research (particularly in 

mapping tree and forest structure and forest topography) for almost decade. More 

recently, TLS has ‘revolutionized’ the field of forest ecology. Blakey et al. (2017) explored 

the utility of TLS data in modelling forest traits to better-understand relationships 

between forest structure and bat communities. Following broadly similar lines of 

investigation, Eichhorn et al. (2017) revealed a 68% reduction in density of understorey 

vegetation in woodlands with high populations of deer. Combined, these studies show 

the potential for TLS to be used as tool to capture rich, 3D habitat structure and derive an 

array of metrics suited to numerous ecological applications beyond forest structure in 

itself. The pace of development is rapid and novelty in the field includes ever-improving 

sensor range, sensor accuracy and even dual-wavelength hyperspectral (Danson et al., 

2018) capabilities.  

 

Another promising strand of research is a movement towards lightweight, highly portable 

TLS sensors such as the Compact Biomass LiDAR (CBL) (Paynter et al., 2016), BLK360 (Leica 

Geosystems, 2017), RTC360 (Leica Geosystems, 2018) and BLK2GO. These sensors are 

designed to be rapidly deployed with minimal set-up and to capture a high volume of 

data efficiently. For example, by facilitating a higher density of scan set-ups than 

conventional TLS instruments. Another major bottleneck of TLS-based forest observation 
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is slow data capture, which can be accelerated through use of mobile platforms (Liang et 

al., 2018). 

2.5.5 Limitations of TLS in forested areas 
 

TLS techniques do have shortcomings which may limit their use. The biggest hurdle in 

terms of continuous coverage is occlusion (shadowing) as the laser pulse clearly cannot 

pass through solid objects. Geometrically, occlusion is influence by proximity to 

vegetation (i.e. a tree stem) and vegetation extent. The larger an object, the greater the 

proportion of scan (percentage of up to 360 degrees about the scanner) in which shadows 

are cast. In areas of forest with a high density or magnitude of obstruction, then a higher 

density of scan is required to maintain coverage. This ultimately means more time and 

resource is required to scan a given area. 

 

Another limitation of TLS is that sensor range, specifically given that point density – in an 

unhindered, occlusion-free set-up - decreases in a linear manner with distance from 

scanner. As the TLS instrument is static, point density is a function of beam angle 

separation. The further from a scanner, the greater the distance between beams. 

Additionally, range noise increases with distance. The density of scanner set-ups once 

again has a direct effect on maximum point density. Whilst this can be mitigated to some 

extent with very high-detail scan configurations, all scanners are limited by the quality of 

their hardware, and higher detail requires longer scan times.  

 

2.6 Mobile laser scanning in forestry 

2.6.1 Vehicle-based platforms 
 

Further efficiencies in forest structural mapping have been achieved through use of 

‘mobile’ laser scanners mounted to ground vehicles (e.g. cars, vans, quad bikes) and 

unmanned aerial vehicles (UAV, sUAS, RPAS or ‘drones’) in recent years. Several studies 

have been published in which LiDAR sensors mounted to vehicles such as quad bikes and 

4x4 all-terrain vehicles were deployed in forested environments (Kukko et al., 2017; 
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Bienert et al., 2018). One of the first studies to use mobile laser scanning to capture forest 

structural information over wide areas was Liang et al. (2014). Forsman et al. (2016) used 

the two-dimensional SICK LMS 511 line laser scanner to estimate tree DBH. Bienert et al. 

(2018) combined TLS and MLS to develop forest inventory data. They found that MLS data 

is comparable to TLS data and both could be similarly processed to derive DBH, tree 

height and tree position. However, MLS data was not suitable for derivation of QSM 

models. Herrero-Huerta et al. (2018) also deployed vehicle-mounted MLS LiDAR to map 

trees and develop semi-automated parameter extraction, albeit in an urban context. DBH 

estimation compared with in situ reference data had strong correlation (R2 = 0.92, further 

confirming the suitability of MLS in forestry.  

 

In recent years, LiDAR systems integrated with UAV platforms have been used to survey 

forested areas (Carbomap, 2017; Brede et al., 2017). Unmanned, robotic ground vehicles 

have also been used in forests. Pierzchala et al. (2018) combined a Velodyne VLP-16 laser 

scanner, an IMU, GNSS and graph-based SLAM processing to create 3D forest point clouds 

and derive tree parameters. Where DBH was estimated, RMSE was 2.38 cm (9%) and 

mean error for tree position 0.048 m (Pierzchala et al., 2018). Forsman et al. (2018) noted 

that MLS methods often led to DBH overestimation as a function of diameter bias. 

2.6.2 Portable mobile laser scanning 
 

Portable laser scanners are those operated by a single surveyor, typically worn as a 

backpack, such as the Leica-manufactured Pegasus: Backpack or 3D Laser Mapping (2018) 

ROBIN. Others, such as the GeoSLAM ZEB-1 and ZEB-REVO, are hand-held (Bosse et al., 

2012; Ryding et al., 2015; Bauwens et al., 2016; Díaz-Vilariño et al., 2017; Lehtola et al., 

2017; Nocerino et al., 2017; Oveland et al., 2017; Cabo et al., 2018a; Huerta-García et al., 

2018; Oveland et al., 2018; Tucci et al., 2018). Many portable laser scanners use SLAM 

(simultaneous localization and mapping) – originally developed in the robotics field – to 

fuse LiDAR data with IMU inputs (pitch, roll, yaw, acceleration). SLAM is used to (1) locate 

a sensor within a field site and (2) to augment semi-automatic or automatic data 

processing.  
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Ryding et al. (2015) published one of the first studies to explore use of a SLAM-based 

HMLS (GeoSLAM ZEB-1) in forest survey. In comparison with reference TLS data, RMSE of 

DBH was 0.0015 m and tree position was 0.0021 m. They also found data capture to be 

two orders of magnitude faster than TLS (50 m2/min vs 0.85 m2/min) (Ryding et al., 2015). 

Huerta-García et al. (2018) also assessed ZEB-1 performance in urban deciduous forest in 

Mexico, reporting similar accuracies in mapping DBH and tree height. The ZEB-1 was also 

assessed by Oveland et al. (2018) alongside TLS and backpack sensing platforms; in this 

study, DBH RMSE was 0.031 m. Both ZEB-1 and ZEB-REVO scanners struggled to detect 

small trees with DBH less than 3 cm (Ryding et al., 2015; Bauwens et al., 2016; Oveland et 

al., 2018). However, this may be limited by the acquisition techniques employed (Liang et 

al., 2018).  

 

A similar but manufacturer-independent SLAM-based approach was applied by Forsman 

et al. (2016) to estimate DBH of trees in five separate field sites, albeit with a 2D, line-

based laser scanner from manufacturer SICK. A similar, graph-based SLAM approach was 

applied to MLS data from various sensors by the Finnish Geospatial Institute (FGI). This 

included all-terrain vehicle-mounted data captured within boreal forest (Kukko et al., 

2017). In similar research, Oveland et al. (2017) devised a custom, backpack-based mobile 

LiDAR system and reported high-accuracy DBH and stem position estimates compared 

with reference TLS data. A limitation of SLAM-based sensing platforms, especially those 

that lack GNSS integration, is that spatial errors can propagate and in forestry, multiple 

copies of each stem may appear in the data (Kukko et al., 2017). These effects were 

minimised where forest complexity and heterogeneity increased. Conversely, TLS sensors 

struggle in areas of denser vegetation (Ashcroft et al., 2014). An advantage of HMLS is 

that they offer a theoretically-infinite number of scan ‘positions’. Dynamic, mobile 

platforms such as HMLS thus offer the opportunity to successfully-detect the forest floor 

in all but the most-impenetrable vegetation. With filtering algorithms such as the novel 

Cloth Simulation filter (CSF; Zhang et al., 2016), mobile LiDAR data has been shown to be 

especially well-suited to this task (Cai et al., 2018). 

 

In recent months, innovation in the survey industry has seen the development of 

improved portable LiDAR technology which could further boost efficiency and accuracy 
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when measuring forest. Both Leica Geosystems and 3D Laser Mapping offer wearable, 

backpack-based hardware (‘Pegasus Backpack’ and ‘ROBIN’ respectively) featuring 

greater range and sub-cm precision. Similarly, UAV-based LiDAR systems are emerging 

and are increasingly deployed over forested areas (citations). These sensors are yet to be 

fully-assessed in scientific research with one study – Brede et al. (2017) – the only one to 

leverage this type of mobile LiDAR within forest. At the time of writing, GeoSLAM had just 

announced the ZEB-HORIZON system, designed for handheld and UAV operations alike. 

 

Meanwhile, there has been a recent emergence of non-commercial sensors and auxiliary 

hardware, with sensor development and forest applications of this technology gaining 

increasing traction in the literature (Kukko et al., 2017; Cabo et al., 2018a; Campos et al., 

2018; Herrero-Huerta et al., 2018; Liang et al., 2018; Oveland et al., 2018; Pierzchala et 

al., 2018). Common to all of these systems is fusion of LiDAR data with GNSS position and 

IMU orientation information. Through this fusion, not only can points be precisely 

positioned relative to other points, but scans be accurately located in real-world 

coordinate systems. The near future thus offers substantial potential.  

 

HMLS systems offer an immediate and accessible route to improved ground validation of 

remote sensing products. This ranges from the high- (e.g. “mapping trees”) to low-level 

(e.g. “quantifying stem volume of Corsican pines in a steep-sloped hillside stand”) 

applications. At one end of the spectrum, HMLS provide a means to rapidly determine the 

number of trees – and approximate volume of vegetation – underlying a Landsat 8 or 

Sentinel-2 pixel. At the other end, there is great potential for HMLS to contribute 3D 

information to physics-based calibration and validation datasets. Such research could 

build on similar work by Calders et al. (2018) who demonstrated the first application of a 

high-detail TLS dataset in radiative transfer modelling.  

2.6.3 Field testing of multiple mobile mapping platforms 
 

Lehtola et al. (2017) conducted a detailed analysis of ‘rival’ mobile laser scanning systems, 

including the commercially available Leica Pegasus: Backpack and GeoSLAM ZEB-1 

solutions, alongside three further commercial and tree research-facing sensor platforms. 
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The sensors were deployed in three separate field sites and tasked with mapping the 

same features, then compared with a reference TLS (Leica Geosystems P40) dataset. The 

ZEB-1 performed well, recording the second-highest radial accuracy and 0.02 m standard 

error where flat ground surfaces were recorded (Lehtola et al., 2017).  

 

A further, comprehensive side-by-side assessment of mobile mapping platforms was 

conducted by Tucci et al. (2018) who established both indoor and outdoor field tests. 

Using a variety of 2D (cross-sections), 2.5D (cloud-to-mesh distance) and 3D (Multiscale 

Model to Model Cloud Comparison, or ‘M3C2’) data analyses, they compared wearable 

(Leica Pegasus) and handheld mobile (Kaarta Stencil; GeoSLAM ZEB-REVO) LiDAR data 

against a reference TLS dataset. The authors concluded that at best, any assessments 

regarding accuracy or precision were qualitative. They noted the ZEB-REVO showed least 

sign of ‘double surface’ reconstruction, but that the other sensors offered higher point 

density. Of the three sensors, only the Leica Pegasus stores LiDAR intensity values within 

the point cloud, potentially adding extra contextual value to derived data. 

 

Other research has explored the utility of both the Microsoft Kinect and Google Tango 

devices to capture DBH and stem taper. Of these, the Kinect proved reasonably capable 

of estimating DBH (RMSE: 0.019 m) from a sample of 121 trees but the Tango yielded 

superior results (RMSE: 0.0073 m; bias: 0.003 m) (Hyyppä et al., 2018). Campos et al. 

(2018) developed an ultra-portable, ultra-low-cost backpack-mounted ‘omnidirectional’ 

camera, integrated with navigation sensors, and used it to map forested areas. Estimating 

DBH, they quoted centimetric (3.5 to 7 cm) accuracy but a maximum useful range of 5 m. 

Given that such devices (i.e. Kinect, Tango and omnidirectional cameras) are substantially 

less expensive than TLS sensors and also cheaper than HMLS technologies, they may be of 

increasing interest in forestry. 
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2.7 Research gaps and aims 

 

TLS systems have been used to map forests for over a decade, but it is only in recent 

months that optimised protocols (Calders et al., 2018; Wilkes et al., 2018) and 

international benchmarking studies (Liang et al., 2018) have been conducted. As of 

September 2018, very little work had been undertaken in the field of terrestrial vehicle-

based (Wu et al., 2013; Bienert et al., 2018), UAV-LiDAR (Brede et al., 2017), wearable 

(Kukko et al., 2017; Pierzchala et al., 2018) or handheld (Ryding et al., 2015; Bauwens et 

al., 2016; Aijazi et al., 2017; Huerta-Garcia et al., 2017; Cabo et al., 2018a; Oveland et al., 

2018) mobile laser scanning in forests. Of these, very few explored sensor performance 

outside the confines of one or two formal field plots to explore the influence of 

methodology on data quality - or applications beyond basic tree mensuration. It therefore 

seems prudent to examine the potential of HMLS in the context of precision forestry 

along similar lines to these studies. Furthermore, there is a need to propose ways in 

which mobile laser scanning might augment calibration and validation of forest remote 

sensing products. 

 

The GeoSLAM ZEB-1 and ZEB-REVO sensors were designed for the 3D mapping of 

complex, heterogeneous, indoor environments. In particular, the type of environments 

where local conditions limit use of line-of-sight-reliant, fixed-centre, reflective targets - 

and where accurate GNSS coverage was not available. HMLS sensors like these collect 

data continuously while the surveyor moves freely across a site, acquiring spatial data 

from almost every conceivable angle all-but-eradicating the risk of occlusion. Taking these 

design features at face value, it is reasonable to assume such sensors are perfect for 

forest survey, especially as the durability of the hardware itself means it is resistant to the 

typical forest environmental threats (moisture, humidity, particulate matter and 

abundance of rigid-and-sharp obstructions.  

2.7.1 Gaps in the literature 
 

Shugart et al. (2010, p. 13) identified a need for simultaneous capture of active and 

passive remotely sensed data and “well developed ground data”. In the years since, the 
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need to capture validation data with satellite data remains pressing. Dassot et al (2012) 

defined a need to develop time-efficient, semi-automatic algorithms to derive forest-

relevant parameters from TLS data and ensure applicability of such approaches in the 

forestry industry. Most of the studies in the literature draw from esoteric programming 

libraries while few utilise bespoke software packages. A clear research gap existed in 

identifying intuitive, accessible and open-source packages which could work alongside 

one another in a series of coherent workflows.  

 

Muir et al. (2018) recommended future research in the field of terrestrial LiDAR forest 

mapping should consider developing improved classification methods. Specifically, 

methods which can separate trees, shrubs and other forest components from one 

another. Stovall et al. (2018) noted that allometric models based on a sample size <100 

trees can be prone to error and risk being biased where large trees are under-

represented. There were few studies boasting such substantial sample sizes. This 

suggested a clear role for HMLS sensors in expanding the scope of ground-based LiDAR 

scans from typical TLS plots to a much broader spatial extent. To achieve this, absolute 

accuracy would be sacrificed in favour of spatial coverage. At the time of writing, nobody 

had yet quantified accuracy of HMLS-derived DBH in multiple plots of differing 

dimensions. 

 

Ryding et al. (2015) identified that HMLS point cloud resolution – specifically those 

acquired using ZEB-1 scanners – might preclude feature extraction and recommended 

further examination in future work. While some studies performed a basic HMLS ‘field 

test’ in forests (Ryding et al., 2015; Bauwens et al., 2016; Cabo et al., 2018a; Oveland et 

al., 2018) none were as comprehensive as leading, non-forest-related field tests such as 

Lehtola et  al. (2017), Nocerino et al. (2017) or Tucci et al. (2018). A clear research gap 

therefore existed to perform in-depth field tests of HMLS performance when mapping (i) 

individual trees and (ii) forested areas.  

 

HMLS has been mentioned several times in the literature but it does not yet look to have 

been fully exploited. There are several known limitations of HMLS (range; noise) but 

almost no discussion on optimising the use of these sensors. In terms of SLAM 
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positioning, there was some uncertainty in its performance in varying forest type and 

complexity (Pierzchala et al., 2018). Liang et al. (2018) concluded, too, that there may be 

an effect of user operation on data quality in consequence of trajectory design (pre-

fieldwork) and routing (in the field). In more complex forests, bias increased. Kukko et al. 

(2017) suggested further work remains to quantify the quality of MLS-derived tree 

parameters with those derived from UAV (Salach et al., 2018; Graham et al., 2019) and 

TLS data.  

 

Huerta-García et al. (2018) noted a disconnect between UAV sensors (which can only see 

crown geometry) and HMLS (which lack the range to see tree crowns). They proposed 

simultaneous capture of terrestrial and airborne data. Bienert et al. (2018) agreed, 

describing MLS in forestry as an “emerging field of research” and suggesting future 

studies focus on semi-automated segmentation of trees scanned using mobile LiDAR 

sensors. Similarly, the use of lower-cost TLS and MLS sensors was justified (Wang et al., 

2018) as a cost-effective path to data of high utility. Meanwhile, the untested potential 

seemed to extend beyond 3D mapping alone. Staats et al. (2017) identified surfaces might 

be identifiable through analysis of HMLS trajectory files where sensors were carried by 

human operators. Where a forest surveyor could follow a specific path, could trajectory 

data yield similar insight? 

2.7.2 Emerging technology 
 

At the time of writing (August 2018), the potential of HMLS has not been fully explored 

with less than 10 relevant studies currently published. Results in previous chapters of this 

thesis demonstrate the role HMLS can play measuring trees – individually and at plot-

level. Several papers have tested HMLS sensors in the field (Ryding et al., 2015; Bauwens 

et al., 2016; Aijazi et al., 2017; Huerta-García et al., 2007; Oveland et al., 2018; Cabo et al., 

2018). The research presented in this thesis places HMLS in the context of established ALS 

and TLS methods. It explores whether fused, multi-sensor datasets may yield useful 

results when compared with more costly or time-intensive approaches, at multiple scales. 

Several research gaps were identified in the literature: 
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Few studies (three assessing the GeoSLAM ZEB-1 and two the ZEB-REVO) had explored 

the role HMLS could play in the rapid acquisition of below-canopy forest structural data. 

This type of information is highly useful as ground validation data for forthcoming 

operational sensor technologies such as BIOMASS P-band SAR, NovaSAR S-band SAR and 

the GEDI spaceborne LiDAR altimeter. Each of these missions are designed to retrieve 

three-dimensional information on forest structure and this research proposes HMLS as a 

useful tool for rapid capture of calibration/validation datasets. No research had sought to 

fuse HMLS data with ALS data. By doing so, perhaps the limited range of HMLS could be 

overcome to some extent.  

 

2.8 Research aims and objectives  

 

The principal objective of this research is to assess the utility of HMLS sensors in forest 

mapping. Research questions were designed to (i) assess the impact of in-the-field 

decision making on data quality, (ii) compare HMLS-derived 2D and 3D tree 

measurements with a TLS-derived reference dataset and (iii) determine the possible roles 

HMLS might play in multiple-scale calibration of very high resolution, remotely-sensed 

datasets.   

 

At the time of writing, (i) and (iii) had not been addressed whilst (ii) had only been 

explored in a handful of studies on a very local scale. The answers presented within the 

following chapters aim to build on exploratory research to develop a robust, rigorous and 

repeatable methodology for efficient capture, processing and quality control of 3D data 

using HMLS sensors (Chapters 4 and 5). The research also aims to define a realistic 

mechanism for semi-automated, time-efficient retrieval of biophysical parameters from 

HMLS point cloud data which may also be useful in LiDAR and optical satellite calibration 

and validation. Additionally, it seeks to define variables which may also be useful as 

inputs for RADAR scattering models (Chapter 6).  
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2.9 Summary 

 

Terrestrial and handheld LiDAR sensors have developed as part of a revolution in forest 

mapping and forest ecology. At the time of writing, TLS techniques are well-understood 

and increasingly prevalent in research projects. Meanwhile, HMLS sensors are at the 

cutting edge of research and only just starting to be deployed in forests. Programmes 

such as AIRSAR, AfriSAR and CORSAIR (Satellite Applications Catapult, 2016) demonstrate 

a legitimate interest in extracting value from leading-edge remote sensing datasets, to 

support scientific research and drive development of new applications and markets. 

 

LiDAR has been shown to be the optimum sensor for inferring aboveground biomass 

density in multiple studies (Calders et al., 2014b; Hansen et al., 2015; Sinha et al., 2015; 

Coomes et al., 2018) and has the tightest tolerances of all widely-used instruments in this 

context, although its costs and relatively-small spatial coverage rather limits its utility on 

broader-scale studies. Fused, SAR and LiDAR are increasingly proving to be a highly 

effective tool to map forested areas (Asner et al., 2018).  
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3. Methods 
 

3.1 Introduction 

 

This chapter details the equipment, methods and processes used, devised and applied 

throughout this research. Figure 3.1, below, illustrates chapter structure: 

 

 

Figure 3.1: Flowchart showing the structure of this chapter. 
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3.2 Study sites 

 
For the purposes of this research, the requirement was for study sites to encompass wide 

variety. This meant that the combination of sites chosen had to show a broad range of 

tree species, shape, size and density. As the research was principally concerned with 

development and assessment of a new technique for forest mapping, there were also 

spatial and geomorphological requirements. Among these, slope and complexity of the 

underlying terrain was deemed to be important. Between the study sites, these range 

from flat and even to hummocky or steeply sloped. Finally, as object detection was an 

important facet of investigation, it was important that different management regimes 

were assessed. This ensured that data were acquired in veteran woodland, unmanaged 

forest and young even-aged plantations alike. 

3.2.1 Identification of suitable field sites 
 

Data from several third-party organisations were used to determine potential study sites 

suitable for this research. This was principally done in collaboration with Environment 

Agency Geomatics who hold ALS data covering over 85% of the land area of England and 

Wales. ALS data were first gathered in March 2015, prior to the complete release of the 

entire dataset under the UK Government ‘open data’ initiative. Simultaneously, the 

National Forest Inventory (Forestry Commission, 2018) GIS dataset was interrogated to 

understand the spatial and compositional content of key UK forests, with particular focus 

placed on species homogeneity (i.e. monocultures) and heterogeneity (where a broad 

variety of tree dimension and species could be expected to be found).  

 

Study sites were selected toward the start of active research (March 2015) in conjunction 

with Environment Agency Geomatics and chosen based on the availability of recent (< 90 

day) ALS acquisitions. At the time, point cloud datasets were not readily available and the 

opportunity to access recent ALS acquisitions was deemed sufficiently important to 

determine study site selection. ALS data were accessed directly in spring 2015 (on-site 

during a work placement) and from 2017 onwards, via the Environment Agency ‘Survey 

Open Data’ portal (Environment Agency, 2018a; 2018b). Raw point clouds were identified 



46 
 

via interactive spatial query and downloaded in compressed (.LAZ) point cloud format. 

Data were processed entirely within CloudCompare with processing steps described later 

in the chapter.  

 

GIS shape files encompassing both the National Forest Inventory and National Forest 

Estate (Forestry Commission, 2018) were accessed and downloaded. These contained a 

wealth of information on forest type, composition and age (among many other variables), 

reported at the sub-compartment and stand level. Further GIS data was supplied by 

Corporation of London, who own and manage Epping Forest and who kindly contributed 

data and expertise to support field planning and data capture. 

 

Three UK forests were selected: Epping Forest (Essex), Stratfield Brake (Oxfordshire) and 

Tilgate Forest (West Sussex). These sites were chosen to provide as broad a range of tree 

diameters and heights as possible. Additionally, Victoria Park in Leicester served as a 

‘controlled-condition’ study site to replicate a laboratory environment as much as 

possible. Basic location information is presented in Table 3.1 (overleaf). Limitations in 

resource in-the-field and desk-based processing resource (i.e. available system RAM and 

disk storage space) subsequently restricted analyses to subplots extracted from wider-

area scans acquired at each site. This meant that only a proportion of all scan data was 

analysed within this thesis. Stovall et al. (2018) advocated for sample sizes of at least 100 

trees to mitigate error and bias. Nevertheless, this was not deemed to be a problem as 

the study was not intended to be representative of all forests or of a specific forest type. 

Instead, the scope of the study was designed to assess relative sensor performance in a 

variety of environments to confirm whether any error in HMLS mapping was a function of 

tree size and shape. Given the trade-off between processing time and broader research 

relevance, a smaller sample size became acceptable.  
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Table 3.1: Study site location and forest type 

Study site Code Region 
Lat/Lon 
(WGS84) 

UTM 31U 
Primary 
forest type 

Secondary 
forest type 

Bury Wood, 
Epping Forest 

UEP-
BW 

Essex 
51.643540, 
0.014044 

E: 293409 
N: 5725615 

Ancient wood pasture 

Stratfield 
Brake 
woodland 

USB-C Oxfordshire 
51.803571,  
-1.284059 

E: 618311 
N: 5740583 

Juvenile 
oak (20 – 
21 years) 

Even-aged 
mixed 
deciduous  

Tilgate Forest 
UTF-
ROK 

West Sussex 
51.086099,  
-0.166021 

E: 698473 
N: 5663220 

Mature 
mixed 
deciduous 

Mature 
coniferous 
monoculture 

 

3.2.2 Selection of field plots 
 

Table 3.2 lists the sites, describes the sensor combinations deployed and summarises the 

spatial extent of each subplot extracted from wider-area scans. Subplot extents were 

adjusted to suit tree density, with a hard limit based approximately on the point at which 

3D Forest software crashed. Each subplot contained at least 20 individual trees at time of 

extraction, ensuring a minimum sample size of 10 per subplot (e.g. after accounting for 

error in point data or presence of complex structure at DBH height). 

 

 

Table 3.2: Sensor combinations deployed at each study site  

Site TLS (P20) 
HMLS1  

(ZEB-1) 

HMLS2  

(ZEB-REVO) 
Subplot size (m) 

UEP-BW Yes Yes Yes 40 x 40 

USB-C Yes Yes Yes 10 x 10 

UTF-ROK (square plots) Yes No Yes 20 x 20 (2) 

UTF-ROK (circular inventory plots) Yes No Yes 10 m (radius) x 2 
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3.2.3 Epping Forest, Essex 
 

The first subplot was extracted from data acquired within managed woodland – Bury 

Wood – situated towards the southwest of Epping Forest, northeast of Chingford and 

southwest of Loughton (Figure 3.2). This site was chosen in conjunction with 

environmental stewardship officers at City of London Corporation, who recommended 

the site due to biodiversity and planned forest management activity. From an ‘object-

based analysis’ point of view, Bury Wood comprises many trees of varying age and size. It 

therefore presented an ideal field site in that it encompassed natural variation in tree 

species, size and shape. 

 

Wood pasture intervention encompassing pollarding (in part illustrated in Figure 3.3) and 

coppicing has been carried out regularly over the preceding century, and Bury Wood 

therefore presents atypical morphology in otherwise-typical UK tree species. One tree, 

Grimston’s Oak, is believed to be over 350 years in age. Bury Wood is also home to an 

abundance of holly (Ilex aquifolium) characterised here as unwanted understorey 

vegetation. An opportunity arose to scan the site pre- (“A”) and post-holly clearance 

(“B”). By scanning before and after this intervention, it became possible to assess HMLS 

sensitivity to smaller-scale woody vegetation. However, in this chapter, research is 

concerned only with post-clearance data. A potential HMLS-derived change detection 

workflow is introduced in Chapter Six. 
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Figure 3.2: Google Earth-derived (Google, 2018) image of Bury Wood in relation to the 

greater extent of Epping Forest as well as Chingford (southwest; bottom-left) and King 

George’s Reservoir (west; left-centre). Bury Wood is approximately 3.5 x 3.4 km. 

 

 

 

 

 

Figure 3.3: Photograph of the UEP-BW site looking SE from NW corner of site. Note that 

most trees have been pollarded. Image captured immediately prior to HMLS2 (ZEB-REVO) 

scan of the plot; these are leaf-on conditions. 
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Figures 3.4 (below) and 3.5 (overleaf) illustrate UEP-BW scan data in plan and side profile. 

Note that the HMLS2 scan was acquired over a larger area. 

 

 

 

 

Figure 3.4: Plan view of three vertically clipped scans (TLS: green; HMLS1: red; HMLS2: 

orange) acquired at UEP-BW with full-height subplot (greyscale colour ramp). Subplot was 

40 x 40 m and randomly located within an area of overlap between the three scans. 
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Figure 3.5: Profile views of the UEP-BW 40 x 40 subsets coloured by sensor (TLS: green; 

HMLS1: red; HMLS2: orange). Note the high density of holly in HMLS1 profile (region of red 

noise to bottom-centre/bottom-right). All views to scale. Bounding boxes are 40 m wide 

but heights vary: TLS = 23.1 m, HMLS1 = 18.5 m, HMLS2 = 21.7 m. 
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3.2.4 Stratfield Brake, Oxfordshire 
 

At Stratfield Brake, data were acquired along a north-south transect within a small (80 x 

250 m) tract of juvenile woodland (Figure 3.6). The site is described as secondary 

woodland (Woodland Trust, 2014) and within the highlighted region, trees are even aged 

(planted in 1997-8.) The stand comprises of mixed-deciduous tree species. Trees were 

observed growing in parallel rows and appeared to be of similar height. Unfortunately, 

individual tree crowns overlapped and intersected each another and the canopy was 

closed. Due to close proximity of tree stems (see Figure 3.7), occlusion presented a major 

logistical challenge in the context of TLS scan coverage. As a result, a high density of scan 

stations was set-up. Data from all three sensors were acquired along a north-south 

transect (Figure 3.6; 3.8) marked in-field with orange twine. All data were acquired within 

a 14-day period. 

 

 

 

 

Figure 3.6: Google Earth-derived (Google, 2018) image of USB-C (red polygon) in relation 

to the greater Stratfield Brake woodland. Two paths can be seen extending from W (left of 

image) to NE (top-right corner) bordering the juvenile plantation area.  
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Figure 3.7: Photograph of the USB-C field site taken from the centre of the sub-plot 

looking north. Also in shot is the TLS (Leica P20) instrument atop a tripod. 

 

 

 

       

 

Figure 3.8: Plan (left) and profile (right) views of subplot data coloured by sensor (TLS: 

green; HMLS1: red; HMLS2: orange). As previously, all subplots to scale. 

 

 

  

Plan view Cross-sectional view 
East-facing 

Subplots, each 10 x 10 x 2.5 m 
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3.2.5 Tilgate Forest, West Sussex 
 

Tilgate Forest is a relatively small (1.2 x 2 km) mixed-type forest located two miles south 

of Gatwick Airport (see Figure 3.9). The forest is laid out into separate compartments, 

often comprising monoculture assemblages adjacent to one another. According to the 

National Forest Inventory (Forestry Commission, 2018) the forest is dominated by 

coniferous monoculture compartments and mixed deciduous compartments with a few 

single-species deciduous compartments, too. For this chapter, data acquired in two red 

oak compartments to the southeast of the forest were analysed. These compartments are 

illustrated in Figures 3.10 and 3.11. 

 

 

 

 

Figure 3.9: Oblique orthophoto image of Tilgate Forest with the study area, UTF, highlighted 

with a semi-transparent red polygon. Image produced with the permission of Google 

(Google Earth, 2018) using Google Earth Pro (version 7.1.2.2041).  
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Figure 3.10: Photograph of the UTF-ROK field site looking due west. This site comprises of 

100% red oak (Q. rubra), widely spaced, with an understorey mostly comprised of bracken 

(P. aquilinum). The photo was taken at the time of HMLS2 scanning. The TLS reference scan 

was acquired the following year during leaf-off conditions. 

 

 

UTF-ROK was scanned with the TLS and HMLS2 sensors. The trees at this site were 

relatively sparse in terms of point density. Two 20 x 20 m subplots were randomly located 

(Figure 3.11), each encompassing approximately 10 trees. To mitigate edge effects, trees 

‘partially inside’ both subplots were manually clipped to their fullest extent beyond 

subplot edges, maximising sample size (n = 25) across the two subplots. 
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Figure 3.11: Plan (top) and north-facing profile (bottom left & right) views of TLS (green) 

and HMLS2 (orange) UTF-ROK data subplots. Note subplots (plan view; grey) extend beyond 

20 x 20 m square subplot boundary preserving full crown extent. 
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3.2.5 Victoria Park, Leicester 
 

TLS and HMLS scans were acquired in Victoria Park, Leicester (UK) (Figure 3.12) adjacent 

to the University of Leicester, in a plot subsequently referred to as ‘UVP’. Four trees with 

overlapping crowns (inset, Figure 3.12) were clustered in an otherwise flat and 

featureless area of open grassland. Initial estimates suggested the tree heights were in 

the range of 11 to 12 m above ground, within the quoted range of the ZEB-1 HMLS sensor 

tested in this chapter (GeoSLAM, 2018). This cluster of trees appeared to offer a good test 

site for assessing the influence of HMLS geometry on target reconstruction. The presence 

of an adjacent goalpost offered an additional feature to assist scan co-registration.  

 

 

 

 

Figure 3.12: Detail map showing the position of the target tree cluster, UVP, within the 

broad, flat expanse of the Victoria Park sports pitches. Inset image illustrates the closed, 

merged canopy of the four trees during ‘leaf on’ conditions. Imagery reproduced from 3D 

photogrammetric Google imagery accessed via Google Earth Pro (Google, 2018). 
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3.3 Sensors, instruments and field operations 

3.3.1 Primary data capture: terrestrial and mobile LiDAR 
 

A Leica Geosystems HDS ScanStation P20 (hereon, ‘P20’) tripod-mounted TLS was used to 

collect reference data in all four study sites. The P20 is a time-of-flight system capable of 

capturing up to 1,000,000 points per second with 360-degree horizontal and 270-degree 

vertical viewing angles (Leica Geosystems AG, 2014; see Figure 3.13 overleaf for an 

annotated schematic). The system operates in visible (658 µm) and near-infrared (808 

µm) domains, has a range of 120 m and an accuracy of 0.006 m at maximum range (Leica 

Geosystems AG, 2014). Beam divergence is 0.2 mrad; the P20 can resolve points 0.6 mm 

apart at a distance of 10 m from the scanner.  

 

The P20 has a dual-axis compensator; all captured data was level. Black-and-white 

targets, also mounted on tripods, were situated within each field plot and used to align 

scans in three axes. This constrained multiple perspectives (i.e. multiple scan set-ups) of a 

given forest plot in terms of vertical and horizontal alignment. Full hemispherical scans 

typically took 6 to 9 minutes each to complete. Data were stored on a solid-state drive, 

copied to an external USB drive and imported into Leica Cyclone software for processing. 

 

Two HMLS systems were used in this research, both manufactured by GeoSLAM Limited: 

the ZEB-1 and ZEB-REVO (Figure 3.14, also overleaf). At the time of writing, the ZEB-REVO 

RT (modified version with real-time SLAM coverage presented via a visual interface) was 

about to be released to market but was not tested. Both the ZEB-1 and ZEB-REVO systems 

contained the same scanner hardware, a rotating (horizontal axis) Hokuyo UTM-30LX 2D 

time-of-flight laser rangefinder, with a nominal range of 30 m operating at 40 Hz (Bosse et 

al., 2012; GeoSLAM, 2018). This laser operated in the near-infrared domain (905 µm), 

with a resolution of 0.625° (horizontal) and accuracy of 0.02 to 0.03 m (at 10 m range). 

Field-of-view was 270-degrees and a hemispherical view achieved through mechanical 

movement (vertical axis) of the laser through sprung oscillation (ZEB-1) or electro-

mechanical rotation via a motor (ZEB-REVO).  
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Figure 3.13: Schematic diagram of a P20 TLS illustrating key components, planes of 

rotation (vertical and horizontal) and a ‘shadow zone’ where no points are logged 

immediately beneath the scanner.  

 

Source: author’s own illustration. 

 

 

 

 

 

Figure 3.14: Schematic diagram illustrating ZEB-REVO (left) and ZEB-1 (right) HMLS 

sensors. Blue dotted lines indicate scanner trajectory: the ZEB-REVO is held steadily in one 

hand while the ZEB-1 oscillated to and fro and side-to-side as a surveyor traverses a site.  

 

Source: author’s own illustration. 
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Both HMLS systems use the same Hokuyo laser system and the same IMU but whilst 

these were spring-mounted on the ZEB-1, a second motorised plane-of-rotation was 

integrated into the ZEB-REVO. Consequently, point distribution was more uniform. The 

two systems each captured 43,200 points per second and data were logged to identical 

data loggers. The two HMLS instruments were specified to have a proportionally greater 

point separation than the TLS, but this was felt unlikely to have a significant effect given 

most objects were scanned from distances < 10 m. 

 

Whilst the TLS and HMLS instruments operate in slightly different wavelengths (808 and 

905 µm respectively), the two systems are unlikely to record differing structural data. 

Both sensor types operate on a time-of-flight basis and in all scans, both dry and moist 

vegetation was recorded with no obvious clusters or gaps in point data. Neither the ZEB-1 

nor ZEB-REVO sensors recorded a measure if intensity, so no further investigation was 

possible.  

3.3.2 Secondary data capture: forest mensuration 
 

A wide variety of instruments were also used in the field. To calibrate TLS and HMLS 

measurements, a Leica TS16 total station (used to confirm TLS distances were within 

manufacturer specification before each field visit) and Leica GS16 SmartNet GNSS 

receiver (for precise, sub-cm positioning) were deployed. This latter sensor was not 

available for data collection at the UEP, USB and UTF field sites but briefly used at the 

UVP site to validate scan positions. In any case, SmartNet RTK positioning was found to 

degrade in forest as it relied upon an intermittently unavailable GSM signal to receive 

GNSS corrections.  

 

A small selection of additional, consumer-grade instruments were taken to the field. 

These included a Garmin eTrex handheld GPS receiver (maximum accuracy: 5 m), a Bosch 

GLM 250 VF laser measure, an ikeGPS IKE4 measurement system and a set of Mitutoyo 

500 AOS series digital calipers (0.01 mm resolution) for DBH measurement. The eTrex was 

used to locate plots: initially, to provide a heading for forest inventory, then to coarsely 

determine where to conduct HMLS scans of certain forest inventory plots several months 



61 
 

later. The Bosch laser measure was used to shoot vertical observations in forested areas 

to confirm maximum TLS heights were reasonable. Similarly, the IKE4 was used to 

measure tree height and stem location (UVP site only). However, it was found that the 

TLS signal was more reliable and thus TLS data became the benchmark. Finally, the 

Mitutoya calipers were used to precisely measure DBH as reference data. 

 

3.4 Field operations 

3.4.1 Data acquisition timeline 
 

Figure 3.15 (below) outlines dates at which data were acquired with LiDAR instruments. 

Figure 3.16 (page 62) describes the general flow of data while Figure 3.17 (page 63) offers 

a more granular overview of processes performed in-the-field to acquire all required data. 

All acquired HMLS scan data is aggregated and illustrated in the Appendix. 

 

 

 

Figure 3.15: Timeline of field data acquisition using TLS (Leica P20) and HMLS (GeoSLAM 

ZEB-1 [HMLS1] and ZEB-REVO [HMLS2] sensors). 

 

3.4.2 Data acquisition flowcharts 
 

Figure 3.16 describes the process of data capture on a given date within a given field plot. 

Not all sensors were readily available – for example, the ZEB-REVO was only available on 

hire for a period of 5 and then 2 working days, limiting potential data capture 

opportunities. The scale of data capture was itself limited by available field assistance 

(staff) and equipment (e.g. number of tripods and targets). Figure 3.17 details the specific 

steps undertaken to obtain comparable TLS and HMLS point clouds ready for analysis. 
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Figure 3.16: Flowchart indicating key fieldwork and data pre-processing steps. 
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Figure 3.17: Flow of data as captured in the field, stored to removable media and 

imported into software for processing.  

 

3.5 Reference data: terrestrial laser scanning  

3.5.1 TLS operation 
 

Scans were acquired from static, levelled tripods sequentially with a period of set-up 

required between each scan. TLS instruments capture 3D data by rotating about a fixed 

plane with precision servo motors incrementally rotating the scanner by the 

manufacturer’s stated beam divergence (in this case, 0.2 mrad; Leica Geosystems AG, 

2014). To mitigate shadowing where objects like tree stems ‘occlude’ the laser pulse, 
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multiple scan set-ups were distributed throughout each field site (as illustrated in Figure 

3.18, below). Tripod-mounted targets were used to provide common reference tie points 

between individual scans, facilitating precise co-registration into a single, coherent TLS 

point cloud dataset. Targets were iteratively swapped with the TLS using the same 

tripods, so that three targets were visible in each individual TLS scan. 

 

 

 

Figure 3.18: Schematic showing typical P20 scan and target set-up. The dashed box shows 

the survey AOI, the red icons the TLS/target tripod set-ups, and the green the TLS data. In 

this example, scan set-up density was high to mitigate against occlusion in the data. 
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3.5.2 Basic data QC: field versus office 
 

Only TLS data could be quality checked in the field as of the scanners used in this 

research, only the Leica P20 included a display. In this instance, the display was a full-

colour LCD which afforded an option to visually check data coverage (hemisphere, as 

panoramic image) and quality (by zooming in on the data preview). HMLS scans were 

conducted ‘blind’, with data QC not possible until after raw data had been processed into 

point cloud data. This is a major limitation of current-generation HMLS sensors. Once field 

activity concluded and point cloud data had been downloaded from scanners, it was 

loaded into CloudCompare where basic QC was performed. This encompassed a gross 

height (“Are minimum and maximum heights realistic?”), point density and point 

distribution checks from plan and cross-sectional views.  

3.5.3 Registration of multiple scans 
 

Individual TLS scans were registered in Leica Cyclone (Leica HDS, 2017) using ‘visual 

registration’ or the target-based ‘registration’ techniques. The former saw point clouds, 

two at a time, visually aligned and rotated in the horizontal then vertical planes. Scans 

were considered both levelled and calibrated, so no warping or stretching was applied. 

The latter technique required the geometric fitting of target-centre vertices between 

scans. Accuracies typically fluctuated between 0.001 and 0.005 m per survey. 

 

3.6 Validation data: manual cross-checks 

 

TLS instruments are inherently accurate and precise, rivalled only by total stations when 

making 3D measurements with minimal error. However, instruments can drift out of 

tolerance between calibrations. Furthermore, not all surveys are equal, and it is possible 

factors such as occlusion, scanner set-up and data processing can affect data. Therefore, a 

series of independent, cross checking measurements were made at each of the field sites. 

Due to intermittent availability of field equipment, certain instruments were only 

available for very specific periods and sadly could not be used across all field sites.  
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3.6.1 Tree height calculated with tripod-mounted laser disto 
 

Two such instruments were deployed: a Bosch GLM 250 VF Professional and an ikeGPS 

IKE4. Both were specified to have decimetre accuracy at a distance of 20 m and each 

contained mathematical software to derive height from multiple distance measurements. 

The IKE4 contained a high-precision IMU and video target, offering increased precision. 

The use of a study tripod ensured both sensors were rotated about a centre of gravity 

aligned to the instrument reference plane, minimising angular error. Figure 3.19, below, 

illustrates a typical tree height measurement using one such sensor. 

 

 

Figure 3.19: schematic diagram of tripod-mounted disto tree height measurement, 

overlaying a photo of an ikeGPS IKE4 set-up at the UVP field site. Angle n is measured at 

the instrument reference plane. Source: author’s own photograph and annotation. 

 

3.6.2 DBH measured with tape and calipers 
 

Where laser distos were not useful was in validation of DBH measurement, principally 

due to the sheer number of observations required. Instead a combination of calipers and 

flexible tape measures were used. Calipers offered the highest accuracy in that 

measurement could be made at the sub-mm level. However, caliper-derived DBH only 

captured diameter at a specific part of the tree and assumed a cylindrical stem. Tape 

measurements were less accurate but captured the full stem circumference.  
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3.7 Experimental data: handheld mobile laser scanning 

3.7.1 HMLS operation 
 

Operation of HMLS scanners in-the-field was straightforward. Upon powering-up, the 

systems went through a brief period of initialisation before continuous data capture 

commenced. 3D data were logged throughout the field site traverse until the system was 

returned to the start point and left in a static position. The built-in MEMS inertial 

measurement unit (IMU) recorded orientation and acceleration while the scan was 

underway (Bosse et al., 2012; Pierzchala et al., 2018) and the scan was terminated once 

the IMU registered a period of inactivity. Both 3D distance and multi-datastream IMU 

data were fused, in real-time, in an on-board processing unit. These input data were 

utilised by the SLAM algorithm to repeatedly localise scanner position within the study 

site. This process mapped where the sensor was – and had been – during a scan.  

3.7.2 Adapting OEM usage guidelines to forested environments 
 

As previously discussed in Chapter 2, HMLS systems were not developed for use in 

forested environments. Minimal guidance was available for best practice when scanning 

trees. So a series of operational considerations were developed as part of this research. 

These are detailed in Table 3.3, below. 

 

Table 3.3: Operationalising OEM guidelines for HMLS forest survey 

Guideline OEM recommendation Operational consideration in forests 

Scan repetition Must scan features >1 time. The 
more points per feature, the higher 
the likelihood SLAM will use the 
feature 

Ensure all trees are looped at least once, 
additionally ensuring each tree can be 
seen from multiple passes <10 m distant 

Feature significance 1:10 rule (objects can only be 
detected if their greatest 
dimension >10% of the distance 
from the scanner) 

Strive to have at least one pass of target 
objects (e.g. tree stems) within 1 m to 
ensure trees with DBH of 0.1 m are 
captured sufficiently that DBH can be 
extracted 

Feature richness Ensure lots of features within range Ensure trajectory routes loop to and from 
objects rather than heading in a linear 
path between widely separated objects 
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Loop closure Must scan each loop closure from 
similar perspective 

Ensure each loop encompasses a 
revolution of at least 360 degrees and 
includes some Euclidean overlap 

Change in heading Slow and careful. Ensure a period 
where both sides of a bend can be 
seen. Avoid abrupt changes in 
heading 

When navigating a forest, be cautious not 
to trip over fallen branches. Rotate gently 
and when passing between trees, capture 
both stems in a looping motion 

Transition between 
environments 

Slow. Take bends slowly. Avoid 
‘abrupt’ change of structure. 
Reverse/180deg turn if required 

Crucial when passing between dense 
understorey and open forest. Side-step or 
reverse from closed into open areas and 
vice versa 

Survey speed 
(walking velocity) 

Slow. Need to preserve point 
density of features 

Survey at a speed slower than typical 
walking speed. Use natural gait to oscillate 
the scanner (e.g. ZEB-1) and do not 
manually shake it 

 

3.7.3 SLAM condition as proxy for data accuracy 
 

SLAM condition is an indicative, qualitative measure which spatially describes the 

confidence that can be placed in the SLAM algorithm within a target area (i.e. forest plot) 

in the context of that specific scan. In this context, ‘quality’ refers to the performance of 

the HMLS sensor and subsequent processing in terms of resolving the scanned 

environment. SLAM condition can be affected by environmental factors (e.g. feature 

abundance, feature size and feature complexity) and survey characteristics (e.g. velocity, 

smoothness of survey, motion remaining IMU tolerance).  

 

All HMLS data processed via GeoSLAM Uploader or GeoSLAM Hub includes two files 

which indicate SLAM ‘condition’ qualitatively via a blue-beige-red colour ramp. The first of 

these files is a de-densified (9% of all points) point cloud coloured by condition. This is 

coupled with a polyline indicating 3D trajectory, which should be considered the absolute 

path taken by the scanner IMU throughout each scan. In each, ‘good’ condition is 

indicated by a deep blue, ‘poor’ by bright red and intermediate quality by hues between. 

Results were generated by coarsening SLAM condition in CloudCompare using the 

‘Rasterize’ tool at a spatial resolution of 1 m. Scans which mostly comprised blues were 

assigned the category ‘good’. Conversely, those mostly comprising red hues were 

categorised as ‘poor’. Scans encompassing predominantly beige hues – or a broad 

mixture of hues – were categorised as ‘intermediate’.  
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3.8 Isolation of parameters likely to influence HMLS data 

 

Four simulations (or ‘scenarios’) were designed to empirically assess ZEB-1 HMLS 

performance in controlled conditions. Experiments were designed to compare multiple, 

individual scans with varied geometry against a single, reference TLS dataset with defined 

precision (accuracy: 0.001 m; RMSE for network-adjusted coregistration of multiple scans 

= 0.001 m; maximum distance from scanner to nearest tree: 12 m). To assess 

performance, specific parameters – relative stem positions, tree rotational alignment, 

diameter at breast height and individual tree height – were extracted from each UVP 

scan. The first series of HMLS scans were designed to assess the effect of distance. These 

scans looped a fixed buffer around the cluster with each scan a separate, predefined 

distance: 1 m, 2 m, 5, 10 and 20 orbits. For the second series, each scan followed a 2 m 

buffer and the number of repetitions was varied: 1, 2, 5, 10 and 20. Two scans were 

conducted at a 5 m distance: at typical walking speed (8 km h-1) and at a faster velocity 

(15 – 20 km h-1). Thereafter, distance from the target trees increased incrementally with 

a secondary aim being to identify the point at which SLAM failed. 

3.8.1 Reference datasets: HMLS and TLS 
 

Benchmark TLS data was acquired with eight set-ups distributed as per Figure 3.20 

(following page). Two rows of three set-ups extended along a north-south axis either side 

of the four trees, with two scans acquired directly beneath the trees. Alongside 

benchmark TLS data, a reference HMLS1 dataset was acquired at the UVP field site with a 

sinuous and complex scan (trajectory illustrated in Figure 3.20) in which each tree – and 

three TLS set-ups – were looped at least three times from multiple directions. This 

guaranteed a high point density, particularly at DBH height. As only three TLS tripods 

were available, set-ups had to be staggered, so two could not be demarcated in the field 

for HMLS looping. An additional, larger loop was also undertaken encompassing all four 

stems (and the convex hull marking three further TLS scans) to augment SLAM. Three 

radial paths ‘connected’ stems to one another and formed loop closures in a further 

effort to minimise error propagation.  
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Figure 3.20: Visualisation of the UVP reference scan trajectory in plan view, aligned within 

this individual scan’s reference frame. In this instance, the route taken is coloured by time 

(somewhat arbitrarily) ranging from blue at the start through to red at scan completion. TLS 

scanner set-ups are indicated by red ‘tripod’ graphics.  

 
 

Further processing steps were applied to both the HMLS and TLS reference scans. The TLS 

cloud was manually rotated and the Y axis oriented approximately northwards. The HMLS 

point cloud was then rotated and translated to match, using the tripod-mounted targets 

as control features. All scans were acquired in ‘leaf off’ conditions. A laser rangefinder 

confirmed that top height achieved in the TLS scans was realistic. The density and 

distribution of points in all scans suggested occlusion was not a limiting factor. Given the 

density of HMLS trajectory paths beneath, adjacent to and outside the cluster of trees, it 

is likely the laser was able to achieve multiple lines-of-sight to the upper crown.  

3.8.2 Isolation of variables 
 

To assess effects of the various variables, the principle user-defined parameter was 

survey path which required planning trajectory routes (Figure 3.21, overleaf) through the 

UVP field site. It was critical each trajectory was the required distance from targets to 
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ensure only each independent variable was likely to affect point density and the 

proportion of tree successfully detected.  

 

 

 

 

Figure 3.21: Simplified schematic diagram showing the permutations of scan geometry 

within this experiment. Hypothetical scan trajectory is shown as a red line and trees as dark 

grey clusters. Images a to e show a 2 m loop with varying degrees of repetition. Image f 

shows a 5 m buffer relative to trees, g a 10 m buffer and h a 20 m buffer.  

 

 

With no visual feedback of scan extent in real-time, designated survey geometry was 

mapped on-site with embedded, highly visible marker pegs. Plastic, red ‘camping’ pegs 

were distributed at 2 m intervals at the required distance from targets, driven into the 

ground such that 0.05 m remained exposed. The pegs were precisely positioned with a 

tape measure to demarcate loci (buffers) at the appropriate distance from the closest 

tree (Figure 3.22, overleaf). All scans were conducted in a clockwise direction with a 

common start/end point. In each scan, the surveyor walked in a constant heading to the 

next peg. Remaining on the left-hand side of each peg ensured that distance was at least 

target distance, whilst the constant heading meant that distance did not fluctuate much 

more than the target distance. 
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Figure 3.22: Schematic diagram showing a hypothetical HMLS survey trajectory around an 

area of woodland and how it would be marked-out with pegs. Distance n is the designed 

distance-from-target. Note that by design, the trajectory is never closer than n to a target. 

 

3.8.3 Data capture 
 

Field protocols were tailored for isolation of user variables which required accepting 

concessions in terms of data quality. The lack of intermittent loop closure meant 

increased risk of SLAM degradation due to error propagation, especially given the flat 

topography (Calders et al., 2014). There was a benefit in causing SLAM condition to 

degrade: it became possible to identify a threshold distance-to-target at which processing 

became problematic. The different geometries led to obvious effects in the output point 

clouds; this is described in both the results and discussion sections of the chapter.  

 

While scan geometry was unique by design, all scans still required a ‘closed loop’ 

trajectory (GeoSLAM, 2018; Lehtola et al., 2017; Pierzchala et al., 2018). To ensure this, a 

common ‘start/end point’ was established which required precise (+/- 10 cm) placement 

of the HMLS scanning head on a pre-marked piece of board. In the reference scan, loop 

closure was achieved multiple times (Figure 3.23, following page). Deliberate loop 

closures are symbolised with dark black points. Intersections between tangential vectors 

(i.e. where an area is captured at different stages within the same survey) are symbolised 

by small grey points. As anticipated, quality of SLAM registration appears related to 

density of loop closure (Pierzchala et al., 2018). 
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Figure 3.23: UVP reference scan (left) and showing loop closure/intersection with 

colouration removed (right).  

 

At the time of writing, there was no real-time data capture module available for the HMLS 

systems used here. Accordingly, a manual process was required to track progress within 

each scan. In the case of repetition, this simply required a manual count each time the 

start/end point was passed. To enable accurate wayfinding in the UVP field site, markers 

pegs were installed. Measuring velocity proved trickier. This was achieved by recording 

typical walking pace and noting the period between each step. At ‘typical’ speed, velocity 

was equivalent to 2 steps per s-1. At the faster rate of progress, this equated to 4 steps s-1. 

3.8.4 Data quality 
 

This was a qualitative, visual comparison and assessment. Trajectory files, coloured by 

quality, were downloaded alongside processed point clouds. The alignment and 

orientation of all files associated with a single scan are identical and therefore share a 

local coordinate system. Part of the data pre-processing involved manually aligning, 

rotating and translating isolated-variable scans in CloudCompare with a north-oriented 

clone of the reference scan. By doing this, trajectory files could be superimposed on 

another, facilitating spatially explicit comparison. 
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The SLAM algorithm continually adjusts the position of targets based on spatial 

complexity already mapped (localisation) and in a perfect world, it would follow that 

alignment within a single scan should be perfect. However, error propagation (IMU ‘dead 

reckoning’; insufficient loop closure) may mean that, for example, a tree stem may 

appear multiple times (Lehtola et al., 2017; Pierzchala et al., 2018). In the context of the 

UVP field site, persistent structural features included four trees, a largely flat horizontal 

surface, and a football goalpost comprising two vertical poles and a horizontal component 

(with two, 90-degree, intersections). These features proved useful collectively when 

assessing relative alignment between passes during a single scan, and between separate 

scans.  

 

To assess alignment, two intersecting, 1 m-wide, perpendicular cross-sections (Figure 

3.24, overleaf) were manually extracted from each scan. Projecting both a ‘master’ and 

‘comparison’ scan simultaneously, a visual assessment was made. In each case, the 

reference scan was the ‘master’ against which the additional eight scans were 

systematically compared. Good alignment presented good overlap – features would 

appear in the same XY space on-screen. Poor alignment would manifest as a bias in one 

scan relative to the other, as per Figure 3.25 (overleaf), where vertical separation 

between two scans would exist as a function of rotation about the scanner trajectory. 

This sort of error is unlikely, and if detected, probably caused by a glitch in pitch, roll or 

yaw measurements recorded by the built-in IMU. In this simulation, the black point cloud 

depicts a ‘true’ reconstruction of the field site, with reasonably flat and level terrain. The 

red point cloud has been rotated by several degrees with respect to the Z-axis; separation 

between the scans increases with distance from the centre of rotation, halfway between 

the two visible stems. For each of the UVP scans, vertically exaggerated cross-sections 

were used to explore the intricacies of co-alignment, e.g. in upper branches, or where 

point density might otherwise preclude the ability to pick out edges. Vertical exaggeration 

was performed at a magnitude of 20x original Z-axis height. 
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Figure 3.24: Oblique (left) and side profile (right) illustrations of alignment-checking cross-

profiles extracted from HMLS data (black: reference; red: 10 m scan) acquired at the UVP 

field site. Each cross-section is 1 m wide.  

 

 

Figure 3.25: Simulated example of misalignment between either different time portions of 

one scan, or between multiple scans.  

 

 

Within this research, ‘tree reconstruction’ refers to the type and dimension of tree 

structure – stem, branches and twigs – resolved by HMLS sensors. In abstract terms, the 

parts of a tree that can be reproduced digitally in point cloud form by a given sensor in a 

particular set of circumstances. This is a qualitative measure as HMLS are not expected to 

detect objects sub-0.03 m in dimension (Bosse et al., 2012; GeoSLAM, 2018) and have 

limited range, a function of the laser hardware used in this sensor (Bauwens et al., 2016; 

GeoSLAM, 2018). As a result, only relative comparisons between the reference and 

isolated-variable scans were possible. This required exploring point density in 2D and 3D. 
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By cross-referencing point density at various parts of each tree, it was possible to locate 

where point density degraded such that objects could not be resolved. This also meant 

that a threshold ‘maximum range’ could be tentatively proposed.  

 

2D density was calculated by projecting the number of points per cell into a raster 

dataset. This was done using the ‘Rasterize’ tool in CloudCompare. A cell size of 0.1 m was 

deemed most appropriate, balancing the need to preserve detail and information quality 

with limitations imposed by print resolution (e.g. 300 dpi required). More precise, 3D 

density estimates were carried out using the CloudCompare ‘Density’ tool. Here, the 

‘precise’ method was applied and a radius set to 0.05 m (0.1 m diameter, superficially 

analogous to the 2D density calculation in spatial consideration of ‘nearby’ points). For 

output, volume density was chosen. Initial attempts to display these 3D plots on paper 

were unsuccessful, so representative slices were extracted from the density-coloured 

surface using the Cross Section tool, again in CloudCompare. 

 

Two tests were devised to assess the maximum range of the sensor: a straightforward 

maximum height comparison and a three-dimensional distance of points from nearest 

trajectory. To assess maximum height, point clouds for each of the nine HMLS scans were 

individually processed in 3D Forest and segmented into each of the four trees. The Tree 

height tool was then used to extract maximum tree height – height above a terrain-

normalised surface. Measurement of the distance of points from the nearest trajectory 

was a more convoluted process, carried out entirely within CloudCompare and illustrated 

in Figure 3.26 on the following page. A workflow was designed which required complete 

implementation one scan at a time. Initially, a scan and its corresponding trajectory files 

were imported and the ‘Cloud-cloud distance’ tool used to calculate an approximate 

three-dimensional distance with the trajectory file set as the reference.  Once an initial, 

octree-based calculation had been completed, a more precise calculation was invoked. 

Finally, the colour ramp of the scan file was adjusted to match a new scalar field in which 

3D distance-from-trajectory had been encoded for each individual point. 
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Figure 3.26: 2D plan (top) and 3D off-nadir (bottom) visualisations of a test scan acquired 

prior to UVP data capture, coloured by 3D distance-from-trajectory. Black points indicate 

trajectory points, themselves recorded in 3D space.  

 

 

3.9 Data processing pipeline 

 

Point clouds were obtained via multiple sensors: TLS (Leica P20), HMLS (GeoSLAM ZEB-1 

and ZEB-REVO) and ALS (Environment Agency as third-party data provider). The various 

stages of data processing (pre-processing; alignment to a common grid; sensor fusion; 

classification; segmentation; extraction of 2D and 3D variables) are described in more 

granular detail over the following pages. 
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3.9.1 Data processing: hardware  
 

A majority of the analysis and data processing within the research documented here was 

carried out on a bespoke data processing workstation. This workstation comprised of an 

eight-core Intel Xeon CPU, 64-bit Windows operating system, 64 GB DDR3-RAM and a 

dedicated GPU with 4 GB of RAM. The operating system was run from an OS-specific SSD 

and data stored locally on a separate SSD. 

 

Additional processing was carried out on a Microsoft Surface 4 portable workstation. The 

specifications were substantially more restrictive, including a dual-core Intel i7-6500U 

CPU (2.2 GHz) and just 16 GB DDR3L-RAM. The GPU was an Intel Iris 540 chip with 1 GB 

dedicated RAM. Combined, the reduction in memory and processing capability limited the 

spatial extent of data which could pass through the processing pipeline. 

3.9.2 Data processing: software 
 

There are many software packages for processing and analysing LiDAR data, some 

commercial and others free and open-source (FOSS). Until recently, FOSS-licensed LiDAR 

software was dominated by relatively basic add-ons to GIS software. At the time of 

writing (July, 2018) several software packages incorporating tools for the extraction of 

information from point clouds were available. Of these, the overwhelming majority were 

commercial (e.g. Autodesk AutoCAD, Bentley PointTools, LAStools, and PointCab). Of the 

FOSS alternatives, a majority were command-line based. Whilst powerful, they did not 

offer fine-scale, interactive data manipulation at the object level precluding tasks such as 

manually identifying a tree branch common to separate scans. Command-line software 

were also of minimal use in manual point measurement (e.g. point-to-point distance). 

There was no way to task such software libraries to “measure the length of Branch A” or 

“calculate surface area of Feature B”.  

 

Given the steady move toward ‘open access’ in science, this research advocates use of 

FOSS software. Several innovative software tools were identified and assessed including 

CloudCompare (2018), Computree (Othmani et al., 2011), DendroCloud (Koreň, 2017) and 
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3D Forest (Krůček et al., 2016; Trochta et al., 2017). The former is a powerful, user-

interactive tool supporting import of almost all point cloud datasets and incorporating 

multiple generic and bespoke processing and analytical routines. Computree is a modular 

software package incorporating many modules, launched through nested scripts or via 

the command line. DendroCloud is a lightweight application designed to process and 

visualise TLS data for forestry applications (Koreň, 2017). 3D Forest incorporates several 

forest-targeted algorithms including tree segmentation, DBH and height estimation, and 

calculation of crown geometry and volume. After a brief appraisal of software options, 3D 

Forest was chosen as it was (i) the most intuitive, (ii) was easily installed, (iii) and offered 

real-time point cloud adjustment (removal of noise etc). It was chosen over other 

software (e.g. Computree; DendroCloud) as it worked out-the-box and had an intuitive 

graphical user interface.  

 

In summary, a significant majority of LiDAR data processing was carried out using: 

 

• Leica Cyclone (version 9.3.1) 

• CloudCompare (versions 2.9.1 and 2.10.2) 

• 3D Forest (version 0.42) 

3.9.3 Processing raw data to create unified point clouds 
 

HMLS data were initially processed online via the GeoSLAM Cloud processing package 

which used a bespoke, black-box implementation of the SLAM (simultaneous localization 

and mapping) algorithm to self-register data within a common, local coordinate system 

(LCS). Output files included a self-registered point cloud and several auxiliary files 

including a simple polyline trajectory for each scan coloured by SLAM trajectory condition 

(i.e. quality). GeoSLAM Cloud is proprietary, ‘black box’ software with limited 

documentation on the specific processing steps undertaken and user interaction was 

limited to drag-and-drop to upload raw data and download processed data. 

 

TLS data processing was rather more involved. The Leica P20 TLS can resolve targets at 

distances >100 m to a tolerance of +/- 0.006 m. Given that TLS instruments scan whilst 
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levelled, a target accuracy of 0.005 m was specified. To achieve this, high-precision, 

tripod-mounted black-and-white survey targets were randomly distributed throughout 

each study site during data acquisition. Targets were rotated in 3D space, each retaining a 

common ‘dead centre’ centroid position used to provide a series of three-dimensional 

vertex coordinates common in multiple scans. Each vertex was stored in a ‘ModelSpace’ 

database for each scan within Leica Cyclone (Leica HDS, 2017) software. An algorithm was 

initiated to best-fit scans together using these as tie points. Typical RMSE of registered 

scans was 0.001 m, occasionally degrading to 0.005 m where forest floor was less stable.  

 

In certain scenarios, a fall-back ‘cloud-to-cloud’ visual registration approach was adopted. 

This was a manual process in which a ‘master’ and ‘slave’ point cloud were 

simultaneously rendered on-screen. The slave point cloud was manipulated in terms of 

rotation (about the Z axis; data were levelled by default) and translation (X and Y axes). 

Once the two clouds appeared to match both in plan and side elevations, an algorithm 

calculated statistical best-fit. Using this technique, RMSE remained between 0.001 m and 

0.010 m, meeting survey specification. Coregistered scans were ‘unified’ in Leica Cyclone, 

removing redundant points to output a single point cloud at a user-selected resolution. 

The ’Unify’ process downsampled the multi-scan point cloud at octree level, combining 

multiple points into a single point per unit area. This ensured all objects in 3D space were 

retained whilst a proportion of points were removed. This saved disk space and reduced 

RAM overheads in subsequent processing of the unified point cloud. 
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3.10 Fusion of multi-sensor datasets 

 

A basic ‘data fusion’ workflow was devised to combine LiDAR datasets from different 

sensors. This allowed the development of a holistic, multi-sensor dataset combining ALS 

and HMLS data, offering similar spatial extent to reference TLS data.  

3.10.1 Establishment of a common local coordinate system (LCS) 
 

Of the LiDAR data acquired in this research, EA ALS was the only geocoded dataset. This 

data was considered the ‘primary’ dataset in context of geolocation, to which HMLS and 

TLS would be co-registered in 3D space. This was achieved using a ‘visual registration’ 

approach in CloudCompare in which the ‘slave’ TLS scan was ‘dragged’ by eye to align 

with ALS data, first vertically (from a side projection) and then horizontally (from an aerial 

perspective). Cross-sectional error checks implied data were matched to 0.1 to 0.01 m on 

the vertical plane and 0.1 to 0.2 m horizontally. CloudCompare works with 32-bit floating 

point numbers, and coordinates with precision in the region of 106 can be corrupted 

(CloudCompare, 2018) during certain geoprocessing routines. It is good practice to 

establish local coordinate systems when working with large-scale LiDAR to avoid the need 

to apply scale factors to datasets. A series of affine translation matrices were applied to 

EA ALS data once loaded into CloudCompare to reduce memory overheads, mitigating 

loss of precision associated with large coordinate values. An example matrix, used in the 

Tilgate Forest data processing, is reproduced below: 

 

1.0  0.0  0.0  -526802.125 

0.0  1.0  0.0  -132778.15625 

0.0  0.0  1.0  -78.0 

0.0  0.0  0.00  1.0 

3.10.2 Multi-sensor point cloud coregistration 
 

Prior to extraction of forest structural parameters, point clouds from different sensors 

were co-registered and georeferenced with respect to a global coordinate system and 

ellipsoid (OSGB 1936/Airy). Each dataset was considered internally registered – 
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demonstrably, in the case of TLS (with Leica Cyclone confirming scan registration 

accuracies of 0.001 to 0.005 m RMSE). In any given dataset, relative error was assumed 

minimal. Clouds were rotated and translated as individual entities about a centre of 

rotation defined as the centre of the point cloud bounding box. This was done in 

CloudCompare using the ‘Rotate/Translate’ tool. Prominent, overlapping geometries such 

as pathways, fences and low branches were used to align datasets. Where temporal 

intervals exceeded 60 minutes, non-natural features were used, minimising the effect of 

wind-blow. Vertical alignment was performed manually with a cross-sectional viewpoint, 

with one dataset ‘dragged’ about the Z-axis such that clear horizontal features (e.g. roads, 

prominent branches) were in alignment. Tie points were not required as no warping or 

distortion was necessary.  

 

Although a visual process, results were good. Prior to analysis of coaligned data, 

alignment was verified - a crucial task when mapping dynamic environments such as 

forests, where data can be acquired in significantly different conditions. To assess vertical 

alignment, 2.5D meshes were created from each input dataset and pairs were iteratively 

compared using the cloud-to-mesh distance measurement tool. Only when datasets were 

vertically aligned to within several cm (residual error < 0.05 m) did they pass quality tests. 

To assess horizontal alignment, slices were iteratively cut through multiple datasets (e.g. 

0 – 0.5 m; at DBH height; etc) and gross horizontal offsets measured on a point-to-point 

basis, with corresponding features identified across coaligned clouds.  

3.10.3 Terrain normalisation  
 

It is crucial LiDAR-derived relative heights are calculated with reference to a datum. 

Height measurements should not be made before a given point cloud has been terrain 

normalised (Calders et al., 2014). The Cloth Simulation Filter (Zhang et al., 2016), 

abbreviated to CSF, is a powerful example of such a tool, bundled as a plug-in with recent 

versions of CloudCompare. Although primarily designed for discrete, multiple-return ALS 

data, the tool has been applied to MLS data (Cai et al., 2018) and worked very well with 

both TLS and HMLS scans acquired throughout this research project. Upon initiation of 

the plug-in, several user options are selected and custom parameters then entered. For 



83 
 

the purposes of the UVP datasets, the scene ‘Relief’ was chosen and ‘Slope processing’ 

was also activated. A ‘cloth resolution’ – essentially raster resolution – of 0.1 m was 

selected. Default values for the number of iterations (500) and the classification threshold 

(0.5) were maintained and CSF ran. Upon completion, each scan was split into separate 

point cloud files: ‘ground’ and ‘off-ground’ (Figure 3.27, below).  

    

 

Figure 3.27: Visualisations of a UVP point cloud in CloudCompare before (left, coloured by 

height) and after (right: ground points are shaded grey, off-ground points shaded green) 

use of CSF to classify into ground and off-ground points. 

 

 

These two files were compared via the ‘Cloud-cloud distance’ tool (Figure 3.28, below) 

with each fulfilling either the role of ‘reference’ (ground) or ‘compared’ (off-ground) 

cloud. As a result, a discrete vertical separation between each off-ground point and its 

closest neighbour in the ground layer was determined as stored in a new scalar field. 

Finally, the ‘Apply scalar field to coordinate’ tool was launched and height differences 

applied as height (i.e. passed into the Z axis field). Consequently, every off-ground point 

was reduced by the height of the ground layer above survey datum (in this case the scan 

origin, ‘0,0,0’). Each point cloud was ‘sliced’ horizontally at 0.5 m intervals. Slices were 

rendered from either east- or north-facing projections. 
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Figure 3.28: Visualisation of ‘ground’ and ‘off-ground’ points as input layers in an instance 

of Cloud-cloud distance calculation using CloudCompare software. Note that the 

respective bounding boxes do not overlap.  

 

3.11 Semi-automated data processing using 3D Forest software 

3.11.1 Extraction of subplots and subsamples 
 

TLS point clouds were downsampled to lower resolutions based on gross point count. As a 

rule, subplot data was reduced to 20,000,000 points per point cloud section using the 

CloudCompare ‘subsample’ tool and specifying the ‘random’ method. To each subsample, 

slices comprising full-resolution data, set-aside prior to downsampling, were merged back 

into the downsampled data. Slices encompassed full-resolution data between 1 and 3 m 

above ground.  This ‘multi-resolution’ approach preserved individual tree geometry, as 

well as point density at DBH height, whilst optimising the quantity of RAM (random access 

memory) needed by CloudCompare and 3D Forest. Geometry was preserved due to the 

octree-based algorithm retaining a point (per unit area) for every occupied octree cell. So, 

whether a tree crown apex was depicted by 1 or 1 000 points, the uppermost octree 

would persist with at least a single point at its centre. With Stratfield Brake (USB-C) data 

an additional, fixed (2.5 m) maximum height cut-off was also applied. This was due to (a) 

the significant point density associated with a low canopy (distance between points is a 

function of distance of an object from the scanner) as well as (b) intersecting crowns. The 
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phenomena of intersecting and ‘touching’ tree clouds repeatedly led 3D Forest to crash 

during segmentation. Clipping the cloud at a 2.5 m height resolved this problem. 

 

Subplots were extracted from HMLS data based on SLAM condition as stored in trajectory 

files, ranging from ‘good’ (blue) through to ‘poor’ (red). It proved difficult to quantify 

SLAM condition objectively given minimal documentation (GeoSLAM, 2016) but appeared 

optimal where trajectory loops were frequently closed and encompassed regular overlap. 

However, not all areas of ‘good’ condition matched reference TLS data. In some 

scenarios, homogenous forest structure ‘spoofed’ the SLAM algorithm into depicting 

some trees multiple times. These errors were consistent with jumps in scan trajectory 

where the surveyor may have temporarily lost their footing. The CloudCompare ‘cross 

section’ tool was used to physical extract subplots. Sites were located at random by 

defining a random coordinate pair within scan coordinates using a random number 

generator (Haahr, 2018). These values were used to define plot centre and requisite 

subplot dimensions (width, length) were then manually entered.  

3.11.2 Definition of ‘a tree’ as a spatial object 
 

The definition of a ‘tree’ in a biological context is straightforward. Defining a tree in terms 

of data structure proved more complicated as semantic meaning does not readily apply to 

irregular data like point clouds. So specific to this research, a tree was defined as: 

 

A dense, columnar cluster of points extending in a direction broadly 
perpendicular to the ‘terrain layer’, to which it is connected by means of 
adjacent points within a user-defined threshold distance.  

 

All points belonging to a tree had to be within a threshold maximum distance (a user-

determined parameter required for 3D Forest segmentation). Secondly, the points within 

a segment had to resemble a cylinder. This meant that incomplete stems - cross-sections 

resembling parabola rather than circles – would be misclassified as ‘non-tree vegetation’ 

or ‘noise’. Incomplete stems prevented 3D Forest DBH algorithms from functioning 

correctly. Detail on the threshold values applied to the various subplots explored in this 

research can be found further in the chapter. 
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3.11.3 Working within resource limitations 
 

Although not documented in the 3D Forest user manual, limitations in terms of point 

cloud size (memory; spatial extent) were identified. Independent of resolution, point 

clouds greater than 400 m2 in extent seemed to render the software unstable. Point 

counts >30,000,000 points also destabilise the software. In many cases, the application 

froze and crashed altogether – particularly when analysis moved from a high-power HP 

workstation to a more commercial-off-the-shelf Microsoft Surface 4 laptop part way 

through the research. A decision was therefore made to extract subplots from co-aligned 

point clouds to ensure transferability and repeatability of data and analysis, irrespective 

of platform or workstation configuration. 

3.11.4 Semi-automated classification: vegetation and terrain 
 

Prior to segmentation, 3D Forest required point data to be classified into discrete 

‘vegetation’ and ‘terrain’ point clouds. This was achieved through automated octree-

based division decreasing to a user-input minimum. Figure 3.29 (following page) 

illustrates this process iteratively with three different minimum-octree dimensions. The 

coarser octree resolution is, the greater the likelihood of vegetation being misclassified as 

terrain. With octree size as large as 1 m, sections of tree stem (bottom-right) were 

classified as terrain. Any parameters subsequently extracted from data would be 

erroneous due to consequential height underestimation.  

 

There was a delicate balance to be struck between precision (fine-scale octrees) and 

preservation of vegetation. Perfect classification would result in an almost-continuous 

terrain surface with points >0.001 m above the terrain layer preserved as vegetation. 

Heights and height derivatives would then fall within absolute precision of the TLS sensor 

(e.g. RMSE of 0.001 m after optimal co-registration). In practice, an octree of 0.1 m 

proved sufficient for most terrains. 
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Figure 3.29: Oblique-angle illustrations of point cloud classification in 3D Forest based on a 

sample of TLS data from USB-C. Top-left: raw point cloud coloured by height. Top-right: 

vegetation (green) and terrain (coloured by height) with octree size set to 0.05 m. Bottom-

left: as previous, with 0.1 m octree. Bottom-right: as previous, with octree at 1 m. 

 

3.11.5 ‘Vegetation’ point cloud segmentation 
 

Two approaches were applied sequentially: semi-automated, k-means nearest-neighbour 

clustering and manual-refinement based on iterative polygonal ‘fences’ isolating point 

cloud segments. Both were performed in 3D Forest, unique in offering automated 

classification and manual adjustment in a single application. Figure 3.33 (page 91) defines 

the workflow developed within this research to segment TLS and HMLS point clouds into 

individual-tree segments. 

 

The subplots were pre-processed (to remove noise and other artefacts) then segmented 

within 3D Forest. This led to the creation of individual, tree-specific point clouds and 

facilitated semi-automatic extraction of forest parameters – here, DBH and tree height 

among others. The ‘Automatic segmentation’ tool was then used to segment the layer 
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into individual trees. Within the UVP field datasets, an input distance of 0.15 m and a 

minimum points-per-cluster value of 100 were chosen based on initial experimentation. 

These settings were used for all scans acquired at the site. Elsewhere – the UEP, USB and 

UTF sites – different values were applied. The input variables used where defined through 

iterative experimentation on a qualitative basis. It was not possible to find a pair of input 

values that segmented all trees with no errors of omission or commission. 

 

An effect of applying a low input distance was that outlier points at the top of the crown 

were often discarded as these points were most widely separated due to distance from 

sensor. Conversely, increasing the input distance meant that multiple trees were 

sometimes misclassified as a single tree. The maximum value used across all data was 0.5 

m (UEP, where tree separation was greater) and the minimum 0.05 m (TLS acquired at 

UTF). Trees that physically touched neighbouring trees proved problematic – especially 

the case USB field site. In addition, occlusion caused problems associated with 

commission error. Points describing the same tree were sometimes segmented into two 

or more ‘trees’ where the shadow zone dimension exceeded the minimum point 

separation applied in the algorithm.  

 

Each point cloud was measured in one, two and three dimensions and compared with TLS 

reference data. Bias, RMSE and other comparative statistics were then calculated. Two 

approaches were applied, in series: a semi-automated method based on k-means nearest 

neighbour clustering implemented within 3D Forest and a manual-refinement technique 

based on iterative use of polygonal ‘fences’ to isolate point cloud segments for storage in 

separate files. Both were performed within 3D Forest, unique at the time experiments 

were designed (September 2017) in offering automated classification and manual 

adjustment without needing third-party software. User interaction for the semi-

automated approach was minimal with two user-defined parameters required: input 

distance and the minimum point count per segment. In many cases, manual refinement 

was required. Only points definitively belonging to a tree would be retained; the 

remainder would be stored separately as ‘noise’. Figure 3.30 (on the following page) 

illustrates this refinement.  
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Figure 3.30: worked example of segment refinement as applied to a tree acquired by TLS in 

the USB-C subplot 

 

 

The ‘activate polyline selection’ (A) tool was selected and a polygonal ‘fence’ (green line; 

B) was drawn around points requiring removal. The ‘segment’ tool (C) was used to isolate 

points within the fence in 3D space. This split the parent point cloud into ‘remaining’ 

(green) and ‘segmented’ (D; red) child point clouds. Removed points were merged and 

saved externally. Retained points were reimported to 3D Forest as ‘tree’ point clouds for 

DBH estimation and derivation of 2D and 3D measurements. Further refinement 

continued until all points surplus to requirement were isolated (E). 

 

Figures 3.31 and 3.32 illustrate two separate field plots which were successfully 

segmented and manually refined where appropriate. The full segmentation workflow is 

summarised in Figure 3.33, a flowchart, on page 91. 

 

  

B 

D 
E 

C A 
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Figure 3.31: Segmented TLS point cloud of UEP-BW illustrating the fusion of two-resolution 

point clouds into a single file.  

 
 

 
 

 
Figure 3.32: Subset of points acquired with the TLS (USB-C sub-plot) extracted between 

heights of 0.5 and -1.5 m with regard to the survey datum. Within this 10 x 10 x 2.5 m subset 

were 31 individual tree stems.  
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Figure 3.33: 
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3.12 Extraction of 2D biophysical parameters 

3.12.1 Stem position (more on manual approach) 
 

Tree centroid locations were located most accurately using the ‘Position lowest points’ 

function. Here, after iterative experimentation, a threshold value of 0.5 m input as ‘height 

above lowest point’ was found to be optimal. In each case, a value of 20 points was input 

as the number to be recruited from the terrain model in deriving the lowest point and 

hence tree position. The ‘Randomised Hough Transform’ and ‘Least Squares Regression’ 

centroids were derived from semi-automated extraction of DBH, detailed below. 

3.12.2 Diameter at breast height 
 

To extract DBH from tree segments in 3D Forest, the DBH RHT and DBH LSR tools were 

used (Krůček et al., 2016; Trochta et al., 2017). When calculating DBH with the RHT 

method, the number of iterations was left at the default value of 200, which yielded good 

results. There was no user input required for the alternative, LSR-based, method. A 

benefit of performing this semi-automatic derivation of DBH via a GUI (graphical user 

interface) such as 3D Forest was that it was possible to manually edit DBH point cloud 

slices on-the-fly.  

 

Upon segmentation, segments identified as trees were isolated and the ‘position lowest 

points’ algorithm initiated to generate tree centroids. Required parameters included the 

nominated terrain model, a threshold upper height limit (set at 0.6 m above ground) 

within which tree stem ‘centroids’ would be mapped, and a maximum number of points 

for the centroid search to include (with 50 found to be optimal value). These attributes 

were used across all tree segments. Both DBH estimation algorithms implemented in 3D 

Forest - RHT (Randomized Hough Transformation) and LSR (Least Squares Regression) - 

were then applied consecutively. RHT accuracy was influenced by number of iterations 

with higher values (e.g. 2000) comparing better against reference TLS data than the 

default value (200), albeit at the cost of a marginal increase in processing time. As an 

example, mean processing time for a 10 x 10 m point cloud (USB-C) was 5 minutes and 20 

seconds. LSR DBH estimation required no user-parameter inputs and mean processing 
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time for the same plot was 7 seconds. Documentation and literature (Krůček et al., 2016; 

Trochta et al., 2017) suggested the RHT algorithm would be most accurate. Both 

algorithms were run side-by-side and DBH estimates were cross-referenced via 

scatterplots to determine fit with respect to the 1:1 line. RMSE was also calculated. 

 

An independent validation exercise was conducted in CloudCompare to ensure results 

obtained via 3D Forest were realistic. Per-sensor tree data (saved to .PCD-format point 

cloud files) were imported into CloudCompare, fused at plot-level, coloured by sensor and 

terrain-normalised (0.2 m mesh created with the ‘rasterize’ tool). Cloud-to-mesh (C2M) 

distance was calculated between the fused point clouds and the terrain mesh associated 

with each sensor-plot pair. The resultant ‘difference’ values were passed into the Z-axis 

field as normalised height and a horizontal slice was automatically extracted with a height 

range of 1.2 m to 1.4 m above the normalised terrain surface. This effectively created a 

plot-level DBH cloud. From these, individual trees were randomly selected for validation. 

Manual measurements were made using the ‘point-to-point measure’ tool for each of 

these trees, with target points selected visually. As validation was less-precise than 

cylinder fitting as per the RHT and LSR algorithms, values obtained were ephemeral (not 

stored in memory) but in all cases, manually measured DBH fell within 95% of 3D Forest-

derived estimates. Where there was disagreement, extraneous points (i.e. branches/noise 

at DBH height) led to sampling bias in 3D Forest; outlier points were not included in 

manual validation. 

 

To test potential relationships between semi-automated DBH estimates processed in 3D 

Forest, separation of successfully segmented trees common to both TLS and HMLS 

datasets was required, discarding trees only present in a single dataset. This was achieved 

by manually matching estimated tree centroids and identifying matching pairs within a 

visual threshold. Pairs that matched were spatially joined using GIS. Unique among the 

field sites included within this research was what can best be described as ‘stem 

complexity’ inside the USB-C subplot. This sub-plot was scanned by all three instruments: 

TLS, HMLS1 and HMLS2. As the trees were all 20 to 21 years of age (Woodland Trust, 

2018), branches emerged from tree stems below DBH height. Due to the interconnected 

nature of the canopy – all trees were of similar height and individual crowns intersected 



94 
 

one another – initial attempts to segment the sub-plot proved unsuccessful. Of thirty-one 

trees included in the subplot, twenty-one exhibited this unique trait. The consequence 

was that DBH estimates were, to some extent, exaggerated where the 3D Forest 

algorithms included branch points in the stem point cloud subsets. These ‘complex’ stems 

are depicted in Figures 3.34 (below) and 3.35 (next page). Points >2.5 m above ground 

were removed, maintaining geographical separation between points associated with each 

tree. Despite this, sufficient structure for DBH estimation (points between 1.2 and 1.4 m 

above ground) was retained. The resultant vertically clipped plot was terrain-normalised 

using a mesh created using ‘CSF’ in CloudCompare, before extraction of a horizontal slice 

(red points in Figures 3.34 and 3.35). This is analogous to the way 3D Forest derived DBH 

clouds using both the RHT and LSR algorithms.  

 

 

Figure 3.34: ‘Front’ view of the USB-C sub-plot extracted from the TLS reference dataset. 

Stems were truncated at 2.5 m above the lowest point to remove interconnection between 

adjacents stems and branches; they are shaded black fading to grey (with increasing 

height). The red points denote ‘DBH height’ (1.2 to 1.4 m above lowest point) and indicate 

that some points not directly associated with tree stem contribute to DBH overestimation. 
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Figure 3.35: Side-view of the USB-C TLS sub-plot. In the uppermost panel, only ‘complex’-

structured trees are represented. 21 in total, these are the trees where DBH estimates were 

biased with the presence of non-stem material at DBH height. The lower panel shows only 

‘simple’-structured trees, 10 overall, where DBH estimates appeared accurate compare to 

manual mensuration within CloudCompare software. 

 

3.12.3 Tree height 
 

Tree height was calculated as the distance between the highest point of a given tree 

segment and the estimated position of a tree stem centroid. Tree height was estimated in 

3D Forest using the ‘Compute tree height’ tool. Results were displayed on-screen (as per 

Figure 3.36, below) and exported with other biophysical variables to a series of CSV files.  

 

 

Figure 3.36: Tree height and tree position as derived using 3D Forest software.  
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3.13 Extraction of 3D biophysical parameters 

 

Three-dimensional object measurement was computationally intensive and quite 

challenging. Two approaches were tested: mesh-based and voxel-space volume 

estimation. Of the mesh-based approaches, two were applied: a convex hull technique 

applied to outermost points and a cross-sectional (higher-detail, akin to ‘shrink wrapping’ 

a crown) convex hull technique. The former was relatively swift whilst the latter required 

substantial processing effort. The cross-sectional approach required a user-specified 

cross-section depth to be applied – with smaller values causing slower data processing. A 

‘sweet spot’ of 1 m was identified as optimal after iterative testing from 0.1 to 5 m. 

3.13.1 3D Forest-derived biophysical parameters 
 

3D Forest can extract various biophysical parameters at tree level. Several of these 

focussing on crown measurement were calculated from HMLS data within this research: 

 

• Number of points per crown 

• Crown height 

• Crown bottom height 

• Voxel volume 

• Volume of concave hull sections 

• Surface area of concave hull section meshes 

• Volume of 3D convex hull 

• Surface area of 3D convex hull 

 

The processing workflow designed to extract 3D measurements from segmented TLS and 

HMLS data is illustrated in Figure 3.37 overleaf. Note that at separate stages of the 

workflow, substantial processing time was required. Automated crown selection required 

substantial (>1 hour for 5 trees) processing time despite use of a high-specification 

workstation. Furthermore, 3D Forest was prone to intermittent crashing, requiring 

significant repetition of processing. Unfortunately, as the software stores derived 

variables in RAM and not to storage media, data was lost each time the software crashed. 
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Figure 3.37: Flowchart describing the workflow for 3D measurement of tree crowns using 

3D Forest software. Refer to page 78 for detailed workstation specification. 
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3.13.2 Stem volume 
 

In the literature search, stem volume was identified as a key parameter not commonly 

extracted from LiDAR data due to computational complexity. In this research, 

considerable effort went into developing a workflow (Figure 3.38, below) capable of 

resolving volume meshes. This was typically done in high-end commercial software but in 

2018, a release of CloudCompare included a mesh-based volume estimation tool for the 

first time. After much trial and error, the below workflow was devised. There were 

numerous parameters at each of the processing steps. Overall, the biggest hurdle seemed 

to be computation of ‘normals’ (see 2. Literature review). Where normals were correctly 

computed, the software was able to correctly model the ‘outside’ of the stem and 

develop roughly cylindrical meshes. Where normals were ineffectively computed, the 

Poisson Reconstruction meshing algorithm (Kazhdan and Hoppe, 2013) created all 

manner of bizarre shapes and structures – doughnut or bone-shaped the most common.  

 

 
 

Figure 3.38: Experimental workflow designed to measure the volume of 2 m sections of 

tree stem using meshing via the Poisson Surface Reconstruction plug-in (CloudCompare). 
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To verify these volume estimates were plausible, stem volume estimates were calibrated 

using the formula: 

 

 Volume = 𝜋𝑟2ℎ 

 

In this equation, r represents stem radius and h height of the stem point cloud. Figure 

3.39 demonstrates there was a good level of agreement (R2 of 0.893 for HMLS meshes 

and 0.760 for TLS meshes), suggesting the mesh-based approach is of some merit. 

 

 
 

Figure 3.39: Scatterplot validating the stem volume approach. Manually calculated 

volume estimates (cylinder volume formula) were compared with mesh volume. For the 

HMLS comparison, R2 was 0.893. For TLS R2 was 0.760. However, this could feasibly be 

due to a poor fit at the DBH estimation stage. 
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3.14 Summary 

 

This chapter set out to detail equipment, methods and the many processing stages 

devised, developed and refined throughout this body of research. Whilst it is difficult to 

condense four years of research methods into a single chapter, these topics were 

covered. The structure of the chapter was introduced graphically in flowchart format and 

followed with a detailed justification for the selection of study sites and field plots in 

each. Sensors and instrumentation were then technically described and field operations 

chronicled. Crucial to this research was the development a new protocol (in the absence 

of relevant literature) for the mapping of forested areas with a handheld SLAM-based 

scanning technology (3.7 Experimental data and 3.8 Isolation of parameters). At the time 

this research began, there had been no published research on this topic – and at the time 

of writing there are fewer than 10 such studies. Another methodological innovation was 

the leveraging of the 3D Forest software package, among other free and open source 

applications, to develop ‘turnkey’ solutions for the extraction of useful forestry 

information from rapidly acquired point data.  

 

Over the following three chapters, these methods are applied to handheld, terrestrial and 

airborne LiDAR to answer the three research questions detailed in 2. Literature review. 
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4. Object-based measurement using HMLS 
 

 

 

At the time of writing - May 2018 - few studies had been published using HMLS sensors in 

forest environments (Ryding et al., 2015; Bauwens et al., 2016; Oveland et al., 2018; Cabo 

et al., 2018a). These studies were limited in that they only described relative accuracy of 

DBH measurement, overlooking over forest structural measurements. In the context of 

forest inventory, none of the studies offered insight or information in terms of the 

smallest-size tree an HMLS sensor might detect. Additionally, neither study had 

objectively sought to determine what other tree measurements might be derived from 

HMLS data. Hence a need to quantify the size of trees and tree components which could 

be detected was identified. Building on the cited studies, the results presented in this 

chapter sought to determine which tree measurements both HMLS sensors could make. 

Furthermore, despite the opportunity to explore operational efficiencies mapping 

forested areas with HMLS, the cited studies each encompassed no more than a pair of 

single-loop scans. None of these articles sought to define a threshold ‘minimum’ object 

size or explore how the geometry of an HMLS scan might influence such a threshold. 

 

4.1 Research aims 

 

The aim of this chapter was to determine how well HMLS sensors performed in the 

context of object detection and measurement. Specifically, it examined performance of 

the GeoSLAM ZEB-1 and ZEB-REVO sensors. Accuracy was determined through direct 

comparison with TLS and field inventory (e.g. caliper) data. Trees of various size and 

shape, spanning different species across multiple forests, were scanned by the two HMLS 

sensors and compared with reference, multi-scan TLS-derived datasets. Each tree was 

extracted from a subset (‘subplot’) of larger-area scans, to mitigate hardware limitations. 

Subplots varied in size to preserve a consistent sample size (20 to 30 trees per subplot) 

and to mitigate the technological limitations identified in the pilot study.  
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4.2 Research question 

 

RQ1: What forest inventory variables can be measured with HMLS sensors? 
What is the magnitude of error inherent in these measurements when 
compared with a reference, TLS-derived dataset? 

 
 
4.3 Results for RQ1 

 

These results seek to answer RQ1 and are presented in the order in which they were 

derived within the documented workflows. The first section includes the results of point 

cloud classification and segmentation, followed by semi-automatically derived tree 

parameters. Hereafter an experimental series of one-, two- and three-dimensional 

measurements made interactively within the 3D Forest application are presented in 

considerable detail. Figure 4.1 on the following page ‘maps’ the sequence of result 

generation, some of which are reasonably novel. 
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Figure 4.1: Flowchart illustrating the variables (plain white boxes) and results chapter 

subheadings (annotated green boxes). Boxes with double-sides indicate processing stages, 

as previously documented.  

 

With the exception of 4.4.5 (stem volume), all results were derived from point cloud data 

in 3D Forest. Terrain (red) is not a result itself. 
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4.3.1 Semi-automated point cloud classification 
 

Each dataset - one per sensor - was separately imported into 3D Forest and stored in an 

individual, dataset-specific project. Classification into ‘terrain’ and ‘vegetation’ was also 

performed project-by-project and the user parameters applied varied with each scan. 

These settings are described in Table 4.1.  

 

Table 4.1: Settings for 3D Forest semi-automated point cloud classification 

Site Plot Sensor Method Resolution Terrain model 

Epping Forest UEP-BW 

TLS 

 
 
Octree 

0.1 m Default 

HMLS1 0.05 m IDW 

HMLS2 

0.1 m Default 
Stratfield Brake USB-C 

TLS 

HMLS1 

HMLS2 

Tilgate Forest ROK 
TLS 

HMLS2 

 

 

The results of semi-automated point cloud classification are presented on a subplot-by-

subplot basis. First, the proportion of points assigned to each class is summarised (Tables 

4.2, 4.3 and 4.4, on the next page). In each, the ‘noise’ column refers to points manually 

removed from the ‘terrain’ later post-classification – typically associated with discrete 

clusters of understorey vegetation. Note that in the UEP-BW TLS and both UTF-ROK 

HMLS2 datasets, terrain was extracted using the CSF algorithm and subsampled at 0.01 m 

resolution in CloudCompare. This helped mitigate the effect of dense understorey 

vegetation on accurate terrain modelling and reduced the size on disk of point clouds. By 

doing this, the risk of software crashing due to high RAM demand was reduced. 

 

These tables are followed with three-dimensional renderings of post-classification results 

on a per-sensor basis. UEP-BW is illustrated in Figure 4.2 (overleaf). This is followed by 

USB-C in Figure 4.3 (also overleaf). Finally, the two UTF-ROK subplots – north and south – 

are illustrated in Figures 4.4 and 4.5 (pages 108 and 109). 
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Table 4.2: Output point counts for post-classification UEP-BW data 

 Number of points per point cloud 

Sensor Raw Terrain Vegetation Noise 

TLS 21,346,449 817,500 (3.7%) 20,584,550 (96.3%) 369,732 

HMLS1 6,364,811 2,673,358 (42.0%) 3,691,593 (58.0%) 182,340 

HMLS2 4,278,501 2,586,081 (60.4%) 1,691,926 (39.6%) 263,692 

 

 

Table 4.3: Output point counts for post-classification USB-C data 

 Number of points per point cloud 

Sensor Raw Terrain Vegetation Noise 

TLS 17,658,743 8,697,369 (49.3%) 8,961,374 (50.7%) 176,741 

HMLS1 1,158,208 428,530 (37.0%) 729,702 (63.0%) 177,534 

HMLS2 430,936 205,630 (47.7%) 225,276 (52.3%) 25,764 

 

 

Table 4.4: Output point counts for post-classification UTF-ROK data 

 Number of points per point cloud 

Sensor Raw Terrain Vegetation Noise 

TLS N 13,930,689 6,727,724 (48.3%) 7,202,965 (51.7%) 684,400 

TLS S 13,252,828 5,762,812 (43.5%) 7,562,016 (57.1%) 110,751 

HMLS2 N 583,050 48,737(8.4%) 534,313 (91.6%) 83,235 

HMLS2 S 614,270 20,373 (3.3%) 593,897 (96.7%) 23,596 
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Figure 4.2: Visualisations of the UEP-BW sub-plot datasets, acquired using all three 

sensors (TLS, HMLS1, HMLS2). Each bounding box is 40 x 40 with varying height.  

 

Left panels: terrain (rainbow colour ramp) and non-vegetation points (red). Right panels: 

vegetation (green) pre-segmentation.  

Top row: TLS; middle row: HMLS2 (ZEB-REVO); bottom row: HMLS1 (ZEB-1).  
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Figure 4.3: Visualisations of the USB-C sub-plot datasets, acquired using all three sensors 

(TLS, HMLS1, HMLS2) at a temporally coincident window of opportunity (July 2016). Each 

bounding box is 10 x 10 x 2.5 m in dimension. Number of points per category are 

summarised in Table F on the previous page. 

 

Left panels: terrain (rainbow colour ramp) and non-vegetation points (red). 

Right panels: vegetation (green) pre-segmentation. 

 

Top row: TLS; middle row: HMLS2 (ZEB-REVO); bottom row: HMLS1 (ZEB-1).  
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Figure 4.4: Visualisations of the UTF-ROK-North sub-plot datasets, acquired using TLS 

(P20, in ‘leaf off’ conditions) and HMLS2 (ZEB-REVO, in ‘leaf on’ conditions). Each 

bounding box is 20 x 20 m in dimension with varying height. Number of points per 

category are summarised in Table F on the previous page.  

 

Left panels: terrain (rainbow colour ramp) and non-vegetation points (red). 

Right panels: vegetation (green) pre-segmentation. Top row: TLS; bottom row: HMLS2. 

 

 

 

Note the substantial variation in terrain layer point density. Also note the greater range of 

the TLS, evidenced by a more-detailed depiction of tree crowns. In both UTF-ROK-North 

and UTF-ROK-South, data were clipped to crown extent to mitigate against edge effects. 
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Figure 4.5: Visualisations of the UTF-ROK-South sub-plot datasets, acquired using TLS 

(P20, in ‘leaf off’ conditions) and HMLS2 (ZEB-REVO, in ‘leaf on’ conditions). Each 

bounding box is again 20 x 20 m in dimension with varying height. Once again, the TLS 

demonstrated a much better range in terms of its ability to resolve crown structure. 

 

Left panels: terrain (rainbow colour ramp) and non-vegetation points (red). 

Right panels: vegetation (green) pre-segmentation. Top row: TLS; bottom row: HMLS2. 
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4.3.2 Semi-automated point cloud segmentation 
 

Once again, data processing in 3D Forest was applied in a dataset-by-dataset approach. 

Segmentation parameters varied per sensor due to different point cloud geometry and 

point spacing but remained consistent between sub-plots. Table 4.5 summarises the 

variables applied. Application was per project – with each row of the table denoting an 

individual 3D Forest project.  

 

Per project, segmentation averaged roughly 120 minutes in duration, with TLS-based 

projects taking an order of magnitude more time to process than HMLS equivalents. UEP-

BW projects were notably slower, perhaps also due to the spatial (40 x 40 m) extent of 

each subplot. Where raw TLS data was imported, segmentation repeatedly failed. It is 

therefore recommended that a degree of downsampling is applied to TLS data prior to its 

import into 3D Forest. 

 

 

Table 4.5: Input parameters and output point counts for UEP-BW data 

Site  Sensor 
Input 
distance 

Minimum points 
per cluster 

UEP-BW 

TLS 0.10 m 1000 

HMLS1 0.10 m 500 

HMLS2 0.10 m 500 

USB-C 

TLS 0.10 m 1000 

HMLS1 0.10 m 500 

HMLS2 0.10 m 500 

UTF-ROK  
 

TLS N 0.10 m 1000 

TLS S 0.10 m 1000 

HMLS2 N 
0.15 m / 
0.05 m 

500 / 50 

HMLS2 S 0.15 m 500 
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Epping Forest, pre- and post-holly clearance 

The UEP-BW dataset can be considered as two subplots as two time periods are reflected 

in the data: a large volume of holly in the form of understorey vegetation, pre- and post-

removal by the Epping Forest stewardship team. TLS data were acquired both before and 

after this holly clearance. Meanwhile, HMLS1 was acquired with holly in situ and HMLS2 

was acquired with no holly present. This meant significantly fewer stems were scanned in 

HMLS1 data - some stems were occluded by the abundance of holly. Segmentation of TLS 

and HMLS1 was successful on the first run. HMLS2 data, meanwhile, required manual 

adjustment (Figure 4.7, overleaf) as unexpected proximity of points from adjacent trees 

influenced segmentation success. Stem centroids for each segment are depicted in Figure 

4.6 below. Note the relative lack of HMLS1 centroids (these trees rendered invisible 

beyond the holly due to occlusion). 

 

 

 

 

Figure 4.6: Map of stem centroids, as derived in 3D Forest using the ‘Position lowest points’ 

algorithm. Coordinates refer to the origin coordinate of the first scan captured – the HMLS1 

scan (pre-extraction of subplots). The dotted grey line marks the boundary of holly pre-

removal – holly was extant south of the line. ‘Up’ reflects north. 
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Figure 4.7: Plan (top-left) and oblique (top-right) renders of UEP-BW from ZEB-REVO HMLS 

data, depicting 7 clusters. Due to close proximity of points within the canopy, the algorithm 

could not distinguish between certain trees - so each cluster contains multiple trees. These 

7 clusters were merged (middle; coloured by height) and individual trees manually 

extracted. In total, 56 trees which matched reference scan (TLS) segments were identified 

and are illustrated (bottom) coloured by segment. 4 of these were later removed as their 

complexity prevented 3D Forest crown height detection from functioning correctly. 
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Stratfield Brake 

All three sensors – TLS, HMLS1 and HMLS2 - were used at the Stratfield Brake site. Each 

sensor was deployed within a four-week window, ensuring tree structure and geometry 

remained stable between scans. All scans were co-aligned to within 0.1 m of one another 

and from each scan, a 20 x 20 m sub-plot was extracted. As the crowns of most trees in 

the plot were connected (branches fell within 0.1 m of one another), sub-plots were 

vertically clipped at 2.5 m above the lowest point. This removed crown data and ensured 

the segmentation algorithm could run in an optimal manner with minimum point 

thresholds tweaked to suit segmentation at the ground-level.  

 

Upon segmentation, the reference TLS dataset detected 31 trees and several incomplete 

tree components which were removed. This was due to ‘edge effects’ where the 

bounding box of the 20 x 20 m plot intersected with trees whose stems lay beyond the 

box. The relative position of tree centroids retained is illustrated in Figure 4.8, below. 

Overleaf, Figure 4.9 illustrates segmentation results per-sensor.  

 

 

 

 

Figure 4.8: Another map of stem centroids. All 31 trees within the subplot were 

successfully detected in all three scans. Stems were correctly located with any X-Y offsets 

here a result of bias from the presence of understorey vegetation. 
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Figure 4.9: Oblique (NE-facing) renders of segmented point clouds acquired from TLS 

(P20; top), HMLS2 (ZEB-REVO; centre) and HMLS1 (ZEB-1; bottom) sensors. All trees were 

clipped at 2.5 m above ground to remove crown overlap which would otherwise prevent 

segmentation success. 
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Tilgate Forest: TLS and HMLS2 

Two different subplots (‘north’ and ‘south’ rather than ‘i004’ and ‘i006’; see 3. Methods, 

pages 46 to 47) were extracted from the UTF-ROK site. To avoid edge effect bias, crowns 

outside the 20 x 20 m bounding box were also included. A useful benefit of this site, with 

leaf-off data, was that tree crowns exhibited ‘crown shyness’ and could be manually 

delineated as upper branches from adjacent crowns did not intersect. Only TLS and 

HMLS2 data were acquired at this site.  

 

Figure 4.8 (page 113), as with previous subplots, illustrates stem centroid position. The 

same local coordinate system applies to both subplots (true origin lies between the two 

subplots on a north-south axis, and slightly west). Centroids can be seen to almost-

perfectly align with one another. As in previous subplots, height obtained by HMLS2 fell 

short of true height extracted from TLS data. Figure 4.11 on page 117 illustrates the 

results of segmentation.  
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Figure 4.10: Final pair of centroid maps. All 14 trees in the UTF-ROK north (left) and 11 in 

the UTF-ROK south (right) plot were successfully detected and segmented in the TLS 

(triangle) and HMLS2 (circle) scans.  
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Figure 4.11: Visualisations of segmentation results for the UTF-ROK subplots.  

 

Top row: TLS (left) and HMLS2 (right), with all 14 trees successfully segmented from each 

dataset. Bottom row: TLS (left) and HMLS2 (right), with 11 out of 11 trees successfully 

segmented.  

 

Both datasets are projected from the same viewer perspective but are included solely as a 

visual communication of segmentation efficacy. Note the stark inter-sensor difference in 

resolve tree height and crown structure. Despite this, stems appeared to be nigh-on 

identical. 

 

 

As per Figure 4.8, tree stem centroids for each sensor and plot pair were correctly 

positioned with almost no horizontal offset. Where offset was detected, this was due to 

noise in HMLS2 point clouds associated with understorey vegetation (i.e. ferns) present 

throughout the plot. 
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4.3.3 Diameter at breast height 
 

Diameter at breast height (DBH) was extracted semi-automatically across all ten subplot 

datasets extracted from the three forest study sites. Results are presented in the form of 

scatterplots, with TLS-derived values acting as reference dataset on the X axis and HMLS-

derived estimates on the Y axis. Numeric DBH values can be found in the Appendix. 

 

Epping Forest, pre-holly clearance (all 3 sensors) 

Of the segments detected in 3D Forest identified as trees, 51 matched between TLS and 

either HMLS1 or HMLS2 datasets. Of these, 31 trees were detected and segmented across 

all three sensors, with paired DBH estimates per algorithm (i.e. RHT; LSR; Figure 4.12 on 

page 119). Two trees were subsequently removed as they failed a quality control test (i.e. 

branches were present in close proximity to the stem at DBH height). A further twenty 

trees were excluded from HMLS1 data due to occlusion caused by the presence of dense 

holly which effectively shielded tree stems within from penetration of laser pulses. 

 

Epping Forest, post-holly clearance (TLS and HMLS2 only) 

The Bury Wood plot (Figure 4.11, page 117) at Epping Forest was scanned a second time 

several months later, after Corporation of London had organised clearance of holly using 

a flailing technique (i.e. complete removal of all holly between veteran trees). In this 

instance, only HMLS2 and TLS datasets were acquired but both datasets encompassed a 

larger sample size (n = 49) once tree pairs common to both datasets were mapped. Of 

these, 39 had realistic DBH values whilst 10 were removed due to tree structural 

complexity which 3D Forest could not resolve as realistic DBH estimates. In Figure 4.13 

(page 120), TLS and HMLS2-derived DBH values extracted from the raw (left; n = 49) and 

modified (right; n = 39) are presented. Where anomalous DBH values were removed, R2 

rose from 0.718 to 0.976 whilst RMSE decreased from 0.196 to 0.029 m.  
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      Epping Forest, pre-holly clearance: HMLS1 (ZEB-1) vs TLS 

 

     

 

      Epping Forest, pre-holly clearance: HMLS2 (ZEB-REVO) vs TLS 

 

     
 

Figure 4.12: Sample size reduced to 29 segments, as measured using HMLS1 and HMLS2. In 

these plots, the 2 most-obvious anomalous values have been removed. As a result, R2 

improved in all four instances and RMSE decreased significantly.  
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Figure 4.13: Oblique (NE-facing) render of UEP-BW showing the TLS data (greyscale, 

coloured by height which ranged from 0 to 22.68 m) and DBH (red) as a slice at 1.2 to 1.4 

m above ground. Note that disparity in both diameter and height. This illustrates a wide 

range of dimensions, offering a good test of HMLS (ZEB-1 and ZEB-REVO) accuracy in 

comparison with this TLS data. 
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      Epping Forest, post-holly clearance: HMLS2 (ZEB-REVO) vs TLS 

 

      

 

      Epping Forest, post-holly clearance: HMLS2 (ZEB-REVO) vs TLS 

 

      

 

Figure 4.14: Scatterplots illustrating the relationship between TLS and HMLS2 RHT-derived 

DBH estimates.  

Top-left: ‘raw’ dataset of 49 segmented trees common to both scans. Top-right: ‘pruned’ 

subset from which 10 trees were removed.  

Bottom: LSR-derived DBH compared with TLS before (left) and after (right) removal of 

outlier data.  
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There was a broader range of DBH values where derived using the LSR algorithm. This was 

less a consequence of a methodological weakness (e.g. laser inaccuracy) and more a 

function of physical tree structure (branches, twigs) confounding the DBH estimation 

algorithm. Removing these outliers led to improved R2 and reduced RMSE, suggesting RHT 

is a superior approach to DBH estimation. This suggestion would seem to confirm 

observations by Krůček et al. (2017). Using LSR instead of RHT (Figure 4.14, previous 

page), R2 decreased slightly from 0.267 to 0.248. RMSE also showed a slight decrease, 

falling from 0.178 to 0.176 m. When three outliers were removed, R2 was significantly 

boosted from 0.248 to 0.932. This implied a much better fit with the reference TLS data. 

Meanwhile RMSE decreased from 0.176 to 0.051 m. This error was much closer to 

anticipated systematic error (Ryding et al., 2015; Bauwens et al., 2016; GeoSLAM, 2018) 

associated with the inferior-quality laser of HMLS2 (Bosse et al., 2012) compared with the 

TLS system (Leica Geosystems AG, 2014). 

 

Stratfield Brake 

DBH was successfully extracted for each of the thirty-one stems across datasets acquired 

with all three sensors (HMLS1, HMLS2 and the reference TLS dataset). Several estimates 

proved to be unrealistic as a result of complex structural variation at DBH height, with 

some HMLS-derived estimates more than ten times greater than TLS equivalents. As a 

consequence, despite a mean DBH (TLS; RHT) of 0.224 m, RMSE varied by between 0.118 

and 0.239 m. Contradicting results observed in the other field plots, the greatest accuracy 

was found in the HMLS2 data using the LSR algorithm: R2 was 0.847 and RMSE 0.118 m. 

 

Tilgate Forest: TLS and HMLS2 

Of the segmented objects in both TLS and HMLS2 subplots, 25 were identified as trees 

suitable for analysis for which DBH was plotted (Figure 4.15, overleaf). One clearly 

anomalous value in LSR-derived DBH estimates was excluded from analysis.  
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Figure 4.15: Scatterplots indicating DBH for each tree, derived from both TLS (P20) and 

HMLS2 (ZEB-REVO) sensors. An anomalous value was removed from the LSR dataset hence 

n = 24 in the right-hand plot.  
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Combined DBH estimates from multiple plots 

To derive a ‘true’ accuracy assessment of DBH estimation for each sensor, data were 

aggregated from all field plots, with sample sizes varying a little (e.g. to reflect pre- and 

post-clearance of holly). Accordingly, two ‘combined’ datasets were created, with 

anomalous values (those where HMLS DBH varied from TLS DBH by more than 0.25 m) 

excluded. Per sensor, these were:  

 

• HMLS1: comprising USB, UTF and pre-holly clearance UEP segments (n = 52) 

• HMLS2: comprising USB, UTF and post-holly clearance UEP segments (n = 76) 

 
 
Across the sites, 52 trees were sampled by TLS, HMLS1 and HMLS2. At UEP-BW, a further 

24 trees were scanned by TLS and HMLS2 post-holly clearance – stems previously hidden 

by dense holly in the understorey. The data were plotted in two scatterplots (Figure 4.16, 

page 125) with R2 values of 0.919 and 0.978, and RMSE of 0.060 m and 0.031 m, for 

HMLS1 (ZEB-1) and HMLS2 (ZEB-REVO) respectively. Descriptive statistics for the 52 trees 

scanned by all sensors are presented in Table 4.6 below. 

 

Table 4.6: Descriptive statistics for RHT-derived DBH estimates 

Descriptive 
statistic 

TLS 

(reference) 

HMLS1 

(ZEB-1) 

HMLS2 

(ZEB-REVO) 

Mean 0.310 0.318 0.315 

Standard Error 0.036 0.038 0.033 

Median 0.240 0.234 0.254 

Mode 0.110 0.098 0.104 

Standard Deviation 0.255 0.270 0.235 

Sample Variance 0.065 0.073 0.055 

Kurtosis 0.284 2.812 -0.144 

Skewness 1.019 1.560 0.848 

Range 0.946 1.202 0.858 

Minimum 0.044 0.046 0.052 

Maximum 0.990 1.248 0.910 

Sum 15.810 16.224 16.224 
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Figure 4.16: Scatterplots of aggregated DBH estimates derived using the superior RHT 

algorithm. Statistically, ZEB-REVO diameters appear more accurate than those derived from 

the ZEB-1 instrument, as one might expect from the newer-specification sensor. However, 

it also appears that the ZEB-1 plot is biased by noisier DBH values in the 0.1 to 0.4 m range, 

dominated by USB tree segments.  
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Tilgate Forest: TLS and manual inventory 
 

DBH was directly sampled for nineteen red oak (Q. rubra) trees within two ten-metre 

circular inventory plots within the UTF-ROK study site. These were directly compared 

(Figure 4.17, below; Figure 4.18, following page) with DBH estimates extracted from TLS 

data using the RHT algorithm within 3D Forest. Figure 4.19 (page 128) depicts these 

results graphically as a scatterplot.  

 

 
 

Figure 4.17: DBH ‘stem map’ for i004 plot as identified in TLS data (point cloud sections, 

coloured by height) and manual DBH observations, with Cartesian locations determined 

by logging range (tape measure from plot centre) and azimuth (angle clockwise of north, 

determined with a handheld compass).  
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Figure 4.18: As per previous figure, but with data from the i006 plot. 

 

 

In both Figure 4.17 (previous page) and 4.18 (above), GNSS error (dashed, red circle) and 

XY error (indicated by arrows) are plotted. GNSS error was attributed to (a) use of a low-

accuracy consumer grade GPS unit and (b) multipath error common when attempting to 

triangulate a GNSS position in an area where the signal is reflected (e.g. beneath trees 

and between tall buildings). Whilst it ultimately proved possible to translate the inventory 

stems to fit HMLS data, it is clear there is a spatial disconnect. It seems HMLS-based 

approaches to stem mapping are superior – more accurate and consistent – than 

traditional methods. 
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Figure 4.19: Scatterplot showing the relative accuracy of direct, tape measured DBH and 

indirect, semi-automated estimation of DBH in 3D Forest as applied to TLS data. N = 19.  

 

 

An R2 value of 0.981 (Figure 4.19, above) suggests a good degree of agreement between 

the datasets but it is clear tape-measured diameters consistently exceed those derived 

from the TLS dataset. It is important to note that whilst an RMSE of 0.026 m might imply 

poor performance of the TLS data-derived estimates, there are several confounding 

factors. Manual, tape measurements were logged in November 2015 whilst TLS scans 

were acquired in May 2017. Whilst every effort was made to ensure trees could be re-

located for subsequent surveys, systemic error (e.g. varying GNSS accuracy) introduced a 

level of uncertainty regarding cross-referencing individual stems (see Figures 4.17 and 

4.18; pages 126 and 127). 3D Forest estimates DBH by fitting circles to cross-sectional 

slices of point data; in reality, none of the stems were perfectly circular. These results 

compare well with the literature and validate that TLS-derived DBH estimates are a 

suitable reference dataset for assessment of HMLS accuracy.     
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4.3.4 Tree height 
 

In this section, results are presented in the form of tables (Table 4.7 below; 4.8), graphs 

(Figure 4.20 below and 4.23), as two-dimensional profile renders of point cloud data per-

sensor (Figures 4.21 and 4.24) and with rose diagrams (Figure 4.21 and 4.25) from page 

129 to 133. Analyses focussed on maximum height of segmented trees from both UEP-

BW and UTF-ROK subplots. USB-C was omitted from tree height analysis as the subplot 

was restricted to a height of 2.5 m. In any case, it proved difficult to detect top-of-tree 

height at this study site so results would have been influenced by canopy occlusion. 

 

Table 4.7: Descriptive statistics for UEP-BW tree heights (m) 

 
TLS HMLS1 HMLS2 

Mean 13.756 10.407 11.059 

Median 17.900 12.660 12.060 

SD 7.647 4.653 5.552 

Range 19.640 13.210 15.990 

Minimum 2.320 2.480 2.460 

Maximum 21.960 15.690 18.450 

 

 

 

 

Figure 4.20: Graph showing top-of-tree heights within the UEP-BW subplot. Trees sorted 

by TLS-derived height. Note the circled values, where HMLS height > TLS height. 
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Figure 4.21: Visual comparison of tree heights within the UEP-BW subplot, rendered from 

a north-facing projection. From top: TLS (black), HMLS2 (orange) and HMLS1 (red). Neither 

HMLS sensor appears to have detected upper crown structure with HMLS1 data appearing 

the least-useful from a tree reconstruction perspective. 
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Table 4.8: Descriptive statistics for UTF-ROK tree heights (m) 

 
 TLS HMLS2 

Mean  26.237 16.523 

Median  26.220 15.630 

SD  0.901 3.220 

Range  3.680 12.400 

Minimum  24.320 12.510 

Maximum  28.000 24.910 

 

 

 

 

 

Figure 4.23: Graph illustrating maximum tree height derived from TLS and HMLS2 data, 

ordered by TLS-derived height. HMLS2 appears to have height range of 15 – 18 m (minus 

height of scanner above ground – typically 1.4 to 1.7 m).  

 

 

 
 
  



133 
 

           
 

Figure 4.24: As per Figure 4.21 (page 130), a side-by-side, visual comparison of trees within 

the two UTF-ROK subplots rendered from TLS (black; left) and HMLS2 (orange; right) scans.  

 

 

 

 
 

Figure 4.25: TLS and HMLS2 heights from combination of UTF-ROK north and south 

subplots. HMLS2 underestimates tree height – possibly a function of limited laser range.  
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4.3.5 Stem volume 
 

Efforts to model stems as 3D meshes were very computationally intensive and led to 

mixed results (Figure 4.26, below; Figures 4.27 and 4.28, overleaf). 

 

 

 

Figure 4.26: 3D meshes of 10 tree stem sections extracted from TLS (top pane) and HMLS 

(bottom pane) scans acquired within the UTF-ROK study site. The 5 meshes with most 

consistent volume estimates across the two datasets are circled (red) and expanded in 

Figure 4.27 overleaf. 
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Of the ten stems modelled, only five seemed to bear a strong resemblance to what would 

typically be considered a tree stem – cylindrical meshes with texture. These five are 

reproduced below. Note that inconsistencies in point spacing or normal computation led 

the Poisson surface reconstruction algorithm to overestimate volume (note: ‘growths’ 

and ‘speckle’). The derived volume for all ten stems, across both datasets, are compared 

in scatterplot format in Figure 4.28, below.  

 
 

 

 

Figure 4.27: Meshes of tree stem sections computed on HMLS2 data (top) and TLS data 

(bottom). Each section is 2 m tall.  

 

 
 

Figure 4.28: Scatterplot comparing mesh-derived volume of stem sections scanned using 

both the TLS and HMLS2 sensors and the Poisson surface reconstruction algorithm. 
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4.3.6 Tree crown: 2D geometry 
 

The results on the following pages encompass three sub-plots from two field sites: Epping 

Forest (UEP-BW) and Tilgate Forest (ROK North and South). Crown geometry is presented 

as two-dimensional projected polygons using both the convex and concave hull methods 

exploring correlation, accuracy and limitations within and between observations (Figure 

4.29 below, Figures 4.30 to 4.36 over the following pages). Summary tables for these 

parameters can be found in the Appendix. 

 

Epping Forest 

To mitigate edge effects, trees with arbitrarily clipped crowns (those cropped during 

subplot extraction) were removed from analysis. As a result, 39 of 56 individual trees 

were retained from the segmented TLS-derived data. In each instance, at least 95% of 2D 

crown area was retained within point data. Of these 39 trees, only 21 were also recorded 

in HMLS datasets. The below results refer to these 21 trees. 

 

 

 
 

 
 

Figure 4.29: Profile (top row) and plan (bottom row) renders of segmented trees from the 

UEP-BW subplot acquired via TLS (left), HMLS2 (centre) and HMLS1 (right). Individual 

segments are coloured separately but colours may be repeated in adjacent plots. It is 

clear that crown structure is not fully resolved in the two HMLS scans. 
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Figure 4.30: 2D crown projection polygons derived from TLS (top row), HMLS2 (middle) 

and HMLS1 (bottom) via convex hull (left panels) and concave hull (right panels) 

techniques. Clearly, crown surface area estimates are markedly different. 
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Figure 4.31: Scatterplots (a) exploring the relationship between multi-sensor crown area 

extents and (b) comparing the two techniques for estimating crown area.  
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Tilgate Forest: UTF-ROK North 
 

 

   

 

Figure 4.32: 14 trees extracted from data acquired in the UTF-ROK-N (north) sub-plot at 

Tilgate Forest. From left: TLS from oblique angle; HMLS2 from oblique angle; TLS in plan 

view coloured by tree segment;  HMLS2 in plan view, coloured by tree segment. 

 

 

 

          

          

 

Figure 4.33: Convex (top) and concave (bottom) hull polygons for TLS (left panels) and 

HMLS2 (right panels) datasets. Polygon values are summarised in Table 1.1. 
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Tilgate Forest: UTF-ROK South 
 

         

 

Figure 4.34: 11 trees extracted from data acquired in the UTF-ROK-S (south) sub-plot at 

Tilgate Forest. From left: TLS from oblique angle; HMLS2 from oblique angle; TLS in plan 

view coloured by tree segment;  HMLS2 in plan view, coloured by tree segment. 

 

 

    

     

 

Figure 4.35: 2D convex and concave hulls of the 11 tree segments scanned at UTF-ROK 

south. Although less marked than the UEP-BW equivalent, HMLS2 surface area is still 

significantly under-reported (right panels) compared with TLS (left).  
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Tilgate Forest: UTF-ROK Combined 

To plot relationships between the two sensors and two projected crown surface area 

approaches, the 14 trees of UTF-ROK North and 11 of UTF-ROK South were combined. 

Figure 4.36 shows a poor degree of correlation between TLS and HMLS-derived surface 

areas for the two techniques. It highlights a strong correlation between convex and 

concave hull-derived measurements, irrespective of sensor.  

 

              

 

 

Figure 4.36: Scatterplots illustrating very weak correlation in projected crown surface area 

between sensors (upper two panels). 
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4.3.7 Tree crown: 3D geometry 
 

Here, analysis focussed on the UEP-BW plots due to availability of data from all three 

sensors (P20 TLS; ZEB-1 and ZEB-REVO HMLS). To again mitigate for edge effects, only 

those trees with 95% of their crown (by area) within the UEP-BW sub-plot were retained. 

Initially, twenty trees were sampled from UEP-BW data (TLS, HMLS1, HMLS2) and twenty-

five from UTF-ROK (TLS and HMLS2). Due to glitches in the 3D Forest processing 

workflow, four trees were jettisoned from the UEP-BW dataset culminating in a sample 

size of sixteen. Despite this, data still captured a broad range of crown volumes (Table 

4.9). Results are variously presented one site at a time through a combination of graphs, 

tables and projections of three-dimensional volumetric meshes. 

 

Epping Forest 

Table 4.9 summarises crown volume estimates by estimation technique. 

 

Table 4.9: Summary of UEP-BW tree crown volumes 

 Voxel (m3) Convex hull (m3) Cross-sectional (m3) 

 TLS HMLS1 HMLS2 TLS HMLS1 HMLS2 TLS HMLS1 HMLS2 

Mean 7.03 0.66 2.01 441.97 52.72 235.18 233.75 22.10 130.46 

Standard error 1.49 0.22 0.49 99.43 20.43 57.60 50.11 8.48 32.10 

Median 7.28 0.43 1.23 407.85 27.93 211.54 212.95 14.23 108.21 

SD 5.97 0.90 1.96 397.74 81.71 230.40 200.44 33.92 128.34 

Kurtosis -1.17 14.5 1.19 -1.00 10.62 -0.96 -1.45 11.85 -1.07 

Skewness 0.40 3.73 1.26 0.49 3.11 0.59 0.30 3.31 0.71 

Range 16.58 3.92 6.83 1174.56 334.01 680.19 552.60 140.11 341.41 

Minimum 0.04 0.05 0.15 0.49 1.10 1.76 0.82 1.73 1.72 

Maximum 16.62 3.96 6.98 1175.05 335.11 681.95 553.42 141.84 343.13 

Sum 112.49 10.54 32.20 7071.57 843.60 3762.82 3740.04 353.35 2087.43 

Count 16 

 

The sixteen trees sampled from UEP-BW data are displayed below, both as cross-sectional 

renders with terrain (Figure 4.37, overleaf) and as plan view renderings of concave hull 
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meshes and mesh intersection (Figures 4.38 to 4.40). A limitation was found in 3D Forest: 

it was not possible to disable or format annotation text.  

 

 

   

 

Figure 4.37: Cross-section renders of 16 tree segments as acquired by TLS (left), HMLS2 

(centre) and HMLS1 (right) sensors at UEP-BW. Note that all trees are to scale. 

 

 

 

               

                         

 

Figure 4.38: Plan view renders of (a) concave hull meshes for crowns as scanned by TLS 

(left), ZEB-REVO (HMLS2; centre) and ZEB-1 (HMLS1; right) sensors; and (b) meshes 

indicating intersectional crown meshes. 

a 

b 

TLS                                               HMLS2                                            HMLS1 
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Figure 4.39: Meshes created from cross-section extracted from tree crowns. Note the 

‘tighter’ fit, more akin to shrink-wrapping than a simple convex hull. Panels illustrate TLS 

(left), ZEB-REVO (HMLS2; centre) and ZEB-1 (HMLS1; right)-derived meshes. 

 

 

 

        
 

        

 

 

        

 

Figure 4.40: Side profile renders of convex hull (left panel) and cross-sectional (right panel) 

meshes. Top row: TLS. Middle row: HMLS2 (REVO). Bottom row: HMLS1 (ZEB-1).  
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The graphs on the following pages present collated UEP-BW crown height by sensor 

(Figure 4.41, below), estimated crown volume by sensor and technique (Figure 4.42, 

below), and crown mesh surface area by sensor and technique (Figure 4.43, below). 

 

           

 

Figure 4.41: Stacked bar charts illustrating crown bottom height (hollow bars) and crown 

height (solid bars) for the UEP-BW subplot. ‘Bottom’ height is the height-above-ground of 

the first branch of a tree. ‘Crown height’ is therefore the height from this point to top-of-a-

tree. It is notable that bottom height varies between sensors. 

 

 

           

Figure 4.42: Estimated crown volumes; logarithmic scale used due to large range. 

 

 

                     

 

Figure 4.43: Surface area of volumetric meshes created using the cross-sectional (XS) and 

convex hull (CH) methodologies. Clearly, there is significant variation in estimated volume 

between sensors, whilst the two techniques estimate similar volumes. 
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Finally, a series of variables were plotted against one other (Figure 4.44, below).  

 

 

 

Figure 4.44: Scatterplots determining whether there might be relationships between crown 

height and convex-hull derived volume (top row), cross-sectional surface area and cross 

section-derived volume (middle row) and convex hull surface area and convex hull-derived 

volume (bottom row).  

 

There are positive correlations in all instances. Interestingly, there appear to be negative 

exponential relationships in the two sets of volume vs. surface area plots.  

 

Points are coloured by sensor: black (TLS), orange (HMLS2) and red (HMLS1). 
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4.4 Summary 

 

The principle aim of this chapter was to assess the performance of HMLS sensors in object 

detection and measurement within different types of forest. Two HMLS sensors – the 

GeoSLAM ZEB-1 and ZEB-REVO – were put through their paces. Point clouds acquired 

with these sensors were compared with reference TLS data, as well as a variety of manual 

field validation measurements such as caliper and tape-derived DBH and range and 

azimuth-derive stem mapping. Data had to be subsampled to mitigate limitations at the 

data processing stage (i.e. RAM limited the volume of data which could be ingested) but 

nonetheless, valid results were achieved.  

 

The data was generally suitable for semi-automated segmentation, although the systemic 

noise – manifested as a ‘fuzziness’ extending up to 0.05 m toward the scanner – tended 

to negatively impact separation of closely located tree components. Where accurate 

segmentation was achieved, stem maps proved reliable, with error limited to <0.1 m. 

Instances of more substantial error were largely due to the presence of understorey 

vegetation affecting the ‘centre of gravity’ of low laying points at ground-level.  

 

Both HMLS systems proved capable of tree stem detection and in most cases, DBH could 

be derived from HMLS point data. Error (RMSE) was typically in the order of 0.02 to 0.05 

m, in line with previous studies, with the Randomized Hough Transform algorithm in 3D 

Forest found to be the best-performing. HMLS sensors could not detect tree height, 

irrespective of tree density or leaf coverage, suggesting limited range had a greater effect 

than anticipated. In addition, the two devices were of minimal use regarding extracting 

realistic crown metrics – especially volume.  

 

The following chapter seeks to address technical limitations identified here by isolating 

individual parameters deemed most likely to negatively affect HMLS data utility and 

quality. 
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5. HMLS sensor performance in controlled conditions 
 

 

 

At the time this research began (October 2014), HMLS systems were in their infancy. 

Ryding et al. (2015) were the first to report on the quality of HMLS data in a forested 

area, followed by Bauwens et al. (2016). HMLS scanning remains state-of-the-art 

technology and at the time of writing (September 2018), has been explored in fewer than 

ten studies. To date, no study has sought to characterise dominant parameters likely to 

influence the performance of HMLS techniques in an experimental setting. 

 

In Chapter 4, both the ZEB-1 (HMLS1) and ZEB-REVO (HMLS2) were deployed in forested 

environments with a view to assessing range, accuracy and quality of the resulting point 

clouds. The GeoSLAM HMLS sensor deployed in this chapter (HMLS1; the GeoSLAM ZEB-

1) had a maximum specified range of 30 m ‘indoors’, falling to 20 m ‘outdoors’ (Bosse et 

al., 2012; Cabo et al., 2018; GeoSLAM, 2018). These specifications were described 

alongside a recommendation that surveys were limited to 0.5 hours in length and 

undertaken at typical walking pace (GeoSLAM, 2018), estimated to be 5 km h-1. Beyond 

this, there was no information on likely point density, swath extent or minima for object 

detection. In conducting fieldwork for Chapter 4 and analysing the data, it became clear 

that the sensor specification was optimistic in certain conditions and range was less than 

expected (12 m, rather than the quite 20 m ‘outdoors’). In addition, an element of sensor 

drift was observed – meaning the mapping of tree stems was much less accurate than the 

TLS approaches used to generate benchmark data.  

 

Questions began to emerge: how should this type of scanner be used in-the-field? How 

might user decisions affect SLAM registration? At what point does its usefulness as a tool 

to quickly measure trees degrade, given reliance on an IMU without GNSS? What 

limitations are applied to this type of data, given that severe error propagation was 

observed during several field scans? 
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5.1 Research aims 

 

This chapter documents the process of defining minimum, and optimum, survey 

requirements to adequately and consistently capture sufficient spatial data in forest 

environments. Specifically, the aim was to define ‘best practice’ in the use of HMLS and 

similar sensors in acquiring data at the highest-possible detail with least effort and 

minimal cost.  

 

Several experiments were designed to have broader applicability to future sensors based 

on SLAM registration, similar laser hardware or operated in a handheld manner. A series 

of scans were acquired, under controlled conditions, to better-understand the factors 

that influence the utility of HMLS sensors in forest mensuration. A reference scan was 

acquired in accordance with the GeoSLAM (2018) manual and informed by experiences 

gained through the wider context of this PhD research. Previous work in this area, 

including research by Ryding et al. (2015), Bauwens et al. (2016) and Oveland et al., 

(2018), characterised the accuracy of the ZEB-1 in extracting diameter at breast height in 

temperate woodlands. However these studies did not go as far as assessing scan 

geometry beyond detailing the scan trajectory they each followed. Furthermore, none of 

the three studies quantified the vertical distribution of points or sought to determine an 

optimal scanning strategy.  

 

5.2 Research question 

 

The research question for this chapter was: 

 

RQ2: How does HMLS sensor range and proximity to a target influence point 
density and distribution? Is it possible to increase point density in areas of 
marginal sensor range by increasing scan repetition alone? 
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5.3 Results for RQ2 

 

The results within this chapter encompass a variety of themes: point density, point 

distribution and SLAM performance (indicated as ‘quality’). Analyses were devised for 

each theme to test the effect of scan distance, repetition and velocity on the resulting 

point cloud data. These isolated-variable scans were compared with a high-detail HMLS 

and reference TLS scan. Figure 5.1 (overleaf) illustrates the interconnectivity of the three 

themes (colour coded where appropriate). In total, twelve HMLS scans were acquired 

within the UVP field site. Of these, two encountered unrecoverable errors at the cloud 

processing stage – perhaps due to unfavourable geometry (A. Rak, pers. comm., Dec 19, 

2017) or a lack of features in 3D space. Ten processed point clouds were downloaded 

from the GeoSLAM Cloud server, all showing major registration errors. These were 

‘flagged’ for re-processing by a GeoSLAM engineer and of these scans, only nine (eight 

excluding the ‘reference’ scan) proved possible to remedy. The trajectories of these eight 

scans overlay one another and were aligned with the reference scan. Each scan is 

illustrated in side profile (Figure 5.2; page 152) and from an aerial perspective (Figure 5.3; 

page 153), coloured by height with a typical blue-green-yellow-red colour ramp. Table 5.1 

describes the specifics of each scan. 

 

  
 
 

Table 5.1: Table summarising the scans performed for the UVP field site experiments. 

Orange rows suffered problems during processing; red rows could not be processed at all. 
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Figure 5.1: Schematic showing the interconnectivity between results in this chapter. 

 

5.3.1 Side-by-side: vertical and horizontal profiles 
 

Point clouds, 3D by nature, are very difficult to present in 2D media. However, they can 

be described both visually – through a variety of 2D plots – and statistically. Clouds were 

coloured by height (using default settings) and the SSAO (screen space ambient occlusion; 

OpenGL engine) shader was applied. 2D renders of each cloud were created, with a zoom 

set to 5x, and are reproduced in Figure 5.2 and 5.3 on the following pages. These renders 

illustrate each cloud from aerial and east-facing perspectives. In side profile, north is 

towards the left; in the aerial projections (Figure 5.3), north is up. 
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Figure 5.2: East-facing projections of the 9 successful HMLS scans as acquired at the UVP 

field site. Coloured by height sharing the same colour ramp. Blue: 0 m; green: 7.5 m; red: 

15 m. Due to low point densities >8 m, point reproduction proved difficult here. 
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Figure 5.3: Aerial projections of the 9 HMLS point clouds 
collected at the UVP field site. The area of each panel is 

20 x 20 m in dimension, and the standard height ramp is 
used.  

 
- Repetition (top row): 1 loop, 2 loops, 5 loops 

- Repetition (row two): 10 loops, 20 loops 
- Distance: 2 m, 5 m, 10 m 

- Velocity: 5 m loop (norm), 5 m loop (fast) 

- Reference scan: described earlier in chapter 
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5.3.2 Point count, density and distribution 
 

Processed point clouds for each of the nine successful scans were downloaded directly 

from GeoSLAM Cloud software in ISPRS .LAS (1.4) format. These .LAS files were imported 

into a single CloudCompare project and combined in a .BIN file within an organised 

hierarchy. Information from the headers of these files included information on scan 

geometry as well as a gross point count for each scan. Point count is “the number of 3D 

measurements captured during a scan”. Together, point distribution and point density 

describe the spatial distribution of these measurements as well as any clustering or other 

spatial patterns that may exist. Here, the term point density refers to either a 2D or 3D 

point count, in raster cells (Figure 5.4, overleaf) or in cross-sections extracted from data 

where three-dimensional density was calculated with a moving, spherical kernel (Figure 

5.5 on page 156). Point distribution describes the relative density of points in the vertical 

axis (ground to the upper crown). 



 
 

Figure 5.4: Two-dimensional point density, per 0.1 m pixel, for the scans undertaken with varying amounts of repetition and distance. Coloured by standard 

deviation (n = 2.5) ranging from low (0: deep blue) through to high (2.5: bright red). Black indicates ‘NoData’ values. 
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Figure 5.5: Side-by-side renderings of co-aligned east-west cross-sections extracted from all HMLS scans collected in the Victoria Park field site. Each 

rendering uses the same colour ramp, which describes number of points recorded within a sphere of 0.05 m radius. Due to the disparity of point density 

across the scans, the ramp is clamped at its upper bound to a value of 175 000 points; beyond this, the red shading persists.  

 

 

  



Once density had been calculated, a Cloth simulation filter (CSF) classification was used 

to automatically classify points as ‘ground’ or ‘non-ground’ (Zhang et al., 2016). This 

was done as the majority of points in each scan depicted ground and would bias any 

analysis on vertical point distribution. Figure 5.6 describes gross ‘before’ and ‘after’ 

point counts and their relationship as a function of this plug-in.   

 

 

Figure 5.6: Graph showing point count per scan before and after application of the CSF 

plug-in. More points were acquired in the reference scan than in all but one scan.  

 

 

As is clear in Figure 5.6, above, and Figure 5.7 overleaf, point density varied quite 

substantially between scans and was much lower in varied-distance scans generally. 

For each of the nine controlled-condition scans, two histograms describing the vertical 

distribution of points were created. The first of these, Figure 4.5.10, shows the relative 

distribution of non-ground points in each of the nine scans. In each, the y axis has been 

preserved to best display the huge disparity in point density. In Figure 4.5.11, the same 

information was plotted but in terms of the proportion of all points logged per scan, as 

percentages. This allowed a side-by-side comparison of subtle variation in the height at 

which most points are focussed. 
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Figure 5.7: Two-dimensional point density, per 0.1 m pixel, for the scans undertaken 

with varying amounts of repetition, distance and speed. Coloured by standard 

deviation (n = 1) ranging from low (0: white) through to high (1: black). White indicates 

‘NoData’ values. 
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Figure 5.8: Histograms showing the distribution of non-ground points in 0.5 m bins in 

each of the scans. Generally speaking, these graphs share similar distribution with a 

majority of points acquired between 2 and 4 m of the terrain-normalised ground 

surface.  

 

 

 

Figure 5.9: Histograms showing the percentage-based distribution of non-ground points 

in 0.5 m bins in each of the scans. Normalising the plots by percentage (compared with 

Figure 5.8), subtle variations become apparent. In all cases, skewness is in favour of the 

ground. At distances >5 m from the trees, the dominant height shifts from 2.5 to 4 m. 
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5.3.3 Side-by-side stem cross-sections 
 

The density of points in each scan greatly varied. To better-understand these 

differences, horizontal cross-sections were extracted from each point cloud. These 

sections were 0.5 m deep (z axis) and include data at heights between 0.75 and 1.25 m 

above a terrain-normalised surface. Grouped by user-controlled variable, the cross-

sections are presented in Figure 5.10, below and 5.11 overleaf.  

 

 

                 

 

 

                 

 

 

Figure 5.10: Cross-sections extracted from the varied-repetition scans of the UVP site 

captured at a constant distance of 2 m from target trees. Top row, from left: 1 loop, 2 

loops and 5 loops. Bottom row, from left: 10 loops, 20 loops and reference scan.  

 

 

The cross-sections from the single-loop scan (Figure 5.10, top-left) look partially-

complete in terms of circumference – especially the middle tree. Meanwhile, sections 
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presented in the 20-loop scan look to have a high level of noise. Visually, the 5-loop 

scan looks closest to the reference dataset, suggesting 5 loops may sit nearest an 

‘optimal’ scan protocol. Assessing varied-distance scans (Figure 5.11) and considering 

slices extend 0.5 m in the vertical axis, it looks as if the 10 m scan may lack enough 

points to perform a full circumferential measurement. It also became clear that point 

density diminished as velocity increased given the fixed pulse rate (40 Hz; Bosse et al., 

2012) of the HMLS1 scanner. 

 

 

               

 

Figure 5.11: Cross-sections extracted from the varied-distance scans of the UVP site. 

From left, distances were 2 m, 5 m and 10 m.  

 

 

5.3.4 Effect of varied sensor-target distance on tree reconstruction 
 

In total, four scans were made of the UVP field site to assess the effect of distance on 

tree reconstruction. The scans followed a geometric loop offsetting the trees by 2, 5, 

10 and 20 m (radius) respectively. Of these, the first three were successful and their 

trajectories are plotted in Figure 5.12, overleaf. The 20-metre scan processed 

erroneously. GeoSLAM Cloud was unable to repair the raw data. The part-processed 

trajectory is presented in Figure 5.13, also overleaf. Intriguingly, some point data was 

recorded but the shape of the data did not match the real-world geometry of the scan. 
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Figure 5.12: Varied-distance scan trajectories illustrating 2 m (left), 5 m (central) and 10 

m (right) buffer distance from the nearest tree to a given point. The start and end point 

of each scan were identical. Tree stems depicted as stars. 

 

 

 

Figure 5.13: The trajectory of the scan conducted with 20 m radius, which GeoSLAM 

Cloud could not process. Most of the survey was co-registered correctly (between 3 and 

1). However, the relative lack of complex 3D features within range of the sensor may 

have impacted SLAM performance (e.g. 2 and 3). Whilst as with all UVP surveys this scan 

had a common start and end point, post-SLAM processing, the start and end points 

somehow appear approximately 38 m apart (4).  
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5.3.5 Effect of number of passes on tree reconstruction 
 

Five scans were acquired with varying amounts of repetition – passes of each target – 

ranging from 1 loop through to 20. Trajectories of each scan are illustrated in Figure 

5.14.  

 

 

 

 

Figure 5.14: Trajectories for each scan showing (from left) 1, 2, 5, 10 and 20 loops of the 

target trees. SLAM registration quality within the loops of the target trees appears 

moderate to good (green to blue) and degrades to poor (red) over open field.  

 

 

Predictably, SLAM registration was successful in all scan scenarios. Just as predictably, 

point density increased with repetition although this was non-linear. Without access to 

the inner workings of this implementation of SLAM, it proved impossible to unpick 

where points may be removed or consolidated in overlapping trajectory loops. 

However, it was clear that tree reconstruction improved with increasing repetition 

(refer back to Figures 5.2 to 5.5 plus 5.7; refer to Figure 5.15 over the page).  
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Figure 5.15: Post-CSF, non-ground-point density renders of the 1-loop (left) and 20-loop 

(right) UVP scans. Three areas showing the most marked variation in tree reconstruction 

have been highlighted (a, b and c) Even at this scale, it is clear that loop repetition is 

required to build the fullest picture of branch structure. 

 

5.3.6 Effect of variation in rate-of-progress on tree reconstruction 
 

Three scans were conducted at specific velocities: (a) typical (1.4 m s-1), (b) a ‘fast’ (2.8 

m s-1) and (c) a ‘slow’ (0.7 m s-1) walking pace. Of these, two scans generated 

successful results and one failed to process. The trajectories of the two successful 

scans are illustrated in Figure 5.16 overleaf. Note that the faster scan required a 

secondary loop due to a degradation in SLAM positioning (annotated). Bizarrely, the 

‘slow’ scan somehow failed to process correctly and misshapen, unrealistic point cloud 

and trajectory files were exported from GeoSLAM Cloud. 

 

Density plots for the ‘normal’ and ‘fast’ scans (referring back to Figures 5.5; 5.7) clearly 

demonstrate that the faster scan resulted in a much-reduced density of points. 

Furthermore, there appeared to be greater noise and an uneven density of individual 

scan lines, perhaps suggesting a somewhat intermittent variation in survey speed. 
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Figure 5.16: Trajectories, coloured by condition, of two ‘varied velocity’ scans. Both 

scans followed the same 5-metre buffer around the target trees, with the normal 

velocity scan (a) leading to a better-quality product than a scan conducted at twice the 

velocity (b). North is up; scale bar applies to both scans. 

 

5.3.7 Effective sensor range 
 

GeoSLAM (2018) suggested a theoretical sensor range, outdoors, of 20 m. In practice, 

it was found that effective range – the distance at which an object could be visually 

identified as a particular feature – was nearer 10 m. Figures 5.5 and 5.7 suggest 12 m 

may be the most appropriate figure in terms of horizontal distance-from-target.  

In terms of vertical range, Figure 5.17 (next page) shows two height values for each 

scan – an absolute maximum height (above ground, where ground is defined as a 

terrain-normalised surface) and a height at the 99th percentile of all points. Strangely, 

two trends were identified. Absolute maximum detected height appeared to increase 

with repetition – and with distance-from-target, too. Yet whilst absolute maximum 

height is shown to increase, 99th-percentile height decreases. To better-understand 
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these unexpected trends, the point clouds were each trimmed at a height of 10 m 

above terrain-normalised ground. To highlight the inherent ‘noisiness’ of HMLS data at 

heights >10 m above ground, the reference scan was plotted alongside the P20 TLS 

validation dataset. With reference to the colour bar, it is clear looking at Figure 5.17 

(below) that the HMLS scan achieved a maximum detected height of 12.3 m whilst the 

TLS detected height in excess of 13.5 m. The overlay illustrates that the HMLS was 

unable to visibly resolve tree structure at heights above 10 m – further backed-up by 

the ‘scattered’ nature of the uppermost HMLS points, as visualised over the page in 

Figure 5.18. 

 

 

 

 

Figure 5.17: Bar chart showing maximum height, per scan, and 99th percentile height 

per scan. The latter heights were extracted as statistics calculated within CloudCompare 

and are included to highlight disparity between maximum and real-world heights. 

 

 

Heights for the four trees were validated using the ikeGPS IKE4 in summer 2019 (tree 

A: 9.739 m; tree B: 10.072 m; tree C: 12.734 m; tree D: 12.089 m). However, whilst the 

comparative variation in height seemed plausible based on TLS heights (refer to 

Appendix), the results are of limited use given that 18 months had elapsed between 

surveys. This demonstrates one of the major pitfalls of multi-sensor forest surveying: it 

is rare that all sensors can be deployed within a small temporal window.  
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Figure 5.18: East-facing projection of (top) TLS, (b) high-detail HMLS and (c) combined 

point clouds illustrating the vertical distribution of points in terms of height above the 

terrain-normalised LCS.  
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5.3.8 Relative position of tree stem centroids 
 

Four trees were segmented then isolated from non-tree points and stored within the 

software as individual, per-tree point clouds respectively named “Tree A”, “B”, “C” and 

“D”. Three methods were used to calculate centroids (as described in section 3 of this 

chapter): lowest point, least-squares regression, and Hough transform.  

 

Figure 5.19 (page 169) presents the centroids at UVP plot-level, serving as a map of 

tree locations in the context of a local coordinate system (where the point 0,0,0 

reflects the start-end point of the UVP reference scan). It is immediately clear that the 

cluster of centroids depicting Tree B has the greatest spread. Tree B is furthest from 

the trajectory of all UVP scans bar the ‘reference’, suggesting that positional accuracy 

may (at least in part) be a function of distance from scanner. The same four tree 

centroid clusters are each presented to a higher degree of zoom in Figure 5.20 (page 

170).  

 

Based on a visual assessment, the ‘lowest point’ algorithm seemed to deliver the most 

realistic coordinates for each tree centroid. Figure 5.21 (page 171), focusses on this 

approach, with estimated stem centre coloured by scan. Centroids extracted from the 

‘reference’ scan are displayed as black points within a thin black buffer. The relative 

positions of the reference centroids and their isolated-variable counterparts 

consistently show erroneous tree position, under-reporting distance-from-scanner by 

up to 0.2 m.   
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Figure 5.19: Scatterplot showing all detected stem centroids for each of the four trees 

within the UVP field site, coloured by the method used to detect centroid position. The 

uppermost cluster centre on 6,0 is “Tree A”. The central cluster centred on 6,-4 is “Tree 

B”. Meanwhile, the points at 3.5,-7 depict “Tree C” and 8.75,-5.25 illustrates “Tree D”. 

Tree B shows the lowest level of agreement in tree position and is also the tree furthest 

from scan trajectories.  
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Figure 5.20: ‘Zoomed-in’ scatterplots showing the stem centroids for each of the four 

trees within the UVP field site and for each scan. The centroids are coloured by stem 

centroid detection method. Each plot is 1 x 1 m in extent. It is now especially clear that 

tree B has the greatest variation in apparent position, with positions varying by as much 

as 0.65 and 0.4 m in the X and Y axes respectively.  
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Figure 5.21: Extreme close-up plots of stem centroids coloured by scan rather than 

method of centroid detection. Here, the ‘lowest point’ algorithm was applied. Panels: 

top left: tree A; top right: tree B; bottom right: tree C; bottom left: tree D. 

 

5.3.9 Semi-automated extraction of biophysical parameters 
 

As previously described, all nine of the HMLS scans collected in the Victoria Park, 

Leicester (UVP) site were individually imported into 3D Forest (Krůček et al., 2016; 

Trochta et al., 2017) where segmentation was performed. This was followed by tree 

variable (height, DBH, projected canopy area) estimation. The optimal algorithm 

parameters (e.g. thresholds, searching distances) as used in these analyses were 

previously described. Refer to the Appendix for a summary table detailing the 

variables estimated within 3D Forest for each of trees A, B, C and D.  
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Figure 5.22 (overleaf) illustrates that the number of points per tree in each scan varied 

substantially and, upon comparison, consistently. In terms of gross point count, the 

reference scan sits somewhere between 10 and 20-loop scans. In the case of tree B, 

point count is highest as this is the scan that not only achieved the closest proximity 

but also looped it repeatedly.  Most points were acquired for tree D, which also had 

the most substantial structure in terms of the lower canopy. 

 

In terms of DBH estimation, Figures 5.10 and 5.11 suggest that a sufficient point 

density exists in all scans except the single-loop, 10 m variation. Figure 5.7, however, 

highlights tree construction seriously deteriorates with distance from object (e.g. the 5 

m and 10 m loops). This is further evidenced by Figure 5.15 (page 164), which 

demonstrates beyond doubt that a single-loop scan at typical walking speed is 

insufficient even to infer structure of low-level branches within <5 m of the scanner. 

Ultimately, this suggests that any relationship between point count and tree 

reconstruction will be complex. A similarly complex relationship can be seen in Figure 

5.23 overleaf, which describes the projected surface area of each tree’s canopy as 

estimated with two similar techniques (each described in 4.3 Methods and materials). 

In the upper pane, a high R2 value indicates a strong relationship between the two 

canopy surface area techniques. In the lower pane, points were coloured by tree ID. All 

four trees seem to have a broad distribution of surface areas dependant on scan 

geometry. Overall, tree C had the greatest canopy surface area; trees B and D were 

similar.   

 

In terms of DBH estimation both the Hough Transform (HT) and Least Squares 

Regression (LSR) algorithms, as applied in 3D Forest, were broadly similar. Considering 

the mean value per tree, DBH derived via the Least Squares approach was slightly 

greater. Scatterplots of DBH ‘pairs’ are included in Figure 5.24 (page 174). Recall that 

Tree B had a complex morphology and comprised two limbs at DBH height, which 

meant 3D Forest calculated DBH as the diameter of the entire tree (not limb) at its 

widest point. Removing Tree B from the analysis yielded an R2 value of 0.931. 
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Figure 5.22: Simple bar chart illustrating the gross point count per tree and per scan. 

The greatest number of points is seen in the 20-loop (at 2 m) scan of tree D, which also 

contained the greatest extent of branch structure. The fewest points were also acquired 

for tree D, in the 10 m, single-loop scan.  

 

 

  

 

Figure 5.23: Scatterplots of projected canopy surface area measured with both the 

convex hull, and concave hull, algorithms within 3D Forest.  

Left: all points, with R2 and equation. Right: all points, coloured by tree ID. Here, all 

points lie below the 1:1 line (red line), indicating that in all instances (all four trees, all 

nine scans) the concave hull area estimates were the greater of the two estimates.  
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Figure 5.24: Scatterplot comparing DBH estimated by both HT and LSR techniques 

captured in varied-repetition scans. Omitting Tree B, an R2 value of 0.931 was achieved. 

 

 

5.3.10 Comparison of horizontal alignment between scans 
 

Inter-scan alignment is represented in experimental, vertically exaggerated cross-

sections (Figures 5.25 and 5.26, on the following two pages). These results were only 

intended to be indicative – alignment is difficult to quantify on reasonably flat 

topographies such as the UVP field site. In all cross-sections, the ‘reference’ dataset is 

displayed as a semi-transparent black point cloud and the comparison scan in red.  

 

Where overlap is imperfect, alignment is also imperfect. This is largely to be expected, 

given the UVP scans were designed to explore the effect of a single variable on the 

dataset. A typical HMLS scan would include close-loop scans and intersections (see: 

However, these analyses were designed to highlight the nature of misalignment. 

 



175 
 

 
 

Figure 5.25: North (left) to south (right) cross-sections through vertically exaggerated 

HMLS scans. Black points indicate ‘reference’; red denotes a given isolated-variable 

scan. All scans show a degree of misalignment but this is most marked in multiple-loop 

scans 2 m from the target trees. 
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Figure 5.26: West (left) to east (right) cross-sections through the same vertically 

exaggerated HMLS scans. As in 4.5.35, black points indicate ‘reference’ and red isolated-

variable scan clouds. Alignment, once again, appears to degrade mostly as a function of 

scan length/duration (i.e. with increasing loop iteration). 
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5.4 Summary 

 
 

The overarching aim for this chapter was to define ‘best practice’ when using current 

generation HMLS sensors to map trees and forest. The research question set out to 

determine the likely impact of sensor range – and sensor proximity from target trees – 

on point density and point distribution. It also sought to test whether repetition (i.e. 

multiple passes of a target) could increase point density such that it could mitigate the 

effect of poor sensor range.  

 

At the time of writing, current generation HMLS sensors did not offer a ‘real time’ data 

visualisation tool, so scans were conducted blind. This meant detailed planning of scan 

trajectories was required – and achieved by following pre-determined paths through 

the field site, staked out with plastic pegs. By following these paths, it was possible to 

isolate a single variable at a time. Such variables comprised of distance from target, 

target repetition, and velocity of survey. The results showed that survey trajectory 

repetition had a positive impact on point cloud density and point distribution – 

especially in areas at the marginal end of sensor range (8 – 12 m).  

 

Other results included the discovery that edge case scans where data were collected in 

marginal conditions very quickly degraded. The quality indicator rapidly declined and 

some scans failed to process altogether. An interesting finding was that alignment very 

visibly degraded with frequency of repeat pass. Given that these scans were 

performed on a fixed trajectory with no intermediate loop closure, this perhaps implies 

error propagation is a dominant factor affecting SLAM data registration. A useful 

insight upon which to develop a forest survey protocol in itself. 
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6. Exploring the potential role of HMLS within multi-sensor 3D 
forest mapping: a data fusion approach 
 
 

 

High-resolution, 3D forest mapping facilitates the extraction of spatial attributes and 

biophysical parameters, but the resolution and precision of these extracted metrics is 

directly impacted by the scanning hardware employed. Chapters 4 and 5 

demonstrated that some metrics can be acquired using HMLS sensors alone. However 

other metrics commonly used in forestry and forest inventory – such as tree height, 

canopy height, crown area and crown volume – require an accurate top-of-crown 

dataset. Whilst TLS workflows are often used to extract such metrics, such survey 

techniques are expensive and time-consuming. The results presented in Chapters 4 

and 5 also confirm that where HMLS data were acquired with optimised workflows, 

derived results were consistent. Whilst precision is lacking, error in data is both 

systematic and predictable. 

 

6.1 Research aims 

 

This chapter aims to define the role HMLS can play mapping forest in tandem with 

other sensors. In addition, it seeks to determine whether this multi-sensor ‘data 

fusion’ approach can address the limitations in HMLS range identified in previous 

chapters. HMLS data is co-registered and fused with EA ALS data. Theoretically, the 

fusion of ‘ground up’ HMLS data with ALS (which ‘looks down from above’) should lead 

to a holistic dataset. In turn, this ‘fused’ dataset should support the extraction of 

additional biophysical parameters which HMLS alone cannot capture.  
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6.2 Research question 

 

The research question posed for this chapter was: 

 

RQ3: To what extent can a fusion of HMLS and ALS data address limitations 
in the range of HMLS sensors? What 2D and 3D forest inventory 
measurements can be extracted from a fused dataset and how do they 
compare to TLS-derived measurements? 

 

6.3 Results for RQ3 
 

 

The results presented (with their corresponding processing steps and sequencing in 

terms of chapter layout described in Figure 6.1, overleaf) build on those presented in 

Chapter 4, fusing ALS with the HMLS2 data acquired in the UTF-ROK site as described 

earlier. To answer the research question, fused data were examined using 3D Forest 

using the same methods previously employed within this research. Results were 

limited by the performance of 3D Forest software on a Microsoft Surface 4 workstation 

– only a small quantity of data could be ingested at a time.  
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Figure 6.1: schematic flowchart illustrating the results presented in this chapter and 

the data fusion and processing steps which link them. 

 

 

6.3.1 Validation of TLS and ‘fused’ HMLS-and-ALS datasets 
 

LiDAR data from all sensors was passed through the Cloth Simulation Function (or CSF) 

algorithm (Zhang et al., 2016) plug-in in CloudCompare. This tool separated data into 

‘ground’ and ‘off-ground’ categories. ‘Ground’ points were then turned into meshes to 

form bare earth DTM surfaces. DTMS from multiple sensors were compared and 

adjusted (vertical plane) to correct one dataset to a datum established by the other. 
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DTMs were also used to terrain-normalise data, i.e. when calculating heights above 

ground. 3D Forest applied a similar process during the extraction of variables. 

 

Following are results of an alignment check between ALS and HMLS data acquired in 

March 2014 and July 2016 respectively. The HMLS data preserved the structure of 

understorey vegetation whilst ALS ‘last return’ points depicted a bare-earth surface. 

Consequently, the resultant difference in height layer was biased and the apparent 

magnitude of change was as much as 2.75 m – the maximum height of the vegetation. 

Figure 6.2 (overleaf) illustrates this comparison. 

 

A network of smoothed paths and bridleways, apparently less prone to vertical change 

than surrounding vegetation, crossed this site and were used as vertical reference 

‘control surfaces’. After manual alignment with ALS data, HMLS data was filtered and 

only points within a 10 m ‘distance-from-nearest-trajectory-point’ threshold were 

retained. Filtered data is illustrated in Figure 6.3 (also overleaf) coloured by height 

(left) and distance from trajectory (right). Vertical separation of footpaths can be seen 

to fall within the region of 0 to 0.05 m (shaded white) with a majority of points in the 

range 0.2 to 0.5 m. These latter values indicate height offset caused by understorey 

vegetation captured in HMLS, but not ALS, data.  

 

TLS data were also aligned with ALS data and showed remarkably similar crown 

structure despite the three-year temporal baseline between acquisitions (ALS: March 

2014; TLS: April 2017). Figure 6.4 (page 183) illustrates this alignment in three 

dimensions. Figure 6.5 (page 184) depicts the range of heights achieved using TLS, 

HMLS and HMLS-fused-to-ALS datasets. The fused HMLS+ALS dataset appears to 

record greater tree heights than the TLS reference despite validated vertical alignment; 

possibly an artefact, as ALS ground points had not been removed from analysis.  
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Figure 6.2: 3D projection of HMLS2 and ALS heights (left) and map of height differences 

(right). HMLS2 data appears much rougher than ALS due to presence of understorey 

vegetation which led to bias in mean height. 

 

 

 

          

 

Figure 6.3: HMLS data acquired within the UTF-ROK study site and filtered by distance 

from trajectory. Coloured by height (left) and distance from trajectory (right). 
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Figure 6.5: TLS (top left), HMLS + ALS (top right) and HMLS only (bottom) datasets. The 

respective colour ramps include histograms which illustrate the vertical distribution of 

points. Meanwhile the colour ramp extents define height range in each figure. 
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6.3.2 Comparison: vertical point distribution 
 

Figure 6.6 (below) compares vertical point distribution in a TLS and a ‘fused’ point 

cloud, both after CSF filtering to derive ‘off-ground’ points. It is clear the fused dataset 

has less than half the point density of the TLS dataset at its greatest magnitude (6 m 

above ground) and the distribution falls away dramatically above this height. 

Maximum heights are broadly similar (2 m difference), a value perhaps exaggerated by 

the temporal interval between acquisitions (ALS: February 2015; TLS: April 2017) and 

seasonality (with leaf cover much greater in TLS scan, likely leading to physically higher 

components of trees in the plot). 

 

 

Figure 6.6: Histograms of vertical point distribution for ‘off-ground’ points acquired 

with the TLS system (top; maximum height: 34.2 m) and formed through the data 

fusion approach (bottom; maximum height: 32.1 m). Both histograms are reproduced 

to the same X and Y scales.  
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Both datasets were then subsampled using a voxel de-densification routine, with voxel 

edge size set to 1 m. This was intended to remove bias in the data structure associated 

with sensor-specific point cloud geometry (i.e. ALS acquired in parallel strips; TLS 

acquired in hemispheres) and to give a ‘true’ picture of 3D structure (Figure 6.7, 

below). Having done this, the vertical distributions of the two plots now look more 

comparable – indeed, heights at the 99th percentile are within 0.1 m. The vertical 

offset between maximum frequency (TLS: 25 m; 22 m) may even indicate tree growth 

between acquisitions. 

 

 

 

Figure 6.7: Histograms of vertical point density for TLS (top) and fused (bottom) 

datasets in the UTF-ROK study site, normalised through a 1 m voxel de-densification.  

 

6.3.3 Comparison: horizontal point distribution 
 

In a broadly similar approach, horizontal distribution of off-ground points is also 

measured in Figure 6.8 (following page). Due to the TLS data having substantially 

higher point density across the site, the datasets were log10-transformed in order to 

share a colour ramp. ALS point distribution seems to visualise tree crowns, whilst TLS 

distribution clearly shows crown extent plus higher densities of points at the position 

of each tree stem. Fused data, meanwhile, seems to sit halfway between the two.  
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Figure 6.8: Above: point density distribution meshes for TLS (left) and fused (right) 

datasets, log10-transformed as per earlier figure. Stems correspond but crown data 

appears more extensive and ’smoother’ in the TLS mesh due to higher point density. 

 

6.3.4 2D tree-level metrics derived from fused data using 3D Forest 
 

Here, 2D measurements derived from fused HMLS2 and ALS data acquired at the UTF-

ROK study site are compared with TLS-derived observations. Figure 6.9 overleaf 

demonstrates that realistic tree heights were obtained despite limited HMLS range. 

The data is visualised in 3D Forest software, with estimated tree height depicted with 

vertical ‘poles’ and heights rendered in text. Comparing values with those in Chapter 5, 

it can be seen that data fusion improves tree height estimates in comparison with TLS-

derived height (Figure 6.11; page 189). Meanwhile Figure 6.10, on the following page, 

illustrates projected crown area using the (a) convex and (b) concave cross-sectional 

method. Graphs presented in Figure 6.12 (also on page 189) again suggest that data 

fusion can improve 2D crown characterisation. 
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Figure 6.9: Three-dimensional render of two fused-data point clouds (HMLS data 

acquired at UTF-ROK using the ZEB-REVO HMLS sensor merged with ALS data).  

 

 

    

 

 

Figure 6.10: Two-dimensional plots of convex (left) and concave (right) hull-derived 

crown surface area estimates derived from the clouds presented in Figure 6.9 above. 

Coloured by tree. 
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Figures 6.5.3 and 6.5.4 detail height, crown height and projected crown area in both 

the (i) native and (ii) multi-sensor fused datasets.  

 

 

 

Figure 6.11: Scatterplots comparing TLS reference height (per tree) with HMLS+ALS and 

HMLS-only height estimates. 

 

 

 

 

Figure 6.12: Scatterplots comparing TLS reference crown area with HMLS+ALS and 

HMLS-only crown area estimates. It is clear the data fusion approach can yield results 

which conform much more closely to TLS estimates than HMLS data can alone. 
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6.3.5 Comparison of TLS and HMLS crown volume 
 

A summary of descriptive statistics encompassing crown volumes estimated for each 

of the twenty-five trees sampled from UTF-ROK data is presented in Table 6.1. This is 

followed with profile-view and plan-view renders of segmented point clouds and 

volumetric meshes (Figures 6.13 to 6.16; pages 191 to 194). These are presented per 

subplot – first the UTF-ROK North subplot, then UTF-ROK South. Finally, a series of 

graphs explore inter-sensor comparisons and methodological differences in crown 

volume estimation. 

 

 

Table 6.1: Summary of UTF-ROK tree crown volumes 

 Voxel (m3) Convex hull (m3) Cross-sectional (m3) 

 TLS HMLS2 TLS HMLS2 TLS HMLS2 

Mean 9.10 1.88 529.79 225.47 281.69 117.72 

Standard error 0.84 0.27 45.18 43.49 25.18 98.23 

Median 8.17 1.48 447.30 149.20 241.54 98.23 

SD 4.18 1.35 225.88 217.45 125.91 103.63 

Kurtosis 0.11 -0.59 0.38 2.64 0.30 0.67 

Skewness 0.88 0.70 0.89 1.58 0.89 1.13 

Range 15.40 4.62 901.39 894.45 497.12 359.14 

Minimum 3.39 0.24 204.20 7.86 99.99 4.33 

Maximum 18.79 4.86 1105.59 902.31 597.11 363.46 

Sum 227.41 47.04 13244.64 5636.82 7042.27 2943.03 

Count 25 
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Figure 6.13: Profile views of (top) UTF-ROK North tree segments, (middle) convex hull 

volume meshes and (bottom) volume-by-cross section meshes.  

  

TLS                                                               HMLS2 
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Figure 6.14: Profile views of (top) UTF-ROK South tree segments, (middle) convex hull 

volume meshes and (bottom) volume-by-cross section meshes. 

  

TLS                                                                  HMLS2 
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Figure 6.15: Plan views of (top) UTF-ROK North convex hull volume meshes, (middle) 

intersections – highlighted yellow – between convex hull volume meshes and (bottom) 

volume-by-cross section meshes. 

 

 

  

TLS                                                                                 HMLS2 
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Figure 6.16: Plan views of (top) UTF-ROK South convex hull volume meshes, (middle) 

intersections – highlighted yellow – between convex hull volume meshes and (bottom) 

volume-by-cross section meshes. 

  

TLS                                                                         HMLS2 
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Figure 6.17: Final selection of scatterplots, this time plotted by sensor, exploring 

relationships between (top) crown height and convex hull-derived volume; (middle) 

cross-sectional surface area and cross section-derived volume; and (bottom) convex 

hull-derived volume and convex hull mesh surface area. As with UEP-BW, the latter four 

plots display a negative exponential relationship regardless of sensor used. 
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The results presented here were extracted from fused point clouds using 3D Forest. As 

discussed in previous chapters, a major limitation in this approach was the maximum 

amount of data which could be imported into the software before it crashed. Unless 

and until such software is further developed to handle larger datasets, the retrieval of 

such metrics will be limited to small sub-plots.  

6.3.6 3D tree-level metrics derived from fused data using 3D Forest 
 

In this section, 3D crown analyses are repeated. TLS data is compared with a fused 

HMLS2+ALS dataset. Figure 6.18, below, illustrates convex and concave hull (volume 

by section) approaches to crown volume estimation from a north-facing projection; 

Figure 6.19 (page 197) shows this data in plan view. These variables are also plotted in 

Figures 6.20 and 6.21 (page 198) to directly compare native and fused results. 

 

 

      
 

      
 

Figure 6.18: Side profile projection of the convex hull (top) and volume-by-cross-section 

(bottom) meshes again derived from fused point clouds of the two UTF-ROK subplots.  
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Figure 6.19: 3D meshes of UTF-ROK crown volume estimated through the convex hull 

(top-left and top-right; two plots side-by-side), convex hull intersecting overlap 

(middle-left; middle-right) and volume-by-cross-section (bottom-left; bottom-right) 

algorithms. Note: graphics included for reference purposes (display parameters cannot 

be modified).  

 

 

Volume estimates are inaccurate in that the degree of noise in ALS data cannot be 

quantified, especially having been manually segmented ‘by eye’. Despite this, 

comparable volumes to TLS-derived estimates were obtained via the data fusion 

approach (Figure 6.20, overleaf). A side-by-side comparison of the three approaches 

(Figure 6.21, overleaf) illustrates that the improvements achieved with this approach 

are inconsistent. Future work should certainly consider adopting a consistent, 

replicable, semi-automated approach to ALS crown segmentation such as the multi-

scale approach described by Barnes et al. (2017).  
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Figure 6.20: Scatterplots showing the relationship between TLS and HMLS+ALS (fused) 

crown volume estimates. The cross-section-derived approach to volume estimation 

shows the greatest potential (good fit to 1:1 line; R2 = 0.7943. 

 

 

 

 

 
 

 

 

Figure 6.21: Side-by-side comparison of tree crown volumes estimated by (a) voxel 

count, (b) cross-sectional mesh and (c) convex hull mesh approaches applied to fused 

(HMLS+ALS) data.  
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6.4 Summary 

 

The overarching objective of this chapter was to determine the role HMLS technology 

can play in acquisition of sub-canopy data for 2D, 3D and pseudo-3D forest mapping. 

HMLS sensors cannot measure canopy structure (Chapter 4; Chapter 5) but the data 

presented and analysed within this chapter confirms the HMLS approach to forest 

mapping is potentially very useful for the rapid acquisition of rich, three-dimensional 

information tree parameters from ground to lower crown. Crucially, whilst the two 

sensor technologies exist in separate domains and ultimately resolve different forest 

components, there are parallels which manifest as spatially explicit relationships.  

 

This chapter demonstrated that sensor fusion can indeed boost the utility of HMLS 

systems in several forest applications. However, there is only merit in fusing data 

where all datasets involved are of sufficiently high point density to discern tree 

structural components. Environment Agency (2018a) open LiDAR data is therefore 

unlikely to contribute complementary structural insight to an area of forest mapped 

with current-generation HMLS sensors. On the corollary, a combination of HMLS and 

UAV LiDAR acquisitions seems likely to offer the most efficient means of accurately 

mapping 2D and 3D forest structure.  
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7. Discussion 
 

 

7.1 Introduction 

 

This research sought to develop a protocol for the optimal use of HMLS in forests. 

When the project began in 2014, HMLS sensors had only recently become available in 

professional surveying and were yet to be assessed in forest environments. The pace 

of development in mobile laser scanning has increased over the years since, but HMLS 

sensors have remained under-represented throughout the literature.  

 

7.2 Chapter structure 

 

This chapter begins with a question-by-question analysis of the research questions 

posed – the main findings, specific results and broader implications raised by each of 

the three results chapters. These sections (7.3 to 7.5) include full analysis of all results 

achieved throughout this work, which are then examined in the context of existing 

research literature. Section 7.6 looks more generally at variation in positioning, 

precision and quality of HMLS data (in comparison with other methods and sensors) 

across all study sites. The limitations of this research are then discussed (7.7), leading 

to a section (7.8) which addresses both limitations and data quality through an applied 

analysis of operational considerations. Finally, section 7.9 proposes a hypothetical 

‘integrated forest inventory and assessment’ protocol, within which it is anticipated 

HMLS technology would play a key role. The many merits of such systems are put into 

context in terms of the forestry variables they can readily detect and measure, whilst 

strategies to acquire a full suite of tree apex to forest floor datasets are also described. 
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7.3 RQ1: Comparison of tree mensuration derived from benchmark 
TLS and experimental HMLS scanning 

 

RQ1 sought to determine how HMLS techniques compared with established, tried-and-

tested TLS methods for measuring trees in two and three dimensions. Experiments 

were devised to identify which ‘parts of a tree’ the two HMLS sensors could resolve – 

and the precision of measurements subsequently derived from this data. Bespoke 

forestry-specific software was tested and information derived from HMLS data through 

this software was compared with a precise and reliable reference (TLS) dataset.  

7.3.1 Main findings 
 

The results and findings introduced here were designed to answer RQ1 and assess the 

many roles HMLS sensors can play in forest surveying, building on work performed by 

Ryding et al. (2015), Bauwens et al. (2016), Oveland et al. (2018), Cabo et al. (2018a) 

and others in this field. The main findings are presented per-measurement. To 

reiterate, two-dimensional variables included DBH, tree height, crown height and 

projected tree crown area. Three-dimensional variables focused on crown volume, 

estimated using three separate algorithms. 

7.3.2 Subsets, classification and segmentation of HMLS point clouds 
 

HMLS data generally lent itself well to object-based segmentation with the exception 

of the USB-C subplot (e.g. Figure 4.9; page 114) where tree crowns intersected one 

another.  The very nature of HMLS surveying meant that points were distributed 

relatively-evenly throughout each scan (and hence subplot). This was in contrast with 

TLS techniques where a high density of points were acquired close to the scanner, 

density decreasing with distance. Individual points were more widely separated in 

HMLS than TLS data because of beam divergence angle and sensor resolution. This 

proved to be a double-edged sword; data density was lower but a larger minimum-

distance-between-points threshold for HMLS clouds was thus necessary to facilitate 

semi-automated segmentation (Table 4.5; page 110). Ultimately, this meant that a 

high degree of manual adjustment was required. Fewer points were acquired per unit 
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area using HMLS than the TLS reference datasets. Thus, both the classification and 

segmentation algorithms ran more swiftly for HMLS than TLS data. Figure 4.7 (page 

112) illustrates this problem in the context of HMLS data acquired at UEP-BW.  

 

For various reasons, 3D Forest proved inconsistently unstable and often crashed. This 

seemed to be most common when the software attempted to classify point clouds 

exceeding 20 x 20 m (spatial limit) or 30 000 000 points (data volume) into terrain and 

vegetation layers. Accordingly, spatial subsets were extracted. This had the effect of 

shrinking sample size but enabling semi-automated extraction of biophysical 

parameters such as tree height, DBH, etc. Classification and segmentation were 

ultimately successful across all subplots although manual refinement was required. 

Not all scans were equal and not all user-defined parameters were applicable across all 

datasets. The structural definition of ‘tree’ therefore varied with sensor, site and 

survey methodology. As with any branch of science, it is key that data is processed 

consistently. This was adhered to as fully as possible but bias was identified after 

manual ‘cleaning’ of segments. Furthermore, classifying segments as ‘tree’ or ‘other 

vegetation’ was a necessarily manual task. At best, this aspect of processing could be 

described as ‘semi-automated’. 

 

Recall that the anomalous values removed were those which exhibited unrealistic 

differences between RHT-derived DBH extracted from both the TLS and HMLS2 

datasets. The distribution of points in Figure 4.12 (p. 119; right-hand panel), even with 

three more pairs of DBH values excluded, remains greater than that illustrated in 

Figure 4.14 (p. 121; bottom right-hand panel). This suggests that as a DBH estimation 

technique, LSR is less reliable than RHT. Later in this chapter, a much larger sample of 

DBH estimates is analysed. This incorporates a broader range of diameters and 

encompasses multiple forest plots across three separate forests. 

 

The results presented in Chapter Four demonstrate that current-specification HMLS 

sensors cannot yet measure the full height of trees. However, they do confirm that it is 

possible to accurately (R2 > 0.85 across three different forest types) derive DBH in 

scenarios where HMLS scans are performed optimally. Throughout this chapter, HMLS 
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was again compared with multiple TLS reference scans and where range was not 

relevant, results were found to be of high accuracy and good precision. Where 

measurements required information on tree structure at heights greater than 16 m 

(ZEB-REVO) or 12 m (ZEB-1) above ground, the data was of much less scientific utility. 

2D and 2D crown mensuration proved problematic due to limited range, but 

workflows developed to assess these variables worked well. Future developments in 

mobile LiDAR technology look set to herald a second LiDAR revolution in forestry.  

 

It is common knowledge that the size of tree structural components – branches, twigs, 

leaves - decrease broadly in line with distance from the ground. Given that HMLS 

sensors have limited range, and that beam separation is such that adjacent points may 

be several centimetres apart at crown height, it was perhaps predictable that such 

sensors did not prove capable of detecting crown structure in the experiments 

conducted here (Chapter 4, sections 4.3.6 and 4.3.7; pages 136-146). Figures 4.30 (p. 

137), 4.33 (p. 139) and 4.35 (p. 140) illustrate how variables dependent on accurate 

determination of crown height and crown bottom height were also negatively affected 

by a limit in HMLS range. In particular Figure 4.37 (page 143) and 4.31 (page 145) serve 

to highlight that crown height underestimation was not linear but perhaps random.  

 

Scans were performed outdoors, where HMLS range was expected to fall between 10 

and 15 m (Cabo et al., 2018a) or 15 to 20 m (GeoSLAM, 2018). The results presented in 

this research highlight a useful range of 16 m (HMLS2) and 12 m (HMLS1) in typical 

daylight conditions. Points were logged at heights above this but given diminishing 

resolution with distance from scanner, it proved impossible to determine whether 

these spurious points were tree or mere noise. Clipping heights at the 99th percentile 

reduced maximum height by several metres.  
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7.3.3 Diameter at breast height 
 

The results presented in Chapter 4, section 4.3.3, suggest it is indeed possible to 

extract realistic DBH estimates using HMLS sensors subject to a certain tolerance. 

Mean RMSE values of 0.031 m (for the HMLS2 sensor) and 0.060 m (for HMLS1) were 

achieved across all three field sites. These results are negatively biased, for some trees, 

due to complex tree structure. Not all stems were ‘clean’ so results were demonstrably 

biased by the presence of surface noise and occasionally low branches, both at DBH 

height. Additionally, the 3D Forest implementation of DBH-fitting algorithms seemed 

sub-optimal in the context of noisy stem point clouds, the least-squares (LSR) approach 

particularly. In the most-representative field site – UEP-BW, comprising the widest 

range of DBH values – an RMSE value of 0.029 m (HMLS2) was achieved once clearly-

anomalous estimates were removed. These RMSE values, taken across all sites as a 

whole, compare fairly favourably with existing research comprised of similar analyses:  

0.29 m (Ryding et al., 2015), 0.011 m (Bauwens et al., 2016) 0.031 m (Oveland et al., 

2018) and 0.037 m (Forsman et al., 2016) for the HMLS1 system and 0.010 m (Cabo et 

al., 2018a) for the HMLS2 alternative.  

 

Given manual ‘cleaning’ of tree stems within a point cloud prior to analysis, RMSE can 

realistically be expected to fall to 0.010 to 0.030 m. As data processing progressed, 

some segmented trees were omitted from analysis due to clear overestimation 

associated with noise, branches at DBH height or insufficient coverage in terms of stem 

circumference – e.g. because of occlusion. Other values were removed where 

equivalents in other sensor scans were unavailable. Where only ‘clean’ stems were 

sampled – for example the trees sampled from the UTF-ROK subplot (Figure 4.15; page 

123) scanned with the HMLS2 device – RMSE reduced to 0.016 m (RHT) and 0.026 m 

(LSR).  

 

RMSE for DBH derived from the HMLS1 datasets acquired at Stratfield Brake (USB) was 

greater than expected, biased by problems deriving DBH from the smaller trees within 

the plot. In future, such issues could be mitigated to some extent with manual 
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adjustment of DBH point clouds on a tree-by-tree basis within 3D Forest. However, this 

may prove to be an unworkable solution given the time required for such work. 

 

Mean DBH values (Table 4.6; page 124), across all sites, were 0.318 m (HMLS1) and 

0.315 m (HMLS2). This compared favourably with mean TLS-derived DBH – 0.310 m. 

Meanwhile, standard error was 0.036 m, 0.038 m and 0.033 m for TLS, HMLS1 and 

HMLS2 respectively. So, when considered as a series of values, the two techniques 

compare well. A corollary to this argument is when minimum derived DBH is 

compared. For the TLS dataset, the smallest DBH value derived was 0.044 m. HMLS1-

derived DBH for the same stem was 0.046 m – just 2 mm difference. However, 

minimum HMLS2-derived DBH was 0.052. In some instances, points in close proximity 

to a tree stem between 1.2 and 1.4 m above ground were incorrectly attributed as 

‘DBH cloud’ points, irrespective of DBH algorithms (e.g. Figures 7.1 for TLS and 7.2 for 

HMLS2; page 206). Unfortunately, the ‘DBH cloud edit’ tool built-in to 3D Forest was 

unable to modify the respective point clouds on-the-fly, so these anomalous values 

were removed from further analyses reducing sample size from 51 to 49.  

 

An alternative technique was tested to potentially combat this overestimation of DBH, 

albeit with a substantial time penalty. A pair of trees were identified where the 

difference between TLS and HMLS2-derived DBH exceeded 0.1 m. The two trees were 

then manually ‘pruned’ of all non-stem points in the vicinity of breast height and the 

two DBH-estimating algorithms were re-ran. Figure 7.3 (page 207) illustrates tree 33 

before, during and after this process as applied to TLS data. The ‘pruning’ process for 

the tree highlighted in Figure 7.3 took three minutes, requiring multiple detailed edits. 

This was in addition to time taken identifying ‘incorrect’ trees within the subplot and 

isolating points associated with that tree from all other points in the subplot cloud. As 

it would have proved inefficient to repeat the process on all trees where inter-sensor 

DBH estimates varied by more than a threshold amount (in this study, 0.1 m), these 

trees were instead removed from further analyses. DBH error was deemed to have 

been the result of the 3D Forest algorithm rather than HMLS2 data quality. 

Consequently, a further 9 trees (Figure 7.4; page 207) were removed. Of the 51 trees 

segmented from TLS and HMLS data, a total of 39 were preserved.  
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Figure 7.1: DBH estimates for tree number 45 (top) and 15 (bottom) as derived from 

P20 TLS data using RHT (red cylinder) and LSR (green cylinder) algorithms. Estimates 

here are shown as visualised within 3D Forest software.  

 

 
 

       

       

 

Figure 7.2: Further DBH estimates for tree 45 (top) and 15 (bottom), this time derived 

from ZEB-REVO (HMLS2) data using RHT (red cylinder) and LSR (green cylinder) 

algorithms. Estimates here are shown as visualised within 3D Forest software. 
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Figure 7.3: Tree 33 extracted from the TLS dataset before (left), during (centre; orange 

denotes points to be discarded) and after (right) manual data pruning. As a result of the 

pruning, derived DBH decreased from 0.85 to 54.8 m. While removal of the minor twigs 

improved DBH estimation, the time expense rendered the approach inefficient within 

the scope of this research. 

 

 

Cabo et al. (2018b) demonstrated algorithms which could derive accurate DBH 

estimated despite the presence of artefacts in point clouds at breast height. If such 

algorithms were applied to HMLS data, there is every chance the results in Chapters 4 

and 5 could be further improved. DBH estimation using unmanned ground vehicle-

based LiDAR and SLAM processing achieved RMSE of 2.38 cm (Pierzchala et al., 2018). 

The results presented in Chapters 4 and 5 compare favourably, especially when data 

artefacts are considered. 

 

 

 

 

Figure 7.4: Trees as scanned with HMLS2 and removed from further analysis as they 

were deemed too structurally-complex for DBH estimation. In this instance, the 

presence of minor branches and dense leaves at DBH height affected the accuracy of 

the 3D Forest cylinder-fitting. 
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7.3.4 Tree height 
 

In terms of tree height, neither the HMLS1 nor HMLS2 sensor could resolve the height 

of trees >24.9 m as measured using TLS (Table 4.7 and 4.8; Figure 4.20 and 4.23 – 

pages 129 and 132). The tree with the greatest height successfully detected in full by 

HMLS1 stood at 12.4 above ground. Whilst HMLS1 also recorded tree heights up to 

15.7 m above ground, these points did not reflect true height. This implies a hard limit 

in sensor range between 12 and 13 m in typical conditions reflectively of a calm spring 

morning in the southern UK. This backs-up findings presented in Chapter 5 (Figures 

5.17 and 5.18; p. 166-167) - a maximum detected height of 12.5 m above ground. 

Meanwhile HMLS2 showed a mean height of 16.5 m within the UTF-ROK subplot 

where mean TLS height was 26.2 m – again implying a superior, but still limited, sensor 

range. Across both the UEP-BW and UTF-ROK sites, HMLS2 height estimates seemed to 

peak at roughly 15 m above ground. These figures are in line with Cabo et al. (2018a) 

which, at the time of writing (July 2018), was the only study to have assessed a ZEB-

REVO within a forest environment. 

7.3.5 Stem volume 
 

Efforts to model tree stems as three-dimensional meshes to estimate individual tree 

stem volume – and potentially derive growing stock volume at the plot-level – were 

relatively unsuccessful. The technology exists to achieve this and indeed, several 

recent studies have leveraged TLS data and software such as Computree (Raumonen et 

al., 2013; Hackenberg et al., 2015; Calders et al., 2015; 2016; Sheppard et al., 2017; 

Stovall et al., 2017; 2018; Putman et al., 2018; Wilkes et al., 2018) to build quantitative 

structure models. However, the processing pipelines for achieving such models were 

lengthy and inefficient – perhaps best used for single-tree samples.  

 

Whilst it proved possible to generate meshes, the process was very time-consuming. 

HMLS clouds were significantly noisier than TLS equivalents and spatial resolution was 

up to one order of magnitude lower. Stems were first manually-isolated from HMLS 

scans (ground, understorey vegetation and branches removed iteratively with 
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polygonal ‘fences’, as described in CloudCompare was then used to compute normals 

and the ‘Poisson surface reconstruction’ plug-in called to generate a mesh. Meshes 

were subsequently adjusted by clamping the associated scalar field values. This had 

the net result of removing TIN mesh vertices not representative of the true tree stem. 

TINs were spatially complex and did not resemble stem geometry as accurately as TLS 

no indication of accuracy was available. As a consequence, a decision was made to 

jettison full-tree volume from this research given resource limitations. Voxel-based 

volume is briefly discussed in Chapter Six. 

7.3.6 2D and 3D tree crown geometry 
 

An attempt was made to derive two-dimensional crown structure for variously sized 

trees from HMLS data. This was novel analysis not previously tested in published 

research. Unfortunately, neither HMLS1 nor HMLS2 proved capable of capturing 

sufficient crown structure to facilitate realistic estimation of two-dimensional crown 

size and shape. Crown geometric algorithms could only be usefully applied to data 

where individual trees could be segmented. This effectively meant that areas of forest 

where crowns intersected one another could not be used as segmentation relied, in 

part, on a minimum point separation. In intersecting crowns, points from adjacent 

trees often fell well within this threshold, especially where branches or twigs were in 

direct contact with one another. Therefore, to measure crown geometry a subset of 

the data acquired for this chapter was extracted. This subset included the UEP-BW and 

UTF-ROK subplots featuring tall, sparsely-planted trees and displaying a degree of 

‘crown shyness’. Whilst the actual results generated significantly underestimated true 

crown shape and extent, considered as proof-of-concept they suggest substantial 

promise, particularly with anticipated development in terms of hardware.  

 

Estimates derived from the UEP-BW subplot showed a weak correlation with respect 

to reference TLS-derived estimates: R2 values of 0.173 (HMLS1) and 0.504 (HMLS2). 

Meanwhile estimates extracted from TLS and HMLS2 scans acquired at the UTF-ROK 

field site yielded an R2 value of 0.007. Together, these results suggest that HMLS 

sensors are not useful in terms of reconstructing tree crown geometry. There seems to 
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be little benefit in attempting to derive crown width or projected surface area using 

such instruments. Similar attempts were made to examine the three-dimensional 

structure of the same tree samples using the same sensors. Again, the success of this 

approach was very limited due to the relatively limited range of the HMLS laser itself.  

 

HMLS range was limited and no clear relationships were observed where HMLS and 

TLS volumes were directly compared (page 136 – 146). Yet across all subplots, a 

relationship was identified between convex hull volume and crown height for both TLS 

and HMLS2 sensors (Figure 4.44; page 146). Of greater interest was the apparent 

relationship – negatively exponential – between mesh surface area and surface 

volume, evidenced in both TLS and HMLS2 analyses (Figure 4.44 again). Future 

research might detect subtly different exponents. If so, this may perhaps be a simple 

means of discriminating between tree types (e.g. coniferous; non-coniferous) or 

perhaps even species. However, the technique itself functioned well, suggesting that 

with a superior laser (e.g. enhanced range) the approach would be of merit mapping.  

 

It remains to be seen whether the convex hull, or cross-sectional, approaches to three-

dimensional crown volume estimation are of greater merit. Where both were applied 

to TLS data, derived volumes were significantly different (Table 4.9; p. 142). The voxel-

based approach substantially underestimated volume. This is because the approach 

only created voxels where 3D measurements existed in XYZ space. Thus, as such 

measurements were predominantly captured within the outer edge of tree crowns, 

and biased towards the base of a crown (due to limited sensor range), few voxels were 

located within the crown. Voxel volume accuracy in this context was dependant on 

two parameters: voxel cell size and point density. With a cell size of 10 m, even a very 

sparse voxel plot would indicate high crown volume. Conversely, 0.01 m voxels are 

always going to under-report crown volume when point density is less than e.g. 1 000 

000 points/m3. Given the variance in point density as a function of (a) tree height, (b) 

distance-from-scanner, (c) occlusion and (d) scanner placement, it was impossible to 

create a continuous 3D reproduction of full tree structure.  
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The success of a similar approach could be improved using a mobile sensor with a high 

range (>50m), high pulse rate (>100MHz) and improved accuracy (<0.001m). This 

might include the GeoSLAM ZEB-HORIZON, Leica BLKGO or Leica Pegasus:Two systems. 

Such systems should also facilitate much-improved crown meshing, especially if fused 

with UAV-mounted LiDAR-derived datasets. 

 

7.4 RQ2: Target reconstruction as a function of survey geometry  

7.4.1 Sensor range  
 

Looking at all scans side-by-side, from both a profile (Figure 5.2; p. 152) and an aerial 

(Figure 5.3; p. 153) perspective, variation in sensor range is clear to see. This becomes 

even more evident in Figure 5.5 (p. 156) where the proportion of physical tree 

structure detected by the ZEB-1 visibly decreases. The obvious implication is that the 

scanner does not have an infinite range and the distance it can scan can be observed in 

datasets as small as the UVP site. To explore range in a more empirical manner, the 

vertical distribution of points was plotted in a series of histograms (Figures 5.8 and 5.9; 

p. 159). The size of each bin was set to 0.5 m, reflecting the z-axis dimension of 

horizontal slices extracted from each scan. Although the shape of each histogram is 

subtly different, each peaked in the range of 3.5 to 4 m above a terrain-normalised 

datum and each showed a maximum vertical height-above-datum of no greater than 

9.5 m. On this evidence alone, range could naively be described as “up to 10 m 

outdoors”, some 10 m shy of the GeoSLAM (2018) specification. However, short of 

measuring ‘range’, this was more akin to an inferred determination of ‘maximum 

height’. It took no account of three-dimensional (angular) range.  

 

Looking at density plots in 5.9 (p. 159), tree reconstruction between 2 m and 10 m 

scans is vastly different – yet in all scans, apparent maximum height is identical. This 

suggests that range exceeded 10 m, at least laterally, in all scans. It seemed prudent to 

re-evaluate maximum height. Maximum height was estimated for each scan (rather 

than tree), with values illustrated in bar chart form as Figure 5.17 (p. 166). Maximum 
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height varied between 10.84 and 12.52 m – with the ‘highest’ points recorded in the 

‘reference’ scan.  

 

Intriguingly, the lowest-quality scans (in terms of SLAM registration) accounted for the 

next three greatest heights – the two 5 m (fast; steady) and 10 m scans. Suspicion grew 

that perhaps gross maximum height may not be the optimal measure, so additional 

heights were extracted at the 99th percentile of points above ground. Although not a 

de facto measure of height, this approach had a drastic effect on relative height values 

between the scans. Now, heights varied between 6.5 and 7.5 m, with height 

decreasing in line with quality of SLAM registration. Recalling that SLAM quality is a 

proxy for the quality of the data, this suggested that values extracted from low-quality 

scans were less reliable. The ‘reference’ scan had the lowest apparent height but was 

biased, in that a greater proportion of points were collected of ground given the 

complex trajectory (multiple, rather than a single, loop). 

 

All HMLS scans significantly under-estimated tree height in comparison with the HMLS 

‘reference’ (Figure 5.17; p. 166). Meanwhile the TLS data suggested maximum height 

in the region of 13.5 m, versus 12.5 m for the reference HMLS scan (Figure 5.18). 

Examining the figure in more detail it appears the HMLS point cloud structure 

degrades at heights exceeding 8 m or so. Tempting though it might be to suggest 

occlusion (shadowing of upper tree structure by lower branches blocking laser pulses), 

it is a factor common to both HMLS and TLS. Given the ‘always on’ nature of HMLS 

scanning, data was continuously captured from an almost-infinite number of angles. 

Perhaps it is more sensible to define a range of data quality degradation rather than an 

absolute value for maximum range. Useful sensor range appears to fall within the 

region of 10 to 12 m.  

7.4.2 SLAM performance in feature-poor environments 
 

It was hypothesised that SLAM may struggle where there was a lack of unique features 

within 5 – 10 m of the scanner. This appeared to have been the case in the 10 m scan. 

The football goalpost was successfully reconstructed, but remaining points bore no 
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relevance to on-the-ground physical structure. As suggested in Figures 5.4 (p. 155) and 

5.7 (p. 158), a 2D density raster might be the best way to visualise tree reconstruction. 

Although the 3D information is lost, these plots clearly show relative branch 

completeness (i.e. the portion of a given tree successfully detected in a single scan).  

 

The ‘hole’ in the 10 m scan is more readily visible in Figure 5.3 (page 153) which 

includes cross-sectional slices extracted from a 3D density plots generated from the 

varied-distance scans. This figure illustrates significant difference in the number of 

branches detected by the ZEB-1 HMLS in the three scans highlighted. In the case of the 

10 m scan, almost no structure is visible between the two stems. Given that this void is 

>11 m from the scan trajectory, an obvious implication is that range may have been 

limited to <12 m. Even at the eastern (left) and western (right) extremities, much less 

of the lower branch structure was detected despite relative scanner proximity. For 

moderate-to-good quality SLAM registration, the trajectory of any given HMLS scan 

must loop features of interest at least once and in close (<5 m) proximity. 

7.4.3 Point density and distribution 
 

Figures 5.4, 5.5 and 5.7 illustrate density as a variable in each of the scans – measured 

in 2D (5.4; 5.7) and 3D (5.5). Density is a metric that counts the number of ‘hits’ – 

LiDAR measurements – in a ‘bin’ (equal-area raster cell). Of interest here was whether 

there would be any pattern in density variation and if so, whether it was predictable 

and whether it was a function of a user-controlled survey parameter. The GeoSLAM 

ZEB-1 collects 41,000 points per second (GeoSLAM, 2018a) and typical walking speed 

for an adult human averages roughly 7 km h-1 (2 m s-1). Assuming a horizontal range of 

15 m either side of the scanner, HMLS swath width is roughly 30 m. Thus 41,000 points 

covering an area 2 x 30 m in extent will be logged per second.  

 

If point spacing was equal, density would equate to 683 points per m2. Of course, point 

spacing is a function of beam separation – increasing with distance from a scanner – 

and so not equal at all. Scan geometry varies dynamically, and point distribution is as 

much a product of sensor orientation and progress of the surveyor through a field site 
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as anything else. It therefore proved impossible to constrain any realistic estimate for 

point density. However, analysis of density across each scan and plot nonetheless 

yielded useful insight. 

 

Unsurprisingly, the highest point density was recorded in the 20-loop scan (20 loops at 

a distance of 2 m from target trees). Lowest point density was recorded in the 1-loop-

at-10-m scan – which showed a ‘data gap’ between the trees at heights above ground. 

In all single-loop scans, ground point density tended to show a somewhat striped 

distribution (Figure 5.4; p. 155). The data in this scan would require a high degree 

interpolation to build a coherent, smooth continuous surface model if required. The 

use of multiple loops mitigated this issue entirely, incorporating a multitude of scan 

angles into the dataset.  

 

It is also clear that multiple (> 2) passes of a target object greatly increase the number 

of points acquired (Figures 5.7 and 5.8; pp. 157 and 159). However, this relationship is 

not linear – with more repetition, comparatively fewer points per pass are collected. 

Some points are potentially lost in the SLAM registration or other cloud-based 

processing method. In Figure 5.9 (page 159), we can see the distribution of points in 

each height bin as a percentage of all points acquired per scan. Most points can be 

seen to have been captured at heights between 1.5 and 4.5 m and above ground. 

Density is biased by proximity to the HMLS sensor and consequential decrease in the 

effect of beam angles (e.g. at a distance of 2 m, two beams angled 1° apart will be 

much closer than at a distance of 10 m). This is further evidenced by focussing on the 

plot for “1 loop at 10 m”, which shows much less bias. Proportionally, the effect of 

distance-from-sensor on beam separation is much less pronounced. The lower 

branches were 4 m above ground and in this particular scan were the reason why a 

majority of points were logged at this height bin.  

 

Comparing stem cross-sections (Figures 5.10 and 5.11; pp. 160-161), the variation in 

density between scans is obvious. Of the scans that successfully processed, four seem 

to have incomplete stem reconstruction (i.e. point density is not continuous around 

tree circumference) – 1 loop at 2 m, 1 loop at 5 m (normal pace), 1 loop at 5 m (fast) 
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and 1 loop at 10 m. This suggests that repetition and distance both play a role in tree 

reconstruction, even at DBH height. This assertion is further validated by Figure 5.5 

(page 156) which highlights an enormous difference in point density and distribution. It 

also illustrates that in marginal scan range conditions, implied structure of a tree is 

lost. In its stead is an incoherent, relatively sparse distribution of points. These points 

homogenously fill a volume otherwise occupied by point clusters resembling first- and 

second-order branches, arbitrarily ‘simplifying’ tree structure. 

 

Few (< 1000) points were logged more than 10 m above ground in five of the nine 

scans – and less than 500 in the 5 and 10 m-from-target scans. Once again, this 

variation in point distribution suggests a limited ‘useful range’, probably in the region 

of 10 or so metres.  

7.4.4 Tree measurement under controlled conditions 
 

Based on the results that comprise much of this chapter, it is clear HMLS sensors 

cannot be relied upon to detect tree height accurately and precisely. The specification 

supplied by the OEM suggested 20 m range outdoors and 30 m indoors. In forests, 

maximum range would theoretically lie somewhere between the two due to canopy 

closure attenuating sunlight. Both HMLS sensors struggled to depict forest structure at 

a distance beyond 12 m – 13 m and in some cases, even objects some 10 m from the 

sensor were poorly-resolved.  

 

In terms of tree height metrics, it appears HMLS are unable to reconstruct even the 

lower canopy of typical temperate tree species given the performance observed here. 

Therefore, canopy geometry was inconsistent – convex and concave hull area varied 

quite considerably (Figure 5.23; page 173) by as much as 13.9 m2. Some of this error, 

however, is attributable to the nature of segmentation in 3D Forest given the overlap 

between the canopies of the UVP trees. Thus, in Chapter 5, crown surface area is 

revisited with focus on non-overlapping trees. 
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In terms of estimating diameter at breast height, HMLS demonstrated promising 

results. Whilst there remain concerns about noisiness of the data, the algorithms 

available in 3D Forest were able to extract DBH semi-automatically from each scan in 

three of the four trees. The fourth – tree B – was an exception as the stem branched 

into two limbs at more or less DBH height (1.33 m above ground), confounding circle-

fitting. Comparing the LSR and RHT approaches to DBH estimation, there was some 

variation (R2: 0.931; see Figure 5.24 on page 174).  

 

Stem detection was successful in all scans that were fully-processed (Figures 5.19 – 

5.21; pages 169-171), although given only four trees were present, this was to be 

expected. When imported into 3D Forest, centroid positions were estimated for all 

four trees in all scans – although the locations did vary by up to 0.65 m (Figures 5.20 

and 5.21). The 20 m scan failed to process at all. 

  

It is clear tree centroids were spread fairly widely with respect to the reference dataset 

– and in a perpendicular direction to the respective survey trajectory. For instance, 

tree A – the northernmost tree in the site – has a cluster of points distributed along a 

north-south axis to the north of where the reference scan positioned it. This would 

appear to be a hallmark of SLAM positioning in the absence of closed-loops or, for 

example, trajectory passes overlapping and intersecting one another (as per Figure 7.6 

on page 221).  

 

Error accumulates (error propagation) while a scan is underway. This is because the 

IMU has no external reference data source such as GNSS positioning and functions as a 

dead-reckoning instrument. Every degree of rotation is subject to an error, and these 

errors continuously accumulate unless or until a loop is closed. In the context of HMLS 

methods, until a survey revisits an object previously surveyed (and ideally approached 

from a different angle). This error propagation seemed particularly pronounced in the 

continuously looping scans of the UVP site but was not the case in the reference scan. 

Error propagation is also the likely cause of misalignment as highlighted in Figures 5.25 

and 5.26 (pages 175 and 176). In these figures, alignment is at its poorest where scan 

separation (5 m; 10 m) is greatest or duration longest (5; 10; 20 loops).  
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In summary, the ZEB-1 HMLS system is capable of measuring DBH and tree position to 

acceptable degrees of accuracy and precision, but optimal use requires multiple passes 

of target objects within a range of 10 m at most and with repeat loop closure to 

mitigate excessive error propagation.  

7.4.5 Effect of repetition within a single scan 
 

For moderate-to-good quality SLAM registration, the trajectory of any given HMLS scan 

must loop features of interest at least once and in close proximity to guarantee 

coverage although ‘useful’ sensor range probably lies in the region of 10 to 12 m. 

Based on these results, it seems range is independent of ambient lighting condition 

and thus is unlikely to be effected through use of the system outdoors. 

 

Point density varies enormously between scans. In most cases, repetition (multiple 

loops) mitigates data gaps sufficiently. To ensure an even and continuous spread of 

data from all angles, objects should be looped at least twice from a distance no greater 

than 10 m on each pass. The ZEB-1 HMLS systems is capable of measuring DBH and 

tree position to acceptable degrees of accuracy and precision, but optimal use requires 

multiple passes of target objects within a range of 10 m at most and with repeat loop 

closure to mitigate excessive error propagation. 

 

7.5 RQ3: Evaluation of a ‘data fusion’ approach to forest mapping and 
modelling 

 

The principle aim of this chapter was to determine the role HMLS sensors can play in 

sub-canopy forest mapping within multi-sensor mapping campaigns. The literature 

contains thousands of studies exploring forest structural mapping. Most studies focus 

on ALS, TLS or a combination of the two. There is a clear trade-off (Figure 7.5, overleaf) 

between speed and detail. As comprehensively discussed in Chapter 2: Literature 

review, published research typically aligns to just one or two of several sensor 

methodologies. These include ALS, TLS, MLS and HMLS systems.  
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7.5.1 Multiple sensors, complementary roles 
 

Each approach offers a distinct balance between two ends of a spectrum (Figure 7.5, 

below), ‘speed’ and ‘detail’, but it is rare for multiple approaches to be combined. As a 

useful rule of thumb, ALS offers rapid mapping of wide areas (100s of km2 in a single 

flight) at the cost of resolution (5 to 20 points per m2 footprint), whilst TLS offers very-

high-resolution, highly-detailed, local models (>100 000 points per m2 footprint and 

mm-scale precision) but with significant time penalty. Meanwhile MLS, HMLS, UAV-

LiDAR and UAV-SfM methods alike occupy a fuzzy ‘middle ground’. Techniques built 

around these sensing platforms allow quick capture of 3D data encompassing broad 

tracts of forest at cm-scale precision. This chapter aimed to identify where, on this 

spectrum, HMLS techniques sit.  

 

 

 

 

Figure 7.5: Visual representation of the ‘spectrum’ of 3D forest mapping showing a 

research gap between ALS and TLS techniques.  

 

 

The results presented in Chapter 6 are believed to be the first to fully-assess utility of 

HMLS in acquiring full-coverage 3D data to complement other 3D datasets (i.e. ALS). 

Chapters 4 and 5 confirmed that HMLS scanners cannot obtain tree height or fine 

structural detail. However, results in the two chapters clearly demonstrate that HMLS 

is a great tool to quickly and reliably capture cm-scale forest features (DBH, trunk 

length, dimensions of first-order branches) at the plot and sub-compartment level. 

with tree parameters directly retrieved from HMLS point clouds. Internal (within-scan) 

SLAM-derived positioning is robust in forested environments, as found through the 
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goodness-of-fit of HMLS and ALS data to one another. Where HMLS scan quality is 

‘good’, error is less than 0.1 m. Caution should be applied during HMLS data capture to 

ensure a good baseline point density and minimise error propagation.  

 

There is a benefit in fusing HMLS and ALS data to combine high-resolution mapping of 

tree density, DBH and trunk height with crown architectural variables such as tree 

height, crown height, crown extent and canopy height. Basic data fusion was shown to 

be a viable means for deriving a complete set of crown variables in conjunction. 

Figures 6.9 (page 188) through to 6.21 (page 198) confirmed fusion of ALS and HMLS 

point clouds can greatly-improve 2D and 3D tree mensuration. Where compared with 

reference TLS-derived variables, parameters extracted from fused (HMLS + ALS) data 

were more accurate than those extracted from HMLS data alone. HMLS sensors are 

demonstrably suitable for multiple roles in ongoing forest research. 

7.5.2 Improvement in capability of 2D and 3D tree mensuration 
 

When measuring tree height and length (Figure 6.11; p. 189), R2 rose from 0.15 to 0.55 

in both cases. R2 of convex-hull derived crown surface area increased from 0.22 to 0.64 

and concave hull-derived surface area saw R2 values improve from 0.24 to 0.76, 

despite a temporal baseline of two years between ALS (2015) and HMLS (2017) data 

capture. 

 

Voxel-based crown volume estimation was poor in all instances (Figures 6.20 and 6.21 

on page 198), likely as voxels only depict tree surface area and not volume (Stovall et 

al., 2018). Cross-section-derived crown volume yielded the strongest relationship 

when compared with TLS-derived estimates: R2 was 0.79. However, the data were 

biased in that segmentation of the ‘fused’ data was carried out manually by eye. In the 

future, more-sophisticated segmentation algorithms not reliant on homogenous point 

density may yield superior results. 
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7.6 HMLS data positioning, quality and precision 

 

Imprecise positioning (e.g. Figure 5.21 on page 171; Figure 6.2 on page 182) presented 

wider problems throughout this research. Whilst visual registration in CloudCompare 

proved a successful means to co-align data, no peer-reviewed studies had explored the 

validity of this approach. The results presented here must be accepted with a caveat 

that intra-acquisition alignment is potentially incorrect. Only with the inclusion of well-

distributed ground control can multi-sensor datasets be accurately co-aligned.  

 

Results derived in Chapters 4 and 5 indicated that target complexity (e.g. 

richness/abundance of significant 3D objects within scanning range) and trajectory 

geometry (e.g. number of passes, distance from object and speed of survey) have an 

impact on the accuracy of HMLS-derived forest mapping. Although a qualitative 

variable (i.e. with no defined scalar field or attribute), SLAM condition does describe 

the relative success of a scan. Where condition was observed to be ‘high’, tree 

centroid positions were accurate when compared with reference (e.g. TLS) datasets 

(Figure 5.21, p171; Figure 7.6 overleaf; Figure 7.7, p223). Conversely, scans comprising 

several metres of ‘poor’ SLAM condition invariably incorporated positional error.  

 

Once downloaded from GeoSLAM Cloud, HMLS-derived data came with little 

information on the quality of SLAM registration. Two such ‘quality’ files were provided 

alongside full-density ‘full’ point data: a reduced-density point cloud (hard-coded to 

retain 9% of all possible points - purely indicative) coloured by quality and a point-

based scanner trajectory file coloured using the same colouration. These files were 

supplied with a quality flag-based colour ramp ranging from blue, through beige, to 

red. The implication was that blue implied ‘successful’ SLAM performance, red ‘poor’ 

and shades in between some fairly arbitrary quality. Poor registration was occasionally 

suggested though the ZEB-1 LED flashing orange. According to GeoSLAM (2018a), this 

could occur wherever the operator moved (i) too fast, (ii) too abruptly (e.g. when 

making a sudden turn, tripping, or otherwise moving too fast for the IMU to 

compensate) or (iii) through a relatively sparse, featureless environment.  
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The scans undertaken in the UVP field site were condition-controlled, meaning (i) and 

(ii) were fully mitigated by moving at a reasonable pace. By isolating the effects of 

speed, the net result was that the quality flag indicated SLAM performance – except 

for the varied-velocity scans. In all the scans acquired at a constant separation of 2 m 

from target trees, quality within 10 m of the trees remained good. This is validated by 

the trajectory acquired in the reference scan (Figure 7.6), where good quality (i.e. blue 

shading) applied throughout.  

 

 

 

 
Figure 7.6: Modified schematic of the UVP ‘reference’ scan trajectory, coloured by SLAM 

registration quality. The blue shaded polygon highlights the area within 5 m of features 

(i.e. trees) where quality was flagged as ‘good’ in all 2 m-buffer scans. The area outside 

invariably saw poor SLAM registration across the board, likely due to a lack of 3D 

features within sensor range. North is aligned to the left in this schematic. 

 

 

Where scans were carefully conducted, quality remained high in the vicinity of 

persistent features. To further verify this claim, all UVP HMLS scan trajectories were 

aligned in a single plot (Figure 7.7; page 223). Once again, a pattern emerged – good 

quality registration in the immediate vicinity of trees, with poor registration in outlying 

areas of each scan. The outermost loops are areas where the scan included TLS target 
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tripods. These objects were no more than 1 m above ground and surrounded by >10 m 

of flat, featureless terrain. This seems to confirm that SLAM requires an abundance of 

complex structure, viewed from multiple angles, to localise position on-the-fly.  

 

Scans conducted at distances of 5 and 10 m from the target trees displayed moderate 

to poor SLAM quality. In the case of the ‘fast’ 5 m scan, the ZEB-1 LED blinked on two 

occasions and so a few retraced steps were taken. This suggests that speed, as well as 

distance from complex objects, is significant – perhaps the second most-important 

user-controlled variable. The 10 m scan was of poor quality throughout. Meanwhile, 

the 20 m scan failed to process as too few points associated with trees were recorded 

at all. Finally, two scans which saw the trajectory run east-west once, then twice, 11 m 

to the south of the trees triggered an ‘error’ in GeoSLAM Cloud. Evidently, the 

geometry of these scans was far too optimistic.  

 

All HMLS point clouds showed systematic noise, especially visible in planar and 

cylindrical surfaces and likely a by-product of the low-cost laser itself (Bosse et al., 

2012; Liang et al., 2018). HMLS data oversamples the true dimensions of smaller 

objects and there is a bias associated with noise. A consequence of this is that only 

objects equal to, or greater than, mean systematic error (RMSE = 0.03m; Ryding et al., 

2015; Chapter Four and Five of this research) may be detected reliably. Even where 

objects were detected, bias must be considered. It is anticipated a noise reduction 

filter could improve accuracy of the technique where applied to HMLS data. However, 

in the case of trees with stem height within maximum range of HMLS sensors, the 

approach can potentially yield realistic stem volume estimates despite systematic 

noise. Adoption of the OHM algorithm proposed by Stovall et al. (2017) or the voxel-

based approach described by Putman et al. (2018) would likely mitigate bias associated 

with this noise. 
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Figure 7.7: Co-aligned plot of all UVP HMLS scan trajectories, coloured by quality. 

Unfortunately, no index or colour ramp was supplied with this information. 

 

7.7 Limitations of this research 

7.7.1 HMLS sensor range 
 

A possible factor affecting range may also have been ambient ultraviolet radiation (e.g. 

from the sun) known to negatively affect near-infrared radiation (A. Rak, pers. comm., 

Dec 19, 2017). It remains difficult to ascertain the primary cause of underestimation at 

the individual tree level. This could be limited range, a side-effect of segmentation or 

even the result of scan geometry. For instance, adjacent trees may have been captured 

from very different sensor positions. This is especially likely where occlusion from 

certain angles was a factor, a common problem in forest laser scanning. With a laser 

range exceeding 50 m, all trees could theoretically be scanned from top-of-crown to 
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forest floor using HMLS sensors. In so doing, datasets comparable to Wilkes et al. 

(2017) and Calders et al. (2018) might be achieved. Compared with TLS, absolute 

accuracy would be inferior but spatial extent much greater.  

7.7.2 Data processing bottlenecks 
 

This research was in part frustrated by a patchy selection of software tools, few of 

which readily integrated with one another. At the same time, there are an abundance 

of processing modules and libraries in a multitude of libraries and programming 

languages ideally suited to specific tasks but which, with a few amendments, may 

prove useful in unrelated applications. For example, 2D object-based image analysis 

could assist in segmentation of 3D HMLS point clouds if data were first converted to a 

2D density raster. Future research would derive enormous benefit by tackling an 

apparent disconnect between available software and intuitive workflows. Integrating 

multiple LiDAR classification, point cloud segmentation, parameter extraction and 

microwave scattering modules into a ‘one-stop’ software package would remedy many 

of the processing bottlenecks described in Chapter Six.  

 

At present, few software tools capable of deriving geometric variables from point 

clouds also facilitate batch processing, with Computree (Othmani et al., 2011) and the 

SimpleTree add-on module (Hackenberg et al., 2015) a notable exception. In parallel, 

necessary modification to certain point cloud objects (e.g. trees with low-hanging 

branches; dense understorey vegetation at DBH height) cannot be automated or sped-

up through programming tweaks. Such edits are made in real-time; this level of user-

interaction accounted for a considerable proportion of time (several months) 

dedicated to data processing and analysis for this research. However, semi-automated 

processing steps would certainly benefit from parallelisation in processing to maximise 

CPU efficiency. Further optimisation could include boosting available RAM or 

converting scripts to run with accelerated GPU, rather than conventional CPU, 

hardware. 
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When generating results for RQ2 (Chapter 5), major limitations in the performance of 

3D Forest software were identified (Chapter 3: Figures 3.33 and 3.37; pages 91 and 97) 

leading to issues in scale and sample size. Given that segmentation of UEP-BW alone in 

3D Forest took roughly seven hours per sensor, it is not difficult to see the need to 

carefully-balance the trade-off between processing time and sample size. Minimum 

sample size was set to 15 trees – with subplot dimensions tailored to suit. Despite 

processing with a powerful workstation, point clouds above spatial and memory 

thresholds seemed to continually crash the software.  

 

Major processing bottlenecks were also reported in Liang et al. (2018), especially in the 

case of tree height estimation and stem detection in areas of dense forest. This agrees 

with what was found in Chapter 5, especially the USB field site. Liang et al. (2018) 

identified operator error as a primary cause of omission error when acquiring forest 

data with mobile scanning systems. The HMLS data capture protocols presented 

throughout Chapters 3 to 6 here go some way to addressing this. Certainly, by 

specifying a ‘minimal trajectory separation’ and filtering point clouds by distance from 

trajectory, the quality of retained data was enhanced and redundant points (in this 

instance, points outside the AOI as defined by distance) were removed without undue 

delay. 

7.7.3 Lack of real-time data coverage or quality indication 
 

At the time of writing (May 2018), a real-time module for the ZEB-REVO (HMLS2) was 

available but had not been tested in forests. Prior to this innovation, HMLS data were 

captured ‘blind’. The only interactivity between surveyor and hardware was a solitary 

LED on the scanner. Coloured green, it indicated data were being captured at 

acceptable SLAM quality. Flashing amber, the indication was that SLAM quality had 

degraded. No other real-time feedback was available. The surveyor would not discover 

artefacts, misalignment or gaps in data coverage until they had left the field and 

processed data. This was a major weakness of the HMLS systems tested in this 

research but addressed in similar products soon to enter the sensor marketplace. 
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7.7.4 Temporal separation of data capture 
 

Limited availability of ALS data further reduced opportunities to fully-explore data 

fusion. Whilst the availability of EA ALS data is a substantial benefit to science, the 

nature of its capture meant a broad range of acquisition dates. Surveys were flown to 

encompass discrete polygonal areas in specific temporal windows. Necessarily, these 

could not overlap with HMLS capture. Hence ALS and HMLS surveys were separated by 

2 to 4 years. In this period, sampled trees grew at varying rates and upper canopy 

structure invariably changed. Future research could explore simultaneous capture of 

airborne and terrestrial dataset to minimise this effect. 

7.7.5 Complications co-aligning data from multiple sensors 
 

Given the reliance necessarily invested in handheld GPS devices, it is perhaps 

unsurprising that absolute spatial agreement between TLS and HMLS sensors proved 

difficult. The handheld Garmin GPS unit used in the field reported accuracy as high as 1 

m, deteriorating to between 3 to 8 m depending on canopy cover. As a consequence, 

georeferencing of individual scans was based on ALS data. HMLS scans were shifted 

horizontally (to match tree crowns and corner structures, e.g. buildings, fences) and 

vertically (aligning footpaths and tarmac surfaces) within CloudCompare. This visual 

registration approach did not yield real-world accuracy assessments, which would have 

been problematic in any case due to spatial distortion associated with SLAM. The 

GeoSLAM Cloud implementation of SLAM is ‘black box’ – with no user-adjustable 

parameters. Whilst its strength lies in mapping non-uniform areas of spatial 

heterogeneity, hence its performance in certain forested areas, the algorithm has a 

tendency to propagate error through dead reckoning without sufficient loop closure. 

Unfortunately, data were captured ‘blind’ and where resulting point clouds were sub-

optimal, data were discarded. 

 

To assess HMLS-and-ALS data fusion and compare with TLS data (RQ3), multi-sensor 

datasets had to be fused. This was done using a manual, visual registration approach. 

Whilst largely regarded as an acceptable method when aligning terrestrial LiDAR, the 
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approach usually includes fixed-position targets for precise alignment once visual 

registration is undertaken. This approach is much less-frequently used (if at all) when 

combining data from multiple sensor types. In the case of this research, accuracy was 

further constrained by a lack of fixed targets and thus became an exercise of judgment 

and user-interpretation. Data were extracted from ALS by overlaying TLS data and 

cutting polygonal fences from the fused data using TLS crown structure as a guide. 

There may be bias due to this sampling method. Furthermore, this manual 

segmentation-by-polygon was only possible as the UTF red oak compartment showed 

signs of ‘crown shyness’. Multi-layer crowns are much more complex and require 

multiple polygonal fences from a limitless number of 3D perspectives.  

 

It is important to note that ALS data were acquired in February 2015 and fused with 

HMLS data acquired in 2016. These fused data were compared with TLS data acquired 

in 2017. In this instance, no additional data on tree growth rates was available. Even 

with knowledge of tree growth, it is impossible to fully account for temporal variation 

in height. These errors must therefore be accounted for in any future work fusing data 

from multiple sensors and acquisition dates.   

 

7.8 Operational considerations using HMLS in forested areas 

 

In forestry, HMLS remains a relatively recent addition to the toolkit and at the time of 

writing, only a few research papers had been published assessing GeoSLAM HMLS 

sensors in this context. Accordingly, there was a need to assess the factors that may 

optimise or constrain their operational usage. Here, the principal benefits and 

disadvantages of the ZEB-1 HMLS system are described operationally in comparison 

with more-traditional TLS methods.  

7.8.1 Efficiency: time and cost 
 

An obvious benefit using HMLS in a forest is the time efficiency of this scanning 

technique. Using HMLS instead of ALS or TLS, substantial time saving is possible. ALS 
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data capture campaigns acquire vast swathes of data very rapidly but to the detriment 

of detail. Aircraft typically cruise at a rate of 150 to 200 knots at altitudes of around 1 

000 m. Swath width in the ALS data obtained for this study (Environment Agency, 

2018a; 2018b) was 240 m, including 40 m overlap with adjacent survey lines on each 

side parallel to direction of flight. As a coarse estimate, such ALS sensors can capture 

18 000 to 24 500 m2 of 3D data per second. However, mean point densities tend to 

vary between 10 and 30 points per metre. At such coarse resolution, the detection of 

individual trees is difficult – and stems are almost impossible to detect. In most cases, 

data is biased toward the upper canopy. Understorey vegetation is poorly represented 

and where present in any abundance, can also negatively influence the accuracy of 

ground detection.  

 

Conversely, terrestrial laser scanning is inherently time-consuming yet offers almost-

limitless spatial resolution from the forest floor to the top of the tallest tree. This is 

especially the case with modern laser scanners such as the Leica Geosystems P20 (used 

to validate findings in this research) and P40 and equivalent systems from Riegl Gmbh 

(VZ-400i; Calders et al., 2016a; 2016b; Wilkes et al., 2018) with >100 m range. The TLS 

technique requires complex sensor set-up at each scan station, and assistance from 

multiple field scientists. Individual scans take 3 to 15 minutes each and multiple scans 

are required per plot (refer to 2. Literature review and 3. Methods for detail) to 

mitigate occlusion. There are further bottlenecks in terms of data import, registration 

and processing (Liang et al., 2018) – especially in higher-density scans.  

 

As suggested by the few relevant studies in the literature (Ryding et al., 2015; Bauwens 

et al., 2016; Aijazi et al., 2017; Huerta-Garcia et al., 2017; Cabo et al., 2018a; Oveland 

et al., 2018) the principle benefit of HMLS, compared with TLS, is relatively-rapid data 

acquisition (in terms of area-based coverage). This research agreed, further 

establishing that data capture rate was primarily limited by the speed of the surveyor. 

As described in Chapter 5, the HMLS approach proved capable of deriving results 

comparable to those acquired with TLS. For example when estimating DBH, HMLS-

derived parameter RMSE was in the region of 0.03 m when compared with TLS 
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observations of the same trees. This places HMLS systems to the right of a ‘level of 

detail’ spectrum such as Figure 7.8, below. 

 

 

 

 

Figure 7.8: Graphical depiction of the varying levels of detail achieved with the sensors 

analysed in this research  

 

 

Each of the nine HMLS scans collected in the UVP field site took less than 15 minutes – 

with cloud-based processing equally rapid, processing undertaken at a 1:1 ratio with 

duration of field capture. This data allowed creation an accurate stem map (centroids) 

within minutes of data import. The equivalent TLS survey required eight scan stations 

and took three hours. TLS data processing was non-trivial, too, requiring bespoke 

software (Leica Cyclone) and involving a two-hour delay while raw data loaded to the 

Cyclone database. It currently (May 2018) costs £0.32 per 2 m2 ‘unit’ to process HMLS 

data via GeoSLAM Cloud. In contrast, TLS data processing attracts no charge assuming 

the operator has at least basic experience and their time is not chargeable. However, 

TLS data processing requires specialist, proprietary, commercially leased software 

(Leica Cyclone) which in itself requires a certain level of expertise and significant 

processing time. It is therefore difficult to apportion cost, software licence 

depreciation and to value the time of the data processor. TLS data processing is as 

laborious or straightforward as the survey specification necessitates.  

 

In the TLS-based UVP field survey, black-and-white tripod-mounted targets were used 

to provide common reference points in each of the eight scans. These reference points 

were successfully used to align the scans, to a gross RMSE of 0.002 m. The entire 

processing chain first required the import of raw scan data into Cyclone, running 

behind-the-scenes over several hours. This was followed by a quick automatic-

alignment-of-targets which took several seconds. A final ‘registration’ was performed 
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to derive a co-registered point cloud. This entire processing workflow took a full 

working day but could have taken much longer. HMLS data processing and alignment, 

meanwhile, was simple. Thanks to SLAM, data was delivered ‘pre-aligned’ with no user 

intervention required. Automated processing was done using GeoSLAM Cloud and co-

registered, processed data were downloaded as single point cloud files within an hour 

of upload. Alignment of individual scans to a common local coordinate system took the 

form of manual translation and rotation in CloudCompare and was completed within 

an hour. With the use of spherical targets in the field, this could be reduced to minutes 

(GeoSLAM, 2018b). 

7.8.2 Recording geometry and minimising occlusion 
 

Given that an HMLS sensor can be moved into an almost limitless number of positions, 

occlusion is almost entirely mitigated. The prerequisite is that a conscious effort is 

made, during survey, to ensure the HMLS unit is operated well within its documented 

range in close proximity with all target trees. Thus, in a relatively open forest a scan 

should be performed such that opposing survey lines fall within 20 m of one another. 

In so doing, all objects will be within 10 m of the scanner and reconstruction of any 

given tree should prove practical.  

 

Given, also, that an HMLS scans continuously and registers points in an almost 

spherical manner about the surveyor, there is no need to manually aim it at targets. 

Simply following a trajectory at a steady pace should ensure capture of sufficient data 

to perform similar analyses to those described in 4.5 Results for RQ1. However, a key 

constraint is that the HMLS sensors (the ZEB-1 and ZEB-REVO) available at the time of 

writing did not ship with any real-time display of scan trajectory or data logged. So 

some form of on-the-fly positioning is required to guarantee coverage. This might take 

the form of a pre-measured ‘grid’, or even the use of field spotters to track progress 

relative to an X and Y axis. From summer 2018, an upgraded HMLS – the ZEB-REVO RT 

– is likely to be available. This will ship with real-time SLAM processing and live data 

display, mitigating this problem (GeoSLAM, 2018c).  
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7.8.3 Placing HMLS in the context of precise forest mapping 
 

Based on the evidence presented in this chapter, it is clear HMLS systems offer 

substantial value in a multitude of sub-canopy forest mapping. However, where do 

HMLS systems fit in the context of precise forest mapping, specifically? Figure 7.9 

(below) builds on the ‘level of detail’ concept (Figure 7.8; page 229). It proposes a 

continuum – a defined range – in which HMLS systems are suitable. The scale is 

logarithmic, ranging from coarse level-of-detail (100 m, consistent with typical wall-to-

wall biomass maps) to extremely high detail (0.001 m, the precision and accuracy with 

which individual leaves are routinely mapped with survey-grade laser scanners). The 

orange-to-green gradient indicates the pseudo-spectral bandwidth at which this 

research suggests HMLS sensors may operate. Meanwhile the feint orange shading to 

the left outlines the spatial extent of coarser-resolution EO data (e.g. Landsat 8, 

Sentinel1/2). 

 

 

Figure 7.9: A continuum of high-resolution and VHR sensor system resolution. 

 

 

Upon reflection, HMLS sensors seem to offer an impressive bandwidth in the sense 

that numerous precision forestry measurements are achievable. The colour gradient 

highlights that this range extends from 0.03 m (typical RMSE of HMLS measurements 

such as DBH when compared with reference TLS data, as per Chapter 4 and Chapter 5) 

to 12 m (maximum useful range outdoors, in bright sunlight, as per Chapter 5). In 

between, they are perhaps the perfect sensor for mapping ground-level forest 

attributes at the pixel-level, for instance mapping stem density beneath a mosaic of 1.2 

m COSMO-SkyMed (Spotlight-2) or 10 to 20 m Sentinel-1 pixels. HMLS data fits ALS, 

such as the EA (Environment Agency, 2018a) data explored here – very well, with 

propagated error in planar dimensions of HMLS scans well within horizontal tolerance 

specified for the EA data.  
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Where HMLS performs poorly is where objects < 0.05 m are scanned – leaves, twigs 

and grass become homogenous ‘clumps’ within the point cloud. Additionally, the 

systematic noise in HMLS data precludes these sensors from being useful in measuring 

fine-scale surface roughness or topography. Despite this, HMLS sensors are excellent 

instruments for measuring forest floor topography. The primary limitation is that data 

require some form of filtering and, perhaps, noise reduction – which has the clear dis-

benefit of reducing point density and introducing some kind of interpolation. The 

results presented here determined that topography derived from HMLS data and 

filtered using the CSF algorithm (Zhang et al., 2016) was of comparable detail and 

precision to TLS and ALS-derived data.  

 

7.9 Integrated forest inventory and assessment 

 

This research has demonstrated that HMLS systems are of mixed utility in forest 

mapping: there are measurements for which they are capable tools, and 

measurements for which they are inappropriate. To what extent can these systems - 

and the workflows described in this thesis - play a role in forest inventories and 

mapping beneath the canopy? The findings described throughout this thesis suggest 

there is a clear supporting role for HMLS sensors in the context of an integrated, multi 

sensor approach to forest inventory and assessment.  

7.9.1 Comparison of sensor suitability by forest biophysical parameter 
 

Table 7.1 on the following page lists the key forest biophysical parameters identified 

and discussed throughout this research and gives each sensor a qualitative, relative 

ranking (from 3 to 1) in suitability for the retrieval of each parameter. A ranking of 

three implies the sensor is very well-specified for retrieval of a given parameter. A 

ranking of two suggests good, if sub-optimal, results might be expected based on 

research conducted and results gathered within this thesis. A ranking of one proposes 

that the respective sensor is capable of making the measurement, but with an 

expectation that accuracy will be lost through omission or commission.  
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For example, TLS instruments have repeatedly been demonstrated as optimal tools to 

measure true tree height (subject to the effects of occlusion). Meanwhile, the UAV 

imagery-based structure-from-motion has been shown to be a good technique for 

crown modelling, but as crowns below mean crown height are poorly reconstructed, 

output is sub-optimal. At the far end of the spectrum, it is potentially possible to 

calculate AGB using DBH and a measurement of stem taper from HMLS sensors but 

this is limited to trees with heights within sensor range. Furthermore, range noise 

manifested as systematic ‘fuzzy’ noise precludes an accurate estimate of DBH.  

 

Table 7.1: Assessment of sensor suitability per forest biophysical parameter 

Parameter ALS UAV-SfM TLS HMLS Inventory 

AGB ●● ●● ●●● ● ●● 

Basal area   ●●● ●●● ●●● 

Crown area/extent ●●● ●● ●●  ● 

Canopy cover ●●● ●●● ●●  ● 

Canopy height ●●● ● ●●  ● 

Canopy profile ●● ● ●●  ● 

Crown height ●●●  ●●  ● 

Crown radius ●●● ●●● ●●  ● 

Crown volume ●●● ●● ●●  ● 

DBH   ●●● ●●● ●●● 

Growing stock volume   ●●● ●● ● 

Leaf area index ● ●●● ●●  ●●● 

Stand complexity ●●  ●●  ● 

Stem density   ●● ●●● ●● 

Stem location   ●●● ●● ● 

Stem taper   ●●● ●● ● 

Tree density ● ● ●● ●●● ●● 

Tree height ●● ●● ●●●  ● 

Topography ●● ● ●● ●●●  

●●● indicates an optimal sensor platform 

●● indicates ‘good results some of the time’ 

● indicates ‘inconsistent’ 

Absence of ● suggests the sensor is not capable of measuring this specific parameter 
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7.9.2 Multi-sensor forest mapping 
 

Based on the analysis above, HMLS sensors are an optimal tool for the capture of DBH 

and subsequent calculation of basal area. What they lack in absolute precision (i.e. due 

to systematic noise/range error), they compensate for in terms of the spatial extent at 

which data can be acquired in a fixed time interval. Whilst TLS instruments are 

evidently more precise, coverage is constrained by (a) capture time, (b) density of scan 

set-ups and (c) effects of occlusion integral to a fixed station methodology. HMLS 

instruments, inherently mobile in nature, offer an almost infinite number of capture 

‘set-ups’ and flexible survey geometry. In a similar vein, HMLS sensors can 

complement airborne sensors. Airborne laser scanners below densities of around 100 

points m2 -1 cannot typically ‘see’ tree stems, nor indeed much in the way of tree 

structure between the upper crown and the forest floor. Current generation HMLS can 

‘see’ the forest floor, tree stems and lower branches – but not tree crowns. Logically, 

fusion of these two datasets leads to a more holistic point cloud broadly comparable 

to mid-range TLS scanners (as shown in Chapter 6). This suggests HMLS are perhaps 

the best sensor to map stem/tree density and forest floor topography – addressing a 

functionality gap in ALS approaches. Overall, HMLS sensors are perhaps a single tool in 

an ever-expanding toolbox but a tool likely to offer functionality which benefits a 

broad variety of 3D mapping techniques. 

7.9.3 Multi-temporal forest mapping 
 

A principle benefit of the HMLS approach to forest mapping is that efficiencies can be 

propagated over time. The time and costs saved using HMLS rather than TLS for a 

survey are multiplied each time a forest plot or stand is scanned. Given that scan 

trajectory overlap is not essential, unlike TLS surveys which ideally need identical scan 

station set-ups, repeat surveys are constrained purely by logistics (access, surveyor 

availability and scanner availability). A surveyor simply needs to turn-up, initialise the 

sensor, scan, then demobilise. In practical terms, handheld consumer GPS way 

pointing is sufficiently precise to give a ballpark estimate where a repeat scan should 

be located. If scans are conducted using the same protocol, with considerations made 
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for effective loop-closure to minimise IMU/SLAM drift, then multiple-epoch datasets 

should overlay one another without issue to decimetre levels of precision. 

 

This ultimately means that an HMLS scan be organised and conducted with minimal 

lead time. This is a huge benefit in many forest mapping applications. Chief among 

these is likely to be in calibration-validation (“cal/val”) campaigns, such as those 

currently in operation for the forthcoming BIOMASS P-band SAR mission. Experience 

gained during this research led to the awareness that TLS surveys require a lot of pre-

planning, coordination and field assistance. HMLS surveys, on the other hand, can be 

performed by a lone worker. Where opportunistic surveys can help a broader scientific 

mission – e.g. if a SAR satellite is due to overpass a specific area of forest immediately 

after an unexpected event such as a storm – an HMLS scanner can be immediately 

dispatched with a forest surveyor. Data can be captured within hours – rather than 

weeks and months. In a related vein, repeat surveys can be tasked at a fraction of the 

cost – useful in tying 3D scans with SAR repeat-pass intervals. ESA Sentinel-1A and 1B 

have a 6-day repeat period.  
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8. Conclusion 
 

8.1 Mapping forests with HMLS: strengths 

 

The results in this research demonstrate what can be achieved with HMLS and 

consumer-grade positioning. Along with increasing laser range, modern positioning 

equipment is also subject to continued development. Handheld GNSS solutions are 

now available which can acquire 3D positional information to millimetric precision 

almost instantaneously, subject to an RTK-GPS subscription and mobile data coverage 

(Leica Geosystems, 2018b). Naturally, such technology enables increased precision in 

HMLS scan co-registration by accurately locating physical targets and prominent 

objects (e.g. walls, fence posts) in real-world coordinates. Physical targets could be 

established common to HMLS, airborne and spaceborne platforms and precisely 

positioned using RTK-GPS sensors and survey-grade total stations.  

 

Like many LiDAR applications, TLS and HMLS seem to sit at different points on a 

spectrum from ‘quick and cheap’ to ‘precise and expensive’. These results suggest that 

current-generation HMLS scanners can facilitate very good quality results. Whilst not 

comparable to TLS sensors, which remain the ‘gold standard’ in forest mapping, it is 

demonstrably possible to rapidly acquire useful forest metrics over a wider spatial 

area. Using HMLS sensors, this can be achieved with less sensor ‘bias’ or occlusion due 

to a dynamic, continually changing scan position. The pace of technological 

development suggests that HMLS and similar systems will integrate higher-quality 

lasers with extended range in the not-too-distant future, building on ground 

established by sensors such as Leica’s Pegasus: Backpack (Lehtola et al., 2017) and 3D 

Laser Mapping (2018)’s ROBIN system, GeoSLAM’s ZEB-HORIZON and Leica 

Geosystems’ forthcoming BLK2GO among others.  

 

There is likely to be a proliferation of research projects assessing these systems in 

forested areas in the forthcoming months. Calders et al. (2018) and Wilkes et al. (2018) 
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demonstrated rigorous, robust and repeatable workflows for the modelling of 

individual trees at large scale (plots of 1 Ha or greater) to inform a new generation of 

radiative transfer models. Whilst the precision and range of the HMLS sensors tested 

in this research preclude such detail, the results suggest HMLS technology remains 

suitable for some aspects of large-scale forest mapping for SAR calibration and 

validation.  

 

8.2 Mapping forests with HMLS: weaknesses 

 

As described in 7.4.3, fusion of HMLS with some form of airborne dataset can mitigate 

limited range in current-generation HMLS sensors. However, the relevance of this 

approach diminishes where large temporal baselines exist between the fused data. 

Seasonal variation – particularly canopy defoliation – can be expected to influence 

forest structure as detected from airborne platforms. Therefore future research should 

focus on adopting extended-range sensors. With increased range, sensors will be able 

to detect tree components at any height. However, in addition, factors such as 

occlusion can be greatly reduced as much more structural information can be acquired 

from a given sensor position. This will lead to much greater overlap between adjacent 

trajectories and ensure a given tree is detected in several, rather than two-to-three, 

passes. 

 

HMLS data capture within the research described was limited by a lack of real-time 

information on scan coverage or quality. Data were acquired blindly in the expectation 

that by following protocols developed for this work, quality would be optimised. At the 

time of writing, GeoSLAM are now marketing the ZEB-REVO RT (‘real-time’) which 

integrates a tablet computer to visualise (i) trajectory and (ii) a sparse (9% of points) 

point cloud as a surveyor navigates a scene (GeoSLAM, 2018). The ZEB-REVO RT is yet 

to be used in active research but is anticipated to mitigate most limitations identified 

in Chapter Four as point density and coverage can be optimised on-the-go. For the first 
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time, foresters using such sensors could acquire and access a complete, quality-

controlled 3D dataset within hours of entering a study site.  

 

8.3 Recommendations for future research 

 

Recent radar missions including the first ICEYE microsatellite and the S-band NovaSAR-

1 satellite (launched in January and September 2018 respectively) will require some 

form of ground calibration and validation data. Meanwhile the forthcoming BIOMASS 

P-band SAR satellite is anticipated to launch in 2021. In the case of ICEYE, simultaneous 

SAR and HMLS acquisition becomes possible not just weekly (as per Sentinel-1) or 

semi-regularly (e.g. COSMO-SkyMed) but multiple times per day (ICEYE, 2018). Future 

work in the field of HMLS may wish to focus on the role HMLS sensors might play in 

collecting high volumes of data, over wide (forest stand rather than forest plot) areas, 

in multi-temporal windows coincident with SAR data take opportunities.  

 

If HMLS technology development keeps pace with TLS, it is possible mobile scanners 

will offer range (>100 m) and precision (<0.001 m error at distances of 10 m) 

equivalent to 2018-era TLS instruments. If so, HMLS sensors may prove to be ideal 

instruments for calibration and validation in a representative sample of Earth’s forest 

biomass magnitude. Once range is addressed, tree height and crown structure can be 

resolved as rapidly as DBH and stem positions have been in the research presented 

here. Coupled with UAV-LiDAR, we may soon reach the point where full vertical forest 

structure can be mapped rapidly, efficiently and precisely.  

 

8.4 Summary 

 

At the time this research began (October 2014), no studies had explored use of HMLS 

systems in forests. Ryding et al. (2015), a proof-of-concept and the first such study, 

was published in January 2015. To date (July 2018), it had been cited just twenty-five 
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times and over the period, just fewer than ten papers on the topic of HMLS in forests 

(Bauwens et al., 2016; Oveland et al., 2018; Cabo et al., 2018a; 2018b) had been 

published. The research presented in this PhD was designed to build on the work of 

Ryding et al. (2015) and Bauwens et al. (2016) in applying similar methods but on a 

broader scale in multiple forest types. This novelty persists: none of the 

aforementioned papers explicitly considered different species, species compositions or 

forest types. Of these papers, only Cabo et al. (2018a) assessed performance of the 

GeoSLAM ZEB-REVO. Indeed, this research was limited to just two compartments of a 

single city centre park so cannot truly be considered as a benchmark study. 

 

At the time of writing (late July 2018), the first benchmarking exercise to compare 

software capable of deriving forest inventory information from TLS data was published 

(Liang et al., 2018). This introduced several novel algorithms designed to estimate 

stem volume. Of these, all but one utilised both stem curvature and tree height to 

achieve this. Future work should therefore adopt a similar approach, this time 

focussing on HMLS data, to assess the applicability of both HMLS hardware and 

aforementioned software in estimating stem volume. Whilst the results presented in 

this research indicate current HMLS sensors cannot reliably estimate tree heights >12 

m, there remains potential for utilising the lower portion of tree stems to forward-

model whole-tree volume. This could perhaps be enhanced through the inclusion of 

species-specific allometric models which describe the relationship between stem curve 

or stem taper and tree height. 

 

In due course, hardware developments are likely to facilitate HMLS systems (e.g. ZEB-

HORIZON; BLK2GO) which offer enhanced range and cleaner data. With the continual 

move towards multi-core ‘big data’ processing, LiDAR segmentation and classification 

software will inevitably improve too. This will increase the extent of data which can be 

processed in a single pass, and the time required to do this. Given these, it is 

reasonable to predict portable and handheld LiDAR systems will soon become a 

dominant tool for the mapping and measurement of forests alongside high-precision 

TLS scanners.   
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Appendix 
 
 
Tree measurements (3D Forest) for the UVP study site: 
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Derived 2D crown surface areas (UEP-BW) 
All surface areas are reported in m2 

Convex hull approach  Concave hull approach 

TLS HMLS1 HMLS2  TLS HMLS1 HMLS2 

83.257 46.921 87.051  76.229 38.513 73.840 

65.655 15.143 39.286  61.448 10.771 34.717 

96.687 17.726 52.534  78.879 15.834 48.534 

55.318 12.995 17.298  52.220 8.199 16.702 

3.254 13.762 2.835  3.155 13.406 2.845 

110.630 3.822 46.658  99.266 4.243 39.867 

46.466 14.281 98.326  42.371 11.229 91.465 

1.887 0.734 1.422  1.915 0.745 1.462 

1.511 0.865 0.690  1.405 0.874 0.717 

107.652 7.101 107.603  93.446 5.645 93.504 

2.681 1.071 2.046  1.811 1.094 2.055 

54.632 10.982 55.352  52.990 9.511 48.384 

26.712 5.257 28.351  24.932 3.837 27.105 

2.066 2.210 2.455  2.130 2.245 2.495 

56.133 25.185 88.030  51.989 20.557 80.371 

20.764 12.982 42.253  19.319 11.359 37.125 

7.566 6.541 13.900  7.016 6.202 13.151 

55.943 4.128 4.566  50.375 3.172 4.292 

1.097 1.249 1.930  1.123 1.294 1.964 

1.074 2.124 3.209  1.096 2.106 3.179 

40.049 10.254 34.790  36.156 8.542 31.189 
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Derived 2D crown surface areas (UTF-ROK N&S) 
All surface areas are reported in m2 

Convex hull approach  Concave hull approach 

TLS HMLS2  TLS HMLS2 

55.902 28.884  52.712 26.408 

34.790 63.614  34.167 57.062 

82.633 31.656  75.451 29.114 

33.292 14.801  30.519 14.223 

30.036 87.243  28.890 66.481 

56.133 46.600  52.111 41.950 

23.815 59.799  22.703 55.580 

20.151 39.214  19.182 32.883 

65.544 11.288  60.377 8.345 

43.368 18.649  42.201 15.423 

45.977 25.487  42.456 23.537 

28.921 33.120  27.540 29.144 

66.289 39.422  63.620 34.858 

65.629 5.501  60.188 4.559 

39.408 56.971  36.908 44.054 

38.463 15.948  36.281 15.814 

53.697 17.118  52.244 12.597 

50.735 20.355  49.850 19.838 

38.645 16.477  37.311 15.834 

35.003 8.640  34.443 8.275 

35.683 32.866  33.484 30.830 

27.026 13.714  26.247 11.505 

39.71 46.639  38.451 34.031 

28.318 17.155  26.228 16.007 

38.131 2.258  34.811 2.278 

43.092 30.017  40.735 26.025 

 


