
Pattern Recognition Letters

A benchmark image dataset for industrial tools

Cai Luo 

a , ∗, Leijian Yu 

b , Erfu Yang 

b , Huiyu Zhou 

c , Peng Ren 

d , ∗

a Department of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao, China
b Department of Design, Manufacture & Engineering Management, University of Strathclyde, Glasgow, UK
c Department of Informatics, University of Leicester, Leicester, UK
d Department of Information and Control Engineering, China University of Petroleum (East China), Qingdao, China

a b s t r a c t 

Robots and Artificial Intelligence (AI) play an increasingly important role in manufacture. One of the tasks is to identify tools in the scene so that the 

tools can be applied to different assembly purposes. In the AI community, many datasets have been generated and deployed to train robots to 

recognize individual items, however, these datasets are scene-specific and lack generic background. In this paper, we report our dataset contains 

photos of 8 objects types that would be easily recognized by qualified workers. This is achieved by gathering images of common tools in a typical 

factory. The ground truth categories of our dataset are manually labeled by experienced workers, which would be worthy evaluation tools for the 

intelligence industrial systems. The equipment used and the image collection process are discussed, along with the data format. The mean average 

precisions range from 64.37% to 78.20%, which bring the possibility for future improvement. The dataset is ideal to evaluate and benchmark view-

point variant, vision-based control algorithm for industry robots. It is now public available from https://github.com/tools- dataset/Industrial- Tools- 

Detection- Dataset. 
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. Introduction

Every day, industry workers use variety tools for their daily du-

ies, like cutting steel plate, tightening screw, hammering a nail,

r measuring length, as shown in Fig. 1 . By virtue of training

nd memory, workers can effortlessly identify a tool and know its

unction. They are also able to choose suitable tools for different

eeds. While in the machine world, robots are still struggling to

cquire the ability to pick correct instruments for assigned tasks

hrough their visual sensors [20,28,41] . As robots like SCHAFT, At-

as, Valkyrie and REEM-C begin to manipulate standard tools and

quipments commonly available in industrial environment, ranging

rom small screw drivers to full-size vehicles [6,32,34,38] . The pro-

iferation of AI embodied in robots increases the needs for these

umanoid machines can work with their own hands, so they can

ake the tasks from repairing satellites to working in a remote

actory without human intervention [21,24] . It appears clear that

or dealing with such complex scenarios, robust and efficient ob-

ect detection algorithms are very important. Deep learning related

ethods has make great success in other field [2,3,15,35,37,39,40] .
∗ Corresponding authors.
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owever, for deep learning methods, training datasets play the vi-

al roles [4,16] . So, in order to identify different tools successfully,

pecifically designed datasets are needed. 

To advance object recognition research in industry, we intro-

uce a dataset for Industrial Tools Detection (ITD). It appears clear

hat it would bring great possibilities for robots to use a wide va-

iety of instruments if they could distinguish these tools in fac-

ories or construction sites [23,24,33] . The dataset detailed in this

aper is introduce to identify tools at the level of usages, and pro-

ide precise predictions for a robot to interact within the industry

cenarios. Furthermore, the dataset is a challenging benchmark to

valuate view-point variant, vision-based control algorithms for in-

ustry robots. 

The main contribution of this paper are as follows: 

• We present a new large-scale object dataset, which consists

of 8 object categories, 24 common industrial tools overall and

multi distinct views of each tool. The dataset provides hand-

labeled ground truth for more than 11,0 0 0 RGB images.
• We evaluate state-of-the-art object detection algorithms on ITD

and define benchmark as baseline references for developing fu-

ture new algorithms.
• Dataset and code from this work are available on-line at: https:

//github.com/tools- dataset/Industrial- Tools- Detection- Dataset .

http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2019.05.011&domain=pdf
https://github.com/tools-dataset/Industrial-Tools-Detection-Dataset
mailto:luo_cai@upc.edu.cn
mailto:pengren@upc.edu.cn
https://github.com/tools-dataset/Industrial-Tools-Detection-Dataset


Fig. 1. Industrial tools. Variety industrial tools for workers’ daily duties have been

chosen for our dataset based on the purpose of evaluating view-point variant,

vision-based control algorithms for industry robots.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1

Comparison among MS-COCO, PASCAL VOC, ImageNET,

TAS, HRSC2016, DOTA, Cornell grasping and ITD.

Datasets Instances Objects of interest

MS-COCO 123,287 Nature objects

PASCAL VOC 21,503 Nature objects

ImageNET 349,319 Nature objects

TAS 1319 Aerial targets

HRSC2016 2976 Aerial targets

DOTA 188,282 Aerial targets

Cornell grasping 1035 Daily tools

ITD 11,0 0 0 Industrial tools
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2. Related works

The purpose of choosing a suitable tool is to fulfill a task goal

as quickly as possible [14] . The problem of picking and using tools

has been widely studied in robotics, computer vision, artificial per-

ception and psychology for many years and will be hot topics for

the next decades as well. Many effort s have been dedicated to de-

tect geometric characteristic of tools and how to handle the items

correctly and firmly. They often assume prior information of ob-

jects shape and general location. Some of them also need the as-

sistance of affordance labels or predefined markers to accomplish

the manipulation tasks. 

The creation of ground truth image and video datasets helped

stimulated a flood of interest in the related areas. Large datasets

like MS-COCO [25] is the de facto standard evaluation instru-

ment for object detection. For the object categories classification,

the PASCAL VOC [11,18] and ImageNET [10,31] are always in the

datasets list of researchers. These datasets have proven to be very

good performance test fields for computer vision algorithms in nat-

ural scenes. 

In the field of tools detection, recognition and manipulation,

datasets have been play a critical role as an algorithm assess. How-

ever, such successes have been slow to industrial field imagery

due to the scarcity of optimal annotated datasets for tools in in-

dustrial environments. Unlike common daily objects, the collection

and classification of industrial tools are much more difficult. Work-

ers in the factories will need some special trainings in order to

know the correct usage of tools [7] . They will need another several
Fig. 2. Category Comparison. We perform an evaluation comparison betwee
ears to get the experiences to figure out how to choose the most

uitable ones according to the tasks. Furthermore, the detection of

ndustrial items are highly dependent on contextual information,

hich means the items in the datasets should be in their natu-

al environments. Datasets like TAS [19] , HRSC2016 [27] and DOTA

36] only contains large items like vehicles, planes and ships that

re difficult to manipulate by robots. Some pioneering works have

rounded the tool handling in a constrained testing samples [7,13] .

eep learning method has been applied by Ian et al. to solve the

grasp problem by using a dataset which containing several daily

tools. Kuan et al. proposed an affordance learning approach for

ool manipulation through pre-selected objects. When it comes to

eneral industrial tools, such as hammers, wrenches or saws, re-

earches are normally depend on their own testing sets. All these

atasets are short in the number of tools varieties, which prevent

hem from being widely usable. 

Our target is to simulate all possible situation of intelligent in-

ustrial systems. When collecting data, we gather the most com-

on posture of the tools and place them in the location where

hey may found normally. Next, we analyze the properties of ITD

n comparison to several other popular datasets. These include MS-

OCO, PASCAL VOC 2012 and Cornell grasping dataset. Each of

hese datasets varies significantly in numbers of tools categories

nd quantities of images. MS-COCO was created to detect and seg-

ent of items occurring in their natural context. PASCAL VOC fo-

uses on object detection in natural images. They both have at

east 20 different categories, such as person, animals, aeroplane,

hair and monitor. But none of them include the tools, especially

ndustrial tools. Cornell grasping dataset has the largest number of

ategories in previous common tools datasets. The comparison re-

ults can be seen in Table 1 . Note that ITD surpass Cornell grasping
n ITD and Cornell grasping dataset and responding quantity of items.



Table 2

The categories and usages of the tools in ITD Dataset.

Category Sample image Name Affordance

Cutting Tools Scissor Cut or separate small amounts of a material

Utility Knife from the work piece by means of shear deformation

Puncher This can be accomplished by single-point tools

Nipper plier or multi-point tools

Fastener Tools Open-end Wrench Provide grip and mechanical advantage in applying torque

Torque wrench to turn objects or affixes multi objects together

Hex wrench and the joints can be dismantled

Screw driver without damaging the joining components

Adhesive Tools Pressure-sensitive tape Bind items together and resists their

Water activated tape separation through non metallic substance

Heat sensitive tape applied to one surface

Measuring Tools Multi-meter Measure a physical quantity

Vernier scale This may require one-hand

Air level or two-hand operation

Clamp Tools Plastic tweezers Hold or pick-up items tightly together

Flap tip clamp to be easily handled with the fingers

Marker Permanent marker pen Draw or highlight notices on items

Waterproof marker They can be water-proof, dry-erase, or permanent.

Polish Tools Machine file Smooth a workpiece’s surface

Sand paper by rubbing it or using a chemical action

Protection Tools Safety goggle Enclose or protect body from injury

Weld eye protector or harmful contacts include physical, electrical,

Glove heat or chemicals
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Fig. 3. Tools in different industrial scenes. ITD contains a wide variety of object

categories in different industrial environments. We strive to collect images rich in

classification, illumination and localization.
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ataset not only in tools category numbers, but also in total num-

er of tools, as shown in Fig. 2 . 

In our datasets, we strive to collect images rich in classification,

llumination and localization. ITD collected 24 daily industry tools.

 categories are chosen, including cutting tools, fastener tools, ad-

esive tools, measuring tools, clamp tools, marker, polish tools and

rotection tools, as shown in Table 2 . Fig. 1 shows the examples of

hese tools. Compared with previous datasets, ITD can aid intelli-

ent industrial systems specifically. 

. Industrial tool detection dataset

This section presents how the ITD Dataset are selected. And

hat are the hardware and software used for the data collection

re also described. 

.1. Object categories 

As robots begin to manipulate standard tools and equipments

vailable in industry scenarios, they will need to identify the tools

nd know the usages of them. This is achieved by gathering im-

ges of common tools in a typical factory through a computer vi-

ion and artificial intelligence study from September 2017 to May

018. The dataset contains photos of 8 objects types that would be

ecognized by a qualified worker. The dataset has been collected

n five distinct scenarios in factory, workshop, assembly line, and

onstruction site scenarios characterized as shown in Fig. 3 . When

eople or industrial robots work in a factory, they are often in

 moving state, which can results in view angle change, motion

lur, illumination and clutter background. We specially designed

ynamic scenes in factory environments to collect data. 

.2. Dataset format 

Data was collected using a kinect 2.0 sensor [22] delivering

0 RGB-D frames per second at a resolution 1024 × 575 pixels +

12 × 424 depth frames. Since the items are relatively small, we

ollected data at the distance between 5 m and 1 m. Items are
laced in their usual posture and environment and the camera

oint-of-view is that of the worker eyes. The worker was required

o walk smoothly around the item while the camera was kept fac-

ng the target item consistently. 

In order to compute the intrinsic arguments of the camera, we

sed a calibration checkerboard with known size. The dimension of



Fig. 4. Precision and recall rate of labeling. 8 workers ranging in experience years from 1 to 10 were hired to label tools in ITD dataset. We assessed the category labeling

tasks by comparing to dedicated supervisors. We analyzed precision and recall of five senior workers (managers and supervisors from factories) with the results obtained

from the front-line workers.

Fig. 5. Precision and recall curves of 4 detection methods. The experiments have been conducted on a PC with a 2.40 GHz Intel(R) Xeon(R) CPU E5-2620 CPU, a GTX TITAN

X GPU and 128GB memory. As we can see from the results exhibited, performances in clamp tools, marker and measuring tools are suboptimal.
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the checkerboard is 9 squares × 7 squares, whereas the length of

each square is 3 cm. The calibration parameters and OpenCV tools

used for calibration are also included in the dataset. 

3.3. Ground truth 

8 workers with Mechanical Engineer Certificate ranging in ex-

perience years from 1 to 10 were hired to label every tools they

saw in inside and outside factories. For a given tool, a worker was

asked to identify the tool’s name, the category it belonged to and
he possible usage. This task took a total of ∼ 200 worker hours

o complete. We assessed the category labeling tasks by compar-

ng to dedicated supervisors. We analyzed precision and recall of

ve senior workers (managers and supervisors from factories) with

he results obtained from the front-line workers. The true posi-

ives(TP), false positives(FP) and false negatives(FN) are defined as

ollowing [5] : 

1. TP means the positive labeling that are categories as the posi-

tive class,



Fig. 6. Detection results in single and multi tools scenes. The conclusion presents that tools features can be easily affected by clutter background and dynamic environmental

illumination. The image blur caused by the worker moving also make the performance fall short. This implies the defects of current detection methods and extensive effort s

have to be dedicated according to the industrial requirements.
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2. FP stands for the negative labeling that are categories as the

positive class,

3. FN denotes the positive labeling that are categories as the neg-

ative class.

The precision and recall rate are computed by:

 recision = 

T P 

T P + F P 

Recall = 

T P 

T P + F N 

, (1) 

The results can be seen in Fig. 4 . It shows that the front-line

orkers have high recall rate than the senior workers. The labeling

esults are provided as ground truth in order to evaluate different

ision-based target detection algorithms. 

. Experiments and discussion

.1. Object recognition evaluation 

We evaluate state of the art object detection algorithms on

TD dataset. We carefully choose the Fast Region-based Convolu-
ional Network(Faster R-CNN) [17,30] , Region Fully Convolutional

etworks (R-FCN) [8] , You Only Look Once (YOLO) V3 [29] and Sin-

le Shot MultiBox Detector(SSD) [26] as our benchmark methods

or they have been widely used in object detection. We first briefly

escribe all these representations we have used for assessment. 

.1.1. Faster R-CNN 

Faster R-CNN is a hybrid of deep convolutional network and re-

ion detector. The deep convolutional network combines a Region

roposal Network (RPN) and an object detection network [30] . The

uality of detector is improved by using sparse object proposals.

he whole image will be processed through conventional and max

olling layers in order to produce a conventional feature map. A

xed length feature vector will be extracted by the region of inter-

st pooling layer from the feature map. The features can be used

or faster inference by classification and bounding-box regression. 

.1.2. R-FCN 

The detection strategy of R-FCN consists of region proposal and

egion classification [8] . The candidate regions are extracted by

he Region Proposal Network. R-FCN ends with a position-sensitive



Table 3

Numerical results of baseline models evaluated with

ground truth on Faster R-CNN, R-FCN, YOLO V3 and SSD

methods over the ITD dataset.

Faster R-FCN YOLO SSD

Cutting tools 70.12 72.65 85.56 69.51

Fastener tools 58.61 63.64 71.81 53.43

Adhesive tools 81.75 81.80 88.43 80.93

Measuring tools 60.53 63.64 83.41 61.66

Clamp tools 61.31 63.64 66.26 60.65

Marker 62.45 63.58 67.83 60.92

Polish tools 50.76 54.52 73.18 48.32

Protection tools 69.41 72.71 89.11 68.18

mAP 64.37 67.02 78.20 62.95
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region of interest pooling layer. By cropping features from this last

layer prior to prediction, R-FCN model could achieve similar accu-

racy to Faster R-CNN with less running time. 

4.1.3. YOLO V3 

YOLO applies an end-to-end single convolutional neural net-

work that divides the image into regions, bounding boxes and

region probabilities [29] . By examining the entire image during

the training procedure, it get the contextual information and the

knowledge of surroundings. 

4.1.4. SSD 

Single Shot MultiBox Detector (SSD) approach uses a single feed

forward convolutional network that procedures bounding boxes

collection and anchor offsets without requiring a pre-proposal clas-

sification [26] . 

4.2. Protocol 

4.2.1. Protocal for holdout validation 

We spitted the dataset by categories into training (50%), val-

idation (25%) and testing (25%) sets randomly. We adopted the

PASCAL Visual Object Challenge mean average precision (mAP)

evaluation metrics [12] . The mAP is calculated by (2) : 

mAP = 

∑ C 
n =1 A v gP recision (n )

C 

A v gP recision = 

∑

l=1 ... N

P (l ) � Recal l (l ) , (2)
Table 4

The performance of Faster R-CNN, R-FCN, YOLO V3 and SSD ove

Test fold Method AvgPrecision(%)

Cutting Fasterner Adhesive M

1st fold Faster 70.32 59.31 81.66 5

R-FCN 72.51 62.69 81.12 6

YOLO 86.31 70.31 87.56 8

SSD 70.08 54.21 79.78 6

2nd fold Faster 70.21 59.98 81.87 5

R-FCN 72.33 62.97 81.65 6

YOLO 86.75 70.87 87.43 8

SSD 69.79 54.66 80.02 6

3rd fold Faster 69.93 59.21 81.32 5

R-FCN 73.08 62.12 80.97 6

YOLO 86.82 70.42 87.88 8

SSD 70.43 54.68 79.87 6

4th fold Faster 71.13 60.08 82.02 5

R-FCN 72.23 62.45 81.43 6

YOLO 86.12 69.89 87.33 8

SSD 69.92 54.13 79.91 6

Average Faster 70.40 59.65 81.72 5

R-FCN 72.54 62.56 81.29 6

YOLO 86.50 70.37 87.55 8

SSD 70.06 54.42 79.90 6
here C denotes the number of categories, P ( l ) and � Recall ( l )

enote the precision value at every threshold and change in the

ecall respectively. 

A detection is marked correct when the intersection size of the

ounding boxes of the trial and the ground truth is more then

alf the size of their union. The numerical results (AP) of baseline

odels evaluated with ground truths are shown in Table 3 . For its

erformance in skewed datasets [9] , the precision and recall (PR)

urve is also used as a valuable analytical tool for assessment. 

.2.2. Protocal for 4-fold cross-validation test 

To further validate the ITD dataset, the 4-fold cross-calidation

est were carried out, which ensures that every image is tested

nce to prevent any bias error [1] . The dataset is divided by cate-

ories into 4 subsets (25% each) randomly. Every subset will works

s the test dataset once, while the other three subsets are used as

raining and validation dataset. To be specific, when the subdataset

s secleted to train the model, 30% of images in subset will be used

s validation dataset to fine-tune the model hyperparameters. And

very model will be trained and tested four times to validate the

roposed ITD dataset. 

.3. Results 

The experiments have been conducted on a PC with a 2.40 GHz

ntel(R) Xeon(R) CPU E5-2620 CPU, a GTX TITAN X GPU and 128GB

emory. Fig. 5 shows the PR curves for Faster R-CNN, R-FCN, YOLO

3 and SSD methods over the ITD dataset and Fig. 6 shows the sin-

le and multi tools detection results in different industrial scenes. 

.3.1. Comparison between different tools 

As we can see from the results exhibited in Table 3 , perfor-

ances in clamp tools, marker and measuring tools are subop-

imal, which attribute to their relatively small and may easily

locked by tools holder and grippers. Items like cutting tools, ad-

esive tools and protection tools, present good results partly due

o their large size and difficult to be covered. YOLOv3 leads to the

est accuracy, followed by R-FCN. The mAP results of SSD is lower

han the others. The random crop approach used by the SSD data

ugmentation method may cause the consequence. 
r 4-fold cross validation on the ITD dataset.

easuring Clamp Marker Polish Protection

9.78 61.01 62.01 51.34 68.88

8.08 67.97 62.76 54.41 72.68

2.76 66.11 66.68 72.89 89.47

0.66 59.88 60.07 48.76 69.12

9.31 61.32 62.41 51.51 68.92

8.45 68.02 62.56 54.62 72.72

2.81 66.15 66.72 72.81 89.71

0.76 59.93 60.26 48.78 69.04

9.82 60.89 61.93 51.46 68.56

7.91 67.78 62.83 54.21 72.55

2.21 66.09 66.81 72.63 89.32

0.79 59.12 59.89 48.61 69.53

9.44 61.12 62.30 51.21 68.31

8.22 67.45 62.78 54.61 72.18

2.88 65.93 66.53 72.46 90.03

0.43 60.09 59.87 48.80 68.95

9.59 61.09 62.16 51.38 68.67

8.17 67.81 62.73 54.46 72.52

2.67 66.07 66.69 72.70 89.63

0.66 59.76 60.02 48.74 69.16
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.3.2. Comparison between different methods 

The curves demonstrated in Fig. 5 indicate that YOLO V3 is su-

erior to other approaches. It is probably due to the improvement

f predication strategy. YOLO extracts features at 3 different scales

29] . The change allows the method to get more meaningful in-

ormation from small size objects. However, speed results show

he different trend, the R-FCN algorithm is 52,989 s , while YOLO

3 algorithm is 771,072 s . These approaches will degrade in indus-

rial tools detection for relatively small training instances. It figures

hat for tools detection in industrial environments, those methods

hould ameliorate accordingly. 

.3.3. Comparison between different scenes 

By analyzing the detection results of each scene (examples

hown in Fig. 6 ), the conclusion presents that tools features can

e easily affected by clutter background and dynamic environmen-

al illumination. The image blur caused by the worker moving also

ake the performance fall short. This implies the defects of cur-

ent detection methods and extensive effort s have to be dedicated

ccording to the industrial requirements. 

.3.4. Comparison through 4-fold cross-validation test 

By adopting the 4-fold cross-validation method, the perfor-

ance of each model over the ITD dataset is demonstrated in

able 4 . In general, YOLOv3 still outperforms the other three de-

ection methods. The different results between each categories are

ainly caused by tools with different f eatures. And the same cate-

ories get similar results among different test folds. It can conclude

hat there is also no huge bias error in ITD dataset. 

. Conclusion

We build a large-scale dataset for tools detection in industrial

nvironments which is much more specialized and suitable than

ny other general datasets in this field. We also establish a bench-

ark for items detection in industrial scenes. We believe ITD will

romote the development of tools detection algorithms in indus-

ry. We currently only label tools in general but labeling grasping

laces may also provide significant manipulation information that

ay be useful for industrial utilization. In the future, we intend

o further extend the dataset in terms of categories and sample

uantities. 
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