
ar
X

iv
:1

90
9.

10
16

5v
2 

 [
ee

ss
.S

Y
] 

 1
9 

D
ec

 2
01

9
IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, MONTH 2019 1

Deep Reinforcement Learning for Smart Home

Energy Management
Liang Yu, Member, IEEE, Weiwei Xie, Di Xie, Yulong Zou, Senior Member, IEEE, Dengyin Zhang,

Zhixin Sun, Linghua Zhang, Yue Zhang, Senior Member, IEEE, Tao Jiang, Fellow, IEEE

Abstract

In this paper, we investigate an energy cost minimization problem for a smart home in the absence of a building thermal
dynamics model with the consideration of a comfortable temperature range. Due to the existence of model uncertainty, parameter
uncertainty (e.g., renewable generation output, non-shiftable power demand, outdoor temperature, and electricity price) and
temporally-coupled operational constraints, it is very challenging to design an optimal energy management algorithm for scheduling
Heating, Ventilation, and Air Conditioning (HVAC) systems and energy storage systems in the smart home. To address the
challenge, we first formulate the above problem as a Markov decision process, and then propose an energy management algorithm
based on Deep Deterministic Policy Gradients (DDPG). It is worth mentioning that the proposed algorithm does not require the
prior knowledge of uncertain parameters and building thermal dynamics model. Simulation results based on real-world traces
demonstrate the effectiveness and robustness of the proposed algorithm.

Index Terms

Smart home, energy management, deep reinforcement learning, energy cost, thermal comfort, energy storage systems, HVAC
systems

I. INTRODUCTION

As a next-generation power system, smart grid is typified by an increased use of information and communications technology

(e.g., Internet of Things) in the generation, transmission, distribution, and consumption of electrical energy. In smart grid

environment, there are many opportunities for saving the energy cost of smart homes, which are evolved from traditional homes

by adopting three components, i.e., the internal networks, intelligent controls, and home automations [1]. For example, dynamic

electricity prices could be utilized to reduce energy cost by scheduling Energy Storage Systems (ESS) and thermostatically

controllable loads intelligently. As one kind of thermostatically controllable loads, Heating, Ventilation, and Air Conditioning

(HVAC) systems consume about 40% of total energy in a household [2], which results in energy cost concerns for smart home

owners. Since the primary purpose of HVAC systems is to maintain thermal comfort for the occupants, it is of great importance

to optimize the energy cost of smart homes without sacrificing thermal comfort.

In this paper, we investigate an energy optimization problem for a smart home with renewable energies, ESS, HVAC systems,

and non-shiftable loads (e.g., televisions) in the absence of a building thermal dynamics model. To be specific, our objective is

to minimize the energy cost of the smart home during a time horizon with the consideration of a comfortable indoor temperature

range. However, it is very challenging to achieve the above aim due to the following reasons. Firstly, it is often intractable to

obtain accurate dynamics of indoor temperature, which can be affected by many factors [3]. Secondly, it is difficult to know

the statistical distributions of all combinations of random system parameters (e.g., renewable generation output, power demand

of non-shiftable loads, outdoor temperature, and electricity price). Thirdly, there are temporally-coupled operational constraints

associated with ESS and HVAC systems, which means that the current action would affect the future decisions. To address

the above challenge, we propose a Deep Deterministic Policy Gradients (DDPG) based energy management algorithm, which

can make decision about ESS charging/discharging power and HVAC input power simply based on the current observation

information.

The main contributions of this paper are summarized as follows.

• We investigate an energy cost minimization problem for smart homes in the absence of a building thermal dynamics model

with the consideration of a comfortable temperature range, energy exchange between the smart home and the utility grid,

ESS charging/discharging, HVAC input power adjustment, and parameter uncertainties. Then, we reformulate the problem

as a Markov Decision Process (MDP), where environment state, action and reward function are designed.
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• We propose an energy management algorithm to jointly schedule ESS and HVAC systems based on DDPG. Since the

proposed algorithm makes decision simply based on the current environment state, it does not require prior knowledge of

uncertain parameters and building thermal dynamics model.

• Extensive simulation results based on real-world traces show that the proposed algorithm can save energy cost by 8.10%-

15.21% without sacrificing thermal comfort when compared with two baselines. Moreover, the robustness testing shows

that the proposed algorithm has the potential of providing a more efficient and practical tradeoff between maintaining

thermal comfort and reducing energy cost than an “optimal” strategy.

The remainder of this paper is organized as follows. In Section II, we introduce related works. In Section III, system model

and problem formulation are given. Then, we propose a DDPG-based energy management algorithm in Section IV and its

effectiveness is verified by simulation results in Section V. Finally, we make a conclusion and discuss the future work in

Section VI.

II. RELATED WORKS

There have been many studies on energy cost and/or thermal comfort in smart homes. Due to the space limitation, we mainly

focus on joint energy cost and thermal comfort management in smart homes [4]–[8]. The approaches proposed in these studies

can be generally classified into two categories, i.e., model-based approaches and model-free based approaches. To be specific,

model-based approaches are designed based on the model information about thermal dynamics of the environment [9] [10].

By contrast, model-free based approaches are designed without requiring the above-mentioned information.

A. Model-based approaches

In [4], Angelis et al. presented a home energy management approach to minimize the energy cost related to task execution,

energy storage, energy selling and heat pump without violating the given comfortable temperature range and other constraints.

In [5], Fan et al. proposed an online home energy management scheme to minimize the energy cost associated with electric

water heaters and HVAC systems with the consideration of indoor temperature ranges. In [6], Zhang et al. developed a home

energy management strategy to minimize energy cost related to the HVAC load and deferrable loads without violating the

given comfortable temperature range. In [7], Pilloni et al. proposed a Quality of Experience (QoE)-aware smart home energy

management system to save energy cost while minimizing the annoyance perceived by users. In [8], Yu et al. proposed an

online home energy management algorithm to minimize the sum of energy cost and thermal discomfort cost (Here, thermal

discomfort cost is the function of temperature deviation between indoor temperature and the comfortable temperature level).

In [11], Franceschelli et al. proposed a heuristic approach to optimize the peak-to-average power ratio of a large population

of thermostatically controlled loads considering comfortable temperature ranges. Although some advances have been made in

the above-mentioned works, their approaches need to model building thermal dynamics with simplified mathematical models,

e.g., Equivalent Thermal Parameters (ETP) model.

B. Model-free based approaches

Since it is very challenging to develop a building thermal dynamics model that is both accurate and efficient enough for

HVAC control, some recent works have considered to use real-time data for HVAC control [12]–[14]. For example, Lu et al. in

[12] proposed an energy management scheme to minimize the sum of electricity cost and user dissatisfaction cost associated

with wash machines and HVAC loads based on multi-agent reinforcement learning and artificial neural network approach.

In [13], Ruelens et al. proposed a residential demand response method to minimize energy cost with the consideration of

temperature range based on batch reinforcement learning. Although reinforcement learning based methods in [12]–[14] do not

require the prior knowledge of building thermal dynamics model, they are known to be unstable or even to diverge when a

nonlinear function approximator (e.g., a neural network) is used to represent the action-value function [15]. To efficiently handle

large and continuous state space, deep reinforcement learning (DRL) has been presented and shown successful in playing Atari

and Go games [15]. In [3], Wei et al. proposed a DRL-based method for building HVAC control, which can reduce energy cost

while maintaining the desired indoor temperature range. In [16], Gao et al. presented a DRL-based thermal comfort control

method to minimize energy consumption and thermal discomfort. In [17], Zhang et al. conducted real-life implementation and

evaluation of a DRL-based control method for a radiant heating system, which optimizes energy demand and thermal comfort.

In [18], Valladares et al. proposed a DRL-based thermal comfort and indoor air control algorithm. In [19], Wan et al. proposed

a DRL-based algorithm to minimize the energy cost of a smart home with battery energy storage. Although some model-free

methods have been proposed in above-mentioned studies, none of them can be applicable to the coordination between ESS

and HVAC systems in smart homes. To deal with this problem, we develop a DDPG-based energy management algorithm in

this paper.
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Fig. 1. Illustration of a smart home.

III. SYSTEM MODEL AND PROBLEM FORMULATION

The smart home considered in this paper is shown in Fig. 1, where distributed generators, ESS, loads, and home energy

management system (HEMS) could be identified. Distributed generators could be solar panels or wind generators. ESS could be

lead-acid batteries or lithium-ion batteries, which can reduce net-energy demand from main grids by storing excess renewable

energies locally and are very important for implementing nearly-zero energy buildings in the future [20]. At present, ESS costs

are very high (e.g., around 450$/kWh), which means that installing ESS in a smart home is not very economical. However,

ESS costs are dropping rapidly with the development of technology and are predicted to drop below 100$/kWh within the

next decade. As a result, the profitability of adopting ESS will gradually increase. Therefore, we consider ESS in the model

of the smart home. Loads in a smart home can be generally divided into several types, e.g., non-shiftable loads, shiftable and

non-interruptible loads, and controllable loads [21]. To be specific, power demands of non-shiftable loads (e.g., televisions,

microwaves, and computers) must be satisfied completely without delay. As for shiftable and non-interruptible loads (e.g.,

washing machines), their tasks can be scheduled to a proper time but can not be interrupted. In contrast, controllable loads

(e.g., HVAC systems, heat pumps, and electric water heaters) can be controlled to flexibly adjust their operation times and

energy usage quantities by following some operational requirements, e.g., temperature ranges. In this paper, we mainly focus

on non-shiftable loads and thermostatically controlled loads [13]. As for thermostatically controlled loads, HVAC systems are

considered since they consume about 40% of the total energy in a smart home [2]. Suppose that the HEMS operates in slotted

time, i.e., t ∈ [1, T ], where T is the total number of time slots. For simplicity, the duration of a time slot ∆t is normalized

to a unit time (e.g., one hour) so that power and energy could be used equivalently. In each time slot, the HEMS makes

continuous decision on ESS charging/discharging power and HVAC input power according to a set of available information

(e.g., renewable generation output, non-shiftable power demand, outdoor temperature, and electricity price), with the aim of

minimizing the energy cost of the smart home while maintaining the comfortable temperature range in the absence of the

building thermal dynamics model. In the following parts, models associated with ESS and HVAC systems are provided. Then,

an energy cost minimization problem is formulated. Next, we reformulate it as a MDP due to the difficulty of solving the

minimization problem.

A. ESS Model

Let Bt be the stored energy in the ESS at time slot t. Then, the ESS storage dynamics model is given by

Bt+1 = Bt + ηcct +
dt
ηd
, ∀ t, (1)

where ηc ∈ (0, 1] and ηd ∈ (0, 1] are the charging and discharging efficiency coefficients, respectively; ct and dt are ESS

charging power and discharging power, respectively. Here, ct and dt are assigned with different signs (i.e., ct ≥ 0 and dt ≤ 0),

which contributes to the design of action in Section II-F.

Since ESS cannot be charged above its capacity Bmax or discharged below the minimal energy level Bmin, we have

Bmin ≤ Bt ≤ B
max, ∀ t. (2)

Due to the existence of ESS charging and discharging rate limitations, we have

0 ≤ ct ≤ c
max, ∀ t, (3)

−dmax ≤ dt ≤ 0, ∀ t, (4)



IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, MONTH 2019 4

where cmax and dmax are maximum charging and discharging power of the ESS, respectively.

To avoid the simultaneous ESS charging and discharging, we have

ct · dt = 0, ∀ t. (5)

B. HVAC Model

The HVAC system can be dynamically adjusted to maintain thermal comfort of the occupants in the smart home. Since

thermal comfort depends on many factors (e.g., air temperature, mean radiant temperature, relative humidity, air speed, clothing

insulation, and metabolic rate), its representation is very complex. In existing studies, many modeling approaches and parameter

measurement methods associated with thermal comfort have been developed [16] [22]–[28]. Similar to [3]–[6], this paper uses

a comfortable temperature range as the representation of thermal comfort for simplicity, i.e.,

Tmin ≤ Tt ≤ T
max, ∀ t, (6)

where Tmin and Tmax are the minimum and maximum comfort level, respectively.

In this paper, we consider an HVAC system with inverter in the smart home, i.e., the HVAC system can adjust its input

power et continuously [8]. Suppose emax be the rating power of the HVAC system, we have

0 ≤ et ≤ e
max, ∀ t. (7)

C. Power Balancing

To keep the power balance in the smart home, the aggregated power supply should be equal to the served power demand.

Then, we have

gt + pt − dt = bt + et + ct, ∀ t, (8)

where gt, pt, bt are power drawn from the utility grid, renewable generation output, and non-shiftable power demand,

respectively. If gt < 0, it means that energy form the smart home will be sold to the utility grid. Otherwise, the smart

home will purchase energy from the utility grid.

D. Cost Model

Let vt and ut be the buying and selling price of energy, respectively. Then, the energy cost of the smart home at time slot

t can be calculated by

C1,t = (
vt − ut

2
|gt|+

vt + ut
2

gt), ∀ t, (9)

where the intuition behind (9) is that just one variable gt is needed to reflect the behavior of electricity buying or selling. For

example, when gt ≥ 0, C1,t = vtgt. For the case gt < 0, C1,t = utgt.
It is well known that frequent discharging or charging would do harm to the lifetime of the ESS. To capture this phenomenon,

ESS depreciation cost at time slot t is introduced as follows [29]

C2,t = ψ(|ct|+ |dt|), ∀ t, (10)

where ψ denotes ESS depreciation coefficient in $/kW.

E. Total Energy Cost Minimization Problem

Based on the above-mentioned models, we can formulate a total energy cost minimization problem as follows,

(P1) min

T
∑

t=1

E{C1,t + C2,t} (11a)

s.t. (1)− (8), (11b)

where the expectation operator E is taken over the randomness of the system parameters (i.e., renewable generation output pt,
non-shiftable power demand bt, outdoor temperature T out

t , and buying/selling electricity prices vt/ut) and the possibly random

control actions (i.e., the amount of energy exchange between the smart home and the utility grid gt, ESS charging/discharging

power ct/dt, and HVAC input power et) at each time slot.

It is very challenging to solve P1 due to the following reasons. Firstly, it is often intractable to obtain accurate dynamics of

indoor temperature Tt, which can be affected by many factors [3], e.g., building structure and materials, surrounding environment

(e.g., ambient temperature, humidity, and solar radiation intensity), and internal heat gains from occupants, lighting systems

and other equipments. Secondly, it is very difficult to know the statistical distributions of all combinations of random system

parameters. Thirdly, there are temporally-coupled operational constraints associated with ESS and HVAC systems, which means
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that the current action would affect future decisions. To handle the “time-coupling” property, typical methods are based on

dynamic programming [8], which suffers from “the curse of dimensionality” problem. In this paper, we provide a way of solving

P1 without requiring the dynamics of indoor temperature and prior knowledge of random system parameters. In particular, we

reformulate the above-mentioned sequential decision making problem as a MDP problem. Then, we develop a DDPG-based

energy management algorithm for the problem.

F. MDP Formulation

In the smart home, the indoor temperature at next time slot is only determined by the indoor temperature, HVAC power input,

and environment disturbances (e.g., outdoor temperature and solar irradiance intensity) in the current time slot [6] [7] [30] [31].

Moreover, the ESS energy level at next time slot just depends on the current energy level and current discharging/charging

power according to (1), which is independent of previous states and actions. Thus, both of ESS scheduling and HVAC control

can be regarded as a MDP. In the following parts, we will formulate the sequential decision making problem associated with

smart home energy management as a MDP. It is worth noting that the MDP formulation is an approximation description of the

smart home energy management problem since some components of the environment state may be not Markovian in practice,

e.g., renewable generation output and electricity price. According to existing works [15] [32], even though the environment is

not strictly MDP, the corresponding problem can still be solved by reinforcement learning based algorithms empirically, which

is also validated by simulation results in this paper. For non-Markovian environment, many approaches could be adopted

to improve the performance of reinforcement learning based algorithms, e.g., approximate state [32] [33], recurrent neural

networks [34], gated end-to-end memory policy networks [35], and eligibility traces [33].

Environment

HEMS

Agent

Non-shiftable loads Utility grid
Indoor & outdoor 

temperatures

Generators ESS HVAC System

1t
R

+

ta

ts

1t
s

+

 

Fig. 2. The agent-environment interaction in the MDP.

A discounted MDP is formally defined as a five-tuple M = (S,A,P ,R, γ), where S is the set of environment states and

A is the set of actions. P : S × A × S → [0, 1] is the transition probability function, which models the uncertainty in the

evolution of states of the system based on the action taken by the agent [36]. R : S × A → R is the reward function and

γ ∈ [0, 1] is a discount factor. In this paper, the agent denotes the learner and decision maker (i.e., HEMS agent), while

the environment comprising many objects outside the agent (e.g., renewable generators, non-shiftable loads, ESS, the HVAC

system, utility grid, indoor/outdoor temperature). The interaction between the agent and the environment can be depicted by

Fig. 2, where the HEMS agent observes environment state st and takes action at. Then, environment state becomes st+1 and

the reward Rt+1 is returned. In the following parts, we will design key components of the MDP, including environment state,

action and reward function.

1) Environment State: The environment state consists of seven kinds of information, i.e., renewable generation output pt,
non-shiftable power demand bt, ESS energy level Bt, outdoor temperature T out

t , indoor temperature Tt, buying electricity price

vt, and time slot index in a day t′ (t′ = mod (t, 24)). Since selling electricity price ut is typically related to buying electricity

price vt (e.g., ut = δvt [37]–[39], δ is a constant), ut is not selected as a part of the environment state. For brevity, st is

adopted to describe the environment state, i.e., st = (pt, bt, Bt, T
out
t , Tt, vt, t

′).
2) Action: The aim of HEMS agent is to optimally decide the amount of energy exchange between the smart home and

the utility grid (i.e., gt), ESS charging power (i.e., ct), ESS discharging power (i.e., dt), and HVAC input power et. After ct,
dt, and et are jointly decided, gt can be known immediately according to (8). Therefore, the action of the MDP consists of

ESS charging/discharging power ct/dt and HVAC input power et. Since adopting ct and dt simultaneously would complicate
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the design of the energy management algorithm, we use just one variable ft, where the range of ft is [−dmax, cmax]. When

ft ≥ 0, ct = ft and dt = 0. When ft ≤ 0, ct = 0 and dt = ft. Therefore, the constraints (3)-(5) could be guaranteed. To

guarantee the feasibility of (1)-(2), 0 ≤ ct ≤ min{cmax, B
max−Bt

ηc
} when ft ≥ 0, and min{−dmax, (Bmin −Bt)ηd} ≤ dt ≤ 0

when ft ≤ 0. According to (6), the range of et is [0, emax]. When indoor temperature Tt is lower than Tmin, et should be

zero for avoiding further temperature deviation. Similarly, when Tt > Tmax, the feasible et should be nonnegative. For brevity,

at is used to describe the action, i.e., at = (ft, et).
3) Reward: According to the MDP theory in [33], the transition of the environment state from st−1 to st could be triggered

by the execution of at−1. Finally, the reward Rt will be obtained. Since the aim of the agent is to minimize the total energy

cost while maintaining the comfortable temperature range, the corresponding reward consists of three parts, namely the penalty

for the energy consumption of the HVAC system, the penalty for ESS depreciation, and the penalty for temperature deviation.

Since the energy cost of the HVAC system at slot t−1 is C1,t−1, the first part of Rt can be represented by −C1,t−1(st−1,at−1).
Similarly, the second part of Rt can be described by −C2,t−1(st−1,at−1). To maintain the comfortable temperature range,

the third part of Rt can be computed by −C3,t(st), where

C3,t(st) = ([Tt − T
max]

+
+
[

Tmin − Tt
]+

), ∀ t, (12)

which means that C3,t = 0 if Tmin ≤ Tt ≤ Tmax. Otherwise, C3,t = Tt − Tmax if Tt > Tmax, and C3,t = Tmin − Tt if

Tt < Tmin.

Taking three parts into consideration, the final reward function can be designed as follows,

Rt = −β(C1,t−1(st−1,at−1) + C2,t−1(st−1,at−1))− C3,t(st),

where β denotes a positive weight coefficient in oC/$.

4) Action-Value Function: When jointly controlling the ESS and the HVAC system at time slot t, the HEMS agent intends

to maximize the expected return it receives over the future. In particular, the return is defined as the sum of the discounted

rewards [33], i.e., R =
∑∞

i=1 γ
i−1Rt+i. Let Qπ(s,a) be the action-value function under a policy π (note that a policy is a

mapping from states to probabilities of selecting each possible action), which represents the expected return if action at = a

is taken in state st = s under the policy π. Then, the optimal action-value function Q∗(s,a) is maxπ Qπ(st,at) and can be

calculated by the following Bellman optimality equation in a recursive manner, i.e.,

Q∗(s,a) = E[Rt+1 + γmaxa′Q∗(st+1,a
′)|st = s,at = a].

=
∑

s
′,r P (s

′, r|s,a)[r + γmaxa′Q∗(s′,a′),

where s
′ ∈ S, r ∈ R, a′ ∈ A, and P ∈ P .

To obtain Q∗(s,a), system state transition probabilities P (s′, r|s,a) are required. Since indoor temperature in the smart

home could be affected by many disturbances, it is difficult to accurately obtain state transition probabilities. To overcome this

challenge, Q-learning methods could be used, which do not require the knowledge of state transition probabilities. To support

the case with continuous system states, a function approximator could be adopted to estimate Q-function. When a neural

network with weight θ is adopted as the non-linear function approximator, we refer it as Q-network. In [15], a deep Q-network

(DQN) algorithm was proposed, which can use experience replay and target network to ensure the stability of reinforcement

learning methods when function approximators are adopted. However, DQN cannot be directly applied to the problem with

continuous action spaces since it needs to discretize the action space and lead to an explosion of the number of actions. As

a result, low computational efficiency, decreased performance, and the requirement of more training data would be incurred

[16] [40].

IV. DDPG-BASED ENERGY MANAGEMENT ALGORITHM

In this section, we first propose a DDPG-based energy management algorithm. Then, we analyze the computational com-

plexity of the proposed algorithm.

A. Algorithmic Design

To solve the MDP problem defined in Section III-F, we propose a DDPG-based energy management algorithm. Different

from DQN, DDPG is capable of dealing with continuous states and actions. For example, just two network outputs are needed

to represent continuous actions in this paper, which avoids the explosion of the number of actions. Since DDPG is a kind of

actor-critic methods (i.e., methods that learn approximations to both policy function and value function), actor network and

critic network are incorporated, which are shown in Fig. 3. The input and output of actor network is the environment state st

and action a, respectively. Then, a and st are adopted as the input of critic network, whose output is action-value function

(i.e., Q(st,a)). Next, the policy gradient can be computed and used to update the weight of actor network. Before computing

Q(st,a), the weight of critic network should be updated based on two mechanisms, i.e., memory replay and target networks.

More details will be introduced when explaining Algorithm 2.
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Fig. 3. Actor network and critic network in DDPG.

Algorithm 1: The Proposed Energy management Strategy

Input: System state St, testing time slots Htest

Output: System decision at = (ft, et) in each time slot

1 Load the weight of the actor network θµ obtained by the Algorithm 2;

2 for t=1,2,· · · ,Htest do

3 Select action at = µ(φ(st)|θµ);
4 Execute action at = (ft, et) in smart home environment and observe next state st+1 and reward Rt+1;

5 end

The proposed DDPG-based energy management algorithm can be found in the Algorithm 1, where the key step is to load

the weight of the actor network θµ, which is trained by Algorithm 2. In each time slot, the actor network selects an action

on ESS charging/discharing power and HVAC input power according to the current environment state st. Then, the action

at is executed and the environment state becomes st+1. Meanwhile, the reward Rt+1 is obtained. In Algorithm 2, we first

initialize a replay memory D with capacity N , which stores the transition tuple (st, at, Rt+1, st+1). Moreover, a preprocess

function φ(st) is introduced to facilitate the learning process by normalizing the input data. Specifically, each component in

the environment state at time slot t (e.g., κt) should be normalized within the range [0,1] using the following expression:
κt−mint κt

maxt κt−mint κt
. Then, we randomly initialize critic network Q(φ(s),a|θQ) and actor network µ(φ(s)|θµ) with weights θQ

and θµ, respectively. Their architectures in the proposed energy management algorithm are described by Fig. 4, where there

are two hidden layers in the actor network and four hidden layers in the critic network. Next, we initialize the weights of

target critic network Q(φ(s),a|θQ
′

) and target actor network µ(φ(s)|θµ
′

) by copying, i.e., θQ
′

← θQ and θµ
′

← θµ. In each

time slot of each episode, an action is selected based on the following expression in the line 8, i.e.,

at = µ(φ(st)|θ
µ) +Nt, (13)

where Nt is the exploration noise. In this paper, we use the following way to introduce exploration noise, i.e.,

at =

{

µ(φ(st)|θµ), if ωt > ξt,
(Ut,1, Ut,2), if ωt ≤ ξt,

(14)

where ωt, Ut,1, and Ut,2 follow uniform distributions with parameters (0,1), (-dmax/max{cmax, dmax}, cmax/max{cmax, dmax}),
and (0,1), respectively. ξt = max(ξt − ζ ∗ (episode − N/P ), ξmin), ξ0 = 1 and 0 < ζ < 1. After at is obtained, it will be

applied to ESS and the HVAC system. At the end of time slot t, the new state st+1 and the reward Rt+1 are returned from

the environment. Then, the transition tuple (φ(st), at, Rt+1, φ(st+1)) will be stored in the memory for the training of actor

and critic networks as shown in the line 10. Next, K transitions are randomly sampled for training deep neural networks, i.e.,

actor network, critic network, target actor network, and target critic network. As shown in lines 12-14, Q(φ(si), ai) and yi
generated by critic network and target network are used to calculate mean square error loss. By minimizing the loss function,

the weight of critic network could be updated. Then, we can calculate the sampled policy gradient as shown in the line 15,

which is used to update the weight of actor network. Finally, the weights of target actor network and target critic network

could be updated as shown in lines 17-19. Note that a small τ should be selected in order to improve the learning stability.

Typically, 0 < τ ≪ 1.

B. Algorithmic Computational Complexity

In Algorithm 1, it can be observed that the computational complexity of the proposed energy management algorithm depends

on the number of testing slots Htest. Since simple calculations are carried out in Algorithm 1, its computational complexity
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Algorithm 2: Training Deep Neural Networks with DDPG

Input: Renewable generation output, non-shiftable power demand, outdoor temperature, electricity price

Output: The weights of actor network and critic network, i.e., θµ and θQ

1 Initialize memory D of size N ;

2 Initialize preprocess function φ(st);
3 Randomly initialize critic network Q(φ(s),a|θQ) and actor network µ(φ(s)|θµ) with weights θQ and θµ, respectively;

4 Initialize target networks Q′ and µ′ by copying: θQ
′

⇐ θQ, θµ
′

⇐ θµ;

5 for episode=1,2,· · · ,M do

6 Receive the initial environment state s0;

7 for t=0,2,· · · ,P − 1 do

8 Select action at = µ(φ(st)|θµ) +Nt;

9 Execute action at in smart home environment and observe next state st+1 and reward Rt+1;

10 Store (φ(st), at, Rt+1, φ(st+1)) in D;

11 Sample a random mini-batch of K transitions (φ(si), ai, Ri+1, φ(si+1)) from D, 1 ≤ i ≤ K;

12 Set yi = Ri+1 + γQ′(φ(si+1), µ
′(φ(si+1)|θµ

′

)|θQ
′

);
13 Update critic network by minimizing the loss:;

14 L = 1
K

∑K
i=1 (yi −Q(φ(si), ai|θQ))

2
;

15 Update actor policy using sampled policy gradient:;

16
∑K

i=1

∇aQ(φ(s),a|θQ)|
s=si,a=µ(φ(si))

K
∇θµµ(φ(s)|θµ)|si

;

17 Update target networks:;

18 θQ
′

← τθQ + (1− τ)θQ
′

;

19 θµ
′

← τθµ + (1− τ)θµ
′

;

20 end

21 end

can be described by O(Htest). Given the fixed testing time horizon, a shorter duration of a time slot would results in a larger

Htest. However, the time slot’s duration can not be selected arbitrarily in practice due to the following reasons. On one hand,

too long duration would results in the loss of many control opportunities of saving energy cost and maintaining a comfortable

temperature range. On the other hand, too short duration may affects the training convergence of DRL-based algorithms

since the control actions taken by the DRL agent cannot take effect immediately in terms of environment states (e.g., indoor

temperature) [17]. Therefore, the duration of a time slot should be selected appropriately in practice. In existing works, the

typical duration of a time slot is several minutes or one hour (e.g., 15 minutes [3], 1 hour [17]), which is far greater than the

computation time of the proposed energy management algorithm in a time slot. Therefore, the proposed energy management

algorithm can be implemented in a real-time way.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed energy management algorithm. We first describe the simulation

setup. Then, we describe the baselines used for performance comparisons. Finally, we provide simulation results about algo-

rithmic convergence process, algorithmic performance under varying β, algorithmic effectiveness, and algorithmic scalability.

A. Simulation setup

In simulations, we use real-world traces related to solar generation, non-shiftable power demand, outdoor temperature, and

electricity price, which are extracted from Pecan Street database1. Note that such database is the largest real-world open

energy database on the planet and includes the data related to home energy consumption and solar generation of the Mueller

neighborhood in Austin, Texas, USA. For simplicity, the cooling mode of a residential HVAC system is considered. Since

summers in Austin are very hot2, we use the data during the period from June 1 to August 31, 2018 for model training and

testing. To be specific, the data in June and July is used to train neural network models and the data in August is adopted for

performance testing. Some important system parameters are configured as follows: ut = 0.9vt [37], γ = 0.995, ηc = ηd = 0.95
[41], ζ = 0.0005, ξmin = 0.1, Tmin = 66.2oF (19oC) [3], Tmax = 75.2oF (24oC) [3], other parameter configurations are

shown in TABLE I, where αa and αc denote the learning rate of actor network and critic network, respectively. In TABLE I,

Na and Nc denote the number of neurons in each hidden layer of actor network and critic network, respectively. To simulate the

environment, we adopt the following indoor temperature dynamics model for simplicity, i.e., Tt+1 = εTt+(1−ε)(T out
t −

ηhvac

A
et)

1https://www.pecanstreet.org/
2https://en.wikipedia.org/wiki/Austin, Texas#Climate
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(a) Actor network

(b) Critic network

Fig. 4. The architectures of actor network and critic network.

[6] [7] [30] [31], where ε = 0.7 [42], ηhvac = 2.5 [30], A = 0.14kW/oF [30]. Note that the variant of the proposed energy

management algorithm can be applicable to any indoor temperature dynamics model by incorporating more environment-related

variables in system state, e.g., relative humidity and solar radiation intensity.

TABLE I
MAIN PARAMETER SETTINGS

Htest 744 hours ∆t 1 hour

Bmax 6kWh Bmin 0.6kWh

B0 1.2kWh cmax 3kW

dmax 3kW emax 2kW

M 3000 P 24

K 120 N 24000

αa 0.0001 αc 0.001

Na 300,600 Nc 300,600,600,600

τ 0.001 Optimizer Adam

B. Baselines

To evaluate the performance of the proposed algorithm, we adopt three baselines as follows.
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• Baseline1: this scheme adopts ON/OFF policy [3] for building HVAC control but without considering the use of the ESS.

Specifically, the HVAC system will be turned on if Ti > Tmax and it will be turned off if Ti < Tmin.

• Baseline2: this scheme uses the DDPG-based control policy in this paper for HVAC control but without considering the use

of the ESS, i.e., cmax = dmax = 0. Based on the performance comparison between Baseline2 and the proposed algorithm,

the energy cost saving caused by the use of the ESS can be known. Similarly, the energy cost saving incurred by the use

of DDPG-based control policy can be obtained by comparing the performance of Baseline2 with that of Baseline1.

• Baseline3: this scheme intends to minimize the cumulative cost during the testing period Htest (i.e.,
∑Htest

t=1 (C1,t + C2,t))
with the consideration of constraints (1)-(8), assuming that all uncertainty system parameters and the dynamics model of

indoor temperature can be known beforehand. Although the optimal solution of this scheme is not achievable in practice

due to the existence of parameter and model uncertainties, it can provide the lower bound for the performance of the

proposed algorithm when all constraints in P1 are satisfied.

C. Simulation Results

1) Algorithmic convergence process: According to Algorithm 1, the proposed energy management algorithm needs to know

the training result of Algorithm 2 before testing. In Fig. 5, the reward received during each episode generally increases.

Since the minimum exploration probability ξmin is 0.1 and system parameters (e.g., solar radiation power, non-shiftable power

demand, outdoor temperature, and electricity price) are varying in each episode, the episode reward fluctuates within a small

range. To show the changing trend of rewards more clearly, we provide the average value of the past 50 episodes. In Fig. 5,

it can be found that the average reward generally increases and becomes more and more stable.

Fig. 5. The convergence process of the Algorithm 2.

2) Algorithmic performance under varying β: Since many random number generators are adopted in neural network

initialization, mini-batch data collection for training, and action choice, the performance of the proposed algorithm is varying

even the same system parameters are configured. To show the impact of β on the performance of the proposed algorithm

more clearly, mean values of total energy cost (i.e., the sum of energy cost and ESS depreciation cost) and total temperature

deviation with 95% confidence interval across 40 runs are considered and the corresponding results can be found in Fig. 6.

It can be observed that the mean value of total energy cost and that of total temperature deviation generally decreases and

increases with the increase of β, respectively. Such tendency is obvious since larger β results in more importance of energy

cost and less importance of temperature deviation. By taking mean values of total energy cost and total temperature deviation

into consideration, a proper value of β is 1 when the mean value of total temperature deviation is less than 1oC.

3) Algorithmic effectiveness: Performance comparisons among four schemes are shown in Fig. 7, where the proposed

energy management algorithm achieves better performance than Baseline1 and Baseline2. To be specific, the proposed energy

management algorithm can reduce the mean value of total energy cost by 15.21% and 8.10% when compared with Baseline1

and Baseline2, respectively. Moreover, the mean value of total temperature deviation under the proposed algorithm is smaller

than Baseline1 and Baseline2, which can be illustrated by Figs. 7(b) and (c). Compared with Baseline1, Baseline2 and the

proposed algorithm could save energy cost by increasing/decreasing HVAC input power when electricity price is low/high,

which can be depicted by Figs. 8(a) and (b). Compared with Baseline2, the proposed algorithm could reduce energy cost by

charging/discharging ESS when electricity price is low/high, which can be shown in Figs. 8(a) and (c). Though Baseline3

achieves the best performance, it requires all prior knowledge of uncertain system parameters and thermal dynamics model.
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(a) Total energy cost

(b) Total temperature deviation

Fig. 6. The impact of β on the performance of the proposed algorithm.

Thus, Baseline3 is just adopted for performance reference. By observing the performance gap between the proposed algorithm

and Baseline3, it can be known that the potential of reducing the mean value of total energy cost is great. In future work, more

training data and advanced DRL-based energy management algorithms would be adopted for reducing the performance gap.

4) Algorithmic robustness: Note that the thermal dynamics model used in above-mentioned simulations can not capture

thermal disturbances in practice, e.g., thermal disturbances from solar irradiance, lighting systems, and computers. Thus, we

evaluate the robustness of the proposed algorithm when random thermal disturbance is introduced. To be specific, Tt+1 =
εTt + (1 − ε)(T out

t −
ηhvac

A
et) + ǫt [10], where the error item ǫt is assumed to follow a uniform distribution with parameters

[ϑl, ϑu]
oF . In this scenario, three cases are considered, i.e., ϑu = −ϑl = 1.8, 3.6, 5.4. In Fig. 9, it can be observed that the

proposed algorithm achieves better performances than Baseline1 under three cases. Compared with Baseline3, the proposed

algorithm can save the total energy cost by up to 10% with a small increase of the total temperature violation. Moreover, unlike

Baseline3, the proposed algorithm does not require any prior knowledge of all uncertain parameters and thermal dynamics model.

Therefore, the proposed algorithm has the potential of providing a more efficient and practical tradeoff between maintaining

thermal comfort and reducing energy cost than Baseline3.

VI. CONCLUSION

In this paper, we proposed a DDPG-based energy management algorithm for a smart home to efficiently control HVAC

systems and energy storage systems in the absence of a building thermal dynamics model, with the consideration of a
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(a) Mean value of total energy cost

(b) Mean value of total temperature deviation

(c) Indoor temperature

Fig. 7. Performance comparisons among three schemes (β = 0.6, 95% confidence interval across 40 runs is considered).
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(a) Price

(b) HVAC input power

(c) ESS energy level

Fig. 8. Simulation results associated with ESS and HVAC systems.
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(a) Mean value of total energy cost

(b) Mean value of total temperature deviation

Fig. 9. The robustness of the proposed algorithm.

comfortable temperature range and many parameter uncertainties. Extensive simulation results based on real-world traces

showed the effectiveness and robustness of the proposed algorithm. In future work, more reasonable thermal comfort models

and more types of controllable loads (e.g., electric vehicles, electric water heaters) would be incorporated. In addition, more

opportunities of saving energy cost could be grasped by utilizing real-world occupant behavior information [43], which requires

the adoption of more advanced deep neural network architectures/algorithms.
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[13] F. Ruelens, B. Claessens, S. Vandael, B. Schutter, R. Babuška, and R. Belmans, “Residential demand response of thermostatically controlled loads using

batch reinforcement learning,” IEEE Trans. on Smart Grid, vol. 8, no. 5, pp. 2149-2159, Sept. 2017.
[14] J. Vázquez-Canteli, and Z. Nagy, “Reinforcement learning for demand response: A review of algorithms and modeling techniques,” Applied Energy,

vol. 235, pp. 1072-1089, 2019.
[15] V. Mnih, et. al. “Human-level control through deep reinforcement learning,” Nature, vol. 518, pp. 529-541, 2015.
[16] G. Gao, J. Li, Y. Wen, “Energy-efficient thermal comfort control in smart buildings via deep reinforcement learning,” arXiv:1901.04693v1, 2019.
[17] Z. Zhang and K.P. Lam, “Practical implementation and evaluation of deep reinforcement learning control for a radiant heating system,” The 5th ACM

International Conference on Systems for Built Environments, 2018.
[18] W. Valladares, M. Galindo, J. Gutiérrez, W. Wu, K. Liao, J. Liao, K. Lu, and C. Wang, “Energy optimization associated with thermal comfort and indoor

air control via a deep reinforcement learning algorithm,” Building and Environment, vol. 155, pp. 105-117, 2019.
[19] Z. Wan, H. Li, and H. He, “Residential energy management with deep reinforcement learning,” International Joint Conference on Neural Networks

(IJCNN), 2018.
[20] A.I. Nousdilis, E.O. Kontis, G.C. Kryonidis, G.C. Christoforidis, and G.K. Papagiannis, “Economic assessment of lithium-ion battery storage systems

in the nearly zero energy building environment,” 20th International Symposium on Electrical Apparatus and Technologies, 2018.
[21] M. Yousefi, A. Hajizadeh, and M. Soltani, “A comparison study on stochastic modeling methods for home energy management system,” IEEE Trans.

on Industrial Informatices, DOI: 10.1109/TII.2019.2908431, 2019.
[22] B. Yang, X. Cheng, D. Dai, T. Olofsson, H. Li, and A. Meier, “Real-time and contactless measurements of thermal discomfort based on human poses

for energy efficient control of buildings,” Building and Environment, vol. 162, pp. 1-10, 2019.
[23] X. Cheng, B. Yang, A. Hedman, T. Olofsson, H. Li, and L. Gool, “A pilot study of online non-invasive measuring technology based on video magnification

to determine skin temperature,” Building and Environment, vol. 198, pp. 340-352, 2019.
[24] X. Cheng, B. Yang, T. Olofsson, G. Liu, and H. Li, “A pilot study of online non-invasive measuring technology based on video magnification to determine

skin temperature”, Building and Environment, vol. 121, pp. 1-10, 2017.
[25] Y. Wang, and Z. Lian, “A thermal comfort model for the non-uniform thermal environments,” Energy and Buildings, vol. 172, pp. 397-404, 2018.
[26] W. Li, J. Zhang, T. Zhao, and R. Liang, “Experimental research of online monitoring and evaluation method of human thermal sensation in different

active states based on wristband device,” Energy and Buildings, vol. 173, pp. 613-622, 2018.
[27] L. Yang, Z. Zheng, J. Sun, D. Wang, and X. Li, “A domain-assisted data driven model for thermal comfort prediction in buildings,” The ninth ACM

International Conference on Future Energy Systems, 2018.
[28] L. Yu, D. Xie, T. Jiang, Y. Zou, and K. Wang, “Distributed real-time hvac control for cost-efficient commercial buildings under smart grid environment,”

IEEE Internet of Things Journal, vol. 5, no. 1, pp. 44-55, Feb. 2018.
[29] H. Xu, X. Li, X. Zhang, and J. Zhang, “Arbitrage of energy storage in electricity markets with deep reinforcement learning,” arXiv:1904.12232v1, 2019.
[30] P. Constantopoulos, F. C. Schweppe, and R. C. Larson, “Estia: A realtime consumer control scheme for space conditioning usage under spot electricity

pricing,” Computers & Operations Research, vol. 18, no. 8, pp. 751-765, 1991.
[31] A.A. Thatte and L. Xie, “Towards a unified operational value index of energy storage in smart grid environment,” IEEE Trans. on Smart Grid, vol. 3,

no. 3, pp. 1418-1426, Sep. 2012.
[32] Z. Zhang, A. Chong, Y. Pan, C. Zhang, S. Lu, and K. Lam, “A deep reinforcement learning approach to using whole building energy model for hvac

optimal control,” 2018 Building Performance Modeling Conference and SimBuild co-organized by ASHRAE and IBPSA-USA, 2018.
[33] R.S. Sutton and A.G. Barto, “Reinforcement learning: an introduction,” The MIT Press, London, England, 2018.
[34] J. Schmidhuber, “Reinforcenlent learning in Markovian and non-Markovian environments,” Proceedings of the 3rd International Conference on Neural

Information Processing Systems, 1990.
[35] J. Perez and T. Silander, “Non-Markovian control with gated end-to-end memory policy networks,” arXiv:1705.10993v1, 2017.
[36] S. Padakandla, K.J. Prabuchandran and S. Bhatnagar, “Reinforcement learning in non-stationary environments,” https://arxiv.org/pdf/1905.03970.pdf
[37] L. Yu, T. Jiang and Y. Cao, “Energy cost minimization for distributed internet data centers in smart microgrids considering power outages,” IEEE Trans.

on Parallel and Distributed Systems, vol. 26, no. 1, pp. 120-130, Jan. 2015.
[38] L. Yu, T. Jiang, and Y. Zou, “Distributed real-time energy management in data center microgrids,” IEEE Trans. on Smart Grid, vol. 9, no. 4, pp.

3748-3762, July 2018.
[39] Y. Zhang, N. Gatsis, and G. B. Giannakis, “Robust management of distributed energy resources for microgrids with renewables,” IEEE Trans. on

Sustainable Energy, vol. 4, no. 4, pp. 944-953, Oct. 2013.
[40] T. Lillicrap, J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra, “Continuous control with deep reinforcement learning,”

International Conference on Learning Representations, 2016.
[41] Y. Xu, L. Xie, and C. Singh, “Optimal scheduling and operation of load aggregator with electric energy storage in power markets,” North American

Power Symposium 2010, 2010.
[42] R. Deng, Z. Zhang, J. Ren, and H. Liang, “Indoor temperature control of cost-effective smart buildings via real-time smart grid communications,” IEEE

Globecom, 2016.
[43] S. Chen, T. Liu, F. Gao, J. Ji, Z. Xu, B. Qian, H. Wu, and X. Guan, “Butler, not servant: A human-centric smart home energy management system,”

IEEE Communications Magazine, vol. 55, no. 2, pp. 27-33, Feb. 2017.

http://arxiv.org/abs/1901.04693
http://arxiv.org/abs/1904.12232
http://arxiv.org/abs/1705.10993

	I Introduction
	II Related Works
	II-A Model-based approaches
	II-B Model-free based approaches

	III System Model And Problem Formulation
	III-A ESS Model
	III-B HVAC Model
	III-C Power Balancing
	III-D Cost Model
	III-E Total Energy Cost Minimization Problem
	III-F MDP Formulation
	III-F1 Environment State
	III-F2 Action
	III-F3 Reward
	III-F4 Action-Value Function


	IV DDPG-based Energy Management Algorithm
	IV-A Algorithmic Design
	IV-B Algorithmic Computational Complexity

	V Performance Evaluation
	V-A Simulation setup
	V-B Baselines
	V-C Simulation Results
	V-C1 Algorithmic convergence process
	V-C2 Algorithmic performance under varying 
	V-C3 Algorithmic effectiveness
	V-C4 Algorithmic robustness


	VI Conclusion
	References

