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Abstract

In this article, I present the user written stmixed command for the fitting of multilevel survival
models, which serves as both an alternative to Stata’s official mestreg, and a complimentary
program with substantial extensions. stmixed can fit multilevel survival models with any number
of levels and random effects at each level, including flexible spline-based approaches (such as
Royston-Parmar and the log hazard equivalent) or user-defined hazard models. Simple or complex
time-dependent effects can be included, as well as the addition of expected mortality for a relative
survival model. Left-truncation/delayed entry can be used and t-distributed random effects
are provided as an alternative to Gaussian random effects. The methods are illustrated with
a commonly used dataset of patients with kidney disease suffering recurrent infections, and a
simulated example, illustrating a simple approach to simulating clustered survival data using
survsim (Crowther and Lambert, 2012, 2013). stmixed is part of the merlin family (Crowther,
2017, 2019).

October 25, 2019

1 Introduction

Clustered survival data is often observed in a variety of settings. Within medical research, a common
example is the analysis of recurrent event data, where individual patients can experience the event
of interest multiple times throughout the follow-up period, and the inherent correlation within
patients can be accounted for using a frailty term (Gutierrez, 2002).

In the field of meta-analysis, the individual patient data (IPD) meta-analysis of survival data is
growing in use, as this form of analysis is recognised as the gold standard approach (Simmonds et al.,
2005). Analysing the IPD simultaneously within a hierarchical structure, allows direct adjustment
for confounders and incorporation of non-proportional hazards in covariate effects (Tudur-Smith
et al., 2005; Crowther et al., 2012, 2014). Often a random treatment effect is assumed to account
for heterogeneity present in treatment effects across the pooled trials.

A further area of interest is relative survival. Particularly prevalent in cancer survival studies,
relative survival allows the modelling of excess mortality associated with a diseased population
compared to that of the general population (Dickman et al., 2004). Such data often exhibits a
hierarchical structure, with patients nested within geographical regions such as counties. Patients
living in the same area may share unobserved characteristics, such as environmental aspects or
medical care access (Charvat et al., 2016).

With the release of Stata 14 came the mestreg command to fit multilevel mixed effects parametric
survival models, assuming normally distributed random effects, estimated with maximum likelihood
utilising Gaussian quadrature. In this article, I present the user written stmixed command for the
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fitting of multilevel survival models, which serves as both an alternative to Stata’s official mestreg,
and a complimentary program with substantial extensions. stmixed can fit multilevel survival
models with any number of levels and random effects at each level, including flexible spline-based
approaches (such as Royston-Parmar and the log hazard equivalent) or user-defined hazard models.
Simple or complex time-dependent effects can be included, as well as the addition of expected
mortality for a relative survival model. Left-truncation/delayed entry can be used and t-distributed
random effects are provided as an alternative to Gaussian random effects. stmixed has the ability
to estimate a multilevel survival model, with any of the aforementioned extensions, combined with a
user-defined hazard model, providing a platform for methods development within a survival context.

In essence, stmixed is now a wrapper function for the recently introduced merlin command
(Crowther, 2017, 2019), which provides a general framework for estimating multivariate mixed
effects models. Multilevel survival models are one of the many classes of models of which merlin
can fit, but to make the methods more accessible to researchers, I provide stmixed as a convenience
wrapper function, with a far simpler syntax, yet still providing the power and flexibility of merlin.

The article is arranged as follows. Section 2 describes the multilevel parametric survival framework,
and derives the likelihood used to estimate the models, including the extension to relative survival
models and delayed entry/left-truncation. Section 3 details the model syntax of stmixed, describing
the available options, and Section 4 describes the post-estimation tools available. I illustrate the
command in Section 5 with a dataset of patients with kidney disease who are followed up for
recurrent infection at the catheter insertion point, and show how to simulate clustered survival data
using the survsim command, representing an IPD meta-analysis scenario, with a random treatment
effect. I conclude the paper in Section 6.

2 Multilevel mixed effects survival models

For ease of exposition, I describe the methods in the context of a two-level model, but stmixed can
handle any number of levels. I begin with some notation. Define i = 1, . . . , N clusters (e.g. trials or
centres), with each cluster having j = 1, . . . , ni patients. Let Sij be the true survival time of the
jth patient in the ith cluster, Tij = min(Sij , Cij) the observed survival time, with Cij the censoring
time. I define an event indicator dij , which takes the value of 1 if Sij ≤ Cij and 0 otherwise.

2.1 Proportional hazards parametric survival models

The proportional hazards mixed effect survival model can be written as follows,

hij(t) = h0(t) exp
[
xT

ijβ + zT
ijbj

]
(1)

where h0(t) is the baseline hazard function of either a standard parametric model, such as the
exponential, Weibull or Gompertz distributions, or a more general spline based approach, such as
using restricted cubic splines on the log hazard scale (Bower et al., 2016), or even a user-defined
function. I define design matrices xij and zij for the fixed (β) and random (bj) effects, respectively.
I assume the random effects follow a multivariate normal distribution, with bj ∼ N(0,Σ) (stmixed
also allowed multivariate t-distributed random effects). If zij = 1 for all i and j, then Equation (1)

2



reduces to a shared frailty model, such as those available in streg, albeit with a different choice of
frailty distribution.

2.2 Flexible parametric models

An alternative to the standard proportional hazards distributions is the flexible parametric model
of Royston and Parmar (2002), modelled on the cumulative hazard scale, which has recently been
extended to incorporate random effects by Crowther et al. (2014). Therefore,

Hij(t) = H0(t) exp
[
xT

ijβ + zT
ijbj

]
(2)

where H0(t) is the cumulative baseline hazard function. The spline basis for this specification is
derived from the log cumulative hazard function of a Weibull proportional hazards model. The
linear relationship with log time is relaxed through the use of restricted cubic splines. Further
details can be found in (Royston and Parmar, 2002) and (Royston and Lambert, 2011). On the log
cumulative hazard scale, we have,

log{Hij(t)} = ηij(t) = s{log(t)|γ,k0}+ xT
ijβ + zT

ijbj (3)

where s() are our basis functions, with knot vector k0. Transforming to the hazard and survival
scales, gives

hij(t) =
[1
t

ds{log(t)|γ,k0}
d log(t)

]
exp(ηij(t)), Sij(t) = exp[− exp(ηij(t))] (4)

In this framework I am assuming proportional cumulative hazards; however, this in fact implies
proportional hazards, as in the models described in Section 2.1.

2.2.1 Non-proportional (cumulative) hazards

Relaxing the assumption of proportional hazards allows the investigation of whether the effect of
a covariate changes with time. Termed non-proportional hazards, or time-dependent effects, the
occurrence of which is commonplace in the analysis of survival data. Examples include treatment
effects which vary over time (Mok et al., 2009), and in registry based studies, where follow-up can
be substantial, covariate effects have been found to vary (Lambert et al., 2011).

Non-proportional cumulative hazards have been incorporated into the flexible parametric framework
by Royston and Parmar (2002), achieved by interacting covariates with spline functions of log time
and including them in the linear predictor (Lambert and Royston, 2009). This provides even greater
flexibility in capturing complex effects, not restricted to linear functions of time. Equation (3)
becomes

log{Hij(t)} = ηij(t) = s{log(t)|γ, k0}+ xT
ijβ + zT

ijbj +
R∑

r=1
s{log(t)|δr, kr}xijr (5)
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Each time-dependent effect can have varying number of spline terms, depending on the number of
knots, kr.

Within stmixed, time-dependent effects using restricted cubic splines can be used with all available
models.

2.3 User-defined survival models

stmixed also allows the user to provide their own definitions for the hazard function, with or without
also defining a cumulative hazard function, to allow the use of bespoke survival models with general
hazard functions. For estimation, both the hazard and cumulative hazard functions are required
(see Section 2.5 for further details), so when only the hazard is provided, the cumulative hazard
function is calculated using numerical integration. Such a general implementation allows the user
complete flexibility, whilst still being able to make use of the random effects engine within stmixed,
which also syncs with the relative survival extension and delayed entry. More details on writing a
user-defined function can be found in Crowther (2019).

2.4 Relative survival

Relative survival allows us to model the excess mortality associated with a diseased population
compared to that of the general population, matched appropriately on the main factors associated
with patient survival, such as age and gender (Dickman et al., 2004). For a recent extensive
description and implementation of the tools available for relative survival analysis in Stata, along
with a description of the differing approaches, I refer the reader to Dickman and Coviello (2015)
and references therein.

Concentrating on applications of relative survival to cancer settings, the data generally comes from
population based registries. Such data often exhibits a hierarchical structure, with patients nested
within geographical regions such as counties. Patients living in the same area may share unobserved
characteristics, such as environmental aspects or medical care access. Charvat et al. (2016) recently
described a flexible relative survival model allowing a random intercept, with the baseline log hazard
function modelled with B-splines, or restricted cubic splines. In this article, I extend the multilevel
Royston-Parmar survival model described in Crowther et al. (2014), and essentially any other hazard
based survival model, to the relative survival setting, further allowing any number of random effects,
including random coefficients. Modelling on the log cumulative hazard scale avoids the need for
numerical integration which is required when modeling on the log hazard scale with splines, and
will generally require fewer spline terms than when modelling on the log hazard scale.

Within a multilevel modeling framework, I therefore define the total hazard at the time since
diagnosis, t, for the jth patient in the ith cluster (area) to be hij(t), with

hij(t) = h∗ij(t) + λij(t)

where

• h∗ij(t) is the expected mortality for the jth patient in the ith cluster (area)

• λij(t) is the excess mortality for the jth patient in the ith cluster (area)

4



and our model is
λij(t) = λ0(t) exp(XT

ijβ + ZT
ijbi)

where λ0(t) is the baseline hazard function, with choices available including the exponential, Weibull,
Gompertz, spline-based or user-defined.

Alternatively, I could model on the (log) cumulative excess hazard scale, using the flexible parametric
model of Royston and Parmar (2002), where I define the total cumulative hazard at the time since
diagnosis, t, for the jth patient in the ith cluster (area) to be hij(t), with

Hij(t) = H∗ij(t) + Λij(t)

where

• H∗ij(t) is the expected cumulative mortality for the jth patient in the ith cluster (area)

• Λij(t) is the excess cumulative mortality for the jth patient in the ith cluster (area)

and our model is
Λij(t) = Λ0(t) exp(XT

ijβ + ZT
ijbi)

where Λ0(t) is the baseline cumulative hazard function, modeled with restricted cubic splines.

2.5 Likelihood and estimation

Defining the likelihood for the ith cluster under the mixed effects framework, I define

Li(θ) =
∫ ∞
−∞

 ni∏
j=1

p(Tij , dij |bi, θ)

 p(bi|θ) dbi (6)

with parameter vector θ. Under a hazard scale model

p(Tij , dij |bi, θ) = h(Tij)dij exp
[
−
∫ Tij

0
h(u) du

]
(7)

with h(Tij) defined in Equation (1). Under the flexible parametric survival model

p(Tij , dij |bi, θ) =
[{

1
Tij

ds{log(Tij)|γ, k0}
d log(Tij)

}
exp(ηij)

]dij

exp {− exp(ηij)} (8)

Finally, I assume the random effects follow a multivariate normal distribution

p(bi|θ) = (2π|Σ|)−q/2 exp
{
−
b′jΣ−1bj

2

}
, (9)

with variance-covariance matrix, Σ, and q the number of random effects. The (possibly multi-
dimensional) integral in Equation (6) is analytically intractable, requiring numerical techniques
to evaluate. stmixed uses either m-point mean-variance adaptive or non-adaptive Gauss-Hermite
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quadrature (Pinheiro and Bates, 1995; Rabe-Hesketh et al., 2002; Liu and Huang, 2008), or Monte-
Carlo integration. The default estimation method first fits the appropriate fixed effects model,
followed by the full model with variance and covariance parameters given starting values of 0 and 1,
respectively. stmixed also allows multivariate t-distributed random effects, with specified degrees of
freedom, in which case only Monte-Carlo integration is supported.

2.6 Relative survival likelihood

The adaption to the likelihood in Equation (6) to turn it into a relative survival model is relatively
simple. All that is needed is the expected mortality rate at each event time, which are usually
obtained from national/regional life tables. Under a hazard scale model, Equation (7) becomes,

p(Tij , dij |bi, θ) = [h∗(Tij) + λ(Tij)]dij exp
[
−
∫ Tij

0
λ(u) du

]
(10)

and under a cumulative hazard scale model, Equation (8) becomes,

p(Tij , dij |bi, θ) =
[
h∗(Tij) +

{
1
Tij

ds{log(Tij)|γ, k0}
d log(Tij)

}
exp(ηij)

]dij

exp {− exp(ηij)} (11)

which provides substantial extensions to the relative survival literature.

2.7 Left-truncation/delayed entry

The addition of left-truncation/delayed entry within a random effects survival setting raises a
particular extra level of complexity. The random effects distributions are defined at t = 0, and as
such, the left truncation time point is conditional on on each patient’s subject-specific random effect
contributions. For more details I refer the reader to van den Berg and Drepper (2014). As such, our
likelihood function becomes,

Li(θ|T0i) =

∫ ∞
−∞

 ni∏
j=1

p(Tij , dij |bi, θ)

 p(bi|θ) dbi

S(T0i|θ)
(12)

where S(T0i|θ) is the marginal survival function at the entry time T0i, defined as

S(T0i|θ) =
∫ ∞
−∞

S(T0i|bi, θ)p(bi|θ) dbi

as such, there are two sets of analytically intractable integrals to evaluate in Equation (12), which
increases computation time.
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3 The stmixed command

3.1 Syntax

stmixed
[

fe_equation
]

|| re_equation
[

|| re_equation
] [

, options
]

where the syntax of fe_equation is[
varlist

][
if
][

in
]

and the syntax of re_equation is

levelvar:
[

varlist
][

, noconstant
]

stmixed requires that your data is stset.

3.2 Options

3.2.1 Model

noconstant suppresses the constant (intercept) term and may be specified for the fixed effects
equation and for the random effects equations.

distribution(string) specifies the survival distribution.

distribution(exponential) fits an exponential survival model.

distribution(weibull) fits a Weibull survival model.

distribution(gompertz) fits a Gompertz survival model.

distribution(rp) fits a Royston-Parmar survival model. This is a highly flexible fully parametric
alternative to the Cox model, modelled on the log cumulative hazard scale using restricted cubic
splines.

distribution(rcs) fits a log hazard scale flexible parametric survival model. This is a highly
flexible fully parametric alternative to the Cox model, modelled on the log hazard scale using
restricted cubic splines.

distribution(user) specify a user-defined survival model; see options below and help merlin
user-defined functions.

df(#) specifies the degrees of freedom for the restricted cubic spline function used for the baseline
function under a rp or rcs survival model. # must be between 1 and 10, but usually a value between
1 and 5 is sufficient.The knots() option is not applicable if the df() option is specified. The knots
are placed at the evenly spaced centiles ofthe distribution of the uncensored log survival times. Note
that these are interior knots and there are also boundary knots placed at the minimum and
maximum of the distribution of uncensored survival times.

knots(numlist) specifies knot locations for the baseline distribution function under a rp or rcs
survival model, as opposed to the default locations set by df(). Note that the locations of the
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knots are placed on the standard time scale. However, the scale used by the restricted cubic spline
function is always log time. Default knot positions are determined by the df() option.

tvc(varlist) gives the name of the variables that have time-varying coefficients. Time-dependent
effects are fitted using restricted cubic splines. The degrees of freedom are specified using the
dftvc() option.

dftvc(numlist) gives the degrees of freedom for each time-dependent effects in tvc().

knotstvc(knotslist) defines numlist knotslist as the location of the interior knots for time-
dependent effects.

bhazard(varname) specifies the variable which contains the expected mortality rate, which invokes
a relative survival model.

covariance(vartype_list), where each vartype is

diagonal | exchangeable | identity | unstructured

specifies the structure of the covariance matrix for the random effects. An diagonal covariance
structure allows a distinct variance for each random effect within a random-effects equation and
assumes that all covariances are zero. exchangeable covariances have common variances and one
common pairwise covariance. identity is short for “multiple of the identity”; that is, all variances
are equal and all covariances are zero. unstructured allows for all variances and covariances to be
distinct. If an equation consists of p random-effects terms, the unstructured covariance matrix
will have p(p+ 1)/2 unique parameters. covariance(diagonal) is the default.

3.2.2 Integration

intmethod(intmethod), intpoints(#), and adaptopts(adaptopts) affect how integration for the
latent variables is numerically calculated.

intmethod(intmethod) specifies the method and defaults to intmethod(mvaghermite). The
current implementation uses mean-variance adaptive quadrature at the highest level, and non-
adaptive at lower levels. Sometimes it is useful to fall back on the less computationally intensive and
less accurate intmethod(ghermite) and then perhaps use one of the other more accurate methods.

intmethod(mcarlo) tells stmixed to use Monte-Carlo integration, which either uses Halton se-
quences with normally-distributed random effects, or anti-thetic random draws with t-distributed
random effects.

intpoints(#) specifies the number of integration points to use and defaults to intpoints(7) with
intmethod(mvaghermite) or intmethod(ghermite), and intpoints(150) with intmethod(mcarlo).
Increasing the number increases accuracy but also increases computational time. Computational
time is roughly proportional to the number specified.

adaptopts(adaptopts) affects the adaptive part of adaptive quadrature (another term for numerical
integration) and thus is relevant only for intmethod(mvaghermite).

adaptopts() defaults to adaptopts(nolog iterate(1001) tolerance(1e-8)).

[no]log specifies whether iteration logs are shown each time a numerical integral is calculated.
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3.2.3 Estimation

from(matname) allows you to specify starting values.

restartvalues(sv_list) allows you to specify starting values for specific random effect variances.
See merlin estimation for further details.

apstartvalues(#) allows you to specify a starting value for all ancillary parameters, i.e those
defined by using the nap() option.

zeros tells stmixed to use 0 for all parameters starting values, rather than fit the fixed effect model.
Both restartvalues() and apstartvalues() can be used with zeros.

maximization_options: difficult, technique(algorithm_spec), iterate(#), [no]log,
trace, gradient, showstep, hessian, shownrtolerance, tolerance(#), ltolerance(#),
gtolerance(#), nrtolerance(#), nonrtolerance, from(init_specs); see [R] maximize.
These options are seldom used, but the difficult option may be useful if there are convergence
problems.

3.2.4 Reporting

showmerlin displays the merlin syntax used to fit the model.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level.

4 stmixed postestimation

4.1 Syntax for obtaining predictions

predict newvarname
[

if
] [

in
] [

, eta hazard survival chazard cif rmst timelost fixedonly

marginal at(varname # [varname # ...]) ci timevar(varname) level(#)
]

4.2 Options

4.2.1 Predictions

eta calculates the expected value of the linear predictor

hazard calculates the predicted hazard.

survival calculates each observation’s predicted survival probability.

chazard calculates the predicted cumulative hazard.

cif calculates the predicted cumulative incidence function.

rmst calculates the restricted mean survival time, i.e. the integral of the survival function up to
time t.
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timelost calculates the time lost due to the event occuring, i.e. the integral of the cumulative
incidence function up to time t.

4.2.2 Subsidiary

fixedonly specifies predictions based on the fixed portion of the model.

marginal specifies predictions calculated marginally with respect to the random effects,
i.e. population-averaged predictions.

at(varname #[varname #...]) requests that the covariates specified by the listed varname(s)
be set to the listed # values. For example, at(x1 1 x3 50) would evaluate predictions at x1 = 1
and x3 = 50. This is a useful way to obtain out of sample predictions. Note that if at() is used
together with zeros all covariates not listed in at() are set to zero. If at() is used without zeros
then all covariates not listed in at() are set to their sample values. See also zeros.

ci calculate confidence interval and store in newvarname_lci and newvarname_uci. The delta-
method is used in all calculations using predictnl.

timevar(varlist) defines the variable used as time in the predictions. Default is _t.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is as
set by set level.

5 Examples

In this section, I illustrate the command in two areas of research, namely, recurrent events analysis,
and the individual participant data meta-analysis of survival data.

5.1 Recurrent event data

I consider the commonly used catheter dataset consisting of 38 patients with kidney disease
(McGilchrist and Aisbett, 1991). The outcome of interest is infection at the catheter insertion
point, with our baseline being time of initial catheter insertion. Patients can experience up to two
recurrences of infection, resulting in a total of 58 events. In the examples I use the Royston-Parmar
model for illustration. I intially fit a null model, i.e. no covariates and no random effects, to select
the degrees of freedom for the baseline cumulative hazard function, using the Akaike Information
Criterion to guide the choice. This selected 3 degrees of freedom (not shown), clearly indicating
the need for a flexible spline based model to capture the complex hazard function. I now fit a
Royston-Parmar proportional hazards model with a normally distributed frailty, adjusting for age
and gender,

. webuse catheter, clear
(Kidney data, McGilchrist and Aisbett, Biometrics, 1991)

. stset time, fail(infect)

failure event: infect != 0 & infect < .
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obs. time interval: (0, time]
exit on or before: failure

------------------------------------------------------------------------------
76 total observations
0 exclusions

------------------------------------------------------------------------------
76 observations remaining, representing
58 failures in single-record/single-failure data

7,424 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 562

. stmixed age female || patient:, distribution(rp) df(3)
Random effect M1: Intercept at level patient
variables created: _rcs1_1 to _rcs1_3

Fitting fixed effects model:

Fitting full model:

Iteration 0: log likelihood = -332.01103
Iteration 1: log likelihood = -326.66495
Iteration 2: log likelihood = -326.12507
Iteration 3: log likelihood = -326.05683
Iteration 4: log likelihood = -326.05663
Iteration 5: log likelihood = -326.05663

Mixed effects survival model Number of obs = 76
Log likelihood = -326.05663
------------------------------------------------------------------------------

| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_t: |

age | .0071588 .0129147 0.55 0.579 -.0181536 .0324712
female | -1.467426 .4928408 -2.98 0.003 -2.433376 -.5014758

M1[patient] | 1 . . . . .
_cons | -.3469468 .6710705 -0.52 0.605 -1.662221 .9683271

-------------+----------------------------------------------------------------
patient: |

sd(M1) | .801154 .2732037 .410625 1.563099
------------------------------------------------------------------------------

Warning: Baseline spline coefficients not shown - use ml display

Random effects are named with a M and a number. Therefore, stmixed first provides some text
ensuring the user can understand which random effects correspond to what. It also reports creating
some spline variables, named _rcs#_1, which are the baseline splines for the Royston-Parmar model.

11



The estimation procedure by default fits the fixed effect only model, to obtain starting values for
the full model. Random effect variances are given a starting value of 1, with any covariances given
a starting value of 0.

The model estimates a hazard ratio of 0.231 (95% CI: 0.088, 0.606) for a female compared to a
male of the same age, and a non-statistically significant age effect. The estimated frailty standard
deviation is 0.801 (95% CI: 0.411, 1.563), indicating a highly heterogenous baseline hazard function.

We can relax the assumption of proportional hazards by forming an interaction between a covariate
of interest and a function of time. stmixed allows an interaction between covariates and a restricted
cubic spline function of log time, through the tvc() and dftvc() or knotstvc() options, for
example, we form an interaction between log time (dftvc(1)) and female.

. stmixed age female || patient:, distribution(rp) df(3) tvc(female) dftvc(1)
Random effect M1: Intercept at level patient
variables created: _rcs1_1 to _rcs1_3
variables created for model 1, component 3: _cmp_1_3_1 to _cmp_1_3_1

Fitting fixed effects model:

Fitting full model:

Iteration 0: log likelihood = -328.64462
Iteration 1: log likelihood = -323.89207 (not concave)
Iteration 2: log likelihood = -323.87879 (not concave)
Iteration 3: log likelihood = -323.86135 (not concave)
Iteration 4: log likelihood = -323.82013 (not concave)
Iteration 5: log likelihood = -323.80934
Iteration 6: log likelihood = -323.79736
Iteration 7: log likelihood = -323.79734

Mixed effects survival model Number of obs = 76
Log likelihood = -323.79734
------------------------------------------------------------------------------

| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_t: |

age | .0093647 .0112381 0.83 0.405 -.0126615 .031391
female | -1.592196 .440563 -3.61 0.000 -2.455683 -.7287083

female#rcs() | .6843468 .2888028 2.37 0.018 .1183037 1.25039
M1[patient] | 1 . . . . .

_cons | -.4835611 .5827087 -0.83 0.407 -1.625649 .6585271
-------------+----------------------------------------------------------------
patient: |

sd(M1) | .5666527 .318761 .1881428 1.706657
------------------------------------------------------------------------------

Warning: Baseline spline coefficients not shown - use ml display

Given the statistically significant interaction, we observe evidence of non-proportionality in the
effect of female. There is substantial flexibility in being able to model non-proportional hazards in
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any number of covariates, with differing degrees of freedom.

5.1.1 Predictions

A variety of predictions can be obtained following the fitting of a model. I can obtain the predicted
survival function, shown in Figure 1 with 95% confidence interval, based on the fixed portion of the
model, for a female aged 45, through use of the at() option, as follows

. predict s1, survival ci at(age 45 female 1)
note: confidence intervals calculated using Z critical values

Which can be plotted by

. twoway rarea s1_lci s1_uci _t, sort || line s1 _t, sort ///
> ylabel(,angle(h) format(%2.1f)) ///
> xtitle("Follow-up time (days)") ///
> ytitle("Survival probability") ///
> legend(order(2 "Predicted survival" 1 "95% CI") ///
> ring(0) pos(1) cols(1))
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Figure 1: Predicted survival for a female, aged 45, based on the fixed portion of the model.

To compare across covariate patterns, for example, to assess the impact of gender, we can predict
restricted mean survival as follows,

. predict rmst_male , rmst marginal ci at(age 45 female 0)
note: confidence intervals calculated using Z critical values

. predict rmst_female, rmst marginal ci at(age 45 female 1)
note: confidence intervals calculated using Z critical values

and plotting,

. twoway (rarea rmst_male_lci rmst_male_uci _t, sort) ///
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> (line rmst_male _t, sort) ///
> (rarea rmst_female_lci rmst_female_uci _t, sort color(%70)) ///
> (line rmst_female _t, sort) ///
> , ylabel(,angle(h) format(%2.1f)) ///
> xtitle("Follow-up time (days)") ///
> ytitle("Restricted mean survival time") ///
> legend(order(2 "Male" 4 "Female"))
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Figure 2: Restricted mean survival for a male or female aged 45.

where 2 shows restricted mean survival as a function of time, for a male or female patient with the
same age of 45. The impact of being female is shown clearly, indicating females live substantially
longer than a male of the same age.

5.2 Individual participant data meta-analysis of survival data

In this example, I will illustrate a simple approach to simulating clustered survival data, in the setting
of an IPD meta-analysis of survival data, through the use of the survsim command (Crowther and
Lambert, 2012, 2013). I assume a scenario where I have data from 30 trials, each with 100 patients.
Each trial compared a treatment to a control, with the probability of being assigned to each arm
being 50%. I assume that the treament effect for each trial comes from a normal distribution,
N(−0.5, 0.52), i.e. an average log hazard ratio of -0.5 (hazard ratio = exp(−0.5) = 0.607), with
heterogeneity standard deviation of 0.5. I assume a Weibull baseline hazard function, with scale
and shape parameter values of λ = 0.1 and γ = 1.2, indicating 50.2% survival in the control group
after 5 years, at which time administrative censoring is assumed.

. clear

. // Set seed for reproducibility

. set seed 278945

. // Assume we have 30 trials
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. set obs 30
number of observations (_N) was 0, now 30

. // Generate a trial id variable

. gen trialid = _n

. // Generate trial specifc treatments effect (log hazard ratio) from a

. // normal distribution with mean 0.5, and std. dev. 0.5

. gen trteffect = rnormal(-0.5,0.5)

. // Assume 100 patients in each trial

. expand 100
(2,970 observations created)

. // Generate 0/1 patient level treatment group indicator

. gen trt = runiform()>0.5

. // Generate a variable containing patient specific treatment

. // effects for use in simulation

. gen trteffectsim = trt*trteffect

. // Simulate survival times from a Weibull distribution,

. // incorporating the random treatment effect

. survsim stime died, dist(weibull) lambda(0.1) gamma(1.2) ///
> covariates(trteffectsim 1) maxt(5)

. stset stime, f(died)

failure event: died != 0 & died < .
obs. time interval: (0, stime]
exit on or before: failure

------------------------------------------------------------------------------
3,000 total observations

0 exclusions
------------------------------------------------------------------------------

3,000 observations remaining, representing
1,239 failures in single-record/single-failure data

11,877.683 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 5

. stmixed trt || trialid: trt, nocons distribution(weibull)
Random effect M1: trt at level trialid

Fitting fixed effects model:
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Fitting full model:

Iteration 0: log likelihood = -3945.0537
Iteration 1: log likelihood = -3943.6472
Iteration 2: log likelihood = -3940.1832
Iteration 3: log likelihood = -3939.8849
Iteration 4: log likelihood = -3939.8835
Iteration 5: log likelihood = -3939.8835

Mixed effects survival model Number of obs = 3,000
Log likelihood = -3939.8835
------------------------------------------------------------------------------

| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_t: |

trt | -.4622045 .1240911 -3.72 0.000 -.7054186 -.2189904
trt#M1[tri~] | 1 . . . . .

_cons | -2.415182 .0608592 -39.68 0.000 -2.534464 -2.2959
log(gamma) | .2017346 .0264974 7.61 0.000 .1498006 .2536686

-------------+----------------------------------------------------------------
trialid: |

sd(M1) | .5914661 .0934644 .4339319 .8061913
------------------------------------------------------------------------------

A key trick to note here is in the survsim command, I included the variable trteffectsim and
assigned it a coefficient value of 1. This allows you to seamlessly incorporate random effects on
covariates which are included in the linear predictor, multiplied by a coefficient of 1. Then when
the model is fitted using stmixed,the trt variable is used which indicates treatment group.

In the stmixed model fit, I enter trt as both a fixed and random effect, but using the nocons
option to indicate no random intercept. This is a rather restrictive model as it assumes that each
trial has the same baseline hazard function. In practice, you may include the trial id variable in the
linear predictor, to allow proportional trials effects, or indeed stratify by trial membership to allow
separate trials effects (Crowther et al., 2012, 2014), or allow a random intercept at the trial level.

6 Conclusion

In this paper, I have introduced the stmixed command for multilevel mixed effects survival analysis.
stmixed provides substantial extensions to mestreg, including flexible spline-based survival models,
user-defined survival models, the extension to relative multilevel survival, simple or complex time-
dependent effects, and t-distributed random effects. I hope the wide range of survival models
available will be found useful in applied research. The most up-to-date version of stmixed can be
installed using ssc install stmixed.

Given that stmixed is essentially a shell file for merlin, any improvements that are implemented in
merlin will filter up to stmixed.
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