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Abstract—Traditional deep learning methods are sub-optimal 

in classifying ambiguity features, which often arise in noisy and 
hard to predict categories, especially, to distinguish semantic 
scoring. Semantic scoring, depending on semantic logic to 
implement evaluation, inevitably contains fuzzy description and 
misses some concepts, for example, the ambiguous relationship 
between normal and probably normal always presents unclear 
boundaries (normal – more likely normal - probably normal). 
Thus, human error is common when annotating images.  Differing 
from existing methods that focus on modifying kernel structure of 
neural networks, this study proposes a dominant fuzzy fully 
connected layer (FFCL) for Breast Imaging Reporting and Data 
System (BI-RADS) scoring and validates the universality of this 
proposed structure. This proposed model aims to develop 
complementary properties of scoring for semantic paradigms, 
while constructing fuzzy rules based on analyzing human thought 
patterns, and to particularly reduce the influence of semantic 
conglutination. Specifically, this semantic-sensitive defuzzier layer 
projects features occupied by relative categories into semantic 
space, and a fuzzy decoder modifies probabilities of the last output 
layer referring to the global trend. Moreover, the ambiguous 
semantic space between two relative categories shrinks during the 
learning phases, as the positive and negative growth trends of one 
category appearing among its relatives were considered. We first 
used the Euclidean Distance (ED) to zoom in the distance between 
the real scores and the predicted scores, and then employed two 
sample t test method to evidence the advantage of the FFCL 
architecture. Extensive experimental results performed on the 
CBIS-DDSM dataset show that our FFCL structure can achieve 
superior performances for both triple and multiclass classification 
in BI-RADS scoring, outperforming the state-of-the-art methods.  
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I. INTRODUCTION 
EEP learning has recently gathered huge interest across a 
multitude of disciplines [1, 2], which has resulted in 

researchers applying deep learning to score medical images. 
However, whether pre-training neural networks by natural 
images can effectively identify malignant or normal features in 
medical images has not yet been sufficiently investigated, 
despite the fundamental features between them being diverse. 
Further, big datasets may contain high amounts of noise and 
uncertainties. Ambiguity features, for example, semantic 
relative processing, impose great challenges on data 
understanding and classification. 

In order to reduce the noise inherent in these systems and 
improve diagnostic accuracy, fuzzy learning strategies obtain 
specific inherent logic of humans, and have been established [3, 
4], for example, towards image processing [5], image 
classification [6], and motor control [7]. Researchers have 
engaged in developing some new neural networks with inherent 
and embedded common senses to address highly challenge 
tasks, such as natural language understanding [8], visual 
question answering [9], and aspect extraction in opinion mining 
[10]. Fuzzy theory to optimize multi-input and single-output 
static systems affected by noise has been developed [11], the 
linear and nonlinear defuzzifiers based on fuzzy rules, 
compared with conventional deterministic representations, can 
reduce the uncertainties encountered in these raw data [12], as 
well as methods to identify nearest-neighbor memeplexes by 
fuzzy systems [13]. However, this kind of embedded inherent 
knowledge has not yet referred to deep learning classification 
regarding to the adjacent overlap of linear scoring. For instance, 
the Breast Imaging Reporting and Data System (BI-RADS), 
established by the American College of Radiology, is a scheme 
for defining mammogram screening into well-defined 
categories. BI-RADS scoring [14] can evaluate patients’ status 
and provide semantic diagnosis by numerical values, such as 
probably benign (BI-RADS 3) or benign (BI-RADS 2), and 
these two categories frequently share similar features, which 
may increase the difficulty for classifying by using 
convolutional neural networks (CNNs). This type of semantic 
or affective diagnosis (denotative and connotative information) 
[15, 16], contains ambiguous information which causes the 
partial divergence of neural networks, unlike either 
auto-categorization or summarization. Therefore, it is natural to 
ask: regarding existing CNNs, how can we reduce the relativity 
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of adjacent categories by improving these traditional neural 
networks with inherent knowledge from human thought?  

Our proposed method differs from previous studies since we 
are assembling priori knowledge derived from the suggestion of 
experts (mainly about the property of categories), being greedy 
to lead outputs to the global performance and fitting parameters 
by modifying back propagation errors. Thus, based on one 
previous study [17] for self-constructing fuzzy systems, and to 
verify the question about margins reinforcement and classify 
ambiguous cases, we designed three experiments in this study, 
including reinforcement of margins and learning of these 
reinforced features through six CNNs in the first learning phase, 
concatenation of the established fuzzy fully connected layers 
(FFCLs) on the top of the best-performing CNN for triple in the 
second learning phase and six-class classifications in third 
learning phase, to gradually improve the inherent structure of 
traditional neural networks. The influence of margin status is a 
significant measurement to evaluate breast cancer [18]. We 
calculated margins by canny and log operators, and designed 
improved neural networks to learn these important features in 
this study, because these two operators are recognized as the 
most generally used edge detectors. 

Depending on FFCL, features represented by these 
pre-trained networks were fused together in this nonlinear layer, 
and then reserved, deblurred, and adjusted. It can offer 
traditional neural networks the ability to build cognitive 
connections among relative categories in the last output layer, 
and more dependable update of weights and biases thereof. For 
instance, the forming of the final probabilities for data 
classification in the output layer can then partially present the 
distribution of features related to high or low scores. Briefly, 
after training of several epochs, the neural network without any 
improvement was able to identify BI-RADS scores with 
acceptable accuracy. Referring to the probabilities’ distribution 
of the output layer, FFCL can reduce the uncertainties and noise 
of the original data by updating these output probabilities and 
back propagation errors. As a result, these updated back 
propagation errors can influence the presentation of every 
layer’s weights and bias. Overall, FFCL neural networks can be 
applied to more difficult pattern classification tasks, such as 
BI-RADS involving data ambiguity and noise. We selected 
ResNet from seven simple neural networks and supplemented 
FFCL, as this structure leads to better performance than other 
state of the art methods in this study.  

In this paper, 1) we verified that the enhancement of visual 
features, such as edges, is not so beneficial to improve the 
performance of CNNs, which essentially demonstrated that 
CNNs can extract visual features; 2) we proved that the transfer 
learning strategy, especially trained by natural categories, can 
extract medical features, because more and deeper 
convolutional layers cannot detect new medical information 
from CBIS-DDSM image dataset; 3) this proposed and 
introduced FFCL architecture, which essentially focused on 
fused fuzzy rules deriving from parsing logic representation 
with traditional convolutional neural networks for semantic 
BI-RADS scoring, weakens the fusion logic in terms of fuzzy 
semantic definition, as this type of semantic diagnosis always 
contains an unstable overlap between two neighbour categories; 
4) these extensive experiments demonstrated that the proposed 
FFCL architecture is effective and outperforms other existing 

state-of-the-art methods when scoring BIRADS based on the 
CBIS-DDSM dataset. Codes and models are available at: 
https://github.com/ChengKang520/. 

II. SCORING AND FUZZY FULLY CONNECTED LAYER 

A. Fuzzy scoring and structure of fuzzy fully connected layer 
Let the training set be 𝑇𝑇 = [(𝑥𝑥1,𝑦𝑦1), (𝑥𝑥2,𝑦𝑦2), . . . , (𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛)], 

where 𝑥𝑥𝑖𝑖  is the variable explaining the data and 𝑦𝑦𝑖𝑖  is the 
corresponding label, for all 𝑖𝑖 = 1,2, . . . ,𝑛𝑛  where n is the 
number of training samples. We assumed that the sample was 
partitioned into m scoring categories, which were defined as 
real score 𝑆𝑆 = [𝑆𝑆1, 𝑆𝑆2, . . . , 𝑆𝑆𝑚𝑚] . Therefore, for more accurate 
evaluation, the estimated score 𝑆̃𝑆 = [𝑆̃𝑆1, 𝑆̃𝑆2, . . . , 𝑆̃𝑆𝑚𝑚]  followed 
by a decimal part. 
1) Fuzzy Function: To minimize the influence between two 
relative categories, this fuzzy function involves directed 
extensional scores. For CNNs, the probabilities are defined by 
sigmoid function: 
 

 𝑃𝑃(𝑥𝑥𝑖𝑖|𝑦𝑦𝑖𝑖 = 𝑖𝑖) = 𝑒𝑒−𝐸𝐸(𝑦𝑦𝑖𝑖,𝑥𝑥𝑖𝑖)

∑ 𝑒𝑒−𝐸𝐸(𝑦𝑦𝑖𝑖,𝑥𝑥𝑖𝑖)𝑦𝑦𝑚𝑚
𝑦𝑦1

, (1) 

 
and its left and right neighbors: 
 

 𝑃𝑃�𝑥𝑥𝑖𝑖±1�𝑦𝑦𝑖𝑖±1 = 𝑖𝑖 ± 1� = 𝑒𝑒−𝐸𝐸(𝑦𝑦𝑖𝑖±1,𝑥𝑥𝑖𝑖±1)

∑ 𝑒𝑒−𝐸𝐸(𝑦𝑦𝑖𝑖±1,𝑥𝑥𝑖𝑖±1)𝑦𝑦𝑚𝑚
𝑦𝑦1

, (2) 

 
where 𝐸𝐸(𝑦𝑦𝑖𝑖 , 𝑥𝑥𝑖𝑖) is the expectation that 𝑥𝑥𝑖𝑖 is predicted as 𝑦𝑦𝑖𝑖, and 
𝑚𝑚 is the number of the categories. According to some previous 
common studies of CNNs, the 𝑃𝑃(𝑥𝑥𝑖𝑖|𝑦𝑦𝑖𝑖) ∈ (0,1)  and this 
probabilistic distribution has the following affine forms [19]: 
 
 𝑃𝑃(𝑥𝑥𝑖𝑖|𝑦𝑦𝑖𝑖 = 𝑖𝑖) = 𝜎𝜎(𝑊𝑊𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑖𝑖), (3) 

 
 𝑃𝑃�𝑥𝑥𝑖𝑖±1�𝑦𝑦𝑖𝑖±1 = 𝑖𝑖 ± 1� = 𝜎𝜎(𝑊𝑊𝑖𝑖±1𝑥𝑥𝑖𝑖±1 + 𝑏𝑏𝑖𝑖±1), (4) 

 
where 𝑊𝑊𝑖𝑖 is the weight in layer 𝑖𝑖, and 𝑏𝑏𝑖𝑖 is the bias in layer 𝑖𝑖. 
To reduce the conglutination between two either neighbors or 
remote classes, the recursive score was calculated by 
 

 𝑉𝑉�𝑜𝑜 = 𝑖𝑖 ∑ 𝑃𝑃(𝑥𝑥𝑖𝑖|𝑦𝑦𝑖𝑖)
𝑖𝑖+𝑏𝑏
𝑖𝑖−𝑎𝑎

∑ 𝑃𝑃(𝑥𝑥𝑖𝑖|𝑦𝑦𝑖𝑖)𝑖𝑖+𝑏𝑏
𝑖𝑖−𝑎𝑎

, (5) 

 
where 𝑎𝑎 is the trend of negative growth, while 𝑏𝑏 is the trend of 
positive increasing, for example, the normal trend to become 
healthy, and the abnormal trend to become cancer. Therefore, 
the output value modified by above operators tend to slip 
forward to the global average position, and we optimized the 
redistributed probabilities from Equation (1) to 
 

 𝑃𝑃�(𝑥𝑥𝑖𝑖|𝑦𝑦𝑖𝑖 = 𝑖𝑖) = |𝑖𝑖−𝑉𝑉�𝑜𝑜|
𝑏𝑏−𝑎𝑎

× ∑ 𝑒𝑒−𝐸𝐸(𝑦𝑦𝑗𝑗,𝑥𝑥𝑗𝑗)

∑ 𝑒𝑒−𝐸𝐸(𝑦𝑦𝑗𝑗,𝑥𝑥𝑗𝑗)𝑦𝑦𝑚𝑚
𝑦𝑦1

𝑖𝑖+𝑏𝑏
𝑗𝑗=𝑖𝑖−𝑎𝑎 , (6) 

 
Finally, the back propagation error between the real and the 

estimation was modified from 
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 𝜀𝜀𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝑃𝑃(𝑥𝑥𝑖𝑖|𝑦𝑦𝑖𝑖 = 𝑖𝑖), (7) 

 
to 
 
 𝜀𝜀𝑖̃𝑖 = 𝑦𝑦𝑖𝑖 − 𝑃𝑃�(𝑥𝑥𝑖𝑖|𝑦𝑦𝑖𝑖 = 𝑖𝑖) (8) 

 
The influence of the modified 𝜀𝜀𝑖̃𝑖 can be calculated as: 
 
 𝜙𝜙 = 𝜀𝜀𝑖̃𝑖 − 𝜀𝜀𝑖𝑖 (9) 

 
then,  
 

 
𝜙𝜙 = |𝑖𝑖−𝑉𝑉�𝑜𝑜|

𝑏𝑏−𝑎𝑎
× ∑ 𝑒𝑒−𝐸𝐸�𝑦𝑦𝑗𝑗,𝑥𝑥𝑗𝑗�

∑ 𝑒𝑒−𝐸𝐸�𝑦𝑦𝑗𝑗,𝑥𝑥𝑗𝑗�𝑦𝑦𝑚𝑚
𝑦𝑦1

𝑖𝑖+𝑏𝑏
𝑗𝑗=𝑖𝑖−𝑎𝑎

− 𝑒𝑒−𝐸𝐸�𝑦𝑦𝑖𝑖,𝑥𝑥𝑖𝑖�

∑ 𝑒𝑒−𝐸𝐸�𝑦𝑦𝑖𝑖,𝑥𝑥𝑖𝑖�𝑦𝑦𝑚𝑚
𝑦𝑦1

 (10) 

 
Because 𝑎𝑎 and 𝑏𝑏 are variables, we can find that the distance 

from 𝑎𝑎 to 𝑏𝑏 is constant. Thus, the left part of formula should be  
 
 |𝑖𝑖−𝑉𝑉�𝑜𝑜|

𝑏𝑏+𝑎𝑎
< 1. (11) 

 
If probabilities from category 𝑖𝑖 − 𝑎𝑎  to category 𝑖𝑖 + 𝑏𝑏  are 

same, we will discover that: 
 

 𝜙𝜙 = �|𝑖𝑖−𝑉𝑉�𝑜𝑜|
𝑏𝑏−𝑎𝑎

− 1� × 𝑒𝑒−𝐸𝐸(𝑦𝑦𝑖𝑖,𝑥𝑥𝑖𝑖)

∑ 𝑒𝑒−𝐸𝐸(𝑦𝑦𝑖𝑖,𝑥𝑥𝑖𝑖)𝑦𝑦𝑚𝑚
𝑦𝑦1

 (12) 

 
Therefore, 𝜙𝜙 ≤ 0. Although probabilities from category 𝑖𝑖 −

𝑎𝑎  to category 𝑖𝑖 + 𝑏𝑏  are not always equal, we define the 
category 𝑖𝑖 is the highest among the entire categories, and we 
find that: 
 

 ∑ 𝑒𝑒−𝐸𝐸(𝑦𝑦𝑗𝑗,𝑥𝑥𝑗𝑗)

∑ 𝑒𝑒−𝐸𝐸(𝑦𝑦𝑗𝑗,𝑥𝑥𝑗𝑗)𝑦𝑦𝑚𝑚
𝑦𝑦1

𝑖𝑖+𝑏𝑏
𝑗𝑗=𝑖𝑖−𝑎𝑎 ≤ 𝑒𝑒−𝐸𝐸(𝑦𝑦𝑖𝑖,𝑥𝑥𝑖𝑖)

∑ 𝑒𝑒−𝐸𝐸(𝑦𝑦𝑖𝑖,𝑥𝑥𝑖𝑖)𝑦𝑦𝑚𝑚
𝑦𝑦1

. (13) 

 
Followed by above formulas, we can conclude that 𝜙𝜙 ≤ 0 

during these two above conditions. That means 𝜀𝜀𝑖̃𝑖 will bring 
lesser influence into whole neural networks, when considering 
the globally optimal strategy in fully connected layer. 
 
2) Gradient Related Optimization: We used the cross-entropy 
function to calculate the error when implementing back 
propagation step [20] 
 

 
𝐻𝐻(𝑦𝑦𝑖𝑖 ,𝑦𝑦�𝑖𝑖) = − 1

𝑚𝑚
×

∑ [𝑦𝑦�𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦𝑖𝑖) + (1 − 𝑦𝑦�𝑖𝑖) 𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝑦𝑦𝑖𝑖)]𝑖𝑖
 (14) 

  
where 𝑦𝑦�𝑖𝑖 is the probability of an evaluated output 𝑃𝑃�(𝑥𝑥𝑖𝑖|𝑦𝑦𝑖𝑖 = 𝑖𝑖). 

Based on Equations (1), (5), (6), and (14), the gradients of 
negative or positive log-probabilities in the last layer then 
would be presented as: 
 

 ∂𝜀𝜀𝑖𝑖
∂𝜃𝜃𝑖𝑖

(𝑙𝑙) = ∑ ∂|𝑦𝑦𝑖𝑖−𝑃𝑃�(𝑥𝑥𝑖𝑖|𝑦𝑦𝑖𝑖=𝑖𝑖)|

∂𝑜𝑜𝑖𝑖
(𝑙𝑙)

∂𝑜𝑜𝑖𝑖
(𝑙𝑙)

∂𝜃𝜃𝑖𝑖
(𝑙𝑙)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙=𝑙𝑙  (15) 

 

where 𝜃𝜃𝑖𝑖
(𝑙𝑙) is the parameters in the 𝑙𝑙𝑡𝑡ℎ layer for category i, 𝑜𝑜𝑖𝑖

(𝑙𝑙) 
is the output lay according to category i. Therefore, we can get 
the follow formulas from (3), (4), and (15): 
 

 ∂𝜀𝜀𝑖𝑖
∂𝑊𝑊𝑖𝑖

(𝑙𝑙) = ∑ ∂|𝑦𝑦𝑖𝑖−𝑃𝑃�(𝑥𝑥𝑖𝑖|𝑦𝑦𝑖𝑖=𝑖𝑖)|

∂𝑜𝑜𝑖𝑖
(𝑙𝑙)

∂𝑜𝑜𝑖𝑖
(𝑙𝑙)

∂𝜎𝜎(𝑙𝑙)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙=𝑙𝑙
∂𝜎𝜎(𝑙𝑙)

∂𝑊𝑊𝑖𝑖
(𝑙𝑙), (16) 

 

 ∂𝜀𝜀𝑖𝑖
∂𝑏𝑏𝑖𝑖

(𝑙𝑙) = ∑ ∂|𝑦𝑦𝑖𝑖−𝑃𝑃�(𝑥𝑥𝑖𝑖|𝑦𝑦𝑖𝑖=𝑖𝑖)|

∂𝑜𝑜𝑖𝑖
(𝑙𝑙)

∂𝑜𝑜𝑖𝑖
(𝑙𝑙)

∂𝜎𝜎(𝑙𝑙)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙=𝑙𝑙
∂𝜎𝜎(𝑙𝑙)

∂𝑏𝑏𝑖𝑖
(𝑙𝑙). (17) 

 
Before assembling FFCL into CNNs, the parameters 

connected with a specific category updated referring to 
traditional errors, and this type of error can induce a chain 
reaction for all layers and the inability to lead parameters to the 
more properly global optimization. For example, the error 
𝜀𝜀1appearing in Grade1 point which presents in Figure 1 go 
through every layer from Grade1 point to input layer. The thick 
green arrow shows the back propagation of 𝜀𝜀1  before 
assembling FFCL into CNNs, and referring to the typical ReLU 
functions which can open or close the connection between 
previous and current layers, 𝐹𝐹𝑎𝑎1 connects with 𝐿𝐿1 and 𝐿𝐿2. 

 

 
Figure 1. Conceptual explanation of the FFCL’s structure in CNNs. It is 
composed of four parts, input layer function layers, fuzzy transformation, and 
output layer. 

However, after embedding FFCL into CNNs, the influence 
of 𝜀𝜀1 will switch to the global optimized error. The connections 
swapped to 𝐹𝐹1  with 𝐿𝐿1  and 𝐿𝐿3 , because the hyperparameter 
𝑾𝑾𝟏𝟏𝑭𝑭𝑭𝑭𝑭𝑭 are more likely to close to dispersive solution for neural 
network training, when compared with the hyperparameter 
𝑾𝑾𝟏𝟏𝑭𝑭𝑭𝑭𝑭𝑭  optimized by fuzzy strategy. Sometimes, some 
redundant functions or blocks will appear in neural networks 
because of the attribute of neural networks. Thus, the blue 𝐿𝐿𝑧𝑧−1 
and 𝐿𝐿𝑧𝑧  are the redundant blocks or functions in this system.  
Function layers in Figure 1 include the traditional structures, 
for example, convolutional layers, ReLU layers, pooling layers 
and so on. After such change, the structure of this proposed 
neural network will be modified, more especially, these refined 
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ambiguous features extracted by this type of CNNs can to some 
extent achieve a high decorrelation. 
3) Implementation of FFCL: We set the default accuracy rate at 
65% before the beginning of FFCL training tasks. If 
probabilities of normal trend (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[1]) and possibly normal 
trend (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[2])  are approximately equal, and if they are 
obviously greater than that of others, for example, the 
possibility of the abnormal, this appendix can provide relative 
and significant assistance to classify these two ambiguous 
categories. In this study, we defined a proper THRESHOLD. If 
the maximum of output probabilities located among 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖 −
1]  ( 𝑖𝑖 > 0 ), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖]  and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖 + 1] , where 𝑖𝑖  is the score 
from 0 to m, there are three conditions that should be 
considered by fuzzy rules (in Figure 2).  

We also defined 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖↗1] and 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖↘1] as the ascending 
or descending trends of normal or abnormal respectively. For 
example, we define that the trend from the abnormal side to the 
normal side is negative, which means more normal, and if 𝑖𝑖=2, 
then 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖 ↗ 1] will be the 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[1], and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖 ↘ 1] will 
be the 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[3]. Moreover, this FFCL is a nonlinear function, 
which can partially verify the error-prone condition. If when 
the probability of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[1] is 0.32, and that of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[2] is 0.33, 
it will be frequently identified improperly under this condition, 
as the difference of these two ratios is not obvious. To widen 
the gap between these two ratios, the value of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[3] should 
be considered. Then, the back propagation error will be 
modified by these fuzzy rules with an adaptive parameter based 
on the probabilities of these three categories. During the update 
of weights and bias, the effect of 𝜀𝜀𝑖𝑖 will enhance or restrain the 
learning process of significant features. The key pseudocode is 
illustrated in Algorithm 1. 
 

Algorithm 1. The algorithm of FFCL 

The algorithm of FFCL: Before the start of FFCL training, samples 
and labels should be trained for several epochs.  
Start of iteration: 
If the accuracy rate is greater than the value, at 0.8× average accuracy rate 
(AAR, we previously trained the neural networks and calculated the average 
accuracy rate), then we start following iteration: for 𝑖𝑖 = 0,1, . . . ,5 
If the maximum of probabilities located among score 𝑖𝑖 − 1 (𝑖𝑖 > 0), score 𝑖𝑖 
and score 𝑖𝑖 + 1: 

Rule I:  If 𝑖𝑖 = {2，4}, 
a) when probabilities of 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖↘1]  and 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖]  are greater than the 

THRESHOLD, but 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖↗1] is less than THRESHOLD. Modify the 
output of 𝑉𝑉𝑜𝑜 by (5), where 𝑛𝑛 = 𝑖𝑖 − 2, 𝑚𝑚 = 𝑖𝑖 + 1. And get 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖↘1] 
and 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖] by (6). 

b) when probabilities of 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖↗1]  and 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖]  are greater than the 
THRESHOLD, but 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖↘1] is less than the THRESHOLD. Modify 
the output of CNNs 𝑉𝑉𝑜𝑜  by (5), where 𝑛𝑛 = 𝑖𝑖 − 1 , 𝑚𝑚 = 𝑖𝑖 . And get 
𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖↗1]and 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖] by (6). 

Rule II: If 𝑖𝑖 = {3}, 
a) when probabilities of 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖↘1]  and 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖]  are greater than the 

THRESHOLD, but 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖↗1] is less than the THRESHOLD. Modify 
the output of CNNs 𝑉𝑉𝑜𝑜 by (5), where 𝑛𝑛 = 𝑖𝑖 − 2, 𝑚𝑚 = 𝑖𝑖 + 1. And get 
𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖↘1] and 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖] by (6). 

b) when probabilities of 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖↗1]  and 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖]  are greater than 
THRESHOLD, but 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖↘1] is less than the THRESHOLD. Modify 
the output of CNNs 𝑉𝑉𝑜𝑜 by (5), where 𝑛𝑛 = 𝑖𝑖 − 1, 𝑚𝑚 = 𝑖𝑖 + 2. And get 
𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖↗1] and 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖] by (6). 

Rule III: If 𝑖𝑖 = {2,3,4}, 
a) when probabilities of 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖↘1] , 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖]  and 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖↗1]  are greater 

than the THRESHOLD, and they are approximately equal to each 
other, modify the output of CNNs 𝑉𝑉𝑜𝑜 by (5) where 𝑛𝑛 = 𝑖𝑖 − 1, 𝑚𝑚 = 𝑖𝑖 +
1 . And 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖]  will be 𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖↘1],𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖],𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖↗1]) , and 
keep others the same. 

End of iteration.  

Output: the decimal score and improved CNNs with modified weights 
and bias. 

 

 
Figure 2. The core structure of FFCL. 

III. EXPERIMENTAL RESULTS 

A. Dataset and Model Configurations 
We used the Curated Breast Imaging Subset of Digital 

Database of Screening Mammography (CBIS-DDSM) dataset 
to test our proposed FFCL. The CBIS-DDSM is a large 
collection of digitized film mammography images, which 
includes 3,572 images referring to 2689 patient cases. 
According to BI-RADS, overall BI-RADS assessment from 0 
to 5 has been described in this dataset, including BI-RADS 
score 0 (Incomplete cases), BI-RADS score 1 (Negative cases), 
BI-RADS score 2 (Benign cases), BI-RADS score 3 (Probably 
Benign cases), BI-RADS score 4 (Suspicious Abnormal cases) 
and BI-RADS score 5 (Highly Suspicious Malignant cases), the 
distribution of which in the CBIS-DDSM dataset is shown in 
Table 1. Because there are only three normal cases, for triple 
classification we redistributed three categories, including 
redefining score 0 as incomplete, combining score 2 with score 
3 as benign, and merging scores 4 and score 5 together as 
malignancy. You can search this type of medical dataset on 
[21].  

 
Table 1. The distribution of samples of CBIS-DDSM dataset based on 

BI-RADS assessment 

 0 1 2 3 4 5 
Mass + 
Calcification 
Training Set 

192 
(129+ 
63)  

1 559 
(77+ 
482 

368 
(279+ 
89) 

1286 
(533+ 
753) 

458 
(299+ 
159) 

Mass + 
Calcification 
Testing Set 

46 
(33+ 
13) 

2 85 
(14+ 
71) 

109 
(85+ 
24) 

347 
(169+ 
178) 

115 
(75+ 
40) 

 
As shown in Figure 3, a gray-scale mammogram contains 

only one gray colour channel, so strategy 1 (S1) used each gray 
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mammogram replicating onto three colour channels. Strategy 2 
(S2) applied edge operators to extract margins and stacked 
them into other two colour channels, while strategy 3 (S3) 
utilized combination of margins and gray mammogram to 
submitted other two colour channels. Red lines in Figure 3 
edges of mammograms extracted by two basic edge operators, 
log and canny [22, 23]. Because the ImageNet data has 1000 
classes, the last output layer was submitted by a three-class 
softmax layer, and these three categories consist of incomplete, 
benign and malignant cases.` 

 

 
Figure 3. Mammograms from CBIS-DDSM with the log and canny edges. (a), 
The gray mammogram. (b), The gray mammogram with log edges. Red lines 
are log edges. (c), The gray mammogram with canny edges. Red lines are the 
canny edges. 

 
Figure 4. Clustering arrangement allowing overlap and selecting the scores 
according to the labels (or classes) attached to them.  

In Figure 4, to simplify the explanation, we defined that the 
X direction is negative, and its score is 1. The following 
directions are the same pattern above. There are only two 
conditions which can be identified with difficulty. The first is 
that each adjacent category excludes the condition between 
incomplete cases and negative cases, because incomplete cases 
approximately have no relationship with other cases. Surfaces 
XY, yZ, and xy may be difficult to be identified, which means 
there may be medians between XY, yZ or xy, as their 
definitions show the high internal relationship. For example, 
the negative may become the benign in the future, but it 
actually cannot suddenly transform to high BI-RADS scores, 

such as probably benign, suspicious abnormality or high 
suspicious malignancy. Secondly, if there are three 
probabilities which are approximately equal to each other, such 
as the probabilities of XYZ, xyZ, we defined that the middle 
category has the highest probability. Moreover, if these three 
rectangles seem like that their size on cohorts are not same, that 
means their probabilities are equal to others. 

Many existing CNNs were used in this study (in Table 2), 
including the 16-layer and 19-layer VGG networks (VGG16 
and VGG19) [24], the 18-layer, 50-layer and 101-layer residual 
networks (ResNet-18, ResNet-50 and ResNet-101) [25], and 
GoogleNet [26]. Therefore, top layers were designed for whole 
image classification. In Figure 5, after removal of the 
1000-class FCL top layer, six-class FCL or FFCL was stacked 
behind the top layer in all experiments. However, more 
convolutional and pooling layers were trained during the 
second learning phase, and these layers were also added on the 
top layer. Then during every training task, when the validation 
rate was reaching the top, the training process was finished and 
we measured the number of epochs. 

B. Statistical analysis 
Table 2 presents the abbreviation of all plans and the layout 

of all experiments, for example, S1-ResNet-101- 
3Conv-FCLbased on FCL.  In the plan of S1-ResNet-101- 
(+3Conv)-FCL, (+3Conv) means that adding the last 3 
convolutional layers and training them with FCL together for 
classifying tasks. NC means the number of classes. Four 
different learning phases were performed utilizing the 
CBIS-DDSM dataset in testing the CNN models’ recognition 
capacity for binary, triple and 6-class classifications. ROC 
curves [27, 28] were generated and aACCs were calculated as a 
metric of classification accuracy. The confusion matrix, which 
is a table that can describe the performance of a classification 
model, was used to test the true values [29]. We used two 
sample T-test to verify the significance of ACC sequences 
between two CNNs, and 95% confidence intervals [30] were 
calculated for ACC values using bootstrapping methods [31]. 
The deep learning network was implemented using the Matlab 
platform running on a desktop computer system with the 
following specifications: Intel Core i7-2670QM 
CPU@2.20GHZ with 8 GB RAM and a Titan X Pascal 
Graphics Processing Unit (GPU). 

 
Table 2. Experiments and the structure of neural networks in this study. 

Abbreviation N
C 

Strateg
y 

Base 
Network 

Retrained 
layers 

First Learning Phase 
S1-ResNet-18-FCL 4 S1 ResNet-18 FCL 
S1-ResNet-50-FCL 4 S1 ResNet-50 FCL 

S1-ResNet-101-FCL 4 S1 ResNet-10
1 FCL 

S1-VGG-16-FCL 4 S1 VGG-16 FCL 
S1-VGG-19-FCL 4 S1 VGG-19 FCL 
S1-GoogleNet-FCL 4 S1 GoogleNet FCL 

S1-ResNet-101-FCL 4 S1 ResNet-10
1 FCL 

S1-VGG-16-FCL 4 S1 VGG-16 FCL 

S2-ResNet-101-FCL 4 S2 ResNet-10
1 FCL 

S2-VGG-16-FCL 4 S2 VGG-16 FCL 
S3-ResNet-101-FCL 4 S3 ResNet-10 FCL 

mailto:CPU@2.20GHZ
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1 
S3-VGG-16-FCL 4 S3 VGG-16 FCL 
Second Learning Phase 
S1-ResNet-101-3Conv-FC
L 4 S1 ResNet-10

1 3Conv-FCL 

S1-ResNet-101-3Conv-FCL 4 S1 ResNet-10
1 6Conv-FCL 

S1-ResNet-101-(+3Conv)-F
CL 4 S1 ResNet-10

1 
(+3Conv)-FC
L 

S1- 
ResNet-101-(+6Conv)-FCL 4 S1 ResNet-10

1 
(+6Conv)-FC
L 

S1-Naive Bayes 4 S1 NO NO 
S1-SVM 4 S1 NO NO 
S1-Random Forest 4 S1 NO NO 
Third Learning Phase 

S1-ResNet-101-FFCL 4 S1 ResNet-10
1 FFCL 

S1-ResNet-101-3Conv-FF
CL 4 S1 ResNet-10

1 
3Conv-FFC
L 

S1-ResNet-101-FCL 6 S1 ResNet-10
1 FCL 

S1-ResNet-101-FFCL 6 S1 ResNet-10
1 FFCL 

S1-ResNet-101-3Conv-FCL 6 S1 ResNet-10
1 3Conv-FCL 

S1-ResNet-101-3Conv-FF
CL 6 S1 ResNet-10

1 
3Conv-FFC
L 

 

C. Networks training strategy 
To verify whether the enhancement of visual features is 

important to improve the performance of CNNs, to validate the 
advantage of FFCL step-by-step, and to compare with 
state-of-art, we designed our experiments according to above 
purposes in this study. Figure 5 explains the structure of 
training tasks.  

Part Ⅰ – First learning phase: This part determined whether 
the important visual edge is the significant feature for deep 
learning improving, and to select the best-performing neural 
network among these pre-trained CNNs. We stacked two 
different edges onto two colour channels and then trained these 
pre-trained neural networks. Depending on pre-trained weights 
based on the ImageNet database, rather than randomly 
initialized parameters, these networks were improved by 
accelerating learning, and more generalizations were 
successfully produced to represent features. In this training 
stage, parameters except the top layer were frozen before 
training tasks, while simultaneously decreasing the learning 
rate during training progress. In order to validate whether 
margin features can be represented or not, S2 and S3 were 
applied to test these pre-trained VGG-16 and ResNet-101. 
Table 3 shows that S1-ResNet-101-FCL performed best among 
residual neural networks, and S1-GoogleNet-FCL was slightly 
inferior to S1-VGG-16-FCL, which exceeds S1-VGG-19-FCL. 
After stacking with edges onto the two-colour channels, aACC 
of S2-ResNet-101-FCL and S2-VGG-16-FCL slightly 
decreased when compared with these two networks, which only 
replicated the same mammogram figure. Some researchers’ 
findings supported our result, as they demonstrated that 
VGG-16 and ResNet-50 have the obvious advantage to classify 
mammograms [2]. Figure 6 shows ROC curves and confusion 
matrixes for ResNet-101, VGG-16 and GoogleNet. All 
categories can be well-distinguished, but the incomplete cases 

were the most well-defined using both ResNet-101 and 
VGG-16. 
 

Table 3. The learning phase used pre-trained neural networks. 

Model ACC 
(Best) 

Epochs aACC / (ACC range)  

S1-ResNet-18-FCL 73.30% 27 72.62%/ (72.16%~73.30%) 
S1-ResNet-50-FCL 74.15% 27 73.62%/ (72.73%~74.15%) 
S1-ResNet-101-FCL 75.71%/ 

71.42% 
28 
15 

74.76%/ (73.72%~75.71%) 

S1-VGG-16-FCL 72.02% 25 70.95%/ (69.89%~72.02%) 
S1-VGG-19-FCL 70.31% 29 69.44%/ (68.32%~70.31%) 
S1-GoogleNet-FCL 71.73% 28 70.82%/ (70.03%~71.73%) 

 
For the confusion matrix of S1- ResNet-101-FCL, of the 46 

incomplete cases, this model predicted that 3 cases are benign, 
and 13 cases are malignant. Of the 2 normal cases, it predicts 
that all were malignant. And of the 194 benign cases, 4 cases 
are attached to incomplete, 100 cases are predicted to belong to 
benign, and the last 90 cases are deemed to be malignant. Of the 
462 malignant cases, it predicts that 11 cases are incomplete, 52 
cases are benign, and 399 cases are malignant. As the matrix 
shown in Figure 6, both ResNet-101 and VGG-16 have the 
disadvantage to distinguish malignancy from benign; but both 
networks can make obvious distinction between incomplete 
cases and other types of cases. Among the six CNNs, 
ResNet-101 performed best, followed by ResNet-50, 
ResNet-18, VGG-16, GoogleNet and VGG-19 in sequence. 

  

 
Figure 5. The deep learning structure for improving CNNs by training deeper 
last convolutional layers, adding and training the last residual convolutional 
layers, and establishing fuzzy rules block on top. 

While in the first learning phase, all these CNNs can 
satisfactorily distinguish each BI-RADS assessment, but only 
training of the FCL may result in some features that cannot be 
extracted by pre-trained blocks. Due to there still being some 
important features that should be represented by CNNs, the 
larger dataset size or something intrinsic to the characteristics 
of the DDSM dataset should be represented by our models, 
therefore, only training FCL is insufficient. According to 
incomplete cases, which have to be re-examined radiologically, 
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the lack of information for diagnosis can inform CNNs that 
these kinds of mammograms have insufficient features and 
should be re-examined. All 6 types of CNNs have an 
encouraging advantage to identify incomplete and malignant 
cases, but are less efficient at recognizing malignant from 
benign cases. Although doctors often disagree on how a 
particular exam should be classified [32] and less than 1% of 
the screening population has cancer [32, 33], researchers expect 
that this problem can be alleviated by using the information 
about whether a person proceeded to develop breast cancer in 
the future as an identifier [34]. Even if the mammogram is 
identified as normal or benign, the incomplete cases may 
become the mortal potential for patients, therefore, a high rate 
of incomplete cases’ recognition can make diagnosis more 
reliable. In Table 4, although three different strategies had been 
utilized, S1 presents the best performance, which provides the 
evidence that the enhancement of margins in mammograms 
will result in the graphic degeneration when using ResNet-101 
and VGG-16.  

To construct a better neural network structure during the 
following experiments, we subsequently designed the second 
and the third learning phases through S1 in those following 
steps. S2 may discard some significant features, and this is the 
reason why the ACC array of using S1 is significantly greater 
than that of using S2 (P < 0.01). Sometimes, the enhancement 
of margins for mammograms will result in overfitting, as the 
ACC array of using S3 is significantly less than that of using S1 
(P < 0.01). If CNNs cannot efficiently extract margins, there 
may be no overfitting during this experiment, because these 
margin features have been reinforced. Thus, this can explain 
why deep learning can represent features that radiologists may 
not distinguish. 

 
Table 4. Considering to reinforce the visible features, we only trained the FCL 
based on the pre-trained ResNet-101 and pre-trained VGG-16 in this task. 

Model ACC 
(Best) 

Epochs aACC / (ACC range)  

S1-ResNet-101-FCL 75.71% 28 74.76%/ (73.72%~75.71%) 
S1-VGG-16-FCL 72.02% 25 70.95%/ (69.89%~72.02%) 
S2-ResNet-101-FCL 72.73% 25 71.51%/ (70.60%~72.73%) 
S2-VGG-16-FCL 69.32% 28 68.41%/ (67.76%~69.32%) 
S3-ResNet-101-FCL 70.03% 26 69.13%/ (68.18%~70.03%) 
S3-VGG-16-FCL 71.16% 28 70.11%/ (69.32%~71.16%) 

 
For traditional computer-aided detection or diagnosis, 

predefined features are usually used for constructing models, 
which require pre-emptive determination of which features will 
contribute to classification tasks [35]. However, in our study, 
we believe that predefinition of the graphic features is not 
necessary, and before our training tasks based on CBIS-DDSM, 
these visible features have already been automatically 
represented by ImageNet dataset [36]. Obvious features, such 
as margins, can be recognized by radiologists, and it also can be 
detected by the learning process, while intrinsic and invisible 
features which are used for imaging interpretation may not be 
identified by human beings also can be automatically 
recognized by CNNs [35]. 

Many studies have shown the advantage of transfer learning 
to process limited medical data [37]. We provide deeper 
insights in developing optimized transfer learning strategies by 
designing training experiments. However, the incremental 
transfer learning and the observations made here need to be 
evaluated by further analyses and comparative studies. 
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Figure 6. The ACC curve and confusion matrixes. From left to right successively (a) S1-ResNet-101-FCL, (b) S1-VGG-16-FCL and (c) S1-GoogleNet- FCL in the 
first learning phase for the triple classification scenarios based on CBIS-DDSM dataset.  

Part Ⅱ – The second learning phase: The second part aimed to 
train the last convolutional layers, or add and train the last 
convolutional layers. After the FCL was removed, parameters 
from the bottom layers to the final or penultimate VGG and 
residual blocks were frozen, and the remaining weights and 
bias were trained and updated in the neural network. By 
contrast, we also respectively added one or two VGG and 
residual blocks on the top layer and only trained them to learn 
features. Because some ambiguous features between two 
adjacent categories were difficult to identify, we used the FFCL 
to improve the performance of ResNet-101. In the second 
learning phase, to carry out which kind of structure will 
perform best, we selected ResNet-101 and VGG-16 to 
complete these training tasks. In Table 5, the best single ACC 
rate of ResNet-101 is 76.82% which was recorded during one 
best-performed single training task, but significantly greater 
than that of ACC array in the variance of ACC array in 
S1-ResNet-101-3Conv-FCL is S1-ResNet-101-FCL (P < 0.01). 
Almost the same performance was found between 
S1-ResNet-101-3Conv-FCL and S1-ResNet-101-FFCL (P 
=0.243). On the contrary, training 6 last layers (residual or 
VGG blocks) made the ACC array dropped significantly (P < 
0.01). 

After adding VGG or residual convolutional blocks onto the 
top layer, Table 5 shows that the ACC array of S1 
-ResNet-101-(+3Conv)-FCL is higher than that of 
S1-ResNet-101-(+6Conv)-FCL (P = 0.032), which indicates 
that S1-ResNet-101-(+3Conv)-FCL can represent more 
features. Compared the performance of S1-ResNet-101-FCL 
and S1-ResNet-101-3Conv-FCL, S1-ResNet-101-FFCL based 
on FFCL algorithm can significantly increase ACC array. 
Moreover, the advantage of S1-ResNet-101-3Conv-FFCL is 
obvious (P < 0.01), therefore, the influence of FFCL can to 
some extent improve the structures we designed above. To 
teach and train computers about how to recognize can 
sometimes achieve extraordinary success. If the algorithm is 
not able to be strictly recognized as the ‘over uncertainties 
averaged log  membership’, fuzzy systems can enhance the 
probability of distinguishing uncertain features [11]. 

Some traditional machine learning methods, such as Naïve 
Bayes [38], support vector machine (SVM) [39] and random 
forest (RF) [40] were utilized to compare each CNNs. Although 
random forest can reach the same performance of 
S1-ResNet-101-3Conv-FFCL, but the best single ACC was 
different. The improved ResNet-101 through updated 
structures and fuzzy rules has the potential to outperform these 
traditional machine learning methods. 
 
Table 5 The performance of adding and retraining three or six last layers. 

Model ACC 
(Best) 

Epochs aACC / (ACC 
range) 

S1-ResNet-101-3Con
v-FCL 

76.70% 16 74.12%/ 
(70.88%~76.70%) 

S1-VGG-16-3Conv-F
CL 

64.55% 5  

S1-ResNet-101-6Conv
-FCL 

74.29% 16 71.46%/ 
(69.32%~74.29%) 

S1-ResNet-101-(+3Co
nv)-FCL 

74.72% 18 72.78%/ 
(69.74%~74.72%) 

S1-VGG-16-(+3Conv)
-FCL 

62.43% 6  

S1- 
ResNet-101-(+6Conv)
-FCL 

74.57% 16 72.12%/ 
(69.89%~74.57%) 

S1-ResNet-101-FFCL 75.92% 25 75.15%/ 
(74.58%~75.92%) 

S1-ResNet-101-3Con
v-FFCL 

76.82% 15 74.15%/ 
(70.68%~76.82%) 

S1- Naïve Bayes 41.19%   
S1-SVM 61.93%   
S1-Random Forest 75.99%   
 
Part Ⅲ – The third learning phase: One aim of this part was 

to check whether the plan about combining score 2 with score 3 
as benign and score 4 with score 5 as malignancy will influence 
the ACC and classification performance. Another aim was to 
construct an FFCL based on ResNet-101 for 6-class 
classification.  

The first task we designed only trained the FCL. The second 
task used the FFCL with ResNet-101. The third task applied the 
structure which performed best in the second learning phase to 
identify BI-RADS assessment, and the last task was based on 
the combination of the second and the third tasks. 

 
Table 6. The performance of ResNet-101 for 6-class classification. 

Model ACC 
(Best) 

Epochs aACC / (ACC range) 

S1-ResNet-101-FCL 57.53% 16 56.34%/ 
(55.54%~57.53%) 

S1-ResNet-101-FFCL 57.88% 16 56.99%/ 
(55.97%~57.88%) 

S1-ResNet-101-3Conv-FCL 59.09% 17 56.86%/ 
(54.55%~59.09%) 

S1-ResNet-101-3Conv-FFCL 59.94% 17 57.40%/ 
(55.11%~59.94%) 

 
According to some categories, which are difficult to identify 

in confusion matrices above, the third learning phase utilized 
fuzzy rules to improve the neural networks’ quality after neural 
networks can partially identify some classes. Finally, in order to 
evaluate the distance between our trained models and the 
convergent globally optimal solution, we used the Euclidean 
Distance [41] (ED) to measure the effect of classification 
performance by neural networks: 

 

 𝐺𝐺𝐺𝐺(𝑝𝑝, 𝑞𝑞) = �∑ (𝑝𝑝𝑖𝑖−𝑞𝑞𝑖𝑖)2𝑚𝑚
𝑖𝑖=1

𝑚𝑚
 (18) 

 
where 𝑝𝑝  is the value of predicted scores, 𝑞𝑞  is the value of 
realistic scores, and 𝑖𝑖  is the category. When the output is a 
decimal, not an integer, it means a mammogram contains 
uncertain features, and the CNNs will provide radiologists 
probabilities and decimal scores. The reason why we chose ED 
to measure the advantage of FFCL is that the measuring 
distance can be evaluated by t test. The learning rate reduction 
helped us avoid unlearning important features. 
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Figure 7. ROC curves and confusion matrixes. From left to right successively (a) S1-ResNet-101-FCL, (b) S1-ResNet-101-FFCL and (c) 
S1-ResNet-101-3Conv-FCL and (d) S1-ResNet-101-3Conv-FFCL for 6-class classification (Incomplete, Negative, Benign, Probably Benign, Suspicious 
Abnormality and Highly Suspicious Malignancy) on the CBIS-DDSM dataset in the third learning phase. 
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D. Comparison with other existing methods 
For the CBIS-DDSM medical dataset, after embedding the 

FFCL into some CNNs, Table 8 shows the significant 
advantage of this semantic fuzzy layer when comparing with no 
FFCL before. Although classifying medical images is difficult 
to implement, as their poor quality, collaboration with relative 
information can enhance the performance of CNNs, which 
indicate that artificial neural networks need basic and inherent 
knowledge to enrich themselves, and to limit them to overstep 
the boundary, for example, overfitting. 
 

Table 7. The Euclidean Distance among S1-ResNet-101-FCL, 
S1-ResNet-101-FFCL and S1-ResNet-101-3Conv-FFCL. 

 
Models 

 
Ed (average 
and variance) 

 
P-value 

S1-ResNet-101-FCL < 
S1-ResNet-101-FFCL 

1.466+0.0104~ 
1.482+0.0120 

0.0045  

S1-ResNet-101-FCL < 
S1-ResNet-101-3Conv-FF
CL 

1.466+0.0104~ 
1.455+0.0464 

0.4380 

S1-ResNet-101-FFCL < 
S1-ResNet-101-3Conv-FF
CL 

1.482+0.0120~ 
1.455+0.0464 

0.0791  

 
Table 8. Comparison with existing methods on DDSM in terms of ACC. 

 DDSM (Scenario) 
Methods CNN+FCL CNN+FFCL (proposed) 
Geras [42] 68.8% (BI-RADS 0/1/2) 70.1% 

(BI-RADS 0/1/2) 
Akselrod-Ballin 
[43] 

60.0%(BI-RADS 
2/(3-4-5)) 

62.3%(BI-RADS 
2/(3-4-5)) 

Ours 

72.0%(BI-RADS 
0/(2-3)/(4-5)) 

74.1%(BI-RADS 
0/(2-3)/(4-5))) 

56.34%±1.4% (BI-RADS 
0/1/2/3/4/5) 

57.40%±1.7% (BI-RADS 
0/1/2/3/4/5) 

IV. CONCLUSION 
In this study, we verified that the visual enhancement method 

cannot substantially improve the classification performance, 
and we provided an evidence that the transfer learning strategy, 
especially trained by natural categories, can extract medical 
features. A novel architecture which is based on fuzzy system 
and embedded in the fully connected layer for scoring images is 
designed for semantic scoring of medical images.  

This proposed optimal structure demonstrates its advantage 
in CBIS-DDSM dataset for BI-RADS scoring. We firstly 
proved the mathematical availability of the FFCL and designed 
three learning phases to gradually develop CNNs based on 
FFCL. Our proposed framework can also shrink the overlap 
semantic space explored under an adaptive weight updating 
environment in this medical dataset.  

This FFCL architecture offers the advantage of weakening 
the influence of equivocal and unclear semantic description for 
medical diagnosis. Although this architecture can positively 
deal with the classification tasks which have overlaps between 
two neighbour classes, it is more likely to weaken the influence 
of semantic conglutination.  

The future work will focus on classifying images annotated 
by linear categories and relying on another assistant CNN to 

simulate the cognitive activation of human brain, such as 
inhibition, disinhibition and maintenance. 
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