
Learning Nominal Regular Languages

with Binders

Thesis submitted for the degree of

Doctor of Philosophy

at the University of Leicester

by

Yi Xiao

Department of Informatics

University of Leicester

2019

Abstract

The theories of formal language and automata are fundamental in several areas
of computer science. During decades of development, these theories have been
stretched out and reach many branches and application contexts, ranging from
lexical analysis, natural language processing, model checking, and system design.
Recently, the applications of machine learning are spreading out rapidly. One inter-
esting application, learning automata, gains sustained attention crossing the disci-
plines.

This dissertation investigates learning nominal automata, an extension of classi-
cal automata to alphabets featuring names. This class of automata capture nominal
regular languages ; analogously to the classical language theory, nominal automata
have been shown to characterise nominal regular expressions with binders. These
formalisms are amenable to abtract modelling resource-aware computations.

We propose nL?, a learning algorithm on nominal regular languages with binders.
Our algorithm generalises Angluin’s algorithm L? with respect to nominal regular
languages with binders. We show the correctness of nL? and study its theoretical
complexity.

We also develop a implementation of nL? that we use to experimentally analyse
different strategies for providing counterexamples to the learner. These strategies are
designed on the base of the rich algebraic structure provided by our nominal setting.
Further, we evaluate the behaviours of the process and its efficiency according to
the different strategies with a set of experiments.

Acknowledgements

With no doubt, I press my most gratitude to Dr. Emilio Tuosto, my supervisor,
for his patient guidance, enthusiastic encouragement, and critical advice of research
work. I would like to extend my grateful thanks to Prof. Alexander Kurz for his
guide and help in doing the theoretical research. The first lesson about theory
research was taught by him. And, for a long time, Alexander gave me an incredible
amount of things before he left the department. I want also thank Dr. José Miguel
Rojas for his advice in testing technology.

Last but not least, I wish to thank my parents for their support and encourage-
ment throughout my study.

Contents

1 Introduction 1

1.1 Motivations . 2

1.2 Related Works . 5

1.3 Contributions . 9

1.4 Outline . 11

2 Background 12

2.1 Regular Languages . 12

2.2 Constructing Automata from Regular Expressions 16

2.3 Angluin’s Algorithm L? . 20

2.4 Nominal Languages with Binders . 24

3 Learning Nominal Automata 30

3.1 Preliminary . 30

3.2 Nominal Learning: Concepts . 32

3.2.1 Nominal observation tables . 33

3.2.2 From n-observation tables to Nominal Automata 34

3.3 The nL? Algorithm . 37

3.4 Correctness and Complexity . 39

3.5 Running nL?: An Example . 42

iii

4 Implementation 45

4.1 Architectural Aspects . 45

4.2 Technical Specifications . 48

4.3 Components Implementation . 51

4.4 Strategies for Selecting Counterexamples 58

4.5 Testing ALeLaB . 62

4.5.1 Testing the input interface . 62

4.5.2 Data interaction testing . 67

4.5.3 Testing strategies . 69

5 Experiments 71

5.1 Experimental Settings . 71

5.1.1 Varying the finite alphabet . 73

5.1.2 Varying operators . 74

5.1.3 Varying strategies . 75

5.1.4 With “P” symbols . 76

5.2 Experimental Results Without “P” Symbols 76

5.2.1 Data: Varying the finite alphabet 77

5.2.2 Data: Varying operators . 78

5.3 Experimental Results With “P” Symbols 83

5.4 Discussion . 87

5.5 Case Study Blueprint . 88

6 Conclusions and Future Work 90

6.1 Conclusions . 90

6.2 Future Work . 91

iv

A Additional Figures 93

List of Tables

4.1 The representations of symbols . 49

4.2 An example of test results of the input interface. 63

4.3 An example of test results of calculating inputs (part 1). 64

4.4 An example of test results of calculating inputs (part 2). 65

4.5 An example of test results of calculating inputs (part 3). 66

4.6 An example of test results of calculating inputs (part 4). 67

4.7 An example of test results of the method getAnswer. 68

4.8 An example of test results of the method checkAutomaton. 69

4.9 An example of test results of checkAutomaton under different strategies. 70

5.1 Varying the alphabet on 〈ab∗〉 . 77

5.2 Varying the alphabet on a(〈1 + 〈2 + ab∗〉〉+ aa) 77

5.3 Experimental results for concatenation on both strategies. 79

5.4 Focusing on the Kleene-star . 80

5.5 Focusing on binders . 81

5.6 Expanding expressions by union . 82

5.7 Mixed operators . 83

vi

List of Figures

1.1 An orbit-finite nominal automata example (From Figure 2 in [39]). . . 7

2.2 Automata representing base cases . 16

2.3 Constructions for regular expressions with operators. 18

2.4 The Learner in L?. 22

3.1 The Learner of Learning Algorithm for Nominal Regular Languages

with binders. 38

3.2 The Teacher of Learning Algorithm for Nominal Regular Languages

with binders. 39

4.1 The architecture of ALeLaB . 46

4.2 The schema of data calculations . 46

4.3 Inputting L as automaton . 49

4.4 The graph of the output . 50

4.5 Conceptual schema of the main classes 52

4.6 The layers of an automaton. 58

4.7 The algorithm of finding counterexamples. 59

4.8 The algorithm of horizontal strategy. 60

4.9 The example of the completion under the vertical strategy. 61

4.10 Vertical strategy. 61

4.11 The example of user interface. 63

vii

5.1 The comparison between two approaches. 84

5.2 The comparison between two approaches on the increasing number of

the states. 86

5.3 The output traces. 89

A.1 Essential classes associated to Automaton class. 93

A.2 Word class. 94

A.3 The graph for the last result in Table 4.5. 94

Chapter 1

Introduction

This thesis combines two areas of computer science, nominal languages and learn-

ing automata. Formal languages and (nominal) automata theories are fundamental

branches of computer science to model and solve computational and logical prob-

lems. They play an important role in system design, computation, artificial intelli-

gence and formal verification [24, 15, 17, 34].

In recent years, the applications of machine learning grew widely and rapidly.

In this context, learning automata have increasingly gained attention. This thesis

is devoted to the study of a learning algorithm for the regular nominal languages.

We take inspiration from the L? algorithm of Angluin (also reviewed in Chapter 2).

As we will see, the design of the algorithm requires some ingenuity and opens

up the possibility of interesting investigations due to richer structure brought in by

names and name binding.

Besides the theoretical results, we also experimentally investigate the properties

of the algorithm. For this we provide a prototype implementation and use it to

analyse how the algebraic nominal structure of the languages and the strategies to

“teach” the learner impact on efficiency.

1

1.1 Motivations

Before contextualising our results and discussing our approach with respect to the

literature, we spell out the key ingredients and motivations of our work. Compu-

tation is intimately connected with resource awareness. Algorithms, programs, or

protocols can hardly be useful if they do not carefully deal with computational re-

sources such as data structures or memory, channels, devices, etc. Here, we do not

restrict ourselves to a specific type of resources; rather we think of resources in a

very abstract and general sense. We use names as models of resources and (ab-

stract) operations on names as developed in nominal languages with binders (see

Section 2.4 for an overview) as mechanisms to capture basic properties of resources:

we focus on the dynamic allocation and deallocation of resources. More precisely, we

take inspiration of binders with dynamic scoping of nominal languages in an opera-

tional context based on finite state nominal automata. The states of these automata

have transitions to explicitly (i) allocate names, corresponding to scope extrusion of

nominal languages, and (ii) to deallocate names corresponding to garbage collection

of unused names.

Our theory sets in the context of nominal regular expressions for which it has

been proved a nice result that transfers the tradition Kleene theorem to the nominal

case. In fact, the class of nominal languages that we consider can be characterised

as those accepted by some nominal automata or, equivalently, that can be generated

by nominal regular expressions. The latter algebraic presentation (that we borrow

from the literature and review in Chapter 2) features, besides the usual operations of

regular expressions (union, concatenation, Kleene-star), a name binding mechanism

and a special resource-aware complementation operation. Our results rely on the

closure properties of this class of languages that has been already demonstrated in

the literature.

A main motivation for this proposal is the abstract characterisation of basic fea-

tures of computations with resources. For instance, nominal automata have applica-

tions to the verification of protocols and systems [16, 17]. Other approaches to verify

resource-aware computations have also been based on automata models [3, 12, 13]

employ usage automata (UA) to express and model check patterns of resource-usage.

2

A distinguishing feature of the approach in [31, 32] is that allocation and dealloca-

tion of resources is abstracted away with binders. Inspired by the scope extrusion

mechanism of the π-calculus, the allocation of a resource corresponds to an (explicit)

operation that introduces a fresh name; likewise, the deallocation of a resource cor-

responds to an (explicit) operation to “free” names. We illustrate this idea with an

example. Consider the following expression

Ê = 〈n.〈m.m?〉?n〈k.k?〉?n〉

which is a nominal regular expression where n,m, k are names, ? is the usual Kleene-

star operation, and subexpressions of the form 〈n.E〉 represent the binding mech-

anism whereby name n is bound (that is “local”) to expression E. Intuitively, Ê

describes a language of words starting with the allocation of a freshly generated

name, conventionally denoted n, followed by the words generated by the subex-

pression 〈m.m〉? post-fixed by n, and so on. Note that in Ê name m occurs in a

nested binder for name n. According to [31], Ê corresponds to the following nominal

automaton:

q0start

q2

q3

q5

q6

q7

q4

〈〈

1

〈〈

2

〉〉 〈〈

1

2

〉〉

〉〉

which from the initial state q0 allocates a fresh name through the transition labelled

〈〈 to state q2. Notice how bound names are rendered in the nominal automaton: they

are concretely represented as (strictly positive) natural numbers. This allows us to

abstract away from the identities of bound names. In fact, the identity of bound

names is immaterial and can be alpha-converted, that is replace with any other name

provided that the name has not been used already. The use of numbers enables a

simple “implementation” of alpha-conversion. More precisely, think of numbers as

being addresses of registers of states. For instance, q3 has 2 registers addressed by 1

3

and 2 respectively. Then the self-loop transition in state q3 can consume any name

n, provided that n is different than the name (currently) stored in register 1. Finally,

note that the content of registers is local to states; once a deallocation transition 〉〉

is fired, the content in last allocated register is disregarded.

For a practical example, we consider a scenario based on servers to show how

nominal regular languages with binders can suitably specify usage policies of servers

S1, . . . , Sk, such that, ∀1 ≤ h ≤ k Sh offers operations {oh1 , . . . , ohk
} = Oh.

Given an alphabet Σ =
k⋃

h=1

{lih , loh}∪Oh where symbols lih , loh represent basic

input and output activities consider the regular expressions on Σ

Eh = (lih〈s.ehloh〉)∗ eh = (
∑
o∈Oh

o.eo)
∗

Name s is a fresh session identifier which the symbol 〈 allocates when the session

starts and the symbol 〉 deallocates when the session ends. Note that s may occur

in eh to e.g., avoid re-authentication. Resources (activities, sessions, operations,

etc.) can be abstracted as letters and names, and the (de)allocation represent the

binding and freshness conditions. Intuitively, we give the following nominal regular

expressions with Σ =
⋃k

h=1{lih , loh} ∪ {readFead, updateProfile} and n1 6= n2 be

distinct names. Operations readFeed, updateProfile allow users read a feed and to

update a profile.

E1 = (li1〈n1.e1lo1〉)∗ e1 = (n readFeed + updateProfile E2)
∗ E2 = (li2〈n2.e2lo2〉)∗

From the above equations, we see clearly the binders delimit the scope of n1 and

n2. And, n2 is nested in n1. Intuitively, the approach above relaxes the condition of

classical language theory that the alphabet of a language is constant. Binder allow

us to extend the alphabet “dynamically”.

Thinking about a real-life problem, such as operators of a bank account, we have

a sequence of actions o = openAccount(“Yi”); deposit(o, 110); withdraw(o, 50);

closeAccount(o). We can transfer these actions into a model with a dynamical

4

range. First, the actions openAccount and closeAccount delimit the scope of an

account. Within an account, the customer can deposit and withdraw money. The

parameters “Yi”, 110 and 50 are flexible. We could use names to present those

parameters. Because the signification of these parameters is their classification not

their value. Thus, we can express the sequence of actions as the following nominal

regular expression with Σ = {openAccount, closeAccout, deposit, withdraw} and

{o, n1, n2} be names.

〈o.o openAccount〈n1.n1 deposit〉〈n2.n2 withdraw〉o closeAccount〉

Certainly, the scope of withdraw could be nested in the scope of deposit in case of an

account which cannot be overdrawn. Changing the scopes of binders is a convenient

way to classify a new authority. We discuss the details in Section 2.4.

1.2 Related Works

The contributions of this dissertation are combining two research areas: nominal

automata and machine learning, that is, Angluin’s learning algorithm.

Nominal Automata The pioneering work on languages on infinite alphabet is [28],

and then, many automata models for infinite alphabets have been developed, such

as finite memory automata [28], automata with pebbles [43], alternating register

automata [14] and data automata [5]. And, the theory of nominal languages has

been advocated as a suitable abstraction for computations with resources emerging

from the so-called nominal calculi which bred after the seminal work introducing

the π-calculus [38, 37, 51]. Abstract theories capturing the computational phenom-

ena in this context have been developed in [20, 21, 19] in parallel with a theory of

nominal automata [40, 18, 48]. The formal connections between these theories have

been unveiled in [22]. Later, [31] proposed the notion of nominal regular languages

and the use of nominal automata as acceptors of such languages.

This is strongly related to other approaches in the literature, where languages

over infinite alphabets are considered. A form of regular expressions, called UB-

5

expressions, for languages on infinite alphabets investigated in [29]. In [53] pebble

automata are compared to register automata. This class of languages are not suitable

for our purposes as they do not account for freshness.

As observed in [31, 4] are not suitable to handle name binding as registers are

’global’; the nominal model in [4] is instead closer (see also the comment below Ex-

ample 11.4 of [4]) to history dependent automata [48], which are also the inspiration

for the model of automata in [31]. The nominal automata in [4] are (abstractions of)

deterministic HD-automata (which can be seen as ’implementation’ of orbit-finite

nominal automata following the connection between nominal and named set of [22]).

The nominal automata in [4] are based on orbit finite nominal sets in an arbitrary

data symmetry. The basic sets are called G-set and the classical automaton to G-set

is defined as G-automaton under some fixed data symmetry (D, G). Their nominal

research has to be restricted on some class of well-structured G-sets since the orbit

finiteness cannot be preserved in full generality, especially the Cartesian product.

Definition 1.2.1. [4] A (right) action of a group G on a set X is a function

· : X ×G→ X, written infix, subject to axioms

x · e = x x · (πσ) = (x · π) · σ

for x ∈ X and π, σ ∈ G, where e is the neutral element of G. A set equipped with

such an action is called a G-set.

Definition 1.2.2. [4] A data symmetry (D, G) is a set D of data, together with a

subgroup G ≤ Sym(D) of the symmetric group on D.

Definition 1.2.3. [4] A set C ⊆ D supports an element x ∈ X if x · π = x for

all x ∈ G that act as identity on C. A G-set is nominal in the symmetry (D, G) if

every element of it has a finite support.

Definition 1.2.4. [4] A nondeterministic G-automaton consists of

• an orbit finite G-set A, called the input alphabet,

• a G-set Q, the set of states,

• equivariant subsets I, F ⊆ Q of initial and accepting states,

6

• an equivariant transition relation δ ⊆ Q× A×Q.

The automaton is orbit finite if the set of states Q is so. An G-automaton is nominal

if both the alphabet A and the state space Q are nominal G-set.

Unfortunately, the G-automata fail in determinisation and are not closed un-

der complementation. But, they have pursued the G-automata for a wide variety

of computation models. Coincided with the finite memory automata supports the

determinisation. These representation automata is advocated in [6, 10, 39]. For

example, as the Figure 1.1, given an infinite alphabet A = {a, b, c, d, . . . }, the au-

tomaton has an orbit finite set of registers/names D = {x, y, z} for the alphabet A.

Mainly different from [31], x, y, z are global. Without binders, the registers/names

last to the end.

Figure 1.1: An orbit-finite nominal automata example (From Figure 2 in [39]).

This class of automata is more expressive than the classes of automata capturing

nominal regular expressions as ours are nominal Kleene algebras [30]. In fact, as

noted in [30] this automata accept languages with words having arbitrarily deep

nesting of binders. However, orbit-finite nominal automata are not closed under

any reasonable notion of complementation [4]. Note that the resource-sensitive

complementation operation of [31] is essential in our context. On the other hand,

the use of symmetries to capture binding offers a more flexible mechanism to express

patterns or words that escape the constraints that the use of ’nested scoping’ imposes

in our language.

Angluin’s Learning Algorithm One of the most known and used learning al-

gorithm is L? introduced by Angluin [1]. Given a regular language, L? creates an

7

deterministic automaton model from observations that accepts the language. As sur-

veyed in Section 2.3, given a regular language, L? creates a deterministic automaton

that accepts the language. This is done by mimicking the “dialogue” between a

learner and a teacher ; the former poses questions about the language to the latter.

In L? there are two types of queries the learner can ask the teacher: membership

queries allow the learner to check whether a word belongs to the input language

while with equivalence queries the learner checks if an automaton accepts or not the

language. The automaton is “guessed” by the learner according to the answers the

teacher provides to queries. The outcome of an equivalence query may be a coun-

terexample selected by the teacher to exhibit that the automaton does not accept

the language.

The L? algorithm has been extended to several classes of languages [7, 44, 46].

Using a categorical approach, the L? algorithm has been generalised to other classes

of automata such as Moore and Mealy [27]. An interesting line of research is

the one explored in [7] which applies learning automata to distributed systems

based on message-passing communications to learn communicating finite-state ma-

chines [8] from message-sequence charts. Applications of learning automata are

in [46] and [44]. The former defines a framework based on L? to fully automatise

an incremental assume-guarantee verification technique and the latter proposes an

optimised approach for integrated testing of complex systems. Variants of Angluin’s

algorithm for languages over infinite alphabets have attracted researchers’ attention.

An L? algoritm for register automata is given in [6] where so-called session automata

support the notion of fresh data values. Session automata are defined over pairs of

finite-infinite alphabets. Interestingly, session automata also have a canonical form

to decide equivalence queries.

Like [6], [10] works on register automata and data language but the latter aims

to the application of dynamic black-box analysis. The key point is that [10] uses

a tree queries instead of membership queries and ensures the observation tables

closeness and register-consistency. Further, [10] defines a new version of equivalence

to achieve the correctness and termination of the algorithm.

We have introduced the representation of the nominal set and the nominal au-

8

tomata [4]. The representation of an infinite alphabet [6, 10] is developed in [4]

using the Cartesian product of two finite sets since their target languages are more

specific in the field of data languages.

Recently, [39] proposes a learning algorithm which extends L? to nominal au-

tomata. The main difference between our approach and the one in [39] is the rep-

resentation of nominal languages and nominal automata. Language theories for

infinite alphabets [4, 49] are used in [39], handling names through finitely-supported

permutations. Accordingly, in [39] observation tables and the states of nominal

automata are orbit-finite. Another difference is the operation on counterexamples.

Unlike in L?, [39] adds the counterexamples into columns. It is an interesting re-

search direction to optimise our work on the operations of the counterexamples in

the future.

1.3 Contributions

This session we briefly describe the contributions of this dissertation associated with

the objectives. This dissertation explores the application of machine learning in a

class of nominal regular language. More specifically, we are interested in designing a

learning algorithm for regular nominal languages with binders. This class of nominal

languages has been proposed as an abstract model of resource-aware computations

in order to use names and operations over them to represent dynamic allocation and

deallocation of resources.

Our main achievement is the design of a learning algorithm that generalises An-

gluin’s L? algorithm to nominal regular languages with binders (published in [56]).

We call our algorithm nL? (after nominal L?), as a tribute to Angluin’s work. This

is attained by retaining the basic scheme of L? (query / response dialogue been a

learner and a teacher) and ideas of L? (the representation of a finite state automaton

with specific a observation table). Technically, this requires a revision of the main

concepts of Angluin’s theory. That is, we have to reconsider the data structure to

represent observation tables and hence the notions of closedness and consistency.

In particular, the type of queries and answers now have to account for names and

9

the allocation and deallocation operations on them. Thus, we have to refine the

automata associated with the observation tables in order to satisfying these queries.

Consequently, the counterexamples have an new challenge. The core computation

algorithm for the counterexamples is still same as the Angluin’s. But, how to choose

a proper counterexample is an efficiency challenge.Considering the features of our

nominal languages and automata, we state two strategies for finding counterexam-

ples and experiment them.

Interestingly, this revision culminates in Theorem 3.2.6 showing that the nomi-

nal automata associated to closed and consistent (nominal) observation tables are

minimal. This result highlights the adequacy of our constructions. Finally, we prove

the correctness of nL? and analyse its complexity.

Another contributions are the implementation of nL? and an experimental eval-

uation of nL?. These are obtained by developing a prototype implementation of nL?

in Java, dubbed ALeLaB. Besides realising the data structures and the learning

process of nL?, our implementation is used to analyse two different strategies for

generating counterexamples. These strategies are peculiar to the class of nominal

automata we adopt in the dissertation. In fact, as we will see, the teacher can

exploit (at least) two different policies when generating counterexamples involving

generation of names. In the first policy the teacher tries to minimise the number of

fresh names required in a counterexample. In the second policy instead the teacher

favours the maximisation of counterexample. We experimentally analyse how these

policies affect the convergence of nL?.

Besides the evaluation of these policies, we finally experimentally analyse the

behaviour of nL? and the different policies on a series of benchmarks according to

the algebraic structure of the nominal regular expressions used to represent the input

language. The experiments reveal that the use of symbol “P” can reduce a huge

amount of time. Interestingly, the strategies have their own advantages in terms of

varying operators mixing with binders. The results suggest future lines of work for

optimising the learning algorithm.

10

1.4 Outline

The thesis has five chapters in addition to this introductory one. Chapter 2 intro-

duces the basic theories on which our learning algorithm is developed. Chapter 3

presents the theoretical development of our learning algorithm for the regular nom-

inal languages with binders. Then, Chapter 4 develops a implementation of our

learning algorithm in Java. In Chapter 5, we discuss the strategies for counterex-

amples in terms of the behaviours of learning process. Finally, we summarise the

contributions and outline possible future research directions in Chapter 6.

11

Chapter 2

Background

In this chapter we survey the principal ideas necessary for understanding our re-

search. These concepts include regular languages, regular expressions, finite au-

tomata, nominal regular expressions and nominal automata. We also review the

algorithms [25, 36, 50, 54] for construction of automata and the learning algorithm

of Angluin’s L? [1].

2.1 Regular Languages

Regular Languages, regular expressions and finite automata have a well-known re-

lationship established by the Kleene Theorem [26]. A regular language can be rep-

resented by regular expressions and accepted by a finite state automaton. In this

section, we introduce necessary notions and definitions for these concepts.

An alphabet is a set. Frequently, the elements of an alphabet are called letters or

symbols. We denote a finite alphabet as Σ. A string is a sequence of symbols of an

alphabet. Let w be a string, we denote the length of w as |w|. The string of length

zero is called empty string and denoted by ε. The concatenation of two strings is

denoted as · . A string can concatenate with itself. We define Σ∗ =
⋃∞

n=0 Σn,

where Σ0 = {ε} and for each n > 0, Σn = {w · w′ | w ∈ Σ and w′ ∈ Σn−1}. A

language L is a set of strings over an alphabet Σ, that is, L ⊆ Σ∗.

Other language operations we use are concatenation, union, Kleene-star and

12

complementation. Assuming that L and L′ are languages over Σ, we have the

following:

• concatenation L · L′ = {w · w′ | w ∈ L and w′ ∈ L′},

• union L ∪ L′ = {w | w ∈ L or w ∈ L′},

• Kleene-star L∗ =
⋃∞

n=0 L
n =

 {ε} n = 0

Ln−1 · L n 6= 0
,

• complementation LC = {w ∈ Σ∗ | w /∈ L}.

Complementation is an important concept which has differences in the nominal

setting, as discussed later. These operators provide the mathematical concepts for

constructing automata from regular expressions.

Definition 2.1.1 (Regular Expressions). A regular expressions over an alphabet Σ

is a term derived from the grammar

re ::= ε| ∅ | a | re · re | re+ re| re∗

where a ∈ Σ.

Regular expressions denote languages in a declarative way. Formally, regular ex-

pressions are defined as in Definition 2.1.1.We omit the well-know general definition

of language of a regular expression. We denote the language of a regular expres-

sion re as L(re). Given two regular expressions re and re′, re + re′ denotes the

union of re and re′, re · re′ denotes the concatenation of re and re′, and re∗ denotes

the Kleene-star of re. The order of precedence for the operators is important and

parentheses are used to group operands where needed [26]. Roughly, the rules of

precedence is as follows.

• The star operator ∗ is highest precedence.

• Next in precedence is the concatenation operator ·.

• Finally, it is union operator +.

13

They are related to the core technique of converting a regular expression to an

automaton. Especially, we should derive them to be proper for nominal regular

expression.

Note that regular expression ∅ represents the language L(∅) = ∅. Regular ex-

pression ε represents the language L(ε) = {ε}. Regular expression a represents the

language L(a) = {a} accepting word a. In Example 2.1.2 below, we give some

simple expressions to show the relationship between regular expressions and regular

languages.

Example 2.1.2. Let Σ = {a, b} be an alphabet, we give some examples showing

regular expressions and associated languages.

• a+ b denotes the language {a, b}.

• a · b denotes the language {ab}.

• a∗ denotes the language {ε, a, aa, aaa, . . . } = {an | n ≥ 0}.

• (a+ b)∗b denotes the language of strings ending with b.

Besides, the Myhill-Nerode Theorem [42] provides another way to proof lan-

guages to be regular. Regular languages can be visualised as graphs of finite nodes

and edges, called automata. We denote the language of an automaton M as L(M).

We define finite automata formally as Definition 2.1.3.

Definition 2.1.3 (Finite Automata). A finite automaton over alphabet Σ is a five-

tuple M = 〈Q, q0, F, δ〉 such that

• Q is a finite set of states,

• q0 is the initial state,

• F ⊆ Q is the finite set of final states,

• δ : Q× Σ×Q is a relation from states and alphabet symbols to states.

Theorem 2.1.4. [26] A language L is regular if and only if there exists a finite

automaton M such that L = L(M).

14

Normally, we represent finite automata by directed graphs. We use different

nodes distinguishing initial state, ordinary states, and final states. The edges with

labels of the graph represent transitions with symbols. As Example 2.1.9 shows,

an initial state is a single-cycle node with an arrow toward to it from nowhere, a

normal state is a single-cycle node, a final state is a double-cycle node and in the

case of initial state and final state is the same state, the state is represented as a

double-cycle node with an arrow toward to it from nowhere. Transitions are arrows

from a state to a state.

Definition 2.1.5 (runM(w, q)). Let M = (Q,Σ, δ, q0, F) and w = a1 . . . an be a

string over Σ. Then runM(λ, q) is the sequence [q] and run(aw, q) = [q]·run(w, δ(q, a)).

We say that q is reachable if there is w such that last(run(w, q0)) = q.

Here, we write [...] for lists and use · for concatenation of lists. The function last

takes a non-empty list to its last element.

Definition 2.1.6 (Language accepted by a state). Let M = (Q,Σ, δ, q0, F) and let

q ∈ Q. We define the language [[q]] as

[[q]] = {w ∈ Σ∗ | runM(w, q) = q q1 . . . qn, qn ∈ F}

We also write L(M, q) for [[q]] and call it the language accepted by q in M .

Definition 2.1.7 (Equivalence). Two finite automata are equivalent if and only if

they accept the same language.

Theorem 2.1.8. [26] For every regular language L, there exists a minimal finite

automaton M accepting L and M is unique.

A finite automaton is deterministic if and only if δ is a function Q × Σ → Q.

In contrast, a non-deterministic finite automaton has no restrictions for δ. If a

deterministic finite automaton and a non-deterministic finite automaton are equiv-

alent, they accept a same language. Furthermore, Theorem 2.1.8 gives a theoretical

support to the correctness of the learning automata accepted the same language

as expected. Example 2.1.9 shows a deterministic finite automaton and a non-

deterministic finite automaton which are equivalent.

15

Example 2.1.9. Let Σ = {a, b} be an alphabet and L = {a} be a language over Σ.

A non-deterministic finite automaton and a deterministic finite automaton accepting

L are display as Figure.

q0start q1

q2

a

b

a

b

a, b

(a) DFA

q0start q1
a

(b) NFA

2.2 Constructing Automata from Regular Expres-

sions

In the implementation of our algorithm, we need to construct automata from nomi-

nal regular expressions and compare their equivalence. To do that, we review a few

definitions and concepts.

First, we review the McNaughton-Yamada-Thompson algorithm, a method of

converting a regular expression to a non-deterministic finite automaton. Since first

stated in [54], Thompson’s algorithm is widely used in combination with the Mc-

Naughton and Yamada algorithm [36]. The algorithm parses and splits a regular

expression into its constituent subexpressions, and then constructs non-deterministic

automata through a set of laws. We give an informal presentation of Thompson’s

algorithm.

The base cases are in Figure 2.2. And, we illustrate the other cases with Fig-

ure 2.3.

0start 1
a

(a) re = a

2start 3
ε

(b) re = ε

4start 5

(c) re = ∅

Figure 2.2: Automata representing base cases

16

The concatenation of expressions, as Figure 2.3a, is to merge the final state of

the first automaton and the initial state of the second automaton. The initial state

of the first automaton is the initial state of the completed automaton. The final

state of the second automaton is the final state of the completed automaton.

The union of the expressions, as Figure 2.3b, needs two additional states to

complete the whole automaton. One is the new initial state which goes via ε either

to the initial state of first automaton or second automaton. Another one is the

new final state. The final states of first automaton or second automaton become

intermediate states of the completed automaton and goes via ε to the new final

state.

The Kleene-star of the expressions, as Figure 2.3c, also needs two additional

states to complete the whole automaton. One is the new initial state which goes via

ε either to the old initial state. Another state is the new final state. The old final

states become intermediate states of the completed automaton and go via ε to the

new final state. Moreover, there is a transition from the new initial state to the new

final state via ε and transitions from the old final states to the old initial state via

ε. We apply this construction in the next Example 2.2.1.

Example 2.2.1. Given a regular expression re = (a + b)a∗ over an alphabet Σ =

{a, b}, the result of Thompson’s construction on it is as following.

0start

1

2

3

4

5 6 7

ε

ε

b

a

ε

ε

a

ε ε

We need to deal with deterministic automata. Thus, we have another algorithm

to convert it into a deterministic finite automaton. We use the powerset construction

algorithm [50]. The algorithm computes the ε-closures [45] of the entire automata.

The deterministic finite automaton consists of the reachable ε-closures.

Example 2.2.2 show a deterministic automaton converted from the non-deterministic

automaton in Example 2.2.1. The first set for the deterministic automaton is con-

structed from all states in non-deterministic automaton that are reachable from

17

M M ′

initstart final init′ final′
ε

(a) Construction for concatenation.

M

M ′

0start

init final

init′ final

1

ε

ε

ε

ε

(b) Construction for union.

M
0start init final 1

ε

ε

ε

ε

(c) Construction for Kleene-star.

Figure 2.3: Constructions for regular expressions with operators.

state 0 by ε-transitions. It is the set 0, 1, 2, that is, constructing the initial state of

deterministic automaton. A transition from 0, 1, 2 by symbol a follows the transition

from state 1 to state 3. Furthermore, state 3 has a ε-transition to state 5. Thus,

state 3 and state 5 are in a ε-closure. Continuing checking ε-transitions, the ε-closure

is the set 3, 5, 6, 7. Thus, the second state of deterministic automaton is constructed

for the set 3, 5, 6, 7 and a transition from 0, 1, 2 with a. And by the same seasoning

the fully deterministic automaton is as shown in figure of Example 2.2.2.

Example 2.2.2. Associated to Example 2.2.1, we convert the non-deterministic

automaton into a deterministic automaton shown as following.

18

{0, 1, 2}start

{3, 5, 6, 7}

{4, 5, 6, 7}

∅

a

b

a

a

b

a, b

b

a

We also have to compare two automata for equivalence. To deal with that, we use

Theorem 2.1.8 to decide the equivalence of two deterministic finite automata under

their minimisation. There are several difference algorithms to minimise a deter-

ministic finite automaton, such as Hopcroft’s algorithm [25], Moore’s algorithm [41]

and Brzozowski’s algorithm [9]. In our research, we use Hopcroft’s algorithm which

based on partition refinement.

A minimal deterministic finite automaton for the automaton in Example 2.2.2

is shown in Example 2.2.3. Every state in Example 2.2.2 is partitioned into groups

by equivalence relation. First, the finial states and other states are distinguished.

That is, states {3, 5, 6, 7} and {4, 5, 6, 7} are in a same group and others are in

another group. Then, the states {3, 5, 6, 7} and {4, 5, 6, 7} are equivalent and stay

in a group because they have same behaviours with all the input sequence. By the

same reasoning, all states are partitioned, and finally, the groups represent the states

for the minimal automaton. In order to save space, we rename the labels for states.

Example 2.2.3. Associated to Example 2.2.2, we minimise the deterministic finite

automaton shown as following.

19

0start 1 2
a, b

a

a, b
a, b

2.3 Angluin’s Algorithm L?

In this section, we review the algorithm L? introduced in [1] which learns a finite

automaton accepting a given regular language L over Σ. The basic idea of the

algorithm is to implement a dialogue between a “Learner” and a “Teacher”. The

Learner may ask the Teacher for membership queries “w ∈ L?” to check whether a

word w is in the given language. Moreover, the Learner may submit an automaton

M to the Teacher who replies “yes” if the language L(M) is equivalent to L, or,

replies “no” together with a counter-example showing that L(M) 6= L. The Teacher

is assumed to answer all the Learner’s questions correctly.

Observation tables are a key data structure in L?. An observation table is a finite

collection of strings over Σ, classifying them as members of L or not.

Definition 2.3.1 (Observation Tables). An observation table (S,E, T) consists of

nonempty finite languages S,E ⊆ Σ∗ such that S is prefix-closed and E is suffix-

closed, and a function T : (S ∪ S · Σ) · E → {0, 1}.

The rows of an observation table are labelled by elements of S ∪ S · Σ, and the

columns are labelled by elements of E with the entry for row s and column e given

by T (s · e). A row of the table can be represented by a function row(s) : E → {0, 1}

such that row(s)(e) = T (s · e). A string s · e is a member of L of (S,E, T) iff

T (s · e) = 1.

Definition 2.3.2 (Closed and Consistent Tables). An observation table (S,E, T) is

closed when

∀w ∈ S · Σ .∃s ∈ S . row(w) = row(s)

An observation table (S,E, T) is consistent when for all a ∈ Σ and all s, s′ ∈ S

row(s) = row(s′) =⇒ row(sa) = row(s′a).

20

A closed and consistent observation table induces a finite automaton as following.

Definition 2.3.3. The automaton M = (Q, δ, q0, F) associated to a closed and

consistent observation table (S,E, T) is given by

• Q = {row(s) | s ∈ S},

• q0 = row(ε),

• F = {row(s) | row(s)(ε) = 1, s ∈ S},

• δ(row(s), a) = row(s · a), a ∈ Σ.

To see that this is a well-defined automaton, note that initial state is defined since

S is prefix-closed and must contain ε. Similarly, E is suffix-closed and must contain

ε. And, if s, s′ ∈ S, row(s) = row(s′), then T (s) = T (s · ε) and T (s′) = T (s′ · ε)

are equal as defined. So, the set of final states is well-defined. The transition

function is well-defined since the table is closed and consistent. Suppose s and s′

are elements of S such that row(s) = row(s′). Since the table (S,E, T) is consistent,

∀a ∈ Σ, row(sa) = row(s′a). And the value of row(sa) is equal to such a row(s′′) for

an s′′ ∈ S, since the table is closed.

The learning progress of the Learner is shown in Figure 2.4. We want to learn

a language L over an alphabet Σ. With the initialisation of S = E = {ε}, the

observation table (S,E, T) is initialised by asking for membership queries about

ε and each element in Σ (line 2). Then the algorithm enters into the main loop

(lines 3-23). Inside of the main loop, a while loop tests the current observation table

(S,E, T) for closedness (line 5) and consistency (line 11).

If (S,E, T) is not closed, the algorithm finds s′ in S ∪ Σ such that row(s′) is

different from row(s) for all s ∈ S. Then the string s′ is added into S and new rows

are added for strings s′ · a for all a ∈ Σ. Thus, T is extended to (S ∪ S · Σ) · E by

asking for membership queries about missing elements.

Similarly, if (S,E, T) is not consistent, the algorithm finds s1, s2 ∈ S,e ∈ E, and

a ∈ Σ such that row(s1) = row(s2) but row(s1 ·a)(e) 6= row(s2 ·a)(e). The string a ·e

is added into E. That is, each row in the table has a new column a ·e. T is extended

to (S ∪ S ·Σ) ·E by asking for missing elements row(s)(a · e) for all s ∈ (S ∪ S ·Σ).

21

1: Initialisation: S = {ε}, E = {ε}.
2: Construct the initial observation table (S,E, T) by asking for membership

queries about (S ∪ S · Σ) · E.
3: repeat
4: while (S,E, T) is not closed or not consistent do
5: if (S,E, T) is not closed then
6: find s′ ∈ S · Σ such that
7: row(s) 6= row(s′) for all s ∈ S ,
8: add s′ into S,
9: extend T to (S ∪ S · Σ) · E using membership queries.

10: end if
11: if (S,E, T) is not consistent then
12: find s1, s2 ∈ S,e ∈ E and a ∈ Σ such that
13: row(s1) = row(s2) and row(s1 · a)(e) 6= row(s2 · a)(e),
14: Add a · e into E,
15: extend T to (S ∪ S · Σ) · E using membership queries.
16: end if
17: end while
18: Construct an automaton M from table (S,E, T) and ask Teacher an equiv-

alence query.
19: if Teacher replies a counterexample c then
20: add c and all its prefixes into S.
21: extend T to (S ∪ S · Σ) · E using membership queries.
22: end if
23: until Teacher replies yes to equivalence query M .
24: Halt and output M .

Figure 2.4: The Learner in L?.

An associated automaton M is constructed when the observation table (S,E, T)

is closed and consistent. And then, an equivalence query about M is asked for. The

algorithm terminates and outputs M when the Teacher replies “yes” to the query.

If the Teacher replies with a counterexample c, the string c and all its prefixes

are added into S, and then T is extended by asking membership queries about new

entries in (S∪S ·Σ)·E. A new round for the main loop of closedness and consistency

starts. We give an example of how the algorithm works in Example 2.3.4.

Example 2.3.4. Let Σ = {a, b}. We apply Angluin’s algorithm to learn the lan-

guage L((a+ b)a∗).

Step 1

In the first step, we initialise an observation table for S1 = {ε} and E1 = {ε}, using

membership queries:

22

T1=

ε

ε 0

a 1

b 1

(S1, E1, T1) consistent? There is only one element in S,

thus the table is consistent.

(S1, E1, T1) closed? No, row(a) 6= row(ε).

So, S1 should be extended and we go to Step 2.

Step 2

Let S2 = S1∪{a} and E2 = E and then construct a new observation table (S2, E2, T2)

through membership queries.

T2=

ε

ε 0

a 1

b 1

aa 1

ab 0

(S2, E2, T2) closed?
√

(S2, E2, T2) consistent?
√

Then, we compute the automaton:

q0start q1

a, b

b

a

Teacher replies with a counterexample, say, bba ([1] chooses

a counterexample randomly). Note that T2(bba) = 1 but

aaa /∈ L((a+ b)a∗). We go to Step 3.

Step 3

To deal with the counterexample,let S3 = S2 ∪ {b, bb, bba} and E3 = E2. Then we

construct a new observation table (S3, E3, T3) through membership queries. Then

we check the new table for closeness and consistency.

T3=

ε

ε 0

a 1

b 1

bb 0

bba 0

ab 0

aa 1

ba 1

bbb 0

bbaa 0

bbab 0

(S3, E3, T3) consistent?

No, row(ε) = row(bb) but row(a) 6= row(bba).

(S3, E3, T3) closed?
√

So, E3 should be extended and we go to Step 4.

23

Step 4

Let E4 = E3 ∪ {a} and S4 = S3, and then construct a new observation table

(S4, E4, T4) through membership queries. Then we check the new table for closeness

and consistency.

T4=

ε a

ε 0 1

a 1 1

b 1 1

bb 0 0

bba 0 0

ab 0 0

aa 1 1

ba 1 1

bbb 0 0

bbaa 0 0

bbab 0 0

(S4, E4, T4) consistent?
√

(S4, E4, T4) closed?
√

From T4 we obtain the automaton

q0start q1 q2
a, b

a

b
a, b

which is confirmed by the Teacher to be the correct one.

And, indeed, the language of this automaton is L((a+ b)a∗).

2.4 Nominal Languages with Binders

We use the nominal regular expressions introduced in [32, 33]. In the following, we

recall the basic notions first and then we survey nominal languages with binders [32].

In computer science and logic, many languages have formulae with variables.

In [31, 32, 33] variables called names are used to construct words for languages over

infinite alphabets. Binders, like the λ in λ-calculus, present and distinguish the

scopes of names. For example, [32] use the notation 〈〈i.t〉〉 to represents the fact that

scope of name i is the term t. Hereafter, we fix a countably infinite set of names N .

Definition 2.4.1 (Nominal Languages). A nominal word over N and Σ is a term

derived by the grammar

w ::= ε | a | i | w · w |〈〈i.w〉〉

24

where i ∈ N , a ∈ Σ. A nominal language is a set of nominal words w.

A name i is bound in a word when the name is in the binder. For example, the

name i is bound in word 〈〈i.ia〉〉. Otherwise, the name i is free such as in ia.

Definition 2.4.2 (Nominal Regular Expressions). Given a set of names i ∈ N and

a ∈ Σ, a nominal regular expression is a term derived from the grammar

ne ::= ε| ∅ | a | i | ne · ne | ne+ ne| ne∗ |〈i.ne〉

In the expressions, the binders are in the representation of 〈i. 〉, ∀i ∈ N . If the

names in a nominal expression are all bound, the nominal expression is closed.

Example 2.4.3. Given Σ = a, b and i, j ∈ N , we have following nominal expressions

• aib, a〈j.i〉b are not closed.

• a〈i.i〈j.i〉〉b is closed.

Definition 2.4.4 shows nominal languages of nominal regular expressions.

Definition 2.4.4. [32] Let ne be a nominal regular expression The nominal language

L(ne) of ne is defined as

L(ε) = {ε} L(∅) = ∅ L(i) = {i} L(s) = {s}

L(ne1 + ne2) = L(ne1) ∪ L(ne2)

L(〈i.ne〉) = {〈〈i.w〉〉 | w ∈ L(ne)}

L(ne1 · ne2) = L(ne1) · L(ne2) = {w · v | w ∈ L(ne1), v ∈ L(ne2)}

L(ne∗) =
⋃
k∈N
L(ne)k, where L(ne)k =

 {ε} k = 0

L(ne) · L(ne)k−1 k 6= 0
.

The closure properties of nominal languages are proofed in [32](see the Theo-

rem 2.4.6 below). The main difference with respect to classical regular expressions

is complementation. The words in the complementation of L(ne) may be infinite.

Therefore, [32] states a finitary representation to explain and proof the closure prop-

erties concretely. They define θ(ne), the maximum depth of a nominal regular ex-

pression ne as

25

ne ∈ {ε, ∅} ∪ N ∪ Σ =⇒ θ(ne) = 0

ne = ne1 + ne2 or ne1 · ne2 =⇒ θ(ne) = max(θ(ne1), θ(ne2))

ne = 〈i.ne〉 =⇒ 1 + θ(ne)

ne = ne∗ =⇒ θ(ne).

Nominal regular expressions require a particular operator, dubbed resource sensitive

complementation (of Definition 2.4.5). Since these words are not possible to be

accepted in a finite automaton, our research considers nominal regular expression

closed under resource sensitive complementation.

Definition 2.4.5. [32] Let ne be a nominal regular expression. The resource sen-

sitive complementation of L(ne) is the set {w /∈ L(ne) | θ(w) ≤ θ(ne)} (where the

depth of a word is defined as the depth the corresponding expression).

Theorem 2.4.6. [32] Nominal regular languages are closed under union, intersec-

tion, and resource sensitive complementation.

We now define the notions of nominal automata adopted here. Let N be the set

of natural numbers and define n = {1, · · · , n} for each n ∈ N. Considering a set of

states Q paired with a map ‖ ‖ : Q→ N, let us define the local registers of q ∈ Q to

be ‖q‖. We use a definition of nominal automata [31] as Definition 2.4.7. Moreover,

we describe how to allocate names via maps σ : ‖q‖ → N in Definition 2.4.10.

Example 2.4.9 in following presents a nominal automaton for a nominal regular

expression.

Definition 2.4.7 (Nominal Automata). [32] Let Nfin ⊂ N be a finite set of names.

A nominal automaton with binders over Σ and Nfin , (Σ,Nfin)-automaton for short,

is a tuple M = 〈Q, q0, F, δ〉 such that

• Q is a finite set of states equipped with a map ‖ ‖ : Q→ N

• q0 is the initial state and ‖q0‖ = 0

• F is the finite set of final states and ‖q‖ = 0 for each q ∈ F

26

• for each q ∈ Q and α ∈ Σ ∪ Nfin ∪ {ε, 〈〈, 〉〉}, we have a set δ(q, α) ⊆ Q such

that for all q′ ∈ δ(q, α) must hold:

– α = 〈〈 =⇒ ‖q′‖ = ‖q‖+ 1

– α =〉〉 =⇒ ‖q′‖ = ‖q‖ − 1

– otherwise =⇒ ‖q′‖ = ‖q‖

A transition is a triple (q, α, q′) such that q′ ∈ δ(q, α).

A nominal automaton M is deterministic if, for each q ∈ Q,
|δ(q, α)| = 0, if (α = 〈〈 and ‖q‖ = max{‖q′‖ | q′ ∈ Q})

or (α =〉〉 and ‖q‖ = 0)

|δ(q, α)| = 1, otherwise

.

Theorem 2.4.8. [32] For each (Σ,Nfin)-automaton M , there exists a deterministic

(Σ,Nfin)-automaton which recognises the same language as M .

Example 2.4.9. Given Σ = {a, b} and i ∈ N , we have a nominal language ne =

ab〈i.i∗〉. Then we have an (Σ,Nfin)-automaton accepting the language as follows.

Transitions with 〈〈 and 〉〉 represent allocating a name and deallocating a name

respectively. Same in [32], transitions with 1 (the number of local register) represent

getting with a name.

q0start q1 q2

q3

q4 q5

q6

a

b

a

b

a, b

〈〈

a, b

1

〉〉
a, b

a, b

a, b, 1

〉〉

Let M = 〈Q, q0, F, δ〉 be a nominal automata over Σ and Nfin , we denote the

image of a map σ by Im(σ) and the empty map by ∅. Let q be a state, w be a word

whose free names are in Nfin ∪ Im(σ) and σ : ‖q‖ → N be a map, a configuration

of M denotes by 〈q, w, σ〉. A configuration 〈q, w, σ〉 is initial if q = q0, w is a word

whose free names are in Nfin , and σ = ∅, such as 〈q0, ε, ∅〉; a configuration 〈q, w, σ〉

is accepting if q ∈ F , w = ε, and σ = ∅, such as 〈q5, ε, ∅〉.

27

Definition 2.4.10. [32] Given q, q′ ∈ Q and two configurations t = 〈q, w, σ〉 and

t′ = 〈q′, w′, σ′〉, M moves from t to t′ if there is α ∈ Σ ∪ Nfin ∪ {ε, 〈〈, 〉〉} such that

q′ ∈ δ(q, α) and



α ∈ ‖q‖, w = σ(α)w′, σ′ = σ and ∀i > α, σ(α) 6= σ(i)

α ∈ Nfin\Im(σ), w = aw′, σ′ = σ

α ∈ Σ, w = aw′, σ′ = σ

α = ε w = w′, σ′ = σ

α = 〈〈, w = 〈〈w′, σ′ = σ[‖q′‖ 7→ n]

α =〉〉, w =〉〉w′, σ′ = σ|‖q′‖

where σ[‖q′‖ 7→ n] extends σ by allocating the maximum index in ‖q‖ to n and σ|‖q′‖′

is restriction on ‖q′‖ of σ. (For more details see [31, 33])

Same in the classical automata theory, there is a Kleene Theorem for nomi-

nal regular expressions and nominal automata as Theorem 2.4.11. The proofs and

constructions are provided in [32].

Theorem 2.4.11. [32] Every language recognised by a nominal automaton is rep-

resentable by a nominal regular expression. Conversely, every language represented

by a nominal regular expression is acceptable by a nominal automaton.

Example 2.4.12. Reviewing the example of a bank account in chapter 1.1, we ex-

plain the features of nominal regular languages with binders in detail.

We have a sequence of actions o = openAccount(“Yi”); deposit(o, 110); withdraw(o, 50);

closeAccount(o). Let Σ = {openAccount, closeAccout, deposit, withdraw} be an in-

finite alphabet and {o, n1, n2} be a set of names. We give two scenarios on those

actions which producing different nominal expressions.

Debit accounts In this case, the balance of a bank account delimits the upper

bound of the withdraw action. Thus, we prefer to nest the binders as follows.

〈o.o openAccount〈n1.n1 deposit〈n2.n2 withdraw〉〉o closeAccount〉

28

Credit accounts In this case, the withdraw action is free in this sequence of the

actions. Thus, we prefer to nest the binders as follows.

〈o.o openAccount〈n1.n1 deposit〉〈n2.n2 withdraw〉o closeAccount〉

Certainly, in a real whole bank system, the actions are more than this sequence, and

the binders for the abstract system need to be considered under more restrictions.

29

Chapter 3

Learning Nominal Automata

3.1 Preliminary

Before introducing our learning algorithm, some auxiliary notions are necessary.

Since we reviewed nominal languages in Section 2.4, now we state new forms of

representing languages and words for our learning algorithm.

There are usually many different ways to represent the same nominal words as

Section 2.4 shows. For instance, 〈〈i.i〉〉 and 〈〈j.j〉〉 represent the same nominal word.

According to the definition of (Σ,Nfin)-automaton [33], the infinite names of lan-

guages are represented as finite automata where the infinite transitions with names

are represented by finite transitions with registers. Since our algorithm considers

finite possibilities, we adopt a finitary representation of languages, expressions, and

automata. Similarly to [11], we replace names in a nominal word with positive in-

tegers and represent nominal words in canonical form according to the following

definition.

Definition 3.1.1 (Canonical Expressions). Let x be a number and ne a closed

nominal regular expression. The x-canonical representation χ(ne, x) of ne is defined

as follows

• ne ∈ {ε, ∅} ∪ Σ =⇒ χ(ne, x) = ne

• χ(ne+ ne′, x) = χ(ne, x) + χ(ne′, x)

30

• χ(ne · ne′, x) = χ(ne, x) · χ(ne′, x),

• χ(ne∗, x) = (χ(ne, x))∗

• ne = 〈i.ne′〉 =⇒ χ(ne, x) = 〈x.χ(ne′[x/i], x+ 1)〉

The canonical representation of ne is the term χ(ne, 1).

Note that the map χ(,) does not change the structure of the nominal regular

expression ne. Basically, χ(,) maps nominal regular expressions to terms where

names are concretely represented as positive numbers.

Example 3.1.2. Given Σ = {a, b}, we give some examples of canonical representa-

tions of nominal expressions.

• aba is the canonical representations of itself; indeed χ(aba, 1) = aba

• χ(〈i.ai〉, 1) = χ(〈j.aj〉, 1) = 〈1.a1〉 is the canonical representation of both 〈i.ai〉

and 〈j.aj〉

• the canonical representation of 〈i.ai〈j.ibj〉〉〈j.j〉 is

χ(〈i.ai〈j.ibj〉〉〈j.j〉, 1) = 〈1.a1χ((〈j.ibj〉)[1/i], 2)〈1.1〉 = 〈1.a1〈2.1b2〉〉〈1.1〉.

Note that the map χ(,) replaces names with numbers so that alpha-equivalent

expressions are mapped to the same term (second example above).

According to the Kleene Theorem for nominal regular expressions, we state that

canonical expressions have a relationship to nominal automata.

Lemma 3.1.3. The nominal automaton associated to a nominal regular expression

ne is equivalent to the nominal automaton associated to χ(ne, x) for any number x.

Proof. Following Definition 3.1.1, let x be a number and ne is a closed nominal

regular expression. Note that, given a regular expression ne, we can think of χ(ne, x)

as a nominal regular expression and define the language of χ(ne, x) by induction on

χ(ne, x) very much like in Definition 2.4.4 once each number is replaced with a

fresh name. In this way it is easy to see that the language of ne and its canonical

31

representation coincide. Then, we let M be the nominal automaton accepting ne

and M ′ be the nominal automaton accepting χ(ne, x). According to the Kleene

Theorem, we know that L(M) = L(ne) and L(M ′) = L(χ(ne, x)). Then, we have

L(M) = L(ne) = L(χ(ne, x)) = L(M ′). That is, M is equivalent to M ′.

Thus, we use canonical nominal regular expressions in order to represent nominal

languages concretely. Let n be a natural number, the n-alphabet is defined as

An =

 Σ n = 0

{〈〈, 〉〉} ∪ Σ ∪ n n > 0

A string is called a legal string if it is a prefix of a nominal word.

Correspond to the depth of nominal expressions, we define the depth of legal

strings ‖w‖ as follows.

‖w‖ =

 0 if there is no names in w

n′ n′ is the biggest number of nested binders in w

We use ‖w‖ as a parameter to distinguish the rows in observation tables. In this

way, tables are more explicitly mapping to nominal automata. Details are discuss

in following section.

3.2 Nominal Learning: Concepts

In this section, we introduce our learning algorithm based on nominal automata.

Our Teacher still answers two kinds of queries: membership queries and equivalence

queries regarding L a target nominal regular language over an n-alphabet An.

In our algorithm, the Learner asks for membership queries about legal strings. If

a string w is not a legal string, the Learner marks it as “⊥” in the observation table.

The membership query consists of a legal string w and it has the three following

possible answers:

• if w ∈ L, the answer is “1”,

32

• if w is a prefix of a word in L, the answer is “P”,

• otherwise, the answer is “0”.

Remark. The answer “P” is used for efficiency. In fact, the teacher could answer

“0” instead of “P”. However, this would require the learner to ask more membership

or equivalence queries. These would be explained in Chapter 5.

As in Angluin’s L? algorithm, only the Teacher knows L. Unlike in L?, the

learner in our algorithm does not know the whole alphabet An. The Learner knows

Σ initially and learns names via counterexamples. We will see that the Learner

knows the whole alphabet when the algorithm terminates.

3.2.1 Nominal observation tables

Observation tables are pivotal data structure to ensure the algorithm’s functional-

ities. A closed and consistent observation table allows us to construct a minimal

automaton. In order to deal with n-alphabet, we extend Angluin’s observation tables

to nominal observation tables, n-observation tables for short.

Definition 3.2.1 (n-observation table). A tuple (S,E, T,An) is an n-observation

table if

• S ⊆ An
∗ is a prefix-closed set of legal strings, for all s ∈ S,‖s‖ ≤ n,

• E ⊆ An
∗ is suffix-closed,

• T : (S ∪ S · An) · E → {0, 1, P,⊥}.

As in Angluin’s definition, an n-observation table (S,E, T,An) consists of rows

labelled by legal strings in S ∪ S · An and columns labelled by strings in E:

row : (S ∪ S · An)→ (E → {0, 1, P,⊥})

row(s)(e) = T (s · e)

In order to reflect the layers of nominal automata, we use ‖ ‖ to distinguish rows.

Therefore, we need the following auxiliary notion of equivalence of rows: in an

33

n-observation table (S,E, T,An), for all s, s′ ∈ S ∪ S · An,

row(s)
.
= row(s′) ⇐⇒ row(s) = row(s′) and ‖s‖ = ‖s′‖.

Accordingly, the definition of closed and consistent table changes as follows.

Definition 3.2.2 (Closed and Consistent Tables). An n-observation table (S,E, T,An)

is closed when

∀s′ ∈ S · An.∃s ∈ S. row(s′)
.
= row(s).

An n-observation table (S,E, T,An) is consistent when

∀α ∈ An.∀s, s′ ∈ S row(s)
.
= row(s′) =⇒ row(sα)

.
= row(s′α).

3.2.2 From n-observation tables to Nominal Automata

Analogously to Angluin’s theory, closed and consistent n-observation tables corre-

spond to deterministic finite nominal automata.

Definition 3.2.3. The (Σ,Nfin)-automaton M = (Q, q0, F, δ) associated with a

closed and consistent n-observation table (S,E, T,An) is defined as

• Σ = An \ {{〈〈, 〉〉} ∪ n}, Nfin = n,

• a set of states Q = {(row(s), ‖s‖) | s ∈ S} with a map ‖ ‖M , and ‖q‖M = ‖s‖

for each q = (row(s), ‖s‖) ∈ Q,

• an initial state q0 = (row(ε), ‖ε‖),

• a set of final states F = {(row(s), ‖s‖) | row(s)(ε) = 1, ‖s‖ = 0 and s ∈ S},

• A transition function is a partial function δ : Q× An → Q: for all s ∈ S, α ∈

An, δ((row(s), ‖s‖), α) = (row(sα), ‖sα‖) if sα ∈ S ∪ S · An.

Accordingly, we define a partial function δ∗ : Q×An
∗ → Q inductively as follows

δ∗(q, ε) = q

δ∗(q, aw) = δ∗(δ(q, a), w)

34

for all a ∈ An, w ∈ An
∗, q ∈ Q. Note that δ∗(q, a) = δ∗(q, a · ε) = δ∗(δ(q, a), ε) =

δ(q, a). In our algorithm, the corresponding automata are also minimal as shown

by Theorem 3.2.6.

Lemma 3.2.4. Let M = (Q, q0, F, δ) be the automaton associated with a closed

and consistent n-observation table (S,E, T,An). Suppose w, u ∈ An
∗. We have

δ∗(q, w · u) = δ∗(δ∗(q, w), u) for all q ∈ Q.

Proof. We prove by induction on length of w that δ∗(q, w · u) = δ∗(δ∗(q, w), u), for

all q ∈ Q.

If w = ε:

δ∗(q, w · u) = δ∗(q, ε · u)

= δ∗(q, u) by the definition of ε

= δ∗(δ∗(q, ε), u) by the definition of δ∗

If w = aw′:

δ∗(q, w · u) = δ∗(q, aw′ · u) w = aw′

= δ∗(δ(q, a), w′ · u) associative property and definition of δ∗

= δ∗(δ∗(δ(q, a), w′), u) by induction hypothesis

= δ∗(δ∗(q, aw′), u) by the definition of δ∗

= δ∗(δ∗(q, w), u)

This shows that δ∗(q, w · u) = δ∗(δ∗(q, w), u) for all q ∈ Q and all w, u ∈ An
∗.

Theorem 3.2.5. Assume that M = (Q, q0, F, δ) is the automaton associated with a

closed and consistent n-observation table (S,E, T,An).

• For all w in S ∪ S · An, δ∗(q0, w) = (row(w), ‖w‖).

• For all w in S ∪ S · An and u in E, δ∗(q0, w · u) in F if and only if

row(w)(u) = 1.

35

Proof. Let w = w′a in S ∪ S · An and u = a · u′ in E.

Since S is prefix-closed, all prefixes of w are in S, that is, w′ is in S. We know:

δ∗(q0, w) = δ∗(q0, w
′a)

= δ∗(δ∗(q0, w
′), a) by Lemma 3.2.4

= δ∗((row(w′), ‖w′‖), a) by induction hypothesis

= δ((row(w′), ‖w′‖), a) by the definition of δ∗

= (row(w′a), ‖w′a‖) by the definition of δ

= (row(w), ‖w‖)

Since E is suffix-closed, all suffixes of u are in E. Depends on the length of u, we

have two situations.

• When u = ε, row(w)(u) = row(w)(ε) and δ∗(q0, w · u) = δ∗(q0, w). From

preceding proof, δ∗(q0, w) = (row(w), ‖w‖). Because the table is closed, there

is a w′ ∈ S such that row(w′)
.
= row(w). δ∗(q0, w · u) is in F if and only if

row(w′) is in F from the definition of F . Thus row(w′)(ε) = row(w)(ε) = 1,

that is, row(w)(u) = 1.

• Assume that when the length of u′ ∈ E is n, we have that for all w in S∪S ·An

and u in E, δ∗(q0, w · u) in F if and only if row(w)(u) = 1. Let u = au′ and

u ∈ E. Because the table is closed, there is a w′ ∈ S such that row(w′)
.
=

row(w).

δ∗(q0, w · u) = δ∗(δ∗(q0, w), u) by Lemma 3.2.4

= δ∗((row(w), ‖w‖), u) by preceding proof

= δ∗((row(w′), ‖w′‖), u) since row(w′) = row(w)

= δ∗((row(w′), ‖w′‖), au′) u = au′

= δ∗(row(w′ · a), u′) by closedness and definition of δ

= δ∗(δ∗(q0, w
′ · a), u′) by preceding proof

= δ∗(q0, w
′ · a · u′)

36

By induction hypothesis on u’, δ∗(q0, w
′ · a · u′) is in F if only if row(w′ · a)(u′) =

1. Because row(w)
.
= row(w′) and u = au′, row(w′ · a)(u′) = T (w′ · a · u′) =

row(w′)(a · u′) = row(w′)(u) = row(w)(u). Therefore δ∗(q0, w · u) in F if and only if

row(w)(u) = 1.

Theorem 3.2.6. The automaton M = (Q, q0, F, δ) associated with a closed and

consistent n-observation table (S,E, T,An) is minimal.

Proof. Assume that M = (Q, q0, F, δ) is an automaton associated with a closed and

consistent n-observation table (S,E, T,An).

First, we show M observable, namely that ∀q, q′ ∈ Q we have q = q′ if [[q]] = [[q′]]

(review the Definition 2.1.6). For q, q′ ∈ Q there are ‘s, s′ ∈ S such that q =

(row(s), ‖s‖), q′ = (row(s′), ‖s′‖)). Assume [[q]] = [[q′]]. By Theorem 3.2.5, we have

that ∀e ∈ E.(row(s)(e) = 1⇔ row(s′)(e) = 1). Thus ∀e ∈ E.row(s)(e) = row(s′)(e).

Hence row(s) and row(s′) are the same function [E → {0, 1, P,⊥}], which is to say

that q = q′.

Second, we show M is reachable, namely that all q ∈ Q there is w ∈ An
∗ such that

runM(w, q0) = q0 . . . q. By the definition of Q, there is s ∈ S such that row(s) = q.

By Theorem 3.2.5, we know δ∗(q0, s) = row(s) for all s ∈ S since S is prefix-closed.

Thus M is reachable by Lemma 3.2.4.

We are now ready to introduce a learning algorithm for our nominal automata.

3.3 The nL? Algorithm

We dubbed our algorithm nL?, after nominal L?. The algorithm is shown in Fig-

ure 3.1. The Learner in nL? is similar to the one in L?. Basically, our Learner modifies

the initial n-observation table until it becomes closed and consistent in the nomi-

nal sense (according to notions introduced before). When the current n-observation

table (S,E, T,An) is closed and consistent, the Learner would ask Teacher if the

automaton associated with (S,E, T,An) accepts the input language L. If this is

the case, the Teacher will reply ‘yes’ and the learning process halts. Otherwise, the

learning process continues after the Teacher has produced a counterexample.

37

Because of the new definitions of closedness and consistency, we refine some

actions about checking closedness (line 8) and consistency (line 14). If the current

n-observation table (S,E, T,An) is not closed, the Learner finds a row s′ such that

for no s ∈ S we have row(s′)
.
= row(s). If (S,E, T,An) is not consistent, the Learner

finds a word a · e, with a ∈ An and e ∈ E, such that for some s1 ∈ S and s2 ∈ S

with row(s1)
.
= row(s2), we have row(s1 · a)(e) 6= row(s2 · a)(e).

1: Initialisation: S = {ε}, E = {ε}, n = 0, An = Σ.
2: Asking for membership queries about ε and each a ∈ An.
3: Construct the initial observation table (S,E, T,An).
4: repeat
5: while (S,E, T,An) is not closed or consistent do
6: if (S,E, T,An) is not closed then
7: find s′ ∈ S · An such that
8: row(s)

.
= row(s′) is not satisfied for all s ∈ S

9: add s′ into S
10: extend T to (S ∪ S · An) · E using membership queries.
11: end if
12: if (S,E, T,An) is not consistent then
13: find s1, s2 ∈ S,e ∈ E and a ∈ An such that
14: row(s1)

.
= row(s2) but row(s1 · a)(e) 6= row(s2 · a)(e).

15: Add a · e into E
16: extend T to (S ∪ S · An) · E using membership queries.
17: end if
18: end while
19: Construct an automata M associated to (S,E, T,An).
20: Ask an equivalence query about M .
21: if Teacher replies a counterexample c then
22: add c and all its prefixes into S.
23: extend An with ‖s‖ for all s ∈ S, ‖s‖ > 0.
24: extend T to (S ∪ S · An) · E using membership queries.
25: end if
26: until Teacher replies yes to M .
27: Halt and output M .

Figure 3.1: The Learner of Learning Algorithm for Nominal Regular Languages with
binders.

The main difference with respect to the algorithm of Angluin is that the Learner

has partial knowledge of the alphabet. Learner’s alphabet An is enlarged by adding

names (line 23) during the learning process. More precisely, the Learner expands the

alphabet if the counterexample requires to allocate fresh names. When the algorithm

terminates, the Learner’s alphabet An is the alphabet of the given language. Like

in the original algorithm, our algorithm terminates when the Teacher replies ‘yes’

38

to an equivalence query.

The Teacher answers two kinds of queries as Figure 3.2. The line 7 and line 8 are

the optional part for labelling the P symbol in the table. The line 17 is the action

for finding counterexamples and we have implemented it into two ways (see details

in the next chapter).

1: Input:L
2: Initialisation: L(MT) = L
3: answerMembershipQuery(string):
4: if string is accepted by MT then
5: return 1
6: else
7: if string is accepted by a state that is not a sink state then
8: return P
9: else

10: return 0
11: end if
12: end if
13: answerEquivalenceQuery(M):
14: if M = M then
15: return yes
16: else
17: finding a counterexample c ∈ (M \MT) ∪ (MT \M)
18: return c
19: end if

Figure 3.2: The Teacher of Learning Algorithm for Nominal Regular Languages with
binders.

3.4 Correctness and Complexity

We now show that nL? is correct. That is, that eventually the Teacher replies “yes”

to an equivalence query. In other word, nL? terminates with a “yes” answer to an

equivalence query. Hence, the automaton submitted in the query accepts the input

language.

Theorem 3.4.1. The algorithm terminates, hence it is correct.

Proof. We show that the if- and the while-statements terminate. Let us consider the

if-statements first. It is easy to check that closedness and consistency are decidable

39

because these properties require just the inspection of the n-observation table (which

is finite). Hence, the if-statements starting at lines 6 and 12 never diverge because

their guards do not diverge and their then-branch is a finite sequence of assignments:

• The if-statement for closedness (line 6) terminates directly if the table is closed.

Otherwise, in case of making a table closed, we find a row s′ ∈ S · An such

that row(s′)
.
= row(s) is not satisfied for all s ∈ S. The algorithm adds s′

into S. Since A′n is finite and bounded by n, the sets S and E are both finite.

Thus, S · An is a finite set and there are finitely many choices for s′. That

is, line 9 can only be executed finitely times. Besides, the content of rows is

one of the permutations and combinations of {0, 1, P,⊥} which also has finite

possibilities. So we conclude that the branch terminates.

• Similarly, the if-statement for consistency (line 12) terminates directly if the

table is consistent. Otherwise, to make the table consistent the algorithm

searches for two rows s1, s2 ∈ S satisfying the condition at lines 13 and 14.

As in the previous case for closedness, to add elements into E there are only

finitely many possibilities s1, s2, a, and e (line 15). Thus, the branch of the

if-statement terminates.

Therefore, the while-statement (line 5) terminates in finite repetitions, since the

algorithm makes a table closed and consistent in finite operations. Then, the algo-

rithm will succeed in construct an automata M associated to a closed and consistent

table. Next, the Learner asks for an equivalence query. The Teacher replies a coun-

terexample c (line 21) or yes (line 26). It remains to prove that the Learner only

asks finitely many equivalence queries.

Let M be the nominal automaton associated to the current n-observation table

(S,E, T,An). Assume that the equivalence query about M fails. The Teacher has to

find a counterexample c; this is finitely computable since the nominal regular expres-

sions are closed under the operations of Kleene algebra and under resource comple-

mentation. Hence, the if-statement on line 21 goes the branch extending the table

(line 22). Then, the algorithm will start a new loop (line 5) for the modified table by

the counterexamples. As Theorem 3.2.6 proved, a closed and consistent table builds

a minimal automaton. And a minimal automaton for a regular nominal language

40

has finite states. A new automaton M ′ will be constructed when the extended table

(S,E, T,An) is closed and consistent. Since M ′ handles the counterexample, M ′ has

more equivalent states to the minimal automaton accepted the given language, com-

pared with M . Repeating this process, the automaton associated with a closed and

consistent table has the same number of the minimal automaton which accepted the

given language. Since the minimal automaton is unique, the two minimal automata

are equal. The Teacher relies yes to the automaton at such a point. Therefore, with

respect to the number of the states of the minimal automaton accepted the given

language, equivalence queries are finite and the algorithm terminates finally.

We remark that the proof of correctness is close to the original of the Angluin’s

because our modifications are all on the data structure not the logical structure.

Let M be the minimal automaton accepting the given language and let M have s

states.

Lemma 3.4.2. The algorithm produces equivalence queries s-1 times at most.

Proof. If the n-observation table (S,E, T,An) is found to be incorrect by the coun-

terexample c, then since the automaton M ′ associated with the table (S,E, T,An)

must have at least one more state. In the worst case, the learning process produces

the number of the states by monotonically increasing. It need to take s-1 times since

the initialisation has one state. That is, the algorithm produces equivalence queries

s-1 times at most.

In the following, we analyse the number of membership queries in the worst case.

Let b be a bound on the maximum length of the counterexamples presented by the

Teacher. The membership queries is based on the entries of rows and columns in

the table.

From the Figure 3.1 (line 1), we know that S and E contain one element ε

initially. As the algorithm runs, it will add one element to S when (S,E, T,An) is

not closed (line 10). And it will add one element to E when (S,E, T,An) is not

consistent (line16). For each counterexample of length at most b presented by the

Teacher, the algorithm will add at most b elements to S (line 22).

41

Thus, the cardinality of S is depends on s and b. In detail, S is at most

1 + (s− 1) + b(s− 1) = s + b(s− 1)

because (S,E, T,An) can be not closed at most s − 1 times. As the same as the

Teacher replies counterexamples at most s − 1 times. And each time the Teacher

replies with a counterexample of length b, S will be increased by at most b elements.

The cardinality of E is at most s, because (S,E, T,An) can be not consistent at most

s− 1 times.

The cardinality of S ·An could calculate from two parts: the cardinality of S and

the cardinality of An. We already know the cardinality of S is at most s+ b(s− 1).

As the definition of An, let k be the cardinality of Σ. Therefore, the cardinality

of An is k + n + 2, 2 for the binders operations. And, the cardinality of S · An is

(k + n+ 2)(s + b(s− 1)) at most.

Therefore, the maximum cardinality of (S ∪ S · An) · E is at most

(k + n+ 2)(s + b(s− 1))s = O((k + n)bs2).

3.5 Running nL?: An Example

Given a finite alphabet Σ = {a, b}, we have an example of learning a language L

representing as canonical nominal regular expression cne = ab〈1∗〉.

In the first step, we initialize S1 = {ε}, E1 = {ε}, n = 0 and A0 = Σ, and

construct T1 as follows.

Step 1

T1=

‖ ‖ ε

0 ε P

0 a P

0 b 0

(S1, E1, T1,A0) consistent? There is only

one row in S, thus the table is consistent.

(S1, E1, T1,A0) closed? No, row(b) 6=

row(ε).

So, S2 ← S1 ∪ {b} and we go to step 2.
Step 2

42

Let S2 = S∪{b} and E2 = E and then construct a new observation table (S2, E2, T2,A0)

through membership queries.

T2=

‖ ‖ ε

0 ε P

0 b 0

0 a P

0 aa 0

0 ab P

(S2, E2, T2,A0) closed?
√

(S2, E2, T2,A0) consistent?
√

Then, we compute the automaton M :

q0start q1

a
b

a

b

Teacher replies no and a counterexample,

say, ab〈〈1.〉〉. It is in L not in M . And we

go to step 3.
Step 3

Let S3 ← S2 ∪ {a, ab, ab〈〈1., ab〈〈1.〉〉}, E3 ← E2, and n = 1, and then, the alphabet

is extended to A1 = Σ ∪ n ∪ {〈〈, 〉〉}. We should construct new observation tables

sequentially through membership queries. Then we check the new table for closeness

and consistency.

T3=

‖ ‖ ε

0 ε P

0 b 0

0 a P

0 ab P

1 ab〈〈1. P

0 ab〈〈1.〉〉 1

1 〈〈1. 0

0 a P

0 ab〈〈1.〉〉a 0

0 ab〈〈1.〉〉b 0

1 ab〈〈1.1 P

1 ab〈〈1.a 0

· · · · · · · · ·

(S3, E3, T3,A1) consistent?

No, row(ab) = row(ε) but row(ab〈〈1.) 6=

row(〈〈1.) .

(S3, E3, T3,A1) closed?

No, row(〈〈1.) with ‖〈〈1.‖ = 1 has a fresh

content.

Step 4

Let S4 ← S3 ∪{〈〈1.},E4 ← E3 ∪{〈〈1.}, we should construct a new observation table

(S4, E4, T4,A1) and check the new table for closeness and consistency.

43

T4=

‖ ‖ ε 〈〈1.

0 ε P 0

0 b 0 0

0 a P 0

0 ab P P

1 ab〈〈1. P ⊥

0 ab〈〈1.〉〉 1 0

1 〈〈1. 0 ⊥

0 ba 0 0

0 bb 0 0

1 ab〈〈1.1 P ⊥

1 ab〈〈1.a 0 ⊥

· · · · · · · · · · · ·

Once the table is closed and consistent,

we ask an equivalence query.

Finally, the teacher replies “yes” to an

equivalence query about. The learning

progress terminates. The learner automa-

ton is as below.

q0start q1 q2

q3

q4 q5

q6

a

b
a

b

a, b

〈〈

a, b

1

〉〉

a, b

a, b

a, b, 1

〉〉

44

Chapter 4

Implementation

This chapter discusses the implementation of our learning algorithm, named ALe-

LaB1. Section 4.1 provides an overview of the architecture of ALeLaB; more tech-

nical details are in Section 4.2. More precisely we describe the format of inputs

and outputs as well as some crucial data structures. Section 4.3 provides details of

the implementation of the main software components of ALeLaB. A key aspect of

ALeLaB is that is features two different strategies to find counterexamples; these

strategies are based on a core feature of nominal automata and are explained in

Section 4.4. Finally, Section 4.5 reports on the testing of ALeLaB.

4.1 Architectural Aspects

We describe the main architectural aspects of ALeLaB as a multi-layer architecture.

This abstract architecture is given in Figure 4.1 and consists of the following layers:

• The User Interface layer has two roles: (i) the first role is to gather the infor-

mation from the user to perform operations; (ii) the second role is to translate

the outcome of ALeLaB in a format comprehensible to the user.

• The Data Calculations layer performs calculations with the information from

the user, and transports information between the two surrounding layers. This

layer achieves the main functionalities of our learning algorithm.

1Available on https://github.com/easyxy1/ALeLaB

45

https://github.com/easyxy1/ALeLaB

• The Data Reader/Writer layer provides data/information to be stored and

retrieved. The data can be extra files from the user’s local file system.

Extra files

User

ALeLaB

User Interface

Data Calculations

Data Reader/Writer

Figure 4.1: The architecture of ALeLaB

The user interacts with ALeLaB through a command-line interface (the develop-

ment of a graphical user interface is left for future work). The Data Reader/Writer

layer can store and retrieve data a file whose content represents a finite nominal au-

tomaton accepting the language L to be learnt. The name of this file is specified in

the command line starting ALeLaB together with other parameters, in particular

a string encoding the finite alphabet Σ. Details of data structures are described in

Section 4.2.

The main components in ALeLaB are the ones realising the behaviour of the

teacher and of the learner. They are implemented in the Data Calculations layer.

Figure 4.2 yields a diagram describing the Data Calculations layer. Dashed arrows

represent data transported across layers and solid arrows represent data flowing

within the current layer. Dashed boxes presents the data sets in the Data Read-

er/Writer layer. The inputs L and Σ are the target language and its corresponding

finite alphabet respectively. They are provided by users.

Teacher

ΣL

Learner

output an automatonn-observation tableModel for L

Figure 4.2: The schema of data calculations

46

The Teacher is given (a representation of) the language L and the finite alphabet

Σ as input by the user. As we will see, for evaluation, the input for L is either a

nominal regular expression (in normal form) or a nominal automaton. In the former

case, the Teacher component computes an automaton accepting L. The Teacher

passes the finite alphabet Σ to the Learner. On the other hand, in practice, the

languages are stored in different models with respect to the certain situation. For

example, applying for the software testing, the software architecture is the target

and it is provided by a huge amount of testing data. The Teacher formulates the

data into a proper model which could answer the two types of queries [47].

The Learner firstly receives the finite alphabet Σ from the Teacher and sets some

local variables. More precisely, the Learner creates the data structure for the n-

observation table and initially sets to 0 the parameter n for nested binders. Further

operations are based on the n-observation table. To achieve the functionality of

completing the table, the Learner calculates the data from the entries of the table,

transfers the data to the Teacher and then fills the table with the responses of the

Teacher. To verify when the table is closed and consistent, the Learner invokes

operations on n-observation table (that are described later). When the table is

closed and consistent, the Learner produces a minimal automaton associated to

the table, transfers the data about the automaton to the Teacher and then gets a

response.

Data interactions implement that the Teacher teaches the Learner what is right

and what is wrong. The data transferred from the Learner to the Teacher imple-

ments the queries in our algorithm. There are two types of queries: membership

queries and equivalence queries. In the ALeLaB, the queries’ types are distin-

guished by the data structures and methods. Each membership query is performed

in sequence. Each equivalence query is a data set representing an automaton. The

data transferred from the Teacher to the Learner implements the answers to the

queries in the algorithm. In the ALeLaB, all the answers are in the representation

way of strings, but returned by different methods.

47

4.2 Technical Specifications

This section presents a detailed overview of the technical specifications. We first

state the formats for special symbols, inputs and output. We then define the data

structures for alphabets and languages. Finally, we explain how to construct the

n-observation table and the automaton.

Symbols formats We need to consider how to implement all the symbols easy-

understanding by the machine, not only letters and names, but also operators. As

in Table 4.1, we have their formats for the implementation.

• The empty string is represented as 0 in inputs and during the process, in order

to users input easily.

• The representation of the letters in the implementation is different in fonts

from the ones in theory because the font of the implementation is the default

font of the most machine systems.

• The names are represented in a same font in all situations. As the outputs are

the automata, we decide to use a unique representation of binders.

• The brackets <,> can be typed directly by keyboard, so the users can use

the ALeLaB easily without changing input methods and ALeLaB need no

actions about transferring formats. To avoid the confusion of the meaning of

the symbol “.”, we ignore the declaration of names, such as “1.”, and assume

that names are declared from 1 in ascending order.

• When the use inputs expressions, the operators are needed. The representa-

tions of the operators are the same.

Input formats. Our tool ALeLaB allows two types of inputs. One is to enter

the canonical expression for the target language, as defined in Definition 3.1.1. Note

that, the representation of symbols in expressions should be formatted as in Ta-

ble 4.1. Another type of input is through providing a file whose content is a textual

48

In theory In inputs In process In outputs
empty string ε 0 0 N/A

Letters a, b, c, . . . a,b,c, . . . a,b,c, . . . a,b,c, . . .
Names 1, 2, 3, . . . 1,2,3, . . . 1,2,3, . . . 1,2,3, . . .

Binders in words 〈〈1. 〉〉 < > < > N/A
Binders in expressions 〈1. 〉 < > < > N/A
Binders in automata 〈〈 〉〉 < > < > < >

concatenation ingored ingored . N/A
union + + + N/A

Kleene-star ∗ ∗ ∗ N/A

Table 4.1: The representations of symbols

representation of an automaton accepting the target language. We illustrate this

with the example in Figure 4.3.

0start 1

2

5 4

3

a
〈〈

a
〉〉

1

a

(a) A nominal automaton (b) Textual representation

Figure 4.3: Inputting L as automaton

Suppose the input language is the one accepted by the automaton depicted on

the left-hand side of Figure 4.3. The input to ALeLaB will then consist of a file

containing the text on the right-hand side of Figure 4.3. Each line of the text

described an element of the automaton:

• the first two lines specify initial and final state (if the automaton has more

than one final state, the second line lists all of them separated with a blank

space)

• each of the remaining lines specifies one of the transitions of the automaton;

for instance, the third line corresponds to the transition from the initial state

and the forth one to the allocation transition from state ’1’ to state ’3’ of the

automaton on the left-hand side of Figure 4.3.

49

Figure 4.4: The graph of the output

The automaton in the input file is minimised to make it deterministic before starting

the learning process; this makes the language equivalence check more efficient.

Output formats. When the Teacher replies ’yes’ to an equivalence query, the

Learner knows that the current automaton accepts the language given as input to

the Teacher. This ends the learning process and the Learner outputs the current

automaton. We rely on the Graphviz library [35] to render the output as DOT

file. The graph shows a minimal nominal automaton as in Figure 4.4. For example,

the output graph produced for the example in Figure 4.3 is reported in Figure 4.4.

The nodes of the automaton are layered according to the nesting of the binders.

In our example (cf. Figure 4.6) the layer containing state “0” is the first layer

corresponding to the first layer while state “25” is on the second layer corresponding

to the second layer. In order to obtain such layering, ALeLaB exploits a core

feature of nominal automata, namely the nesting of binders. This feature allows

to incrementally determine the alphabet to use at each layer. As said, note that

the nodes at each layer form a classical finite-state automaton (once allocation and

deallocation transitions are ignored) on an alphabet that depends on the nesting

of binders. In our example, the states on the first layer correspond to those states

that are “outside” any binder, namely the states whose alphabet is just the finite

alphabet Σ. Instead, the states on the second layer (that is states “21”, “22”, and

“25”) are those reached after an allocation transition; for such states the alphabet is

Σ augmented with a new name, which in the canonical representation, is the number

1. In fact, e.g., state “21” has transitions labelled by ’a’, ’b’, and ’1’ to state “22”.

50

This is realised through the data structures that we now describe. Firstly, the al-

phabet for the given language is divided and stored into two sets which are instances

of Set <String>; the first set is for the finite letters and another is for names. The

binder symbols 〈 and 〉 are not set as operators directly. Binders comes in pairs that

determine their scope. Thus, a method RegularExpression.AddConcat(String)

is defined for computing the scope of binders in order to generate machine-readable

expressions. The method brackets binders’ lexemes and then regenerates the ex-

pressions with the concatenation. The lexeme 〈. is surrounded by opening round

brackets and the symbol 〉 is surrounded by closing brackets. This is necessary in

order to treat symbols 〈 and 〉 as normal letters. For example, a canonical expression

a〈1〉 is transformed as a. (〈.(1.)〉).

The implementation of the n-observation tables is a matrix for storing the infor-

mation about the relationships between the strings and the input language. Namely,

the elements of the first row and the first column are the strings. Other elements of

the matrix are storing the information about the relationship. The relationships are

denoted by the elements of an enumerator list. The enumerator list is corresponding

with the definitions of {0, 1, P,⊥}.

The Automata are implemented as data sets. The data set contains some data

sets which implementing the states and transitions. Each of states and transitions

is an individual instance of a data set. States contain the information about its

identification. Transitions contain the information about from which state, to which

state, and with which label.

4.3 Components Implementation

The architecture described previously has been implemented in Java. In this section,

we describe the main features of the implementation. We refer to the UML diagram

in Figure 4.5 to discuss our implementation.

51

1 1

11

1

1..∗
0..1

0..1

1

0..1

1 1

Learner TeacherTable

Row AutomatonBuildAutomaton

Figure 4.5: Conceptual schema of the main classes

When we presented the architecture of ALeLaB, we saw that are the main

components the Teacher and the Learner. Hence, the core of ALeLaBincludes a

Teacher class and a Learner class. Also, we associate the Table class with Learner.

We will first focus our attention on how automata are represented and then on the

most important part of ALeLaB: the Learner realised in the Learner class. Then,

we will consider to the classes associated to Learner class, namely the class Table

and the class Teacher.

Learner is implemented by the main Learner class whose interface is described

by the following UML diagram:

Learner

- alphabet: Set<String>

- table: Table

. . .

+ Learner(teacher: Teacher): void

+ processMembershipQueriesForTables(learner: Table, teacher: Teacher): void

- makeTableClosedAndConsistent (table: Table): void

- ensureConsistency (t: Table): Table

- closeTable (t: Table): Table

. . .

This class invokes the methods in the Teacher class and maintains the table

used in the learning process. The constructor method of the class Learner re-

52

quires an object teacher of class Teacher. In fact, the constructor calls the method

teacher.getAlphabet to initialise the attribute alphabet with a Set <String> ob-

ject representing the finite alphabet Σ. Then, the constructor of table declares the

attribute table as an object of class Table initialised using the value of alphabet.

After the initialisation phase, the constructor starts calling the following methods

to realise the learning process of our algorithm:

• method processMembershipQueriesForTables achieves the data interactions

about membership queries (cf. Figure 4.2): composing the membership query

from the current table table, transferring queries to the teacher, and then

updating the table table according to the answers to the queries;

• method makeTableClosedAndConsistent checks the table is closed and con-

sistent using the methods ensureConsistency and closeTable;

• when the current table is closed and consistent, the constructor of table re-

trieves the automaton automaton from attribute table as an object of the

Automaton class. The object automaton is transferred to the teacher to

check if it accepts the input language.

The equivalence query is realised by invoking method teacher.checkAutomaton

on the object automaton which, if automaton does not accept the input language,

returns a couterexample. The constructor of Learner modifies the table table

according to this counterexample and continues with the learning process. If the

invocation to teacher.checkAutomaton is successful, the process terminates and

outputs a dot graph file presenting the automaton object.

As said, the class Learner has an associated object of class Table which manages

the data of an n-observation table and has the following interface: The attribute

setA stores the information of the finite alphabet and will be declared when the

Learner class calls the method setAlphabet(alphabet). The attribute freshName

is to store the names dynamically discovered during the learning process. This

attribute is initially set to null and expanded when the method addFreshName is

called.

The attribute rowS and attribute rowSA are the data of rows of a table. The

53

Table

- setA: Set<String>
- freshName: Set<String>
- rowS: List<Row>
- rowSA: List<Row>
- setE: List<String>
. . .

+ Table(): void
+ setAlphabet(alphabet: Set<String>): void
+ addFreshName(name: String): void
+ extendByCE(counterexample: String)
+ printTable(): void
. . .

attribute setE is the titles of the columns of a table. A table would be output by

calling the method printTable().

Teacher The class Teacher has the following interface:

Teacher

+ Strategy: enum
- strategy: Strategy = Strategy.VERTICAL
- selectedCounterexample: Set<String>
- teacherAutomaton: Automaton
. . .

+ Teacher(choice: boolean, alphabet: Set<String>, strategy: Strategy, language: String): void
+ getAnswer(word: String): String
+ getAlphabet(): Set<String>
+ checkAutomaton(a: Automaton): String
- selectCE(learner: Automaton,counterexampleLength:int,maxLength:int): String
- verticalStrategy(wordlist: Set<String>): String
- horizontalStrategy(wordlist: Set<String>): String
. . .

This class computes the given language and generates the machine-readable data.

The core of class includes the method getAnswer, the method checkAutomaton, the

method verticalStrategy and the method horizontalStrategy. The main aim

of our recent experiments is to check the learner algorithm correction and the strat-

egy algorithm performance, so the types of inputs are designed in an easy way to

comprehend and judge what is the language. In the practical experiments, we prefer

to the data structure which can store the raw data directly, such as sets. We will

discuss it in the section 5.5. The boolean parameter choice used in the constructor

marks the type of input used to represent the language to be learnt and it is used to

decide how to handle the parameter language, which represents the input language.

The data of the language will be computed and restored into the teacherAutomaton

54

for answering the queries. Certainly, the data type Automaton is designed for the

current stage of theoretical experiments, providing the completed language of in-

finite elements. The possible application scenario will be shown in section 5.5.

The membership queries handler getAnswer receives a string word representing a

legal word and returns the answer to the membership query about such word. The

equivalence queries handler checkAutomaton receives the Automaton object a com-

puted by the Learner’s constructor as described above and returns the answer to

the equivalence query about this object. If the Learner’s automaton is not correct,

the method selectCE will be called to finding a proper counterexample under the

strategy. As mentioned in the previous section, the Teacher selects a random coun-

terexample according to a specified strategy. We will discuss the different strategies

later; for the moment, it is sufficient to bear in mind that the strategy is set in the

attribute strategy by the the constructor method of Teacher. When the equiva-

lence check fails, a counterexample is selected according to the attribute strategy.

As we will see, there are two strategies rendered by the methods verticalStrategy

and horizontalStrategy. The selected counterexample is stored into the attribute

selectedCounterexample, in case of being selected twice. Before replying a coun-

terexample, the counterexample is checked not in selectedCounterexample, so

that the reply ensure the learning process learning useful information. Further,

selectedCounterexample makes the process efficient.

Automata To implement nominal automata, ALeLaB features the class

Automaton, which relies on an auxiliary class State to represent the states (not

representd in Figure 4.5). The class Automaton has the following interface:

Automaton

- states: Set<State>
- initState: State
- finalState: Set<State>
- totalLevel: int
- alphabet: Set<String>
- freshName: Set<String>
- transitions:Set<Transitions>
. . .

+ Automaton(): void
+ visualisation(): void
. . .

55

The class Automaton has a class attribute totalLevel recording the total num-

ber of layers in an automaton. The class State (interface in Appendix A.1) features

an object attribute level to store the information about at which level the state is in

the automaton. This attribute is used to handle transitions with binders and names.

If the value of level is 0 then, by construction, states have no deallocation tran-

sitions. If level == totalLevel, the state has no allocating transition. The class

BuildAutomaton extends the class Automaton, used to construct the automata. The

class BuildAutomaton provides three constructor methods to implement building

automata from an n-observation table, an extra file, and an expression respectively.

The interface of the class BuildAutomaton is as follows. Building an automaton

BuildAutomaton

. . .

+ BuildAutomaton(table: Table):
+ BuildAutomaton(file: File, alphabet: Set<String>):
+ BuildAutomaton(expression: String, alphabet: Set<String>):
. . .

Row

- rowdata: List<Type>
- s: String
- lv: int
. . .

+ Row(s: String): void
. . .

from an n-observation table is implemented by the constructor method of the class

BuildAutomaton requiring an object table of class Table. Firstly, the attributes

setA and freshname in Table class are assigned to the attributes Alphabet and

freshName in Automaton class. The variable maxLevel in Table class identifies the

totalLevel in Automaton class. Then, each row in table is used to identify a state

of the automaton by the attribute rowdata. The interface of Row class is as above.

The attribute rowdata stores the information about the relationships between the

strings and the input language. The variable level in State class is assigned as the

variable lv in Row class. The initial state is identified by the row with s=ε. The final

states are identified after computing lv and the first content of rowdata. As Defi-

nition 2.4.7, a state is final when lv=0 and the first content is State.Type.FINAL.

56

Next, the transitions of the automaton are computed by the attribute s in table

with the attributes Alphabet and freshName.

Building an automaton from an extra file is implemented by the constructor

method of the class BuildAutomaton requiring an object file of class File and

a data set alphabet. Firstly, the parameter alphabet is assigned to the attribute

alphabet in Automaton class. Then, the initial state and the final states are declared

by computing the first two lines of file. As the example of Figure 4.3, the symbol

“0” after “initial” identifies the initial state with id=0, and the final state is identified

with id=4. Then, the other states and transitions are produced by the rest lines

of file. The rest lines can be divided into three part by the spaces. The first

part and the third part identify two states respectively, and the second part is the

transition label from the first state to the second state. Meanwhile, the information

is computed for declaring the attribute freshName. Moreover, this constructor would

produce more states and transitions with alphabet if the file does not contain fully

information about a deterministic automaton. Finally, the automaton is modified

as a minimal automaton.

Building an automaton from an expression is implemented by the constructor

method of the class BuildAutomaton requiring a String expression and a data set

alphabet. The progress of this constructor is similar to the algorithm for converting

the regular expressions to the minimal regular automata as explained in Section 2.2.

The differences are extra operations for binders. The first operation is an additional

step in generating machine-readable expressions for computing the scope of binders.

The second one is to generate the totalLevel and the elements of the freshName

by counting the nested binders. Besides, the transitions of binders computes the

attribute lv of the states connected by the transitions. In the case of an allocated

transition, the lv of the state which the transition is towards is 1 bigger than the one

which the transition is from. In the case of a deallocated transition, the lv of the

state which the transition is towards is 1 smaller than the one which the transition

is from.

Other essential classes are shown in Appendix A.

57

4.4 Strategies for Selecting Counterexamples

Counterexamples play a decisive role to the efficiency of the learning algorithm.

Compared with original algorithm of Angluin, the counterexamples of our algorithm

require to extend the Learner’s alphabet to account for allocation transitions. We

have identified two specific strategies that we introduce in this section.

The two strategies deal differently with allocation and deallocation of names. The

first strategy is to give lower priority to counterexamples that require allocating new

names; basically, the Teacher has a bias for counterexamples with minimal number

of names. We call this the horizontal strategy since this strategy teaches the learner

the structure of the automaton layer-wise, namely before learning a layer of the

automaton, the Learner has to acquire the information of the lower layers. In the

second strategy, dubbed vertical strategy, the Teacher has the opposite bias and

gives priority to counterexamples with maximal number of names. Dually to the

horizontal strategy, in the vertical strategy the Learner acquires first the information

about as many names as possible, and then it learns about the structure of each

layer.

We give a pictorial representation of the two strategies with an example. Con-

sider the nominal automaton in Figure 4.6 where the dashed boxes highlight the two

layers.

start first layer

second layer

a

b
a

b

a

b
〈〈

a, b

1

〉〉

a, b

a, b

a, b, 1

〉〉

Figure 4.6: The layers of an automaton.

Formally, a layer consists of the automaton with states using the same amount

of freshly allocated names and the transitions among such states. For instance, the

first layer in Figure 4.6 includes all the states where no names are allocated, while

the second layer has all states reachable after one allocation transition has been

58

used to account for a fresh name. Observe that, by definition, inter-layers transi-

tions can only be allocation or deallocation transitions. Hence, a nominal automaton

may be thought of as several stacked classical finite automata connected through

allocation and deallocation transitions (where the automaton at the i-th layer has

alphabet Σ ∪ n). As declared in Figure 3.1, the Learner does not ask for allocating

a name unless the Teacher replies a counterexample containing a name. Image that

the Teacher never reply a counterexample containing a name, the Learner only can

concrete transitions within the first layer as Figure 4.6. The strategies allow the

counterexamples affect the direction of the Learner’s automaton completion.

As the Figure 4.7, the Teacher first finds a set of counterexamples which are in

the certain length of counterexampleLength. The counterexampleLength would

be different under the strategy. Recently, the counterexampleLength is the number

of the states of Learner’s automaton when the strategy is horizontal, otherwise, it is

the number of the states of the Teacher’s automaton. We give a bound maxLength

to avoid the infinite loop and output alarms. Then, the proper counterexample will

be filtered from the set availableCEset under the strategy.

1: selectCE(learner, counterexampleLength, maxLength):
2: ...
3: initialisation availableCEset = null
4: while availableCEset is empty and counterexampleLength < maxLength do
5: stored the counterexamples of the length counterexampleLength
6: counterexampleLength++
7: end while
8: if strategy is HORIZONTAL then
9: select a one of availableCEset under horizontal strategy

10: if strategy is VERTICAL then
11: select a one of availableCEset under vertical strategy
12: end if
13: end if
14: ...

Figure 4.7: The algorithm of finding counterexamples.

Let us first discuss the horizontal strategy. The idea is to select the coun-

terexample allowing the table to construct each layer of an automaton in ascending

order. That is, the selected counterexamples have nested fresh names as less as

possible. The Learner uses these counterexample to expand the table first before

59

starting to expand the alphabet. With this strategy, the expansion of the alphabet

is “slower” compared to the completion of a layer; as a result the Learner needs

more times to learn the maximal amount of names needed in the language. As

Figure 4.8 shows, the satisfied counterexamples are selected from the list list and

stored into the list filtered . The list is a finite list of string in a certain length

counterexampleLength. The attribute counterexampleLength is computed from

the states numbers of the Learner’s automaton and the Teacher’s automaton. The

Teacher receives the Learner’s automaton and then the loop filters the words whose

depth is smallest (recall that ‖w‖ is the depth of legal strings, see page 32). In a

word, the counterexample prefer to cover all the state in the first layer and spread

the second layer in the Figure 4.6.

Input: a list of counterexamples list .

Output: a list of words filtered .

1: if list is not empty then

2: for each word w in list do

3: if ‖w‖ is smallest than other words’ in list then

4: add w into filtered

5: end if

6: end for

7: end if

Figure 4.8: The algorithm of horizontal strategy.

For instance, let us consider the automaton in Figure 4.6. Suppose that the list

of counterexamples contain w1 = abbbbb and w2 = abb<1>. Then the horizontal

strategy will filter w1 but not w2. If instead the list was made of w2 and w3 = abb<

11> then both w2 and w3 would be filtered and one of them randomly chosen are

the returned counterexample.

We now consider the vertical strategy. In some sense this strategy is dual to the

horizontal strategy. The idea is to select the counterexample allowing the table to

construct each layer of an automaton in descending order. The Learner completes

the highest layer first. This is pictorially represented by the red arrow in Figure 4.9,

which suggests a possible “trajectory” for exploring the states of the two layers of

60

our running example.

start
a

b
a

b

a

b
〈〈

a, b

1

〉〉

a, b

a, b

a, b, 1

〉〉

Figure 4.9: The example of the completion under the vertical strategy.

Basically, the counterexample leads the Learner to acquire information on the

highest layer and than about the lower ones. Thus, the counterexamples under

the vertical strategy have as many as possible nested fresh names. The best-case

scenario is that the Learner learns all names with the first counterexample. Unlike

in the algorithm of the horizontal strategy, the words filtered out have the biggest

depth, as in Figure 4.10.

Input: a list of counterexamples list .

Output: a list of words filtered .

1: if list is not empty then

2: for each word w in list do

3: if ‖w‖ is biggest than other words’ in list then

4: add w into filtered

5: end if

6: end for

7: end if

Figure 4.10: Vertical strategy.

Both strategies are traversing all the counterexamples in the list , filtering the

ones satisfied the conditions, and adding them into a new set. Note that there could

61

be more than one filtered counterexample satisfied the strategy. In current version

of ALeLaB, we allow the Teacher to selecting one from filtered randomly.

In Example 4.4.1, different strategies select different counterexamples in the same

set of counterexamples.

Example 4.4.1. Let {abbb, baab, ab<1>b<a>, <<ab>>} be a set of counterex-

amples, the Teacher selects one of them as reply to the Learner.

• Under horizontal strategy, the Teacher would prefer to reply abbb or baab.

• Under vertical strategy, the Teacher would prefer to reply <<ab>>.

We guess that these two strategies affect the efficiency of the learning progress.

We make experiments and analyse them in Chapter 5.

4.5 Testing ALeLaB

Testing is important part of software development. Since we have a crystal clear idea

about the each functionality of the components of ALeLaB, we use the white-box

testing. We design the tests with the tool Junit. The Junit allows we test single

method separately and counts the coverage in an easy way. We make sure that the

tests cover the 100 percent of the methods, and in further with a high condition

combination coverage. This section shows the main tests on the functionalities of

ALeLaB.

Firstly, we discuss how we tested the input interface. Then, we focus on the

tests of the functionalities of main components separately. Finally, we present the

testing phases of the strategies for selecting counterexamples.

4.5.1 Testing the input interface

Section 4.2 introduces the data specifications and the input formats. To support

diagnosis, ALeLaB validates inputs and alerts the user when invalid or illegal data

are used. First, we test the functionalities to validate inputs. The input interface of

62

ALeLaB is a command line interface. Figure 4.11 shows the snapshot of a typical

session in eclipse platform; the line after the “:” prompt the user for some input.

Figure 4.11: The example of user interface.

Following Figure 4.11, the user is first asked to enter the finite alphabet (letters

’a’ and ’b’ in example); this information is used to initialise the parameter alphabet

in the constructor of the class Teacher. Then, the user is asked to decide the

format to represent the language; this input is used to set the parameter choice

in the constructor of the class Teacher. Depending on the user’s preference, the

next input is a representation of the language (a nominal regular expression in the

example of Figure 4.11) and finally, the user choose a strategy for counterexamples;

these inputs are respectively assigned to the parameter language and the parameter

strategy in the constructor of the Teacher class.

A simple validation of the inputs choice and strategy is given in Table 4.2 that

show how exceptions are raised on invalid values.

choice strategy Expected results Results

1 1 pass no messages for errors

2 3 An exception An exception of “unknown strategy”

3 N/A An exception An exception of “not provided”

Table 4.2: An example of test results of the input interface.

The first row of the table is a valid input; the result has no messages for errors as

expected. The second row tests the interface when the user enters an invalid value;

63

in this case, ALeLaB pops out an error message. Likewise, when an invalid value

is entered for the choice parameter.

Once the input data is validated, ALeLaB produces an instance teacher of

class Teacher. We now discuss the testing of the object teacher(...). The object

teacher sets up the finite alphabet and builds an automaton for the language in

input using the parameters choice, alphabet, and language and using the value

of strategy. Following the session of Figure 4.11, ALeLaB executes the following

assignment:

t eacher = new Teacher (cho ice , alphabet , St rategy .HORIZONTAL, language) ;

(where s = Strategy.HORIZONTAL) to set up an object teacher. And then, we

assert the results. The attribute teacher.teacherAutomaton is the ideal result of

tests at this stage. The method

t eacher . getAutomaton () . v i s u a l i s a t i o n () ;

produces a human-friendly representation of teacherAutomaton, the automaton

that the teacher object uses to internally represent the input language. We tested

this functionality in the following cases.

Canonical Expression. If inputting a language as a canonical expression, we

design the test cases depending on the induction of the number of operators in

the expressions. The first case is that the language contain a letter which is not

contained in the finite alphabet. This is an illegal situation. ALeLaB alerts the

user as per Table 4.3.

alphabet language Expected results Results

a b an exception an exception for “unknown letters”

a, b a an exception an exception for “unknown letters”

a 1 an exception an exception for “unknown letters”

Table 4.3: An example of test results of calculating inputs (part 1).

The functionalities validating the inputs also check that no illegal symbols are

used in the inputs for the alphabet or the language. For instance, in this version of

ALeLaB,

64

• the symbol “,” is not allowed on strings in input, or

• numbers are only permitted in binders of regular expression (since they rep-

resent names).

We tested that this sort of invalid data are flagged by ALeLaB with proper messages

to the user.

Other basic tests are shown in Table 4.4. The firs row is the case that the

language is an empty language. The second is that the language only contains an

empty string. The last one is that the language only contains any one string of

length 1.

alphabet language Expected results Results

a b pass

2 1 a b

a 0 pass

1 2
a

a

a b a pass

2 3
a

b
0

a

b

b a

Table 4.4: An example of test results of calculating inputs (part 2).

Running the tests about the input information as first two columns in Table 4.4,

ALeLaB generate instances of Teacher class as expected. Then, we call the method

visualisation to view the graph of the teacherAutomaton as the last column in

Table 4.4. To compare the language and the graph of the result in each row, we can

see the success of functionalities in these cases intuitively. ALeLaB constructs the

minimal automata accepting the input languages in the basic cases.

Next, we test the cases of one or more operations in expressions as in Table 4.5.

We also measure the graph results of the teacherAutomaton with the input lan-

65

guages. The first three rows show the one operation case of the concatenation, the

union and the Kleene-star. The fourth row shows the case of one pair of binders in

an expression.

alphabet language Expected results Results

a b a+b pass

2 3
a

b
0

a

b
a b

a b ab pass

2 4
b

a
b a3

b

a

0

b

a

a b a* pass

0 a 4
b

b a

a b < 1 > pass

2 5
a

b

6

<

b a

<

4

>

b

a

1
3

>

1

ba >

b 1 a

0

ab

<

a b a(< 1+a*b< 2 >>) pass see Appendix A.3

Table 4.5: An example of test results of calculating inputs (part 3).

Further, the last row shows the case of an expression mixing the operations and

binders. Constructing the expression of more than one operations need to be careful

with the order of these operations. The last result in Table 4.5 shows ALeLaB

produces the operations and binders in a correct order.

Descriptive Text File. Another way of inputting languages is to provide a de-

scriptive text file as introduced on page 48. ALeLaB allows the input files describing

a deterministic automaton or a non-deterministic automaton. As in Table 4.6, the

first row shows the contents of the two descriptive text files. These two files describe

66

the automata accepting the same language which represented by an expression a+b.

One file describes the non-deterministic automaton accepting the language. One file

describes the deterministic automaton accepting the language.

From the column of the results in Table 4.6, we can see ALeLaB produces

correct automata accepting the input languages. Furthermore, ALeLaB produces

a same automaton to the different descriptive data of the same language.

Files Expected results Results

pass

2 4
b

a
b a3

b

a

0

b

a

pass

2 4
b

a
b a3

b

a

0

b

a

Table 4.6: An example of test results of calculating inputs (part 4).

4.5.2 Data interaction testing

The Learner learns correctly depending on the answers of the queries. So, ALeLaB

should ensure the Teacher generates the answer correctly. In this section, we test

the functionalities of generating the two kinds of answers.

Membership queries The answers to membership queries are calculated in the

method getAnswer(word). We design Junit testing cases in the following template:

@Before

public void setUp () throws Exception {

alphabet . add ("a") ;

a lphabet . add ("b") ;

S t r ing testCRE="a<1>" ;

67

t eacher1=new Teacher (Teacher .FromRE, alphabet , St rategy . Hor izonta l ,

testCRE) ;

@Test

public void testgetAnswer () {

St r ing word="" ;

a s s e r tEqua l s (t eacher1 . getAnswer (word) , State . Type .FINAL) ;

}

}

We change the value of the variable word and the second parameter of the method

assertEquals to test the functionality of the method getAnswer. Given the assign-

ment String testCRE="a<1>", we show some test results in Table 4.7.

word second parameter Expected results Results

a< 1 > State.Type.FINAL pass pass

a State.Type.PREFIX pass pass

b State.Type.SINK pass pass

Table 4.7: An example of test results of the method getAnswer.

The first column is the value of the variable word. The second column is the

value of the second parameter of the method assertEquals. The third column is

the expected results of running the test unit. The last column is the results of the

test unit. For example of the first row, the word a< 1 > is in the given language. So,

the expected result is “pass”. And the real result is “pass” so that the functionality

of the case about an accepted word is achieved. Certainly, we change the value of

the variable test CRE to test the method under the different languages. We get

results as expected.

Equivalence queries The answers to membership queries are calculated in the

method checkAutomaton(automaton). Similar to the test on membership queries,

we design a new template of test units:

@Test

public void testcheckAutomaton () {

St r ing t e s t l anguage="" ;

68

Automaton automaton=new BuildAutomaton (te s t language , a lphabet) ;

a s s e r tEqua l s (t eacher1 . checkAutomaton (automaton) , null) ;

}

In this case, we change the value of the variable testlanguage to generate different

automata. Then, we assert the results of the method checkAutomaton. If the

automaton equals to the teacher1.teacherAutomaton, the result of the method

checkAutomaton is null. Otherwise, the result is a string. We fix the expected

result of the assertion as null. When the automata are not equal, the test fails.

Given that String testCRE="a<1>";, we show some test results in Table 4.8.

testlanguage Expected results Results

a< 1 > pass pass

a fail fail

Table 4.8: An example of test results of the method checkAutomaton.

The first row shows the case of the equivalence. Two automata are both accepting

the same language. And, the test passes as expected. The second row is that

two automata are accepting two different languages. The result of the method

checkAutomaton is not null so that the test fails. But, the failure is what we want.

Thus, the functionality is achieved.

4.5.3 Testing strategies

To test the different strategies for returning counterexamples, we need the meth-

ods checkAutomaton and setStrategy. Given a parameter automaton and the

instance teacher, we set teacher.strategy by invoking the method setStrategy

and call the method checkAutomaton to see the results under different strategies.

Accordingly, we set up tests as done in the following example:

. . .

S t r ing t e s t l anguage="a" ;

S t r ing testCRE="a+a<1>+aaa" ;

Automaton automaton=new BuildAutomaton (te s t language , a lphabet) ;

69

t eacher1=new Teacher (Teacher .FromRE, alphabet , St rategy .

HORIZONTAL, testCRE) ;

S t r ing r e s u l t 1=teacher1 . checkAutomaton (automaton) ;

t eacher1 . s e t S t r a t e g y (Strategy . V e r t i c a l) ;

S t r ing r e s u l t 2=teacher1 . checkAutomaton (automaton) ;

. . .

}

The results are shown in Table 4.9 and show that different strategies yield dif-

ferent counterexamples. As expected, the result under horizontal strategy have less

binders than the result under vertical strategy. Certainly, one example is not enough

to show the functionalities. Thus, we produce more test cases by changing the the

variable testlanguage and testCRE.

Strategy Results

Horizontal aaa

Vertical a< 1 >

Table 4.9: An example of test results of checkAutomaton under different strategies.

70

Chapter 5

Experiments

In Chapter 3, we analysed the termination of our learning progress. As for Angluin’s

L? algorithm, a main factor for the convergence of our learning process is the deter-

mination of counterexamples. We described two strategies for selecting counterex-

amples in Chapter 4. Due to possibly infinite number of candidate counterexam-

ples in both strategies, the selection of the counterexamples in is non-deterministic.

Therefore, we designed some experiments in order to empirically evaluate the ef-

fectiveness of our implementation. For this evaluation we considered two factors

affecting the efficiency of ALeLaB: the number of fresh name in counterexamples

and the length of counterexamples. In our experiments we measured the execution

time, the number of iterations, and number of membership queries.

5.1 Experimental Settings

Our experiments are designed to address the following research questions:

1. What is the impact of different alphabets on the effectiveness of each strategy?

2. What is the impact of each strategy on different operators?

3. What is the impact on learning a language of using different strategies?

According the analysis in Section 3.4, it is clear that the complexity of the

learning process is attributed to the cardinality of the alphabet, the length of the

71

counterexamples and the number of the states of the Teacher’s automata. Among

the three parameters, the first one and the last one are associated directly with the

given language, and the length of the counterexample is mainly corresponding to

the algorithm of finding counterexamples. Thus, we have to classify the languages,

the alphabet and the algorithm of finding counterexamples if we want to analyse

the efficiency of our implementation.

As Gruber and Holzer [23] develop the relationship among the descriptional

complexity of the regular languages, the expression size and the connectivity of

digraphs. It provides an approach to classify the scale of the languages. The total

number of occurrences of letters in the alphabet in the languages or the expressions,

alphabetic width, is a basic notion. They denote the basic notion by alph(r) for a

regular expression, and alph(L) for a regular language. In further, they discuss the

lower bounds on alphabetic width of language operations. In a sum, we can learn

that the size or scalability of a regular language or a regular expression is on the size

of the alphabet, the alphabetic width and the alphabetic width of the operations.

Thus, we could classify our experiments from

• The size or alphabetic width of the given languages,

• the star height of the given languages,

• the size of the alphabet and/or the names of the given languages,

• the alphabetic width of the language operations.

Besides, the strategies are our main aim. Each class of experiments are including

the comparison about the different strategies. Furthermore, we found the lack of

our implementation in computing a large scale language and made an improvement

to overcome it. We use the “P” symbols in finding counterexamples and have a

noticeable speedup in large scale experiments.

A good implementation is to take less time and space. As an output, we have

to take the run-time and memory into account. However, the implementation com-

bines the Learner’s process and the Teacher’s process. The best is to counter them

separately. From the theoretical explanation, we know that the Learner produces a

72

huge number of the membership queries and the Teacher takes most time on finding

a proper counterexample. Thus, the benchmarks are considered from

• the number of the membership queries,

• the number of the equivalence queries,

• the total run-time,

• (optional) the time of Learner/Teacher process.

In our implementation, the counterexamples are the decisive variable to the number

of instructions which the program executes for producing the next equivalence query.

Namely, different counterexamples would lead to a different number of instructions

or memory usage in order to update n-observation table and hence to produce mem-

bership or equivalence queries. The execution time is an obvious benchmark against

which to determine the time-efficiency of the implementation. For space-efficiency,

our experiments measure the number of the equivalence queries and the number of

the membership queries as benchmarks. Note that this boils down to consider the

size of n-observation tables. The number of membership queries corresponds to the

size of the n-observation tables: the bigger the size of the n-observation table, the

higher the memory usage.

For an empirical analysis, the choice of input instances is of paramount impor-

tance. In our case, reviewing the description of the strategies to select counterex-

amples, we determine as important factors for the input instances are the number

of the nested binders/names in a word distinguishes the strategies. The words are

limited by the input languages and alphabets.

5.1.1 Varying the finite alphabet

In our first round of experiments we consider our first research question: how al-

phabets influence the efficiency of the two strategies. In the experiments, we fix the

input language and the strategy. This amounts to the following kind of experimental

setup:

73

@Before

public void setUp () throws Exception {

s t r a t e g y= Strategy . Hor i zonta l ;

language="ab<1>" ;

. . .

The example above describes an experimental setup where the horizontal strategy

is used on the language ab〈1〉.

Experiments are encoded as objects where size of the input alphabet is increases

by adding extra elements:

@Test

public void experiment1 () {

. . .

a lphabet . add ("a") ;

a lphabet . add ("b") ;

. . .

}

@Test

public void experiment2 () {

. . .

a lphabet . add ("a") ;

a lphabet . add ("b") ;

a lphabet . add ("c") ;

. . .

}

The experimental data collected are the number of equivalence queries, the number

of equivalence queries, and the execution time of the instances of the Learner class.

5.1.2 Varying operators

Another round of experiments considers the structure of the language. Our imple-

mentation exploits the syntactic structure of nominal regular expressions to manip-

ulate languages. For instance, we need to determine the equivalence of a regular

expressions representing the input language and an automaton. Therefore, the im-

plementation efficiency depends on the operators used in the regular expressions

74

describing the input languages. Thus, we fix choice=Teacher.FromRE as a condi-

tion. Then, the experimental setup can be specified as follows:

@Before

public void setUp () throws Exception {

s t r a t e g y= Strategy .HORIZONTAL;

alphabet=alphabet1 ;

. . .

In this set of experiments we focus particularly on the concatenation operator. More

precisely, maintaining fixed the strategy and the alphabet, we vary the input lan-

guage by concatenating nominal regular expressions. For instance, in the exper-

imental set up above we run our experiments on languages a, aba, b∗, a〈1〉, and

a〈1〉b∗a〈1〉.

Additionally, another set of experiments considers the binder operator. This

time we vary the input language by increasing the nesting structure of binders while

maintaining fixed the strategy and the alphabet. For instance, we consider the input

languages ab∗, 〈ab∗〉, 〈〈〈ab∗〉〉〉, and 〈〈〈〈〈ab∗〉〉〉〉〉.

Finally, we considered similar experiments for the union operator. Again in the

same experimental set up as above, we vary the language by composing them with

+ operator. For example, we consider the input languages a, a+b, and a+b+〈1〉.

In this set of experiments, we want also to figure out the performance of ALeLaB

with the larger and complex languages. Therefore, we measured the efficiency of the

strategies on the regular nominal expressions obtained by shuffling all the operators.

5.1.3 Varying strategies

The comparison on the different strategies is attained by instantiating teacher ob-

jects that follow different strategies. For example, the tests sets up with

@Experiment

experimentCompareStrategy () {

t eacher1=new Teacher (Teacher .FromRE, alphabet , St rategy .

HORIZONTAL, language) ;

. . .

75

t eacher2=new Teacher (Teacher .FromRE, alphabet , St rategy .VERTICAL,

language) ;

. . .

}

collects data associated with the instances of teacher1 following the horizontal

strategy and teacher2 for the vertical one.

5.1.4 With “P” symbols

We realised the lack of our implementation on computing the large scale examples

when we got the reviews after submitting the paper [56]. Before the paper, the “P”

symbols are used to optimise the n-observation table reducing the numbers of the

meaningless membership queries. When we found the lack is caused by the amounts

of meaningless operations in finding counterexamples, we wondered whether the “P”

symbols is useful. With attempts, we found the proper position of the “P” symbols

in the statements of finding counterexamples. Thus, we produce new tests using

“P” symbols and compare with the previous tests.

5.2 Experimental Results Without “P” Symbols

Our experiments aim at illustrating the efficiency of the implementation on the lan-

guages and the strategies for counterexamples. We have investigated the tests of

the different solutions. Each solution have in common that the benchmarks are the

same. They are performed using the benchmarks a selection of inputs values and

evaluation values. For each test, we provide the finite alphabet (Alphabet), the

input language (Expressions), the alphabetic width of the language (Width), the

number of the states of the automaton (State), the selected strategy for counterex-

amples (Strategy), the time in milliseconds of the process (Time), the number of

the equivalence queries (#EQ) and the number of the membership queries (#MQ)

during the learning process. The number of the equivalence queries and the mem-

bership queries have impacts on both the time complexity and space complexity.

Moreover, we also consider the finite input alphabet (Alphabet) where appropriate.

76

The values of these parameters is determined by taking the average of the values

measured on 20 runs of the experiments. In the figures, we omit the data of fixed

parameters.

5.2.1 Data: Varying the finite alphabet

In this section we illustrate the performance of tests of varying the finite alphabet.

For this reason, it is sufficient to test the Time, #EQ, and #MQ side with the

different finite alphabet. In the remainder, we briefly introduce the considered

scenarios in the following Tables: the same given languages, the increasing size of

the alphabets and the two strategies.

Alphabet Strategy Time #EQ #MQ

a b HORIZONTAL 168 2 97

a b c HORIZONTAL 167 2 126

a b c d HORIZONTAL 166 2 144

a b VERTICAL 163 2 99

a b c VERTICAL 164 2 122

a b c d VERTICAL 167 2 141

Table 5.1: Varying the alphabet on 〈ab∗〉

Alphabet Strategy Time #EQ #MQ

a b HORIZONTAL 4138 5 1860

a b c HORIZONTAL 28002 5 2051

a b c d HORIZONTAL 156685 5 2282

a b VERTICAL 3986 4 1940

a b c VERTICAL 37563 4 2458

a b c d VERTICAL 146477 4 2627

Table 5.2: Varying the alphabet on a(〈1 + 〈2 + ab∗〉〉+ aa)

In total 600 times tests cases were run and the distribution of the tests is de-

picted in Table 5.1 and Table 5.2 The last two columns report the values of #EQ

77

and #MQ respectively. The figures on the former clearly show that varying the

alphabet has no impact on the equivalence queries (as expected since the decision

to ask for an equivalence query depends only on the consistency and closedness of

the n-observation table). The situation is different for number of the membership

queries, #MQ. We can observe that the size of alphabet affect the learning progress

in the value of #MQ. Augmenting the alphabet requires yield an increase on the

membership queries. For non-trivial language this significantly impacts on the ex-

ecution time as reported in Table 5.2; in fact, there is a blow up in the execution

time whenever a new element is added to the alphabet.

In conclusion, the size of the input alphabet impacts on the time complexity

and the space complexity. The reason for the inefficiency is due to the fact that

ALeLaB has to build deterministic automata when minimising which grow due to

the extra (immaterial) transitions covering the extra letters in the alphabet (which

do not play any role in the language).

5.2.2 Data: Varying operators

We now consider our second experimental setting were we vary the input language.

As discussed in Section 5.1.2, we have investigated the tests of the star height of

given languages, the size of the name of the given languages and the alphabetic width

of the language operations. For this reason, we classified 5 classes of experiments:

• the alphabetic width of the language operations on concatenation,

• the star height of the given languages,

• the size of the name of the given languages,

• the alphabetic width of the language operations on union,

• the alphabetic width of the language operations on mixing,

All the tests are fixed the input alphabet. Then, we compare and analyse the data

on benchmarks.

78

In total 500 times test cases were run for the concatenation case. Table 5.3 shows

the typical experimental results.

Expression Strategy Time #EQ #MQ

a HORIZONTAL 162 1 15

aba HORIZONTAL 165 2 41

abababaaba HORIZONTAL 196 2 1133

a VERTICAL 162 1 15

aba VERTICAL 166 2 41

abababaaba VERTICAL 188 2 1133

Table 5.3: Experimental results for concatenation on both strategies.

Our experiments confirm that concatenation increases linearly execution time

of both strategies. The effect on the equivalence queries is negligible, while for

membership queries the situation is different. Let us focus on the last column

reporting the results for #MQ.

For both the horizontal and the vertical concatenation may significantly impact

on membership queries. Unsurprisingly, execution time follows the trend of #EQ

and #MQ. Comparing the results for column Time, they are increasing while the

number of the concatenation operators is increasing under a same strategy. Com-

paring Time for the two strategies, we see that the execution time is similar.

Next class, the star height of the given languages is the sufficient variable side

with the same alphabet and the same size of the name. In total over 600 times test

cases were run and the results of which are in Table 5.4. Every two rows are a group

for comparison.

79

Expression Strategy Time #EQ #MQ

b HORIZONTAL 162 1 15

b* HORIZONTAL 239 1 8

a< 1 > HORIZONTAL 187 2 167

a<1*> HORIZONTAL 169 2 100

a< 1 >ba< 1 > HORIZONTAL 312 2 1042

a< 1 >b*a< 1 > HORIZONTAL 228 2 816

b VERTICAL 162 1 15

b* VERTICAL 243 1 8

a< 1 > VERTICAL 178 2 167

a<1*> VERTICAL 173 2 105

a< 1 >ba< 1 > VERTICAL 294 2 1042

a< 1 >b*a< 1 > VERTICAL 230 2 814

Table 5.4: Focusing on the Kleene-star

Here every even row is obtained by adding the star operator in some subexpres-

sion of the previous row. For instance, the fourth row adds the Kleene-star operator

in the scope of the binder of the expressions on the third row. Starting from the first

row and comparing every two consecutive rows of Table 5.4, we see that the values

of columns Time and #MQ clearly indicate that the Kleene-star operator generally

requires less resources. Contrasting the two different strategy we see that there is

no significant impact in respect to the Kleene-star. This is somehow expected since

the Kleene-star can introduce loops only “layer-wise” given the structure of nomi-

nal automata. In other words, a loop cannot involve states on different layers that

would involve allocation and deallocation transitions.

The third class of experiments focus on the size of the names. We now consider

experiments where the binding structure of expressions increases. In total over 500

times test cases were run and the distribution of the tests is depicted in Table 5.5.

80

Expression Strategy Time #EQ #MQ

ab HORIZONTAL 164 2 35

<ab> HORIZONTAL 172 2 167

<<<ab*>>> HORIZONTAL 2050 2 513

a<a<b*<1>>> HORIZONTAL 56666 2 871

a<a<b*<a>>> HORIZONTAL 62866 2 885

ab VERTICAL 168 2 35

<ab> VERTICAL 173 2 167

<<<ab*>>> VERTICAL 2065 2 470

a<a<b*<1>>> VERTICAL 58030 2 799

a<a<b*<a>>> VERTICAL 73330 2 863

Table 5.5: Focusing on binders

Looking at the column on #EQ, we observe that the nested binders do not have

a significant affect on the number of the equivalence queries. Similar to previous

experiments’ results, the nested binders have impacts on the figures on column

Time and #MQ. Comparing the results for the different strategies, the execution

time under vertical strategy is more than the one under horizontal strategy in a

larger expression (rows four and nine in Table 5.5).

We can observe that there is a huge difference between the execution time of rows

3 and 4. This can be explained by noticing the following facts. For the expression

on row three, at the highest level the automaton uses an alphabet of five symbols

(the letters a and b plus the three freshly generate names) and the languages uses

two such letters (namely a and b). For the expression on row four, at the highest

level the automaton uses an alphabet of five symbols as before, but the languages

uses only one of such letters (namely the first freshly allocated name). Hence we

have a phenomenon similar to the one highlighted in Table 5.2.

In conclusion, both two strategies have no significant affect on the number of

equivalence queries. But in terms of the execution time and the number of member-

ship queries, the vertical strategy takes less resources in average than the horizontal

strategy.

81

In a sequence, we now focus on the union operators in expressions. Thus, we

specified 10 kind of test blocks have been used in over 500 times test running for the

increasing union operators. Then, we compare and analyse the data on benchmarks.

Table 5.3 shows a group of the interesting experimental results on a fixed alphabet

{a, b, c, 1}.

Expression Strategy Time #EQ #MQ

a HORIZONTAL 161 1 21

a+b HORIZONTAL 162 1 21

a+b+c HORIZONTAL 167 1 21

< 1 > HORIZONTAL 185 2 105

a+b+< 1 > HORIZONTAL 202 2 128

a VERTICAL 174 1 21

a+b VERTICAL 166 1 21

a+b+c VERTICAL 165 1 21

< 1 > VERTICAL 176 2 105

a+b+< 1 > VERTICAL 179 2 128

Table 5.6: Expanding expressions by union

The figures of expressions a, a+b, and a+b+c are extremely similar whatever

the strategy is. If only looking at these figures, it seems that the expressions with

different union operators have same results. The binders bring something different in

the figures on Time. They are in line with expectations. The time of the expressions

with binders is more than those with no binders. However, the differences, in terms

of the number of union operators, are not clear.

Finally, we want to go further with the experiments. A alphabetic width of

the mixed operators is considered. Since the Kleene-star is a special case of the

operators, we did not take it into account. For this reason, the class of test cases is

mixing the union, concatenation and binders. As in Table 5.7, the distribution of

the test cases over the alphabet {a, b, 1} is depicted.

82

Expression Strategy Time #EQ #MQ

a+b HORIZONTAL 162 1 21

a+aa+bb+b HORIZONTAL 170 2 197

a+b+< 1 > HORIZONTAL 202 2 128

aa+<1a+bb+<a>> HORIZONTAL 20756 4 1186

a+b VERTICAL 166 1 21

a+aa+bb+b VERTICAL 172 2 173

a+b+< 1 > VERTICAL 179 2 128

aa+<1a+bb+<a>> VERTICAL 27562 4 1773

Table 5.7: Mixed operators

The main difference from the previous results is in column #EQ. We can see

the number of equivalence queries increases as the number of union operators in

expressions increases. In this case, the space complexity is represented in both

the numbers of the equivalence queries and the membership queries. Comparing

the figures on columns Time, #EQ, and #MQ, in terms of strategies, we observe

that the horizontal strategy takes less resources than the vertical strategy on the

expressions with increasing number of the union operators.

5.3 Experimental Results With “P” Symbols

The previous set of experiments are designed to analyse the effectiveness of strategies

among the simple and small scale languages. Actually, we tried more larger scale

test cases but those tests cases ran over 2 days without any foreseeable finish point.

Hence, we made attempts to improve the implementation. Recently, we have found

that the “P” symbols used in finding counterexamples can rapidly reduce the number

of the operations and the time.

In this section, we present the typical experimental results with using the “P”

Symbols.

First of all, we show the speedup of the improved experiments. The typical

example is the one we used in the presentation of the ICE 2019 conference. Given

83

language L = (li1〈n.(n readfeed + updateProfile (li2〈m.(m isvalid update +

n delete)lo2〉)∗)∗lo1〉)∗, if we use the approach without using “P” Symbols, the test

gets stuck over 2 days without any new progress. However, when we implement the

test case with the “P” Symbols, the correct result is output in 1.628 seconds. More

benchmarks are taken into account

• the total closedness rounds: 4

• the total consistency rounds rounds: 8

• the total membership queries rounds: 13811

• the equivalence queries rounds: 5

We present a reasonable comparison between the two approaches in Figure 5.1.

The considered scenarios of the comparison is

• the language is a(〈1 + 〈2 + ab∗〉〉+ aa),

• all test cases were both compared under the same stratetgy and the same

alphabet,

• the data of test cases were the average data over 20 times,

• the first case is without the “P” Symbols and the second is with the “P”

Symbols.

2
510

100

Cases

Time (s)
#EQ

2

1,500

2,000

2,500

Expressions

#MQ

Figure 5.1: The comparison between two approaches.

The line of the Time in Figure 5.1 shows the rapid reduction from case 1 to case

2. However, the number of the equivalence queries increases and the number of the

84

membership queries reduces slowly. It proof our guess that the most of execution

time is on finding counterexamples. And, the membership queries and the equiva-

lence queries are more reasonable benchmarks for the learning algorithm.

Since the experiments in previous section have investigated the scale factors

separately, the experiments with the “P” Symbols focus on the performance of

difference strategies on the increasing scale scenarios. In the following, we present

recent research data in a graphic way.

We have not make a standard of the scale of the nominal regular languages with

binders. We have suspected that a stable factor would be the number of the states

of the minimal automaton associated with the given language, considering that the

Learner always output a minimal automaton and the automaton is unique. So, we

designed the test cases on the baseline of the number of the states.

Recently, over 100 kinds of test cases were developed for the strategies on increas-

ing scales from 7 states to 62 states. A interesting and typical set of performances

is depicted in Figure 5.2. We fixed the scenarios as

• size of the finite of the alphabet {a, b},

• languages is tested under both two strategies,

• each test case is run at least 20 times.

85

10 20 30 50

0.5

1

1.5

2

2.5

3

·105

States

Time (ms) Horizontal
Vertical

10 20 30 50

5

States

#EQ Horizontal
Vertical

10 20 30 50
2 · 10−2

0.1

·105

States

#MQ Horizontal
Vertical

Figure 5.2: The comparison between two approaches on the increasing number of
the states.

Looking at the plots of Time and #MQ, they rise exponentially as expected.

86

However, the trend of #EQ has curves and turns. The curves and turns are caused

by the combination of the operators of the languages. For example, the languages

L1 = a〈a〈b∗〈a〉〉〉 and L2 = a+ ba+ 〈1〉+ 〈〈2〉〉+ 〈a〈1〉〉, L1 has 14 states and L2 has

15 states. Under horizontal strategy, Learning L1 needs 3 equivalence queries and

Learning L2 needs 6 equivalence queries. Currently, we did not find out what affects

it clearly because we have enough time to design the experiments and filter out the

classification rule. It would be interesting direction of optimising the strategies in

the future work.

Comparing the data between strategies, it still have no clear bound on the supe-

riority for most languages. As the case of #EQ, it needs more meticulous conditions

on large Quantity of experiments. In the future, we prefer to study on this part and

try to mix the strategy when we have some ideas about their fields of advantages.

5.4 Discussion

All experimental cases were repeated over 20 times to take the randomness of the

counterexamples satisfied the selected strategies int account, and the results were

taken the average values into account. The experiments are designed by induction to

analyse the effectiveness of strategies more reasonably from simple cases to complex

cases.

In general, we presented some typical experimental results performing the effi-

ciency of the two strategies under several situations in small scale. We can summarise

clearly that the vertical strategy takes less resources when the expressions have more

concatenation operators, and the horizontal strategy is better to handle with the

expressions with more union operators. Further, neither two strategies have no ap-

parent advantages as expressions have the Kleene-star operators. In terms of nested

binders, the vertical strategy has an advantage in consuming resources.

However, in the extreme case, with very large sizes, the preference of the strate-

gies cannot be decided easily. For example, in terms of the larger expression in

section 5.3, the figures on the #EQ, and the #MQ represent the turns and crosses.

Sometime, the vertical strategy need more space for the larger number of queries,

87

but the consuming time is less, the horizontal strategy takes more time with less

queries. And vice versa.

In conclusion, the two strategies have their own advantages in current version.

Further, the use of the two strategies can be optimised. In fact, instead of randomly

choosing a counterexample, we could apply heuristics to weight the counterexam-

ple and choose according to their weights. Hopefully, good heuristics will select

counterexamples that make the algorithm to converge more quickly. An approach

on adding conditions for counterexamples has been investigated for L? in [2]. We

discuss in Chapter 6 how to extend these approaches to nominal regular languages.

Also, we could study conditions to predict when one the strategies could outperform

the other so that we use mixed strategy. All these optimisations are left for future

investigation and discussed in Chapter 6.

5.5 Case Study Blueprint

With enough theoretical experiments, we would think about apply the algorithm

for a real application. The verification of protocols and systems are interesting

areas [16, 17]. In this section, we state an rough idea about the application of our

algorithm on model testing. Everything are just out of theoretical and practical

attempts.

Our idea is to extend the approach of inferring models by [55]. Here we use

a small application scenario in [55] to explain where our algorithm could be used.

The scenario is ”Assuming a model with capturing the order in which the methods

recurse and basecase, for each method we print out its name recurse and basecase,

along with any associated data values depth for recurse”. Running this on four

inputs (depth=3,2,5, and 0) gives rise to the traces as Figure 5.3. The raw data can

be divided into two parts: input and output. The input are 3,2,5, and 0. And, the

output are those in Figure 5.3. Furthermore, the 3,2,5, and 0 are variables, and the

recurse and the basecase are constants. The variables are mapping to the names in

our algorithm, and constants are the finite alphabet. The operations of input and

output are in pared, so they are associated to the binders. We can translate the

88

Figure 5.3: The output traces.

four pieces of data into a nominal form as

• I1 < 3. recurse 3 recurse 2 recurse 1 recurse 0 basecase > O1

• I1 < 2. recurse 2 recurse 1 recurse 0 basecase > O1

• I1 < 5. recurse 5 recurse 4 recurse 3 recurse 2 recurse 1 recurse 0 basecase >

O1

• I1 < 0. recurse 0 basecase > O1

Thus, the data for the Teacher has an outline. Next step is to think about how

to store and represent these data as a Teacher. Roughly, we consider that a set is

a good data structure and each piece of the data is an element of the set. More

precisely, the names should be defined properly. For now, we have no idea about

that.

Then, the Learner can get progress with the finite alphabet until the Learner

get an automaton containing all the four pieces of data. In this stage, we can not

assert the automaton is correct. We suggest an additional step: to do more model

tests on the target model and the Learner’s automaton, and to collect them to

produce an counterexample, then the Learner can keep learning unless there is no

counterexamples.

The core techniques of applications of our algorithm are the translation of the

raw data, and the additional test data for the equivalence. We have a plan to

implement this idea in the following work.

89

Chapter 6

Conclusions and Future Work

This chapter collects final remarks on this dissertation and discussing some potential

research directions.

6.1 Conclusions

The learning algorithm L? was introduced more than thirty years ago and has been

intensively extended to many types of models in following years. This algorithm

continues to attract the attention of many researchers [2, 52, 39].

In this dissertation, we have designed a learning algorithm for a class of languages

over infinite alphabet; more precisely, we have considered nominal regular languages

with binders [31, 33]. We have tackled the finite representations of the alphabets,

words and automata for retaining the basic scheme and ideas of L?. Hence, we revised

and added definitions for the nominal words and automata. Further, accounting for

names and the allocation and deallocation operations, we revised the data structures

and notions in L?. Accordingly, we have proposed the learning algorithm, nL?, to

stress the progress of learning a nominal language with binders. We have proved

the correctness and analysed the complexities of nL?.

We have developed a implementation of nL? in Java, named ALeLaB. This

implementation allowed us to study how nL? behaves under different strategies to

generate counterexamples.

90

Indeed, the experiments have been mainly designed for the impact of the two

strategies. The benchmarks included the data of input parameters. Besides, we also

have taken the behaviour of nL? into account. The analysis of experimental data

shows that the advantages of two strategies are various in terms of varying operators

mixing with binders.

6.2 Future Work

There are several directions to advance our work. Firstly, one can improve the

implementation and extend the case studies for nL?. In particular, it would be

interesting to analyse nL? using mixed strategies to generate counterexamples. An-

other, more theoretical direction, would be the extension of our algorithm to the

non-deterministic case.

Improving ALeLaB Although the current implementation achieved all the func-

tionalities for the learning process of nL?, several improvements are possible. The

current implementation requires some manual inputs (as shown in Section 4.5.1).

Improving on the usability of the tool would be necessary to apply to verification.

Also, developing a user-friendly graphical user interface is left for future work. It

would indeed be interesting to analyses some case studies. Since the regular expres-

sions with binders could be use for verification, testing and analysis of programming

languages [32], we first plan to apply our algorithm to model testing, which comes

from the idea of inferring models by [55].

Optimisation of the learning algorithm The different strategies for counterex-

amples are an attempt to optimisation the learning algorithm. And the evaluation

of the experiments data provides the potential for optimisation. In the future, a

new strategy balancing the advantages of current two strategies is a desirable set-

ting. As we saw, the effectiveness of nL? and its implementation ALeLaB may

depend on the algebraic structure of the regular expressions representing the input

language. In this respect we envisage two possible interesting directions. One is to

identify heuristics based on the algebraic structures that the teacher could use to

91

generate “better” counterexamples, that is counterexamples that allow the learner

to learn “more quickly”. Another direction is to identify classes of nominal regular

expressions that make the learning process quicker.

Study on learning non-deterministic automata Like in the classical theory

of formal languages, non-deterministic automata are more expressive than determin-

istic ones. Non-deterministic nominal automata have exponentially less operations

with respect to transitions. In the current version of our implementation, we pro-

vide one way to input descriptive file about non-deterministic nominal automata.

ALeLaB can do operations with less input data. This is a good start to the research

of an extension of the learning algorithm for non-deterministic cases. Namely, the al-

gorithm can support more situations which have less certain data, and the algorithm

would reduce internal instructions with producing non-deterministic models.

92

Appendix A

Additional Figures

State

+ Type{FINAL,SINK,PREFIX,INVALID}: enum

- type: Type

- name: String

- level: int

- transitionSet: Set<Transitions>

. . .

+ State(name: String):

+ setTransition(Transition t): void

. . .

Transition

- stateFrom: State

- stateTo: State

- Symbol: String

+ Transition(from: State,to: State ,t: String):

. . .

Figure A.1: Essential classes associated to Automaton class.

93

Word

+ isLegal(word: String): boolean

+ maxLayer(word: String): int

. . .

Figure A.2: Word class.

2 10
b

a

11

<

3

4

<

ab

12 2 b a 1

><

>

6
1

5

a

7

b

a b

<

8

a1b >

9
2

>

<

1ba

<

>

b 1 a

0
a

b

<

<

> 1

a
b

2

1

a

b

>

>

<

1

b

a

Figure A.3: The graph for the last result in Table 4.5.

94

Bibliography

[1] Dana Angluin. Learning Regular Sets from Queries and Counterexamples. Inf.

Comput., 75(2):87–106, 1987.

[2] Dana Angluin and Tyler Dohrn. The Power of Random Counterexamples. In

International Conference on Algorithmic Learning Theory, ALT 2017, 15-17

October 2017, Kyoto University, Kyoto, Japan, pages 452–465, 2017.

[3] Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari, and Roberto Zunino.

Local policies for resource usage analysis. ACM Trans. Program. Lang. Syst.,

31(6), 2009.

[4] Miko laj Bojańczyk, Bartek Klin, and Slawomir Lasota. Automata theory in

nominal sets. Logical Methods in Computer Science, 10(3), 2014.

[5] Mikolaj Boja’nczyk, Anca Muscholl, Thomas Schwentick, Luc Segoufin, and

Claire David. Two-variable logic on words with data. In 21th IEEE Symposium

on Logic in Computer Science (LICS 2006), 12-15 August 2006, Seattle, WA,

USA, Proceedings, pages 7–16, 2006.

[6] Benedikt Bollig, Peter Habermehl, Martin Leucker, and Benjamin Monmege. A

Fresh Approach to Learning Register Automata. In Developments in Language

Theory - 17th International Conference, DLT2013, Marne-la-Vallée, France,

June 18-21, 2013. Proceedings, pages 118–130, 2013.

[7] Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, and Martin Leucker.

Learning Communicating Automata from MSCs. IEEE Trans. Software Eng.,

36(3):390–408, 2010.

95

[8] Daniel Brand and Pitro Zafiropulo. On Communicating Finite-State Machines.

JACM, 30(2):323–342, 1983.

[9] J. A. Brzozowski. Canonical regular expressions and minimal state graphs for

definite events. In Proc. Sympos. Math. Theory of Automata (New York, 1962),

pages 529–561. Polytechnic Press of Polytechnic Inst. of Brooklyn, Brooklyn,

N.Y., 1963.

[10] Sofia Cassel, Falk Howar, Bengt Jonsson, and Bernhard Steffen. Active learning

for extended finite state machines. Formal Asp. Comput., 28(2):233–263, 2016.

[11] N.G de Bruijn. Lambda calculus notation with nameless dummies, a tool for

automatic formula manipulation, with application to the church-rosser theorem.

Indagationes Mathematicae (Proceedings), 75(5):381 – 392, 1972.

[12] Pierpaolo Degano, Gian Luigi Ferrari, and Gianluca Mezzetti. Nominal au-

tomata for resource usage control. In Implementation and Application of Au-

tomata - 17th International Conference, CIAA 2012, Porto, Portugal, July

17-20, 2012. Proceedings, pages 125–137, 2012.

[13] Pierpaolo Degano, Gian Luigi Ferrari, and Gianluca Mezzetti. Towards nominal

context-free model-checking. In Implementation and Application of Automata -

18th International Conference, CIAA 2013, Halifax, NS, Canada, July 16-19,

2013. Proceedings, pages 109–121, 2013.

[14] Stéphane Demri and Ranko Lazic. LTL with the freeze quantifier and register

automata. ACM Trans. Comput. Log., 10(3):16:1–16:30, 2009.

[15] Jan Dijkstra, H.J.P. Timmermans, and Joran Jessurun. A multi-agent cellular

automata system for visualising simulated pedestrian activity. In Proceedings

of ACRI, pages 29–36, 01 2000.

[16] Gianluigi Ferrari, Giovanni Ferro, Stefania Gnesi, Ugo Montanari, Marco Pis-

tore, and Gioia Ristori. An automata based verification environment for mobile

processes. In Ed Brinksma, editor, TACAS, volume 1217 of LNCS, pages 275–

289. Springer, April 1997.

96

[17] Gianluigi Ferrari, Stefania Gnesi, Ugo Montanari, Marco Pistore, and Gioia

Ristori. Verifying Mobile Processes in the HAL Environment. In Proc. 10th

International Computer Aided Verification Conference, pages 511–515, 1998.

[18] Gianluigi Ferrari, Ugo Montanari, and Marco Pistore. Minimizing transition

systems for name passing calculi: A co-algebraic formulation. In Mogens Nielsen

and Uffe Engberg, editors, Foundations of Software Science and Computation

Structures, pages 129–143, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[19] Murdoch J. Gabbay. A Theory of Inductive Definitions with alpha-Equivalence.

phdthesis, University of Cambridge, UK, March 2001.

[20] Murdoch J. Gabbay and Andrew M. Pitts. A new approach to abstract syntax

involving binders. In Giuseppe Longo, editor, LICS, pages 214–224, Trento,

Italy, July 1999. IEEE.

[21] Murdoch J. Gabbay and Andrew M. Pitts. A New Approach to Abstract Syntax

with Variable Binding. J. of Formal Aspects of Computing, 13(3-5):341–363,

July 2002.

[22] Fabio Gadducci, Marino Miculan, and Ugo Montanari. About permutation al-

gebras, (pre)sheaves and named sets. Higher-Order and Symbolic Computation,

19(2-3):283–304, 2006.

[23] Hermann Gruber and Markus Holzer. Finite automata, digraph connectivity,

and regular expression size. In Automata, Languages and Programming, 35th

International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008,

Proceedings, Part II - Track B: Logic, Semantics, and Theory of Programming

& Track C: Security and Cryptography Foundations, pages 39–50, 2008.

[24] Serena Hamilton, A.J. Jakeman, and John P. Norton. Artificial intelligence

techniques: An introduction to their use for modelling environmental systems.

Mathematics and Computers in Simulation, 78:379–400, 07 2008.

[25] John Hopcroft. An n log n algorithm for minimizing states in a finite automa-

ton. Academic Press, New York, 1971.

97

http://www.gabbay.org.uk/papers.html#thesis

[26] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to

automata theory, languages, and computation, 2nd edition. SIGACT News,

32(1):60–65, March 2001.

[27] Bart Jacobs and Alexandra Silva. Automata learning: A categorical perspec-

tive. In Horizons of the Mind. A Tribute to Prakash Panangaden, pages 384–

406. Springer, 2014.

[28] Michael Kaminski and Nissim Francez. Finite-memory automata. Theor. Com-

put. Sci., 134(2):329–363, 1994.

[29] Michael Kaminski and Tony Tan. Regular expressions for languages over infinite

alphabets. Fundam. Inform., 69(3):301–318, 2006.

[30] Dexter Kozen, Konstantinos Mamouras, Daniela Petrisan, and Alexandra Silva.

Nominal kleene coalgebra. In Automata, Languages, and Programming - 42nd

International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Pro-

ceedings, Part II, pages 286–298, 2015.

[31] Alexander Kurz, Tomoyuki Suzuki, and Emilio Tuosto. A characterisation of

languages on infinite alphabets with nominal regular expressions. In Theoretical

Computer Science - 7th IFIP TC 1/WG 2.2 International Conference, TCS

2012, Amsterdam, The Netherlands, September 26-28, 2012. Proceedings, pages

193–208, 2012.

[32] Alexander Kurz, Tomoyuki Suzuki, and Emilio Tuosto. On Nominal Regular

Languages with Binders. In Lars Birkedal, editor, Foundations of Software

Science and Computational Structures, pages 255–269, Berlin, Heidelberg, 2012.

Springer Berlin Heidelberg.

[33] Alexander Kurz, Tomoyuki Suzuki, and Emilio Tuosto. Nominal Regular Ex-

pressions for Languages over Infinite Alphabets. Extended Abstract. CoRR,

abs/1310.7093, 2013.

[34] Marta Kwiatkowska, Gethin Norman, and David Parker. Prism 4.0: Verification

of probabilistic real-time systems. In Ganesh Gopalakrishnan and Shaz Qadeer,

98

editors, Computer Aided Verification, pages 585–591, Berlin, Heidelberg, 2011.

Springer Berlin Heidelberg.

[35] maintained by Laurent Blume/John Ellson. Graphviz. https://http://

graphviz.org/. Accessed: 2019-01-29.

[36] R. McNaughton and H. Yamada. Regular Expressions and State Graphs for

Automata. IRE Transactions on Electronic Computers, EC-9(1):39–47, March

1960.

[37] Robin Milner. Communicating and Mobile Systems: the π-calculus. Cambridge

University Press, 1999.

[38] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile pro-

cesses, i and ii. Inf. and Comp., 100(1), 1992.

[39] Joshua Moerman, Matteo Sammartino, Alexandra Silva, Bartek Klin, and

Michal Szynwelski. Learning nominal automata. In Proceedings of the 44th

ACM SIGPLAN Symposium on Principles of Programming Languages, POPL

2017, Paris, France, January 18-20, 2017, pages 613–625, 2017.

[40] Ugo Montanari and Marco Pistore. π-Calculus, Structured Coalgebras, and

Minimal HD-Automata. In Mogens Nielsen and Branislav Roman, editors,

MFCS, volume 1983 of LNCS. Springer, 2000.

[41] Edward F. Moore. Gedanken-experiments on sequential machines. In Automata

studies, Annals of mathematics studies, no. 34, pages 129–153. Princeton Uni-

versity Press, Princeton, N. J., 1956.

[42] A. Nerode. Linear automaton transformations. Proceedings of the American

Mathematical Society, 9(4):541–541, apr 1958.

[43] Frank Neven, Thomas Schwentick, and Victor Vianu. Towards regular lan-

guages over infinite alphabets. In Mathematical Foundations of Computer Sci-

ence 2001, 26th International Symposium, MFCS 2001 Marianske Lazne, Czech

Republic, August 27-31, 2001, Proceedings, pages 560–572, 2001.

99

https://http://graphviz.org/
https://http://graphviz.org/

[44] Oliver Niese. An integrated approach to testing complex systems. PhD thesis,

Technical University of Dortmund, Germany, 2003.

[45] Gertjan van Noord. Treatment of Epsilon Moves in Subset Construction. Com-

putational Linguistics, 26(1):61–76, 2000.

[46] Corina S. Pasareanu, Dimitra Giannakopoulou, Mihaela Gheorghiu Bobaru,

Jamieson M. Cobleigh, and Howard Barringer. Learning to divide and conquer:

applying the L? algorithm to automate assume-guarantee reasoning. Formal

Methods in System Design, 32(3):175–205, 2008.

[47] Doron A. Peled, Moshe Y. Vardi, and Mihalis Yannakakis. Black box checking.

Journal of Automata, Languages and Combinatorics, 7(2):225–246, 2002.

[48] Marco Pistore. History Dependent Automata. PhD thesis, Dipartimento di

Informatica, Università di Pisa, 1999.

[49] Andrew M. Pitts. Names and Symmetry in Computer Science (Invited Tuto-

rial). In 30th Annual ACM/IEEE Symposium on Logic in Computer Science,

LICS 2015, Kyoto, Japan, July 6-10, 2015, pages 21–22, 2015.

[50] M. O. Rabin and D. Scott. Finite Automata and Their Decision Problems.

IBM Journal of Research and Development, 3(2):114–125, April 1959.

[51] Davide Sangiorgi and David Walker. The π-Calculus: a Theory of Mobile

Processes. Cambridge University Press, 2002.

[52] Lutz Schröder, Dexter Kozen, Stefan Milius, and Thorsten Wißmann. Nominal

automata with name binding. In CoRR, volume abs/1603.01455, 2016.

[53] Luc Segoufin. Automata and logics for words and trees over an infinite alphabet.

In International Workshop on Computer Science Logic, pages 41–57. Springer,

2006.

[54] Ken Thompson. Programming Techniques: Regular Expression Search Algo-

rithm. Commun. ACM, 11(6):419–422, June 1968.

[55] Neil Walkinshaw and Mathew Hall. Inferring Computational State Machine

Models from Program Executions. In 2016 IEEE International Conference on

100

Software Maintenance and Evolution, ICSME 2016, Raleigh, NC, USA, October

2-7, 2016, pages 122–132, 2016.

[56] Yi Xiao and Emilio Tuosto. On learning nominal automata with binders. In

Proceedings 12th Interaction and Concurrency Experience, ICE 2019, Copen-

hagen, Denmark, 20-21 June 2019, pages 137–155, 2019.

101

	Introduction
	Motivations
	Related Works
	Contributions
	Outline

	Background
	Regular Languages
	Constructing Automata from Regular Expressions
	Angluin's Algorithm L
	Nominal Languages with Binders

	Learning Nominal Automata
	Preliminary
	Nominal Learning: Concepts
	Nominal observation tables
	From [s] to Nominal Automata

	The nL Algorithm
	Correctness and Complexity
	Running nL: An Example

	Implementation
	Architectural Aspects
	Technical Specifications
	Components Implementation
	Strategies for Selecting Counterexamples
	Testing ALeLaB
	Testing the input interface
	Data interaction testing
	Testing strategies

	Experiments
	Experimental Settings
	Varying the finite alphabet
	Varying operators
	Varying strategies
	With ``P'' symbols

	Experimental Results Without ``P'' Symbols
	Data: Varying the finite alphabet
	Data: Varying operators

	Experimental Results With ``P'' Symbols
	Discussion
	Case Study Blueprint

	Conclusions and Future Work
	Conclusions
	Future Work

	Additional Figures

