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Abstract—Texture synthesis plays an important role in computer game and movie industries. Although it has been widely studied, the assessment of the quality of the synthesised textures has received little attention. Inspired by the research progress in perceptual texture similarity estimation, we propose a Texture Synthesis Quality Assessment (TSQA) approach. To our knowledge, this is the first attempt to exploit perceptual texture similarity for the TSQA task. In particular, we introduce two perceptual similarity principles for synthesis quality assessment. Correspondingly, we train two Random Forest (RF) regressors. Given a pair of sample and synthesised textures, the two regressors can be used to predict the global and local quality scores of the synthesised texture respectively. An overall score is generated from the two scores. Our results show that the deep Bag-of-Words (BoW) descriptors, extracted by a pre-trained Convolutional Neural Network (CNN), perform better than, or comparably to, the other nine types of hand-crafted or CNN descriptors and an image quality assessment measure, together with the proposed TSQA approach. 
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1. Introduction
Texture analysis tasks, such as texture classification [2] and generation [12], have been explored in many knowledge-based systems. As a well-established computer vision topic, texture synthesis [10] is normally used to generate an image of different sizes from a small texture sample. This technique plays an important role in computer game and movie industries and virtual reality. For example, texture synthesis has been used for scene rendering or editing in the film or animation production. Ideally, synthesised images should manifest patterns visually similar to the samples in both local and global appearance. In particular, none of visual artifacts (e.g. blocks and seams) and repetitions of sub-patterns that are not presented in the sample can be found in the synthesised image [6]. In this context, Texture Synthesis Quality Assessment (TSQA) is key to various applications of texture synthesis. Image quality assessment [26], [43] studies have been extensively conducted in order to measure the quality of an image. In contrast, TSQA has been rarely studied, excepting a few studies [16], [37], [39]. To our knowledge, however, none of these studies focuses on exploiting perceptual texture similarity for TSQA.
[bookmark: OLE_LINK125][bookmark: OLE_LINK126]In the literature, human perception is usually used to assess various computer vision algorithms, e.g. texture similarity estimation [7], [11] and perceived visual complexity [17]. Recently, Dai et al. [6] collected a set of human perceptual scores that measure the quality of the images generated by four texture synthesis algorithms (see Fig. 1 for example). Nevertheless, it is not clear as to whether or not computer vision algorithms are able to predict texture synthesis quality scores as human beings.
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[bookmark: OLE_LINK287][bookmark: OLE_LINK288][bookmark: OLE_LINK289]Fig. 1. Examples for texture synthesis: (a) a sample texture [6]; and (b-e) four synthesised textures generated by the Quilting [13], MMRF [30], RPN [15] and Wavelet [32] synthesis algorithms respectively. The best quality score: 0.5 was assigned to (c) by a human expert [6].

[bookmark: OLE_LINK156][bookmark: OLE_LINK157]Texture similarity estimation [7], [11], [18] considers the degree of the likeness of two textures. When the quality of texture synthesis is assessed, the synthesised texture has to be compared with the sample. As a result, the similarity of the two textures is considered. We therefore aim to assess texture synthesis quality using texture similarity in a perceptually consistent manner. We first introduce two perceptual similarity principles for the TSQA task. Based on these principles, we then train two Random Forest (RF) regressors [3] using both the human perceptual score [6] and the concatenation of the global or local descriptors extracted from the sample and synthesised textures. In essence, the two regressors map the global and local computational texture similarity to the human perceptual space respectively. Given a pair of sample and synthesised textures, these regressors can be used to predict the global or local synthesis quality scores. Finally, both the scores are further processed and an overall quality score is generated.
[bookmark: OLE_LINK92][bookmark: OLE_LINK103][bookmark: OLE_LINK104]To our knowledge, this study is the first attempt to perform TSQA using perceptual texture similarity. Compared with the existing studies [16], [24], [33], [38], [39], we aim to assess the synthesis quality of not only (near-) regular but also random textures by exploiting both the global and local similarities calculated using a large set of features. The contributions of this study are threefold. First, we introduce two perceptual similarity principles for TSQA, which can also be used by others to develop new algorithms. Second, we propose a new TSQA approach based on these principles. In contrast, Dai et al. [6] focused on modelling the synthesisability of a sample texture in order to choose suitable samples for texture synthesis. However, we aim to predict the quality score of a synthesised texture using the perceptual similarity between this texture and the sample. Third, we examine ten different image descriptors using the proposed approach and an image quality assessment method. The results provide the community with a series of benchmarks for future research.
The rest of this paper is organised as follows. In Section 2, we review the related work. We introduce the two perceptual similarity principles for TSQA in Section 3. In Section 4, the proposed TSQA approach is described. The experimental setup and results are reported in Sections 5 and 6 respectively. Finally, our conclusions are given in Section 7.
2. Related Work
2.1 Image Quality Assessment (IQA)
Image Quality Assessment (IQA) aims to evaluate the quality of images or videos in a perceptually-consistent way. Wang et al. [41] developed the Structural Similarity Index (SSIM) method on the basis of the degradation of the structural information. Sheikh et al. [34] further addressed the IQA problem using a natural scene statistic based information fidelity criterion. Zhang et al. [43] introduced a feature similarity (FSIM) index using both phase congruency and image gradient magnitude features. Liu et al. [25] used the gradient similarity to quantify the change in the contrast and structure of images. Recently, Yang et al. [42] proposed a stereoscopic image quality evaluation approach, which is particularly designed for the images altered by potential asymmetric or symmetric distortions.
[bookmark: OLE_LINK161][bookmark: OLE_LINK162]To summarise, the aforementioned IQA methods were normally developed based on the pixel-wise or region-wise comparison. However, texture can be considered as a spatial identity that contains a set of primitives placed according to a spatial layout [40]. In this context, both local and global texture characteristics are important to the comparison of the sample and synthesised textures. Besides, the IQA methods usually concern a pair of equal-sized images. Nevertheless, synthesised textures can have different sizes. Therefore, those methods are not competent at the texture synthesis quality assessment task.
2.2 Texture Synthesis Quality Assessment (TSQA)
Qin and Yang [33] used the distance between the basic grey level aura matrices computed from the sample and synthesised textures as a texture synthesis quality measure. Also, the distance between the Gram matrices calculated from the original and synthesised textures was used to assess the synthesis quality [38]. In both studies, the quality score was only used to guide texture synthesis. Besides, the local similarity of the two textures was not considered. Lin et al. [24] used the geometric regularity and appearance regularity to evaluate the synthesis quality of near-regular textures. It is unknown whether or not this method is applicable to assessing the synthesis quality of random textures. Swamy et al. [37] built the relationship between the parameters of synthesis algorithms and the quality of texture synthesis. Therefore, their method is algorithm-dependent but is not generic for assessing novel algorithms. Varadarajan and Karam [39] measured the quality of synthesised textures based on the difference between the perceived regularity of the sample and synthesised textures. Golestaneh and Karam [16] extended this method using more properties. However, Heaps and Handel [18] found that a dimensional model is not applicable to texture similarity. Thus, encoding textures using several properties is probably insufficient. In this study, we aim to assess the synthesis quality of both (near-) regular and random textures using the global and local similarities computed from a large set of features.
2.3 Perceptual Texture Similarity Estimation
Although perceptual texture similarity can be estimated using several texture properties [1], this type of texture descriptors are probably incompetent as we discussed above. Payne et al. [31] benchmarked computational texture rankings against perceptual rankings; while Zujovic [45] examined binary texture similarity [11]. However, both studies did not use fine-grained similarity data. Recently, Dong et al. [7], [11] evaluated the ability of 51 texture descriptors to predict fine-grained texture similarity. Since the assessment of texture synthesis quality needs to compare the synthesised texture against the sample, in essence, perceptual texture similarity estimation is involved. Therefore, we are inspired to fulfil the TSQA task using perceptual texture similarity.
[bookmark: OLE_LINK151][bookmark: OLE_LINK152]3. Two Perceptual Similarity Principles for TSQA
[bookmark: OLE_LINK171][bookmark: OLE_LINK172]Julesz [20] originally introduced the concept of textons for representing texture primitives. In the opinion of structural texture analysis, texture comprises a set of primitives placed according to a certain spatial layout [40]. In this context, both the primitives (or small regions) contained in the sample and synthesised textures and their spatial layouts should be similar when they are compared. On the other hand, texture synthesis algorithms can be divided into parametric [32] and non-parametric [13] methods. Parametric methods normally retain the global layout but they may not encode the local structure of the samples. In contrast, non-parametric methods incline to preserve the local structure while they may be unable to capture the global structure of the the samples. Motivated by these studies, two perceptual similarity principles are proposed for TSQA. We describe these principles in detail below.
3.1 The Synthesised Texture Should Be Locally Similar to the Sample
Since texture is normally considered to be homogeneous, the similarity of the local regions contained in the two textures should be concerned when one compares a synthesised texture with the sample. In particular, this principle is important when the synthesis process partly fails. As shown in each group of Fig. 2(a), the synthesised texture displayed on the right hand side consists of elements or regions that are dissimilar to the primitives presented in the sample (middle). As a result, it was assigned the lower quality score than that was assigned to the synthesised texture shown on the left hand side [6].
3.2 The Synthesised Texture Has to Be Globally Similar to the Sample
Ideally, the synthesised texture is globally similar to the sample. If the spatial layouts of the primitives contained in the two textures are different, they are not similar at all. In each group of Fig. 2(b), the synthesised texture shown on the left hand side is more similar to the sample (middle) than that displayed on the right hand side. This observation should be attributed to the fact that the spatial layout of the primitives was scrambled when synthesising the right hand side image.
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Fig. 2.  In each group, the synthesised texture [6] shown on the left was given higher quality score than that assigned to the synthesised texture displayed on the right, compared with the sample texture in the middle. 
4. The Proposed TSQA Approach
[bookmark: OLE_LINK127][bookmark: OLE_LINK128][bookmark: OLE_LINK129]In this section, we introduce a novel TSQA approach. To represent a texture, we extract the bag-of-words (BoW) [36] descriptor from the deep convolutional features [5] computed using a pre-trained CNN. In practice, the BoW descriptor used here can be replaced by another image descriptor. The two BoW descriptors extracted from the sample and synthesised textures are concatenated into a single image descriptor. This type of descriptors is used to train a random forest (RF) regressor [3] along with the human perceptual synthesis quality scores [6]. Given a pair of sample and synthesised textures, the regressor can be used to predict the perceptual quality score of the synthesised texture. The pipeline of the proposed approach is shown in Fig. 3. In terms of the two perceptual similarity principles described in Section 3, local and global descriptors are first extracted respectively. Then, two RF regressors are trained using the two types of descriptors separately. Finally, two individual quality scores predicted by these regressors are further combined in order to produce an overall quality score.
4.1 Deep Bag-of-Words (BoW) Descriptor Extraction
In previous studies [5], [8], it has been found that the bag-of-words (BoW) [36] image descriptors calculated from deep convolutional features outperformed those extracted from hand-crafted features. Compared with other deep visual word descriptors [19], [21], [22], the computational speed of BoW descriptors is faster and the dimensionality of these features is lower. Both merits are particularly important to the local descriptor extraction introduced in Section 4.2. Therefore, we use deep BoW descriptors [5] for texture representation.
[image: D:\Paper Submissions\IEEE Transactions on Industrial Informatics\Texture Synthesis Quality Assessment\Figures\Flowchart.eps]
Fig. 3.  The pipeline of the proposed texture synthesis quality assessment (TSQA) approach. Here, feature extraction and synthesis quality score prediction can be performed for global or local descriptors (see Section 4.2 for more details).

[bookmark: OLE_LINK3][bookmark: OLE_LINK4]4.1.1 Deep Convolutional Feature Extraction
[bookmark: OLE_LINK19][bookmark: OLE_LINK20][bookmark: OLE_LINK21][bookmark: OLE_LINK22][bookmark: OLE_LINK23][bookmark: OLE_LINK76][bookmark: OLE_LINK77][bookmark: OLE_LINK80][bookmark: OLE_LINK81][bookmark: OLE_LINK82]Deep convolutional features are extracted from the activation of the last convolutional layer (“Conv5_4”) of a pre-trained CNN: VGG-VD-16 [35]. The centre of Fig. 3 shows the architecture of this CNN. Specifically, the weights of the filters at different layers of the CNN are available when the model is loaded into the memory. After an image is fed into the CNN, it is convolved with the filters at each layer in turn. The output of the convolution operation at each layer is a set of feature maps. These feature maps can be treated as a series of filter responses. The feature extraction is performed in a multi-scale manner in order to exploit multiple resolutions. Given a texture image , six scales:  ( {-2, -1.5, -1, -0.5, 0, 0.5}) are considered. An image  is obtained at each scale. Before the image  is fed into the CNN, it is subtracted by the average colour  of the dataset used for training the CNN as:
	.
	(1)


[bookmark: OLE_LINK86][bookmark: OLE_LINK87][bookmark: OLE_LINK238][bookmark: OLE_LINK99][bookmark: OLE_LINK100]As a result, 512 feature maps () are produced at the last convolutional layer of VGG-VD-16 [35]. In other words, a 512-D feature vector is obtained at a point in these feature maps. The coordinates where convolutional features are extracted at the six scales are mapped into the original image plane. A series of operations, including the  normalisation,
	,
	(2)


PCA, whitening
	[bookmark: OLE_LINK259][bookmark: OLE_LINK260][bookmark: OLE_LINK261][bookmark: OLE_LINK266],
	(3)


and a second  normalisation, are applied to the 512-D feature vectors in turn. (In Equation (3),  is a non-singular covariance matrix of ). Finally, a set of 64-D deep convolutional feature vectors are derived from the image.
The deep convolutional feature extraction is conducted for each sample texture and synthesised texture separately.
4.1.2 Deep Visual Word Learning
[bookmark: OLE_LINK33][bookmark: OLE_LINK34][bookmark: OLE_LINK35][bookmark: OLE_LINK36][bookmark: OLE_LINK37][bookmark: OLE_LINK38][bookmark: OLE_LINK173][bookmark: OLE_LINK177][bookmark: OLE_LINK178]In this study, we use sample textures for visual word learning which has been widely used in image classification [44]. Using k-means, deep visual words are learnt from the deep convolutional features extracted from a subset of these textures. In total,  deep visual words are learnt, which are comprised of a visual word dictionary  (). Similar to textons [20], these visual words encode texture primitives. 
[bookmark: OLE_LINK7][bookmark: OLE_LINK8]4.1.3 Vector Quantisation for Deep Convolutional Features
[bookmark: OLE_LINK52][bookmark: OLE_LINK53][bookmark: OLE_LINK47][bookmark: OLE_LINK48][bookmark: OLE_LINK49]Vector quantisation (VQ) is used to map the deep convolutional features extracted from sample or synthesised textures into the visual word dictionary . For a convolutional feature vector (, ), specifically, it is compared with each deep visual word  (). The index  of the word which has the shortest distance from  in the feature space is assigned to the location where  has been extracted based on the formula below:
	[bookmark: OLE_LINK44][bookmark: OLE_LINK45][bookmark: OLE_LINK46],
	(4)


where  denotes the quantisation function of the feature vector  and  stands for a deep visual word.
A visual word index is assigned to each location where a convolutional feature vector has been extracted after vector quantisation has been performed. 
4.1.4 Deep BoW Descriptor Generation
Given that the convolutional feature vectors extracted from an image have been quantised, the BoW descriptor can be obtained by accumulating a histogram from the occurrence frequency of all the visual word indices. 
4.2 Global and Local Descriptor Extraction
It should be noted that the descriptor extraction operation described in Section 4.1 can be replaced by other image descriptor extraction methods. In this study, we extract the global and local descriptors according to the two perceptual similarity principles (see Section 3) respectively. 
Global Descriptor The global descriptor  is extracted from a full texture image. It encodes the global characteristics of the texture. 
[bookmark: OLE_LINK200][bookmark: OLE_LINK215][bookmark: OLE_LINK216][bookmark: OLE_LINK219][bookmark: OLE_LINK220][bookmark: OLE_LINK221][bookmark: OLE_LINK222]Local Descriptor In total, , non-overlapping  patches are cropped from a texture image (see Fig. 4) ( = 9 and  = 51 were used in this study). To capture the local characteristics of a texture,  descriptors  () are extracted from the  patches respectively. In terms of each patch, a descriptor is computed from the corresponding patches in all the feature maps. This strategy boosts the computational speed. The  descriptors are separately  normalised using
	,
	(5)


and are concatenated into a single descriptor as
	.
	(6)


 is referred to as the local descriptor.
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Fig. 4. The example for local descriptor extraction: (a) the sample texture [6] and (b) the synthesised texture [6]. In our experiment, nine 51×51 non-overlapping patches are cropped from each sample or synthesised texture in order to extract the local descriptor.
4.3 Random Forest Regressor Training
The Random Forest (RF) regressor [3] is used to learn the human perceptual texture synthesis quality assessment. The reasons for using this method include that (1) it is more efficient and (2) it handles the overfitting problem better, compared with other regressors, e.g. Support Vector Machines (SVM) [14].
4.3.1 Random Forest Regression
[bookmark: OLE_LINK11][bookmark: OLE_LINK12][bookmark: OLE_LINK17][bookmark: OLE_LINK64][bookmark: OLE_LINK71][bookmark: OLE_LINK26][bookmark: OLE_LINK27][bookmark: OLE_LINK28][bookmark: OLE_LINK18][bookmark: OLE_LINK24][bookmark: OLE_LINK25][bookmark: OLE_LINK65][bookmark: OLE_LINK66][bookmark: OLE_LINK67]Compared to the classifier which predicts discrete class labels, a regressor can be used to estimate continuous variables. Let us have a set of training descriptors  () and a set of associated continuous-valued ground-truth data . The random forest regressor is trained by estimating a probability density function . 
[bookmark: OLE_LINK63][bookmark: OLE_LINK60][bookmark: OLE_LINK61][bookmark: OLE_LINK62][bookmark: OLE_LINK40][bookmark: OLE_LINK41][bookmark: OLE_LINK54]Assuming that  () denotes a binary decision tree, it can be used to classify a descriptor  by visiting the tree till a leaf node is reached. For a tree node , a binary split function is associated with it. This function is written as:
	[bookmark: OLE_LINK29][bookmark: OLE_LINK30][bookmark: OLE_LINK31][bookmark: OLE_LINK68][bookmark: OLE_LINK69][bookmark: OLE_LINK70],
	(7)


[bookmark: OLE_LINK58][bookmark: OLE_LINK59][bookmark: OLE_LINK55][bookmark: OLE_LINK56][bookmark: OLE_LINK57]where  is a parameter. When ,  goes to the left child node of ; otherwise,  is sent to the right child node of . The above operation is repeatedly performed till  arrives at a leaf node. Regarding the descriptor, , the prediction is returned as:
	,
	(8)


which is stored at the leaf node. The split function  can be simply implemented by applying a threshold as:
	,
	(9)


where  is an indicator function and
	.
	(10)


[bookmark: OLE_LINK74][bookmark: OLE_LINK75]A set of individual decision trees:  () are comprised of a decision forest. For the descriptor , all the predictions  are integrated into a single prediction  using an ensemble model. In this case, the overfitting problem may be avoided.
4.3.2 Training Data Preparation
Texture Descriptors Given a sample texture, two descriptors extracted from it and a related synthesised texture are first  normalised and then concatenated into an individual descriptor. This descriptor is further  normalised. It should be noted that the normalisation of descriptors does not make difference for the random forest [3] regressor because this regressor does not compute the distance between descriptors. To be exact, it only uses the ranking of features for splitting while the normalisation operation does not change the ranking. However, the normalisation is necessary for the SVM [14] regressor as it utilises the distance between descriptors to build a hyperplane. To obtain a fair comparison between different regressores, we apply the  normalisation to the concatenated descriptor.
Ground-Truth Quality Scores If the synthesised texture is generated by the algorithm annotated as the best method, the associated perceptual quality score (0.5 or 1.0) is used as the ground-truth data; otherwise, 0.0 is used. For a sample texture, in total four descriptors are derived in terms of the four synthesised textures respectively.
4.3.3 Training
Both the normalised concatenated descriptors, extracted from the training image dataset, and the associated ground-truth quality scores are used to train a random forest regressor. Since the dimentionality of the local descriptor () is  times that of the global descriptor (), they cannot be used with the same regressor. Therefore, two different regressors are trained using the global descriptor and the local descriptor respectively. In essence, they map the global or local similarity between the sample and synthesised textures into the human perceptual space.
4.3.4 Predicting Perceptual Texture Synthesis Quality Scores
[bookmark: OLE_LINK188][bookmark: OLE_LINK189][bookmark: OLE_LINK190][bookmark: OLE_LINK191][bookmark: OLE_LINK192][bookmark: OLE_LINK193][bookmark: OLE_LINK5][bookmark: OLE_LINK6][bookmark: OLE_LINK194][bookmark: OLE_LINK195][bookmark: OLE_LINK105][bookmark: OLE_LINK106][bookmark: OLE_LINK109]The concatenation and normalisation of the two descriptors computed from the sample and an associated synthesised texture are obtained as described in Section 4.3.2. The quality score of the synthesised texture is predicted using the concatenated descriptor and the corresponding random forest regressor. In terms of the global and local descriptors, the global quality score () and the local quality score () are predicted respectively. The overall quality score () is produced from  and  according to:
	.
	(11)


In our study,  was used.
To examine the ability of the proposed method for the TSQA task, the three types of scores are used to decide the best synthesis algorithm for each sample.
4.3.5 Best Synthesis Algorithm Prediction
[bookmark: OLE_LINK196][bookmark: OLE_LINK197][bookmark: OLE_LINK88]Given a sample, four quality scores  () are predicted for the four synthesised textures respectively. The best synthesis algorithm can be decided by the formula below:
	.
	(12)


Here,  can be one of ,  and .
5. Experimental Setup
In this section, we describe the dataset, baseline image descriptors, implementation notes and performance measure used in our experiment in detail.
5.1 Dataset
[bookmark: OLE_LINK93][bookmark: OLE_LINK94][bookmark: OLE_LINK95]The ETH Synthesisability dataset [6] was used, which includes 21,302 sample textures (see Fig. 5 for examples). Each sample was used with four synthesis approaches: Quilting [13], MMRF [30], RPN [15] and Wavelet [32] to synthesise a set of four textures respectively. Each set of synthesised textures were annotated by an expert with the best quality score across these textures. The score is one of three grades: 1.0 (“Good”), 0.5 (“Acceptable”) and 0.0 (“Bad”). Meanwhile, the “best” synthesis approach was also recorded for each “Good” or “Acceptable” sample. 
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Fig. 5. Six sample textures in the ETH Synthesisability dataset [6]).
5.2 Baseline Image Descriptors
In this study, we evaluated a series of baseline image descriptors, including four traditional texture descriptors, three additional deep visual word descriptors, and two deep fully-connected descriptors. These descriptors can be easily incorporated into the proposed TSQA approach by replacing the deep BoW [36] descriptor modules (see Fig. 3). Besides, we examined an image quality assessment measure.
5.2.1 Traditional Texture Descriptors
We examined four texture descriptors. An image was first normalised to have zero mean and unit standard deviation before feature extraction was conducted. This operation eliminates the impact of 1st- and 2nd-order grey level (moment) statistics on the image [28].
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]Basic Grey Level Aura Matrices (BGLAM) Basic aura matrices [33] normally include sets of 2-D (co-occurrence) histograms in which the axes denote the two grey levels of the pairs of pixels. We linearly compressed the number of the grey levels to eight in order to reduce the dimensionality of the BGLAM descriptors. 
Gabor Wavelet Filter Bank (GaborMM) Motivated by the extensive application of the wavelet transform for multiresolution analysis [29], we tested the Gabor wavelet filter bank [27] in this study. Manjunathi and Ma [27] defined a 2-D Gabor function in the frequency domain. We used the magnitudes of the response matrices computed at six orientations and four scales. The mean and standard deviation were computed for each magnitude matrix and were concatenated into a single descriptor. 
Leung-Malik Filter Bank (LM) Leung and Malik [23] introduced a hybrid filter bank, including 36 Gaussian derivative filters, eight Laplacian of Gaussian filters and four Gaussian low-pass filters. The mean and standard deviation were computed for each magnitude matrix and were concatenated into an individual descriptor.
Local Binary Patterns (LBP) We used the “uniform” and the grey-scale and rotation invariant version:  [28] for LBP.  was used for the radius.
5.2.2 Deep Visual Word Descriptors
Deep visual words were extracted using the same way as that introduced in Section 4.1. We tested three additional visual word descriptors as follows.
[bookmark: OLE_LINK89][bookmark: OLE_LINK163][bookmark: OLE_LINK164]Fisher Vectors (FV) The FV [21] descriptors were computed using the signed square-rooting and  normalisation.
Spatial Pyramid Matching (SPM) The BoW [36] descriptors extracted at three levels of spatial pyramids were weighted and concatenated as Lazebnik et al. [22] proposed.
Vector of Locally Aggregated Descriptors (VLAD) The VLAD [19] descriptors were calculated using the signed square-rooting and global  normalisation schemes.
5.2.3 Deep Fully-Connected (FC) Descriptors
The FC descriptors were extracted from the penultimate FC layer of a pre-trained CNN model. In this study, the pre-trained VGG-M [4] and VGG-VD-16 [35] models were used.
5.2.4 Feature-Similarity (FSIM) Index
[bookmark: OLE_LINK182][bookmark: OLE_LINK183][bookmark: OLE_LINK184][bookmark: OLE_LINK179][bookmark: OLE_LINK180][bookmark: OLE_LINK181]Since the FSIM index [43] does not require that the sample and synthesised textures have the same size, we tested it in our experiment. Specifically, we computed this index between the sample and synthesised textures. The index value was used as the quality score of texture synthesis.
5.3 Implementation Notes
In total, three sets of words, including 50, 100 and 200 words, were learnt. These words were used to compute BoW [36], FV [21], SPM [22] and VLAD [19] descriptors. An -dimensional descriptor was first  normalised before it was fed into the random forest regressor [3]. As Breiman [3] performed, a subset of  features was randomly selected. The minimum size of the terminal nodes was set to 0.01% of the number of the training samples. Feature and decision boundary selections were performed using the Gini impurity measure [3] for each branch node of the subset. 
Since only the best synthesised texture was annotated by the expert with a quality score for each “Good” or “Acceptable” sample, we approximated the quality score of the other synthesised textures as 0.0. In terms of a “Bad” sample, all the scores of the four synthesised textures were set to 0.0. We randomly selected 30% samples (and related synthesised textures) for training and the remainder was used for testing. 
5.4 Performance Measure
[bookmark: OLE_LINK198][bookmark: OLE_LINK199]It should be noted that only 0.0, 0.5 and 1.0 were annotated by the expert for quality scores. Since the resolution/graininess of these scores was low while the scores predicted by the random forest regressor were continuous, we did not directly compare the two types of scores. Instead, we measured the accuracy of the prediction of the best synthesis algorithm in order to assess the performance of the proposed TSQA approach. The best synthesis algorithm’s prediction is compared with that annotated by the expert. The number of the consistent predictions, , is accumulated. Assuming that the number of all the test samples is denoted as , the accuracy () of the best synthesis algorithm prediction can be defined as:
	.
	(13)


We used this metric as the performance measure for our TSQA approach.
6. Experimental Results
[bookmark: OLE_LINK117][bookmark: OLE_LINK118][bookmark: OLE_LINK119][bookmark: OLE_LINK110][bookmark: OLE_LINK111][bookmark: OLE_LINK112][bookmark: OLE_LINK113]In this section, we report the results obtained in different conditions for determining the best synthesis algorithm using the predicted texture synthesis quality scores. We first present the results derived using the global scores () which are predicted by the proposed method with different parameters. We also compare the BoW [36] descriptor and the random forest [3] regressor with other approaches. Then, we compare the results derived using different quality scores, including global quality scores (), local quality scores () and overall quality scores ().
6.1 Performance of Global Scores ()
We first investigate the effects of different parameters on the proposed method for predicting the best synthesis algorithm. For simplicity, only the global score () is used. The deep BoW [36] descriptor is also compared with the baselines described in Section 5.2. In addition, we compare random forests [3] with the SVM [14] regressor. 
6.1.1 Effect of the Number of Words
We tuned the value of the number of words. This value was set to 50, 100 and 200. In Table 1, we compare the BoW [36] descriptor with three different deep visual word descriptors using 2000 trees for determining the best synthesis algorithm. As can be seen, (1) the use of three spatial pyramid levels (SPM [22]) yielded worse results than those obtained using BoW. This finding is consistent with that observed in the texture classification task [9]; (2) BoW with 100 words performed better than that of using 50 or 200 words; and (3) FV [21] and VLAD [19] yielded slightly better results than those of BoW.

Table 1: The accuracy (%) for best synthesis algorithm prediction obtained using the global scores that are predicted by the BoW [36], FV [21], SPM [22] and VLAD [19] descriptors with different numbers of words when 2000 trees are used
	Descriptor
	BoW
	FV
	SPM
	VLAD

	Num. of Words
	50
	60.05
	61.94
	56.66
	61.93

	
	100
	61.39
	62.54
	59.41
	62.42

	
	200
	61.24
	62.00
	59.78
	62.26



Table 2: The accuracy (%) for best synthesis algorithm prediction obtained using the global scores that are predicted by four deep visual word descriptors with 200 words and the random forest [3] regressors containing different numbers of trees
	Descriptor
	BoW
	FV
	SPM
	VLAD

	Num. of Trees
	20
	51.73
	52.94
	47.08
	55.05

	
	50
	56.14
	55.98
	50.28
	57.34

	
	100
	57.61
	58.15
	54.52
	59.68

	
	200
	59.60
	59.90
	55.99
	60.78

	
	1000
	60.96
	61.65
	59.12
	62.26

	
	2000
	61.24
	62.00
	59.78
	62.26


6.1.2 Effect of the Number of Trees
[bookmark: OLE_LINK141][bookmark: OLE_LINK142][bookmark: OLE_LINK143][bookmark: OLE_LINK174][bookmark: OLE_LINK175][bookmark: OLE_LINK176]Using four deep visual word descriptors: BoW [36], FV [21], SPM [22] and VLAD [19], we changed the value of the number of trees used for the proposed TSQA approach. In total, 20, 50, 100, 200, 1000 and 2000 trees were used. Table 2 reports the accuracy values for best synthesis algorithm prediction produced by the four deep visual word descriptors with 200 words. It can be observed that (1) the performance of these descriptors went up when more trees were used; (2) SPM [22] was outperformed by the three counterparts; and (3) the BoW descriptor generated slightly worse results than FV and VLAD.
6.1.3 Comparison with Other Image Descriptors
[bookmark: OLE_LINK168][bookmark: OLE_LINK169][bookmark: OLE_LINK170][bookmark: OLE_LINK130][bookmark: OLE_LINK131][bookmark: OLE_LINK132][bookmark: OLE_LINK149][bookmark: OLE_LINK150][bookmark: OLE_LINK133][bookmark: OLE_LINK134]Using the proposed TSQA method, the BoW descriptor was compared with the four traditional texture descriptors, two CNN fully-connected descriptors and an image quality measure. Table 3 lists the results obtained using different numbers of trees. It is shown that (1) the BoW descriptor was always superior to its counterparts; (2) GaborMM [27] performed better than the other traditional descriptors; (3) BoW outperformed the two CNN fully-connected descriptors: VGG-M [4] and VGG-VD-16 [35]; and (4) BGLAM [33], LBP [28], LM [23] and FSIM [43] yielded weak performances.

Table 3: The accuracy (%) for best synthesis algorithm prediction obtained using the global scores predicted by four traditional descriptors, two CNN fully-connected descriptors, FSIM [43] and the BoW descriptor with 200 words when the random forest regressors containing different numbers of trees are used.
	Descriptor
	BGLAM
	GaborMM
	LBP
	LM

	Num. of Trees
	20
	40.78
	40.44
	39.38
	35.55

	
	50
	42.69
	43.78
	39.17
	37.53

	
	100
	43.25
	45.65
	39.90
	38.70

	
	200
	44.11
	48.68
	40.71
	39.74

	
	1000
	45.67
	52.96
	41.21
	43.47

	
	2000
	45.87
	54.42
	41.04
	43.78

	Descriptor
	VGG-M
	VGG-VD-16
	FSIM
	BoW-W200

	Num. of Trees
	20
	44.26
	47.26
	12.91
	51.73

	
	50
	47.26
	50.72
	
	56.14

	
	100
	49.37
	53.46
	
	57.61

	
	200
	50.88
	55.35
	
	59.60

	
	1000
	52.79
	56.85
	
	60.96

	
	2000
	52.97
	56.85
	
	61.24



6.1.4 Comparison with the SVM Regressor
[bookmark: OLE_LINK16][bookmark: OLE_LINK90][bookmark: OLE_LINK91]We also tested the Support Vector Machine (SVM) [14] regressor. To be precise, we replaced the random forest [3] regressor used by the proposed TSQA method with the SVM regressor. Since the Radial Basis Function (RBF) kernel has been extensively used for SVM, we utilised it. The Libsvm [14] package was used together with default parameters. Figure 6 presents the results produced by the random forest and SVM regressors. It can be seen that SVM always yielded worse results than those generated by random forests. 
[image: D:\Paper Submissions\IEEE Transactions on Industrial Informatics\Texture Synthesis Quality Assessment\Figures\ScoreMatrixHist.eps]
Fig. 6. Comparison between random forests (RF), SVM and the direct distance (DD) for 18 different image descriptors.
6.1.5 Comparison with the Direct Distance
Inspired by the texture similarity studies [7], [11], we computed the distance (dissimilarity) between the descriptors extracted from the sample and synthesised textures. In total, four distance values  () were calculated for the four synthesised textures of a sample respectively. The best synthesis algorithm was selected based on the equation:
	.
	(14)


We applied the above approach to the BoW [36] and the baseline descriptors. The Chi-square () statistic and the Euclidean distance were used for histogram-based descriptors and the other descriptors respectively [7], [11]. The accuracy values obtained using the direct distance and the random forest regressor [3] are shown in Fig. 6. As can be seen, the random forest regressor always outperformed the direct distance with a large margin, no matter what descriptor was used. 
6.2 Comparison of Different Quality Scores
[bookmark: OLE_LINK201][bookmark: OLE_LINK202][bookmark: OLE_LINK203][bookmark: OLE_LINK204][bookmark: OLE_LINK205][bookmark: OLE_LINK212][bookmark: OLE_LINK213][bookmark: OLE_LINK214][bookmark: OLE_LINK185][bookmark: OLE_LINK186][bookmark: OLE_LINK187][bookmark: OLE_LINK206][bookmark: OLE_LINK207][bookmark: OLE_LINK208]We further compare the accuracy values for the best synthesis algorithm prediction obtained using three quality scores: ,  and . Specifically, the global and local quality scores:  and  were predicted using the global and local descriptors, respectively, together with the RF regressor [3]. The overall quality score  was obtained by fusing  with  according to Equation (11)). When only the global quality score was considered, the BoW descriptor performed better than its counterparts except FV [21] and VLAD [19]. However, there is not a significant difference between its performance and that of FV or VLAD. Since the dimensionality of the BoW descriptor is far lower than that of FV or VLAD ( vs.  or  vs. ), we chose BoW for further investigation. Considering GaborMM [27] outperformed the other traditional descriptors, we also tested it in this experiment. 



Table 4: The accuracy (%) for best synthesis algorithm prediction obtained using the global, local and overall scores that are predicted by the GaborMM [27] and BoW [36] (100 or 200 words) descriptors and different numbers of trees.
	Descriptor
	GaborMM

	Number of Trees
	20
	50
	100
	200
	1000
	2000

	Global Score ()
	40.44
	43.78
	45.65
	48.68
	52.96
	54.42

	Local Score ()
	38.88
	43.61
	46.75
	50.23
	53.72
	54.78

	Overall Score ()
	42.31
	48.92
	52.53
	56.74
	60.07
	60.61

	Descriptor
	BoW-W100

	Number of Trees
	20
	50
	100
	200
	1000
	2000

	Global Score ()
	51.47
	54.65
	57.28
	58.85
	61.11
	61.39

	Local Score ()
	45.21
	49.56
	52.47
	54.49
	57.64
	57.97

	Overall Score ()
	54.97
	59.81
	62.84
	65.11
	67.04
	67.19

	Descriptor
	BoW-W200

	Number of Trees
	20
	50
	100
	200
	1000
	2000

	Global Score ()
	51.73
	56.14
	57.61
	59.60
	60.96
	61.24

	Local Score ()
	45.07
	49.00
	53.05
	54.89
	57.69
	58.09

	Overall Score ()
	54.08
	60.22
	63.08
	64.94
	66.96
	67.05



[bookmark: OLE_LINK209][bookmark: OLE_LINK210][bookmark: OLE_LINK211][bookmark: OLE_LINK101][bookmark: OLE_LINK102]The results are shown in Table 4. It can be observed that (1) the accuracy obtained using the local score  was lower than that derived using the global score  when the same descriptor and regressor were used; (2) the accuracy obtained using the overall score  is higher, compared with the values produced by the global or local scores in the same condition. This finding attributes to the fact that the overall score encodes both the global and local texture similarity. Both types of similarity data are important to the texture synthesis quality assessment; and (3) the BoW descriptor always outperformed GaborMM. This observation was independent on the type of quality scores and the number of trees that we used.
Besides, Table 5 shows the results derived using the overall scores that were predicted by the three descriptors with the SVM [14] regressor. It is shown that these results are inferior to those generated by random forests using the same descriptor. 
[bookmark: _GoBack]
Table 5: The accuracy (%) for best synthesis algorithm prediction obtained using the overall scores predicted by the GaborMM [27] and BoW [36] (100 or 200 words) descriptors along with SVM [14].
	Descriptor
	GaborMM
	BoW-W100
	BoW-W200

	
	53.85
	50.66
	53.44


 
Figure 7 displays six sets of results produced by the proposed TSQA method with the BoW descriptor (100 words) and 2000 trees using the overall score. As can be observed, our method ranked the synthesised textures properly according to the predicted synthesis quality score.
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Fig. 7. Results of our TSQA method obtained using the deep BoW descriptor (100 words) and 2000 trees: (column 1) six sample textures [6]; and (columns 2 to 5) six sets of synthesised textures ranked in the descending order of the predicted overall quality score in terms of the six samples.
7. Conclusions and Future Work
Inspired by texture similarity estimation studies, we aimed to assess texture synthesis quality by exploiting perceptual texture similarity. To this end, we first introduced two perceptual texture similarity principles. According to these principles, the global and local texture similarity should be taken into account when the sample and synthesised textures are compared. Then, we proposed a novel approach for texture synthesis quality assessment (TSQA). With regard to the two principles, the global and local quality scores are predicted for a synthesised texture respectively. The results for best synthesis algorithm prediction showed that the deep bag-of-words (BoW) image descriptor computed using a pre-trained CNN performed better than, or comparably to, its counterparts. In addition, the fusion of the global and local scores outperformed the separate use of each type of scores. In particular, the fused overall quality scores predicted using BoW produced the highest accuracy: 67.19%. It is suggested that (1) the two principles that we proposed are useful for the TSQA task; and (2) our approach is able to fulfil this task properly. 
It should be noted that the human ground-truth data used in this study comprises only three unique values: 0, 0.5 and 1.0. This may reduce the accuracy of regression. In addition, the dataset contains 21,302 textures. Due to the relatively limited size of this dataset, we did not end-to-end train a CNN. As a common practice, the end-to-end trained CNN normally produces the better performance than that obtained using a pre-trained CNN. Although promising results have been obtained, there is still a large space for further improvement. In our future work, we will expand the texture dataset and derive the finer-grained human data in order to boost the performance of the proposed approach. However, the key point is that we have explored a new direction for conducting texture synthesis quality assessment using perceptual texture similarity.
Besides, a knowledge-based system can be implemented on top of the proposed method. Such a system can be directly used to assess the quality of a synthesised texture. It can also be used as a sub-module of a texuture synthesis system. This sub-module is called in each or several iterations during the synthesis operation in order to decide as to whether or not this operation can be terminated.
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