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Abstract

THE TRANSPORTATION OF TRIFUNCTORS IN THE
TRICATEGORY OF BICATEGORIES

Andrew Smith

Tricategories, as the construction for the most general sort of weak 3-category being
given by explicit coherence axioms, are a particularly important structure in the study
of low-dimensional higher category theory. As such the correct notion of a morphism
between tricategories, the Trifunctor, is also an important object of interest. Just as
many constructions in mathematics can be realised by using functors between appropriate
categories, these constructions can be generalised to the 3-dimensional level by using
trifunctors between the appropriate tricategories. Of particular interest are trifunctors into

the tricategory of bicategories.

Given a mathematical structure laid on top of a base object, it can be useful to transport
that structure from the original object to a new object across a suitable sort of equivalence.
The collection of trifunctors between two tricategories forms a tricategory of its own. So
does the collection of functions from the objects of the source tricategory to the objects of
the target tricategory, which form the object level of any trifunctor. Therefore in this case
the appropriate notion of equivalence is that of biequivalence, and we would hope to be
able to transport the structure of a trifunctor across a collection of biequivalences at the

object level.

While the transport of structure at lower dimensions is achieved using monadic methods, at
the general 3-dimensional level these haven’t been developed. This thesis aims to provide a
method for transporting the structure of a trifunctor into the tricategory of bicategories
across object-indexed biequivalences. We do this by working directly from the definition of
trifunctor: by constructing the data needed for the new trifunctor from the data of the
original trifunctor and the biequivalences, and then proving that the axioms hold using

diagram manipulation techniques.
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Introduction

One useful tool in mathematics is the ability to take a given mathematical structure on
a set and transport that structure across a bijection, with that bijection then becoming
an isomorphism for the added structure as well. For instance, given a group G and a
bijection f: G — S, the set S becomes a group isomorphic to G using the operation
sxt= f(f~1(s) x f71(t)). The bijection allows us to transport the group structure of G
over to the set S.

The aim of this thesis is to take one particular type of structure - the structure of a
trifunctor from any tricategory 7T to the tricategory of bicategories Bicat - and transport it
across biequivalences in the tricategory of bicategories. Tricategories were first introduced
by Gordon, Power and Street [GPS95] and they are the natural construction for a weak
3-dimensional categorical structure. As an example, the collection of all bicategories forms
a tricategory in a natural way. As such, both tricategories and the morphisms between
them - trifunctors - are important objects of study in the field of low-dimensional higher
category theory.

There is considerable recent literature that makes use of tricategories (see Section
1.3). Although the results of this thesis do not immediately relate to these applications,
the uses of tricategories demonstrate the need to continue developing the foundations of
tricategorical theory. The technical complexity of working with the coherence cells and
axioms of tricategories has slowed the research in this area. We believe the results of this
thesis, obtained by working directly with those cells, are therefore a useful contribution
to the literature. Just as many mathematical objects can be realised as functors, many
objects of interest in 3-dimensional category theory can be realised as trifunctors. If we
can transport the structure of a trifunctor then we can also transport these structures
too. Moreover, the techniques developed to transport a trifunctor lead us to prove several
properties concerning particular diagram manipulations (see Chapter 4) which are of
independent interest to others engaged in research on tricategories.

We start by justifying the method used in this thesis to transport the trifunctor. The

way this will be accomplished is by constructing the pasting diagrams given by the axioms
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of a trifunctor and then manipulating them step-by-step in order to show that the start and
end diagrams (corresponding to each side of the axiom) are equal. At each step we need
to ensure that the manipulation we make results in an equal diagram. Fortunately, there
are many techniques we can use, based on the concepts of pseudonatural transformations
and modifications between bicategories, that allow many different manipulations of the
diagrams.

It is worthwhile to consider if more conceptual methods are available in the literature
to attack the problem. In 1-dimensional category theory, the idea of transporting structure
across an isomorphism can be realised by taking those structures to be algebras of a
monad. Given any monad 7T on a category, the forgetful functor from the Eilenberg-Moore
category of algebras is always an isofibration. This suggests that we could look at monadic
ideas for transporting structure in higher-dimensional category theory. This is precisely
how transport of structure is achieved at the 2-dimensional level: by the result of Kelly
and Lack [KLO04, Theorem 6.1], adjoint equivalences can be lifted to the 2-category of
pseudoalgebras for a 2-monad. This gives us transport of structure at the 2-dimensional
level.

Progress has been made in developing 3-dimensional monad theory, for example by
Power [Pow07]. However, these developments turn out to be insufficient for the purposes of
this thesis as they have focused only on the more specific case of monads on Gray-categories.
Similarly, we currently lack a monadic description of trifunctors, but only have such a
description for morphisms between Gray-categories [Buh14]. We see that a general method
for transport of tricategorical structure is an open problem not covered by the existing
frameworks.

We will therefore proceed with the more hands-on method, working directly from the
definitions and the pasting diagrams. Diagram-manipulation methods have seen good use
in the field: they were used to prove an important step towards the coherence theorem for
tricategories [GPS95, Lemma 3.6] by showing that the structure of a tricategory could be
transported across biequivalences of the hom-bicategories, and they also played a large role

in the development of the theory of biequivalences in tricategories [Gurl2].

Motivation

The motivation for considering the problem of transportation of trifunctors came from
research into the alternate model of higher categories known as Tamsamani categories
[Tam99]. Tamsamani categories are given by a recursive definition, with Tamsamani

1-categories being just categories and Tamsamani (n + 1)-categories being simplicial objects
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in a 2-category of Tamsamani n-categories obeying certain conditions: the most important
of which is that the Segal maps of the simplicial object are Tamsamani n-equivalences.

One question is how to compare Tamsamani 3-categories to tricategories. Cegarra and
Heredia [CH14] have built a functor from tricategories to T'az, but a functor from Ta3 to
tricategories is unknown. Our result on transporting trifunctors could be used to attack
this problem.

Tamsamani 3-categories T'az are in particular simplicial objects A? — Tay. After
using the comparison between Tamsamani 2-categories and bicategories given by Lack
and Paoli [LP08] these become simplicial objects A? — Bicat such that the Segal maps
X, — X1 xXx, 2o X, X1 are biequivalences of bicategories.

By interpreting the strict functors into the category of bicategories as trifunctors into
the tricategory of bicategories, we could consider transporting these trifunctors across the
biequivalences given by the Segal maps. This loses the strictness but makes it so that the
image of each object n is exactly the n-fold pullback, which could simplify the process of

understanding the Tamsamani 3-categories.

Outline

This thesis will proceed through the following chapters:

1. Introduction to Higher Category Theory: We start by exploring the ideas that
led to the development of higher category theory. In particular, we will explore
the reasons for studying weak higher categories and why strict n-categories are
insufficient.

We will also survey areas of mathematics where the results of low-dimensional higher
category theory are utilised. Theoretical physics in particular has many uses for 3

dimensional weak categories. This provides potential uses of the results of this thesis.

2. Bicategories: As the first example of a weak higher category, one step above
ordinary categories, bicategories are definitely noteworthy for the field of higher
category theory as a whole. This chapter will survey the history of and main results
on bicategories.

These include the all-important coherence theorem, showing that the axioms of a
bicategory are enough to show that all relevant diagrams of coherence cells commute.
We will also illustrate how the results of ordinary category theory - thought of as
taking place in the 2-category of categories - can be generalised to be internal to
any bicategory. Many of these results, and especially those relating to adjunctions,

are crucial to understanding operations on tricategories and the construction of the
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tricategory of bicategories, Bicat, which is the target of the trifunctors we wish to

study.

3. Tricategories: These 3-dimensional weak higher categories are the main object of
study of this thesis. We will survey the history of tricategories and the main results
on them to lay the groundwork.

This will start with the definition of tricategories themselves, and the more specific
Gray-categories. These provide the setting needed to formulate the coherence theorem:
a crucial result in 3-dimensional category theory.

From there, we survey the results on trifunctors and higher cells between tricategories.
These trifunctors are the structures that this thesis aims to manipulate and transport,

so we need to understand them thoroughly.

4. Manipulating Tricategorical Pasting Diagrams: The main results of this thesis

are proved by means of manipulating pasting diagrams formed from tricategorical
data, particularly in the tricategory of bicategories, in order to show that particular
source and target diagrams arising from trifunctors are in fact equal. In this chapter
we prove some original results that will help us in manipulating the diagrams.
The first will use the coherence theorem for bicategories. Many of the cells used
in the definitions result in coherence cells in the relevant bicategory. As such, the
coherence theorem gives us a lot of flexibility when manipulating these cells in the
diagram. We will mainly use these results to simplify the source and target diagrams
of the axioms that need to be proved, allowing them to be verified.

The results in this section are:

e Proposition 4.1.1, which simplifies the definition of a trifunctor F': T — Bicat.

e Proposition 4.1.2, which simplifies the definition of a tritransformation : F' =
G: T — Bicat.

e Proposition 4.1.3, which simplifies the definition of a biadjoint biequivalence

between bicategories A and B.

The other technique we will use is based on the definitions of pseudonatural transfor-
mation and modification. Many of the other cells in the diagrams being manipulated
are components arising from pseudonatural transformations and modifications which
have sources and targets which are composites of several arrows. Although the
definitions of pseudonatural transformation and modification only specify that the

components can be moved through the entire source to the entire target (or vice-versa)
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we will prove here that they can also be moved through any segment of their boundary.

This opens up many more options for moving them through the diagrams.

The original results proved in this section are:

e Proposition 4.2.1, allowing us to move the 2-cell of a pseudonatural trans-
formation through 2-cells even if those 2-cells don’t cover the entire source or

target.

e Proposition 4.2.2, allowing us to move a modification through some collection
of pseudonaturality 2-cells even if those 2-cells don’t add up to the pseudonatu-

rality 2-cell of the source or target of the modification.

5. Transporting a Trifunctor: In this chapter the main result of the thesis will be
proved. We will start by considering the original trifunctor F': 7 — Bicat and the
object-indexed biequivalences: these will provide us with the components needed to
construct the transported trifunctor.

We will then construct each piece of coherence data for the transported trifunctor
G: T — Bicat. At each level we’ll start by identifying the source and target of each
coherence cell of the transported trifunctor, demonstrate how each coherence cell can
be constructed by pasting together cells coming from the original trifunctor and the
biequivalences, and then prove that the results are suitably natural.

Once we have the 3-dimensional coherence cells of the transported trifunctor, we will
prove that these actually form a trifunctor. We’ll do this by considering the axioms
for a trifunctor, constructing the diagrams that form the source and target of each
axiom, and then manipulating the source diagram step-by-step to show that it is
equal to the target axiom. In this way we prove that the axioms for a trifunctor hold

for the newly-constructed transported trifunctor.

In this chapter the original results proved are:

e Proposition 5.2.1: we prove that the data constructed for the trifunctor G

satisfies the first (simplified) axiom of a trifunctor.

e Proposition 5.2.2: we prove that the data constructed for the trifunctor G

satisfies the second (simplified) axiom of a trifunctor.

e Theorem 5.2.3: since the data for G satisfies both trifunctor axioms, it is

indeed a trifunctor G: T — Bicat.

6. Lifting the Biequivalences: When considering transport of structure in ordinary

categories - when we have a structure applied to a base object and an isomorphism
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between that base object and some other - it is not only the case that we are
able to transport the structure to the new object. We are also able to turn the
isomorphism of the base objects into an isomorphism of the structure as well. Sim-
ilarly with tricategorical structures; the object-indexed biequivalences should also
become a tritransformation between the original and transported trifunctors. This is
what we partially accomplish in this chapter: turning the family of biequivalences
Sa: FA — GA into a tritransformation S: F = G.

As when constructing the transported trifunctor itself, we start by constructing the
data that makes up S: F' = G from the data of the object-indexed biequivalences and
the original trifunctor. We will work through the axioms of the tritransformations,
constructing the diagrams for each of the tritransformation axioms and aiming to

show that each pair of diagrams are equal by manipulating the pasting diagrams.

In this chapter we prove the original result:

e Proposition 6.2.1: we prove that the data constructed for the tritransformation

S satisfies the first (simplified) axiom of a tritransformation.

We also make three conjectures:

e Conjecture 6.3.1: we conjecture that the data constructed for the tritransfor-

mation S satisfies the second (simplified) axiom of a tritransformation.

e Conjecture 6.3.2: we conjecture that the data constructed for the tritransfor-

mation S satisfies the third (simplified) axiom of a tritransformation.

e Conjecture 6.3.3: following immediately from the other two conjectures, S
satisfies all three tritransformation axioms and is indeed a tritransformation
F=4G.

7. Conclusions and Further Directions: We conclude by summarising the main
ideas and results of the thesis. After, we consider potential applications for the results
of this thesis and directions for further work.

One potential use relates to another model of weak higher category theory: Tamsamani
categories [Tam99]. At the 3-dimensional level these Tamsamani categories can be
viewed as functors into bicategories; our result can be applied in context of Tamsamani
3-categories and we envisage that this will lead to an explicit comparison between
them and tricategories. There are also a few ways of potentially expanding the results
of the thesis. One idea uses a Yoneda argument, allowing us to relate any trifunctor

to one whose target is the tricategory of bicategories.



Chapter 1

Introduction to Higher Category
Theory

In this chapter we will survey some of the literature on the background of higher category
theory. We’ll start with the philosophical ideas that led to the development of higher
category theory as a field: it was needed to model many structures in homotopy theory,
mathematical physics, and in category theory itself. Studying these ideas shows that the
simplest type of higher categories - strict higher categories - aren’t sufficient for what we
want to use them for. This leads us to the much richer area of study given by weak higher
category theory.

We’ll then survey several approaches to weak higher categories. The explicit models
given by bicategories and tricategories are central to this thesis and therefore covered in
their own chapters, but there are also many other less direct models and it would be remiss
not to be aware of them.

Finally, we will give an overview of the fields of mathematics where the ideas of higher
category theory are used. We will particularly focus on applications of tricategories, as

these are potential places which could benefit from the foundational results of this thesis.

1.1 Philosophy of Higher Category Theory

Just as category theory is the study of categories, which consist of objects and arrows
between objects along with composition of arrows constrained by identity and associativity
laws, higher category theory is the study of structures consisting of objects and arrows
between objects and 2-cells between arrows (and so on: n-cells between (n — 1)-cells) along
with compositions in each direction. We must then understand what sorts of identity and

associativity constraints are suitable. The simplest among higher categorical structures are
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those where the identity and associativity laws hold just as they do in a category at all

levels (we call this complete strictness).

1.1.1 Strict n-categories

The simplest sorts of object in higher category theory are the strict n-categories.

Definition 1.1.1. A Strict n-Category C is defined recursively in the following way:
A strict 1-category is just a category.

Given the definition of a strict (n — 1)-category, a strict n-category is a category
enriched [Kel82] with respect to the Cartesian monoidal structure in strict (n—1)-categories.

That is, it consists of:
e A collection of Objects 0b(C).

e For each pair of objects A, B € ob(C), a strict (n — 1)-category denoted C(A, B). For
each k between 0 and (n — 1), the k-cells of this (n — 1)-category are the (k4 1)-cells
of C. That is, the objects of this (n — 1)-category are the Morphisms or 1-cells of C
(denoted f: A — B), the 1-cells of this (n — 1)-category are the 2-cells of C (denoted
a: f = g) and so on up to the top level where the (n — 1)-cells of C(A, B) are the
n-cells of C (similarly denoted with =).

e For each object A € ob(C) an object of C(A, A) labelled 14 called the Identity of A.

e For each triple of objects A, B,C € ob(C) a functor
®: C(B,C) x C(A,B) — C(A,C)

called Composition.

These are required to have the following two properties:

e The composition is Associative: i.e. for any four objects A, B,C, D € ob(C) the two

functors

- ®(-®—):C(C,D) xC(B,C) xC(A,B) — C(A, D)
and

(—®—-)®—:C(C,D)xC(B,C)xC(A,B) — C(A, D)
are equal.

e The Identity Laws hold: i.e. for any pair of objects A, B € ob(C) the functors

15 ® —: C(A, B) — C(A, B)
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and

—®14:C(A,B) — C(A, B)
are both equal to the identity.

Unpacking this definition, we see that a strict n-category consists of cells in dimensions
0 all the way up to n with all compositions in all directions being unital and associative.
One example has as its objects the collection of all categories, 1-cells given by functors,
and 2-cells given by natural transformations. Composition of both functors and natural
transformations is unital and associative, meaning that these do form a strict 2-category.
A related concept is the idea of a strict n-groupoid, which is the strict n-dimensional

generalisation of the idea of groupoid.

Definition 1.1.2. A Strict n-Groupoid is a strict n-category in which every k-cell (for k
running from 1 to n) a: f = ¢ has a strict inverse. That is, there is a k-cell f: g = f such
that both oo 5 and B o « are equal to the identity for all composition operations defined

on k-cells.

Having defined strict n-categories and strict n-groupoids, we will now explore why they

are insufficient.

1.1.2 The Principle of Isomorphism

One of the key ideas behind the philosophy of category theory is the following.

Definition 1.1.3. The Principle of Isomorphism [Mak98] states that correct properties
of objects in a fixed category should be invariant under isomorphism. In particular, it
is philosophically incorrect to attempt to distinguish between isomorphic objects of a

category.

As an example of the use of the principle of isomorphism, consider the similar Principle
of Equivalence, which states that the correct notion of equivalence between categories is
not isomorphism but instead the idea ordinarily denoted by equivalence. This follows from
the principle of isomorphism in one of two different ways, depending on how you define

equivalence.

e Consider an isomorphism to be a pair of functors F': C — D and G: D — C such that
GF = 1¢ and FG = 1p. Functors have a suitable concept of morphisms between
them in the form of natural transformations so requiring the composites to be equal to
the identity is too strict and breaks the principle of isomorphism. Instead, we should

only require that both composites should be naturally isomorphic to the identity.
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Therefore, our definition of equivalence should be a pair of functors F': C — D and

G: D — C and a pair of natural isomorphisms n: GF = 1¢ and ¢: 1p = FG.

e Consider an isomorphism to be a functor F': C — D that is bijective on objects
and bijective on morphisms. This notion is too strict and breaks the principle of
isomorphism because we distinguish objects in the same isomorphism class if some
are in the image and others are not. Instead, we should only be able to check whether
or not each isomorphism class is hit by the functor.

Thus, our definition of equivalence is a functor F': C — D that is full and faithful and
essentially surjective. (Note that such a functor is also ’essentially injective’: since
it is full and faithful it reflects isomorphisms and thus is injective on isomorphism

classes).

Note that the definition of strict n-category given above breaches the principle of
isomorphism. The definition requires that certain functors be equal but as we saw earlier
the principle of isomorphism only allows us to define functors as being isomorphic, or even
only equivalent at higher dimensions. It is this idea that motivates, in an abstract sense,
the study of weakness in higher category theory: the axioms at lower levels should be

satisfied only up to an isomorphism in the next level up.

1.1.3 Topological Motivations

Much of higher category theory was originally motivated by the study of algebraic topology,
and in particular homotopy theory. Kan’s notion of simplicial sets model topological
spaces [GJ09] and this guides us to thinking of spaces as being built up from cells of

different dimensions, just like higher categories are.

One tool for studying the homotopy theory of these simplicial sets is the Postnikov
tower [Posb1]. The Postnikov tower of a space X is a tower of spaces X,, where each X, has
a vanishing homotopy group in dimensions higher than n. Such spaces are called n-types,
and they are very amenable to being studied via n-categorical methods. Starting at n =1,

we have that 1-types are naturally modelled using groupoids via the following construction.

Definition 1.1.4. [GJ09] Given a topological space X, the Fundamental Groupoid of X
is a category whose objects are the points of X and whose morphisms are homotopy classes
of paths in X. The identity at a point is given by the homotopy class of the constant path
at that point, composition is induced by concatenation of paths and each morphism is
invertible with the inverse being given by reversing the direction of the path (these are

respected by equivalence up to homotopy).
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Despite only giving us an ordinary category, this definition implicitly requires a higher
level of structure: the homotopies between the paths. We also note that the axioms of a
groupoid are only satisfied up to a reparameterisation homotopy. This suggested the way
forward to understanding the categorical behaviours of higher n-types. Grothendieck first
intuited that n-types should be modelled by a suitable notion of n-groupoid [Gro]. This
idea eventually developed into the Homotopy Hypothesis.

Definition 1.1.5. [BD95] The Homotopy Hypothesis states, in its strong form, that for
a suitable notion of n-categories there should be an equivalence of (n + 1)-categories where

one part of it is given by the fundamental n-groupoid:

II,: n —Type — n — Gpd

and the other direction is given by the classifying space functor.

There is also a weaker, more easily satisfied, form of the Homotopy Hypothesis which
only requires an equivalence between the homotopy categories, where the homotopy category
of n — T'ype is taken by formally inverting the weak equivalences and the homotopy category

of n — Gpd is taken by localising at suitably defined n-equivalences.

The Homotopy Hypothesis also demonstrates why strict n-categories are unsuitable.
Although strict 2-groupoids can model 2-types [MS93], Simpson has shown that this fails
immediately at the next level up: there is no strict 3-groupoid that can model the 3-type
of the 2-sphere [Sim] because there is a non-trivial Whitehead product. If we are to satisfy
the Homotopy Hypothesis and be able to study the Postnikov tower in higher dimensions,

we’ll need to move from strict n-groupoids to weak n-groupoids.

1.2 Models of Weak Higher Category Theory

Since strict higher categories aren’t sufficient, we instead study the more general notion
of weak higher categories. A weak n-category should be a categorical structure with cells
in dimensions 0 to n with compositions in all directions, but the associativity and unit
axioms hold only up to isomorphisms. Furthermore, these isomorphisms are required to
be suitably compatible via coherence axioms. There are many possible models of weak
n-categories.

The most explicit way to construct weak n-categories is to take a collection of objects
and hom-(n — 1)-categories (as when we constructed strict n-categories) and, at any level
k below the top level of cells, replace any axiom in that level of cells by a k + 1-cell
that mediates the axiom. Doing this starting at n = 2 first gives you the definition of

bicategory (developed by Benabou [Ben67]) and this lets you then develop the definition of
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a 3-dimensional weak category, the tricategory (first introduced by Gordon, Power and
Street [GPS95]). These are the major objects of study of this thesis and will therefore be
covered in more detail in the two following chapters, but there are two things we can note
now.

First, both bicategories and tricategories satisfy the homotopy hypothesis (The proof
for bicategories was given by Hardie, Kamps and Kieboom [HKKO01] while the proof for
tricategories was by Leroy [Ler94]); they are therefore suitable models of higher categories
in 2 and 3 dimensions. Secondly, both bicategories and tricategories require their respective
coherence theorems - stating that, despite only specific coherence cells being used in the
definitions, all relevant diagrams of coherence cells give the same result - in order to work.
The increase in complexity of both the coherence axioms and proof of the coherence theorem
as we move from dimension 2 to dimension 3 indicates that the extension of this approach
to higher dimensions is problematic. Indeed, although a potential definition in the same
vein has been proposed by Trimble [Tri06], the coherence theorem for it has not yet been

proved and without it we can’t proceed further.

1.2.1 Combinatorial Models

In order to tackle the issues raised in the previous section, an alternate method for
constructing weak higher categories is to set up combinatorial machineries that will encode
the intuitions behind n-dimensional categories more indirectly. Although these models
are generally less concrete - for example, by having composition maps that only arise
indirectly, meaning that there may be many possible composites for any pair of composable
morphisms - the combinatorics can handle all of the coherence issues automatically, rather
than needing to encode them in explicit diagrams and then prove coherence theorems. This
makes it possible to define these models in all dimensions.

Once a model has been shown to satisfy the homotopy hypothesis, it can be accepted
as a suitable model of weak higher categories. A partial survey of these models is given
by Leinster [Lei02]; the question of how to compare different models is largely an open

problem. Some examples of these models are:

e Operadic models, most notably the Batanin model [Bat98]. These realise weak
n-categories as algebras of a carefully constructed higher operad. For dimension 2, a
sketch of the proof that Batanin 2-categories are equivalent to bicategories is given
in [Bat98].

e Multi-simplicial models: these are the Tamsamani model [Tam99] and the similar

Simpson model [Sim12]. These construct weak n-categories as simplicial objects in



Higher Category Theory 13

the category of weak (n — 1)-categories, using the simplicial structure to control the
coherences. The question of comparing Tamsamani categories to bicategories and
tricategories is further along, with a complete comparison at the 2-dimensional level
due to Lack and Paoli [LP08] and a method of taking a nerve of a tricategory to get
a Tamsamani 3-category due to Cegarra and Heredia [CH14]. The other direction
- taking a Tamsamani 3-category and constructing a tricategory - is a potential

application of the results of this thesis.
e The opetopic model of Baez and Dolan [BD9S].

e A more recent method by Paoli models weak n-categories using a subcategory of

n-fold categories [Paol9] (i.e. the n-dimensional version of double-categories).

1.2.2 Infinite-Dimensional Category Theory

Although this thesis is focused on the finite-dimensional forms of higher category theory, it
is worth being aware of the work done on structures with cells in all dimensions. These
structures have important applications in algebraic geometry and mathematical physics.

The prototypical structure that was the motivation for studying infinite-dimensional
category theory is the category of topological spaces, with the 1-cells being given by
continuous maps and higher cells being given by higher homotopies. Homotopies are
invertible up to homotopy so it is no surprise that the first infinite dimensional categories
that were studied were (oo, 1)-Categories: those where the cells in dimensions 2 and
above are all equivalences.

There are many models of (oo, 1)-categories, of which the most well known are Simpli-
cially Enriched Categories and Quasi-Categories. Quasi-categories were introduced
by Boardman and Vogt [BV73] and the theory was developed by Joyal [Joy08] and
Lurie [Lur09b].

The next step was to relax the requirement that certain cells be equivalences until
higher dimensions are reached: this gives us the idea of (0o, n)-Categories. A survey of
the models of (0o, n)-categories is given by Bergner in [Berl1].

The final step to full generality is to consider infinite-dimensional categorical structures
with cells in all dimensions but no requirements that the cells should be equivalences: w-

Categories. A model of w-categories using complicial sets has been given by Verity [Ver08].
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1.3 Applications of Tricategories

We conclude this chapter by surveying some existing applications of the theory of tricat-
egories. Against the background of recent developments into less explicit models, one
might ask if the classical notions of bicategories and tricategories are still relevant. The
applications we will see show that, far from being only of historical significance, bicategories
and tricategories are relevant and used in a variety of mathematical fields, often when the

precise handling of the coherences is called for.

1.3.1 Applications in Logic

As one of the original developers of the definition of tricategory, Power was motivated by
potential applications of 3-dimensional category theory to logic. He noted that attempting
to generalise results about 2-monads up a dimension would require weakening 2-natural
transformations to pseudonatural transformations [Pow95, Example 7.1] and would therefore
need the weaker structure given by tricategories.

A more recent area where weak higher category theory is used in logic is in homotopy
type theory (see, for example, the research of the Univalent Foundations Program [Prol3]):
this is a merger of homotopy theory and logic via weak higher category theory that has
applications to building proof assistants, a topic of considerable potential in theoretical
computer science.

Gray categories have also been used in rewriting theory [FM18].

1.3.2 Applications in Mathematical Physics

Mathematical physics first needed the ideas of higher category theory to study higher
cobordism categories [BD95]. This problem is very complex: despite considerable progress
made by Lurie [Lur09a] the proof of the cobordism hypothesis is still partially open.

The main uses of specifically tricategorical theory in mathematical physics are when

modelling 3-dimensional topological field theories. Examples include:

e Barrett, Meusburger and Schaumann [BMS12] study Gray-categories with duals,
and their geometric properties, by means of a diagrammatic calculus. These Gray-

categories help to simplify many of the calculations relating to TQFTs.

e Carqueville, Meusburger and Schaumann [CMS16] undertook a systematic study of
defect TQFTs. They initiate this study by introducing symmetric monoidal functors
on stratified and decorated bordisms, which can each be transformed into a tricategory

with duals in a natural categorification of the idea of a pivotal bicategory.
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1.3.3 Applications in Homotopy Theory

An important open problem in homotopy theory is the algebraic modelling of stable n-types.
This is harder than modelling unstable n-types because of the notions of higher symmetry
needed and the way these interact with the coherence data.

One tool that was introduced to help with this was the notion of symmetric monoidal
bicategory [SP09], which can be viewed as a tricategory with one object and some extra
structure. Once a coherence theorem was proved for symmetric monoidal bicategories
[GO13] this tool was ready to be used. It led to the proof of the stable homotopy hypothesis
in dimension 2 [GJO19].

1.3.4 Applications via Braided Monoidal Structures

Braided monoidal categories can be viewed as ordinary categories with some extra structure,
but they can also be viewed as tricategories with a single object and 1-cell. As such,
tricategorical results have applications in any area where braided monoidal categories have
been used, such as representation theory [JS93] [JS95].

The situation where a braided monoidal structure has been taken one dimension
higher - i.e. the braided monoidal bicategory - has also been studied [KV94] [BN96].
These have applications to 2-tangle invariants and 4-dimensional TQFTs. In [Gurll] the
author proves a coherence theorem for braided monoidal bicategories and relates it to the
coherence theorem for monoidal bicategories. They show how coherence for these structures
can be interpreted topologically using up-to-homotopy operad actions and the algebraic
classification of surface braids.

Other recent applications of braided structures have related them to quantum compu-

tation [Verl7].



Chapter 2
Bicategories

In this chapter we will survey the results on bicategories. These will be the objects of the
tricategory that is the target of the trifunctor we want to transport. Furthermore, the
techniques we will use to manipulate the pasting diagrams are based on the properties
of bicategories and the cells between them. Therefore, it is crucial that we understand

bicategories thoroughly before continuing.

2.1 Definitions

The idea behind the definition of bicategories is to take the definition of strict 2-category
and, following the principle of isomorphism, replace every identity in 1-cells with a mediating
isomorphism.

For this section, we will use ® to mean composition in the direction of the 1-cells and o

to represent composition in the direction of the 2-cells.

Definition 2.1.1. [Ben67, Definition 1.1] A Bicategory B consists of:

A collection of objects ob(B).

For each pair of objects A, B € 0b(B), a Hom-Category B(A, B). The objects
of these categories are the 1-cells of the bicategory and the morphisms of these

categories are the 2-cells of the bicategory.

For each triple of objects A, B,C € ob(B), a Composition functor ® : B(B, () x
B(A,B) — B(A,C).

For each object A € ob(B), an Identity id4 : A — A.

16
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e For each four objects A, B,C, D € ob(B), an Associator given by a natural isomor-
phism
B(C, D) x B(B,C) x B(A, B) 224 B(B, D) x B(A, B)

x| / le

B(C, D) x B(A,C) B(A, D)

®

e For each pair of objects A, B € ob(B) a Left Unitor given as a natural transformation

) x B(A, B)

1 x B(A,B) , B)

e For each pair of objects A, B € ob(B) a Right Unitor given as a natural transfor-

) x B(A, A)
W ﬂ \
B(A

satisfying the following axioms:

mation

(

B(A, B)

(4, B)

e The Pentagon Identity: for any four composable 1-cells

At 9, c_r,p_k, g

the following diagram commutes:

&
a®l \

(k®h)®g)® f ko ((h®g)® f)
aJV ll@a
(k®@h)®(9® f) a k@ (h®(9® f))

e The Triangle Identity: for any two 1-cells

A%B%C

the following diagram commutes:
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a

(g ®idp) ® f g® (idp ® f)

r®l 11
g f

Bicategories can be dualised in three different ways [Ben67, Section 3]. The first
sends a bicategory B to B°? which has the same objects with the hom-categories being
B°P(A, B) = B(B, A). The second is B which has hom-categories B°(A, B) = B(A, B)°P.
Note that B = B°P:°; this gives the third dualisation.

It is also worth considering what the functors and higher transformations should be
between bicategories. Once again, this involves taking the definitions for the strict versions

and replacing all of the equalities of 1-cells with isomorphisms.

Definition 2.1.2. [Ben67, Definition 4.1] A Pseudofunctor or Homomorphism between

bicategories F' : A — B consists of:

e A function F : ob(A) — ob(B).
e For each pair of objects A, B € ob(.A), a functor Fap : A(A, B) — B(F A, FB).

e For each triple of objects A, B,C € o0b(A), a Compositor given by a natural

isomorphism

A(B,C) x A(A, B) 25 B(FB,FC) x B(FA, FB)

o] / e

A(A,0) B(FA, FC)

F
e For each object A € 0ob(.A), a Unitor given by an invertible 2-cell o : idp4 = F(id4).
such that:

e The compositor interacts properly with the associator: for each set of composable
1-cells in A
A-lsp 2.0 ,p

the diagram
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(Fh@ Fg)@ Ff —— Fh® (Fg® Ff)

<p®1i i1®so

Fheg) @ Ff Fho F(g® f)

3l |G

F(h@g ef) —F— F(he(g®f)
commutes.

e The identity interacts well: for each 1-cell f : A — B, the two diagrams

idpp @ F(f) 224 F(idp) ® Ff

/| |#

Ff ¢———— F(idp® [)

Fl
and
Ff®idps —22 Ff @ F(ida)
| !
Ff ¢——F—— F(f®ida)
commute.

A pseudofunctor where ¢ is an identity is called normal. A pseudofunctor where ¢ and

o are both identities, and thus Fa = a, Fl =1 and F'r = r, is called a Strict Functor.

Proposition 2.1.1. [Ben67, Theorem 4.3.1] Given two pseudofunctors

(Gy'y0’)

A e g c

they can be composed to produce a pseudofunctor G ® F' with the following components:

e The action on the objects and the homcategories is given by the composite of the

respective actions.
e The new compositor is given by

A(B,C) x A(A, B) 25, B(FB,FC) x B(FA, FB) %% C(GFB,GFC) x C(GFA,GFB)

l/l@/l@

B(FA,FC) = s C(GFA,GFC)
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e The new action on the units is given by the composite

idGFA é G(idFA) g GF(ZdA)

These satisfy the conditions because the original 2-cells did.

This composition is strictly unital and associative.

The next things to consider are the transformations between pseudofunctors.

Definition 2.1.3. [Lei98, Section 1.2] A Pseudonatural Transformation [Lei98, Section

1.2] between two pseudofunctors a: F' = G : A — B consists of:
e For each object A € ob(A), a 1-cell vy : FA — GA.

e For each pair of objects A, B € 0b(.A), a natural transformation

A(A,B) —% 5 B(GA,GB)

S

B(FA,FB) —— B(FA,GB)

Satisfying the following conditions:

e The transformation respects identities: for each object A € 0b(.A), the following

diagram commutes

idga @ ap == aq == as ®idpa
O'®1ﬂ ﬂl@o
G(ida) ® aa — an @ F(ida)

e The transformation respects composition: for each pair of composable 1-cells

A%B%C
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the following diagram commutes

1® -1
(Gg®Gf)@as =% Gga (Gf®as) = Gg® (ap® Ff) S (Gg@ap)® Ff

ﬂag@)l

(ac @ Fg)Q Ff

1 ﬂa

ac® (Fg® Ff)

ﬂl@g@

ac® F(g@ f)

Glg®@f)@aa oy
Once again, a pseudonatural transformation is called ’strict’ if the components at all
1-cells are identities.
Pseudonatural transformations can be composed in both sensible directions. Given two

pseudonatural transformations
F

N

A— ¢ B

N

H

the components of cwo [ at each object are the composites of the respective components

and the component at each 1-cell is given by

HF® (Ba®ax) s (Hf®Ba) ® s 225 (Bp 0 GF) @ ax S

B ® (Gf @ an) 2L 8p @ (ap ® Ff) “— (Bg @ ap) @ Ff

Similarly, it is possible to compose two pseudonatural transformations in the direction

of the 1-cells, given transformations as in the diagram

F G
S N T
AR \G/

F/ !

However a decision has to be made, because although it is relatively easy to define the
composite of a pseudonatural transformation with an identity on either side (i.e. idg ® «

and f®1idp) these do not compose to give a consistent definition of the composite S ® a: the
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interchange law fails. By convention, we define S ® a = (idg @ a) o (8 ®idp) [Gurl3, Prop.
5.1].

The final level of transformation is the modification. We do not need to weaken the
definition because there are no cells of a higher level than the components of the modification
so any isomorphism is an equality. However, we do need to adjust the definition given in the
introduction to account for the fact that we are taking modifications between pseudonatural

transformations.

Definition 2.1.4. [Lei98, Section 1.3] A Modification between two pseudonatural trans-
formations ¥ : o = f: F = G : A — B is given by, for each object A € ob(A) a 2-cell
YA ag = B4 such that for all 1-cells f : A — B the diagram

Gf®as —Z4A, Gf @ Ba

o b

ap R Ff o Bp® Ff

commutes.

Modifications can be composed in all three directions though again choices must be
made.
As we shall see in the next chapter, the structure formed by bicategories, pseudofunctors,
pseudonatural transformations and modifications is a tricategory.

One final useful definition is that of local properties.

Definition 2.1.5. [Ben67, Section 2.7

e Let P be a property of categories. Then a bicategory is Locally P if all of its

hom-categories are P.

e Let Q be a property of functors. Then a pseudofunctor is Locally Q if all of the

functors on the hom-categories are Q.

2.1.1 Laxness

Our consideration of the principle of isomorphism led us to consider pseudofunctors
(respectively pseudonatural transformations) as the natural morphisms between bicategories
(respectively pseudofunctors). However, there are other possible classes of morphisms that
are worth considering. These are the lax functors (resp. lax natural transformations), whose
importance was first considered by Benabou [Ben67]. The definition of a lax functor (resp.
lax natural transformation) is obtained from that of pseudofunctors (resp. pseudonatural

transformations) by removing the requirement that the constraint cells be invertible.
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Similarly, by reversing the direction of the constraint cells and their axioms, we get the
concept of oplax functor (resp. oplax natural transformation).
One important example of an oplax natural transformation occurs in the form of an

icon.

Definition 2.1.6. [LaclOb] An Icon (i.e. an Identity Component Oplax Natural transfor-

mation) between two pseudofunctors a: F' = G : A — B consists of:

e The assertion that F' and G agree on objects.
e For each pair of objects A, B € 0b(A), a natural transformation

F

R

A(A, B) “a B(FA, FB)

N~ 7

G
which is
e Compatible with the identities: for each object A € ob(.A) the diagram

idpa = idga

Qid 4

Fidy Gidy

commutes.

e Compatible with the composition: for each pair of composable 1-cells

A%B%C

the diagram
Fgo Ff == F(g®[)

af ®agﬂ ﬂo‘g@)f

GgoGf == G(g®[)
cominutes.
Examining this definition shows that this is equivalent to requiring an oplax transfor-

mation to have components that are the identity at each object, hence the name. Icons

are useful because, unlike the difficulty we had in defining a horizontal composite for
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pseudonatural transformations, the structure formed by bicategories, pseudofunctors and
icons is a strict 2-category Icon [LaclOb, Theorem 3.2].
2.2 2-Dimensional Category Theory

Many aspects of category theory can be developed internally in any bicategory. A survey
of the development of this theory is the 2-Categories Companion by Lack [Lacl0al. 2-
dimensional category theory is a rich subject so we will only present those key aspects that
are relevant to the thesis: equivalences, adjunctions and monads. We will also explore the

idea of limits within a bicategory.

2.2.1 Equivalences

Definition 2.2.1. [Lacl0Oa, Exercise 2.2] Within a bicategory B, an Equivalence between

two objects is given by:

e Two 1-cells

e Two invertible 2-cells n:idga = g® fand e: f ® g = idp.

By the principle of isomorphism, this is the correct notion of equivalence within a

bicategory. Thus, it is incorrect to attempt to distinguish equivalent objects.

2.2.2 Adjunctions

Definition 2.2.2. [LaclOa, Section 2.1] Within a bicategory B, an Adjunction is given by:

e Two 1-cells

e Two 2-cellsn:idgy =g® fande: f®g=1idp.

satisfying the usual triangle identities in the sense that the following diagrams commute:
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fRids =% fo(gef) === (feg)® f

ﬂs@l

S idp ® f
s
f
1da®g
o
(g f)@g !

|

90 (f®g) =52 9®Qidp ——¢

If the two cells 1 and € not only satisfy the triangle identities but are also invertible
then this is an adjoint equivalence. Just as in Cat, given an equivalence it is possible to
turn it into an adjoint equivalence by changing only one of the 2-cells.

The definition given above mirrors the definition of adjunctions in Cat given by unit
and co-unit. The other definition of adjunctions in Cat, using the natural bijection between
hom-sets, is generalised to the idea of mates under adjunctions. This theory is presented
here in its most general form, as the use of mates is crucial when constructing tricategories

and the cells between them.

Definition 2.2.3. [LaclOa] Let (f,g,m7,e) : A — B and (h,k,v,7) : C — D be two
adjunctions. Let a : A — C and b: B — D be two 1-cells. Then there is a bijective
correspondence between 2-cells o : h®a = b® f and 2-cells §: a ® g = k®b. This
correspondence is called taking the Mate under the adjunctions. The correspondence is

shown via the pasting diagrams
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ide

idp

ida

idp

along with suitable applications of the constraint cells. This correspondence is bijective

because of the triangle identities.

The usual property of adjunctions in Cat comes from taking A and B to both be the

terminal category with the identity adjunction between them: thus a and b pick out objects

of the categories C and D respectively and the 2-cells (that is, natural transformations)

are just morphisms from ha — b and a — kb.

2.2.3 Monads

Definition 2.2.4. [Ben67, Section 5.4] A Monad in a bicategory is given by

e An object A.

o Alcellt: A— A.

e A 2-cell n:idy = T called the unit.

e A2cell u:T®T =T called the multiplication.

satisfying the axioms

e The associativity law: the diagram

,u®1ﬂ

TeT

ﬂl@u

TeT

S A
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commutes.

e The unit laws: the diagrams

T®ida ida@T
1®nﬂ \ / ﬂn@m
TRT 7 T 7 TRT

commute.

Note that a monad can also be defined as a lax functor from the terminal 2-category to

the bicategory.

2.2.4 Pseudolimits
Just as we adjusted the definitions of functor and natural transformation earlier, we will
also modify the definition of limit to account for the principle of isomorphism.

Definition 2.2.5. e Given a diagram in a bicategory given by a pseudofunctor D : 7 —

B, a Pseudocone consists of

— An object C € ob(B).
— For each object i € 0b(J), a 1-cell \; : C' — Di.

— For each 1-cell f:¢— jin J, an invertible 2-cell Uy : Df @ A\; = ;.

such that for every 2-cell a: f = g:i — j of J, the 2-cells ¥, and ¥y o (Da® \;)

are equal.

e A Pseudolimit is a pseudocone (L, u, @) such that for any other pseudocone (C, A\, ¥),
there is a unique 1-cell k : C' — L such that

— For alli € ob(J), \i = ;i ® k.

— For all 1-cells f:1—j, Uy =P, k.

A pseudolimit can also be realised more abstractly in terms of an isomorphism of
hom-categories [Lacl0a, Section 6.10].

One example of a pseudolimit is the pseudolimit of a single 1-cell, where J has two
objects, a single non-trivial 1-cell going from one object to the other, and no non-trivial 2-
cells. In normal category theory the limit of a single morphism is trivial, but the pseudolimit

of a 1-cell can often be quite interesting.
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In the 2-category Cat, the pseudolimit of a functor FIC — D is given by a category L
whose objects are triples (c,d, f) where ¢ € 0b(C), d € ob(D) and f : Fc — d is invertible.
The morphisms of this category are given by pairs of morphisms on the objects such that all
the data commutes. Then the cone has 1-cell components given by the obvious projections

and a 2-cell component given by a natural transformation whose component at (c,d, f) is

f.

2.3 The Coherence Theorem for Bicategories

As mentioned previously, the coherence theorem for bicategories states that every diagram
constructed from instances of the constraint cells a, [, and » commutes. However, we cannot
show this by the direct method of performing calculations on each individual diagram.
Instead, the coherence theorem is proved by showing that every bicategory is biequivalent to
a strict 2-category. We start this section by introducing the concepts needed to understand

this proof.

2.3.1 Biequivalence

Biequivalences are the correct notion of equivalence between two bicategories. As with
the definition of equivalence between categories, there are two equivalent ways of defining

biequivalences.

Definition 2.3.1. [Gurl2] A Biequivalence between two bicategories consists of either:

e A pair of pseudofunctors F': A — B and G: B — A such that G ® F is equivalent to
the identity in the bicategory Bicat(A, A) and F ® G is equivalent to the identity in
the bicategory Bicat(B,B).

e A pseudofunctor F': A — B which is locally an equivalence and is biessentially
surjective in the sense that every object B € ob(B) is equivalent to some object of
the form F'A for A € ob(A).

Given a suitably strong axiom of choice, these two definitions can be proved to be
equivalent to each other. In Chapter 3, we will see how these are a specific case of
biequivalence in any tricategory. The ability to take a pseudofunctor that is locally an
equivalence and is biessentially surjective and complete it to a biequivalence pair (and then
to a full biadjoint biequivalence [Gurl2, Theorem 3.2]) is crucial for the usability of this
thesis’ result. The proof makes heavy use of the full structure of a biadjoint biequivalence

and so is stated in the form where we begin with biadjoint biequivalences. Even so, given
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any application where biequivalences arise as biessentially surjective local equivalences,
we can still apply our result just by first completing those biequivalences to biadjoint

biequivalences.

2.3.2 The Yoneda Embedding

The next ingredient in the coherence theorem is a Yoneda Embedding.

Definition 2.3.2. [Lei98, Section 2.1] For any bicategory B, the Yoneda Embedding
Y: B — Bicat(B°,Cat) is a pseudofunctor that:

e sends an object B € ob(B) to the pseudofunctor B(—, B): B’ — Cat.

e acts on a hom-category B(A, B) as the functor that sends a 1-cell f to
f®_: B(_aA) _>B(_aB)
and appropriately on 2-cells.

By a similar calculation to the Yoneda Lemma for categories, this is locally an equiva-

lence.

2.3.3 Coherence Theorem

Theorem 2.3.1 (Coherence Theorem). [Lei98, Section 2.3] Every bicategory is biequivalent

to a strict 2-category.

Proof. Consider the Yoneda embedding Y: B — Bicat(B°,Cat). It is locally an equiva-
lence.

Now consider the image of the Yoneda embedding im(Y"). It is a strict 2-category because
Bicat(B°, Cat) is. We can restrict the Yoneda embedding to Y': B — im(Y).

This restriction is locally an equivalence and is surjective on objects by construction.

Therefore B is biequivalent to the strict 2-category im(Y). O

This theorem ensures that every diagram in B constructed from instances of the

constraint cells a, [, and » commutes because it does in the biequivalent 2-category.
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2.4 2-Dimensional Monad Theory and Transport of Struc-

ture

The theory behind the transport of 2-dimensional structures, many of which arise from
consideration of bicategories, is well established. The key paper for this is by Kelly and
Lack [KLO04].

This paper took the monadic approach to transport of structure: many applicable
2-dimensional structures can be realised as algebras of 2-monads on bicategories. Kelly
and Lack studied these 2-monads using the tool of monoidal 2-categories; just as in 1-
dimensional category theory, 2-monads can be viewed as monoids in the monoidal 2-category
of endo-2-functors, and so their results about monoidal 2-categories also apply to monads.

As we are dealing with higher category theory here, there is a question of strictness
versus weakness when considering 2-dimensional monads. Kelly and Lack’s more general
theorem [KLO04, Theorem 6.1] allows transport of the structure of a pseudoalgebra of a
2-monad, and a strict algebra transported by this method can only be ensured to result
in a pseudoalgebra. This may be preferred - the principle of isomorphism suggests that
the correct notion of algebra of a 2-monad is a pseudoalgebra - but in the case that the
strict algebras are preferred, the final result of Kelly and Lack also covers them. Given the
extra condition that the 2-monad T is flexible (as defined by Kelly [Kel74]) the category of
strict algebras of the flexible 2-monad is equivalent to the category of pseudoalgebras of an
adjusted 2-monad T”. This means that the main result of Kelly and Lack also applies to
the strict algebras of a flexible monad [KL04, Theorem 6.2].



Chapter 3
Tricategories

The next level of higher category theory is the tricategory. Tricategories were originally
introduced by Gordon, Power and Street [GPS95] who also proved the coherence theorem
by showing that every tricategory is triequivalent to a Gray-category, a somewhat stricter
notion that is still not as strict as a totally strict 3-category.

A slightly different definition of tricategory is offered by Gurski [Gur07]. The key
difference between the Gordon, Power and Street definition and the Gurski definition are
that when Gordon, Power and Street require that certain constraint 2-cells be equivalences
(in the sense of having some weak inverse) Gurski’s definition specifies the weak inverse,
and also the unit and co-unit needed to make them into an adjoint equivalence. Since any
equivalence can be extended to an adjoint equivalence, these definitions are equivalent.

Throughout this chapter, adjoint equivalences in a bicategory given by the data (f: A —
B, f*: B — A,n,¢) will be denoted by f: A — B, using the label of the first component and
its source and target. The definitions in this chapter will be presented with all equivalences
completed to adjoint equivalences, and can be converted to the original Gordon, Power and
Street definition by taking those adjoint equivalences and considering only the primary

component.

3.1 Introduction to Tricategories

3.1.1 Definitions

Definition 3.1.1. A Tricategory [GPS95|[Defn. 2.2] [Gur07, Defn. 3.1.2] T consists of:

e A collection of Objects ob(T).

31
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e For each pair of objects A, B € 0ob(T), a Hom-Bicategory 7 (A, B). The objects of
these bicategories are the 1-cells of T, the 1-cells of these bicategories are the 2-cells

of 7 and the 2-cells of these bicategories are the 3-cells of T

e For each triple of objects A, B € 0b(T ), a Composition Pseudofunctor ®: 7T (B, C)x
T(A,B) = T(A,QC).

e For each object A € ob(T), an Identity given by a pseudofunctor from the terminal
bicategory 14: 1 — T (A, A).

e For each four objects A, B,C, D € ob(T), an Associator given by an adjunction

T(C,D) x T(B,C) x T(A,B) 2% T(B,D) x T(A, B)

1x6| / le

T(C,D) xT(A,C) T(A,D)

®
e For each pair of objects A, B € ob(T ), a Left Unitor given as an adjunction

B) x T(A, B)

75,
Vﬂ\A

1 xT(A,B)

(4,B)

e For each pair of objects A, B € ob(T), a Right Unitor given as an adjunction

B) x T(A, A)

Vﬂ\A

T (A, B) (A, B)

e For every five objects A, B,C, D, E € 0b(T ), a Pentagonator 7 given as an invertible

modification between the two pasting diagrams

T4 ®x1x1 T3 T4 ®x1x1 T3

1x1 1 1x1 4 1
x Xfy 1><®><1 / \@x % Xfy = 1X® \®X
ax1 v

7 Lo T R LN T e T

1><<§x 1X® / / mx ’*//“ N /59

where T% is an abbreviation of 7(D, E) x T(C, D) x T (B, C) x T (A, B) and similarly

for the other abbreviations.
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e For each triple of objects A, B,C € ob(T), a Middle Triangulator p given as an

invertible modification between pasting diagrams

T21 7-’21

7—3 ®x1 7_2
—_— — X ¢%’T’//

%11 ! 1 7
>i® % & ®
2 2
TS —— T 75— T
e For each triple of objects A, B,C € ob(T), a Left Triangulator \ given as an

invertible modification between pasting diagrams

T - 7f SANE :}(7\;\ w T2
® - ® ® 1exi ® ®
T T 77 l}l ST

—

e For each triple of objects A, B,C € ob(T), a Right Triangulator p given as an

invertible modification between pasting diagrams

T 1 T 0 T - ! y- T
®T = T@ == ®T xi1, I e T@
7”2

1
HlXT’* Q%1

Ix1x14 IX® Ix1x1mh I IX®
7—3

satisfying the following three axioms. In the following diagrams we will replace ®

by concatenation for compactness. We should also note that, as the arrows in these
diagrams come from the hom-bicategories, their composition is only weakly associative and
unital. We therefore need to choose an association for them. By the coherence theorem for
bicategories we get a unique way to transform our chosen association into any other, so

the requirements that the following diagrams are equal still makes sense.
e For every five composable 1-cells

At 9., c r,p I, g _k,F
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the two diagrams

—
e
—~
—
)
>
S~—
Q
=
=
~
12
x
~—~
—~
Sl
~~
=
<
S—
S~—
~
—

k(5((hg)f))

J{l(la)

(((kp)h)g)f = (k(Gh)(gf) = k((5h)(gf)) —2 k(j(h(gf)))
\ al I /
((kj)h)(gf) T (kj)(h(gf))

and
(k(j(hg)))f
(la)l T x
/k((jh)g))f al k((j(hg))f)
al y}
((k(jh))g)f ﬂﬂ ((kj)(hj))f H” k(j((hg)f))
(al)lT al/ \a\ /a/ ll(la)
(ki)n)o) M kD)) = k(G(h(af)
x {lﬁl a
((kj)h)(gf) m (kj)(h(gf))

are equal, where the unmarked isomorphisms are the naturality isomorphisms of the

associator.

e For every three composable 1-cells

At 9, c_",p
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the two diagrams

(h(lcg))f
\

% (1)1
< \

(hlc)g)f \\,T h(leg)f) = (hg)f

(ry é l‘a \1(11) la

Y2
(hg)f = (hlc)(gf) —e— h(lc(gf)) — 1= h(gf)

\HT

and

are equal.

e For every three composable 1-cells

the two diagrams

¢
aT (1r*)1el a1

(hg)f =r1> ((hg)lp)f —a— (hg)(1f) = h(gf)
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" o h((9lp)f) 1
h(gf) ?h(g(lm‘) .
(fi)f 1% \ h(g.f)
\ h(gf) /
are equal,

Much of the data given in the definition of a tricategory arises naturally by introducing
invertible constraint 3-cells mediating axioms of bicategories. For example, the pentagonator
replaces the pentagon identity that holds for bicategories. However, there are complications
in this framework. Where only one triangle identity was needed in the definition of
bicategories, three triangulator modifications are needed.

The first of the three axioms is known as the non-abelian 4-cocycle condition [GPS95,
TA1], and is given by a version of a diagram known as Kj5. However, the two axioms
related to the unital conditions were first introduced by Gordon, Power and Street [GPS95]
for their definition. Identifying these as the key axioms is crucial to the definition of a
tricategory.

By the theory of mates under adjunctions, we can take the dual of a tricategory 7T °P
[GPS95, Remark 2.4] which has the same objects, hom-bicategories T°P(A, B) = T (B, A),
the same identities and the adjoint equivalences being the opposites of those in 7. Then, the
theory of mates under adjunctions in bicategories allows us to find suitable modifications
and show that they obey the same axioms.

A tricategory is defined as being strict if each adjoint equivalence is the identity
adjoint equivalence and modifications consist of the unique coherence isomorphisms in the
hom-bicategories.

Next, we consider what the appropriate notion of morphism between tricategories
should be.

Definition 3.1.2. A Trifunctor [GPS95, Defn. 3.2] [Gur07, Defn. 3.3.1] between two

tricategories F': & — T consists of:

e A function 0b(S) — ob(T).

e For each pair of objects A, B € 0b(S), a pseudofunctor S(A, B) — T (F'A, FB).



Tricategories 37

e For each triple of objects A, B,C € 0b(S), a Compositor given by an adjoint

equivalence

S(B,C) x 8(A,B) 2L T(FB,FC) x T(FA, FB)

e / e

S(4,C) - T(FA,FC)

e For each object A € 0b(S), a Unitor given by an adjoint equivalence

T(FA,FA)

1 1ra
S(A, A)

e For every four objects A, B,C, D € 0b(S), an invertible modification between the two

pasting diagrams

84 FXFxXF 7—3 53 FxFxXF 7-3

1 \ 1 1 / 1
xy Sx1 YX Xfylxx/ Ix \ij
N ><1 ¥

s [ s 7‘2%52—”‘2 = T

N &k L \/ L

S§——T —>F T
e For each pair of objects A, B € ob(S), an invertible modification between pasting

diagrams

7"2
LN s,
T/W b ®JF g I T
S T S

N S

1

e For each pair of objects A, B € ob(S), an invertible modification between pasting

diagrams
T - T T . T
N UJ P
FT TF F| 1xlpa ® TF
0 R
S ! S s\ T s
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satisfying the two axioms

1. For every four composable 1-cells

the two diagrams

(XDt

((f6)eqyed)ted ((JABL)YA)HA

((SB)) 2400 % (S (Bayer)¥ed (fab) (Yea4.d)
(O )n)a = FOY))ayd «xx— (fa(0y)d)44 = Fa((Boryer)e) < w— fa(Bor(yd4.1))
?:L \x\ /s/ \:x:\ T:xv
(O \ Fa((0y)a11) / Fa (B (y).)

(f((By)y)d X 2 ((6y)a) o1 () L1 (6(yt))od

(o) ~ \
(F6(yx)))d

and
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(X1)1

((f emivi/ ((JABA)YA)H A
X D
X "~ ~ /
((FB)) T4 ($0)d (yo14.0) X1 (feab2)(4AYA)
X 3: m,w = - Hvm\ /
(L)) A (f0)d (1) d <Xt — (LA6.0) () A = JABA(yA41))
?:r.% A/f x— /s ,T:xu
§§§/ % ((5)(y) T \ S4BT (4).T)
DA 7 x
(F(B))a /E Fa(60g0))a

are equal.

2. For every pair of composable 1-cells

AL>BL>C’
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the two diagrams

F((91B)f) fe F(g(1sf))

T X
F(r*1) w ‘ F(10)

X 2 FgF(1gf)

Iy
F(gf) = F(glp)Ff «x1— (FgF1p)Ff —a— Fg(F1pFf)\_ = F(gf)
%/(1@1/ =~ . 1Fl
X Frx1 (FglFB)Ff —a— Fg(lFBFf) X

T

é‘*l Jr B!
FgFf — FgFf

and
F((g1p)f) —*— F(g(15/))
F(r*1) o F(11)
F(gf) : » Fgf)
X = X
FgFf : y FgF'f
are equal.

The trifunctor is the structure that this thesis aims to transport. It is therefore crucial
to understand this definition.

As with pseudofunctors, it is possible to define strictness, laxness and oplaxness for
trifunctors. The definition for lax functor [GPS95, Defn. 3.1] replaces the pseudofunctors
on the hom-bicategories with lax functors, replaces the adjoint equivalences with lax natural
transformations and removes the requirement that the modifications be invertible.

A trifunctor is strict [Gur07, Defn. 3.3.3] if it is locally strict, y and ¢ are identity
adjoint equivalences, F' maps the adjoint equivalences a, 1 and r of the source tricategory to
those of the target tricategory and the modifications are constructed from unique coherence
cells.

We will also be considering how to lift the object-indexed biequivalences so that they
become a biequivalence between the original and transported trifunctor. Therefore we also

consider the morphisms between trifunctors, the tritransformations.
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Definition 3.1.3. Given two trifunctors F,G: S — T, a Tritransformation [GPS95,
3.3] [Gurl3, Defn. 4.16] 6: F = G consists of:

e For each object A of S a 1-cell 04: FA — GA.

e For each pair of objects A, B € ob(S), an adjoint equivalence

S(A,B) —£— T(FA,FB)

A

T(GA,GB) —> T(FA,GB)

e For each triple of objects A, B, C € 0b(S), an invertible modification II that modulates
how 6 interacts with the compositors of the trifunctors. Its component at a pair of

composable 1-cells A i> B Cis given by

Gy(0pFf) —%= Gg(Gfoa)

(GgOp)F' f (GgGf)oa
011\ H lxcl
(0cFg)Ff G(gf)0a

T =

Oc(FgFf) BETT 0cF(gf)

with the unitors.

/ i

e For each object A of S, an invertible modification M that modulates how 6 interacts
— T FA FA)

\ s <§/ \
Gl 4/9 Hh GA

T(GA,GA) T(FA,GA) GA GA) ————— T(FA,GA)

—®04

These are required to obey the following three axioms.

1. For every triple of composable 1-cells A i> B4 0L D the following two diagrams

are equal:
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((f6)y) 10

((46)1yd)9 (46)e1(4e199)

\ (X1 v_ X

((fab1)ud)g

4

(Fabe)(4e19)

SH
’ o (fa(B.y.7))0 = ?
/

Vo((f 350

255
of @

Vo(f (6y))o

%xﬁ

vo(fo(by)D)

(Vofo)(6y)D

(S ()10 =y Fa((Bu1y.1)99) 0 Fa(64(419))
1 = %:3
(4 &EEE/ (XD EEJQ%E:
5 1
0 F((0y).1T9) m FA((B199)uD)
o
fua(dg(6y)D) 1(o1)
\ 1(19%)
o (fa89)(5)D A(a9(694D)) s F4((9669)yD)
19X ~ / \ " \
(Vo 0)(6oyD) (F280)(6D4D) ﬁ (F4(9660))yD

wiuv@?o i ((La#0)60)u
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Vo((46)u)D

wo]

vo(f (6y))D

%Q

vo(fo(by)D)

IXT
((f6)y)199
5% Yo((/5)oun)
:ux%
e vo((/960)yD)
é
e Yo(fo(6oun))
(Vofo)(6y)D
19X
(Vo/D)(6DyD)

((46)e1y.1)0

0 (Vo(46)D)yD

(19X)1

(Vo(/0bD))uD

v
\ R

((YofD)bD)UD <——

(o0)1

o

((46)1%9)yD

((fer89)60)yD

(f6)1(4.199)

(1)1 (%9yD)

(IXD)T

\

=
AXT
D=
~

/ 10 »

(FAb:1)(4e199)

(faba)(Poup) "= fA(61(y190))
\ / T:a
((F26.1)%0)yD k: £2(61(%yD))
i T
(f4(6.1°9))uD 5 FA((62°0)yD)
LS
1(61)
(1)1
Fa((4669)yp)
(f2(496D))uD

2. For every 1-cell f: A — B, the following two diagrams are equal.
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61

?&UES (f299)a51 2 £4(99421)

\ = f» 1.1
Voso 7 f499 fa99
19 %H NEHH / / Tyt

Vo(fa1)n «—— (fd1)499 (fgadr)d - Fa(adrdy)
/ / ;ﬂ = ;V
0({H919) (fa910)d = FA(E@1.490)
% R
(Vofo)d1D : £a(9919)
(f299)81D
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o1

D

(VoSo)ao1
N 4«/ /TN
Voo m Vo(fog®1)
119
éﬁmcw% 1120

1OX

(YofD)d1H

(f2909)g?1 £ 4(dpgP1

al
2

1(127)
197

FA(@1499

—

FA(9991D)

(f299)91D

)

/

Fa(g414)

T

sv
)

fordg

3. For every 1-cell f: A — B, the following two diagrams are equal.
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fa40
[ / Jd
LT

Voo "t -ﬁ: (VI1f.1)80
Tt %m \ /
,w:H
Yo("14)0 7 (1) d90 <o (V1S 5@/ \ VAT(f149) o fadg
ox VIa(f199) 10 iz f
I ~
Vo(V194D) 10 VAT(YofD) = VoD
«7 a1 % .\
(Vo¥1o)fD Vid(Voso) ’= (Va1v)f
(V1dV0) D
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<
>
—
<
—
S
S—
G
O
=
<
>
~_ —
= i
B U]
Dy
)
~ —
kS A
—~ —
< £
< = <
— ~ >
@) S~
N G}
S
O
% =
[
2l
>
— =Y
=
9
=
c 3
5= % o
S = &
= =
G} G}
&
=
=
=
& =
<
N
S
G}
—
*%
—
<C
>
S
G}

S—

€3
Q

>

(Note that the & cells used in this axiom are mates (see Definition 2.2.3) of the

modification § defined as part of the data for a trifunctor under the adjunction
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r=r*)

The final key definition we will need for this thesis is that of a biadjoint biequivalence.
A biequivalence in a tricategory is the generalisation of the notion of biequivalence between
bicategories (see Section 2.3.1) and just as equivalences are the correct notion of equivalence
between objects in a bicategory, the correct notion of equivalence between objects in a
tricategory is that of biequivalence.

Also, just as every equivalence in a bicategory can be extended to an adjoint equivalence,
every biequivalence 1-cell S (in the sense of having some 1-cell ¥ with S® ¥ and ¥ ® S both
equivalent to the identity) can be extended to a biadjoint biequivalence [Gurl2, Theorem
4.5] as given by the following definition. This is incredibly useful, as the proofs of this
thesis use the full structure of a biadjoint biequivalence, but we are still able to apply
the transport of structure result even when only given a family of biequivalences just by

choosing a way to complete them to full biadjoint biequivalences.

Definition 3.1.4. [Gurl2, Definition 2.3] A Biadjoint Biequivalence between two objects

A and B in a tricategory T consists of the following pieces of data:

e A pair of 1-cells S: A — Band ¥: B — A.

o 2cellsn: 1p =5 ® V¥ and n*: S® V¥ = 1p forming an adjoint equivalence n 4 n* in
the hom-bicategory.

e Twocellse: Y ® S5 =14 and *: 14 = ¥ ® S forming an adjoint equivalence & - £*.

e An invertible 3-cell

V" 0wl L U (Sel) S (T S) o v

le@l

R

|

v

which modulates the triangle identity of an adjunction based around V.

e An invertible 3-cell

St 1S 125 (Se1)esS — S (UeS)

ll@a

S®14

Ir

S
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which modulates the triangle identity of an adjunction based around S.

These are required to obey the axioms that both of the following pasting diagrams -
which are based around the graphs of all possible ways that a string of up to two instances
of ¥ and up to two instances of S can be composed together, with instances of ¥ and ®

attached along the appropriate edges - are equal to the identity:
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3.1.2 Examples

The tricategory that is the main object of study of this thesis is the tricategory of bicategories,
denoted, Bicat.
Definition 3.1.5. [Gurl3, Section 5.1] The Tricategory of Bicategories, denoted Bicat,

consists of:
e Objects labelled by bicategories

e Hom-bicategories given by the bicategories of pseudofunctors, pseudonatural trans-

formations and modifications, Bicat(A, B).
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e Horizontal composition of a: F = F': A — B and 3: G = G': B — C given by first
calculating the whiskerings G'®@a and & F' and then defining f®a = (G'®@a)o(SRF).
The interchange isomorphism that makes this composition into a pseudofunctor
is constructed from coherence cells and the pseudonaturality cell of the relevant

pseudonatural transformation.

e The coherence 2-cells of this tricategory are given by adjoint equivalences with
components that are the identity transformation at each collection of pseudofunctors

and are given by coherence cells at each collection of pseudonatural transformations.

e All of the coherence 3-cells of Bicat are given by coherence cells in the target

bicategory.

The tricategory of bicategories has particularly useful properties, and we will see how
it aids our diagram manipulations in Chapter 4.

Other examples of tricategories include:

e A strict tricategory whose hom-bicategories are strict 2-categories is exactly a strict
3-category. Note that the definition given for ‘strict tricategory’ admits the possibility
of strict tricategories whose hom-bicategories are not strict 2-categories and thus

these strict tricategories are not necessarily strict 3-categories.

e Given a topological space X we can form its fundamental 3-groupoid whose objects
are points of X, 1-cells are paths, 2-cells are homotopies between paths and 3-cells are
equivalence classes of homotopies between 2-cells [Gurl3, Section 5.2]. Once again,

the homotopy hypothesis holds for tricategories.

3.2 Coherence Theorem for Tricategories

To properly interpret ideas about tricategories, we need a coherence theorem. By analogy
to the coherence theorem for bicategories, we could hope that we could prove a coherence
theorem by showing that every tricategory is triequivalent to some strict 3-category.

Unfortunately, this last statement is false.
Proposition 3.2.1. [GPS95, Prop. 8.6 to Remark 8.8] Not every tricategory is equivalent

to a strict 3-category.

Proof. Consider a tricategory with one object and one 1-cell. This amounts to a category

(the category of 2-cells and 3-cells between that single arrow) with two monoidal structures
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(given by the compositions in the direction of 1-cells and 2-cells) related by an interchange

isomorphism, which in turn is the same as a braided monoidal category [JS93, Prop. 5.3].
If this tricategory is triequivalent to a strict 3-category, then it is also triequivalent

to its image under that equivalence, and thus to a strict braided monoidal category: i.e.

one where the braiding is the identity. Since the identity is a symmetry on the monoidal

structure, so must have been the original braiding.

Since there are braided monoidal categories which are not symmetric, these are not

triequivalent to any strict 3-category. 0

This failure of tricategories to be equivalent to strict 3-categories has consequences for
homotopy theory. It is the reason why we cannot take the fact that trigroupoids model all
3-types and use that to claim that strict 3-groupoids model all 3-types. As seen earlier,
an explicit counterexample was given by Simpson who showed that no realisation functor
could possibly model the 3-type of the 2-sphere [Sim]| due to the existence of a non-trivial
Whitehead product. In other words, the homotopy hypothesis fails for strict 3-categories.

Since we cannot prove that all tricategories are equivalent to strict 3-categories, the
coherence theorem is instead proved by showing that every tricategory is triequivalent to
a member of some larger subclass of tricategories which, while not perfectly strict, have
better properties than those of a general tricategory. Such a class of tricategories, which is
as strict as possible while remaining triequivalence-dense, is called a Semi-Strict class of
tricategories.

The class with which the coherence theorem was originally proved consists of tricategories

called Gray-Categories.

3.2.1 Gray Categories

To start studying Gray-categories we first have to define a new tensor product on the
3-category 2-Cat. This tensor product, which we denote by ®, was first introduced by John
Gray [Gra74, Theorem 1.4.9] (albeit in a lax form rather than the now-more-commonly
used pseudo form) and is thus called the Gray tensor product.

The Gray product has an explicit definition in terms of generators and relations [Gurl3,
Section 3.1] but applications of them usually use one of the Gray tensor product’s two
universal properties. The first gives the Gray tensor product a closed structure: for a
2-category C, the functor — ® C is left adjoint to the functor 2 — C’atps(C, —) where the
2-category 2 — C’atp <(C,D) consists of strict 2-functors, pseudonatural transformations and
modifications. [BG17, Defn. 2.8]

The other universal property involves a specific class of pseudofunctors: Cubical functors.

The property is that strict functors out of the Gray tensor product F': C;1 ® Co — D
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correspond naturally to cubical functors F: C; x Co — D. Thus we will need to investigate

the properties of these cubical functors.

Definition 3.2.1. A pseudofunctor [[C; — D is Cubical [Gurl3, Defn. 3.1] if whenever we
have 1-cells fi...frg1...gn With g; f; composable in C;, satisfying the condition that whenever

i > j, either f; or g; is an identity 1-cell, the compositor

X: F(glgn)F(flfn) = F(glfl--'gnfn)

is an identity.

2-Categories and cubical functors form a multicategory [Gurl3, Corollary 3.6].
The particular case where the product is of only two 2-categories is the most important
for developing the theory of Gray-categories. These cubical functors can be given a

characterisation in terms of the functors of each variable.

Proposition 3.2.2. [Gurl3, Prop. 3.2] A cubical functor F': C; xCy — D uniquely determines

and is uniquely determined by the following data:
e For each object A € ob(Cy), a strict 2-functor Fa: Co — D.
e For each object B € 0b(Cs), a strict 2-functor Fp: C; — D.

e The assertion that for each pair of objects A € 0b(C1) and B € 0ob(Ca), Fa(B) = Fp(A):
i.e. both are equal to F(A, B).

e For each pair of 1-cells f1: A — A’ € C; and fo: B — B’ € (s, an invertible 2-cell

F(A, B) 29k pia, B

FB(fl)l %(flva) lFB’(fl)

/ / /
F(A',B) (o5 F(A,B)

which is the identity if either fi or fs is the identity.
These data satisfy the following three axioms for every diagram in C; x Co of the form:

(f1,f2)
AN,
(A, B) (anas) (A, B') "2 (47 gy
b

(91,92)
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e The following two diagrams are equal:

Fa(f2)
% , (f2) /
(AB)ﬂF(AB) F(A,B) —= F(A,B)
g2
Fg(g91) e lFB(fl)/ J/FB’ f1) FB(QI)\L A/FB’(QI l I§: Fpi(f1)
F(A',B) —— F(A',B)) P4, B) Y pa, B
o N e
FA'(Q2)
e The following two diagrams are equal:
F(A, B) 2252 pa By F(A, B) 2292 pa, p)
| ZF |
' B) B o By Famp 4 Fy(hafy)
FB(hl)l l/z J/FB’(hl)
" " / " "
F(A”,B) Ffz(fg) F(A", B F(A”,B) F*)A,,(fg) F(A", B
e The following two diagrams are equal
F(A, B) FAU2) FA(fz) F(A, B) Fa(h2) F(4, B)

| L [eneg R

F(A',B) (= F(A',B') ;— F(A', B")

Fu(f2) "ar (h2
F(AB) —— 0 P(AB)
Fa(h)| / [ o
/ / Z
F(A',B) i) F(A',B")

The final useful property of cubical functors is the possibility of what Gordon, Power
and Street termed Nudging.

Proposition 3.2.3. [GPS95, Section 4.5] Let G: C; x C2 — D be a pseudofunctor with
each functor G(A,—) and G(—, B) strict. Then G is isomorphic to a cubical functor

F': (1 x Coy — D via an invertible icon.

One important use of this construct is to explain the symmetry of the Gray tensor
product. If we reverse the direction of the condition in the definition of cubical functor,

we can define opcubical functors. Opcubical functors C; x Co — D clearly correspond to
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cubical functors Co x C; — D and thus to strict functors Co ® C; — D. On the other hand,
nudging provides a correspondence between opcubical functors C; x Ca — D and cubical
functors C; x Co — D and thus also strict functors C; ® Co — D. This gives a symmetry
for the Gray tensor product.

We have not yet proved that the Gray tensor product does in fact satisfy the axioms
we require for a monoidal category. The most elegant proof of this is given by Bourke and
Gurski [BG17]. They prove that the Gray tensor product is a monoidal structure by giving
it as a factorisation

C*D ——CQ®D —— CxD

where C * D is a tensor product - the so-called Funny Tensor Product - whose closed
structure is given by an internal hom 2 — Cat 7 (C, D) whose objects are strict 2-functors,
whose 1-cells are plain transformations (collections of 1-cells FA — G A not required to
satisfy any axioms) and whose 2-cells are modifications. The first part of the factorisation
is bijective on objects and 1-cells and the second is locally full and faithful: these two
classes of maps form an orthogonal factorisation system on 2 — C'at which Bourke and
Gurski use to prove that that the factor objects give a monoidal structure because both
the source and target of the factorisation are both monoidal structures.

We are now able to define Gray-categories.

Definition 3.2.2. A Gray-Category is a category enriched in the monoidal structure given
by the Gray tensor product on 2-Cat. A Gray-category can be viewed as a tricategory whose
hom-objects are strict 2-categories, whose association and identities are strict (because
association and identities are always strict for enriched categories) but whose composition

is a cubical functor.

It is in light of this that the motivation for cubical functors becomes clear. It is often
the situation that the definition of the horizontal composites of a 2-cell by an identity
(/1 ®id and id ® (B2) are obvious and strict. However, it is not obvious how to horizontally
compose two 2-cells, so we have to make a choice to define f; ® fo = (id ® B2) o (81 ® id).

Then (81 ® B2) o (a1 ® a2) is given by some association of
(id ® B2) o (B1 ®id) o (id ® az) o (a1 ® id)

We can now see that the interchange law fails because the terms for 81 and as are the
wrong way around. Therefore the interchange law works if either of these are the identity:

exactly the condition of cubical functors.
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Gordon, Power and Street proved the coherence theorem for tricategories by showing
that every tricategory is triequivalent to a Gray-category. This is a long proof that takes

up the bulk of their monograph and thus will not be presented here.

3.3 Low Dimensional Structures formed by Tricategories

Though tricategories and the transformations given above form a 4-dimensional categorical
structure, it is also possible to construct lower dimensional structures whose objects are
tricategories. This generalises the fact that bicategories, pseudofunctors and icons form a
2-dimensional structure (see Section 2.1.1), and so we should expect to see more icon-like

behaviour.

3.3.1 A 2-Dimensional Structure

Definition 3.3.1. An Ico-Icon [GG09, Defn. 2] between two trifunctors or lax functors
a: F'= G: S — T consists of:

The assertion that F' and G agree on objects.
e The assertion that F' and G agree on 1-cells.

e For each pair of objects A, B € 0b(S), an icon asap: Fap = Gap: S(A,B) —
T(FA,FB)=T(GA,GB).

For each object A € 0b(S), a 3-cell My: ff = 5.

For each pair of composable 1-cells

A%B%C

a 3-cell Tyyp: x}; = x5
such that

e For every pair of 2-cells

f/ g/

the following two diagrams are equal
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FgFf ——~—— F(gf) FgFf ——— F(gf)
N - F(n8) F(no)
S e = N Y I A
GgGf s FIFf —=—— F(df)  GoGf ———— Glaf) A4, Fldf)

N PN

o S

GygGf ———— Gld'f") GgGf ———— G(d'f")

e For every 1-cell f: A — B, the diagrams
FlgFf —X— F(1pf)
% R
1FBFf H'Y
Ff
I H /
Gf

lepGf =

and

FlgFf —X F(1gf)

E I

1ppFf \\MlGlBfoX% G(1sf) Z/

| ar_
1GBGf Hv

T

Gf

Gf

are equal.
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e For every l-cell f: A — B, the diagrams

FfF1y —* F(fl4)

D

Fflpa

| > |
Gflga = Ff Ff = Gf
N
Gf Gf
and
FfF1y — F(f14)
e \
Fflpa \\ GfGla —x— G(f14) a
| 7 N H
Gflga H& Gf
Gf Gf
are equal.

e For every triple of composable 1-cells

the diagrams

F(hg)Ff —*— F((hg)f)

o me

(FhFg)Ff
H ~, X
> _—
(GhGg)Gf = FhFgFf) —ix> FhF(gf) \T G(n

T Jhm /

Gh(GgGf) I GhG (9f)
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and
F(hg)Ff —— F((hg)[)
x1 a
S L By
(Farg)rs " Glho)Gf x> G((h)) Jan F1(9))
~
| G, |
(GhGg)Gf Hw G(h(gf))
\Gfl—X>Gf/
are equal.

Comparing this definition with that of oplax natural transformations of tricategories,
we see that these correspond to oplax natural transformations whose components at the
objects and 1-cells are identities. However, the correct form of vertical composition of
ico-icons is not that of oplax transformations because they now admit a strictly associative
composition based on the strict composition of 3-cells in a tricategory.

We can form a bicategory, Ico-Icon, whose objects are tricategories, 1-cells are either

trifunctors or lax functors and whose 2-cells are ico-icons. [GGO09, Section 2].

3.3.2 A 3-Dimensional Structure

Definition 3.3.2. A Pseudo-Icon [GG09, Definitions 3 and 5] between trifunctors or lax
functors a: F' = G: S — T consists of:

e The assertion that F' and G agree on objects.

e For each pair of objects A, B € ob(S), a pseudonatural transformation asp: Fap =
Gap:S(A,B) - T(FA FB)=T(GA,GB).

e For each object A € 0b(S), an invertible 3-cell

va
lpg — FlA

|, [

1GA T> GlA
ta

e For each triple of objects A, B,C € 0b(S), an invertible modification whose compo-

nents, at a pair of composable 1-cells

A%B%C
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are given by
FgFf —— F(gf)

Oégafl /Hgf l%f
GgGf —— G(gf)

such that (in the following diagrams a bar above a 3-cell represents the composition of

that 3-cell with an appropriate interchange isomorphism):
e For every 1-cell f: A — B, the diagrams

FlgFf —*= F(1pf)

oD

lppFf Ff
lafl \l\ / laf
1aGf = Ff———Ff = Gf
N
Gf ——— Gf
and
FlpFf —— F(ipf)

L ey N
1ppFf \Xm G1ZGf —xo G(;Bf) Z/al Ff
10‘fl /u/ \Gl\ laf
165G Hv P Gt

\ B B /
are equal.

e For every 1-cell f: A — B, the diagrams

FfF1y —— F(f14)

FleA% Hé N
st \r\ / ag
~

rf
\ gf = Y

g
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and
FfFly —— F(fla)
/O‘f“llA UH Oéf‘lA m
_ + ~
Fiipn \\W GfGla —x— G(f14) Z/ar Ff
Oéfll 1L/ \G’ laf
- "
Gflaa H5 / Gf
Gf ——— Gf
are equal.

e For every triple of composable 1-cells

Aty 0c-t,p
the diagrams

/F(hg)Ff —X— F((hg)f)

x1 m

(FhFg)F f Uw F(h(gf))

(anag afl T x/ Ch(gf)
\ /

(GhGg)Gf = Fh(FgFf) —ix+ FhF(gf) \" G(h(gf))

! |
Oéh(Ot o ) — QpOgf /
x \rg f UIH - b%

Gh(GgG ) —— GhG(gf)

and
F(hg)Ff % F((hg)f)
y ah;af O‘(hg)f) \
FnEgrs T Glhg)GF —x— Gllhg)f) Jo F0(g
(ahag)afl - x1 -~ \ \ Qh(gf)
(GhGg)Gf “w G(h(gf))
\ x
Gf — Gf
are equal.

Unlike ico-icons, pseudo-icons admit the possibility of transformations between them.
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Definition 3.3.3. A Modification between pseudo-icons [GG09, Defn. 6] I': a =
B: F = G:S8 — T consists of a modification I'yp: aap = Bap for each pair of objects
A, B € 0b(S) such that

e For every object A € ob(S) the following two diagrams are equal:

IS LT
\1 /—>: G1 / \1 /M—\Bl> G1 /

e For every pair of composable 1-cells

A%B%C

the following two diagrams are equal:

FgFf —>—— F( FgFf —>—— F(gf)

9f)
S e A N A AN

FgFf - Gng —x—Glgf) FgFf —x— F(gf)\ T Glaf)
@]% / B / ﬂq% IS /
GyGf ——— Ggf) GyGf ——— G(gf)

The structure formed by tricategories, trifunctors or lax functors, pseudo-icons and
modifications is a tricategory [GG09, Theorem 7], which we will denote Ps-Icon
With the overview of the theory of tricategories complete, we are now ready to proceed

to the original part of the thesis.



Chapter 4

Manipulating Tricategorical

Pasting Diagrams

In this chapter we prove the first original results of the thesis. These results will provide
us with techniques we can use to simplify and manipulate the pasting diagrams that make
up the trifunctor axioms. Using these techniques will make the process of proving that one
such diagram is equal to another - and thereby proving that the trifunctor axioms hold -
significantly easier.

The first technique will use the coherence theorem for bicategories to allow us to ignore
cells in the pasting diagram that are coherence cells in a particular bicategory. This is
crucial for simplifying the source and target pasting diagrams and make them tractable.

The second technique considers pseudonatural transformations and modifications in
a given bicategory whose sources and/or targets are composites. The definitions of
pseudonatural transformation and modification imply that their component 2-cells can
be moved through particular cells (For pseudonatural transformations, the images of
2-cells under a pseudofunctor. For modifications, 2-cell components of pseudonatural
transformations.) attached along the entire source or target. The point of the second
technique is that from this we can prove that any configuration of attaching such 2-
cells to the pseudonatural transformation or modification works: both pseudonatural
transformations and modifications can be moved through cells on any segment of the
boundary.

Both of these techniques arise from the fact that the target tricategory is the tricategory

of bicategories, which has particularly nice properties.

63
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4.1 Simplifying Pasting Diagrams using the Coherence The-

orem

The method described in this section is modelled on that used by Gurski to simplify the
axioms for a biadjoint biequivalence in the tricategory of bicategories [Gurl2, Theorem
3.2]. Using the method to simplify the definitions of trifunctor and tritransformation, and
potentially any other tricategorical pasting diagram in the tricategory of bicategories, is
original work.

To see why the coherence theorem for bicategories will allow us to simplify our pasting
diagrams, note that taking components at a particular object of the bicategory will extract
a coherence cell from many of the important cells we are considering in the pasting
diagram. In particular, all of the coherence 2-cells of the tricategory of bicategories
have components which are identity 1-cells in the bicategory, all of the coherence 3-cells
have components which are the suitable coherence cells in the bicategory, and all of the
pseudonaturality cells taken at a coherence 1-cell are coherence cells. Moving to the
tricategory of bicategories also simplifies the interchange cells between two pseudonatural
transformations, as the interchange cell becomes the pseudonaturality cell of the leading
pseudonatural transformation.

We’ll thus end up with a pasting diagram in a bicategory where many of the cells are
coherence cells. Coherence cells in bicategories are natural, so in any given diagram they
can be moved either towards the source or target. Then, once all the coherence cells are
collected before or after all the other relevant cells, the coherence theorem ensures that
any possible composition of these coherence cells gives the same result. This allows us to
only consider the other remaining cells during the calculations.

As an example of this process in action, we can use it to simplify the definition of

trifunctor into Bicat as follows:

Proposition 4.1.1. A Trifunctor from any tricategory T into the tricategory of bicategories

Bicat, F': T — Bicat consists of:

e A function ob(7) — ob(Bicat).

e For each pair of objects A, B € ob(T), a pseudofunctor T (A, B) — Bicat(FA, FB).
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e For each triple of objects A, B,C € ob(T), a Compositor given by an adjoint

equivalence

T(B,C) x T(A, B) 225 Bicat(FB, FC) x Bicat(FA, FB)

l® / l®

T(A,C) » Bicat(F A, FC)

F
e For each object A € ob(T), a Unitor given by an adjoint equivalence

“ra s Bicat(FA, FA)

1
T(AA)

e For every four objects A, B,C, D € ob(T), an invertible modification w composed of

2-cells in the target bicategory which, by coherence, are determined exactly by 2-cells

F(hg)Ff(x) . F((hg)f)(z)

x}

FhF(gf)(x)

FhFgF f(z)

(From here on, we will often take a 2-cell in a bicategory and refer to the unique cell

determined from it by coherence by adding a tilde: e.g. « gives rise to the cell a.)

e For each pair of objects A, B € ob()), an invertible modification v composed of

2-cells in the target bicategory which, by coherence, are determined exactly by 2-cells

FlgFf(z) —— F(1pf)(z)

Y

Ff(x) 1 , Ff(2)

e For each pair of objects A, B € 0b(T), an invertible modification § composed of 2-cells

in the target bicategory which, by coherence, are determined exactly by 2-cells

Ff(x) i » F(f1a)(2)

Sk AT

Ff(x) ——= FfF1a(z)
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satisfying two simpler axioms

e For every four composable 1-cells

At ,p_ 9, c_h,p_k

&

the two diagrams

¥ F(k(hg))F f () — s F((k(hg))f)(z)
Grf
F(kh)FgF f(z) XFf @ F(k((hg)f))(@)
/ ' / JF(IM)
\FoFS FRF(hg)Ff(z) — " FEF((hg))(x) = F(k(h(gf))()
Fk’XFF/ \FkFa ]X
FEFhFgFf(z) Fki FEF(h(gf))(z)
FkFhy Fkx
FEFRF(gf)(x)
and
F((kh)g)F f(x)
xFf
Fa
F(kh)FgFf(z) F(k((hg)[f))(x)
\F . Fa J
(kh)x \ F(ka)
ror) ch F(k(h(gf)))(x)
FkFhFgF f(z) XF(gf) FEF(h(gf))(z)
MA Fkx
FEFhF(gf)(x)

are equal.



Manipulating Tricategorical Pasting Diagrams 67

e For every pair of composable 1-cells

A%B%C

the two diagrams

F((91p)f)(x) = Fg(15))()
F(ref) 1 I F(gl)
F(gf)(x) =y  Flglp)Ff(x —_— FgF(1pf)( F(gf)()
| - N, e \w X
FgFf FgFlBFf 7 FgFf(x
\ FguFf
FygFf(x
and
F((g1p)f)(x) = F(g(15)(@)
F(ref) MF“ F(gl)
F(gf)(x) ; F(gf)(x)
x ~ x
FgF f(z) : FgF f(x)
are equal.

Proof. For the first trifunctor axiom, recall that the definition of a trifunctor between any

tricategories (Definition 3.1.2) requires that the following two diagrams are equal



Manipulating Tricategorical Pasting Diagrams 68

F(((kh)g)f)

X N F(a)
F((kh)g)Ff Fa1) F(k(hg))F f X F((k(hg))f)
wl !
(F(kh)Fg)Ff \ (FKF(hg))Ff / Fk((hg) )
(XmT 1(x1) — T~ X — lF(m)
/ ’ —
((FKFh)Fg)Ff — a1~ (Fk(FhFg))Ff ~ Fk(F(hg)Ff) —1x> FEF((hg)f) = F(k(h(gf)))
T 1(x1) — 1Fa
a “H T~y " v X
(FEFh)(FgFf) Fk((FhFg)Ff) X FkF(h(gf))
@ lf Ix
FK(F(FgF f)) ———s———— FK(FhF(g]))
and
F(((kh)g)f)

F((kh)g)F'f Fa F((k(hg))f)
% / \ Fa
(F(kh)Fg)F f F((kh)(g]) jjﬁ F(k((hg)[))
o] —_— /X/ \Fu\ 1)
((FkFh)Fg)F f = F(kh)(FgFf) —1x— F(kh)F(gf) F(k(h(g1)))
a _— Xt = ;l Jl* X
(FRFR)(FgFf) Ix (FRFR)F(gf) FEF(h(gf))

\ = \"\ /

FK(Fh(FgF f)) ————— 5~ FK(FhF()))

Interpret these diagrams where the target tricategory is the tricategory of bicategories,

and then take the component at the object z in the bicategory F'(A). This has the following

effects:

e Each instance of the associator becomes an identity, and all pseudonaturality squares

for the associator become coherence cells of the bicategory F(E).
e Each coherence 3-cell of the tricategory becomes a coherence cell of the bicategory.

e Any interchange isomorphisms become the pseudonaturality cell of the leading

pseudonatural transformation.

e Any instance of the cell w becomes an instance of the cell @ plus a coherence cell.

This results in the following two diagrams (where the unmarked 2 cells are the coherence

cells of a bicategory).
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F(((kh)g) f)(x)
X - Fal)
=x
F((kh)g)Ff(2) P F(k(hg))Ff(2) x F((k(hg)) (@)
x1 * Fa
\51 X‘l / \
F(kh)FgFf(z) FEF(hg)F f(z) ¢ F(k((hg)f))(x)
(XmT = x— KT//') ™~ -~ o X lF(lu)

FkFhFgF f(z) —=1— FkFhFgF f(x) >~ FEF(hg)F f(z) —1x+ FEF((hg)f)(z) =x F(k(h(gf)))(z)

= a— 1@ <

FkF(h(gf))(x)

\ ~ - —
FkFhFgFf FkFhFgF f(x) X
Iy
\ l‘ X %
FEkFhF(gf)(x)

FkFhFgF f(z) ™

12

F(((kh)g)f)()
Fal)

e
= \m F((k(hg))f)\
Fa

F((kh)g)F f(x)

Fh)FgF f(2) I F((kh)(9)) (@) ﬂ” F(k((hg) )

XIT /—\}\ /x/ \Fa\ llr‘(ln)
FkFhFgFf(z) > F(kh)FgF [(x) — x> F(kh)F(gf)(x) ﬂ F(k(h(g))(x)

\ - x1 -~ =x ’?1 /
FEFhFgF f(z) I FEFRF(gf)(x) I FEF(h(gf))(x)
~ ~ ~
\ = — %
FkFhFgFf(z) o Fk(FhF(gf))

Now use the naturality of the coherence cells of the bicategory to move them through
the other cells towards the target of these two diagrams. This results in the following two

diagrams, as the coherence theorem means that we can amalgamate all the coherence cells

into a single cell which will be the same no matter how we choose to do it.
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]‘ \
F(kh)FgF f(z) N XFf w“ F(k((hg)f))()

/ X F(ka)
FRF(hg)F f(x) — " FEF((hg))(x) = F(k(h(gf))()
ka Ff FkFa X
FkFhFgF f n FEF(h(gf))(z) FEF(h(gf))(x)
M ]wcx
FEFhF(gf)(z FkFhF(gf)(x)
FkFhFgF f(z) FkFhFgF f(z)

kh)g)F f(z) —— F(((kh)g)f)(x)

" F((k(hg) f)(2)
Fa
P
z)

F(kh)FgF f(x F((kh)(gf))( F(k((hg)f))()
\ Fa J
F(kh)x \ F(ka)
o) F(k(h(gf)))()
]‘X X
FkFhFgF f FEF(h(gf))(x) FEF(h(gf))(x)
FkF hx Fkx kax
1 FEFhF(gf)(z) o~ FEFLhF(gf)(x)
%
FkFhFgF f(x) - FEFhFgF f(x)

These two diagrams are equal if and only if the original diagrams, from the axiom for
a trifunctor, are equal. Since these two diagrams have the same coherence cell attached
along the bottom, they are equal if and only if the two diagrams with that coherence cell

removed (that is, the simplified diagrams for the axiom) are equal. Therefore the two
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diagrams from the original definition of a trifunctor are equal and the first axiom holds if
and only if the simplified diagrams are equal.
The proof for the second axiom proceeds similarly.
O

When proving the main result in the next chapter, it is this definition of trifunctor we
will use.

We can simplify the definition of a tritransformation in the tricategory Bicat as well.
This will aid us in Chapter 6, when we partially prove that the object-indexed family
of biequivalences can be lifted to be tritransformations between the original and the

transported trifunctor.

Proposition 4.1.2. A tritransformation 0: F = G: T — Bicat can be given as:
e For each object A of T a l-cell 04: FA — GA.

e For each pair of objects A, B € ob(T), an adjoint equivalence

T(A,B) —~— Bicat(FA, FB)

ol = e

Bicat(GA,GB) e Bicat(FA,GB)

e For each triple of objects A, B,C € 0b(T), an invertible modification II whose
component at a pair of composable 1-cells A ENIEN C in T and at an object

x € ob(FA) arises via coherence from a 2-cell

/G%Ff(a:) 10 GyGfoa(z)
91 xal
9cFgF f(z) “H G(gf)0a(x)
Ixr /
OcF(gf)(x)

e For each object A € ob(T), an invertible modification M whose component at a given

object x € ob(F'A) arises via coherence from the 2-cell

HAFlA(.%')

o Uar \‘

> GIAQA(x)

Oa(x)

gl

These cells are required to obey the following three simplified axioms.
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1. For every triple of composable 1-cells A Iy B oM D the following two diagrams

are equal:
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(@) ((f6)y).190 . (€)(f6).141
\ SHNL/ r&BAﬂ AXT
(@)Vo((fB)u)o o= (@) (f (Bu)).190 X (@) f2(6y).1 99 X (@)f ab.141%
GL, X x Tm
(@)vYo(f(6y))D mﬁ (x)f190(6Yy)D E: (@) f 1619045
7 \ 1OX 01
(@)VoSo(by)D = (@) f1906DyD
19X X
(@)VoSDboyn
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(@) ((f6)y).190 = (2)(f6).141
\ Tm o
(z)ve( E m: z)(§6) 19045 mfi@
GU / \ /

(@) Vo(f( ©)Ve(f6)Dyn @im@&sc
19X ﬂ\‘. 4t 161
(@)VoSo(6y)D oxy 2)f 1896040
% \

(@)VoSDboyD
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2. For every 1-cell A i> B the following two diagrams are equal.

Glp0pF f(z) 10 G1pG f04(x)

% xal
0pF1pFf(z) In G(1pf)0a(x)

Ixr /

Lupl OpF(1pf)(x) Gl
OpFf(x) Gfoa(x)

OpFf(x)

GlplpFf(z) — 2 G1pGfoa(z)

Yal
> w6l an

: G f0a(x)

3. For each 1-cell A i> B the following two diagrams are equal.

GfO4F14(x)
Lup \
G fOa(x) o GFG1404(z)
=
0 j[ﬁ XG
OpF [F14(x)
OpFf(x) Hw? 0pF(f14)(x) 5 G(f1a)0a()
\ 1Fr* =0 Gr*1l
OpFf(x) 7 Gfoa(x)
GfaF14()

Iup 160
ﬂlfﬁ

Tiol GfGlAHA(l‘)

[ xc
ool

G(f1a)0a(x)

- G fha(x)

In this simplified axiom the adjunction from the right unitor becomes an identity and
so the mate of the modification § (as mentioned in definition 3.1.3 just becomes 0.
As a result, the cells that appear in these diagrams are just 6 up to some coherence

cell.

The proof of this proceeds similarly to Proposition 4.1.1.
Finally, we can also simplify the description of a biadjoint biequivalence between objects

of Bicat.



Manipulating Tricategorical Pasting Diagrams 76

Proposition 4.1.3. A Biadjoint Biequivalence between two bicategories A and B in the

tricategory Bicat consists of the following pieces of data:

e A pair of pseudofunctors S: A — B and ¥: B — A.

e Pseudonatural transformations n: 15 = SV and n*: S¥ = 1p forming an adjoint

equivalence n 4 n*.

e Pseudonatural transformations e: ¥S = 14 and €*: 14 = ¥S forming an adjoint

equivalence € - *.

e An invertible modification ® whose components at each object x arise via coherence

from 2-cells

U(z) —  USU(x)

e An invertible modification ¥ whose components at each object x arise via coherence

from 2-cells

S(z) — 2 SUS(x)
Se
S(z)

These are required to obey the simplified axioms that both of the following pasting

diagrams are equal to the identity:

/ els \
('I;fl

S(z) ———444>@s¢s ()

\I/Z
\IlSa c
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/ nSv \
i—l

(x) = S\I/S\I! — S¥ SU(x
\ S¥n V

This simplification, in the specific case of biequivalences, was also noticed in the

paper [Gurl2, Theorem 3.2] which started by considering biequivalence in the tricategory
Bicat. By expanding this technique and applying it to all tricategorical constructions we
are able to get a great deal of use out of it. The pieces of data and axioms that govern
constructions such as biequivalences, trifunctors and tritransformations will be far more

easily wielded when it comes to using them in a diagram manipulation proof.

4.2 Moving Pseudonatural Transformations and Modifica-

tions

The other main advantage of working in the tricategory Bicat is that those cells that aren’t
coherence cells usually arise from pseudonatural transformations and modifications between
bicategories. Our ability to move the pseudonaturality squares through other 2-cells and
our ability to move the component cells of a modification through the pseudonaturality
squares are key tools in manipulating the diagrams that we will be working with.
However, there is one subtlety, caused by the fact that many of the cells we are interested
in have sources and targets that are composites. If our techniques are based only on directly
using the definition of pseudonatural transformation, then we are only able to move such a
cell through pseudonaturality squares if those squares are attached to the entire source
(or entire target) of the cell. This limits our flexibility when attempting to manipulate
this cell. In order to expand our options, we will show that we can, in fact, move a 2-cell

through any contiguous arrangement of attached pseudonaturality squares.

Proposition 4.2.1. Let o be a pseudonatural transformation between the pseudofunctors
F.G: A— B, and B: gf = kh be a 2-cell in the source bicategory A whose sources and
targets are composites. Consider a pasting diagram where pseudonaturality squares of «

are attached to some contiguous border of the image of 8 under one of the pseudofunctors
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(though not necessarily entirely along the source or target). For instance

Fy —%— Gy

g

Frx —2% Gx ﬂ

e N

Fz —— Gz

o
-

Then we are able to move the instance of § through the pseudonaturality squares as

Fy —%— Gy

the above pasting diagram is equal to
Ff
/ m ~« \
ﬂ Fw —%—= Guw

Fx
Fk ~
Fh o Gk

Fz —— Gz

Proof. We will need to construct additional pseudonaturality squares along the source of
G in order to use the definition of pseudonaturality. Start by redrawing the first diagram
so that the square attached to G f is aligned upwards, and then add both the remaining
pseudonaturality square along the source and also its inverse, keeping the diagram equal to

the original.

Gy

Fy
pd PW
= =, Fw

ikﬂgﬁmi
A
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With a complete set of pseudonaturality squares along the source, we are able to use

the definition of pseudonaturality to move § through them. This gives:

/ﬂm\
et

\l/

Once the pseudonaturality squares in the bottom left have cancelled out, we are left with

the diagram we were expecting and have successfully moved the instance of 5 through the

original pair of pseudonaturality squares. O

Other possible variations of pseudonaturality squares attached to a 2-cell can be

considered as corollaries of Proposition 4.2.1. For instance:

e In the situation where we start with the pseudonaturality cells attached closer to the

Fy —— Gy

target of the 1-cells, we have a diagram analogous to
m e \

o
T ﬂ Fuw —2%— Guw
e g
Fh T Gk

As the proposition shows that this diagram is equal to

Fy —%- Gy
V ~ /‘ Gg
@ Gf \

Fr —2% Gz ﬂGﬁ

Gw
~ Gh /
Fh o Gk

FZT>GZ

we are able to move the 2-cell through the pseudonaturality cells if we choose.

e [f we want to consider a situation where the pseudonaturality squares cover the entire

source (or target) this is equivalent by coherence to a situation where the morphism
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g (vis-a-vis k) in Proposition 4.2.1 is an identity so that that part of the construction

has no effect.

e If we want to consider a situation where the pseudonaturality squares are only
attached to the source (or only attached to the target) this is equivalent by coherence
to a situation where the morphism h (vis-a-vis f) in Proposition 4.2.1 is an identity
so that the pseudonaturality cells we see attached there in the proposition is just a

coherence cell.

Similarly, we are able to prove a proposition that will allow us to move a modification
cell through an arrangement of pseudonaturality squares even if they do not cover the

entire source (or target).

Proposition 4.2.2. Let M: fa = §7 be a modification whose source and target are
composites of the pseudonatural transformations a: F' = G, f: G = K, v: F = H
and 0: H = K. Consider a pasting diagram where pseudonaturality squares are attached
to some contiguous border of a component of M though not necessarily entirely along the

source or target. For instance

GmHGy

S

F:z:*>Fy ﬂ

NN

Hx%

\
/

Then we are able to move the instance of 8 through the pseudonaturality squares as

the above pasting diagram is equal to

M Kx—>Ky
\ /_5/
Ha:—>

Proof. We will need to construct additional pseudonaturality squares along the source of
M in order to use the fact that it is a modification. Start by redrawing the first diagram
so that the square attached to o, is aligned upwards, and then add both the remaining

pseudonaturality square along the source and also its inverse, keeping the diagram equal to
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the original.

With a complete set of pseudonaturality squares along the source, we are able to use the

definition of modification to move M through them. This gives:

Once the pseudonaturality squares in the bottom left have cancelled out, we are left with
the diagram we were expecting and have successfully moved the instance of M through the

original pair of pseudonaturality squares. O

As with the previous proposition, other potential arrangements can be considered as
corollaries or special cases of this one.

Together, these two propositions provide plenty of tools for the diagram manipulations
we will need to make when showing that the structure of a trifunctor can be transported.

We are therefore ready to move on to proving the main result.



Chapter 5
Transporting a Trifunctor

With the techniques developed in the previous chapter, we are now ready to begin the
transport of a trifunctor.

We start with a trifunctor F' : 7 = Bicat and a family of biequivalences between
the bicategories FFA and GA for each object A € ob(T) that we want to transport the
trifunctor across. From these we will extract the cells that we are able to use to construct
the transported trifunctor G : T = Bicat.

Once we have a catalogue of all available cells, we will begin constructing G. We
will work through the (simplified) definition of a trifunctor step by step, identifying each
coherence cell for G that we need to define and showing how they can be constructed from
the cells given by F' and the biequivalences. Each of these cells will form suitably natural
structures: e.g. the 3-dimensional cells of G will be constructed from modifications in
the definition of ' and the biequivalences, as well as coherence cells, and so will also be
modifications as required.

Once all of the cells of G have been constructed, we will prove that they do form a
trifunctor by proving the two trifunctor axioms. We will do this by identifying the pasting
diagrams that form the two sides of each axiom and then we will manipulate one into the
other step-by-step. Since each manipulation will result in an equal diagram, this will prove

that the two sides of the axiom are equal.

5.1 Setup: Available Data

In this section we will collect and overview the categorical data we have available for
constructing the transported trifunctor. We start with the original trifunctor F' : T — Bicat

that we want to transport. As this is a trifunctor into the tricategory of bicategories, we

82
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can use the coherence theorem to give us the simplified definition (see Proposition 4.1.1),

meaning that this trifunctor consists of:

e A function ob(7T) — ob(Bicat).

For each pair of objects A, B € ob(T), a pseudofunctor T (A, B) — Bicat(F A, FB).

For each triple of objects A, B,C € ob(T), an adjoint equivalence

T(B,C) x T(A, B) 225 Bicat(FB, FC) x Bicat(FA, FB)

l® / l®

T(A,C) - » Bicat(FA,FC)

For each object A € 0b(T), an adjoint equivalence

1
m
.

For every string of three composable morphisms in 7

ira s Bicat(FA, FA)

"

ﬂb
(4, 4)

At 9, c_",p

and object x € ob(F'A), a 2-cell

F(hg)Ff(x) X F((hg) f)(x)

° F(h(gf))(x)
\ /
FhF(gf)()

e For each morphism f: A — B in 7 and object z € ob(F'A), a 2-cell

FhFgFf(x)

FlgFf(z) —— F(1pf)(z)

2o e,

Ff(z) : sy Ff(x)
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e For each morphism f: A — B in 7 and object = € ob(F A), a 2-cell

Ff(z) L » F(f1a)(2)

satisfying the axioms

e First Trifunctor Axiom: For every four composable 1-cells

At ,p_ 9, c_rh,p_k,E

the two diagrams

xFf

[ \
OFf
F(kh)FgF f(x) XFf b F(k((hg)f))()

/x/ Jp(zm)
o) FEF(hg)F () —= FKF((hg)f)(x) =y F(k(h(gf)))(x)
\
FkxrpFf FkFa
\

FEFhFgF f(x) MFI@ FEF(h(gf))(z)

\
\

FkFhy Fkx

FkFhF(gf)(z)
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and
F((kh)g)F f(z) —— F(((kh)g)f)(x)
F(kh)F(gf)(w) ) F(k(h(gf))) (@)
]‘ W\X
FkFhFgF f(z) XF(af) FEF(h(gf))(x)
FEkFhy Fkx
FkFhF(gf)(x)
are equal.

e Second Trifunctor Axiom: For every pair of composable 1-cells

A%B%C

the two diagrams

F((g1B)f)(z) L F(g(1pf))(z)
F(r*f) I I F(gl)
F(gf)(z) =  Flglp)Ff(x) —_— FgF(1pf)(z) =  Fl9f)(x)
X F'r F/ \ / \FgFl X
FgFf FgFlBFf 7 FgFf(l

\ Fq.Ff

FgFf(x
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and
F((g1p)f)(=) re F(9(1pf))()
F(r ) . Flgl)
F(gf)(x) : F(gf)(x)
X = X
FgF f(z) T FgFf(z)
are equal.

We then need to identify where we are transporting the trifunctor to. We take a
function G : 0b(T) — ob(Bicat) which will become the action on objects of our transported
trifunctor.

Finally, we have the biequivalences along which we will transport the structure of a
trifunctor. We need a biadjoint biequivalence for each object of 7 so that we can take the
trifunctor from its original output at F'A and translate it to what it should be at GA. We
thus have a biadjoint biequivalence in Bicat for every object A € ob(T). Each of these
biequivalences consists of (again: because we are working in Bicat we can use the simpler

version given in Proposition 4.1.3):

e A pair of pseudofunctors S4: FA — GA and ¥4 : GA — FA.

e Pseudonatural transformations n4 : 1g4 = Sa¥4 and 7% : Sq4¥4 = 1ga forming an

adjoint equivalence na = 7%.

e Pseudonatural transformations €4 : W 454 = 1pg and €7 : 1pg = W25, forming an

adjoint equivalence 4 €.

e An invertible modification ® 4 whose components at each object x arise via coherence

from 2-cells

v
\I/A(.CL‘) A—nA> \I/ASA\I/A(J})

F AV

Uy (x)
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e An invertible modification Y. 4 whose components at each object z arise via coherence

from 2-cells
SA(w) WA—SA> SA\I/ASA(:C)

/f;v Saea

A

Sa(zx)

With the two simpler axioms that the following two diagrams

1.
U 2S4(x)
~ ea¥aSa
‘I’leA ‘ \
‘I’ATIASA
UaSa(z ‘I’ASA‘I’ASA )
WAEA
‘I’ASASA
\IIASA
2.
SAV4(x
/WASA\I]A \
Wy
\'
() = SA‘I/ASA\I’A LELZLE NN SAW A (2
SA‘IIAUA M
‘I’ASA

are both equal to the identity.

These are the data from which we will construct our transported trifunctor and these
are the axioms which, along with the properties of pseudonatural transformations and
modifications, will allow us to prove that our constructions do satisfy the properties of a

trifunctor (and higher cells between trifunctors).

5.2 Construction of the Transported Trifunctor

Given the original trifunctor F' : 7 — Bicat and the object-indexed biequivalences

FA — GA, we first need to construct the transported trifunctor G : 7 — Bicat. We
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construct each of the components of G as follows.

5.2.1 Data with Dimension less than Three

e The action of G on objects has already been decided: it is given by the function
G : ob(T) — ob(Bicat).

e In order to define the action of G on the hom-bicategory 7 (A, B), we first use the
part of the biequivalence W 4 in order to go from GA to F'A, then use the action of
the trifunctor F' on the hom-bicategory getting us to F'B, then compose with the
other part of the biequivalence Sp in order to arrive at GB. This makes the action
of G on the 1-cells Gf = SpF f¥ 4. However, we will need to choose an association
in order to be able to state that the constructions of the higher cells are actually
pseudonatural transformations and modifications. Both associations work; for this

thesis we will arbitrarily pick that the action of G should be given by

T(A, B) & Bicat(F(A), F(B)) —2¥4 Bicat(G(A), F(B)) 2225 Bicat(G(A), G(B))

e When constructing the compositor x ¢, we note that the source of any given component
of the compositor is going to be a 1-cell of the form GgGf = ScFgVpSpF fW 4,
where the two instances of F' applied to a 1-cell are separated by instances of 1-cells
from the biequivalence. Therefore, our strategy will be to use the appropriate 2-cell
from the biequivalence to cancel those out, bringing the instances of F' together
so that the compositor of that trifunctor can be used. After taking care of the
associations in order to bring the pairs of 1-cells together and apply the two cells,

the compositor of G is given by:
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T(B,C) x T(A, B)

FxF / F

Bicat(F(B), F(C)) x Bicat(F(A), F(B)) ———2 5 Bicat(F(A),

Ix(—@W,) /

Bicat(F(B), F(C)) x Bicat(G(A), F(B))

=
2

—®¥a

“ @ 13
(—@¥p)x1

/

Bicat(G(B), F(C)) x Bicat(G(A), F(B)) "2 Bicat(F(B), F(C)) x Bicat(G(A), F(B)) — 2 Bicat(G(A), F(C))

(—-®(¥p®Sp) )Xl

n
2
3
E
X
X
ﬁ\‘

1x(Sp®-)
Sce-

Bicat(G(B), F(C)

x Bicat(G(A), G(B)) y

(Sc®—)x1

Bicat(G(B), G(C)) x Bicat(G(A), G(B)) —————— Bicat(G(A),G(C))

This is a pseudonatural transformation because it is constructed from the pseudonat-
ural transformation x g, coherence cells, and the 2-cell e being applied to a different

part of the composition (which is pseudonatural by the functoriality of composition).

We will note now that by the usual method of using the naturality of coherence cells
and then the coherence theorem for bicategories, any modification starting or ending

at xg has components that correspond exactly to a 2-cell starting or ending at

SCRREIYS, SeFgF ¥y S SeF(gf)va

ScFgVpSpF f¥a

e When defining the unitor ¢, we note that we want the target of each component to
be G14 = S4F14¥ 4. We will need to use an instance of the 2-cell n4 first in order
to introduce those cells from the biequivalence, then use the unitor ¢z to introduce

F1,. This gives the unitor of G as:

1 fow Bicat(G(A), G(A))

SA®—
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Again, we note that any modification starting or ending here has components that

correspond uniquely to a 2-cell with source or target

loa 25 SaU 4 I SAF140 4

That concludes the construction of all the data for G with dimension less than 3.

5.2.2 Three-Dimensional Data

We now need to construct the modifications for the trifunctor. As noted, we will be able to
take the components of these modifications, simplify the sources and targets by removing
coherence cells, and consider the unique cell the components correspond to under coherence.
This will make the process of constructing the cells easier.

Each of the following constructions will give us a modification. This is because the cells
are constructed out of the modifications coming from the trifunctor F', coherence cells and
applications of 3-cells from the biequivalence to other parts of the composition (These give

a modification by the functoriality of composition).

e In order to construct the modification wg, we will construct the corresponding cell

wg which is given by:

SpFhVYeScFg SpFhecFgVpSpFf¥a(z) SpFhFg SpxF¥BSBFfYa(z) SpF(hg)
\I/BSBFf\IJA(LC) \I/BSBFf\I/A(x) \I/BSBFf\I/A(LC)
SpFh¥cScFgepF ¥ 4(x) =0 SpFhFgepF f¥ 4(x) N SpF(hg)epF ¥ a(x)
SpFh¥cS, SpFhecFgF f¥ A (x SpXpFfYA(z
D coC pFhecFgF [V 4(z) SpFhFgF fU4(z) pXFFfPa(x) SpF(hg)F fUA(x)
FgF fUa(x) ‘
Spxr¥a(z)
=5 SpWEw 4 (2)
SpFhUcSexra(z) c SpFhxp¥a(z) SpF((hg)f)¥a(z)
SpFa¥4(z)
SpFhVeSe
SpFhE(gf)¥a(z) SpF(h(gf))Pa(z)

F(gf)Wa(x) SpFhecFaf)¥al@) Spoxr¥a(x)

The strategy for constructing this cell was to notice that the final two 1-cells in

the source and the final 1-cell in the target match those of Wr indicating that we
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should use a copy of that cell there. Once that wr has been inserted, the remaining
1-cells match those of the source and target and need only be interchanged using

pseudonaturality cells.

e We next construct the modification 7g, again by considering the corresponding cell

Ya. This cell is given by the diagram

SpFlpep
SBFIB\I/B FfUa(z) SBFIB
SpF fU4(x) Ffwa(z)
SpLr¥p
SpFfUA() =i Spxr¥al(z)
Spep
Spnsy MU b SF(Lpf)Wa(2)
B AT B B alz
FfWa(z)
SBWFV
nBSE ~ ) SpFIV 4(z)
FfUa(z) B
SpF U 4(x) n SpFf¥4(x)

Here, the strategy was to first note that the final part of the source could have a copy
of vr attached to them. Then, there are both an ng cell and an g cell present from
the biequivalence: bringing them together using pseudonaturality allows them to be

cancelled out by the 3-cell Y from the biequivalence.

e We construct the final modification d¢g, and the corresponding cell gg, in a similar

way to vg.
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SpF U4
SAFIA\I/A(x)

SpFf¥a

SatpVa(x)

SpFfU 4 SpF'f
SpFf
Sa¥ () F1l,P4(x)
SpFf
. SB(SF\I/A(CE) SBXF‘IJA(J:)
W ana(z)
SBFf\I/A(x) SBF(flA)\I/A(x)

SpFr*U 4(x)

5.3 First Trifunctor Axiom

Having constructed all the data for G, we now need to show that they form a trifunctor
T — Bicat. We do this by proving that both trifunctor axioms hold for the data given

above.

Proposition 5.3.1. G : T — Bicat satisfies the first trifunctor axiom.

Proof. After substituting the data for G into the first trifunctor axiom (the version after it
has been simplified using the coherence theorem for bicategories), we are asked to prove
that the following source and target diagrams (Figures 5.1 and 5.2) are equal.

We will start with the first of these diagrams (the source of the axiom) and manipulate
it to reach the second (the target), proving they are equal.

Looking at both diagrams (see Figures 5.3 and 5.4), we note that the cells around the
upper-right corner in both of them are reminiscent of the cells in the first trifunctor axiom
for F': T — Bicat. The only differences are that these are composed with S and ¥4 (as
expected, given how G was constructed) and that the entire diagram for the axiom is not
yet complete.

This suggests the strategy for proving that the two diagrams are equal: move the other
instances of Wg in the first diagram towards the upper right using the diagram manipulation
techniques provided by Propositions 4.2.1 and 4.2.2. This will let us complete and then

use an instance of the first trifunctor axiom for F'.
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FIGURE 5.3: Part of the first trifunctor axiom for F' in the source diagram

First, however, we are able to attach more of the relevant pseudonaturality cells to the
other instances of Wr, which will make it easier to move them. We do this by considering
the following section (Figure 5.5) in between both of those wp in the source.

By moving the yp cell through the ep cells using the pseudonaturality of ep, this is
equal to the diagram in Figure 5.6.

This takes us from the source to the diagram labelled Trifunctor Axiom 1: Step 1
(Figure 5.7) where both instances of wr not already in place in the top right corner have

pseudonaturality cells attached on three of their edges.

We are now able to move both instances of wr towards the upper right corner. First,
we have the cell SpwpVUpSpF f¥s(z) (marked in blue in Figure 5.8) which has the
pseudonaturality cells for three of its pseudonatural transformations attached along its
edges. Therefore, using the technique from Proposition 4.2.2, we are able to move that cell
through the pseudonaturality cells.

We also have the cell SgFk¥pSpwpWa(z) (marked in red in Figure 5.9) which has
pseudonaturality cells for ep attached all the way along its source. Therefore, by the

pseudonaturality property of €p, we are able to move SgFkVpSpwrV 4(z) through them
as well.
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FI1GURE 5.4: Part of the first trifunctor axiom for F' in the target diagram

This takes us to the Step 2 diagram of Figure 5.10.

The cells in the upper-right corner now form an instance of the source of first trifunctor
axiom for F': T — Bicat (taken at W 4(z), and then after the pseudofunctor Sg is applied).
We are therefore able to use that axiom to turn this diagram into the diagram of Figure
5.11.

This differs from the target of the first trifunctor for G only in the bottom-left hand
corner as shown in Figure 5.12.

Consider the two instances of the pseudonaturality cell of e¢ at the very bottom-left.
They have the pseudonaturality cells for the pseudonatural transformation yg o ep pasted
all the way along their source. Therefore we can pass the instances of ¢ through the
pseudonaturality cells, arriving at the target (See Figure 5.13).

Step 4 is the target diagram we were aiming for. Since we were able to move from the
source to the target diagram in a series of steps each of which was equal to the one before,
we have proved that the source and target diagrams (as originally shown in Figures 5.1

and 5.2) are equal. Therefore G satisfies the first trifunctor axiom. O
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FIGURE 5.13: Trifunctor Axiom 1: Step 4 i.e. Target
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5.4 Second Trifunctor Axiom

Proposition 5.4.1. G : T — Bicat satisfies the second trifunctor axiom.

Proof. After substituting the data for G into the second trifunctor axiom (the version after
it has been simplified using the coherence theorem for bicategories), we are asked to prove
that the two diagrams shown in the Figures 5.14 and 5.15 are equal.

Again, we will prove that these are equal by starting with the source of the second
axiom and manipulating it until we reach the target diagram.

We notice two things when coming up with a strategy for doing so. First, that the cells
along the top of each diagram (see Figures 5.16 and 5.17) resemble the second trifunctor
axiom for F': T — Bicat. (Albeit, as before, pre- and post-composed by the 1-cells of the
biequivalence as expected for any diagram for G.)

Secondly, we note that the first diagram also contains cells (E)El and & p) coming from
the biadjoint biequivalence between F'B and G'B that do not appear in the target diagram
(See Figure 5.18).

Therefore, our strategy will be to first construct an instance of an axiom for a biadjoint
biequivalence in order to remove &)Egl and Y. That will clear the way so that we construct
the rest of the second trifunctor axiom for F' along the top of the diagram.

To prepare this strategy, we first note that the =, cell in the lower centre of the source
diagram has the pseudonaturality cells for g attached along its entire source. Therefore,
we are able to pass =,,, through them using the pseudonaturality of g to reach the diagram
of Figure 5.19.

The bottom centre diamond now consists exactly of a diagram of cells (see Figure 5.20)
which the axioms for biadjoint biequivalences say is equal to the identity.

We are therefore able to remove those cells, and the obstruction caused by the cells
&351 and f]B, reaching the diagram of Figure 5.21.

We now attempt to complete the version of the second trifunctor axiom for F' that we
noticed along the top of the diagram. This is now only missing a cell coming from dr and
a cell coming from g, both of which can be found at the bottom of the diagram. The
instance of dr has the pseudonaturality cells of three of the pseudonatural transformations
it is modifying pasted along its edges (marked in blue in Figure 5.22) and so can be moved
through them using the technique provided by Proposition 4.2.2.

Meanwhile the cell including vr has the pseudonaturality cells for eg attached along
the entire source (marked in red in Figure 5.23) and so can be moved through them using

the pseudonaturality of €p.



105

Transporting a Trifunctor

(@) VRS 98
dR6108

1 (#)Vafa9s
qud pb.gog
~ Eﬁ?@/ 1 p\@?akam
(@)Vafd ()Vafgds | 809 (a)yvpfgdsdn 245 (n)vafgdg (@)Vafa9s
G pb198 ! pb.198 @)V afads 4684 70198 @Vafads dRb108 ! dRb108
7 g4 p76,709 | 3 836,70g 7
(@)Vafa8s (2)Vpf g
(D) VS dr_ dqdidg g3__ ()Vafads @ pde0g
()Vafads dgdpb198 > 416,70 - 4 pd16,70g / ’
(@)Y nfor MBS (B)VRfa
mak\(,@m.
F dad1,8g ” ¥ o 58 nd 1. F
@)V S (@)Vafadrg 0408 @ A ! 49 0408 (@)Vafa9s @) VS
— _—
36,70g (#)Van9s 458 pb,19g ma L5 dpE1.16,4°98 @Vanfads 436498
Mb.198
aR6108 7 / \ 7 ] OF
(z)VadX (@)Y RS d1d (©)Vafa (©)Vafads
58 16,08 d3b,0g = d347,76,79 d paXOg
()Vadd s (@)Valfan)d s ()Vaf ax_ CIle VIE LIS i (@)Y RS
6498 ~ 454 jb,198 ~ 41,46.498 ~ 4p(d16).198 ~ 6498
()V i @)V e @Vaang @)V X (@)Vanfd (@)Vanfd @Vafa ()7
AXOg 6,708 36,708 6,108 AXDg d3(d16) 4908 R gels AXOg
5 aX_ (@)Va(far)d (@)Y nfd i 5
(@)Y (f0)a°8 = 5,796 Svatats (a16),79g = (@)Y (f6).198
| |
(z)V A (z)Via
()Y i AXOg AXDg ()Y i
(16).4°5 1 1 (f )28
@)V a((f41)6)d 75 v (@)Va(f(916))d25
D98

FIGURE 5.14: Trifunctor Axiom 2: Source
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FIGURE 5.15: Trifunctor Axiom 2: Target
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FIGURE 5.16: Part of the second trifunctor axiom for F' in the source diagram.
ScFa
R Falz) o
ScF((alp)f)¥alr) ScF(g(1f))¥alz)
ScF(al)
SaFul, (1)
SoF(gf)Ba(r) : ScF(gf)¥a(z)
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FIGURE 5.17: Part of the second trifunctor axiom for F' in the target diagram.
| SpFgegip | SFqlpSy |
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FIGURE 5.18: Cells from the Biadjoint Biequivalence in the source diagram

pseudonaturality 2-cells are identities as well).

diagram of Figure 5.25.

trifunctor axiom.

Doing both of these moves leads us to the diagram of Figure 5.24 (note that since

the pseudonaturality cells on the other side are being taken at the 1-cell identity, their

The top of the Step 3 diagram (Figure 5.24) is now a complete instance of the second

trifunctor axiom for F': T — Bicat (taken at W 4(x), and then after the pseudofunctor S¢

is applied). Therefore we can replace it by the target of that axiom and get the Step 4
target diagrams (Figures 5.14 and 5.15) are equal, and G : T — Bicat satisfies the second

This is exactly the target diagram we were trying to reach. Thus the source and

O]
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FIGURE 5.21: Trifunctor Axiom 2: Step 2
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FIGURE 5.25: Trifunctor Axiom 2: Step 4 i.e. Target
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We have proved that the data given in our construction of G : T — Bicat satisfies both

trifunctor axioms, and are therefore able to conclude:

Theorem 5.4.2. G as defined in Section 5.2 is a trifunctor between the tricategories 7 and

Bicat.

5.5 Examples

To aid our understanding of the above process we can examine particular examples to see
what happens when we try transporting the structure of a trifunctor. One particularly
simple example is when the source tricategory 7 is the category 1 with two objects and
one non-identity morphism between them (viewed as a tricategory where all of the higher
cells are identities).

0%1

Let us also suppose that the trifunctor F' : 1 — Bicat is strict: that is, it sends the
identities of the two objects to the identities on the bicategories and it sends the identity
2-cells to identity pseudonatural transformations.

Then to set up the transport we need two biadjoint biequivalences given by ¥y 4 Sg : F0 —
GO and ¥y 457 : F1 — G1 along with the related higher cells.

Then transporting the trifunctor across these biequivalences will let us see how this
process interacts with identity 1-cells. The new trifunctor G sends the identity on 0 to
SoF(19)¥o = So¥p. Similarly, it sends the identity on 1 to S;W;. Since these are not equal
to the identity, we see that G does not strictly preserves identities. Also, the morphism f is
sent to S1F(f)¥o, which means that we would need to apply the (non-identity) compositor
of G in order to compose it with the images of the identities.

We can also consider the case where the source tricategory is the category 2 with three
objects and two non-identity morphisms

0%1%2

Let us again take a strict trifunctor F' : 2 — Bicat and biadjoint biequivalences
Wy-4S5y: FO— GO, ¥y 457 : F1 — G1 and ¥y 4.5y : 2 — G2. This time, after trans-
porting the trifunctor we will focus on the composition of the two non-identity morphisms.
Even though the trifunctor we started with was strict, so that F(gf) = FgFf, this is
not true for the transported trifunctor G. Because f is sent to S1F f¥, and g is sent to

SoF gV, we need to apply an instance of 1 in the middle to act as the compositor.
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Both of these examples show that the transport of a strict functor need not be strict. This

is to be expected, illustrating that the weak version of a concept is more natural.

One final example we shall consider is the following. For many concepts in higher
category theory, the version for dimension n — 1 can be realised in dimension n by taking
all of the highest-level cells to be identities. In this case, that would mean finding a method
for transporting a pseudofunctor from a bicategory into the 2-category of categories across
an object-indexed collection of equivalences of categories. Although this 2-dimensional
transport of structure can be accomplished using the more general methods of Kelly and
Lack [KLO04] we can also see how it arises as a special case of transporting trifunctors.

The setup for this example is as follows:

e The source bicategory B can be realised as a tricategory whose 3-cells are all identities.

e Each category can be realised as a bicategory whose 2-cells are all identities. Then,
because all the 2-cells are identities, pseudofunctors between these categories are
just functors, pseudonatural transformations are just natural transformations and all

modifications are identities. This gives a fully-faithful embedding of Cat in Bicat.

e Next consider a trifunctor F' : B — Bicat which lands entirely in the embedded
version of Clat. Since all the modifications involved are identities, in particular the
modifications that make up the axioms of a trifunctor are identities: the axioms of a

pseudofunctor are satisfied. Every pseudofunctor can be realised in this way.

e After identifying the objects GA for A € ob(B) to which the pseudofunctor will be
transported, we then look at what happens to the biadjoint biequivalences between
each I'A and GA. This begins with pairs of functors S4 : FA - GAand V4 : GA —
FA.

e We then get natural transformations ng : 1g4 = SaV4 and €4 : V4S54 = 1pa.
When we take these to be adjoint equivalences, the fact that all modifications are

identities means that both all the n4s and the € 4s are actually invertible.

e The modifications ® 4 and X 4 are identities, showing that the natural isomorphisms
na and €4 satisfy the triangle identities. Thus, the functors S4 : FA — GA and
V4 :GA — FA form an adjoint equivalence. Every setup of object-indexed adjoint

equivalences can be interpreted in this way.
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With this setup allowing us to interpret pseudofunctors as trifunctors, the method of

transporting trifunctors gives us the following:

e The transported trifunctor acts on objects by sending A to GA as expected.

e The action on the hom-category B(A, B) is given by SpF(—)V¥ 4. Although we had
to choose an association when working with the tricategory of bicategories, we do

not need that here.

e The constructions of the compositor ys and the unitor ¢g proceed as they did

previously, though simplified because whenever the coherence cells of Bicat were used

they are now identities. Since the components they are constructed out of - coherence
cells, the natural transformations 14 and €4, and the compositor and unitor of F -

are all strictly invertible, so are xg and vg.

e Finally, the 3-dimensional data wg, g, and g are constructed out of modifications.
Since in this context all modifications are identities, this proves that wg, Yo, and dg

are all identities: that is, G satisfies the axioms of a pseudofunctor.

Thus our method of transporting the structure of a trifunctor generalises a method of

transporting a pseudofunctor, as expected.



Chapter 6
Lifting the Biequivalences

Having transported the structure of a trifunctor across the family of biequivalences S4 4 W 4,
we now wish to give the biequivalences the structure of a tritransformation. This will
have the effect of lifting them so that they also form a biequivalence between the original
trifunctor F': 7 — Bicat and the newly constructed trifunctor G : T — Bicat.

Recall that since we are working in the tricategory of bicategories, we are able to use
the simplified definition of tritransformation given by Proposition 4.1.2. In other words,

the tritransformations we intend to construct consist of:

e For each object A of T a 1-cell 04 : FA — GA.

e For each pair of objects A, B € ob(T), an adjoint equivalence

T(A,B) —X— Bicat(FA, FB)

of = e

Bicat(GA,GB) vy Bicat(FA,GB)

e For each triple of objects A, B,C' € 0b(T), an invertible modification II whose
component at a pair of composable 1-cells A i> B % Cin T and at an object

x € ob(F'A) arises via coherence from a 2-cell

GglpFf(z) L GgGfha(z)
O0cFgF f(x) “ﬁ G(g9f)0a(x)
Ixr /
OcF(gf)(x)

117
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e For each object A € ob(T), an invertible modification M whose component at a given

object x € ob(F'A) arises via coherence from the 2-cell

O4F14(x)
lep 0
o
O4(x) o1 G1404(x)

These cells are required to obey the following three simplified axioms.

1. First Tritransformation Axiom: For every triple of composable 1-cells A i> B

C 5 D the following two diagrams are equal:
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(@) ((f6)y).190 . (€)(f6).141
\ SHNL/ r&BAﬂ AXT
(@)Vo((fB)u)o o= (@) (f (Bu)).190 X (@) f2(6y).1 99 X (@)f ab.141%
GL, X x Tm
(@)vYo(f(6y))D mﬁ (x)f190(6Yy)D E: (@) f 1619045
7 \ 1OX 01
(@)VoSo(by)D = (@) f1906DyD
19X X
(@)VoSDboyn
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(@) ((f6)y).190 = (2)(f6).141
\ Tm o
(z)ve( E m: z)(§6) 19045 mfi@
GU / \ /

(@) Vo(f( ©)Ve(f6)Dyn @im@&sc
19X ﬂ\‘. ur 01
(@)VoSo(6y)D oxy 2)f 1896040
% \

(@)VoSDboyD
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2. Second Tritransformation Axiom: For every 1-cell A i> B the following two
diagrams are equal:

GlplpF f(z) 10 G1pGf04(x)

0pF1pFf(z) s G(1pf)ba()

Ixr /
Lupl OpF(1pf)(x) Gn
OpFf(x) Gf0a(x)

xcl
OpF1Ff(z) G(1pf)0a(z)
ILFIW >~ el - Jcn
0pF f(x) Gfoa(z)

93F (:c) ) GfﬁA(I)

3. Third Tritransformation Axiom: For each 1-cell A i) B the following two

diagrams are equal:

GfO4F14(z)
Lup \
Gfa(z) 4 GfG1A04()
=, j[
Y OpFfF14(x) i X6
Lup Ixr
OpF f(x) Hw;l OpF(fla)(2) 5 G(f1a)0a(z)
\ 1Fr =0 Gr1
OpFf(x) J Gfoa(z)
GfO4F14(x)
ILF ﬂlﬂ \
GfGlAGA(([)

OpFf(x) . Gfa(z)

This gives us the list of everything we need to construct in order to define the tritrans-
formations, and the three axioms we will need to prove in order to confirm that they are
tritransformations. As in the previous chapter, the tools we have to construct the cells of
the tritransformation are the coherence cells of the trifunctor F' : 7 — Bicat and the cells

that form the family of biadjoint biequivalences Sa4 4 ¥4 (see section 5.1).
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6.1 Constructing the Tritransformation

We will start by giving the biequivalences Sy : FA — G A the structure of a tritransforma-
tion S : F' = G. This proceeds as follows:

e The 1-cell components of the tritransformation are the very 1-cells we are trying to

give the structure of a tritransformation: S4 : FA — GA.

e The adjoint equivalence part of the tritransformation needs to have the form

T(A,B) ——~— Bicat(FA, FB)

F

Bicat(F A, FB)

—Eval bs -
Bicat(GA, FB)

Sp®—

We will define fg using the diagram

Sp®—
—®lpa Sp®r*
T(A, B) —L— Bicat(FA, FB) —®ea Bicat(FA, FB) —2%= Bicat(FA,GB)

-V

Bicat(GA, FB) —g—— Bicat(GA,GB)

When considering the modifications including 0g as part of the source or target, note
that by coherence any 2-cell component of such a modification corresponds to one
with

SpFfeh,
— 4

SpFf(x) SpFfUAS4(x)

instead.
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e The components of the modification Mg at a pair of 1-cells A i> B % C and object
x € ob(F'A) correspond to a 2-cell

ScFg¥pSp
ScFg¥pSp Ff\I/ASA(x) ScFgep
e \F”’ 492
ScFg¥p ScFgFf
SpF f(x) WaSa(z)
ScFges T I l ScxF
Ff(z) UaSa(x)
ScFgF f(x) ScF(gf)VaSa(x)
Scxr () ScF(gf)
SoF(gf) (@) -
A
We will define ﬁs as
ScFgVpSp
FfUaSa(z)
ScFgVpSp ScFgep
Ffey(z) ScFgey \ Ff¥aSa(e)
FfUASa() Fj:b;‘: !

ScFg¥p o ScFgFf ScFgFf
SpFf(z) e WASA(2) ! U aSa(z)
ScFgey ScFgFf Soxr o~ Sexr
Ff(z) % (z) VaSa(z) VaSa(z)

ScFgF f(x) Exron ScF(gf)¥aSa(z)

ScF(gf)

ea()

ScF(gf)(x)

e The components of the modification Mg at the object = € ob(F'A) correspond to a

2-cell
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SAFla(z) A

SAV \514(:”)
SaF1y

Sa(z) Ms

\I/ASA(I’)
ﬁzm /
S

SaUAS4() . ;i )
AP AT

We will define MS as

SaF1ac" ()
SaF14(x) 4 SAF14¥4S4(x)

Y

~ Satp
Sair(z) =F

Sae* (z)
SA(af — SA\I/ASA(x)

\\E“) (@)
\SAEA(Z)

SA(I) SA\I/ASA(.T)
naSa(z)

Satp
WaSa(z)

1

Now that the structure S has been entirely defined, we are ready to begin showing that

it forms a tritransformation F' = G.

6.2 First Tritransformation Axiom

Proposition 6.2.1. S : F' = (G satisfies the first tritransformation axiom.

Proof. After substituting IIg and ¢ into the pasting diagrams for the simplified axiom,
we see that proving this axiom holds is equivalent to showing that the following source
(Figure 6.1) and target diagrams (Figure 6.2) are equal.

To arrive at a strategy for proving that these two diagrams are equal, we note that
most of the cells are pseudonaturality cells for whichever pseudonatural transformation is

appropriate. In each diagram there are only three that are not: a cell arising from Sz (this

FIGURE 6.1: First Tritransformation Axiom for S: Source
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()sxas () (f6)1
(@) ((fB)y) 498 +——— a
(z)%2 \ 478
(om0 s (oax_ (x)%2 @) (5
~ (CELEESS Qaygdg
yvern M9 (@yveva ol @UBIS L, (@)fdba
((46)y)1ds (46)14.198 ~ Omy 198 ~ Y198
(Z)VSV i H — 7 \ /
\URNQMA AHv<m<9 AHVQWQQA.\.QVBN Aﬂvmmﬁkmvhnvm AanNXOm Am@v.\.n&m@
axdg R s Indd 1S SIVFER Qay.q g
7 (T)VSV i W \ /
r)Vav x)Vov (£6)4 294198 (2)Vs . x) f 019,
SV SV R va(/5).109 Uax_ FAb.1°8
(f(6y))195 (fO)AYIIS  @VsvaUha 5y ra ~ 2my 198
_— MAYAHS
(Z)VSV A \ﬁ O3y gdg \
dmdg % / (@)fafe
A&vﬁm&\a A&vﬁw&\ahx Umm A&VTW_&%EX A&VQWQB,&X A&v_ﬂm\.r%%@ %n&bm
IxXdg 962 py 198 P8OMALS = Dgopygdg 05Oy gAg oaygdg
| (2)VSV D ™ - (2)/.195
z\VaoVv z\VaoVv r)VaoV b
( v@,m T A% S w? 716000 i on S ?ﬁm o as_ 4 16,700
Fa(By) 198 (@veva AA9S @VSYRIL  Dpo rdg x SORYADS ohy1dg
JoadXxdg b2y, dg
(T)VSV a
1464 (@)VSY RS
(5u)ax () YSVinfd o d35,70g
(@)V§Vasa o asbgygdg = s P
(D)VSVanSd N RYAS (®)%afa8g
a3(6y) 95 / a36,70g / dn6,708
Io} a x\V o a
(2)VSV i (r)vgyp "M s s
FA999p ————— JJ999R o mom
(by).14g (T)VSV R 6.qy.gdg (Z)VSVaSd 76,708
fads a5 7b.q Pnygdg
dpdXdg D3y dg

FIGURE 6.2: First Tritransformation Axiom for S: Target
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is on the left side of the source and the lower middle of the target), a cell arising from 55
(which is at the top right of the source and the top left of the target), and finally a cell
arising from wp (which is at the bottom of the source and on the right-hand side of the
target. This suggest the strategy of moving g down and right, 55 left, and wr up and
right.

To start moving 8% and 8%, consider the following sections highlighted in the source
diagram (Figure 6.3).

In the area around [, highlighted in red (see Figure 6.4), the ¢ cell and the following
coherence cell form a component of a modification from the three cells that make up the
source to the target SpxrWpSpF f(x). The other two cells in the highlighted section are
the pseudonaturality cells of the first part of the source. Therefore we are able to move 8%
and the coherence cell through those two cells.

A similar argument allows us to move 35 through the section highlighted in blue. This
takes us to the Step 1 diagram of Figure 6.5.

In the section highlighted in red in Step 1, we see that there is a path for the 8%
cell to move left, as both % and the pseudonaturality cell of ep next to it have the
pseudonaturality cells for xp(h, g) and e¢ attached along two of the three 1-cells in their
source. Using the technique discussed Proposition 4.2.1, we can move them all the way left
to arrive at the diagram Step 2 (see Figure 6.6).

The modification wr now has the pseudonaturality cells of the transformations it is
modifying attached along its entire source. We can move wr up and right through them to
arrive at the Step 3 diagram in Figure 6.7.

The final thing we need to do is move the Sz cell right. We note two things here in
order to come up with a strategy for that move. First, after Step 3 the 8¢ cell has several
bicategory coherence cells attached to it. These have the potential to make it very easy
to move using the naturality of coherence cells, not least because the target of 3¢ is an
identity and so its pseudonaturality cell is a coherence cell. Secondly, we note that after our
last move the wr cell is still attached to the pseudonaturality cell of xr(h,gf). However,
in the target diagram of this axiom we note that these two cells are not attached and that
the 8¢ cell comes in between them.

Therefore, in order to solve the problem and create room for 8z to move into, we will
introduce some coherence cells to make space between the wp cell and the yp(h, gf) cell.
This leads us to the following adjustment made to the Step 3 diagram (Figure 6.8).

There is now a large mass of coherence cells in the lower centre of the diagram (Figure
6.9).
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(@) ((46)y) 7989 AE (x)(f0)1

y19Is
(2)%s % (x)4X
AA.\.QVQVEQW Q,WQ@
(z)o198
(T)VSVi D ) (x)fo1
(Bwaas T @b@zmﬁ e LEOREE
/ \ 7 (@) fab.q
(2)VgV (¥)%2 (2)axdg (@) {1 (2)f.782 Qayurdg
Jdg A%Awdvvnwﬂ_m‘ RXQM.‘ QBNQHNQ%
\ / \ I
(1)VSVan (Fouax_ (2)f 4 woan_  @Fd9sqn 5, (@)fdbds
(f(by)) 198 ~ () 195 ~ b1y 198 S@yra Pnyd9s
/ \ 7 \ g4 nb.q
o (@) f19=
(@)Vsva (@)Vsva (®)afu (@) ez (@)f 185 ﬁ / s 6409
AXdg ~ AXdg (by)gds (6y)q9s dpIXdg ~ TQ%..M / Opyrdg
/ \ H \ = 4G pb.
20uads = ) [ .74
(2)VSV R 1 (#)VsVin 4. (x)f 188 () 1954 M \Mw om
Fo1(0y) 198 N Fo1(0y) 198 ~ Aq(0y) 198 (2)fa9s b4y.198 (@)1 Oy e
dpIxdg a5 dmbag
A.&.v«\m;\a%nw AHv«ym;xa \ \ QanNQ%
9g(by) 195 Jorfs (@)%l a8s (Bu)ax_ (®)%sfas ==
(@)VSV i ST / (2 an(by)9s ~ 4 pby198 (x)%2f 145
a3(by)gdg / \ \ 76,08
(v)Vg 2ayddg
ﬂm%a A vﬂm;\a

14 q
\hm‘wma —————— 999 R ————— B/ I2G

aRb.70

6u) (@)Y 3 a (@)VSVadd ML=

(P0)1% Ja9g AHLATS g8 nb.g 20y qg9I9
dpdXdg O3y 98

FI1GURE 6.3: First Tritransformation Axiom for S: Source highlighted
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SnFhl~ - _ o o
(\'l _|r '|]_r Fflz -H.'.-.lr' .'Ii.lr'_l'_l' ‘1"||_|r' "I";fu':l'I‘lli_;'
Fal o Ty 4 - ] e
S F () VpSpl f(z) SpFfx)
o ,l}f' Jlx) g, FhAs ; |
" o hPe | P [
ol \\\ FolaSe _ = -
' ) Fi - Spxr¥a SpF(l
e . S Ffia e
SnF - | T 1
F ol .
FgqlgS; . L
v ) L
":}I.I-;-Ir'.l'l"'l]'rf' : .'I:""I"_‘- -L:'_l'.'Jr'-.'l-i Jr'._l'_ll ot ‘“-'.|II_|I-'.I' .i'l'F.' |
ScFgFf(x) UpSpF fir) Xrih.g Fi(x)
e, l A -
. )
) “"--. 30 |I ..i' |I ._',' DY F
SpFh \‘n Ffi: Fi
FgF | - | ’
SpFhFg _
Ffix) Sp

FIGURE 6.4: Moving §¢ through pseudonaturality cells

By the coherence theorem for bicategories, any diagram of coherence cells with the same
source and target is equal, so we can replace these coherence cells with another pattern of
coherence cells. We will choose the coherence cells so that Sec- has the pseudonaturality
cells attached to its target. This gives us a second variation on the Step 3 diagram in
Figure 6.10.

After these adjustments, we can move g right by passing it through the coherence
cells that are acting as the pseudonaturality cells of its target. This takes us to Step 4
(Figure 6.11).

We now clean up the coherence cells left on the left-hand side of the diagram. The
target diagram does require that one coherence cell be left, attached to the target of the
B% cell, but the rest can be removed. This adjustment gives us the diagram in Figure 6.12.

We now compare the diagram we have reached to the target diagram. The three key
cells are in approximately the correct location - indeed, the wr cell and the §¢ cells are in
exactly the right location - but the 3% cell isn’t correctly placed yet. It’s attached by the
edge to the left-most boundary of Figure 6.12 (See Figure 6.13 for a close-up), but only its
corner touches the boundary in the target diagram of Figure 6.2 (See Figure 6.14). The
final steps of the proof will be used to correct this.

First, there are three pseudonaturality cells in the centre of diagram 4B (highlighted in
red in Figure 6.15) that need to be adjusted in order to attach the right pseudonaturality
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@GS (@)(f6)a
T b ag +——
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FIGURE 6.5: First Tritransformation Axiom for S: Step 1
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FIGURE 6.6: First Tritransformation Axiom for S: Step 2
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FIGURE 6.7: First Tritransformation Axiom for S: Step 3
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FI1GURE 6.8: First Tritransformation Axiom for S: Step 3B
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FIGURE 6.9: Coherence cells at the bottom of the Step 3 diagram

cells to the 8% cell and neighbouring coherence cell. Moving the pseudonaturality cell of
XF(g, f) through the e pseudonaturality cell attaches it to the coherence cell neighbouring
the 8% cell and takes us to the diagram for Step 5 (Figure 6.16).

Before concluding, we note that our manipulations of this diagram have distorted the
shape of the boundary of the diagram. We rectify this now: the diagram in Figure 6.17 is
the same as Step 5, but with the boundary shape adjusted to be as it was in the source
and target diagrams.

With this adjustment made to the layout, we can see the final step needed to move the
B% cell to the correct location. As in the first step, 8% and the coherence cell attached to
it form a modification, and they have the appropriate pseudonaturality cells attached to
the latter two 1-cells of the source. Therefore we can pass the modification through those
pseudonaturality cells shown in Figure 6.18.

This move puts the 55 cell in the correct location and we arrive (see Figure 6.19) at
the target diagram as first shown in Figure 6.2. This series of steps shows that the source
and target diagrams (Figures 6.1 and 6.2) are equal and therefore that S satisfies the first

tritransformation axiom.

O]
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FIGURE 6.10: First Tritransformation Axiom for S: Step 3C
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6.3 Conjectures for the other Axioms

In this section we conjecture that S as defined in section 6.1 also obeys the other two
axioms of a tritransformation. We also explain the ideas behind a strategy for proving

both axioms hold.

Conjecture 6.3.1. S : F' = G satisfies the second tritransformation axiom.

Idea of proof. After substituting ﬁ\:g, M, s and 7 into the diagrams for the second axiom,
we see that proving it is equivalent to showing that the following source diagram (Figure
6.20) and target diagram (Figure 6.21) are equal (Note that these diagrams are in the
opposite order to the way they were presented in Definition 3.1.3 and Proposition 4.1.2 in
order to ensure that the more complicated diagram is the source).

As we come up with a strategy to turn the source diagram into the target diagram,

there are three features of the diagram we have to note:

e The g cell starts on the far right of the source, and needs to be moved to the bottom

left of the target.

e The source diagram contains an instance of ¥ p and an instance of igl that the

target doesn’t. These will need to be cancelled with each other.

e The source diagram contains a cell that is an instance of ozeB(_l). This will need to be
moved to the top right, and converted into an instance of 5% by using the triangle
identity for the adjoint equivalence eg + €. That is, because the triangle identity
states that

SB‘I’BSB Sp¥pSp

SBE
/ ﬂﬁs oS ﬂ% /
B"‘:B

is equal to a coherence cell, the diagram

O‘B

SB\I/BSB SB\I/BSB

Sy H/BS EBSB H 4}3
(=1)

is equal to both 3% and the combination of osz and a coherence cell. This should

aid us in transforming one of these cells into the other.

Being able to deal with all three of these issues would allow us to manipulate the

diagrams to show that they are equal and that S satisfies the second trifunctor axiom.
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Conjecture 6.3.2. S : F = ( satisfies the third tritransformation axiom.

Idea of proof. After substituting the defined values of Ilg, Mg and g into the diagrams
for the third axiom, we see that proving the third axiom is equivalent to proving that
the following source diagram (Figure 6.22) and target diagram (Figure 6.23) are equal
(as in the previous proof, they are presented here in the opposite order to the one in the
definition, so that the more complicated diagram is the source).

As with the second axiom, there are three things to note when coming up with a

strategy for proving that these two diagrams are equal:

e The 5;1 cell starts on the bottom right of the source and needs to be moved to the

bottom left of the target.

e The source diagram contains an instance of ® 4 and an instance of i;l that the target
doesn’t. These will need to be removed by bringing them together and completing

an instance of one of the biadjoint biequivalence axioms.

e The source diagram contains a cell that is an instance of a5V, This will need to be
converted into an instance of 8% using the triangle identity, just as in the previous

proof.

If all three of these issues can be dealt with, then we can prove that the third axiom
holds.
O
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If both of these conjectures could be proved, along with the first axiom which we have

proved, we would reach the following conclusion:

Congecture 6.3.3. S as defined in 6.1 is a tritransformation between the original trifunctor

F' and the trifunctor G defined in Section 5.2.



Chapter 7

Conclusions and Further

Directions

In this thesis we have developed original techniques for working with pasting diagrams
in the tricategory of bicategories. Using the coherence theorem for bicategories we were
able to simplify the diagrams that made up axioms of key tricategorical structures such as
trifunctors, tritransformations and biadjoint biequivalences. Without these new techniques
the diagrams needed to prove the results of this thesis would have been intractable.
We also saw that the ability of pseudo-natural transformations and modifications to be
passed through other cells applies to more than just the case specified by their definitions,
where the cells they are being passed through cover the entire source (or target). This
greatly expedited the task of manipulating the pasting diagrams; we saw many cases where
a cell that needed to be moved had pseudo-naturality cells along part but not all of the
source, or on part of the source and some part of the target.

We then demonstrated the method for transporting a trifunctor F': T — Bicat across
a collection of biadjoint biequivalences ¥4 - S4 : FA — GA. We noted that G should
have an action on the hom-bicategories given by sending a cell f to SpF f¥ 4. Then we
constructed the higher cells of G by noting what their sources and targets should be and
filling them out with cells coming from the original trifunctor and the biequivalences. This
typically involved noting a place in the boundary of the cell where the respective cell for
F would fit, and then using pseudo-naturality cells to move the rest of the 1-cells into
position around it.
Once all the data for G was constructed we were then able to prove that the axioms of
a trifunctor held. These proofs started by substituting the data into the diagrams of the
axioms. We then noted that, just as the data for G included places where instances of

the data for F' could fit, so also the axiom diagrams for GG included patterns of cells along

150
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the boundary where the axiom diagrams for F' could fit. By moving the cells so as to
complete the axiom for F', we were able to use that axiom as a step in showing that the
axiom diagrams for G were equal.

With both axioms proved we have confirmed that the structure G that we defined is a
trifunctor. Therefore, we have succeeded in transporting the structure of a trifunctor across
the biequivalences.

Finally we constructed a reasonable candidate for the lifting of the family of object-
indexed biequivalences S4 : FA — GA to a tritransformation S : F — G, using similar
methods to the construction of the transported trifunctor. We then proved that this
structure satisfied the first tritransformation axiom, and conjectured that it also satisfies
the other two. If these conjectures are true, and S : F' — G is a tritransformation, then
this shows that the constructed trifunctor isn’t just arbitrary: it truly did arise as a result

of the family of biequivalences.

A Potential Application

One potential application for this result is the problem that motivated it: the comparison
of Tamsamani 3-categories to tricategories. We saw in the introduction how the setup
needed for the result of this thesis arose: by using the result of Lack and Paoli [LPO0S]
to turn a Tamsamani 3-category into a simplicial object in Bicat, at which point we can
interpret that simplicial object as a trifunctor and take the object-indexed biequivalences
to be the Segal maps X,, = X Xx, M X x, X1-

Transporting across these biequivalences loses the strictness of the original Tamsamani
3-category: the new object is only a trifunctor from A to Bicat (called a pseudo-simplicial
bicategory in [CH14]). However, we benefit as well, because now the image of each [n] € A
is the pullback X; x x, Mo X, X1, making the objects that much more meaningful. After
all, if you interpret X; as the bicategory of all 1-cells then these pullbacks are the objects
that allow composition, and are therefore the objects of interest when trying to define a
tricategory corresponding to a particular Tamsamani 3-category.

We envisage using coherence theorem for trifunctors to take this transported trifunctor
and simplify the proofs of the axioms of the tricategory we are trying to construct from
the Tamsamani 3-category. If so, this would give us the other direction to the nerve on a

tricategory given by Cegarra and Heredia [CH14)].

Extending our Main Result

It would be interesting to obtain a method for transporting the structure of any trifunctor,

not just those ending in Bicat. Here is one possibility for achieving that.
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Take any trifunctor 7 — S and biequivalences in S indexed by ob(7). By a Yoneda
argument, S is a full sub-tricategory of Tricat(S°P, Bicat) and so we get a trifunctor
T — Tricat(S°P, Bicat) and biequivalences in T'ricat(SP, Bicat) indexed by ob(T). Finally,

the trifunctor T — Tricat(S°P, Bicat) corresponds to a trifunctor 7 x S’ — Bicat.

This isn’t exactly the setup needed to apply the main result as the object-indexed

biequivalences in Tricat(S°P, Bicat) end up placing some constraints on the biequivalences

when curried over. Even so, the situation is close enough that it merits further study as a

potential method for extending the result.
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