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Abstract

THE TRANSPORTATION OF TRIFUNCTORS IN THE

TRICATEGORY OF BICATEGORIES

Andrew Smith

Tricategories, as the construction for the most general sort of weak 3-category being

given by explicit coherence axioms, are a particularly important structure in the study

of low-dimensional higher category theory. As such the correct notion of a morphism

between tricategories, the Trifunctor, is also an important object of interest. Just as

many constructions in mathematics can be realised by using functors between appropriate

categories, these constructions can be generalised to the 3-dimensional level by using

trifunctors between the appropriate tricategories. Of particular interest are trifunctors into

the tricategory of bicategories.

Given a mathematical structure laid on top of a base object, it can be useful to transport

that structure from the original object to a new object across a suitable sort of equivalence.

The collection of trifunctors between two tricategories forms a tricategory of its own. So

does the collection of functions from the objects of the source tricategory to the objects of

the target tricategory, which form the object level of any trifunctor. Therefore in this case

the appropriate notion of equivalence is that of biequivalence, and we would hope to be

able to transport the structure of a trifunctor across a collection of biequivalences at the

object level.

While the transport of structure at lower dimensions is achieved using monadic methods, at

the general 3-dimensional level these haven’t been developed. This thesis aims to provide a

method for transporting the structure of a trifunctor into the tricategory of bicategories

across object-indexed biequivalences. We do this by working directly from the definition of

trifunctor: by constructing the data needed for the new trifunctor from the data of the

original trifunctor and the biequivalences, and then proving that the axioms hold using

diagram manipulation techniques.



Acknowledgements

I’ll begin by offering my utmost gratitude to my supervisor Simona Paoli. She has been an

insightful, steadfast and kind mentor throughout my years at Leicester, and without her

support I could not have achieved as much as I have. Nor could I have made contact with

so much of the academic community without her unfailing eye for new opportunities for

me.

I would also like to thank the other members of staff of the Department of Mathematics,

both academic and administrative, for making the Department the welcoming institution

it is.

I thank the University of Leicester for the opportunity to hold a Graduate Teaching

Assistant position, which financed my PhD studies and complemented my research with

valuable teaching experience.

The companionship of my fellow PhD students has been a great comfort. Special mentions

go to Scott Balchin and Dan Rust who, as the very first of Leicester’s graduate students I

met, gave me crucial support as I entered the Department and introduced me to academic

life.

Liam Collard, Ollie Sutton and Drew Duffield were, together, the driving force behind the

majority the social events that rounded out my time in the Mathematics Department: via

the Criterion Quiz team and more besides. For this I am very grateful to them.

Finally, I should acknowledge my fellow graduate teaching assistant Kieran Fleming. We

weathered our time here together stoically.

Last but very much not least, I would like to thank my parents for their unwavering belief

and support.

ii



Contents

1 Introduction to Higher Category Theory 7

1.1 Philosophy of Higher Category Theory . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 Strict n-categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.2 The Principle of Isomorphism . . . . . . . . . . . . . . . . . . . . . . 9

1.1.3 Topological Motivations . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Models of Weak Higher Category Theory . . . . . . . . . . . . . . . . . . . 11

1.2.1 Combinatorial Models . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.2 Infinite-Dimensional Category Theory . . . . . . . . . . . . . . . . . 13

1.3 Applications of Tricategories . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 Applications in Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.2 Applications in Mathematical Physics . . . . . . . . . . . . . . . . . 14

1.3.3 Applications in Homotopy Theory . . . . . . . . . . . . . . . . . . . 14

1.3.4 Applications via Braided Monoidal Structures . . . . . . . . . . . . . 15

2 Bicategories 16

2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Laxness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 2-Dimensional Category Theory . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.2 Adjunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.3 Monads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.4 Pseudolimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 The Coherence Theorem for Bicategories . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Biequivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.2 The Yoneda Embedding . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.3 Coherence Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 2-Dimensional Monad Theory and Transport of Structure . . . . . . . . . . 30

3 Tricategories 31

3.1 Introduction to Tricategories . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

iii



Contents iv

3.2 Coherence Theorem for Tricategories . . . . . . . . . . . . . . . . . . . . . . 51

3.2.1 Gray Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Low Dimensional Structures formed by Tricategories . . . . . . . . . . . . . 56

3.3.1 A 2-Dimensional Structure . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.2 A 3-Dimensional Structure . . . . . . . . . . . . . . . . . . . . . . . 59

4 Manipulating Tricategorical Pasting Diagrams 63

4.1 Simplifying Pasting Diagrams using the Coherence Theorem . . . . . . . . . 64

4.2 Moving Pseudonatural Transformations and Modifications . . . . . . . . . . 77

5 Transporting a Trifunctor 82

5.1 Setup: Available Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Construction of the Transported Trifunctor . . . . . . . . . . . . . . . . . . 87

5.2.1 Data with Dimension less than Three . . . . . . . . . . . . . . . . . 88

5.2.2 Three-Dimensional Data . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 First Trifunctor Axiom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4 Second Trifunctor Axiom . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6 Lifting the Biequivalences 117

6.1 Constructing the Tritransformation . . . . . . . . . . . . . . . . . . . . . . . 122

6.2 First Tritransformation Axiom . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.3 Conjectures for the other Axioms . . . . . . . . . . . . . . . . . . . . . . . . 143

7 Conclusions and Further Directions 150

Bibliography 153



Introduction

One useful tool in mathematics is the ability to take a given mathematical structure on

a set and transport that structure across a bijection, with that bijection then becoming

an isomorphism for the added structure as well. For instance, given a group G and a

bijection f : G → S, the set S becomes a group isomorphic to G using the operation

s ∗ t = f(f−1(s)× f−1(t)). The bijection allows us to transport the group structure of G

over to the set S.

The aim of this thesis is to take one particular type of structure - the structure of a

trifunctor from any tricategory T to the tricategory of bicategories Bicat - and transport it

across biequivalences in the tricategory of bicategories. Tricategories were first introduced

by Gordon, Power and Street [GPS95] and they are the natural construction for a weak

3-dimensional categorical structure. As an example, the collection of all bicategories forms

a tricategory in a natural way. As such, both tricategories and the morphisms between

them - trifunctors - are important objects of study in the field of low-dimensional higher

category theory.

There is considerable recent literature that makes use of tricategories (see Section

1.3). Although the results of this thesis do not immediately relate to these applications,

the uses of tricategories demonstrate the need to continue developing the foundations of

tricategorical theory. The technical complexity of working with the coherence cells and

axioms of tricategories has slowed the research in this area. We believe the results of this

thesis, obtained by working directly with those cells, are therefore a useful contribution

to the literature. Just as many mathematical objects can be realised as functors, many

objects of interest in 3-dimensional category theory can be realised as trifunctors. If we

can transport the structure of a trifunctor then we can also transport these structures

too. Moreover, the techniques developed to transport a trifunctor lead us to prove several

properties concerning particular diagram manipulations (see Chapter 4) which are of

independent interest to others engaged in research on tricategories.

We start by justifying the method used in this thesis to transport the trifunctor. The

way this will be accomplished is by constructing the pasting diagrams given by the axioms
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Introduction 2

of a trifunctor and then manipulating them step-by-step in order to show that the start and

end diagrams (corresponding to each side of the axiom) are equal. At each step we need

to ensure that the manipulation we make results in an equal diagram. Fortunately, there

are many techniques we can use, based on the concepts of pseudonatural transformations

and modifications between bicategories, that allow many different manipulations of the

diagrams.

It is worthwhile to consider if more conceptual methods are available in the literature

to attack the problem. In 1-dimensional category theory, the idea of transporting structure

across an isomorphism can be realised by taking those structures to be algebras of a

monad. Given any monad T on a category, the forgetful functor from the Eilenberg-Moore

category of algebras is always an isofibration. This suggests that we could look at monadic

ideas for transporting structure in higher-dimensional category theory. This is precisely

how transport of structure is achieved at the 2-dimensional level: by the result of Kelly

and Lack [KL04, Theorem 6.1], adjoint equivalences can be lifted to the 2-category of

pseudoalgebras for a 2-monad. This gives us transport of structure at the 2-dimensional

level.

Progress has been made in developing 3-dimensional monad theory, for example by

Power [Pow07]. However, these developments turn out to be insufficient for the purposes of

this thesis as they have focused only on the more specific case of monads on Gray-categories.

Similarly, we currently lack a monadic description of trifunctors, but only have such a

description for morphisms between Gray-categories [Buh14]. We see that a general method

for transport of tricategorical structure is an open problem not covered by the existing

frameworks.

We will therefore proceed with the more hands-on method, working directly from the

definitions and the pasting diagrams. Diagram-manipulation methods have seen good use

in the field: they were used to prove an important step towards the coherence theorem for

tricategories [GPS95, Lemma 3.6] by showing that the structure of a tricategory could be

transported across biequivalences of the hom-bicategories, and they also played a large role

in the development of the theory of biequivalences in tricategories [Gur12].

Motivation

The motivation for considering the problem of transportation of trifunctors came from

research into the alternate model of higher categories known as Tamsamani categories

[Tam99]. Tamsamani categories are given by a recursive definition, with Tamsamani

1-categories being just categories and Tamsamani (n+ 1)-categories being simplicial objects
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in a 2-category of Tamsamani n-categories obeying certain conditions: the most important

of which is that the Segal maps of the simplicial object are Tamsamani n-equivalences.

One question is how to compare Tamsamani 3-categories to tricategories. Cegarra and

Heredia [CH14] have built a functor from tricategories to Ta3, but a functor from Ta3 to

tricategories is unknown. Our result on transporting trifunctors could be used to attack

this problem.

Tamsamani 3-categories Ta3 are in particular simplicial objects ∆op → Ta2. After

using the comparison between Tamsamani 2-categories and bicategories given by Lack

and Paoli [LP08] these become simplicial objects ∆op → Bicat such that the Segal maps

Xn → X1 ×X0

n· · · ×X0 X1 are biequivalences of bicategories.

By interpreting the strict functors into the category of bicategories as trifunctors into

the tricategory of bicategories, we could consider transporting these trifunctors across the

biequivalences given by the Segal maps. This loses the strictness but makes it so that the

image of each object n is exactly the n-fold pullback, which could simplify the process of

understanding the Tamsamani 3-categories.

Outline

This thesis will proceed through the following chapters:

1. Introduction to Higher Category Theory: We start by exploring the ideas that

led to the development of higher category theory. In particular, we will explore

the reasons for studying weak higher categories and why strict n-categories are

insufficient.

We will also survey areas of mathematics where the results of low-dimensional higher

category theory are utilised. Theoretical physics in particular has many uses for 3

dimensional weak categories. This provides potential uses of the results of this thesis.

2. Bicategories: As the first example of a weak higher category, one step above

ordinary categories, bicategories are definitely noteworthy for the field of higher

category theory as a whole. This chapter will survey the history of and main results

on bicategories.

These include the all-important coherence theorem, showing that the axioms of a

bicategory are enough to show that all relevant diagrams of coherence cells commute.

We will also illustrate how the results of ordinary category theory - thought of as

taking place in the 2-category of categories - can be generalised to be internal to

any bicategory. Many of these results, and especially those relating to adjunctions,

are crucial to understanding operations on tricategories and the construction of the
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tricategory of bicategories, Bicat, which is the target of the trifunctors we wish to

study.

3. Tricategories: These 3-dimensional weak higher categories are the main object of

study of this thesis. We will survey the history of tricategories and the main results

on them to lay the groundwork.

This will start with the definition of tricategories themselves, and the more specific

Gray-categories. These provide the setting needed to formulate the coherence theorem:

a crucial result in 3-dimensional category theory.

From there, we survey the results on trifunctors and higher cells between tricategories.

These trifunctors are the structures that this thesis aims to manipulate and transport,

so we need to understand them thoroughly.

4. Manipulating Tricategorical Pasting Diagrams: The main results of this thesis

are proved by means of manipulating pasting diagrams formed from tricategorical

data, particularly in the tricategory of bicategories, in order to show that particular

source and target diagrams arising from trifunctors are in fact equal. In this chapter

we prove some original results that will help us in manipulating the diagrams.

The first will use the coherence theorem for bicategories. Many of the cells used

in the definitions result in coherence cells in the relevant bicategory. As such, the

coherence theorem gives us a lot of flexibility when manipulating these cells in the

diagram. We will mainly use these results to simplify the source and target diagrams

of the axioms that need to be proved, allowing them to be verified.

The results in this section are:

• Proposition 4.1.1, which simplifies the definition of a trifunctor F : T → Bicat.

• Proposition 4.1.2, which simplifies the definition of a tritransformation θ : F ⇒
G : T → Bicat.

• Proposition 4.1.3, which simplifies the definition of a biadjoint biequivalence

between bicategories A and B.

The other technique we will use is based on the definitions of pseudonatural transfor-

mation and modification. Many of the other cells in the diagrams being manipulated

are components arising from pseudonatural transformations and modifications which

have sources and targets which are composites of several arrows. Although the

definitions of pseudonatural transformation and modification only specify that the

components can be moved through the entire source to the entire target (or vice-versa)
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we will prove here that they can also be moved through any segment of their boundary.

This opens up many more options for moving them through the diagrams.

The original results proved in this section are:

• Proposition 4.2.1, allowing us to move the 2-cell of a pseudonatural trans-

formation through 2-cells even if those 2-cells don’t cover the entire source or

target.

• Proposition 4.2.2, allowing us to move a modification through some collection

of pseudonaturality 2-cells even if those 2-cells don’t add up to the pseudonatu-

rality 2-cell of the source or target of the modification.

5. Transporting a Trifunctor: In this chapter the main result of the thesis will be

proved. We will start by considering the original trifunctor F : T → Bicat and the

object-indexed biequivalences: these will provide us with the components needed to

construct the transported trifunctor.

We will then construct each piece of coherence data for the transported trifunctor

G : T → Bicat. At each level we’ll start by identifying the source and target of each

coherence cell of the transported trifunctor, demonstrate how each coherence cell can

be constructed by pasting together cells coming from the original trifunctor and the

biequivalences, and then prove that the results are suitably natural.

Once we have the 3-dimensional coherence cells of the transported trifunctor, we will

prove that these actually form a trifunctor. We’ll do this by considering the axioms

for a trifunctor, constructing the diagrams that form the source and target of each

axiom, and then manipulating the source diagram step-by-step to show that it is

equal to the target axiom. In this way we prove that the axioms for a trifunctor hold

for the newly-constructed transported trifunctor.

In this chapter the original results proved are:

• Proposition 5.2.1: we prove that the data constructed for the trifunctor G

satisfies the first (simplified) axiom of a trifunctor.

• Proposition 5.2.2: we prove that the data constructed for the trifunctor G

satisfies the second (simplified) axiom of a trifunctor.

• Theorem 5.2.3: since the data for G satisfies both trifunctor axioms, it is

indeed a trifunctor G : T → Bicat.

6. Lifting the Biequivalences: When considering transport of structure in ordinary

categories - when we have a structure applied to a base object and an isomorphism
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between that base object and some other - it is not only the case that we are

able to transport the structure to the new object. We are also able to turn the

isomorphism of the base objects into an isomorphism of the structure as well. Sim-

ilarly with tricategorical structures; the object-indexed biequivalences should also

become a tritransformation between the original and transported trifunctors. This is

what we partially accomplish in this chapter: turning the family of biequivalences

SA : FA→ GA into a tritransformation S : F ⇒ G.

As when constructing the transported trifunctor itself, we start by constructing the

data that makes up S : F ⇒ G from the data of the object-indexed biequivalences and

the original trifunctor. We will work through the axioms of the tritransformations,

constructing the diagrams for each of the tritransformation axioms and aiming to

show that each pair of diagrams are equal by manipulating the pasting diagrams.

In this chapter we prove the original result:

• Proposition 6.2.1: we prove that the data constructed for the tritransformation

S satisfies the first (simplified) axiom of a tritransformation.

We also make three conjectures:

• Conjecture 6.3.1: we conjecture that the data constructed for the tritransfor-

mation S satisfies the second (simplified) axiom of a tritransformation.

• Conjecture 6.3.2: we conjecture that the data constructed for the tritransfor-

mation S satisfies the third (simplified) axiom of a tritransformation.

• Conjecture 6.3.3: following immediately from the other two conjectures, S

satisfies all three tritransformation axioms and is indeed a tritransformation

F ⇒ G.

7. Conclusions and Further Directions: We conclude by summarising the main

ideas and results of the thesis. After, we consider potential applications for the results

of this thesis and directions for further work.

One potential use relates to another model of weak higher category theory: Tamsamani

categories [Tam99]. At the 3-dimensional level these Tamsamani categories can be

viewed as functors into bicategories; our result can be applied in context of Tamsamani

3-categories and we envisage that this will lead to an explicit comparison between

them and tricategories. There are also a few ways of potentially expanding the results

of the thesis. One idea uses a Yoneda argument, allowing us to relate any trifunctor

to one whose target is the tricategory of bicategories.



Chapter 1

Introduction to Higher Category

Theory

In this chapter we will survey some of the literature on the background of higher category

theory. We’ll start with the philosophical ideas that led to the development of higher

category theory as a field: it was needed to model many structures in homotopy theory,

mathematical physics, and in category theory itself. Studying these ideas shows that the

simplest type of higher categories - strict higher categories - aren’t sufficient for what we

want to use them for. This leads us to the much richer area of study given by weak higher

category theory.

We’ll then survey several approaches to weak higher categories. The explicit models

given by bicategories and tricategories are central to this thesis and therefore covered in

their own chapters, but there are also many other less direct models and it would be remiss

not to be aware of them.

Finally, we will give an overview of the fields of mathematics where the ideas of higher

category theory are used. We will particularly focus on applications of tricategories, as

these are potential places which could benefit from the foundational results of this thesis.

1.1 Philosophy of Higher Category Theory

Just as category theory is the study of categories, which consist of objects and arrows

between objects along with composition of arrows constrained by identity and associativity

laws, higher category theory is the study of structures consisting of objects and arrows

between objects and 2-cells between arrows (and so on: n-cells between (n− 1)-cells) along

with compositions in each direction. We must then understand what sorts of identity and

associativity constraints are suitable. The simplest among higher categorical structures are

7
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those where the identity and associativity laws hold just as they do in a category at all

levels (we call this complete strictness).

1.1.1 Strict n-categories

The simplest sorts of object in higher category theory are the strict n-categories.

Definition 1.1.1. A Strict n-Category C is defined recursively in the following way:

A strict 1-category is just a category.

Given the definition of a strict (n − 1)-category, a strict n-category is a category

enriched [Kel82] with respect to the Cartesian monoidal structure in strict (n−1)-categories.

That is, it consists of:

• A collection of Objects ob(C).

• For each pair of objects A,B ∈ ob(C), a strict (n− 1)-category denoted C(A,B). For

each k between 0 and (n− 1), the k-cells of this (n− 1)-category are the (k+ 1)-cells

of C. That is, the objects of this (n− 1)-category are the Morphisms or 1-cells of C
(denoted f : A→ B), the 1-cells of this (n− 1)-category are the 2-cells of C (denoted

α : f ⇒ g) and so on up to the top level where the (n− 1)-cells of C(A,B) are the

n-cells of C (similarly denoted with ⇒).

• For each object A ∈ ob(C) an object of C(A,A) labelled 1A called the Identity of A.

• For each triple of objects A,B,C ∈ ob(C) a functor

⊗ : C(B,C)× C(A,B) −→ C(A,C)

called Composition.

These are required to have the following two properties:

• The composition is Associative: i.e. for any four objects A,B,C,D ∈ ob(C) the two

functors

−⊗ (−⊗−) : C(C,D)× C(B,C)× C(A,B) −→ C(A,D)

and

(−⊗−)⊗− : C(C,D)× C(B,C)× C(A,B) −→ C(A,D)

are equal.

• The Identity Laws hold: i.e. for any pair of objects A,B ∈ ob(C) the functors

1B ⊗− : C(A,B) −→ C(A,B)
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and

−⊗ 1A : C(A,B) −→ C(A,B)

are both equal to the identity.

Unpacking this definition, we see that a strict n-category consists of cells in dimensions

0 all the way up to n with all compositions in all directions being unital and associative.

One example has as its objects the collection of all categories, 1-cells given by functors,

and 2-cells given by natural transformations. Composition of both functors and natural

transformations is unital and associative, meaning that these do form a strict 2-category.

A related concept is the idea of a strict n-groupoid, which is the strict n-dimensional

generalisation of the idea of groupoid.

Definition 1.1.2. A Strict n-Groupoid is a strict n-category in which every k-cell (for k

running from 1 to n) α : f ⇒ g has a strict inverse. That is, there is a k-cell β : g ⇒ f such

that both α ◦ β and β ◦ α are equal to the identity for all composition operations defined

on k-cells.

Having defined strict n-categories and strict n-groupoids, we will now explore why they

are insufficient.

1.1.2 The Principle of Isomorphism

One of the key ideas behind the philosophy of category theory is the following.

Definition 1.1.3. The Principle of Isomorphism [Mak98] states that correct properties

of objects in a fixed category should be invariant under isomorphism. In particular, it

is philosophically incorrect to attempt to distinguish between isomorphic objects of a

category.

As an example of the use of the principle of isomorphism, consider the similar Principle

of Equivalence, which states that the correct notion of equivalence between categories is

not isomorphism but instead the idea ordinarily denoted by equivalence. This follows from

the principle of isomorphism in one of two different ways, depending on how you define

equivalence.

• Consider an isomorphism to be a pair of functors F : C → D and G : D → C such that

GF = 1C and FG = 1D. Functors have a suitable concept of morphisms between

them in the form of natural transformations so requiring the composites to be equal to

the identity is too strict and breaks the principle of isomorphism. Instead, we should

only require that both composites should be naturally isomorphic to the identity.
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Therefore, our definition of equivalence should be a pair of functors F : C → D and

G : D → C and a pair of natural isomorphisms η : GF ⇒ 1C and ε : 1D ⇒ FG.

• Consider an isomorphism to be a functor F : C → D that is bijective on objects

and bijective on morphisms. This notion is too strict and breaks the principle of

isomorphism because we distinguish objects in the same isomorphism class if some

are in the image and others are not. Instead, we should only be able to check whether

or not each isomorphism class is hit by the functor.

Thus, our definition of equivalence is a functor F : C → D that is full and faithful and

essentially surjective. (Note that such a functor is also ’essentially injective’: since

it is full and faithful it reflects isomorphisms and thus is injective on isomorphism

classes).

Note that the definition of strict n-category given above breaches the principle of

isomorphism. The definition requires that certain functors be equal but as we saw earlier

the principle of isomorphism only allows us to define functors as being isomorphic, or even

only equivalent at higher dimensions. It is this idea that motivates, in an abstract sense,

the study of weakness in higher category theory: the axioms at lower levels should be

satisfied only up to an isomorphism in the next level up.

1.1.3 Topological Motivations

Much of higher category theory was originally motivated by the study of algebraic topology,

and in particular homotopy theory. Kan’s notion of simplicial sets model topological

spaces [GJ09] and this guides us to thinking of spaces as being built up from cells of

different dimensions, just like higher categories are.

One tool for studying the homotopy theory of these simplicial sets is the Postnikov

tower [Pos51]. The Postnikov tower of a space X is a tower of spaces Xn where each Xn has

a vanishing homotopy group in dimensions higher than n. Such spaces are called n-types,

and they are very amenable to being studied via n-categorical methods. Starting at n = 1,

we have that 1-types are naturally modelled using groupoids via the following construction.

Definition 1.1.4. [GJ09] Given a topological space X, the Fundamental Groupoid of X

is a category whose objects are the points of X and whose morphisms are homotopy classes

of paths in X. The identity at a point is given by the homotopy class of the constant path

at that point, composition is induced by concatenation of paths and each morphism is

invertible with the inverse being given by reversing the direction of the path (these are

respected by equivalence up to homotopy).
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Despite only giving us an ordinary category, this definition implicitly requires a higher

level of structure: the homotopies between the paths. We also note that the axioms of a

groupoid are only satisfied up to a reparameterisation homotopy. This suggested the way

forward to understanding the categorical behaviours of higher n-types. Grothendieck first

intuited that n-types should be modelled by a suitable notion of n-groupoid [Gro]. This

idea eventually developed into the Homotopy Hypothesis.

Definition 1.1.5. [BD95] The Homotopy Hypothesis states, in its strong form, that for

a suitable notion of n-categories there should be an equivalence of (n+ 1)-categories where

one part of it is given by the fundamental n-groupoid:

Πn : n− Type −→ n−Gpd

and the other direction is given by the classifying space functor.

There is also a weaker, more easily satisfied, form of the Homotopy Hypothesis which

only requires an equivalence between the homotopy categories, where the homotopy category

of n− Type is taken by formally inverting the weak equivalences and the homotopy category

of n−Gpd is taken by localising at suitably defined n-equivalences.

The Homotopy Hypothesis also demonstrates why strict n-categories are unsuitable.

Although strict 2-groupoids can model 2-types [MS93], Simpson has shown that this fails

immediately at the next level up: there is no strict 3-groupoid that can model the 3-type

of the 2-sphere [Sim] because there is a non-trivial Whitehead product. If we are to satisfy

the Homotopy Hypothesis and be able to study the Postnikov tower in higher dimensions,

we’ll need to move from strict n-groupoids to weak n-groupoids.

1.2 Models of Weak Higher Category Theory

Since strict higher categories aren’t sufficient, we instead study the more general notion

of weak higher categories. A weak n-category should be a categorical structure with cells

in dimensions 0 to n with compositions in all directions, but the associativity and unit

axioms hold only up to isomorphisms. Furthermore, these isomorphisms are required to

be suitably compatible via coherence axioms. There are many possible models of weak

n-categories.

The most explicit way to construct weak n-categories is to take a collection of objects

and hom-(n− 1)-categories (as when we constructed strict n-categories) and, at any level

k below the top level of cells, replace any axiom in that level of cells by a k + 1-cell

that mediates the axiom. Doing this starting at n = 2 first gives you the definition of

bicategory (developed by Benabou [Ben67]) and this lets you then develop the definition of
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a 3-dimensional weak category, the tricategory (first introduced by Gordon, Power and

Street [GPS95]). These are the major objects of study of this thesis and will therefore be

covered in more detail in the two following chapters, but there are two things we can note

now.

First, both bicategories and tricategories satisfy the homotopy hypothesis (The proof

for bicategories was given by Hardie, Kamps and Kieboom [HKK01] while the proof for

tricategories was by Leroy [Ler94]); they are therefore suitable models of higher categories

in 2 and 3 dimensions. Secondly, both bicategories and tricategories require their respective

coherence theorems - stating that, despite only specific coherence cells being used in the

definitions, all relevant diagrams of coherence cells give the same result - in order to work.

The increase in complexity of both the coherence axioms and proof of the coherence theorem

as we move from dimension 2 to dimension 3 indicates that the extension of this approach

to higher dimensions is problematic. Indeed, although a potential definition in the same

vein has been proposed by Trimble [Tri06], the coherence theorem for it has not yet been

proved and without it we can’t proceed further.

1.2.1 Combinatorial Models

In order to tackle the issues raised in the previous section, an alternate method for

constructing weak higher categories is to set up combinatorial machineries that will encode

the intuitions behind n-dimensional categories more indirectly. Although these models

are generally less concrete - for example, by having composition maps that only arise

indirectly, meaning that there may be many possible composites for any pair of composable

morphisms - the combinatorics can handle all of the coherence issues automatically, rather

than needing to encode them in explicit diagrams and then prove coherence theorems. This

makes it possible to define these models in all dimensions.

Once a model has been shown to satisfy the homotopy hypothesis, it can be accepted

as a suitable model of weak higher categories. A partial survey of these models is given

by Leinster [Lei02]; the question of how to compare different models is largely an open

problem. Some examples of these models are:

• Operadic models, most notably the Batanin model [Bat98]. These realise weak

n-categories as algebras of a carefully constructed higher operad. For dimension 2, a

sketch of the proof that Batanin 2-categories are equivalent to bicategories is given

in [Bat98].

• Multi-simplicial models: these are the Tamsamani model [Tam99] and the similar

Simpson model [Sim12]. These construct weak n-categories as simplicial objects in



Higher Category Theory 13

the category of weak (n− 1)-categories, using the simplicial structure to control the

coherences. The question of comparing Tamsamani categories to bicategories and

tricategories is further along, with a complete comparison at the 2-dimensional level

due to Lack and Paoli [LP08] and a method of taking a nerve of a tricategory to get

a Tamsamani 3-category due to Cegarra and Heredia [CH14]. The other direction

- taking a Tamsamani 3-category and constructing a tricategory - is a potential

application of the results of this thesis.

• The opetopic model of Baez and Dolan [BD98].

• A more recent method by Paoli models weak n-categories using a subcategory of

n-fold categories [Pao19] (i.e. the n-dimensional version of double-categories).

1.2.2 Infinite-Dimensional Category Theory

Although this thesis is focused on the finite-dimensional forms of higher category theory, it

is worth being aware of the work done on structures with cells in all dimensions. These

structures have important applications in algebraic geometry and mathematical physics.

The prototypical structure that was the motivation for studying infinite-dimensional

category theory is the category of topological spaces, with the 1-cells being given by

continuous maps and higher cells being given by higher homotopies. Homotopies are

invertible up to homotopy so it is no surprise that the first infinite dimensional categories

that were studied were (∞,1)-Categories: those where the cells in dimensions 2 and

above are all equivalences.

There are many models of (∞, 1)-categories, of which the most well known are Simpli-

cially Enriched Categories and Quasi-Categories. Quasi-categories were introduced

by Boardman and Vogt [BV73] and the theory was developed by Joyal [Joy08] and

Lurie [Lur09b].

The next step was to relax the requirement that certain cells be equivalences until

higher dimensions are reached: this gives us the idea of (∞,n)-Categories. A survey of

the models of (∞, n)-categories is given by Bergner in [Ber11].

The final step to full generality is to consider infinite-dimensional categorical structures

with cells in all dimensions but no requirements that the cells should be equivalences: ω-

Categories. A model of ω-categories using complicial sets has been given by Verity [Ver08].
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1.3 Applications of Tricategories

We conclude this chapter by surveying some existing applications of the theory of tricat-

egories. Against the background of recent developments into less explicit models, one

might ask if the classical notions of bicategories and tricategories are still relevant. The

applications we will see show that, far from being only of historical significance, bicategories

and tricategories are relevant and used in a variety of mathematical fields, often when the

precise handling of the coherences is called for.

1.3.1 Applications in Logic

As one of the original developers of the definition of tricategory, Power was motivated by

potential applications of 3-dimensional category theory to logic. He noted that attempting

to generalise results about 2-monads up a dimension would require weakening 2-natural

transformations to pseudonatural transformations [Pow95, Example 7.1] and would therefore

need the weaker structure given by tricategories.

A more recent area where weak higher category theory is used in logic is in homotopy

type theory (see, for example, the research of the Univalent Foundations Program [Pro13]):

this is a merger of homotopy theory and logic via weak higher category theory that has

applications to building proof assistants, a topic of considerable potential in theoretical

computer science.

Gray categories have also been used in rewriting theory [FM18].

1.3.2 Applications in Mathematical Physics

Mathematical physics first needed the ideas of higher category theory to study higher

cobordism categories [BD95]. This problem is very complex: despite considerable progress

made by Lurie [Lur09a] the proof of the cobordism hypothesis is still partially open.

The main uses of specifically tricategorical theory in mathematical physics are when

modelling 3-dimensional topological field theories. Examples include:

• Barrett, Meusburger and Schaumann [BMS12] study Gray-categories with duals,

and their geometric properties, by means of a diagrammatic calculus. These Gray-

categories help to simplify many of the calculations relating to TQFTs.

• Carqueville, Meusburger and Schaumann [CMS16] undertook a systematic study of

defect TQFTs. They initiate this study by introducing symmetric monoidal functors

on stratified and decorated bordisms, which can each be transformed into a tricategory

with duals in a natural categorification of the idea of a pivotal bicategory.
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1.3.3 Applications in Homotopy Theory

An important open problem in homotopy theory is the algebraic modelling of stable n-types.

This is harder than modelling unstable n-types because of the notions of higher symmetry

needed and the way these interact with the coherence data.

One tool that was introduced to help with this was the notion of symmetric monoidal

bicategory [SP09], which can be viewed as a tricategory with one object and some extra

structure. Once a coherence theorem was proved for symmetric monoidal bicategories

[GO13] this tool was ready to be used. It led to the proof of the stable homotopy hypothesis

in dimension 2 [GJO19].

1.3.4 Applications via Braided Monoidal Structures

Braided monoidal categories can be viewed as ordinary categories with some extra structure,

but they can also be viewed as tricategories with a single object and 1-cell. As such,

tricategorical results have applications in any area where braided monoidal categories have

been used, such as representation theory [JS93] [JS95].

The situation where a braided monoidal structure has been taken one dimension

higher - i.e. the braided monoidal bicategory - has also been studied [KV94] [BN96].

These have applications to 2-tangle invariants and 4-dimensional TQFTs. In [Gur11] the

author proves a coherence theorem for braided monoidal bicategories and relates it to the

coherence theorem for monoidal bicategories. They show how coherence for these structures

can be interpreted topologically using up-to-homotopy operad actions and the algebraic

classification of surface braids.

Other recent applications of braided structures have related them to quantum compu-

tation [Ver17].



Chapter 2

Bicategories

In this chapter we will survey the results on bicategories. These will be the objects of the

tricategory that is the target of the trifunctor we want to transport. Furthermore, the

techniques we will use to manipulate the pasting diagrams are based on the properties

of bicategories and the cells between them. Therefore, it is crucial that we understand

bicategories thoroughly before continuing.

2.1 Definitions

The idea behind the definition of bicategories is to take the definition of strict 2-category

and, following the principle of isomorphism, replace every identity in 1-cells with a mediating

isomorphism.

For this section, we will use ⊗ to mean composition in the direction of the 1-cells and ◦
to represent composition in the direction of the 2-cells.

Definition 2.1.1. [Ben67, Definition 1.1] A Bicategory B consists of:

• A collection of objects ob(B).

• For each pair of objects A,B ∈ ob(B), a Hom-Category B(A,B). The objects

of these categories are the 1-cells of the bicategory and the morphisms of these

categories are the 2-cells of the bicategory.

• For each triple of objects A,B,C ∈ ob(B), a Composition functor ⊗ : B(B,C) ×
B(A,B)→ B(A,C).

• For each object A ∈ ob(B), an Identity idA : A→ A.

16
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• For each four objects A,B,C,D ∈ ob(B), an Associator given by a natural isomor-

phism

B(C,D)× B(B,C)× B(A,B) B(B,D)× B(A,B)

B(C,D)× B(A,C) B(A,D)

⊗×1

1×⊗ ⊗
a

⊗

• For each pair of objects A,B ∈ ob(B) a Left Unitor given as a natural transformation

B(B,B)× B(A,B)

1× B(A,B) B(A,B)

⊗idB×1

∼=

l

• For each pair of objects A,B ∈ ob(B) a Right Unitor given as a natural transfor-

mation
B(A,B)× B(A,A)

B(A,B)× 1 B(A,B)

⊗1×idA

∼=

r

satisfying the following axioms:

• The Pentagon Identity: for any four composable 1-cells

A B C D E
f g h k

the following diagram commutes:

(k ⊗ (h⊗ g))⊗ f

((k ⊗ h)⊗ g)⊗ f k ⊗ ((h⊗ g)⊗ f)

(k ⊗ h)⊗ (g ⊗ f) k ⊗ (h⊗ (g ⊗ f))

aa⊗1

a 1⊗a

a

• The Triangle Identity: for any two 1-cells

A B C
f g

the following diagram commutes:
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(g ⊗ idB)⊗ f g ⊗ (idB ⊗ f)

g ⊗ f

a

r⊗1 1⊗l

Bicategories can be dualised in three different ways [Ben67, Section 3]. The first

sends a bicategory B to Bop which has the same objects with the hom-categories being

Bop(A,B) = B(B,A). The second is Bco which has hom-categories Bco(A,B) = B(A,B)op.

Note that Bco,op = Bop,co; this gives the third dualisation.

It is also worth considering what the functors and higher transformations should be

between bicategories. Once again, this involves taking the definitions for the strict versions

and replacing all of the equalities of 1-cells with isomorphisms.

Definition 2.1.2. [Ben67, Definition 4.1] A Pseudofunctor or Homomorphism between

bicategories F : A → B consists of:

• A function F : ob(A) −→ ob(B).

• For each pair of objects A,B ∈ ob(A), a functor FAB : A(A,B)→ B(FA,FB).

• For each triple of objects A,B,C ∈ ob(A), a Compositor given by a natural

isomorphism

A(B,C)×A(A,B) B(FB,FC)× B(FA,FB)

A(A,C) B(FA,FC)

F×F

⊗ ⊗
ϕ

F

• For each object A ∈ ob(A), a Unitor given by an invertible 2-cell σ : idFA ⇒ F (idA).

such that:

• The compositor interacts properly with the associator: for each set of composable

1-cells in A
A B C D

f g h

the diagram
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(Fh⊗ Fg)⊗ Ff Fh⊗ (Fg ⊗ Ff)

F (h⊗ g)⊗ Ff Fh⊗ F (g ⊗ f)

F ((h⊗ g)⊗ f) F (h⊗ (g ⊗ f))

a

ϕ⊗1 1⊗ϕ

ϕ ϕ

Fa

commutes.

• The identity interacts well: for each 1-cell f : A→ B, the two diagrams

idFB ⊗ F (f) F (idB)⊗ Ff

Ff F (idB ⊗ f)

σ⊗1

l ϕ

F l

and

Ff ⊗ idFA Ff ⊗ F (idA)

Ff F (f ⊗ idA)

1⊗σ

r ϕ

Fr

commute.

A pseudofunctor where σ is an identity is called normal. A pseudofunctor where ϕ and

σ are both identities, and thus Fa = a, Fl = l and Fr = r, is called a Strict Functor.

Proposition 2.1.1. [Ben67, Theorem 4.3.1] Given two pseudofunctors

A B C(F,ϕ,σ) (G,ϕ′,σ′)

they can be composed to produce a pseudofunctor G⊗ F with the following components:

• The action on the objects and the homcategories is given by the composite of the

respective actions.

• The new compositor is given by

A(B,C)×A(A,B) B(FB,FC)× B(FA,FB) C(GFB,GFC)× C(GFA,GFB)

A(A,C) B(FA,FC) C(GFA,GFC)

F×F

⊗

G×G

⊗
ϕ

⊗
ϕ′

F G
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• The new action on the units is given by the composite

idGFA G(idFA) GF (idA)σ′ G(σ)

These satisfy the conditions because the original 2-cells did.

This composition is strictly unital and associative.

The next things to consider are the transformations between pseudofunctors.

Definition 2.1.3. [Lei98, Section 1.2] A Pseudonatural Transformation [Lei98, Section

1.2] between two pseudofunctors α : F ⇒ G : A → B consists of:

• For each object A ∈ ob(A), a 1-cell αA : FA→ GA.

• For each pair of objects A,B ∈ ob(A), a natural transformation

A(A,B) B(GA,GB)

B(FA,FB) B(FA,GB)

G

F −⊗αAα

αB⊗−

Satisfying the following conditions:

• The transformation respects identities: for each object A ∈ ob(A), the following

diagram commutes

idGA ⊗ αA αA αA ⊗ idFA

G(idA)⊗ αA αA ⊗ F (ida)

l

σ⊗1

r−1

1⊗σ

αida

• The transformation respects composition: for each pair of composable 1-cells

A B C
f g
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the following diagram commutes

(Gg ⊗Gf)⊗ αA Gg ⊗ (Gf ⊗ αA) Gg ⊗ (αB ⊗ Ff) (Gg ⊗ αB)⊗ Ff

(αC ⊗ Fg)⊗ Ff

αC ⊗ (Fg ⊗ Ff)

G(g ⊗ f)⊗ αA αC ⊗ F (g ⊗ f)

a

ϕ⊗1

1⊗αf a−1

αg⊗1

a

1⊗ϕ

αg⊗f

Once again, a pseudonatural transformation is called ’strict’ if the components at all

1-cells are identities.

Pseudonatural transformations can be composed in both sensible directions. Given two

pseudonatural transformations

A B

F

G

H

α

β

the components of α ◦β at each object are the composites of the respective components

and the component at each 1-cell is given by

Hf ⊗ (βA ⊗ αA)
a−1

−−→ (Hf ⊗ βA)⊗ αA
βf⊗1
−−−→ (βB ⊗Gf)⊗ αA

a−→

βB ⊗ (Gf ⊗ αA)
1⊗αf−−−→ βB ⊗ (αB ⊗ Ff)

a−1

−−→ (βB ⊗ αB)⊗ Ff

Similarly, it is possible to compose two pseudonatural transformations in the direction

of the 1-cells, given transformations as in the diagram

A B C

F

F ′

G

G′

α β

However a decision has to be made, because although it is relatively easy to define the

composite of a pseudonatural transformation with an identity on either side (i.e. idG ⊗ α
and β⊗idF ) these do not compose to give a consistent definition of the composite β⊗α: the
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interchange law fails. By convention, we define β⊗α = (idG′ ⊗α) ◦ (β⊗ idF ) [Gur13, Prop.

5.1].

The final level of transformation is the modification. We do not need to weaken the

definition because there are no cells of a higher level than the components of the modification

so any isomorphism is an equality. However, we do need to adjust the definition given in the

introduction to account for the fact that we are taking modifications between pseudonatural

transformations.

Definition 2.1.4. [Lei98, Section 1.3] A Modification between two pseudonatural trans-

formations Σ : α ⇒ β : F ⇒ G : A → B is given by, for each object A ∈ ob(A) a 2-cell

ΣA : αA ⇒ βA such that for all 1-cells f : A→ B the diagram

Gf ⊗ αA Gf ⊗ βA

αB ⊗ Ff βB ⊗ Ff

1⊗ΣA

αf βf

ΣB⊗1

commutes.

Modifications can be composed in all three directions though again choices must be

made.

As we shall see in the next chapter, the structure formed by bicategories, pseudofunctors,

pseudonatural transformations and modifications is a tricategory.

One final useful definition is that of local properties.

Definition 2.1.5. [Ben67, Section 2.7]

• Let P be a property of categories. Then a bicategory is Locally P if all of its

hom-categories are P.

• Let Q be a property of functors. Then a pseudofunctor is Locally Q if all of the

functors on the hom-categories are Q.

2.1.1 Laxness

Our consideration of the principle of isomorphism led us to consider pseudofunctors

(respectively pseudonatural transformations) as the natural morphisms between bicategories

(respectively pseudofunctors). However, there are other possible classes of morphisms that

are worth considering. These are the lax functors (resp. lax natural transformations), whose

importance was first considered by Benabou [Ben67]. The definition of a lax functor (resp.

lax natural transformation) is obtained from that of pseudofunctors (resp. pseudonatural

transformations) by removing the requirement that the constraint cells be invertible.
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Similarly, by reversing the direction of the constraint cells and their axioms, we get the

concept of oplax functor (resp. oplax natural transformation).

One important example of an oplax natural transformation occurs in the form of an

icon.

Definition 2.1.6. [Lac10b] An Icon (i.e. an Identity Component Oplax Natural transfor-

mation) between two pseudofunctors α : F ⇒ G : A → B consists of:

• The assertion that F and G agree on objects.

• For each pair of objects A,B ∈ ob(A), a natural transformation

A(A,B) B(FA,FB)

F

G

α

which is

• Compatible with the identities: for each object A ∈ ob(A) the diagram

idFA = idGA

FidA GidA

σF σG

αidA

commutes.

• Compatible with the composition: for each pair of composable 1-cells

A B C
f g

the diagram

Fg ⊗ Ff F (g ⊗ f)

Gg ⊗Gf G(g ⊗ f)

αf⊗αg

ϕ

αg⊗f

ϕ

commutes.

Examining this definition shows that this is equivalent to requiring an oplax transfor-

mation to have components that are the identity at each object, hence the name. Icons

are useful because, unlike the difficulty we had in defining a horizontal composite for
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pseudonatural transformations, the structure formed by bicategories, pseudofunctors and

icons is a strict 2-category Icon [Lac10b, Theorem 3.2].

2.2 2-Dimensional Category Theory

Many aspects of category theory can be developed internally in any bicategory. A survey

of the development of this theory is the 2-Categories Companion by Lack [Lac10a]. 2-

dimensional category theory is a rich subject so we will only present those key aspects that

are relevant to the thesis: equivalences, adjunctions and monads. We will also explore the

idea of limits within a bicategory.

2.2.1 Equivalences

Definition 2.2.1. [Lac10a, Exercise 2.2] Within a bicategory B, an Equivalence between

two objects is given by:

• Two 1-cells

A B

f

g

• Two invertible 2-cells η : idA ⇒ g ⊗ f and ε : f ⊗ g ⇒ idB.

By the principle of isomorphism, this is the correct notion of equivalence within a

bicategory. Thus, it is incorrect to attempt to distinguish equivalent objects.

2.2.2 Adjunctions

Definition 2.2.2. [Lac10a, Section 2.1] Within a bicategory B, an Adjunction is given by:

• Two 1-cells

A B

f

g

• Two 2-cells η : idA ⇒ g ⊗ f and ε : f ⊗ g ⇒ idB.

satisfying the usual triangle identities in the sense that the following diagrams commute:
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f ⊗ idA f ⊗ (g ⊗ f) (f ⊗ g)⊗ f

idB ⊗ f

f

r

1⊗η a−1

ε⊗1

l

idA ⊗ g

(g ⊗ f)⊗ g

g ⊗ (f ⊗ g) g ⊗ idB g

l

η⊗1

a

1⊗ε r

If the two cells η and ε not only satisfy the triangle identities but are also invertible

then this is an adjoint equivalence. Just as in Cat, given an equivalence it is possible to

turn it into an adjoint equivalence by changing only one of the 2-cells.

The definition given above mirrors the definition of adjunctions in Cat given by unit

and co-unit. The other definition of adjunctions in Cat, using the natural bijection between

hom-sets, is generalised to the idea of mates under adjunctions. This theory is presented

here in its most general form, as the use of mates is crucial when constructing tricategories

and the cells between them.

Definition 2.2.3. [Lac10a] Let (f, g, η, ε) : A → B and (h, k, υ, γ) : C → D be two

adjunctions. Let a : A → C and b : B → D be two 1-cells. Then there is a bijective

correspondence between 2-cells α : h ⊗ a ⇒ b ⊗ f and 2-cells β : a ⊗ g ⇒ k ⊗ b. This

correspondence is called taking the Mate under the adjunctions. The correspondence is

shown via the pasting diagrams
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B A

A B

B A

C D

D C

C H

g

idB

f

idA

f

a

g

b

b a

β

idC

h

α

k

idD

k

h

ε η

υ γ

along with suitable applications of the constraint cells. This correspondence is bijective

because of the triangle identities.

The usual property of adjunctions in Cat comes from taking A and B to both be the

terminal category with the identity adjunction between them: thus a and b pick out objects

of the categories C and D respectively and the 2-cells (that is, natural transformations)

are just morphisms from ha→ b and a→ kb.

2.2.3 Monads

Definition 2.2.4. [Ben67, Section 5.4] A Monad in a bicategory is given by

• An object A.

• A 1-cell t : A→ A.

• A 2-cell η : idA ⇒ T called the unit.

• A 2-cell µ : T ⊗ T ⇒ T called the multiplication.

satisfying the axioms

• The associativity law: the diagram

(T ⊗ T )⊗ T T ⊗ (T ⊗ T )

T ⊗ T T ⊗ T

T

a

µ⊗1 1⊗µ

µ µ
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commutes.

• The unit laws: the diagrams

T ⊗ idA idA ⊗ T

T ⊗ T T T ⊗ T

1⊗η r η⊗1l

µ µ

commute.

Note that a monad can also be defined as a lax functor from the terminal 2-category to

the bicategory.

2.2.4 Pseudolimits

Just as we adjusted the definitions of functor and natural transformation earlier, we will

also modify the definition of limit to account for the principle of isomorphism.

Definition 2.2.5. • Given a diagram in a bicategory given by a pseudofunctor D : J →
B, a Pseudocone consists of

– An object C ∈ ob(B).

– For each object i ∈ ob(J ), a 1-cell λi : C → Di.

– For each 1-cell f : i→ j in J , an invertible 2-cell Ψf : Df ⊗ λi ⇒ λj .

such that for every 2-cell α : f ⇒ g : i→ j of J , the 2-cells Ψg and Ψf ◦ (Dα⊗ λi)
are equal.

• A Pseudolimit is a pseudocone (L, µ,Φ) such that for any other pseudocone (C, λ,Ψ),

there is a unique 1-cell k : C → L such that

– For all i ∈ ob(J ), λi = µi ⊗ k.

– For all 1-cells f : i→ j, Ψf = Φf ⊗ k.

A pseudolimit can also be realised more abstractly in terms of an isomorphism of

hom-categories [Lac10a, Section 6.10].

One example of a pseudolimit is the pseudolimit of a single 1-cell, where J has two

objects, a single non-trivial 1-cell going from one object to the other, and no non-trivial 2-

cells. In normal category theory the limit of a single morphism is trivial, but the pseudolimit

of a 1-cell can often be quite interesting.
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In the 2-category Cat, the pseudolimit of a functor FC → D is given by a category L
whose objects are triples (c, d, f) where c ∈ ob(C), d ∈ ob(D) and f : Fc→ d is invertible.

The morphisms of this category are given by pairs of morphisms on the objects such that all

the data commutes. Then the cone has 1-cell components given by the obvious projections

and a 2-cell component given by a natural transformation whose component at (c, d, f) is

f .

2.3 The Coherence Theorem for Bicategories

As mentioned previously, the coherence theorem for bicategories states that every diagram

constructed from instances of the constraint cells a, l, and r commutes. However, we cannot

show this by the direct method of performing calculations on each individual diagram.

Instead, the coherence theorem is proved by showing that every bicategory is biequivalent to

a strict 2-category. We start this section by introducing the concepts needed to understand

this proof.

2.3.1 Biequivalence

Biequivalences are the correct notion of equivalence between two bicategories. As with

the definition of equivalence between categories, there are two equivalent ways of defining

biequivalences.

Definition 2.3.1. [Gur12] A Biequivalence between two bicategories consists of either:

• A pair of pseudofunctors F : A → B and G : B → A such that G⊗ F is equivalent to

the identity in the bicategory Bicat(A,A) and F ⊗G is equivalent to the identity in

the bicategory Bicat(B,B).

• A pseudofunctor F : A → B which is locally an equivalence and is biessentially

surjective in the sense that every object B ∈ ob(B) is equivalent to some object of

the form FA for A ∈ ob(A).

Given a suitably strong axiom of choice, these two definitions can be proved to be

equivalent to each other. In Chapter 3, we will see how these are a specific case of

biequivalence in any tricategory. The ability to take a pseudofunctor that is locally an

equivalence and is biessentially surjective and complete it to a biequivalence pair (and then

to a full biadjoint biequivalence [Gur12, Theorem 3.2]) is crucial for the usability of this

thesis’ result. The proof makes heavy use of the full structure of a biadjoint biequivalence

and so is stated in the form where we begin with biadjoint biequivalences. Even so, given
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any application where biequivalences arise as biessentially surjective local equivalences,

we can still apply our result just by first completing those biequivalences to biadjoint

biequivalences.

2.3.2 The Yoneda Embedding

The next ingredient in the coherence theorem is a Yoneda Embedding.

Definition 2.3.2. [Lei98, Section 2.1] For any bicategory B, the Yoneda Embedding

Y : B → Bicat(Bop, Cat) is a pseudofunctor that:

• sends an object B ∈ ob(B) to the pseudofunctor B(−, B) : Bop → Cat.

• acts on a hom-category B(A,B) as the functor that sends a 1-cell f to

f ⊗− : B(−, A)→ B(−, B)

and appropriately on 2-cells.

By a similar calculation to the Yoneda Lemma for categories, this is locally an equiva-

lence.

2.3.3 Coherence Theorem

Theorem 2.3.1 (Coherence Theorem). [Lei98, Section 2.3] Every bicategory is biequivalent

to a strict 2-category.

Proof. Consider the Yoneda embedding Y : B → Bicat(Bop, Cat). It is locally an equiva-

lence.

Now consider the image of the Yoneda embedding im(Y ). It is a strict 2-category because

Bicat(Bop, Cat) is. We can restrict the Yoneda embedding to Y ′ : B → im(Y ).

This restriction is locally an equivalence and is surjective on objects by construction.

Therefore B is biequivalent to the strict 2-category im(Y ).

This theorem ensures that every diagram in B constructed from instances of the

constraint cells a, l, and r commutes because it does in the biequivalent 2-category.
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2.4 2-Dimensional Monad Theory and Transport of Struc-

ture

The theory behind the transport of 2-dimensional structures, many of which arise from

consideration of bicategories, is well established. The key paper for this is by Kelly and

Lack [KL04].

This paper took the monadic approach to transport of structure: many applicable

2-dimensional structures can be realised as algebras of 2-monads on bicategories. Kelly

and Lack studied these 2-monads using the tool of monoidal 2-categories; just as in 1-

dimensional category theory, 2-monads can be viewed as monoids in the monoidal 2-category

of endo-2-functors, and so their results about monoidal 2-categories also apply to monads.

As we are dealing with higher category theory here, there is a question of strictness

versus weakness when considering 2-dimensional monads. Kelly and Lack’s more general

theorem [KL04, Theorem 6.1] allows transport of the structure of a pseudoalgebra of a

2-monad, and a strict algebra transported by this method can only be ensured to result

in a pseudoalgebra. This may be preferred - the principle of isomorphism suggests that

the correct notion of algebra of a 2-monad is a pseudoalgebra - but in the case that the

strict algebras are preferred, the final result of Kelly and Lack also covers them. Given the

extra condition that the 2-monad T is flexible (as defined by Kelly [Kel74]) the category of

strict algebras of the flexible 2-monad is equivalent to the category of pseudoalgebras of an

adjusted 2-monad T ′. This means that the main result of Kelly and Lack also applies to

the strict algebras of a flexible monad [KL04, Theorem 6.2].
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Tricategories

The next level of higher category theory is the tricategory. Tricategories were originally

introduced by Gordon, Power and Street [GPS95] who also proved the coherence theorem

by showing that every tricategory is triequivalent to a Gray-category, a somewhat stricter

notion that is still not as strict as a totally strict 3-category.

A slightly different definition of tricategory is offered by Gurski [Gur07]. The key

difference between the Gordon, Power and Street definition and the Gurski definition are

that when Gordon, Power and Street require that certain constraint 2-cells be equivalences

(in the sense of having some weak inverse) Gurski’s definition specifies the weak inverse,

and also the unit and co-unit needed to make them into an adjoint equivalence. Since any

equivalence can be extended to an adjoint equivalence, these definitions are equivalent.

Throughout this chapter, adjoint equivalences in a bicategory given by the data (f : A→
B, f∗ : B → A, η, ε) will be denoted by f : A→ B, using the label of the first component and

its source and target. The definitions in this chapter will be presented with all equivalences

completed to adjoint equivalences, and can be converted to the original Gordon, Power and

Street definition by taking those adjoint equivalences and considering only the primary

component.

3.1 Introduction to Tricategories

3.1.1 Definitions

Definition 3.1.1. A Tricategory [GPS95][Defn. 2.2] [Gur07, Defn. 3.1.2] T consists of:

• A collection of Objects ob(T ).

31
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• For each pair of objects A,B ∈ ob(T ), a Hom-Bicategory T (A,B). The objects of

these bicategories are the 1-cells of T , the 1-cells of these bicategories are the 2-cells

of T and the 2-cells of these bicategories are the 3-cells of T

• For each triple of objectsA,B ∈ ob(T ), a Composition Pseudofunctor⊗ : T (B,C)×
T (A,B)→ T (A,C).

• For each object A ∈ ob(T ), an Identity given by a pseudofunctor from the terminal

bicategory 1A : 1→ T (A,A).

• For each four objects A,B,C,D ∈ ob(T ), an Associator given by an adjunction

T (C,D)× T (B,C)× T (A,B) T (B,D)× T (A,B)

T (C,D)× T (A,C) T (A,D)

⊗×1

1×⊗ ⊗
a

⊗

• For each pair of objects A,B ∈ ob(T ), a Left Unitor given as an adjunction

T (B,B)× T (A,B)

1× T (A,B) T (A,B)

⊗1B×1

∼=

l

• For each pair of objects A,B ∈ ob(T ), a Right Unitor given as an adjunction

T (A,B)× T (A,A)

T (A,B)× 1 T (A,B)

⊗1×1A

∼=

r

• For every five objects A,B,C,D,E ∈ ob(T ), a Pentagonator π given as an invertible

modification between the two pasting diagrams

T 4 T 3 T 4 T 3

T 3 T 3 T 2 T 3 T 2 T 2

T 2 T T 2 T

⊗×1×1

1×⊗×1
1×1×⊗ ⊗×1

a×1

⊗×1×1

1×1×⊗ = ⊗×1
1×⊗

1×⊗

⊗×1

1×⊗
⊗

π

1×⊗

⊗×1

⊗a ⊗

a

⊗ ⊗

1×a

a

where T 4 is an abbreviation of T (D,E)×T (C,D)×T (B,C)×T (A,B) and similarly

for the other abbreviations.
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• For each triple of objects A,B,C ∈ ob(T ), a Middle Triangulator µ given as an

invertible modification between pasting diagrams

T 2 T 2

T 3 T 2 ∗ T 2

T 2 T T 2 T

1

1×1B×1

1

1

1

⊗×1

1×⊗ ⊗
a

⊗

⊗ ⊗

r∗×1

l×1 1

µ

• For each triple of objects A,B,C ∈ ob(T ), a Left Triangulator λ given as an

invertible modification between pasting diagrams

T 3 T 3

T 2 T 2 T 2 T 2 T 2

T T T T

⊗×1 ⊗×1
1×⊗1C×1×1

1

⊗ = ⊗

λ
1C×1×1

⊗

=

⊗ ⊗

1 1

1C×1

l×1

a

l

• For each triple of objects A,B,C ∈ ob(T ), a Right Triangulator ρ given as an

invertible modification between pasting diagrams

T T T T

T 2 T 2 T 2 T 2 T 2

T 3 T 3

1

=

1

1×1A⊗

1

1×1×1A

⊗ ⊗

1×1×1A

=

⊗ ⊗

1×⊗ 1×⊗
⊗×11×r∗

ρ
r∗

a

satisfying the following three axioms. In the following diagrams we will replace ⊗
by concatenation for compactness. We should also note that, as the arrows in these

diagrams come from the hom-bicategories, their composition is only weakly associative and

unital. We therefore need to choose an association for them. By the coherence theorem for

bicategories we get a unique way to transform our chosen association into any other, so

the requirements that the following diagrams are equal still makes sense.

• For every five composable 1-cells

A B C D E F
f g h j k
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the two diagrams

(k(j(hg)))f

(k((jh)g))f k((j(hg))f)

((k(jh))g)f k(((jh)g)f) k(j((hg)f))

(((kj)h)g)f (k(jh))(gf) k((jh)(gf)) k(j(h(gf)))

((kj)h)(gf) (kj)(h(gf))

a

∼=

(1a)1

a 1aa1

a

1(a1)

1a
1(1a)(a1)1

a

∼= a 1a

a

a1 a

1ππ

π

and

(k(j(hg)))f

(k((jh)g))f k((j(hg))f)

((k(jh))g)f ((kj)(hj))f k(j((hg)f))

(((kj)h)g)f (kj)((hg)f) k(j(h(gf)))

((kj)h)(gf) (kj)(h(gf))

a(1a)1

1aa1

a1

a 1(1a)(a1)1

a

a1 a

1a

∼=

a

a

π

π

π

are equal, where the unmarked isomorphisms are the naturality isomorphisms of the

associator.

• For every three composable 1-cells

A B C D
f g h
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the two diagrams

(h(1Cg))f

(h1C)g)f h(1Cg)f) (hg)f

(hg)f (h1C)(gf) h(1C(gf)) h(gf)

h(gf)

(1l)1
a

a1

a 1a 1(l1)

∼=
a

(r∗1)1

a

∼= a 1l

1
r∗1

π

1λ

µ

and
(h(1Cg))f

(h1C)g)f (hg)f

(hg)f h(gf)

h(gf)

(1l)1a1

a
(r∗1)1

a

1

∼=

1

µ1

are equal.

• For every three composable 1-cells

A B C D
f g h

the two diagrams

h((g1B)f)

h(gf) (h(g1B))f h(g(1Bf)

(hg)f ((hg)1B)f (hg)(1Bf) h(gf)

h(gf)

1a1(r∗1)

∼=

a

1(1l)
a

1

(1r∗)1

r∗1

a1

a

a

1l

∼=

a

πρ1

µ
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and
h((g1B)f)

h(gf) h(g(1Bf)

(hg)f h(gf)

h(gf)

1a1(r∗1)

1

1(1l)
a

1

∼=

a

1µ

are equal.

Much of the data given in the definition of a tricategory arises naturally by introducing

invertible constraint 3-cells mediating axioms of bicategories. For example, the pentagonator

replaces the pentagon identity that holds for bicategories. However, there are complications

in this framework. Where only one triangle identity was needed in the definition of

bicategories, three triangulator modifications are needed.

The first of the three axioms is known as the non-abelian 4-cocycle condition [GPS95,

TA1], and is given by a version of a diagram known as K5. However, the two axioms

related to the unital conditions were first introduced by Gordon, Power and Street [GPS95]

for their definition. Identifying these as the key axioms is crucial to the definition of a

tricategory.

By the theory of mates under adjunctions, we can take the dual of a tricategory T op

[GPS95, Remark 2.4] which has the same objects, hom-bicategories T op(A,B) = T (B,A),

the same identities and the adjoint equivalences being the opposites of those in T . Then, the

theory of mates under adjunctions in bicategories allows us to find suitable modifications

and show that they obey the same axioms.

A tricategory is defined as being strict if each adjoint equivalence is the identity

adjoint equivalence and modifications consist of the unique coherence isomorphisms in the

hom-bicategories.

Next, we consider what the appropriate notion of morphism between tricategories

should be.

Definition 3.1.2. A Trifunctor [GPS95, Defn. 3.2] [Gur07, Defn. 3.3.1] between two

tricategories F : S → T consists of:

• A function ob(S)→ ob(T ).

• For each pair of objects A,B ∈ ob(S), a pseudofunctor S(A,B)→ T (FA,FB).
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• For each triple of objects A,B,C ∈ ob(S), a Compositor given by an adjoint

equivalence

S(B,C)× S(A,B) T (FB,FC)× T (FA,FB)

S(A,C) T (FA,FC)

F×F

⊗ ⊗
χ

F

• For each object A ∈ ob(S), a Unitor given by an adjoint equivalence

1 T (FA,FA)

S(A,A)

1FA

1A F

ι

• For every four objects A,B,C,D ∈ ob(S), an invertible modification between the two

pasting diagrams

S4 T 3 S3 T 3

S2 S2 T 2 S2 T 2 T 2

S T S T

F×F×F

⊗×1
1×⊗ ⊗×1

χ×1

F×F×F

1×⊗ ⊗×1
1×⊗

⊗

F×F

⊗ ⊗

ω

⊗

F×F
⊗

χ ⊗

a

F F

a

χ

1×χ

• For each pair of objects A,B ∈ ob(S), an invertible modification between pasting

diagrams

T 2 T 2

T S2 T T T

S S S S

⊗

χ

⊗1FB×1

ι×1

F×F

⊗

γ
1FB×1

=
1

F 1B×1

1

F F

1

F
l

l

• For each pair of objects A,B ∈ ob(S), an invertible modification between pasting

diagrams

T T T T

S S S T 2 S

S2 S2

1 1

1×1FA

1×ι

F

1

1×1A

F

δ
F

1×1A

⊗
χ

F

⊗ ⊗
F×Fl

l
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satisfying the two axioms

1. For every four composable 1-cells

A B C D E
f g h k

the two diagrams

F
((

(k
h

)g
)f

)

F
((
k
h

)g
)F
f

F
(k

(h
g
))
F
f

F
((
k
(h
g
))
f

)

(F
(k
h

)F
g
)F
f

(F
k
F

(h
g
))
F
f

F
(k

((
h
g
)f

))

((
F
k
F
h

)F
g
)F
f

(F
k
(F
h
F
g
))
F
f

F
k
(F

(h
g
)F
f

)
F
k
F

((
h
g
)f

)
F

(k
(h

(g
f

))
)

(F
k
F
h

)(
F
g
F
f

)
F
k
((
F
h
F
g
)F
f

)
F
k
F

(h
(g
f

))

F
k
(F
h

(F
g
F
f

))
F
k
(F
h
F

(g
f

))

F
(a

1
)

∼ =
χ F
(a

1
)

χ

F
a

χ
1

χ
1

a
F

(1
a
)

(χ
1
)1

aa
1

1
(χ

1
)

a

∼ =
1
χ

χ

1
F
a

∼ =

a

1
(χ

1
)

1
a

χ

1
(1
χ

)

1
χ

ω

ω
1

π

ω
1

and
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F
((

(k
h

)g
)f

)

F
((
k
h

)g
)F
f

F
((
k
(h
g
))
f

)

(F
(k
h

)F
g
)F
f

F
((
k
h

)(
g
f

))
F

(k
((
h
g
)f

))

((
F
k
F
h

)F
g
)F
f

F
(k
h

)(
F
g
F
f

)
F

(k
h

)F
(g
f

)
F

(k
(h

(g
f

))
)

(F
k
F
h

)(
F
g
F
f

)
(F
k
F
h

)F
(g
f

)
F
k
F

(h
(g
f

))

F
k
(F
h

(F
g
F
f

))
F
k
(F
h
F

(g
f

))

F
(a

1
)

F
a

χ

F
a

χ
1

a
F
a

F
(1
a
)

(χ
1
)1

a

∼ =
1
χ

χ

aχ
1

1
χ∼ =

χ
1

a

χ

1
(1
χ

)

∼ =
1
χ

ω

ω

F
π

are equal.

2. For every pair of composable 1-cells

A B C
f g
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the two diagrams

F ((g1B)f) F (g(1Bf))

FgF (1Bf)

F (gf) F (g1B)Ff (FgF1B)Ff Fg(F1BFf) F (gf)

(Fg1FB)Ff Fg(1FBFf)

FgFf FgFf

Fa

F (1l)

∼=

χ

1Fl

F (r∗1)

∼=

χ

χ1 a

∼=

1χ

a

(1ι)1 1(ι1)

1l

χ

1

r∗1

Fr∗1 χ

ω

δ1

1γ

µ

and

F ((g1B)f) F (g(1Bf))

F (gf) F (gf)

FgFf FgFf

Fa

F (1l)F (r∗1)

1

∼=χ

1

χ

Fµ

are equal.

The trifunctor is the structure that this thesis aims to transport. It is therefore crucial

to understand this definition.

As with pseudofunctors, it is possible to define strictness, laxness and oplaxness for

trifunctors. The definition for lax functor [GPS95, Defn. 3.1] replaces the pseudofunctors

on the hom-bicategories with lax functors, replaces the adjoint equivalences with lax natural

transformations and removes the requirement that the modifications be invertible.

A trifunctor is strict [Gur07, Defn. 3.3.3] if it is locally strict, χ and ι are identity

adjoint equivalences, F maps the adjoint equivalences a, l and r of the source tricategory to

those of the target tricategory and the modifications are constructed from unique coherence

cells.

We will also be considering how to lift the object-indexed biequivalences so that they

become a biequivalence between the original and transported trifunctor. Therefore we also

consider the morphisms between trifunctors, the tritransformations.
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Definition 3.1.3. Given two trifunctors F,G : S → T , a Tritransformation [GPS95,

3.3] [Gur13, Defn. 4.16] θ : F ⇒ G consists of:

• For each object A of S a 1-cell θA : FA→ GA.

• For each pair of objects A,B ∈ ob(S), an adjoint equivalence

S(A,B) T (FA,FB)

T (GA,GB) T (FA,GB)

F

G θB⊗−
θ

−⊗θA

• For each triple of objects A,B,C ∈ ob(S), an invertible modification Π that modulates

how θ interacts with the compositors of the trifunctors. Its component at a pair of

composable 1-cells A
f−→ B

g−→ C is given by

Gg(θBFf) Gg(GfθA)

(GgθB)Ff (GgGf)θA

(θCFg)Ff G(gf)θA

θC(FgFf) θCF (gf)

1θ

a∗a

χG1θ1

a

1χF

θ

Π

• For each object A of S, an invertible modification M that modulates how θ interacts

with the unitors.

1 1

S(A,A) T (FA,FA) S(A,A)

T (GA,GA) T (FA,GA) T (GA,GA) T (FA,GA)

1A

1FA θA

1A

θA

1GA
F

G
θA⊗−θ

G

−⊗θA −⊗θA

ιF
r∗

ιG
l∗

M

These are required to obey the following three axioms.

1. For every triple of composable 1-cells A
f−→ B

g−→ C
h−→ D the following two diagrams

are equal:



Tricategories 42

G
h

(G
g
(θ
B
F
f

))
G
h

(G
g
(G
f
θ A

))

G
h

((
G
g
θ B

)F
f

)
(G
h
G
g
)(
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G
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G
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)θ
B
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f

G
(h
g
)(
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g
)(
G
f
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)

(G
(h
g
)θ
B

)F
f
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h

(θ
C
F
g
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F
f
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D
F

(h
g
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F
f
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g
)G
f

)θ
A
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θ C
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g
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f

θ D
(F

(h
g
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f
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G

((
h
g
)f

)θ
A
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θ D
F
h

)F
g
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f

(θ
D

(F
h
F
g
))
F
f

θ D
F

((
h
g
)f

)
G

(h
(g
f

))
θ A

θ D
((
F
h
F
g
)F
f

)

(θ
D
F
h

)(
F
g
F
f

)
θ D

(F
h

(F
g
F
f

))
θ D
F

(h
(g
f

))

(θ
D
F
h

)F
(g
f

)
θ D

(F
h
F

(g
f

))

1
(1
θ
) a
∗

a
∗

∼ =
a
∗

1
a

1
θ

χ
G

1

∼ =
a

χ
G

1
∼ =

a

a
∗
1 Π

1

a

(χ
G

1
)1

1
θ

Π

a
∗

a

(1
θ
)1

θ
1

a
χ
G

1
a
1

1
χ
F

1
ω
F

G
a
1

(θ
1
)1

a

a
1

a

(1
χ
F

)1

∼ =

π
1
F
a

θ ∼ =
θ

1
a

1
(χ
F

1
)

1
χ
F

a

1
(1
χ
F

)
∼ =
a

θ

a

1
χ
F

π
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G
h

(G
g
(θ
B
F
f

))
G
h

(G
g
(G
f
θ A

))

G
h
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G
g
θ B

)F
f

)
(G
h
G
g
)(
G
f
θ A

)

(G
h

(G
g
θ B

))
F
f

G
(h
g
)(
G
f
θ A

)

G
h
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G
g
G
f

)θ
A

)

(G
h

(θ
C
F
g
))
F
f

G
h

((
θ C
F
g
)F
f

)
((
G
h
G
g
)G
f

)θ
A

(G
(h
g
)G
f

)θ
A

((
G
h
θ C

)F
g
)F
f

G
h

(θ
C

(F
g
F
f

))
(G
h

(G
g
G
f

))
θ A

G
((
h
g
)f

)θ
A

((
θ D
F
h

)F
g
)F
f

(G
h
θ C

)(
F
g
F
f

)
G
h

(G
(g
f

)θ
A

)
(G
h
G

(g
f

))
θ A

G
(h

(g
f

))
θ A

G
h

(θ
C
F

(g
f

))

(θ
D
F
h

)(
F
g
F
f

)
(G
h
θ C

)F
(g
f

)
θ D
F

(h
(g
f

))

(θ
D
F
h

)F
(g
f

)
θ D

(F
h
F

(g
f

))

1
(1
θ
)

Π

a
∗

1
a
∗

1
a

χ
G

1

a
∗

π

a ∼ =
a

a
∗

∼ =
a
∗

a
∗

1
(χ
G

1
)

(1
θ
)1

a

1
a

1
(θ

1
)

(χ
G

1
)1

a
1

χ
G

1

ω
G

1

a
1

a

1
(1
χ
F

)

(1
χ
G

)1
G
a
1

(θ
1
)1

a∼ =
a

1
χ
F

a

∼ =
a

a
∗

Π

χ
G

1

1
θ

1
χ
F

θ
1

∼ =

a
θ

a

θ
1

1
χ
F

π

2. For every 1-cell f : A→ B, the following two diagrams are equal.
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1 B
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A
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1
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1
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)

θ
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θ
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∗
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l∗
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1

θ

a
1
θl
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∼ =
l

µ
1
γ

λ
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B
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)
1
G
B
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f
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)

1
θ

a ∼ =
a

a
∗

∼ =

∼ =
a
∗

θ
1

χ
G

1
(1
ι F

)1

G
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∗
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1
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(ι
G

1
)1

1
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ι G
1
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a
∗

M
1

γ
1

λ

3. For every 1-cell f : A→ B, the following two diagrams are equal.
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f
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f
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∗

Π
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∗

a
1
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χ
G

θ
1
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θ

1
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∗

θ
1

1
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1
χ
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θ

∼ =
θ

1
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1
(1
ι F

)

G
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∗
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f
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θ

1
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∗
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µ

(Note that the δ̂ cells used in this axiom are mates (see Definition 2.2.3) of the

modification δ defined as part of the data for a trifunctor under the adjunction
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r a r∗.)

The final key definition we will need for this thesis is that of a biadjoint biequivalence.

A biequivalence in a tricategory is the generalisation of the notion of biequivalence between

bicategories (see Section 2.3.1) and just as equivalences are the correct notion of equivalence

between objects in a bicategory, the correct notion of equivalence between objects in a

tricategory is that of biequivalence.

Also, just as every equivalence in a bicategory can be extended to an adjoint equivalence,

every biequivalence 1-cell S (in the sense of having some 1-cell Ψ with S⊗Ψ and Ψ⊗S both

equivalent to the identity) can be extended to a biadjoint biequivalence [Gur12, Theorem

4.5] as given by the following definition. This is incredibly useful, as the proofs of this

thesis use the full structure of a biadjoint biequivalence, but we are still able to apply

the transport of structure result even when only given a family of biequivalences just by

choosing a way to complete them to full biadjoint biequivalences.

Definition 3.1.4. [Gur12, Definition 2.3] A Biadjoint Biequivalence between two objects

A and B in a tricategory T consists of the following pieces of data:

• A pair of 1-cells S : A→ B and Ψ: B → A.

• 2-cells η : 1B ⇒ S ⊗Ψ and η∗ : S ⊗Ψ⇒ 1B forming an adjoint equivalence η a η∗ in

the hom-bicategory.

• Two cells ε : Ψ⊗ S ⇒ 1A and ε∗ : 1A ⇒ Ψ⊗ S forming an adjoint equivalence ε a ε∗.

• An invertible 3-cell

Ψ Ψ⊗ 1B Ψ⊗ (S ⊗Ψ) (Ψ⊗ S)⊗Ψ

1A ⊗Ψ

Ψ

r∗

1

1⊗η a∗

ε⊗1

l

Φ

∼=

which modulates the triangle identity of an adjunction based around Ψ.

• An invertible 3-cell

S 1B ⊗ S (S ⊗Ψ)⊗ S S ⊗ (Ψ⊗ S)

S ⊗ 1A

S

l∗

1

η⊗1 a

1⊗ε

r

Σ

∼=
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which modulates the triangle identity of an adjunction based around S.

These are required to obey the axioms that both of the following pasting diagrams -

which are based around the graphs of all possible ways that a string of up to two instances

of Ψ and up to two instances of S can be composed together, with instances of Σ and Φ

attached along the appropriate edges - are equal to the identity:

1.

Ψ
S
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Ψ
)S
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Ψ
S

)Ψ
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(Ψ
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(Ψ
(S
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Ψ
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(Ψ
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1
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)
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S
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)

Ψ
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Ψ
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π̄
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−

1
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∼ =

1
Σ

∼ =

ρ̄
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1
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1
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1
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1
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1
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∼ =

1
Φ

∼ =

ρ̄

3.1.2 Examples

The tricategory that is the main object of study of this thesis is the tricategory of bicategories,

denoted, Bicat.

Definition 3.1.5. [Gur13, Section 5.1] The Tricategory of Bicategories, denoted Bicat,

consists of:

• Objects labelled by bicategories

• Hom-bicategories given by the bicategories of pseudofunctors, pseudonatural trans-

formations and modifications, Bicat(A,B).
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• Horizontal composition of α : F ⇒ F ′ : A → B and β : G⇒ G′ : B → C given by first

calculating the whiskeringsG′⊗α and β⊗F and then defining β⊗α = (G′⊗α)◦(β⊗F ).

The interchange isomorphism that makes this composition into a pseudofunctor

is constructed from coherence cells and the pseudonaturality cell of the relevant

pseudonatural transformation.

• The coherence 2-cells of this tricategory are given by adjoint equivalences with

components that are the identity transformation at each collection of pseudofunctors

and are given by coherence cells at each collection of pseudonatural transformations.

• All of the coherence 3-cells of Bicat are given by coherence cells in the target

bicategory.

The tricategory of bicategories has particularly useful properties, and we will see how

it aids our diagram manipulations in Chapter 4.

Other examples of tricategories include:

• A strict tricategory whose hom-bicategories are strict 2-categories is exactly a strict

3-category. Note that the definition given for ‘strict tricategory’ admits the possibility

of strict tricategories whose hom-bicategories are not strict 2-categories and thus

these strict tricategories are not necessarily strict 3-categories.

• Given a topological space X we can form its fundamental 3-groupoid whose objects

are points of X, 1-cells are paths, 2-cells are homotopies between paths and 3-cells are

equivalence classes of homotopies between 2-cells [Gur13, Section 5.2]. Once again,

the homotopy hypothesis holds for tricategories.

3.2 Coherence Theorem for Tricategories

To properly interpret ideas about tricategories, we need a coherence theorem. By analogy

to the coherence theorem for bicategories, we could hope that we could prove a coherence

theorem by showing that every tricategory is triequivalent to some strict 3-category.

Unfortunately, this last statement is false.

Proposition 3.2.1. [GPS95, Prop. 8.6 to Remark 8.8] Not every tricategory is equivalent

to a strict 3-category.

Proof. Consider a tricategory with one object and one 1-cell. This amounts to a category

(the category of 2-cells and 3-cells between that single arrow) with two monoidal structures
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(given by the compositions in the direction of 1-cells and 2-cells) related by an interchange

isomorphism, which in turn is the same as a braided monoidal category [JS93, Prop. 5.3].

If this tricategory is triequivalent to a strict 3-category, then it is also triequivalent

to its image under that equivalence, and thus to a strict braided monoidal category: i.e.

one where the braiding is the identity. Since the identity is a symmetry on the monoidal

structure, so must have been the original braiding.

Since there are braided monoidal categories which are not symmetric, these are not

triequivalent to any strict 3-category.

This failure of tricategories to be equivalent to strict 3-categories has consequences for

homotopy theory. It is the reason why we cannot take the fact that trigroupoids model all

3-types and use that to claim that strict 3-groupoids model all 3-types. As seen earlier,

an explicit counterexample was given by Simpson who showed that no realisation functor

could possibly model the 3-type of the 2-sphere [Sim] due to the existence of a non-trivial

Whitehead product. In other words, the homotopy hypothesis fails for strict 3-categories.

Since we cannot prove that all tricategories are equivalent to strict 3-categories, the

coherence theorem is instead proved by showing that every tricategory is triequivalent to

a member of some larger subclass of tricategories which, while not perfectly strict, have

better properties than those of a general tricategory. Such a class of tricategories, which is

as strict as possible while remaining triequivalence-dense, is called a Semi-Strict class of

tricategories.

The class with which the coherence theorem was originally proved consists of tricategories

called Gray-Categories.

3.2.1 Gray Categories

To start studying Gray-categories we first have to define a new tensor product on the

3-category 2-Cat. This tensor product, which we denote by ⊗, was first introduced by John

Gray [Gra74, Theorem I.4.9] (albeit in a lax form rather than the now-more-commonly

used pseudo form) and is thus called the Gray tensor product.

The Gray product has an explicit definition in terms of generators and relations [Gur13,

Section 3.1] but applications of them usually use one of the Gray tensor product’s two

universal properties. The first gives the Gray tensor product a closed structure: for a

2-category C, the functor − ⊗ C is left adjoint to the functor 2− Catps(C,−) where the

2-category 2− Catps(C,D) consists of strict 2-functors, pseudonatural transformations and

modifications. [BG17, Defn. 2.8]

The other universal property involves a specific class of pseudofunctors: Cubical functors.

The property is that strict functors out of the Gray tensor product F : C1 ⊗ C2 → D
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correspond naturally to cubical functors F : C1 × C2 → D. Thus we will need to investigate

the properties of these cubical functors.

Definition 3.2.1. A pseudofunctor
∏
Ci → D is Cubical [Gur13, Defn. 3.1] if whenever we

have 1-cells f1...fng1...gn with gifi composable in Ci, satisfying the condition that whenever

i > j, either fi or gj is an identity 1-cell, the compositor

χ : F (g1...gn)F (f1...fn)⇒ F (g1f1...gnfn)

is an identity.

2-Categories and cubical functors form a multicategory [Gur13, Corollary 3.6].

The particular case where the product is of only two 2-categories is the most important

for developing the theory of Gray-categories. These cubical functors can be given a

characterisation in terms of the functors of each variable.

Proposition 3.2.2. [Gur13, Prop. 3.2] A cubical functor F : C1×C2 → D uniquely determines

and is uniquely determined by the following data:

• For each object A ∈ ob(C1), a strict 2-functor FA : C2 → D.

• For each object B ∈ ob(C2), a strict 2-functor FB : C1 → D.

• The assertion that for each pair of objectsA ∈ ob(C1) andB ∈ ob(C2), FA(B) = FB(A):

i.e. both are equal to F (A,B).

• For each pair of 1-cells f1 : A→ A′ ∈ C1 and f2 : B → B′ ∈ C2, an invertible 2-cell

F (A,B) F (A,B′)

F (A′, B) F (A′, B′)

FA(f2)

FB(f1) FB′ (f1)
Σ(f1,f2)

FA′ (f2)

which is the identity if either f1 or f2 is the identity.

These data satisfy the following three axioms for every diagram in C1 × C2 of the form:

(A,B) (A′, B′) (A′′, B′′)

(f1,f2)

(g1,g2)

(h1,h2)
(α1,α2)
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• The following two diagrams are equal:

F (A,B) F (A,B′) F (A,B) F (A,B′)

F (A′, B) F (A′, B′) F (A′, B) F (A′, B′)

FA(f2)

FA(g2)

FB(f1)FB(g1) FB′ (f1)

FA(f2)

FB(g1) FB′ (f1)FB′ (g1)

FA′ (g2)

FA′ (f2)

FA′ (g2)

FAα2

FBα1 FB′α1

FA′α2

Σ

Σ

• The following two diagrams are equal:

F (A,B) F (A,B′) F (A,B) F (A,B′)

F (A′, B) F (A′, B′)

F (A′′, B) F (A′′, B′) F (A′′, B) F (A′′, B′)

FA(f2)

FB(f1) FB′ (f1)
Σ

FA(f2)

FB(h1f1) FB′ (h1f1)
Σ

FA′ (f2)

FB(h1) FB′ (h1)
Σ

FA′′ (f2) FA′′ (f2)

• The following two diagrams are equal

F (A,B) F (A,B′) F (A,B′′)

F (A′, B) F (A′, B′) F (A′, B′′)

F (A,B) F (A,B′′)

F (A′, B) F (A′, B′′)

FA(f2)

FB(f1)

FA(h2)

FB′ (f1)
Σ

FB′′ (f1)
Σ

FA′ (f2) FA′ (h2)

FA(h2f2)

FB(f1) FB′′ (f1)
Σ

FA′ (h2f2)

The final useful property of cubical functors is the possibility of what Gordon, Power

and Street termed Nudging.

Proposition 3.2.3. [GPS95, Section 4.5] Let G : C1 × C2 → D be a pseudofunctor with

each functor G(A,−) and G(−, B) strict. Then G is isomorphic to a cubical functor

F : C1 × C2 → D via an invertible icon.

One important use of this construct is to explain the symmetry of the Gray tensor

product. If we reverse the direction of the condition in the definition of cubical functor,

we can define opcubical functors. Opcubical functors C1 × C2 → D clearly correspond to
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cubical functors C2 × C1 → D and thus to strict functors C2 ⊗ C1 → D. On the other hand,

nudging provides a correspondence between opcubical functors C1 × C2 → D and cubical

functors C1 × C2 → D and thus also strict functors C1 ⊗ C2 → D. This gives a symmetry

for the Gray tensor product.

We have not yet proved that the Gray tensor product does in fact satisfy the axioms

we require for a monoidal category. The most elegant proof of this is given by Bourke and

Gurski [BG17]. They prove that the Gray tensor product is a monoidal structure by giving

it as a factorisation

C ∗ D C ⊗ D C × D

where C ∗ D is a tensor product - the so-called Funny Tensor Product - whose closed

structure is given by an internal hom 2− Catf (C,D) whose objects are strict 2-functors,

whose 1-cells are plain transformations (collections of 1-cells FA → GA not required to

satisfy any axioms) and whose 2-cells are modifications. The first part of the factorisation

is bijective on objects and 1-cells and the second is locally full and faithful: these two

classes of maps form an orthogonal factorisation system on 2− Cat which Bourke and

Gurski use to prove that that the factor objects give a monoidal structure because both

the source and target of the factorisation are both monoidal structures.

We are now able to define Gray-categories.

Definition 3.2.2. A Gray-Category is a category enriched in the monoidal structure given

by the Gray tensor product on 2-Cat. A Gray-category can be viewed as a tricategory whose

hom-objects are strict 2-categories, whose association and identities are strict (because

association and identities are always strict for enriched categories) but whose composition

is a cubical functor.

It is in light of this that the motivation for cubical functors becomes clear. It is often

the situation that the definition of the horizontal composites of a 2-cell by an identity

(β1 ⊗ id and id⊗ β2) are obvious and strict. However, it is not obvious how to horizontally

compose two 2-cells, so we have to make a choice to define β1 ⊗ β2 = (id⊗ β2) ◦ (β1 ⊗ id).

Then (β1 ⊗ β2) ◦ (α1 ⊗ α2) is given by some association of

(id⊗ β2) ◦ (β1 ⊗ id) ◦ (id⊗ α2) ◦ (α1 ⊗ id)

We can now see that the interchange law fails because the terms for β1 and α2 are the

wrong way around. Therefore the interchange law works if either of these are the identity:

exactly the condition of cubical functors.
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Gordon, Power and Street proved the coherence theorem for tricategories by showing

that every tricategory is triequivalent to a Gray-category. This is a long proof that takes

up the bulk of their monograph and thus will not be presented here.

3.3 Low Dimensional Structures formed by Tricategories

Though tricategories and the transformations given above form a 4-dimensional categorical

structure, it is also possible to construct lower dimensional structures whose objects are

tricategories. This generalises the fact that bicategories, pseudofunctors and icons form a

2-dimensional structure (see Section 2.1.1), and so we should expect to see more icon-like

behaviour.

3.3.1 A 2-Dimensional Structure

Definition 3.3.1. An Ico-Icon [GG09, Defn. 2] between two trifunctors or lax functors

α : F ⇒ G : S → T consists of:

• The assertion that F and G agree on objects.

• The assertion that F and G agree on 1-cells.

• For each pair of objects A,B ∈ ob(S), an icon αAB : FAB ⇒ GA,B : S(A,B) →
T (FA,FB) = T (GA,GB).

• For each object A ∈ ob(S), a 3-cell MA : ιFA ⇒ ιGA.

• For each pair of composable 1-cells

A B C
f g

a 3-cell Πgf : χFgf ⇒ χGgf .

such that

• For every pair of 2-cells

A B C

f

f ′

g

g′

θ η

the following two diagrams are equal
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FgFf F (gf) FgFf F (gf)

GgGf Fg′Ff ′ F (g′f ′) GgGf G(gf) F (g′f ′)

Gg′Gf ′ G(g′f ′) Gg′Gf ′ G(g′f ′)

χ

FηFθ
F (ηθ)∼=

χ

F (ηθ)

GηGθ

χ

GηGθ

χ

G(ηθ)
∼=

χ χ

αηαθ

Π

Π

αηθ

• For every 1-cell f : A→ B, the diagrams

F1BFf F (1Bf)

1FBFf Ff

1GBGf Ff Ff Gf

Gf Gf

χ

F lι1

l

l

=

=

=

γ

and

F1BFf F (1Bf)

1FBFf G1BGf G(1Bf) Ff

1GBGf Gf

Gf Gf

χ

F lι1

χ

Gl

l

ι1

M1

Π

αl

γ

are equal.
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• For every 1-cell f : A→ B, the diagrams

FfF1A F (f1A)

Ff1FA Ff

Gf1GA Ff Ff Gf

Gf Gf

χ

Fr1ι

r

r

=

=

=

δ

and
FfF1A F (f1A)

Ff1FA GfG1A G(f1A) Ff

Gf1GA Gf

Gf Gf

χ

Fr1ι

χ

Gr

r

1ι

1M

Π

αr

δ

are equal.

• For every triple of composable 1-cells

A B C D
f g h

the diagrams

F (hg)Ff F ((hg)f)

(FhFg)Ff F (h(gf))

(GhGg)Gf Fh(FgFf) FhF (gf) G(h(gf))

Gh(GgGf) GhG(gf)

χ

Faχ1

a

a

= 1χ

χ

1χ

χ

ω

1Π

Π
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and
F (hg)Ff F ((hg)f)

(FhFg)Ff G(hg)Gf G((hg)f) F (h(gf))

(GhGg)Gf G(h(gf))

Gf Gf

χ

Faχ1

χ

Ga

a

χ1

1χ

χ

Π1

Π

αa

ω

are equal.

Comparing this definition with that of oplax natural transformations of tricategories,

we see that these correspond to oplax natural transformations whose components at the

objects and 1-cells are identities. However, the correct form of vertical composition of

ico-icons is not that of oplax transformations because they now admit a strictly associative

composition based on the strict composition of 3-cells in a tricategory.

We can form a bicategory, Ico-Icon, whose objects are tricategories, 1-cells are either

trifunctors or lax functors and whose 2-cells are ico-icons. [GG09, Section 2].

3.3.2 A 3-Dimensional Structure

Definition 3.3.2. A Pseudo-Icon [GG09, Definitions 3 and 5] between trifunctors or lax

functors α : F ⇒ G : S → T consists of:

• The assertion that F and G agree on objects.

• For each pair of objects A,B ∈ ob(S), a pseudonatural transformation αAB : FAB ⇒
GA,B : S(A,B)→ T (FA,FB) = T (GA,GB).

• For each object A ∈ ob(S), an invertible 3-cell

1FA F1A

1GA G1A

ιFA

α1A
MA

ιGA

• For each triple of objects A,B,C ∈ ob(S), an invertible modification whose compo-

nents, at a pair of composable 1-cells

A B C
f g



Tricategories 60

are given by

FgFf F (gf)

GgGf G(gf)

χ

αgαf αgf
Πgf

χ

such that (in the following diagrams a bar above a 3-cell represents the composition of

that 3-cell with an appropriate interchange isomorphism):

• For every 1-cell f : A→ B, the diagrams

F1BFf F (1Bf)

1FBFf Ff

1GBGf Ff Ff Gf

Gf Gf

χ

F lι1

1αf l αf

l

∼=
αf = αf

=

γ

and
F1BFf F (1Bf)

1FBFf G1BGf G(1Bf) Ff

1GBGf Gf

Gf Gf

χ

α1B
αf Flα1Bf

ι1

1αf

χ

Gl αf

l

ι1

M1

Π

αl

γ

are equal.

• For every 1-cell f : A→ B, the diagrams

FfF1A F (f1A)

Ff1FA Ff

Gf1GA Ff Ff Gf

Gf Gf

χ

Fr1ι

αf1 r αf

r

∼=
αf = αf

=

δ
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and
FfF1A F (f1A)

Ff1FA GfG1A G(f1A) Ff

Gf1GA Gf

Gf Gf

χ

αfα1A
Frαf1A

1ι

αf1

χ

Gr αf

r

1ι

1M

Π

αr

δ

are equal.

• For every triple of composable 1-cells

A B C D
f g h

the diagrams

F (hg)Ff F ((hg)f)

(FhFg)Ff F (h(gf))

(GhGg)Gf Fh(FgFf) FhF (gf) G(h(gf))

Gh(GgGf) GhG(gf)

χ

Faχ1

(αhαg)αf a αh(gf)

a

∼= 1χ

αh(αgαf )

χ

αhαgf

1χ

χ

ω

1Π

Π

and
F (hg)Ff F ((hg)f)

(FhFg)Ff G(hg)Gf G((hg)f) F (h(gf))

(GhGg)Gf G(h(gf))

Gf Gf

χ

αhgαf
Faα(hg)f)

χ1

(αhαg)αf

χ

Ga αh(gf)

a

χ1

1χ

χ

Π1

Π

αa

ω

are equal.

Unlike ico-icons, pseudo-icons admit the possibility of transformations between them.
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Definition 3.3.3. A Modification between pseudo-icons [GG09, Defn. 6] Γ: α ⇒
β : F ⇒ G : S → T consists of a modification ΓAB : αAB ⇒ βAB for each pair of objects

A,B ∈ ob(S) such that

• For every object A ∈ ob(S) the following two diagrams are equal:

1FA F1A 1FA F1A

1FA 1GA G1A 1FA F1A G1A

1GA G1A 1GA G1A

ι

α1A

M

ι

=
α1A

ι

=

ι

β1AM

ι ι

Γ

• For every pair of composable 1-cells

A B C
f g

the following two diagrams are equal:

FgFf F (gf) FgFf F (gf)

FgFf GgGf G(gf) FgFf F (gf) G(gf)

GgGf G(gf) GgGf G(gf)

χ

αgαF
α(gf)

Π

χ

=
αgf

βgβf

χ

=
βgβf

χ

βgf
Π

χ χ

ΓΓΓ

The structure formed by tricategories, trifunctors or lax functors, pseudo-icons and

modifications is a tricategory [GG09, Theorem 7], which we will denote Ps-Icon

With the overview of the theory of tricategories complete, we are now ready to proceed

to the original part of the thesis.



Chapter 4

Manipulating Tricategorical

Pasting Diagrams

In this chapter we prove the first original results of the thesis. These results will provide

us with techniques we can use to simplify and manipulate the pasting diagrams that make

up the trifunctor axioms. Using these techniques will make the process of proving that one

such diagram is equal to another - and thereby proving that the trifunctor axioms hold -

significantly easier.

The first technique will use the coherence theorem for bicategories to allow us to ignore

cells in the pasting diagram that are coherence cells in a particular bicategory. This is

crucial for simplifying the source and target pasting diagrams and make them tractable.

The second technique considers pseudonatural transformations and modifications in

a given bicategory whose sources and/or targets are composites. The definitions of

pseudonatural transformation and modification imply that their component 2-cells can

be moved through particular cells (For pseudonatural transformations, the images of

2-cells under a pseudofunctor. For modifications, 2-cell components of pseudonatural

transformations.) attached along the entire source or target. The point of the second

technique is that from this we can prove that any configuration of attaching such 2-

cells to the pseudonatural transformation or modification works: both pseudonatural

transformations and modifications can be moved through cells on any segment of the

boundary.

Both of these techniques arise from the fact that the target tricategory is the tricategory

of bicategories, which has particularly nice properties.

63
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4.1 Simplifying Pasting Diagrams using the Coherence The-

orem

The method described in this section is modelled on that used by Gurski to simplify the

axioms for a biadjoint biequivalence in the tricategory of bicategories [Gur12, Theorem

3.2]. Using the method to simplify the definitions of trifunctor and tritransformation, and

potentially any other tricategorical pasting diagram in the tricategory of bicategories, is

original work.

To see why the coherence theorem for bicategories will allow us to simplify our pasting

diagrams, note that taking components at a particular object of the bicategory will extract

a coherence cell from many of the important cells we are considering in the pasting

diagram. In particular, all of the coherence 2-cells of the tricategory of bicategories

have components which are identity 1-cells in the bicategory, all of the coherence 3-cells

have components which are the suitable coherence cells in the bicategory, and all of the

pseudonaturality cells taken at a coherence 1-cell are coherence cells. Moving to the

tricategory of bicategories also simplifies the interchange cells between two pseudonatural

transformations, as the interchange cell becomes the pseudonaturality cell of the leading

pseudonatural transformation.

We’ll thus end up with a pasting diagram in a bicategory where many of the cells are

coherence cells. Coherence cells in bicategories are natural, so in any given diagram they

can be moved either towards the source or target. Then, once all the coherence cells are

collected before or after all the other relevant cells, the coherence theorem ensures that

any possible composition of these coherence cells gives the same result. This allows us to

only consider the other remaining cells during the calculations.

As an example of this process in action, we can use it to simplify the definition of

trifunctor into Bicat as follows:

Proposition 4.1.1. A Trifunctor from any tricategory T into the tricategory of bicategories

Bicat, F : T → Bicat consists of:

• A function ob(T )→ ob(Bicat).

• For each pair of objects A,B ∈ ob(T ), a pseudofunctor T (A,B)→ Bicat(FA,FB).
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• For each triple of objects A,B,C ∈ ob(T ), a Compositor given by an adjoint

equivalence

T (B,C)× T (A,B) Bicat(FB,FC)×Bicat(FA,FB)

T (A,C) Bicat(FA,FC)

F×F

⊗ ⊗
χ

F

• For each object A ∈ ob(T ), a Unitor given by an adjoint equivalence

1 Bicat(FA,FA)

T (A,A)

idFA

idA F

ι

• For every four objects A,B,C,D ∈ ob(T ), an invertible modification ω composed of

2-cells in the target bicategory which, by coherence, are determined exactly by 2-cells

F (hg)Ff(x) F ((hg)f)(x)

FhFgFf(x) F (h(gf))(x)

FhF (gf)(x)

χ

Faχ1

1χ χ

ω̃

(From here on, we will often take a 2-cell in a bicategory and refer to the unique cell

determined from it by coherence by adding a tilde: e.g. α gives rise to the cell α̃.)

• For each pair of objects A,B ∈ ob(Y), an invertible modification γ composed of

2-cells in the target bicategory which, by coherence, are determined exactly by 2-cells

F1BFf(x) F (1Bf)(x)

Ff(x) Ff(x)

χ

F lι1

1

γ

• For each pair of objects A,B ∈ ob(T ), an invertible modification δ composed of 2-cells

in the target bicategory which, by coherence, are determined exactly by 2-cells

Ff(x) F (f1A)(x)

Ff(x) FfF1A(x)

1

Fr∗

1ι

χδ
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satisfying two simpler axioms

• For every four composable 1-cells

A B C D E
f g h k

the two diagrams

F ((kh)g)Ff(x) F (((kh)g)f)(x)

F (k(hg))Ff(x) F ((k(hg))f)(x)

F (kh)FgFf(x) F (k((hg)f))(x)

FkF (hg)Ff(x) FkF ((hg)f)(x) F (k(h(gf)))(x)

FkFhFgFf(x) FkF (h(gf))(x)

FkFhF (gf)(x)

χ

FaFf
F (af)∼=χ

χ

Fa

ω̃

χFf

F (ka)

χFf

Fkχ

Fkω̃

FkFa

χ

∼=χ
χFgFf

FkFhχ

FkχFFf χ

Fkχ

ω̃Ff

and

F ((kh)g)Ff(x) F (((kh)g)f)(x)

F ((k(hg))f)(x)

F (kh)FgFf(x) F ((kh)(gf))(x) F (k((hg)f))(x)

F (kh)F (gf)(x) F (k(h(gf)))(x)

FkFhFgFf(x) FkF (h(gf))(x)

FkFhF (gf)(x)

χ

F (af)

Fa

ω̃
Fa

χFf

F (kh)χ
Fa

F (ka)χ

χFgFf

FkFhχ

∼=χ χ

Fkχ

χF (gf)

Fπ

ω̃

are equal.
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• For every pair of composable 1-cells

A B C
f g

the two diagrams

F ((g1B)f)(x) F (g(1Bf))(x)

F (gf)(x) F (g1B)Ff(x) FgF (1Bf)(x) F (gf)(x)

FgFf(x) FgF1BFf(x) FgFf(x)

FgFf(x)

Fa

F (gl)F (r∗f)

∼=χ

χ

ω̃

χ

FgF l

∼=χ

χ Fr∗Ff

1

χFf Fgχ χ

FgιFf
1

δ γ

and

F ((g1B)f)(x) F (g(1Bf))(x)

F (gf)(x) F (gf)(x)

FgFf(x) FgFf(x)

Fa

F (gl)F (r∗f)

1

∼=χ

1

χ

Fµ

are equal.

Proof. For the first trifunctor axiom, recall that the definition of a trifunctor between any

tricategories (Definition 3.1.2) requires that the following two diagrams are equal:
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F (((kh)g)f)

F ((kh)g)Ff F (k(hg))Ff F ((k(hg))f)

(F (kh)Fg)Ff (FkF (hg))Ff F (k((hg)f))

((FkFh)Fg)Ff (Fk(FhFg))Ff Fk(F (hg)Ff) FkF ((hg)f) F (k(h(gf)))

(FkFh)(FgFf) Fk((FhFg)Ff) FkF (h(gf))

Fk(Fh(FgFf)) Fk(FhF (gf))

F (a1)∼=
χ

F (a1) χ

Faχ1
χ1

a F (1a)(χ1)1

a

a1

1(χ1)

a

∼= 1χ

χ

1Fa

∼=

a

1(χ1)

1a

χ

1(1χ)

1χ

ω

ω1

π

ω1

and

F (((kh)g)f)

F ((kh)g)Ff F ((k(hg))f)

(F (kh)Fg)Ff F ((kh)(gf)) F (k((hg)f))

((FkFh)Fg)Ff F (kh)(FgFf) F (kh)F (gf) F (k(h(gf)))

(FkFh)(FgFf) (FkFh)F (gf) FkF (h(gf))

Fk(Fh(FgFf)) Fk(FhF (gf))

F (a1)

Fa

χ

Faχ1

a Fa F (1a)(χ1)1

a

∼= 1χ

χ

a

χ1

1χ

∼= χ1

a

χ

1(1χ)

∼= 1χ

ω

ω

Fπ

Interpret these diagrams where the target tricategory is the tricategory of bicategories,

and then take the component at the object x in the bicategory F (A). This has the following

effects:

• Each instance of the associator becomes an identity, and all pseudonaturality squares

for the associator become coherence cells of the bicategory F (E).

• Each coherence 3-cell of the tricategory becomes a coherence cell of the bicategory.

• Any interchange isomorphisms become the pseudonaturality cell of the leading

pseudonatural transformation.

• Any instance of the cell ω becomes an instance of the cell ω̃ plus a coherence cell.

This results in the following two diagrams (where the unmarked ∼= cells are the coherence

cells of a bicategory).
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F (((kh)g)f)(x)

F ((kh)g)Ff(x) F (k(hg))Ff(x) F ((k(hg))f)(x)

F (kh)FgFf(x) FkF (hg)Ff(x) F (k((hg)f))(x)

FkFhFgFf(x) FkFhFgFf(x) FkF (hg)Ff(x) FkF ((hg)f)(x) F (k(h(gf)))(x)

FkFhFgFf FkFhFgFf(x) FkF (h(gf))(x)

FkFhFgFf(x) FkFhF (gf)(x)

F (a1)∼=χ
χ

F (a1) χ

Faχ1
χ1

1
1χ

F (1a)(χ1)1

1

1

1χ1 1χ1

1

∼= 1χ

χ

1Fa

∼=χ

1

1χ1

1
1χ

χ

1χ

1χ

ω̃
ω̃1

∼=
ω̃1

∼=

∼=

∼=

F (((kh)g)f)(x)

F ((kh)g)Ff(x) F ((k(hg))f)

F (kh)FgFf(x) F ((kh)(gf))(x) F (k((hg)f))

FkFhFgFf(x) F (kh)FgFf(x) F (kh)F (gf)(x) F (k(h(gf)))(x)

FkFhFgFf(x) FkFhF (gf)(x) FkF (h(gf))(x)

FkFhFgFf(x) Fk(FhF (gf))

F (a1)

Fa

χ

Faχ1

1

1χ

Fa F (1a)χ1

1

∼= 1χ

χ

1

χ1

1χ

∼=χ χ1

1

1χ
χ

1χ

∼= 1χ

ω̃

ω̃

Fπ

∼=

∼=

Now use the naturality of the coherence cells of the bicategory to move them through

the other cells towards the target of these two diagrams. This results in the following two

diagrams, as the coherence theorem means that we can amalgamate all the coherence cells

into a single cell which will be the same no matter how we choose to do it.
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F ((kh)g)Ff(x) F (((kh)g)f)(x)

F (k(hg))Ff(x) F ((k(hg))f)(x)

F (kh)FgFf(x) F (k((hg)f))(x)

FkF (hg)Ff(x) FkF ((hg)f)(x) F (k(h(gf)))(x)

FkFhFgFf(x) FkF (h(gf))(x) FkF (h(gf))(x)

FkFhF (gf)(x) FkFhF (gf)(x)

FkFhFgFf(x) FkFhFgFf(x)

χ

FaFf
F (af)∼=χ

χ

Fa

ω̃

χFf

F (ka)

χFf

Fkχ

Fkω̃

FkFa

χ

∼=χ

1

χFgFf

FkFhχ

FkχFFf χ

∼=

χ

Fkχ
Fkχ

1

FkFhχ

ω̃Ff

F ((kh)g)Ff(x) F (((kh)g)f)(x)

F ((k(hg))f)(x)

F (kh)FgFf(x) F ((kh)(gf))(x) F (k((hg)f))(x)

F (kh)F (gf)(x) F (k(h(gf)))(x)

FkFhFgFf(x) FkF (h(gf))(x) FkF (h(gf))(x)

FkFhF (gf)(x) FkFhF (gf)(x)

FkFhFgFf(x) FkFhFgFf(x)

χ

F (af)

Fa

ω̃
Fa

χFf

F (kh)χ
Fa

F (ka)χ

1

χFgFf

FkFhχ

∼=χ χ

∼=

χ

Fkχ

χF (gf)

Fkχ

1

FkFhχ

Fπ

ω̃

These two diagrams are equal if and only if the original diagrams, from the axiom for

a trifunctor, are equal. Since these two diagrams have the same coherence cell attached

along the bottom, they are equal if and only if the two diagrams with that coherence cell

removed (that is, the simplified diagrams for the axiom) are equal. Therefore the two
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diagrams from the original definition of a trifunctor are equal and the first axiom holds if

and only if the simplified diagrams are equal.

The proof for the second axiom proceeds similarly.

When proving the main result in the next chapter, it is this definition of trifunctor we

will use.

We can simplify the definition of a tritransformation in the tricategory Bicat as well.

This will aid us in Chapter 6, when we partially prove that the object-indexed family

of biequivalences can be lifted to be tritransformations between the original and the

transported trifunctor.

Proposition 4.1.2. A tritransformation θ : F ⇒ G : T → Bicat can be given as:

• For each object A of T a 1-cell θA : FA→ GA.

• For each pair of objects A,B ∈ ob(T ), an adjoint equivalence

T (A,B) Bicat(FA,FB)

Bicat(GA,GB) Bicat(FA,GB)

F

G θB⊗−
θ

−⊗θA

• For each triple of objects A,B,C ∈ ob(T ), an invertible modification Π whose

component at a pair of composable 1-cells A
f−→ B

g−→ C in T and at an object

x ∈ ob(FA) arises via coherence from a 2-cell

GgθBFf(x) GgGfθA(x)

θCFgFf(x) G(gf)θA(x)

θCF (gf)(x)

1θ

χG1θ1

1χF θ

Π̃

• For each object A ∈ ob(T ), an invertible modification M whose component at a given

object x ∈ ob(FA) arises via coherence from the 2-cell

θAF1A(x)

θA(x) G1AθA(x)

θ1ιF

ιG1

M̃

These cells are required to obey the following three simplified axioms.
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1. For every triple of composable 1-cells A
f−→ B

g−→ C
h−→ D the following two diagrams

are equal:
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G
h
G
g
G
f
θ A

(x
)

G
h
G
g
θ B
F
f

(x
)

G
(h
g
)G
f
θ A

(x
)

G
h
θ C
F
g
F
f

(x
)

G
(h
g
)θ
B
F
f

(x
)

G
((
h
g
)f

)θ
A

(x
)

θ D
F
h
F
g
F
f

(x
)

θ D
F

(h
g
)F
f

(x
)

θ D
F

((
h
g
)f

)(
x

)
G

(h
(g
f

))
θ A

(x
)

θ D
F
h
F

(g
f

)(
x

)
θ D
F

(h
(g
f

))
(x

)

χ
G

1

∼ =
χ
G

1
θ

χ
G

1
χ
G

1
1
θ
1

1
θ

G
a
1

θ
1

1
χ
F1
χ
F

1
1
χ
F

θ
1

1
ω̃
F

θ

1
F
a

∼ =
θ

1
χ
F

θ

Π̃
Π̃

1
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G
h
G
g
G
f
θ A

(x
)

G
h
G
g
θ B
F
f

(x
)

G
(h
g
)G
f
θ A

(x
)

G
h
θ C
F
g
F
f

(x
)

G
h
G

(g
f

)θ
A

(x
)

G
((
h
g
)f

)θ
A

(x
)

θ D
F
h
F
g
F
f

(x
)

G
h
θ C
F

(g
f

)(
x

)
G

(h
(g
f

))
θ A

(x
)

θ D
F
h
F

(g
f

)(
x

)
θ D
F

(h
(g
f

))
(x

)

χ
G

1

1
χ
G

1

1
θ

χ
G

1

ω̃
G

1

1
θ
1

1
χ
F

χ
G

1

Π̃

G
a
1

θ
1

1
χ
F∼ =
θ

1
θ 1
χ
F

θ
1

θ

1
Π̃
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2. For every 1-cell A
f−→ B the following two diagrams are equal.

G1BθBFf(x) G1BGfθA(x)

θBF1BFf(x) G(1Bf)θA(x)

θBF (1Bf)(x)

θBFf(x) GfθA(x)

θBFf(x) GfθA(x)

1θ

χG1θ1

1χF

Gl1

1Fl

θ

∼=θ

1ιF 1

1

θ

θ

1

Π̃

1γF

∼=

G1BθBFf(x) G1BGfθA(x)

θBF1BFf(x) G(1Bf)θA(x)

θBFf(x) GfθA(x)

θBFf(x) GfθA(x)

1θ

∼=ιG

χG1θ1

Gl11ιF 1

1

ιG1

θ

θ

1

ιG1

M̃1

∼=

γG1

3. For each 1-cell A
f−→ B the following two diagrams are equal.

GfθAF1A(x)

GfθA(x) GfG1AθA(x)

θBFfF1A(x)

θBFf(x) θBF (f1A)(x) G(f1A)θA(x)

θBFf(x) GfθA(x)

1θ1ιF

∼=θ

χG

1χF

θ1

1δ−1
F

θ

1ιF

θ

∼=θ

θ

1Fr∗1 Gr∗1

Π̃

GfθAF1A(x)

GfθA(x) GfG1AθA(x)

θBFf(x) G(f1A)θA(x)

θBFf(x) GfθA(x)

1θ1ιF

1ιG1

∼=

χGθ

θ

1 Gr∗1

1

1M̃

δ−1
G 1

In this simplified axiom the adjunction from the right unitor becomes an identity and

so the mate of the modification δ (as mentioned in definition 3.1.3 just becomes δ.

As a result, the cells that appear in these diagrams are just δ−1 up to some coherence

cell.

The proof of this proceeds similarly to Proposition 4.1.1.

Finally, we can also simplify the description of a biadjoint biequivalence between objects

of Bicat.
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Proposition 4.1.3. A Biadjoint Biequivalence between two bicategories A and B in the

tricategory Bicat consists of the following pieces of data:

• A pair of pseudofunctors S : A → B and Ψ: B → A.

• Pseudonatural transformations η : 1B ⇒ SΨ and η∗ : SΨ ⇒ 1B forming an adjoint

equivalence η a η∗.

• Pseudonatural transformations ε : ΨS ⇒ 1A and ε∗ : 1A ⇒ ΨS forming an adjoint

equivalence ε a ε∗.

• An invertible modification Φ whose components at each object x arise via coherence

from 2-cells

Ψ(x) ΨSΨ(x)

Ψ(x)

1

Ψη

εΨΦ̃

∼=

• An invertible modification Σ whose components at each object x arise via coherence

from 2-cells

S(x) SΨS(x)

S(x)

1

ηS

SεΣ̃

∼=

These are required to obey the simplified axioms that both of the following pasting

diagrams are equal to the identity:

1.
ΨS(x)

ΨS(x) ΨSΨS(x) (x)

ΨS(x)

ε1

1

ΨηS

εΨS

ΨSε

∼=ε

ε

Φ̃−1S

ΨΣ̃
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2.
SΨ(x)

(x) SΨSΨ(x) SΨ(x)

ΨS(x)

1
ηSΨ

η

η

∼=η
SεΨ

1
SΨη

Σ̃−1Ψ

SΦ̃

This simplification, in the specific case of biequivalences, was also noticed in the

paper [Gur12, Theorem 3.2] which started by considering biequivalence in the tricategory

Bicat. By expanding this technique and applying it to all tricategorical constructions we

are able to get a great deal of use out of it. The pieces of data and axioms that govern

constructions such as biequivalences, trifunctors and tritransformations will be far more

easily wielded when it comes to using them in a diagram manipulation proof.

4.2 Moving Pseudonatural Transformations and Modifica-

tions

The other main advantage of working in the tricategory Bicat is that those cells that aren’t

coherence cells usually arise from pseudonatural transformations and modifications between

bicategories. Our ability to move the pseudonaturality squares through other 2-cells and

our ability to move the component cells of a modification through the pseudonaturality

squares are key tools in manipulating the diagrams that we will be working with.

However, there is one subtlety, caused by the fact that many of the cells we are interested

in have sources and targets that are composites. If our techniques are based only on directly

using the definition of pseudonatural transformation, then we are only able to move such a

cell through pseudonaturality squares if those squares are attached to the entire source

(or entire target) of the cell. This limits our flexibility when attempting to manipulate

this cell. In order to expand our options, we will show that we can, in fact, move a 2-cell

through any contiguous arrangement of attached pseudonaturality squares.

Proposition 4.2.1. Let α be a pseudonatural transformation between the pseudofunctors

F,G : A → B, and β : gf ⇒ kh be a 2-cell in the source bicategory A whose sources and

targets are composites. Consider a pasting diagram where pseudonaturality squares of α

are attached to some contiguous border of the image of β under one of the pseudofunctors
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(though not necessarily entirely along the source or target). For instance

Fy Gy

Fx Gx Gw

Fz Gz

α

∼=α
Gg

Gβα

Ff

Fh

Gf

Gh∼=α

α

Gk

Then we are able to move the instance of β through the pseudonaturality squares as

the above pasting diagram is equal to

Fy Gy

Fx Fw Gw

Fz Gz

α

Fβ

Fg

Gg∼=α
Ff

Fh

α

∼=α

α

Fk

Gk

Proof. We will need to construct additional pseudonaturality squares along the source of

Gβ in order to use the definition of pseudonaturality. Start by redrawing the first diagram

so that the square attached to Gf is aligned upwards, and then add both the remaining

pseudonaturality square along the source and also its inverse, keeping the diagram equal to

the original.

Fy Gy

Fx Gy Fw

Gx Gw

Fz Gz

α

α

Fg

Gg

∼=α
Ff

α

∼=α

Fh

∼=α

Gg

Gβ

α
Gf

Gh

α

∼=α Gk
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With a complete set of pseudonaturality squares along the source, we are able to use

the definition of pseudonaturality to move β through them. This gives:

Fy Gy

Fx Fw

Gx Fz Gw

Fz Gz

Fβ

α

Fg

Gg

∼=α
Ff

α

Fh

Fh
α

∼=α

Gh

∼=α

Fk

α

α

∼=α Gk

Once the pseudonaturality squares in the bottom left have cancelled out, we are left with

the diagram we were expecting and have successfully moved the instance of β through the

original pair of pseudonaturality squares.

Other possible variations of pseudonaturality squares attached to a 2-cell can be

considered as corollaries of Proposition 4.2.1. For instance:

• In the situation where we start with the pseudonaturality cells attached closer to the

target of the 1-cells, we have a diagram analogous to

Fy Gy

Fx Fw Gw

Fz Gz

α

Fβ

Fg

Gg∼=α
Ff

Fh

α

∼=α

α

Fk

Gk

As the proposition shows that this diagram is equal to

Fy Gy

Fx Gx Gw

Fz Gz

α

∼=α
Gg

Gβα

Ff

Fh

Gf

Gh∼=α

α

Gk

we are able to move the 2-cell through the pseudonaturality cells if we choose.

• If we want to consider a situation where the pseudonaturality squares cover the entire

source (or target) this is equivalent by coherence to a situation where the morphism
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g (vis-a-vis k) in Proposition 4.2.1 is an identity so that that part of the construction

has no effect.

• If we want to consider a situation where the pseudonaturality squares are only

attached to the source (or only attached to the target) this is equivalent by coherence

to a situation where the morphism h (vis-a-vis f) in Proposition 4.2.1 is an identity

so that the pseudonaturality cells we see attached there in the proposition is just a

coherence cell.

Similarly, we are able to prove a proposition that will allow us to move a modification

cell through an arrangement of pseudonaturality squares even if they do not cover the

entire source (or target).

Proposition 4.2.2. Let M : βα ⇒ δγ be a modification whose source and target are

composites of the pseudonatural transformations α : F ⇒ G, β : G ⇒ K, γ : F ⇒ H

and δ : H ⇒ K. Consider a pasting diagram where pseudonaturality squares are attached

to some contiguous border of a component of M though not necessarily entirely along the

source or target. For instance

Gx Gy

Fx Fy Ky

Hx Hy

Gf

∼=α
βy

My
Ff

αx

γx

αy

γy∼=γ

Hf

δy

Then we are able to move the instance of β through the pseudonaturality squares as

the above pasting diagram is equal to

Gx Gy

Fx Kx Ky

Hx Hy

Gf

Mx

βx

βy∼=β
αx

γx

Kf

∼=δ

Hf

δx

δy

Proof. We will need to construct additional pseudonaturality squares along the source of

M in order to use the fact that it is a modification. Start by redrawing the first diagram

so that the square attached to αy is aligned upwards, and then add both the remaining

pseudonaturality square along the source and also its inverse, keeping the diagram equal to
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the original.

Gx Gy

Fx Gy Kx

Fy Ky

Hx Hy

Gf

Gf

βx

βy

∼=β
αx

Ff

∼=α

γx

∼=β

βy

My

Kf
αy

γy

Hf

∼=γ
δy

With a complete set of pseudonaturality squares along the source, we are able to use the

definition of modification to move M through them. This gives:

Gx Gy

Fx Kx

Fy Hx Ky

Hx Hy

Mx

Gf

βx

βy

∼=β
αx

Ff

γx

γx
Kf

∼=γ

γy

∼=δ

δx

Hf

Hf

∼=γ
δy

Once the pseudonaturality squares in the bottom left have cancelled out, we are left with

the diagram we were expecting and have successfully moved the instance of M through the

original pair of pseudonaturality squares.

As with the previous proposition, other potential arrangements can be considered as

corollaries or special cases of this one.

Together, these two propositions provide plenty of tools for the diagram manipulations

we will need to make when showing that the structure of a trifunctor can be transported.

We are therefore ready to move on to proving the main result.



Chapter 5

Transporting a Trifunctor

With the techniques developed in the previous chapter, we are now ready to begin the

transport of a trifunctor.

We start with a trifunctor F : T ⇒ Bicat and a family of biequivalences between

the bicategories FA and GA for each object A ∈ ob(T ) that we want to transport the

trifunctor across. From these we will extract the cells that we are able to use to construct

the transported trifunctor G : T ⇒ Bicat.

Once we have a catalogue of all available cells, we will begin constructing G. We

will work through the (simplified) definition of a trifunctor step by step, identifying each

coherence cell for G that we need to define and showing how they can be constructed from

the cells given by F and the biequivalences. Each of these cells will form suitably natural

structures: e.g. the 3-dimensional cells of G will be constructed from modifications in

the definition of F and the biequivalences, as well as coherence cells, and so will also be

modifications as required.

Once all of the cells of G have been constructed, we will prove that they do form a

trifunctor by proving the two trifunctor axioms. We will do this by identifying the pasting

diagrams that form the two sides of each axiom and then we will manipulate one into the

other step-by-step. Since each manipulation will result in an equal diagram, this will prove

that the two sides of the axiom are equal.

5.1 Setup: Available Data

In this section we will collect and overview the categorical data we have available for

constructing the transported trifunctor. We start with the original trifunctor F : T → Bicat

that we want to transport. As this is a trifunctor into the tricategory of bicategories, we

82
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can use the coherence theorem to give us the simplified definition (see Proposition 4.1.1),

meaning that this trifunctor consists of:

• A function ob(T )→ ob(Bicat).

• For each pair of objects A,B ∈ ob(T ), a pseudofunctor T (A,B)→ Bicat(FA,FB).

• For each triple of objects A,B,C ∈ ob(T ), an adjoint equivalence

T (B,C)× T (A,B) Bicat(FB,FC)×Bicat(FA,FB)

T (A,C) Bicat(FA,FC)

F×F

⊗ ⊗
χ

F

• For each object A ∈ ob(T ), an adjoint equivalence

1 Bicat(FA,FA)

T (A,A)

idFA

idA F

ι

• For every string of three composable morphisms in T

A B C D
f g h

and object x ∈ ob(FA), a 2-cell

F (hg)Ff(x) F ((hg)f)(x)

FhFgFf(x) F (h(gf))(x)

FhF (gf)(x)

χ

Faχ1

1χ χ

ω̃

• For each morphism f : A→ B in T and object x ∈ ob(FA), a 2-cell

F1BFf(x) F (1Bf)(x)

Ff(x) Ff(x)

χ

F lι1

1

γ
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• For each morphism f : A→ B in T and object x ∈ ob(FA), a 2-cell

Ff(x) F (f1A)(x)

Ff(x) FfF1A(x)

1

Fr∗

1ι

χδ

satisfying the axioms

• First Trifunctor Axiom: For every four composable 1-cells

A B C D E
f g h k

the two diagrams

F ((kh)g)Ff(x) F (((kh)g)f)(x)

F (k(hg))Ff(x) F ((k(hg))f)(x)

F (kh)FgFf(x) F (k((hg)f))(x)

FkF (hg)Ff(x) FkF ((hg)f)(x) F (k(h(gf)))(x)

FkFhFgFf(x) FkF (h(gf))(x)

FkFhF (gf)(x)

χ

FaFf
F (af)∼=χ

χ

Fa

ω̃

χFf

F (ka)

χFf

Fkχ

Fkω̃

FkFa

χ

∼=χ
χFgFf

FkFhχ

FkχFFf χ

Fkχ

ω̃Ff
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and

F ((kh)g)Ff(x) F (((kh)g)f)(x)

F ((k(hg))f)(x)

F (kh)FgFf(x) F ((kh)(gf))(x) F (k((hg)f))(x)

F (kh)F (gf)(x) F (k(h(gf)))(x)

FkFhFgFf(x) FkF (h(gf))(x)

FkFhF (gf)(x)

χ

F (af)

Fa

ω̃
Fa

χFf

F (kh)χ
Fa

F (ka)χ

χFgFf

FkFhχ

∼=χ χ

Fkχ

χF (gf)

Fπ

ω̃

are equal.

• Second Trifunctor Axiom: For every pair of composable 1-cells

A B C
f g

the two diagrams

F ((g1B)f)(x) F (g(1Bf))(x)

F (gf)(x) F (g1B)Ff(x) FgF (1Bf)(x) F (gf)(x)

FgFf(x) FgF1BFf(x) FgFf(x)

FgFf(x)

Fa

F (gl)F (r∗f)

∼=χ

χ

ω̃

χ

FgF l

∼=χ

χ Fr∗Ff

1

χFf Fgχ χ

FgιFf
1

δ γ
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and

F ((g1B)f)(x) F (g(1Bf))(x)

F (gf)(x) F (gf)(x)

FgFf(x) FgFf(x)

Fa

F (gl)F (r∗f)

1

∼=χ

1

χ

Fµ

are equal.

We then need to identify where we are transporting the trifunctor to. We take a

function G : ob(T )→ ob(Bicat) which will become the action on objects of our transported

trifunctor.

Finally, we have the biequivalences along which we will transport the structure of a

trifunctor. We need a biadjoint biequivalence for each object of T so that we can take the

trifunctor from its original output at FA and translate it to what it should be at GA. We

thus have a biadjoint biequivalence in Bicat for every object A ∈ ob(T ). Each of these

biequivalences consists of (again: because we are working in Bicat we can use the simpler

version given in Proposition 4.1.3):

• A pair of pseudofunctors SA : FA→ GA and ΨA : GA→ FA.

• Pseudonatural transformations ηA : 1GA ⇒ SAΨA and η∗A : SAΨA ⇒ 1GA forming an

adjoint equivalence ηA a η∗A.

• Pseudonatural transformations εA : ΨASA ⇒ 1FA and ε∗A : 1FA ⇒ ΨASA forming an

adjoint equivalence εA a ε∗A.

• An invertible modification ΦA whose components at each object x arise via coherence

from 2-cells

ΨA(x) ΨASAΨA(x)

ΨA(x)

1

ΨAηA

εAΨAΦ̃A

∼=
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• An invertible modification ΣA whose components at each object x arise via coherence

from 2-cells

SA(x) SAΨASA(x)

SA(x)

1

ηASA

SAεAΣ̃A

∼=

With the two simpler axioms that the following two diagrams

1.
ΨASA(x)

ΨASA(x) ΨASAΨASA(x) (x)

ΨASA(x)

εA1

1

ΨAηASA

εAΨASA

ΨASAεA

∼=εA

εA

Φ̃−1
A SA

ΨAΣ̃A

2.
SAΨA(x)

(x) SAΨASAΨA(x) SAΨA(x)

ΨASA(x)

1
ηASAΨA

ηA

ηA

∼=ηA
SAεAΨA

1
SAΨAηA

Σ̃−1
A ΨA

SΦ̃A

are both equal to the identity.

These are the data from which we will construct our transported trifunctor and these

are the axioms which, along with the properties of pseudonatural transformations and

modifications, will allow us to prove that our constructions do satisfy the properties of a

trifunctor (and higher cells between trifunctors).

5.2 Construction of the Transported Trifunctor

Given the original trifunctor F : T → Bicat and the object-indexed biequivalences

FA → GA, we first need to construct the transported trifunctor G : T → Bicat. We
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construct each of the components of G as follows.

5.2.1 Data with Dimension less than Three

• The action of G on objects has already been decided: it is given by the function

G : ob(T )→ ob(Bicat).

• In order to define the action of G on the hom-bicategory T (A,B), we first use the

part of the biequivalence ΨA in order to go from GA to FA, then use the action of

the trifunctor F on the hom-bicategory getting us to FB, then compose with the

other part of the biequivalence SB in order to arrive at GB. This makes the action

of G on the 1-cells Gf = SBFfΨA. However, we will need to choose an association

in order to be able to state that the constructions of the higher cells are actually

pseudonatural transformations and modifications. Both associations work; for this

thesis we will arbitrarily pick that the action of G should be given by

T (A,B)
F−→ Bicat(F (A), F (B))

−⊗ΨA−−−−→ Bicat(G(A), F (B))
SB⊗−−−−−→ Bicat(G(A), G(B))

• When constructing the compositor χG, we note that the source of any given component

of the compositor is going to be a 1-cell of the form GgGf = SCFgΨBSBFfΨA,

where the two instances of F applied to a 1-cell are separated by instances of 1-cells

from the biequivalence. Therefore, our strategy will be to use the appropriate 2-cell

from the biequivalence to cancel those out, bringing the instances of F together

so that the compositor of that trifunctor can be used. After taking care of the

associations in order to bring the pairs of 1-cells together and apply the two cells,

the compositor of G is given by:



Transporting a Trifunctor 89

T (B,C)× T (A,B) T (A,C)

Bicat(F (B), F (C))×Bicat(F (A), F (B)) Bicat(F (A), F (C))

Bicat(F (B), F (C))×Bicat(G(A), F (B))

Bicat(G(B), F (C))×Bicat(G(A), F (B)) Bicat(F (B), F (C))×Bicat(G(A), F (B)) Bicat(G(A), F (C))

Bicat(G(B), F (C))×Bicat(G(A), G(B))

Bicat(G(B), G(C))×Bicat(G(A), G(B)) Bicat(G(A), G(C))

⊗

F×F F

⊗

1×(−⊗ΨA)

χF

−⊗ΨA

(−⊗ΨB)×1 ⊗

a∗

(−⊗(ΨB⊗SB))×1

(−⊗1F (B))×1

1×(SB⊗−)

(−⊗SB)×1 ⊗

SC⊗−

(SC⊗−)×1

⊗
a∗

⊗

a

a×1

(−⊗εB)×1

⊗(r×1)

This is a pseudonatural transformation because it is constructed from the pseudonat-

ural transformation χF , coherence cells, and the 2-cell εB being applied to a different

part of the composition (which is pseudonatural by the functoriality of composition).

We will note now that by the usual method of using the naturality of coherence cells

and then the coherence theorem for bicategories, any modification starting or ending

at χG has components that correspond exactly to a 2-cell starting or ending at

SCFgΨBSBFfΨA
SCFgεBFfΨA−−−−−−−−−→ SCFgFfΨA

SCχFΨA−−−−−−→ SCF (gf)ΨA

• When defining the unitor ιG, we note that we want the target of each component to

be G1A = SAF1AΨA. We will need to use an instance of the 2-cell ηA first in order

to introduce those cells from the biequivalence, then use the unitor ιF to introduce

F1A. This gives the unitor of G as:

1 Bicat(G(A), G(A))

T (A,A) Bicat(F (A), F (A)) Bicat(G(A), F (A))

1G(A)

1A
1F (A)

ΨA

F −⊗ΨA

SA⊗−
ηA

l∗
ιF
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Again, we note that any modification starting or ending here has components that

correspond uniquely to a 2-cell with source or target

1GA
ηA−→ SAΨA

ιF−→ SAF1AΨA

That concludes the construction of all the data for G with dimension less than 3.

5.2.2 Three-Dimensional Data

We now need to construct the modifications for the trifunctor. As noted, we will be able to

take the components of these modifications, simplify the sources and targets by removing

coherence cells, and consider the unique cell the components correspond to under coherence.

This will make the process of constructing the cells easier.

Each of the following constructions will give us a modification. This is because the cells

are constructed out of the modifications coming from the trifunctor F , coherence cells and

applications of 3-cells from the biequivalence to other parts of the composition (These give

a modification by the functoriality of composition).

• In order to construct the modification ωG, we will construct the corresponding cell

ω̃G which is given by:

SDFhΨCSCFg

ΨBSBFfΨA(x)

SDFhFg

ΨBSBFfΨA(x)

SDF (hg)

ΨBSBFfΨA(x)

SDFhΨCSC

FgFfΨA(x)
SDFhFgFfΨA(x) SDF (hg)FfΨA(x)

SDF ((hg)f)ΨA(x)

SDFhΨCSC

F (gf)ΨA(x)
SDFhF (gf)ΨA(x) SDF (h(gf))ΨA(x)

SDFhεCFgΨBSBFfΨA(x)

SDFhΨCSCFgεBFfΨA(x)

SDχFΨBSBFfΨA(x)

SDFhFgεBFfΨA(x)
∼=εC SDF (hg)εBFfΨA(x)∼=χF

SDFhΨCSCχFΨA(x)

SDFhεCFgFfΨA(x)

SDFhχFΨA(x)

SDχFFfΨA(x)

∼=εC

SDχFΨA(x)

SDω̃F,ΨA(x)

SDFaΨA(x)

SDFhεCF (gf)ΨA(x) SDχFΨA(x)

The strategy for constructing this cell was to notice that the final two 1-cells in

the source and the final 1-cell in the target match those of ω̃F indicating that we
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should use a copy of that cell there. Once that ω̃F has been inserted, the remaining

1-cells match those of the source and target and need only be interchanged using

pseudonaturality cells.

• We next construct the modification γG, again by considering the corresponding cell

γ̃G. This cell is given by the diagram

SBF1BΨB

SBFfΨA(x)

SBF1B

FfΨA(x)

SBΨBSB

FfΨA(x)
SBFfΨA(x) SBF (1Bf)ΨA(x)

SBFfΨA(x) SBFfΨA(x)

SBF1BεB

FfΨA(x)

∼=ιF SBχFΨA(x)

SBιFΨB

SBFfΨA(x)

SBεB

FfΨA(x)

SBιF

FfΨA(x)

1
SBFlΨA(x)ηBSB

FfΨA(x)
1

1

Σ̃BFfΨA(x)
SBγFΨA(x)

∼=

Here, the strategy was to first note that the final part of the source could have a copy

of γ̃F attached to them. Then, there are both an ηB cell and an εB cell present from

the biequivalence: bringing them together using pseudonaturality allows them to be

cancelled out by the 3-cell Σ̃B from the biequivalence.

• We construct the final modification δG, and the corresponding cell δ̃G, in a similar

way to γG.
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SBFfΨA

SAF1AΨA(x)

SBFfΨA

SAΨA(x)
SBFfΨA(x)

SBFf

F1AΨA(x)

SBFfΨA(x) SBF (f1A)ΨA(x)

SBFfεA

F1AΨA(x)

∼=εA

SBFfΨA

SAιFΨA(x)

SBFf

εAΨA(x)

SBFf

ιFΨA(x)

SBχFΨA(x)
SBFf

ΨAηA(x)
1

SBFr
∗ΨA(x)

SBFf

Φ̃−1
A (x)

SBδFΨA(x)

5.3 First Trifunctor Axiom

Having constructed all the data for G, we now need to show that they form a trifunctor

T → Bicat. We do this by proving that both trifunctor axioms hold for the data given

above.

Proposition 5.3.1. G : T → Bicat satisfies the first trifunctor axiom.

Proof. After substituting the data for G into the first trifunctor axiom (the version after it

has been simplified using the coherence theorem for bicategories), we are asked to prove

that the following source and target diagrams (Figures 5.1 and 5.2) are equal.

We will start with the first of these diagrams (the source of the axiom) and manipulate

it to reach the second (the target), proving they are equal.

Looking at both diagrams (see Figures 5.3 and 5.4), we note that the cells around the

upper-right corner in both of them are reminiscent of the cells in the first trifunctor axiom

for F : T → Bicat. The only differences are that these are composed with SE and ΨA (as

expected, given how G was constructed) and that the entire diagram for the axiom is not

yet complete.

This suggests the strategy for proving that the two diagrams are equal: move the other

instances of ω̃F in the first diagram towards the upper right using the diagram manipulation

techniques provided by Propositions 4.2.1 and 4.2.2. This will let us complete and then

use an instance of the first trifunctor axiom for F .
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Figure 5.1: Trifunctor Axiom 1: Source
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Figure 5.2: Trifunctor Axiom 1: Target
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Figure 5.3: Part of the first trifunctor axiom for F in the source diagram

First, however, we are able to attach more of the relevant pseudonaturality cells to the

other instances of ω̃F , which will make it easier to move them. We do this by considering

the following section (Figure 5.5) in between both of those ω̃F in the source.

By moving the χF cell through the εD cells using the pseudonaturality of εD, this is

equal to the diagram in Figure 5.6.

This takes us from the source to the diagram labelled Trifunctor Axiom 1: Step 1

(Figure 5.7) where both instances of ω̃F not already in place in the top right corner have

pseudonaturality cells attached on three of their edges.

We are now able to move both instances of ω̃F towards the upper right corner. First,

we have the cell SEω̃FΨBSBFfΨA(x) (marked in blue in Figure 5.8) which has the

pseudonaturality cells for three of its pseudonatural transformations attached along its

edges. Therefore, using the technique from Proposition 4.2.2, we are able to move that cell

through the pseudonaturality cells.

We also have the cell SEFkΨDSDω̃FΨA(x) (marked in red in Figure 5.9) which has

pseudonaturality cells for εD attached all the way along its source. Therefore, by the

pseudonaturality property of εD, we are able to move SEFkΨDSDω̃FΨA(x) through them

as well.
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Figure 5.4: Part of the first trifunctor axiom for F in the target diagram

This takes us to the Step 2 diagram of Figure 5.10.

The cells in the upper-right corner now form an instance of the source of first trifunctor

axiom for F : T → Bicat (taken at ΨA(x), and then after the pseudofunctor SE is applied).

We are therefore able to use that axiom to turn this diagram into the diagram of Figure

5.11.

This differs from the target of the first trifunctor for G only in the bottom-left hand

corner as shown in Figure 5.12.

Consider the two instances of the pseudonaturality cell of εC at the very bottom-left.

They have the pseudonaturality cells for the pseudonatural transformation χF ◦ εD pasted

all the way along their source. Therefore we can pass the instances of εC through the

pseudonaturality cells, arriving at the target (See Figure 5.13).

Step 4 is the target diagram we were aiming for. Since we were able to move from the

source to the target diagram in a series of steps each of which was equal to the one before,

we have proved that the source and target diagrams (as originally shown in Figures 5.1

and 5.2) are equal. Therefore G satisfies the first trifunctor axiom.
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Figure 5.5: Three pseudonaturality cells in the centre of the source diagram

SEFkF (hg)ΨB

SBFfΨA(x)

SEFkFhFgΨB

SBFfΨA(x)
SEFkF (hg)
FfΨA(x)

SEFkΨDSD
FhFgΨBSB
FfΨA(x)

SEFkFhFg
FfΨA(x)

SEFkΨDSD
F (hg)FfΨA(x)

SEFkΨDSD
FhFgFfΨA(x)

SEFkF (hg)

εBFfΨA(x)

∼=χF

SEFkχFΨB

SBFfΨA(x)

SEFkFhFg

εBFfΨA(x)

SEFkεDFhFg

ΨBSBFfΨA(x)

SEFkΨDSDFh

FgεBFfΨA(x)

∼=εD

SEFkχF

FfΨA(x)

∼=εD

SEFkεDF (hg)

FfΨA(x)

SEFkΨDSD

χFFfΨA(x)

SEFkεDFh

FgFfΨA(x)

Figure 5.6: The three pseudonaturality cells interchanged
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Figure 5.7: Trifunctor Axiom 1: Step 1



Transporting a Trifunctor 99

Figure 5.8: Moving the first ω̃F cell towards the top right

Figure 5.9: Moving the second ω̃F cell towards the top right
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Figure 5.10: Trifunctor Axiom 1: Step 2
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Figure 5.11: Trifunctor Axiom 1: Step 3
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Figure 5.12: The bottom left of Step 3
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Figure 5.13: Trifunctor Axiom 1: Step 4 i.e. Target
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5.4 Second Trifunctor Axiom

Proposition 5.4.1. G : T → Bicat satisfies the second trifunctor axiom.

Proof. After substituting the data for G into the second trifunctor axiom (the version after

it has been simplified using the coherence theorem for bicategories), we are asked to prove

that the two diagrams shown in the Figures 5.14 and 5.15 are equal.

Again, we will prove that these are equal by starting with the source of the second

axiom and manipulating it until we reach the target diagram.

We notice two things when coming up with a strategy for doing so. First, that the cells

along the top of each diagram (see Figures 5.16 and 5.17) resemble the second trifunctor

axiom for F : T → Bicat. (Albeit, as before, pre- and post-composed by the 1-cells of the

biequivalence as expected for any diagram for G.)

Secondly, we note that the first diagram also contains cells (Φ̃−1
B and Σ̃B) coming from

the biadjoint biequivalence between FB and GB that do not appear in the target diagram

(See Figure 5.18).

Therefore, our strategy will be to first construct an instance of an axiom for a biadjoint

biequivalence in order to remove Φ̃−1
B and Σ̃B . That will clear the way so that we construct

the rest of the second trifunctor axiom for F along the top of the diagram.

To prepare this strategy, we first note that the ∼=ιF cell in the lower centre of the source

diagram has the pseudonaturality cells for εB attached along its entire source. Therefore,

we are able to pass ∼=ιF through them using the pseudonaturality of εB to reach the diagram

of Figure 5.19.

The bottom centre diamond now consists exactly of a diagram of cells (see Figure 5.20)

which the axioms for biadjoint biequivalences say is equal to the identity.

We are therefore able to remove those cells, and the obstruction caused by the cells

Φ̃−1
B and Σ̃B, reaching the diagram of Figure 5.21.

We now attempt to complete the version of the second trifunctor axiom for F that we

noticed along the top of the diagram. This is now only missing a cell coming from δF and

a cell coming from γF , both of which can be found at the bottom of the diagram. The

instance of δF has the pseudonaturality cells of three of the pseudonatural transformations

it is modifying pasted along its edges (marked in blue in Figure 5.22) and so can be moved

through them using the technique provided by Proposition 4.2.2.

Meanwhile the cell including γF has the pseudonaturality cells for εB attached along

the entire source (marked in red in Figure 5.23) and so can be moved through them using

the pseudonaturality of εB.
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Figure 5.14: Trifunctor Axiom 2: Source
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Figure 5.15: Trifunctor Axiom 2: Target
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Figure 5.16: Part of the second trifunctor axiom for F in the source diagram.

Figure 5.17: Part of the second trifunctor axiom for F in the target diagram.

Figure 5.18: Cells from the Biadjoint Biequivalence in the source diagram

Doing both of these moves leads us to the diagram of Figure 5.24 (note that since

the pseudonaturality cells on the other side are being taken at the 1-cell identity, their

pseudonaturality 2-cells are identities as well).

The top of the Step 3 diagram (Figure 5.24) is now a complete instance of the second

trifunctor axiom for F : T → Bicat (taken at ΨA(x), and then after the pseudofunctor SC

is applied). Therefore we can replace it by the target of that axiom and get the Step 4

diagram of Figure 5.25.

This is exactly the target diagram we were trying to reach. Thus the source and

target diagrams (Figures 5.14 and 5.15) are equal, and G : T → Bicat satisfies the second

trifunctor axiom.
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Figure 5.19: Trifunctor Axiom 2: Step 1
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Figure 5.20: An instance of a biadjoint biequivalence axiom
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Figure 5.21: Trifunctor Axiom 2: Step 2
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Figure 5.22: Moving δF upwards

Figure 5.23: Moving γF upwards
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Figure 5.24: Trifunctor Axiom 2: Step 3
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Figure 5.25: Trifunctor Axiom 2: Step 4 i.e. Target
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We have proved that the data given in our construction of G : T → Bicat satisfies both

trifunctor axioms, and are therefore able to conclude:

Theorem 5.4.2. G as defined in Section 5.2 is a trifunctor between the tricategories T and

Bicat.

5.5 Examples

To aid our understanding of the above process we can examine particular examples to see

what happens when we try transporting the structure of a trifunctor. One particularly

simple example is when the source tricategory T is the category 1 with two objects and

one non-identity morphism between them (viewed as a tricategory where all of the higher

cells are identities).

0 1
f

Let us also suppose that the trifunctor F : 1 → Bicat is strict: that is, it sends the

identities of the two objects to the identities on the bicategories and it sends the identity

2-cells to identity pseudonatural transformations.

Then to set up the transport we need two biadjoint biequivalences given by Ψ0 a S0 : F0→
G0 and Ψ1 a S1 : F1→ G1 along with the related higher cells.

Then transporting the trifunctor across these biequivalences will let us see how this

process interacts with identity 1-cells. The new trifunctor G sends the identity on 0 to

S0F (10)Ψ0 = S0Ψ0. Similarly, it sends the identity on 1 to S1Ψ1. Since these are not equal

to the identity, we see that G does not strictly preserves identities. Also, the morphism f is

sent to S1F (f)Ψ0, which means that we would need to apply the (non-identity) compositor

of G in order to compose it with the images of the identities.

We can also consider the case where the source tricategory is the category 2 with three

objects and two non-identity morphisms

0 1 2
f g

Let us again take a strict trifunctor F : 2 → Bicat and biadjoint biequivalences

Ψ0 a S0 : F0→ G0, Ψ1 a S1 : F1→ G1 and Ψ2 a S2 : F2→ G2. This time, after trans-

porting the trifunctor we will focus on the composition of the two non-identity morphisms.

Even though the trifunctor we started with was strict, so that F (gf) = FgFf , this is

not true for the transported trifunctor G. Because f is sent to S1FfΨ0 and g is sent to

S2FgΨ1, we need to apply an instance of ε1 in the middle to act as the compositor.
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Both of these examples show that the transport of a strict functor need not be strict. This

is to be expected, illustrating that the weak version of a concept is more natural.

One final example we shall consider is the following. For many concepts in higher

category theory, the version for dimension n− 1 can be realised in dimension n by taking

all of the highest-level cells to be identities. In this case, that would mean finding a method

for transporting a pseudofunctor from a bicategory into the 2-category of categories across

an object-indexed collection of equivalences of categories. Although this 2-dimensional

transport of structure can be accomplished using the more general methods of Kelly and

Lack [KL04] we can also see how it arises as a special case of transporting trifunctors.

The setup for this example is as follows:

• The source bicategory B can be realised as a tricategory whose 3-cells are all identities.

• Each category can be realised as a bicategory whose 2-cells are all identities. Then,

because all the 2-cells are identities, pseudofunctors between these categories are

just functors, pseudonatural transformations are just natural transformations and all

modifications are identities. This gives a fully-faithful embedding of Cat in Bicat.

• Next consider a trifunctor F : B → Bicat which lands entirely in the embedded

version of Cat. Since all the modifications involved are identities, in particular the

modifications that make up the axioms of a trifunctor are identities: the axioms of a

pseudofunctor are satisfied. Every pseudofunctor can be realised in this way.

• After identifying the objects GA for A ∈ ob(B) to which the pseudofunctor will be

transported, we then look at what happens to the biadjoint biequivalences between

each FA and GA. This begins with pairs of functors SA : FA→ GA and ΨA : GA→
FA.

• We then get natural transformations ηA : 1GA ⇒ SAΨA and εA : ΨASA ⇒ 1FA.

When we take these to be adjoint equivalences, the fact that all modifications are

identities means that both all the ηAs and the εAs are actually invertible.

• The modifications ΦA and ΣA are identities, showing that the natural isomorphisms

ηA and εA satisfy the triangle identities. Thus, the functors SA : FA → GA and

ΨA : GA→ FA form an adjoint equivalence. Every setup of object-indexed adjoint

equivalences can be interpreted in this way.
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With this setup allowing us to interpret pseudofunctors as trifunctors, the method of

transporting trifunctors gives us the following:

• The transported trifunctor acts on objects by sending A to GA as expected.

• The action on the hom-category B(A,B) is given by SBF (−)ΨA. Although we had

to choose an association when working with the tricategory of bicategories, we do

not need that here.

• The constructions of the compositor χG and the unitor ιG proceed as they did

previously, though simplified because whenever the coherence cells of Bicat were used

they are now identities. Since the components they are constructed out of - coherence

cells, the natural transformations ηA and εA, and the compositor and unitor of F -

are all strictly invertible, so are χG and ιG.

• Finally, the 3-dimensional data ωG, γG, and δG are constructed out of modifications.

Since in this context all modifications are identities, this proves that ωG, γG, and δG

are all identities: that is, G satisfies the axioms of a pseudofunctor.

Thus our method of transporting the structure of a trifunctor generalises a method of

transporting a pseudofunctor, as expected.



Chapter 6

Lifting the Biequivalences

Having transported the structure of a trifunctor across the family of biequivalences SA a ΨA,

we now wish to give the biequivalences the structure of a tritransformation. This will

have the effect of lifting them so that they also form a biequivalence between the original

trifunctor F : T → Bicat and the newly constructed trifunctor G : T → Bicat.

Recall that since we are working in the tricategory of bicategories, we are able to use

the simplified definition of tritransformation given by Proposition 4.1.2. In other words,

the tritransformations we intend to construct consist of:

• For each object A of T a 1-cell θA : FA→ GA.

• For each pair of objects A,B ∈ ob(T ), an adjoint equivalence

T (A,B) Bicat(FA,FB)

Bicat(GA,GB) Bicat(FA,GB)

F

G θB⊗−
θ

−⊗θA

• For each triple of objects A,B,C ∈ ob(T ), an invertible modification Π whose

component at a pair of composable 1-cells A
f−→ B

g−→ C in T and at an object

x ∈ ob(FA) arises via coherence from a 2-cell

GgθBFf(x) GgGfθA(x)

θCFgFf(x) G(gf)θA(x)

θCF (gf)(x)

1θ

χG1θ1

1χF θ

Π̃

117
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• For each object A ∈ ob(T ), an invertible modification M whose component at a given

object x ∈ ob(FA) arises via coherence from the 2-cell

θAF1A(x)

θA(x) G1AθA(x)

θ1ιF

ιG1

M̃

These cells are required to obey the following three simplified axioms.

1. First Tritransformation Axiom: For every triple of composable 1-cells A
f−→ B

g−→
C

h−→ D the following two diagrams are equal:



Lifting the Biequivalences 119

G
h
G
g
G
f
θ A

(x
)

G
h
G
g
θ B
F
f

(x
)

G
(h
g
)G
f
θ A

(x
)

G
h
θ C
F
g
F
f

(x
)

G
(h
g
)θ
B
F
f

(x
)

G
((
h
g
)f

)θ
A

(x
)

θ D
F
h
F
g
F
f

(x
)

θ D
F

(h
g
)F
f

(x
)

θ D
F

((
h
g
)f

)(
x

)
G

(h
(g
f

))
θ A

(x
)

θ D
F
h
F

(g
f

)(
x

)
θ D
F

(h
(g
f

))
(x

)

χ
G

1

∼ =
χ
G

1
θ

χ
G

1
χ
G

1
1
θ
1

1
θ

G
a
1

θ
1

1
χ
F1
χ
F

1
1
χ
F

θ
1

1
ω̃
F

θ

1
F
a

∼ =
θ

1
χ
F

θ

Π̃
Π̃

1



Lifting the Biequivalences 120

G
h
G
g
G
f
θ A

(x
)

G
h
G
g
θ B
F
f

(x
)

G
(h
g
)G
f
θ A

(x
)

G
h
θ C
F
g
F
f

(x
)

G
h
G

(g
f

)θ
A

(x
)

G
((
h
g
)f

)θ
A

(x
)

θ D
F
h
F
g
F
f

(x
)

G
h
θ C
F

(g
f

)(
x

)
G

(h
(g
f

))
θ A

(x
)

θ D
F
h
F

(g
f

)(
x

)
θ D
F

(h
(g
f

))
(x

)

χ
G

1

1
χ
G

1

1
θ

χ
G

1

ω̃
G

1

1
θ
1

1
χ
F

χ
G

1

Π̃

G
a
1

θ
1

1
χ
F∼ =
θ

1
θ 1
χ
F

θ
1

θ

1
Π̃



Lifting the Biequivalences 121

2. Second Tritransformation Axiom: For every 1-cell A
f−→ B the following two

diagrams are equal:

G1BθBFf(x) G1BGfθA(x)

θBF1BFf(x) G(1Bf)θA(x)

θBF (1Bf)(x)

θBFf(x) GfθA(x)

θBFf(x) GfθA(x)

1θ

χG1θ1

1χF

Gl1

1Fl

θ

∼=θ

1ιF 1

1

θ

θ

1

Π̃

1γF

∼=

G1BθBFf(x) G1BGfθA(x)

θBF1BFf(x) G(1Bf)θA(x)

θBFf(x) GfθA(x)

θBFf(x) GfθA(x)

1θ

∼=ιG

χG1θ1

Gl11ιF 1

1

ιG1

θ

θ

1

ιG1

M̃1

∼=

γG1

3. Third Tritransformation Axiom: For each 1-cell A
f−→ B the following two

diagrams are equal:

GfθAF1A(x)

GfθA(x) GfG1AθA(x)

θBFfF1A(x)

θBFf(x) θBF (f1A)(x) G(f1A)θA(x)

θBFf(x) GfθA(x)

1θ1ιF

∼=θ

χG

1χF

θ

1δ−1
F

θ

1ιF

θ

∼=θ

θ

1Fr∗1 Gr∗1

Π̃1

GfθAF1A(x)

GfθA(x) GfG1AθA(x)

θBFf(x) G(f1A)θA(x)

θBFf(x) GfθA(x)

1θ1ιF

1ιG1

∼=

χGθ

θ

1 Gr∗1

1

1M̃

δ−1
G

This gives us the list of everything we need to construct in order to define the tritrans-

formations, and the three axioms we will need to prove in order to confirm that they are

tritransformations. As in the previous chapter, the tools we have to construct the cells of

the tritransformation are the coherence cells of the trifunctor F : T → Bicat and the cells

that form the family of biadjoint biequivalences SA a ΨA (see section 5.1).
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6.1 Constructing the Tritransformation

We will start by giving the biequivalences SA : FA→ GA the structure of a tritransforma-

tion S : F ⇒ G. This proceeds as follows:

• The 1-cell components of the tritransformation are the very 1-cells we are trying to

give the structure of a tritransformation: SA : FA→ GA.

• The adjoint equivalence part of the tritransformation needs to have the form

T (A,B) Bicat(FA,FB)

Bicat(FA,FB)

Bicat(GA,FB)

Bicat(GA,GB) Bicat(FA,GB)

F

F

SB⊗−
θS

−⊗ΨA

SB⊗−

−⊗SA

We will define θS using the diagram

T (A,B) Bicat(FA,FB) Bicat(FA,FB) Bicat(FA,GB)

Bicat(GA,FB) Bicat(GA,GB)

F

−⊗1FA

−⊗(ΨA⊗SA)

−⊗ΨA

SB⊗−

SB⊗−

a∗−⊗SA

SB⊗−

−⊗SA

SB⊗r∗

−⊗εA

a∗

When considering the modifications including θS as part of the source or target, note

that by coherence any 2-cell component of such a modification corresponds to one

with

SBFf(x)
SBFfε

∗
A−−−−−→ SBFfΨASA(x)

instead.
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• The components of the modification MS at a pair of 1-cells A
f−→ B

g−→ C and object

x ∈ ob(FA) correspond to a 2-cell

SCFgΨBSB

FfΨASA(x)

SCFgΨB

SBFf(x)

SCFgFf

ΨASA(x)

SCFgFf(x) SCF (gf)ΨASA(x)

SCF (gf)(x)

SCFgεB

FfΨASA(x)

Π̃S

SCFgΨBSB

Ffε∗A(x)

SCχF

ΨASA(x)

SCχF (x)

SCFgε
∗
B

Ff(x)

SCF (gf)

ε∗A(x)

We will define Π̃S as

SCFgΨBSB

FfΨASA(x)

SCFgΨB

SBFf(x)

SCFgFf

ΨASA(x)

SCFgFf

ΨASA(x)

SCFgFf(x) SCF (gf)ΨASA(x)

SCF (gf)(x)

SCFgεB

FfΨASA(x)

SCFgΨBSB

Ffε∗A(x)

∼=ε∗B

SCFgε
∗
B

FfΨASA(x)

1

SCχF

ΨASA(x)

∼=χF (g,f)

SCχF

ΨASA(x)

SCχF (x)

SCFgε
∗
B

Ff(x)

SCFgFf

ε∗A(x)

SCF (gf)

ε∗A(x)

SCFgβ
ε
B

FfΨASA(x)

∼=

• The components of the modification MS at the object x ∈ ob(FA) correspond to a

2-cell
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SAF1A(x)

SA(x)
SAF1A

ΨASA(x)

SAΨASA(x)

SAF1A

ε∗A(x)

M̃S

SAιF (x)

η∗ASA(x)

SAιF

ΨASA(x)

We will define M̃S as

SAF1A(x) SAF1AΨASA(x)

SA(x) SAΨASA(x)

SA(x) SAΨASA(x)

SAF1Aε
∗
A(x)

∼=ιFSAιF (x)

SAε
∗
A(x)

SAιF

ΨASA(x)

ηASA(x)

1

SAιF (x)

SAιF

ΨASA(x)

1SAεA(x)

∼=

Σ̃−1
A (x)

SAα
ε(−1)
A (x)

∼=

Now that the structure S has been entirely defined, we are ready to begin showing that

it forms a tritransformation F ⇒ G.

6.2 First Tritransformation Axiom

Proposition 6.2.1. S : F ⇒ G satisfies the first tritransformation axiom.

Proof. After substituting Π̃S and ω̃G into the pasting diagrams for the simplified axiom,

we see that proving this axiom holds is equivalent to showing that the following source

(Figure 6.1) and target diagrams (Figure 6.2) are equal.

To arrive at a strategy for proving that these two diagrams are equal, we note that

most of the cells are pseudonaturality cells for whichever pseudonatural transformation is

appropriate. In each diagram there are only three that are not: a cell arising from βεC (this

Figure 6.1: First Tritransformation Axiom for S: Source



Lifting the Biequivalences 125

S
D
F
h

Ψ
C

S
C
F
g
Ψ
B

S
B
F
f

Ψ
A

S
A

(x
)

S
D
F
h
F
g

Ψ
B
S
B
F
f

Ψ
A
S
A

(x
)

S
D
F

(h
g
)

Ψ
B
S
B
F
f

Ψ
A
S
A

(x
)

S
D
F
h

Ψ
C

S
C
F
g
Ψ
B

S
B
F
f

(x
)

S
D
F
h

Ψ
C
S
C

F
g
F
f

Ψ
A
S
A

(x
)

S
D
F
h

Ψ
C

S
C
F
g
F
f

Ψ
A
S
A

(x
)

S
D
F
h
F
g

F
f

Ψ
A
S
A

(x
)

S
D
F

(h
g
)F
f

Ψ
A
S
A

(x
)

S
D
F
h

Ψ
C

S
C
F
g
F
f

(x
)

S
D
F
h

Ψ
C

S
C
F

(g
f

)Ψ
A

S
A

(x
)

S
D
F
h
F

(g
f

)
Ψ
A
S
A

(x
)

S
D
F

((
h
g
)f

)
Ψ
A
S
A

(x
)

S
D
F
h

F
g
F
f

(x
)

S
D
F
h

Ψ
C

S
C
F

(g
f

)(
x

)
S
D
F
h
F

(g
f

)
Ψ
A
S
A

(x
)

S
D
F

(h
(g
f

))
Ψ
A
S
A

(x
)

S
D
F
h

F
(g
f

)(
x

)
S
D
F

(h
(g
f

))
(x

)

S
D
F
h

Ψ
C

S
C
F
g
ε B

F
f

Ψ
A
S
A

(x
)

S
D
F
h
ε C

F
g
Ψ
B
S
B

F
f

Ψ
A
S
A

(x
)

S
D
F
h
F
g
ε B

F
f

Ψ
A
S
A

(x
)

S
D
χ
F

Ψ
B

S
B
F
f

Ψ
A
S
A

(x
)

∼ =
ε C

S
D
F

(h
g
)ε
B

F
f

Ψ
A
S
A

(x
)

∼ =
χ
F

(h
g
)

S
D
F
h

Ψ
C

S
C
F
g
Ψ
B

S
B
F
f
ε∗ A

(x
) ∼ =
ε∗ B

S
D
F
h

Ψ
C
S
C

χ
F

Ψ
A
S
A

(x
)

S
D
F
h

Ψ
C

S
C
F
g
ε∗ B

F
f

Ψ
A
S
A

(x
)

1

S
D
F
h

Ψ
C
S
C

χ
F

Ψ
A
S
A

(x
)

S
D
F
h
ε C
F
g

F
f

Ψ
A
S
A

(x
)

∼ =
ε C

S
D
F
h

Ψ
C
S
C

χ
F

Ψ
A
S
A

(x
)

S
D
χ
F
F
f

Ψ
A
S
A

(x
)

S
D
χ
F

Ψ
A
S
A

(x
)

S
D
F
h

Ψ
C

S
C
χ
F

(x
)

S
D
F
h

Ψ
C

S
C
F
g

ε∗ B
F
f

(x
)

S
D
F
h

Ψ
C
S
C

F
g
F
f
ε∗ A

(x
)

∼ =
χ
F

(g
,f

)

S
D
F
h
ε C

F
(g
f

)Ψ
A
S
A

(x
)

S
D
χ
F

Ψ
A
S
A

(x
)

S
D
F
a

Ψ
A
S
A

(x
)

S
D
ω̃
F

Ψ
A
S
A

(x
)

S
D
F
h
ε∗ C

F
g
F
f

(x
)

S
D
F
h

Ψ
C

S
C
χ
F

(x
)∼ =
ε∗ C

S
D
F
h

Ψ
C

S
C
F

(g
f

)ε
∗ A

(x
)

∼ =
ε∗ C

S
D
χ
F

Ψ
A
S
A

(x
)

1
S
D
F
h
ε∗ C

F
(g
f

)Ψ
A
S
A

(x
)

∼ =
χ
F

(h
,g
f

)

S
D
F
h
ε∗ C

F
(g
f

)(
x

)

S
D
χ
F

(x
)

S
D
F
h
F

(g
f

))

ε∗ A
(x

)
S
D
F

(h
(g
f

))

ε∗ A
(x

)

S
D
F
h
β
ε B

F
g
F
f

Ψ
A
S
A

(x
)

∼ =

S
D
F
h
β
ε C
F

(g
f

)

Ψ
A
S
A

(x
) ∼ =

Figure 6.2: First Tritransformation Axiom for S: Target
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is on the left side of the source and the lower middle of the target), a cell arising from βεB

(which is at the top right of the source and the top left of the target), and finally a cell

arising from ω̃F (which is at the bottom of the source and on the right-hand side of the

target. This suggest the strategy of moving βεC down and right, βεB left, and ω̃F up and

right.

To start moving βεC and βεB, consider the following sections highlighted in the source

diagram (Figure 6.3).

In the area around βεC , highlighted in red (see Figure 6.4), the βεC cell and the following

coherence cell form a component of a modification from the three cells that make up the

source to the target SDχFΨBSBFf(x). The other two cells in the highlighted section are

the pseudonaturality cells of the first part of the source. Therefore we are able to move βεC

and the coherence cell through those two cells.

A similar argument allows us to move βεB through the section highlighted in blue. This

takes us to the Step 1 diagram of Figure 6.5.

In the section highlighted in red in Step 1, we see that there is a path for the βεB

cell to move left, as both βεB and the pseudonaturality cell of εB next to it have the

pseudonaturality cells for χF (h, g) and εC attached along two of the three 1-cells in their

source. Using the technique discussed Proposition 4.2.1, we can move them all the way left

to arrive at the diagram Step 2 (see Figure 6.6).

The modification ω̃F now has the pseudonaturality cells of the transformations it is

modifying attached along its entire source. We can move ω̃F up and right through them to

arrive at the Step 3 diagram in Figure 6.7.

The final thing we need to do is move the βεC cell right. We note two things here in

order to come up with a strategy for that move. First, after Step 3 the βεC cell has several

bicategory coherence cells attached to it. These have the potential to make it very easy

to move using the naturality of coherence cells, not least because the target of βεC is an

identity and so its pseudonaturality cell is a coherence cell. Secondly, we note that after our

last move the ω̃F cell is still attached to the pseudonaturality cell of χF (h, gf). However,

in the target diagram of this axiom we note that these two cells are not attached and that

the βεC cell comes in between them.

Therefore, in order to solve the problem and create room for βεC to move into, we will

introduce some coherence cells to make space between the ω̃F cell and the χF (h, gf) cell.

This leads us to the following adjustment made to the Step 3 diagram (Figure 6.8).

There is now a large mass of coherence cells in the lower centre of the diagram (Figure

6.9).
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Figure 6.3: First Tritransformation Axiom for S: Source highlighted
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Figure 6.4: Moving βε
C through pseudonaturality cells

By the coherence theorem for bicategories, any diagram of coherence cells with the same

source and target is equal, so we can replace these coherence cells with another pattern of

coherence cells. We will choose the coherence cells so that βεC has the pseudonaturality

cells attached to its target. This gives us a second variation on the Step 3 diagram in

Figure 6.10.

After these adjustments, we can move βεC right by passing it through the coherence

cells that are acting as the pseudonaturality cells of its target. This takes us to Step 4

(Figure 6.11).

We now clean up the coherence cells left on the left-hand side of the diagram. The

target diagram does require that one coherence cell be left, attached to the target of the

βεB cell, but the rest can be removed. This adjustment gives us the diagram in Figure 6.12.

We now compare the diagram we have reached to the target diagram. The three key

cells are in approximately the correct location - indeed, the ω̃F cell and the βεC cells are in

exactly the right location - but the βεB cell isn’t correctly placed yet. It’s attached by the

edge to the left-most boundary of Figure 6.12 (See Figure 6.13 for a close-up), but only its

corner touches the boundary in the target diagram of Figure 6.2 (See Figure 6.14). The

final steps of the proof will be used to correct this.

First, there are three pseudonaturality cells in the centre of diagram 4B (highlighted in

red in Figure 6.15) that need to be adjusted in order to attach the right pseudonaturality
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Figure 6.5: First Tritransformation Axiom for S: Step 1
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Figure 6.6: First Tritransformation Axiom for S: Step 2



Lifting the Biequivalences 131

S
D
F
h
F
g

Ψ
B
S
B
F
f

Ψ
A
S
A

(x
)

S
D
F

(h
g
)

Ψ
B
S
B
F
f

Ψ
A
S
A

(x
)

S
D
F
h

Ψ
C

S
C
F
g

Ψ
B
S
B
F
f

Ψ
A
S
A

(x
)

S
D
F
h

Ψ
C

S
C
F
g
F
f

Ψ
A
S
A

(x
)

S
D
F
h

F
g
F
f

Ψ
A
S
A

(x
)

S
D
F

(h
g
)F
f

Ψ
A
S
A

(x
)

S
D
F
h

Ψ
C

S
C
F
g
Ψ
B

S
B
F
f

(x
)

S
D
F
h

Ψ
C

S
C
F
g
F
f

(x
)

S
D
F
h
F
g

F
f

(x
)

S
D
F

((
h
g
)f

)
Ψ
A
S
A

(x
)

S
D
F
h

Ψ
C

S
C
F
g
F
f

(x
)

S
D
F
h
F
g

F
f

(x
)

S
D
F
h

F
(g
f

)Ψ
A

S
A

(x
)

S
D
F

(h
(g
f

))
Ψ
A
S
A

(x
)

S
D
F
h
F
g

F
f

(x
)

S
D
F
h

F
(g
f

)(
x

)
S
D
F

(h
(g
f

))
(x

)

S
D
F
h

F
g
ε B
F
f

Ψ
A
S
A

(x
)

S
D
χ
F

Ψ
B
S
B
F
f

Ψ
A
S
A

(x
)

∼ =
ε C

S
D
F

(h
g
)

ε B
F
f

Ψ
A
S
A

(x
)

∼ =
χ
F

(h
,g

)

S
D
F
h

Ψ
C

S
C
F
g
ε B

F
f

Ψ
A
S
A

(x
)

S
D
F
h
ε C

F
g
Ψ
B
S
B

F
f

Ψ
A
S
A

(x
)

∼ =
ε B

S
D
F
h
ε C

F
g
F
f

Ψ
A
S
A

(x
)

∼ =
ε C

S
D
χ
F
F
f

Ψ
A
S
A

(x
)

S
D
F
h
χ
F

Ψ
A
S
A

(x
)

S
D
χ
F

Ψ
A
S
A

(x
)

S
D
F
h

Ψ
C

S
C
F
g

ε B
F
f

(x
)

S
D
F
h

Ψ
C

S
C
F
g
Ψ
B

S
B
F
f
ε∗ A

(x
)

S
D
F
h
ε C

F
g
F
f

(x
)

S
D
F
h

Ψ
C

S
C
F
g
F
f

ε∗ A
(x

)

∼ =

S
D
F
h
F
g

F
f
ε∗ A

(x
)

S
D
F
h

χ
F

(x
)

∼ =
χ
F

(g
,f

)
S
D
F
a

Ψ
A
S
A

(x
)

S
D
F
h

Ψ
C

S
C
F
g

ε∗ B
F
f

(x
)

S
D
F
h
ε C

F
g
F
f

(x
)

1
1

S
D
F
h

χ
F

(x
)

S
D
χ
F

Ψ
A
S
A

(x
)

∼ =
χ
F

(h
,g
f

)
S
D
F
h
ε∗ C

F
g
F
f

(x
)

1

S
D
F
h

χ
F

(x
)

S
D
χ
F

(x
)

S
D
F
h

F
(g
f

)ε
∗ A

(x
)

S
D
F

(h
(g
f

))

ε∗ A
(x

)

S
D
F
h
β
ε C

F
g
F
f

(x
)

∼ =

S
D
F
h

Ψ
C

S
C
F
g
β
ε B

F
f

(x
)

S
D
ω̃
F

Ψ
A
S
A

(x
)

∼ =

Figure 6.7: First Tritransformation Axiom for S: Step 3
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Figure 6.8: First Tritransformation Axiom for S: Step 3B
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Figure 6.9: Coherence cells at the bottom of the Step 3 diagram

cells to the βεB cell and neighbouring coherence cell. Moving the pseudonaturality cell of

χF (g, f) through the εC pseudonaturality cell attaches it to the coherence cell neighbouring

the βεB cell and takes us to the diagram for Step 5 (Figure 6.16).

Before concluding, we note that our manipulations of this diagram have distorted the

shape of the boundary of the diagram. We rectify this now: the diagram in Figure 6.17 is

the same as Step 5, but with the boundary shape adjusted to be as it was in the source

and target diagrams.

With this adjustment made to the layout, we can see the final step needed to move the

βεB cell to the correct location. As in the first step, βεB and the coherence cell attached to

it form a modification, and they have the appropriate pseudonaturality cells attached to

the latter two 1-cells of the source. Therefore we can pass the modification through those

pseudonaturality cells shown in Figure 6.18.

This move puts the βεB cell in the correct location and we arrive (see Figure 6.19) at

the target diagram as first shown in Figure 6.2. This series of steps shows that the source

and target diagrams (Figures 6.1 and 6.2) are equal and therefore that S satisfies the first

tritransformation axiom.
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Figure 6.10: First Tritransformation Axiom for S: Step 3C
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Figure 6.11: First Tritransformation Axiom for S: Step 4
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Figure 6.12: First Tritransformation Axiom for S: Step 4B
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Figure 6.13: The βε
B cell is in the wrong place in Step 4B

Figure 6.14: Where the βε
B cell should be
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Figure 6.15: Attaching Pseudonaturality cells to βε
B
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Figure 6.16: First Tritransformation Axiom for S: Step 5



Lifting the Biequivalences 140

S
D
F
h

Ψ
C

S
C
F
g
Ψ
B

S
B
F
f

Ψ
A

S
A

(x
)

S
D
F
h
F
g

Ψ
B
S
B
F
f

Ψ
A
S
A

(x
)

S
D
F

(h
g
)

Ψ
B
S
B
F
f

Ψ
A
S
A

(x
)

S
D
F
h

Ψ
C

S
C
F
g
Ψ
B

S
B
F
f

(x
)

S
D
F
h

Ψ
C

S
C
F
g
F
f

Ψ
A
S
A

(x
)

S
D
F
h
F
g

F
f

Ψ
A
S
A

(x
)

S
D
F

(h
g
)F
f

Ψ
A
S
A

(x
)

S
D
F
h

Ψ
C

S
C
F
g
F
f

(x
)

S
D
F
h

Ψ
C

S
C
F
g
F
f

(x
)

S
D
F
h

Ψ
C

S
C
F

(g
f

)Ψ
A

S
A

(x
)

S
D
F
h
F

(g
f

)
Ψ
A
S
A

(x
)

S
D
F

((
h
g
)f

)
Ψ
A
S
A

(x
)

S
D
F
h

F
g
F
f

(x
)

S
D
F
h

Ψ
C

S
C
F

(g
f

)(
x

)
S
D
F
h
F

(g
f

)
Ψ
A
S
A

(x
)

S
D
F

(h
(g
f

))
Ψ
A
S
A

(x
)

S
D
F
h

F
(g
f

)(
x

)
S
D
F

(h
(g
f

))
(x

)

S
D
F
h

Ψ
C

S
C
F
g
ε B

F
f

Ψ
A
S
A

(x
)

S
D
F
h
ε C

F
g
Ψ
B
S
B

F
f

Ψ
A
S
A

(x
)

S
D
F
h
F
g
ε B

F
f

Ψ
A
S
A

(x
)

S
D
χ
F

Ψ
B

S
B
F
f

Ψ
A
S
A

(x
)

∼ =
ε C

S
D
F

(h
g
)ε
B

F
f

Ψ
A
S
A

(x
)

∼ =
χ
F

(h
g
)

S
D
F
h

Ψ
C

S
C
F
g
Ψ
B

S
B
F
f
ε∗ A

(x
)

S
D
F
h

Ψ
C

S
C
F
g

ε B
F
f

(x
)

∼ =
ε B

S
D
F
h

Ψ
C
S
C

χ
F

Ψ
A
S
A

(x
)

S
D
F
h
ε C
F
g

F
f

Ψ
A
S
A

(x
)

∼ =
ε C

S
D
F
h

Ψ
C
S
C

χ
F

Ψ
A
S
A

(x
)

S
D
χ
F
F
f

Ψ
A
S
A

(x
)

S
D
χ
F

Ψ
A
S
A

(x
)

S
D
F
h

Ψ
C

S
C
χ
F

(x
)

S
D
F
h

Ψ
C

S
C
F
g

ε∗ B
F
f

(x
)

1

S
D
F
h

Ψ
C

S
C
χ
F

(x
)

S
D
F
h

Ψ
C

S
C
F
g
F
f

ε∗ A
(x

)

∼ =
χ
F

(g
,f

)

S
D
F
h
ε C

F
(g
f

)Ψ
A
S
A

(x
)

S
D
χ
F

Ψ
A
S
A

(x
)

S
D
F
a

Ψ
A
S
A

(x
)

S
D
ω̃
F

Ψ
A
S
A

(x
)

S
D
F
h
ε∗ C

F
g
F
f

(x
)

S
D
F
h

Ψ
C

S
C
χ
F

(x
)∼ =
ε∗ C

S
D
F
h

Ψ
C

S
C
F

(g
f

)ε
∗ A

(x
)

∼ =
ε∗ C

S
D
χ
F

Ψ
A
S
A

(x
)

1
S
D
F
h
ε∗ C

F
(g
f

)Ψ
A
S
A

(x
)

∼ =
χ
F

(h
,g
f

)

S
D
F
h
ε∗ C

F
(g
f

)(
x

)

S
D
χ
F

(x
)

S
D
F
h
F

(g
f

))

ε∗ A
(x

)
S
D
F

(h
(g
f

))

ε∗ A
(x

)

S
D
F
h

Ψ
C

S
C
F
g
β
ε B

F
f

(x
)

∼ =

S
D
F
h
β
ε C
F

(g
f

)

Ψ
A
S
A

(x
) ∼ =

Figure 6.17: First Tritransformation Axiom for S: Step 5B
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Figure 6.18: Moving βε
B to the correct location
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Figure 6.19: First Tritransformation Axiom for S: Step 6 i.e. Target
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6.3 Conjectures for the other Axioms

In this section we conjecture that S as defined in section 6.1 also obeys the other two

axioms of a tritransformation. We also explain the ideas behind a strategy for proving

both axioms hold.

Conjecture 6.3.1. S : F ⇒ G satisfies the second tritransformation axiom.

Idea of proof. After substituting Π̃S , M̃S and γ̃G into the diagrams for the second axiom,

we see that proving it is equivalent to showing that the following source diagram (Figure

6.20) and target diagram (Figure 6.21) are equal (Note that these diagrams are in the

opposite order to the way they were presented in Definition 3.1.3 and Proposition 4.1.2 in

order to ensure that the more complicated diagram is the source).

As we come up with a strategy to turn the source diagram into the target diagram,

there are three features of the diagram we have to note:

• The γF cell starts on the far right of the source, and needs to be moved to the bottom

left of the target.

• The source diagram contains an instance of Σ̃B and an instance of Σ̃−1
B that the

target doesn’t. These will need to be cancelled with each other.

• The source diagram contains a cell that is an instance of α
ε(−1)
B . This will need to be

moved to the top right, and converted into an instance of βεB by using the triangle

identity for the adjoint equivalence εB a ε∗B. That is, because the triangle identity

states that

SBΨBSB SBΨBSB

SB SB

εBSB

1

SBε
∗
B

1

SBε
∗
B

βεB

αεB

is equal to a coherence cell, the diagram

SA

SBΨBSB SBΨBSB

SB SB

SBε
∗
B

εBSB

εBSB

1

SBε
∗
B

1

SBε
∗
B

βεB

αεB

α
ε(−1)
B

is equal to both βεB and the combination of α
ε(−1)
B and a coherence cell. This should

aid us in transforming one of these cells into the other.

Being able to deal with all three of these issues would allow us to manipulate the

diagrams to show that they are equal and that S satisfies the second trifunctor axiom.
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Figure 6.20: Second Tritransformation Axiom for S: Source
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Figure 6.21: Second Tritransformation Axiom for S: Target
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Conjecture 6.3.2. S : F ⇒ G satisfies the third tritransformation axiom.

Idea of proof. After substituting the defined values of ΠS , MS and δG into the diagrams

for the third axiom, we see that proving the third axiom is equivalent to proving that

the following source diagram (Figure 6.22) and target diagram (Figure 6.23) are equal

(as in the previous proof, they are presented here in the opposite order to the one in the

definition, so that the more complicated diagram is the source).

As with the second axiom, there are three things to note when coming up with a

strategy for proving that these two diagrams are equal:

• The δ−1
F cell starts on the bottom right of the source and needs to be moved to the

bottom left of the target.

• The source diagram contains an instance of Φ̃A and an instance of Σ̃−1
A that the target

doesn’t. These will need to be removed by bringing them together and completing

an instance of one of the biadjoint biequivalence axioms.

• The source diagram contains a cell that is an instance of α
ε(−1)
A . This will need to be

converted into an instance of βεA using the triangle identity, just as in the previous

proof.

If all three of these issues can be dealt with, then we can prove that the third axiom

holds.
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Figure 6.22: Third Tritransformation Axiom for S: Source
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Figure 6.23: Third Tritransformation Axiom for S: Target
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If both of these conjectures could be proved, along with the first axiom which we have

proved, we would reach the following conclusion:

Conjecture 6.3.3. S as defined in 6.1 is a tritransformation between the original trifunctor

F and the trifunctor G defined in Section 5.2.



Chapter 7

Conclusions and Further

Directions

In this thesis we have developed original techniques for working with pasting diagrams

in the tricategory of bicategories. Using the coherence theorem for bicategories we were

able to simplify the diagrams that made up axioms of key tricategorical structures such as

trifunctors, tritransformations and biadjoint biequivalences. Without these new techniques

the diagrams needed to prove the results of this thesis would have been intractable.

We also saw that the ability of pseudo-natural transformations and modifications to be

passed through other cells applies to more than just the case specified by their definitions,

where the cells they are being passed through cover the entire source (or target). This

greatly expedited the task of manipulating the pasting diagrams; we saw many cases where

a cell that needed to be moved had pseudo-naturality cells along part but not all of the

source, or on part of the source and some part of the target.

We then demonstrated the method for transporting a trifunctor F : T → Bicat across

a collection of biadjoint biequivalences ΨA ` SA : FA → GA. We noted that G should

have an action on the hom-bicategories given by sending a cell f to SBFfΨA. Then we

constructed the higher cells of G by noting what their sources and targets should be and

filling them out with cells coming from the original trifunctor and the biequivalences. This

typically involved noting a place in the boundary of the cell where the respective cell for

F would fit, and then using pseudo-naturality cells to move the rest of the 1-cells into

position around it.

Once all the data for G was constructed we were then able to prove that the axioms of

a trifunctor held. These proofs started by substituting the data into the diagrams of the

axioms. We then noted that, just as the data for G included places where instances of

the data for F could fit, so also the axiom diagrams for G included patterns of cells along
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the boundary where the axiom diagrams for F could fit. By moving the cells so as to

complete the axiom for F , we were able to use that axiom as a step in showing that the

axiom diagrams for G were equal.

With both axioms proved we have confirmed that the structure G that we defined is a

trifunctor. Therefore, we have succeeded in transporting the structure of a trifunctor across

the biequivalences.

Finally we constructed a reasonable candidate for the lifting of the family of object-

indexed biequivalences SA : FA → GA to a tritransformation S : F → G, using similar

methods to the construction of the transported trifunctor. We then proved that this

structure satisfied the first tritransformation axiom, and conjectured that it also satisfies

the other two. If these conjectures are true, and S : F → G is a tritransformation, then

this shows that the constructed trifunctor isn’t just arbitrary: it truly did arise as a result

of the family of biequivalences.

A Potential Application

One potential application for this result is the problem that motivated it: the comparison

of Tamsamani 3-categories to tricategories. We saw in the introduction how the setup

needed for the result of this thesis arose: by using the result of Lack and Paoli [LP08]

to turn a Tamsamani 3-category into a simplicial object in Bicat, at which point we can

interpret that simplicial object as a trifunctor and take the object-indexed biequivalences

to be the Segal maps Xn → X1 ×X0

n· · · ×X0 X1.

Transporting across these biequivalences loses the strictness of the original Tamsamani

3-category: the new object is only a trifunctor from ∆op to Bicat (called a pseudo-simplicial

bicategory in [CH14]). However, we benefit as well, because now the image of each [n] ∈ ∆op

is the pullback X1 ×X0

n· · · ×X0 X1, making the objects that much more meaningful. After

all, if you interpret X1 as the bicategory of all 1-cells then these pullbacks are the objects

that allow composition, and are therefore the objects of interest when trying to define a

tricategory corresponding to a particular Tamsamani 3-category.

We envisage using coherence theorem for trifunctors to take this transported trifunctor

and simplify the proofs of the axioms of the tricategory we are trying to construct from

the Tamsamani 3-category. If so, this would give us the other direction to the nerve on a

tricategory given by Cegarra and Heredia [CH14].

Extending our Main Result

It would be interesting to obtain a method for transporting the structure of any trifunctor,

not just those ending in Bicat. Here is one possibility for achieving that.
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Take any trifunctor T → S and biequivalences in S indexed by ob(T ). By a Yoneda

argument, S is a full sub-tricategory of Tricat(Sop, Bicat) and so we get a trifunctor

T → Tricat(Sop, Bicat) and biequivalences in Tricat(Sop, Bicat) indexed by ob(T ). Finally,

the trifunctor T → Tricat(Sop, Bicat) corresponds to a trifunctor T × Sop → Bicat.

This isn’t exactly the setup needed to apply the main result as the object-indexed

biequivalences in Tricat(Sop, Bicat) end up placing some constraints on the biequivalences

when curried over. Even so, the situation is close enough that it merits further study as a

potential method for extending the result.
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