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Part I

Abstract
This project originates from research on methods and techniques for real time analy-
sis and handling of large dimensional data with respect to the presence of uncertainties
and scarce rates of sampling. The main applicational focus is the development of meth-
ods of object detection in the basis of higher dimensional representation of objects in
their relative feature spaces. During these studies, it became clear that due to internal
uncertainties and biases in the small amount of data available for this task, a theory
for improving performance of generic AI systems regarding the minimisation of misclas-
sifications is required for this project. Recently discovered phenomenon in stochastic
separation theorems [1] have offered a way to remedy issues with errors in generic AI sys-
tems, providing that decision variables in the AI systems are sufficiently high dimensional
[2], [3], [4], [5]. At the time work on this thesis started, these results were limited to only
a few sets of practically relevant distributions. The theoretical focus of this work was
to develop existing methods by generalising the results to k-tuples in product measure
distributions and to overcome the concentration limit found in a later work [6]. The main
application areas of these theories include but are not limited to:

1. Computational complexity in real time processing of high dimensional data.

2. Insufficient richness or quality of data.

3. Computational complexity of training a detector in real time.

4. Ensuring invariance to different methods of detection.

This thesis assesses these problem and describes recent developments in theoretical and
practical results over the last four years. Section II introduces machine learning and the
main associated problems. An overview of classification techniques precedes formal defi-
nitions of the remaining issues as mathematical problems to be solved. Section III details
examples of tactile language classification through hardware and software. Section IV
presents the main theoretical body of the thesis, culminating in two methods of classi-
fying sign language gestures through an automated error corrector appended to a core
AI going from a 82.4% success to 100% success with enough error clusters and a general
separability measure to distinguish higher dimensional representations of projected data
through kernel feature maps. Finally, Section V concludes this thesis with future outlooks
for research and possible applications for the acquired results.
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Part II

Introduction

1 The Main Machine Learning Problems

“Machine Learning is the science of getting computers to learn and act like humans do,
and improve their learning over time in autonomous fashion, by feeding them data and
information in the form of observations and real-world interactions.” The aggregation of
five separate definitions of machine learning [7].
The real world applications of Machine Learning span the breadth of academic disciplines
available. This desire is drawn from the merits that an automated framework for decision
making can have to fields such as Psychology, Economics, Engineering etc. The founda-
tions set by Mathematics have given a proven structure to the advancement of Machine
Learning as an appropriate tool in this regard. The increasing requirements for Machine
Learning are built on the foundations of linear and nonlinear classifiers and the further
developments that recent advancements have provided. The problems these technologies
face are numerous, however there are a number of common threads between approaches
and fields that occur during development. This section will focus on three of these areas
and the generalised version of the Machine Learning problem as shown in [8].

1.1 The Problem Of Pattern Recognition

The problem of pattern recognition stems from learning functions f(x, α), α ∈ Λ with
parameter set Λ that match the output of an external supervisor obeying the conditional
distribution function P (y|x) for a set of random vectors x from unknown distribution
P (x). For the binary indicator functions with output y = {0, 1}, the loss functional is
given as:

L(y, f(x, α)) =

{
0 if, y = f(x, α)

1 if, y 6= f(x, α)
. (1)

The expected value of this loss is given by the risk function:

R(α) =

∫
L(y, f(x, α))dP (x, y). (2)

For a known set of l i.i.d observations (x1, y1), . . . , (xl, yl) created according to an unknown
P (x, y) = P (x)P (y|x). The goal of the problem is to minimise this loss function such
that y = f(x, α) as often as possible.
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This field concerns finding patterns in the input data and reducing misclassifications [9].
These can be derived through supervised learning, with pre-characterised classes for each
component of the information [10]. Many popular methods such as Transfer Learning and
Multi-Instance learning were formed to minimise this loss functional for areas including
drug activity prediction, text classification and visual tracking [11]. This is in contrast
to Unsupervised Learning, which draw inferences from datasets consisting of input data
without labeled responses. Through iterative processes such as Deep Learning, these
draw on commonalities in the data and react base on the presence or absence of features
in each input to classify patterns. This technique has experienced use in fields where
small distinctions drastically change what label the input is given such as recent results
in Face Recognition [12].

1.2 The Problem Of Regression Estimation

For a real value y, f(x, α), α ∈ Λ with parameter set Λ is the set of real functions with
the regression function:

f(x, α0) =

∫
ydP (y|x), (3)

where f(x, α0) minimises the risk function R(α) over the class of functions f(x, α). If
f(x, α) ∈ L2, then this regression function minimises the loss:

R(α) =

∫
(y − f(x, α))2dP (x, y), (4)

where the problem minimises this function for some unknown probability measure P (x, y)

with a known dataset (x1, y1), . . . , (xl, yl). A n + 1 dimensional variable z = (x, y) =

(x1, . . . , xn, y) (where x1, . . . , xn is i.i.d) defines the loss functional to be minimised:

Remp(α) =
1

l

l∑
i=1

(yi − f(x, α))2. (5)

This estimates the conditional expectation of the dependent variable y as a function of
independent variables x. The desired approximation E(y|x) for conditional probability
y|x (y when x is known), forecasts the output as required based on the known results.
These techniques are often very efficient with little computational resources required
[13]. These methods often require some form of pre-processing (often called Feature
Engineering) where attributes with little contribution to the output y or those that are
well correlated with other inputs are removed.
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1.3 The Problem Of Density Estimation

For the set of densities p(x, α), α ∈ Λ with parameter set Λ, the optimal density estima-
tion minimises the risk functional:

R(α) =

∫
− ln(p(x, α))dP (x, y), (6)

with some P (x) for i.i.d data x1, . . . , xn. Estimating the density functions from a series
of functions p(x, α), the maximum likelihood function to approximate density as:

Remp(α) = −1

l

l∑
i=1

ln p(xi, α). (7)

Equation (7) finds the optimum probability density function P (x) to map the inputs
onto. Given some choice of features, a pattern can emerge from the existing outputs,
creating a series of boundaries which all new points are expected to follow. Any points
outside of these estimations can be treated as outliers, where if the loss function is small
enough, optimum parameters can be established.

1.4 The Generalised Learning Problem And Empirical Risk Min-

imisation

Equations (2),(4) and (6) are applications of the general learning problem, common to
all optimisation methods. This problem is the minimisation of the risk function:

R(α) =

∫
Q(z, α)dP (z). (8)

For a set of functionsQ(z, α), α ∈ Λ with parameter set Λ, and a probability measure P (z)

with i.i.d components of empirical data z1, . . . , zl defined on the space Z for this expected
risk functional. The empirical risk minimisation induction principle approximates the risk
minimisation function Q(z, α0) by the function Q(z, αl), which minimises the empirical
risk:

Remp(α) =
1

l

l∑
i=1

Q(z, αi). (9)

The end goal of the generalised learning problem then becomes how to best reduce this
empirical risk minimisation induction principle (ERM principle). To achieve this, some
classification methods will be considered.
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2 Linear Classifiers

The basis of real time analysis for handling large dimensional data resides in the sepa-
ration and precise labelling of a series of categories through both linear and nonlinear
classification. This is the approach of Machine Learning. This problem is then primarily
a question of the appropriate methods of classification, and it’s application towards a
group of classes along with the density estimation of the pre-processed data that needs
to be assessed within the confines of the system [14].
The question then becomes how this approach is applied to higher dimensional spaces,
and what adjustments need to be made if at all. This section discusses the main forms of
Linear Classification and the common applications along with their strengths and weak-
nesses. Once Linear Classifiers have been established, this will be repeated for nonlinear
forms and the results will then be examined in the context of higher dimensionality and
what can be done to minimise the machine learning problem.

2.1 Fisher Discriminants

Figure 1: Regular histogram projection methods show a large class overlap from the line
joining the respective class means on the left into the new projected space. Using fisher
discrimination to find the point of maximum separation on the right shows a projection
with greater class separation and a minimised class overlap for a 2D space best mapped
to a 1D line. [15].

Fisher’s linear discriminant (FLD) is a method of finding a linear set of features that cat-
egorises multiple classes of variables through a linear combination of features, discovered
by Sir Ronald Fisher in 1936 [16] (This can also be generalised to Multiple Discriminant
Analysis (MDA) for a non-binary set of classes). Traditional classification problems trans-
form existing data with the aim of reducing dimensions which can be further projected
into a new feature space and then be reclassified. This process has many implementations,
and the optimal approach can vary depending on the original input’s dimensionality. The
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original dimensional space D has x objects with k classes. This is projected onto a new
independent K − 1 dimensional space consisting of weight transformations wk on the
original objects x forming the new feature set:

yk = wTk x, k = 1, 2, . . . , K − 1. (10)

The total matrix y of objects in the new K − 1 dimensional space is achieved by a
transformation through the total weight vector W :

y = W Tx, (11)

Equation (11) finds the point of maximum separation that minimises class overlap, giving
the largest ratio between the class scatter SC between k classes and the intra-class scatter
SI of N objects in a given class k.
The class scatter SC for a number of datums Nk in a class Ck for the original input space
xn ∈ RD is given by:

SC =
K∑
k=1

∑
n∈Ck

(xn −mk)(xn −mk)
T , mk =

1

Nk

∑
n∈Ck

xn. (12)

The intra-class scatter SI for a total number of datums N =
∑

kNk for the original input
space xn ∈ RD is given by:

SI =
K∑
k=1

Nk(mk −m)(mk −m)T , m =
1

N

K∑
k=1

Nkmk. (13)

The data will be projected into the feature space J of rank K−1 such that each resulting
matrix is independent. Using the weight vectorW , for yn ∈ RK−1, the projection function
J of the weight matrix W can be inferred where the weight values for W are given by
the eigenvalues of S′C

S′I
:

J(W ) = Tr

(
S ′C
S ′I

)
. (14)

The new class scatter SC′ in the new input space yn ∈ RK−1 is given by:

SC′ =
K∑
k=1

∑
n∈Ck

(yn − µk)(yn − µk)T , µk =
1

Nk

∑
n∈Ck

yn. (15)
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The intra-class scatter SI′ in the new input space yn ∈ RK−1 is given by:

SI′ =
K∑
k=1

Nk(µk − µ)(µk − µ)T , µ =
1

N

K∑
k=1

Nkµk. (16)

As a result of measure concentration phenomena, simple FLD’s can solve a subclass of
higher dimensional classification problems even with large data sets with lots of dimen-
sions through these techniques. This forms a part of the Blessing Of Dimensionality [17]
[18]. These can also have the converse problem, where lower dimensional approaches that
classify elements will perform poorly in higher dimensions where the sparsity of newly
introduced dimensions lowers the performance rate of the classifier. This forms a part of
the Curse Of Dimensionality [19],[20],[21], and navigating these two properties will be a
core component of later sections.

2.2 Perceptrons

Figure 2: An illustration of a perceptron taking an input vector x and constant bias 1
and producing a binary output after the activation function.

The Perceptron was the first iterative algorithm proposed by Frank Rosenblatt in 1956
[22], and while the limited potential of the learning machines have been utilised to the
fullest [23], it laid the ground work for successive algorithmic classifiers [24]. All percep-
trons are formed with four major components: A set of input values x, a predefined weight
vector w and bias b, a net sum calculation operation and a final activation function that
output’s the binary value y. The perceptron initially takes the input values x1, . . . , xn

and performs a feature space mapping φ(x), then multiplies them by the weight vectors
w1, . . . , wn. This also includes a bias value of φ(x0) = 1 with a weight w0. In these situa-
tions, the weights control the strength of a given node in the system, and the bias allows
the activation function to be shifted up or down as appropriate. The resulting values
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are then summed together and an activation function f classifies the result depending on
whether the threshold is met:

y(x) =

{
+1, wTφ(x) ≥ 0

−1 wTφ(x) < 0
. (17)

The target values are defined as t = 1 for class C1 and t = −1 for class C2. This gives
the ideal function wTφ(xn) ≥ 0 for elements in class C1 and wTφ(xn) < 0 for elements in
class C2. For a label tn ∈ {−1,+1} assigned to each of the n elements, the goal of the
perceptron is therefore to maximise the number of successful classifications where:

wTφ(xn)tn > 0, (18)

and to minimise the number of elements in the set of misclassificationsM given by the
perception criterion function:

Ep(w) = −
∑
n∈M

wTφntn. (19)

The algorithm runs iteratively. For each iteration, if the pattern xn is properly classified
the weights are unchanged. If not, then φ(xn) is added for C1 classes and subtracted
for C2 classes. For each iteration step i, the quantity of Ep(w) will be reduced (since
||φntn||2 > 0 [25]):

− (w(i+1))Tφntn = −(wi)Tφntn − (φntn)Tφntn < −(wi)Tφntn. (20)

There is a common property that’s explicitly present in all binary classifiers that defines
the number of partitions a classifier can form for a given data set. This property is called
the Vapnik-Chervonenkis Dimension (VC) [26] and is demonstrated in Figure 3.

Definition 1 (Vapnik-Chervonenkis Dimension) A set C can be defined as part of a
series of sets H such that:

H ∩ C = {h ∩ C|h ∈ H}. (21)

This set C is shattered by H if H ∩ C contains all subsets of C such that:

|H ∩ C| = 2|C|. (22)

The VC dimension of H is the largest integer D where set C with cardinality D is shattered
by H (such that |C| = D) [27].
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Figure 3: Linear classifiers have a VC dimension of 3 as the hyperplane shatters all 23

combinations of 3 points however some 4 point configurations can’t be separated [28].

This enables an estimate for the upper bound on the test error for a classification model:

P

(
test error ≤ training error +

√
1

N

[
D

(
log

(
2N

D

)
+ 1

)
− log

(η
4

)])
= 1− η. (23)

0 ≤ η ≤ 1 is the learning rate and N is the size of the whole training set where D � N

[26], otherwise overfitting can occur such that the training error is lower than the testing
error. These bounds can be used explicitly to justify the use of linear stochastic separation
theorems, as the VC dimension explicitly defines the smallest dimensional space that the
separating hyperplane can successfully partition data in.

2.3 Support Vector Machines

Given labelled training data, Support Vector Machines produce an optimal hyperplane
that categorises new examples using supervised learning [29],[30],[31]. This extends the
idea of perceptrons, which finds a separating hyperplane dependent of predefined weights
and bias’s initially chosen before iterating [32]. Support Vector Machines utilise the
smallest boundary between the hyperplane and any of the elements (referred to as a
margin). This margin is given by the perpendicular distance between the closest point
xn to the hyperplane [33]. By optimising the weights w and the bias b, the maximum
margin is found by solving:

argmax
w,b

{
1

||w||
min
n

(tn(wTφ(xn) + b))

}
. (24)
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Figure 4: A hyperplane separates two classes while a maximum margin is defined for the
points with the smallest perpendicular distance to the hyperplane. This distance is given
by the value ||w|| and minimising ||w||−1

Re-scaling the weights and bias’s, all data points can be made to satisfy the constraint:

tn(wTφ(xn) + b) ≥ 1, n = 1, . . . , N, (25)

where the closest point to the hyperplane always equals 1. For values of xn where this
holds, the constraint is active, otherwise the constraint is inactive [34]. Since at least one
point has to equal 1, this will always be the minimum point such that the problem is now
maximising 1

||w|| [35] (See Figure 4 for a demonstration.)
Using Lagrangian multipliers an ≥ 0 [36] for each constraint where a = (a1, . . . , an)T , the
primal form of the Lagrangian is formed:

L(w, b, a) =
1

2
||w||2 −

N∑
n=1

an{tn(wTφ(xn) + b)− 1}. (26)
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Setting the initial weight and bias vectors to 0 each, the conditions for this become:

w =
N∑
n=1

antnφ(xn), (27)

0 =
N∑
n=1

antn. (28)

Taking the Lagrangian with respect to a gives the dual representation to be maximised:

L̃(a) =
N∑
n=1

an −
1

2

N∑
n=1

N∑
m=1

anamtntmκ(xn, xm), (29)

subject to the constraints:
an ≥ 0, (30)

N∑
n=1

antn = 0. (31)

This applies for values n = 1, . . . , N and the kernel function κ(x, x′) = φ(x)Tφ(x′) which
will be covered in Section 3.1.

2.4 Reflective Summary

The relative simplicity of linear classifiers are appealing to problems that are inherently
classifiable. The relationship between the predictive variables and the outcomes can be
tracked and there’s always some quantifiable contribution. This makes the approach com-
patible with lots of programming languages, with native packages for the aforementioned
variants included in versions of R, Python, Java, Javascript and other languages, with
little familiarity required. Linear classifiers are often utilised when the computational
runtime needs to be minimised, with only a series of summations of weight transforma-
tions requiring calculations. This technique performs well even in higher dimensional
space however the data should be regularised before processing to avoid overfitting [37].
The biggest limitation of these classifiers is that they cannot solve nonlinearly separable
problems (for example, linear classifiers can separate OR & AND functions but not XOR
functions). Nonlinear problems make up the majority of reasons why modern AI is in de-
mand however, it is possible to transform the original input into a feature space allowing
better representation. This is the basis for kernel functions.
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3 Nonlinear Classifiers

While the limited potential of linear learning machines have been utilised to the fullest,
as highlighted in the 1969’s book Perceptrons by Marvin Minsky and Seymour Papert
[23], real world applications often require more expressive hypothesis spaces than the ones
provided by linear functions. In these cases, the main concept can’t be simplified to a
linear combination of parameters and instead uses more abstract features. While multi-
layered functionals were suggested as a way of make existing classifiers more susceptible
to new data, an approach was needed to form nonlinear classifiers without resorting to
multilayered methods. These classifiers involve mapping the set of datums x to elements
of a feature space φ(x) through some transition function φ. This approach is best seen in
how Kernels are represented in Reproducing Kernel Hilbert Spaces as seen in this section.

3.1 Kernels

3.1.1 Reproducing Kernel Hilbert Spaces

X is defined as the input space along with a set of natural numbers Nn = {1, 2, . . . , n}.
The function κ : X × X → C is a kernel on X if for any given finite x = {xj : j ∈ Nn},
there exists a Hermitian, positive, semi-definite matrix:

κX = κ(xi, xj) : i, j ∈ Nn. (32)

Reproducing Kernel Hilbert Spaces (RKHS) have their point evaluations as continuous
linear functionals [38]. This regularization behaviour is equivalent to the functional rep-
resentation for {cj : j ∈ N} ⊆ C:

f =
∑
j∈Nn

cjκ(·, xj). (33)

While for many applications kernels in Hilbert spaces are usually infinite dimensional [39],
this can express most optimisation problems with RKHS regularizers as kernel expansions
of the training data as their solution [40].

3.1.2 Nonparametric Representer Theorem

Theorem 1 [40] For a non-empty set X , a positive definite real-valued kernel κ on X ×
X , a training sample (x1, y1), . . . , (xm, ym) ∈ X × R, a strictly monotonically increasing
real-valued function g on [0,∞[, an arbitrary cost function c : (X × R2)m → R ∪ {∞}
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and a class of functions:

F =

{
f ∈ RX

∣∣∣∣∣f(·) =
∞∑
i=1

βiκ(·, zi), βi ∈ R, zi ∈ X , ||f || <∞

}
. (34)

|| · || is the norm in the RKHS Hκ associated with k, i.e. for any X , βi ∈ R(i ∈ N),∣∣∣∣∣
∣∣∣∣∣∑
j∈Nn

βjκ(·, xj)

∣∣∣∣∣
∣∣∣∣∣
2

=
∑
j∈Nn

∑
i∈Nn

βiβjκ(xi, xj). (35)

Then any f ∈ F minimising the regularised risk functional

c((x1, y1, f(x1)), . . . , (xm, ym, f(xm))) + g(||f ||), (36)

admits a representation of the form:

f(·) =
m∑
i=1

aiκ(·, xi). (37)

A decision boundary from the class of functions with infinite sums will always minimise
the regular risk function, plus the empirical risk function over finite sums of the original
data points through the expansion of kernels. [40] reviews the traits exhibited by the
Representer Theorem showing that for a class of functions κ, the respective class F can
approximate any continuous function on a compact domain [41]. This leads into the
Universal Approximation Properties.

3.1.3 Universal Approximation Properties

For a fixed, but arbitrary compact subset of X denoted by Z, C(Z) is the space of all
continuous complex-valued functions with maximum norm || · ||. The set κ(z) of all
functions of C(Z) is defined as:

κ(Z) = span{κy : y ∈ Z}. (38)

For κy : X → C where κy(x) = κ(x, y). This leads to the universal approximating
property where ||f −g|| < ε for f ∈ C(Z) & g ∈ κ(Z). This is the property of a universal
kernel where κ(Z) is dense in C(Z) (such that κ(Z) = C(Z)). These properties apply
to a broader class of nonlinear classifiers, most notably in feed forward neural networks
[42].
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3.2 Neural Networks

3.2.1 Network Architecture

Figure 5: A network with three hidden layers. The output from the third neuron in layer
2 is weighted by factor w[3]

43 when going into the fourth neuron in layer 3 [43].

Neural Networks extend the principles for creating perceptrons into a nonlinear scale.
Rather than running iteratively, neural network consist of layers; starting from an input
layer, going through a series of hidden layers before exiting as the product of a final
output layer [44]. A network with L layers has nl neurons for layer l = 1, . . . , L. w

[l]
jk

denotes the weight that neuron j at layer l applies to neuron k at layer l − 1, where
W [l] ∈ Rnl−nl−1 denotes the matrix of weights at layer l (b[l]

j is the bias of neuron j in
layer l which form the bias vector b[l] ∈ Rnl). For an input x ∈ Rnl , the output is defined
as a[l]

j for neuron j and layer l (this is called the activation in hidden layers). The feed
forward process is defined as:

a[1] = x ∈ Rn1 , (39)

a[l] = σ(W [l]a[l−1] + b[l]) ∈ Rnl , l = 2, 3, . . . , L. (40)

N training points are inputs {x{i}}Ni=1 ⊂ Rn1 with target outputs {y(x{i})}Ni=1 ⊂ RnL .
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Defining with the L2 form:

Cx{i} =
1

2
||y(x{i})− a[L](x{i})||22, (41)

the goal is then to minimise the difference between the predicted values and actual values
through the quadratic cost function of all weights and biases:

Cost =
1

N

N∑
i=1

Cx{i} . (42)

3.2.2 Universal Approximation Bounds

Consider the space of functions f on a bounded set B (a unit ball for example). Let
ΓB be the set of functions f defined in B and let ΓB,C be a set of functions from ΓB

which satisfies (10) in [45]. For each C > 0, Theorem 2 captures both the universal
approximating properties of neural networks and their advantages over kernel classifiers
through a linear combination of functions such as the sigmodial functions f(x) = ex

ex+1
.

This allows a boundary to be defined for the integrated square error for approximation.

Theorem 2 [45] For every function f in ΓB,C and every probability measure µ, there
exists a linear combination of sigmoidal functions fn(x), n ≥ 1 which can be defined as:∫

B

(f(x)− fn(x))2µ(dx) ≤ (2C)2

n
. (43)

This sets a boundary for the approximation error in functions by Artificial Neural Net-
works. This theorem assumes that these sigmoidal functions are not fixed but are chosen.
However, for a fixed set of functions (the set of feature maps in kernel approximation for
example), the convergence rate is not as good as the rate provided in Theorem 2 as this
becomes dependent on the dimensionality of the domain. [45] specifies the lower bound
on the approximation performance in this case.
For the uniform probability distribution µ of unit cube B = [0, 1]n:

d(f, g) =

(∫
[0,1]d

(f(x)− g(x))2dx

) 1
2

, (44)

represents the distance between two functions in L2(µ,B). For a function f and a se-
ries of basis functions h1, h2, . . . , hn (where Hn = span{h1, h2, . . . , hn}), the error in the
approximation of f by the best linear combination of basis functions is given as:

d(f,Hn) = d(f, span{h1, h2, . . . , hn}). (45)
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Figure 6: The approximation error defined in (46) of Xn from a set A ⊂ X is defined
in the figure as the distance between x∗ ∈ A & y∗ ∈ Xn. This gives a measure of how
well Xn approximates the worst point in x ∈ A. The Kolmogorov n-width is the smallest
distance given by any subspace Xn ∈ X [46].

The approximation error for the worst case functions in ΓC = ΓB,C is given by:

sup
f∈Γc

d(f,Hn). (46)

To characterise worst case approximations for all bases in ΓC , the Kolmogorov n-width is
a lower bound of all worst case distances (46) (Figure 6) over all sets of basis functions:

Wn = inf
dim(Hn)=n

sup
f∈Γc

d(f,Hn) = inf
dim(Hn)=n

sup
f∈Γc

inf
h∈Hn

(∫
[0,1]d

(f(x)− h(x))2dx

) 1
2

. (47)

Theorem 3 [45] For every choice of fixed based functions, a universal constant κ >
1

8πeπ−1 and a fixed constant C > 0 with a domain dimensionality d, the Kolmogorov n-
width of functions in ΓC is bounded by:

Wn ≥ κ
C

d

(
1

n

)d
. (48)

Theorem 3 reveals the worst case scenario for the basis. With m functions, there is some
function not in the space of useful functions. This distance is bigger than the above
boundary. With a fixed basis, the worst function will approximate the performance rate.
If the parameters are changed, then a different rate of convergence emerges which is
independent of the dimensionality of the domain (unlike back-propagation which aims to
change the basis). A nonlinear approach to optimisation is required, as current problems
with biased data, overfitting, and labelling noise can be reduced if these boundaries are
taken into higher dimensional space. In these cases the error converges to 0 with a rate
of 1

n
in L2, as the constant C will be dependent on the domain. Resolving the worst
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case means further action can be taken to reduce the cost function as much as possible
through gradient descent and back propagation in these later sections. It’s unknown
whether these kernels converge to a given minimum, as these decision boundaries are
prone to errors (which will be the focus on the rest of this sections).

3.2.3 Stochastic Gradient Method

To reduce the quadratic cost function as much as possible, an iterative approach emerges
using gradient descent to converge to the most optimal, cost efficient vector [47]. For the
vector of all weights and biases p ∈ Rs where s is the total number of neurons in the
neural network (s = 23 for Figure 5), the vector p updates with rule:

p→ p− ηOCost(p). (49)

Cost(p) reparametrises the original function for the new dependency Cost : Rs → R with
a small learning rule η and the gradient for the sum of partial derivatives (recalling (41)):

OCost(p) =
1

N

N∑
i=1

OCx{i}(p). (50)

Replacing the mean of individual gradient with a single random training point is less com-
putationally expensive for large datasets where repeatedly calculating gradient vectors
becomes inefficient [48]. This leads to a stochastic gradient method :

1. Choose a random i from {1, 2, . . . , N},

2. Update: p→ p− ηOCx{i}(p).

3.2.4 Back Propagation

The stochastic gradient method can train a neural network through calculating the partial
derivatives of the cost function with respect to the weights and bias’s of each neuron [49].
Initialising a single training point C gives:

C =
1

2
||y − a[L]||22. (51)

The weighted input z[l] = W [l]a[l−1]+b[l] ∈ Rl propagates information through the learning
step a[l] = σ(z[l]) with an error for the jth neuron in layer l:

δ
[l]
j =

∂C

∂z
[l]
j

for 1 ≤ j ≤ nl & 2 ≤ l ≤ L. (52)
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The Hadamard product (x ◦ y)i = xiyi derives a new learning rule:

δ[L] = σ′(z[L]) ◦ (aL − y),

δ[l] = σ′(z[l]) ◦ σ′(W [l+1])T δ[l+1],

∂C

∂b
[l]
j

= δ
[l]
j ,

∂C

∂w
[l]
jk

= δ
[l]
j a

[l−1]
k .

(53)

A forward pass calculates a[1], a[2], . . . , a[L] sequentially then a[L] gives δ[L] which derives
δ[l−1], δ[l−2] . . . , δ2. This calculates partial derivatives through back propagation [50].

3.3 Deep Learning

Practical experience shows building multi layered networks can be advantageous over
shallow networks. Deep Learning has determined parameters of multi layered structures
since 1986 [51], while shallow networks require many more connections to replicate per-
formance levels [52] (for example, ten times the number of connections are required in
speech recognition [53]). This is computationally expensive, as floating point operations
are performed with each made connection [54],[55]. Lower level computations are called
subroutines, which push information forward until the final layer creates function φ [56].

Figure 7: The Deep Network on the left reuses computation done by the red node 3 times
to the second output layer, the Shallow Network on the right uses its output once.

Using a shallow network is equivalent to a program with no subroutines. With no subrou-
tines, the code processing the shallow networks needs to be written explicitly, making the
total length of code for shallow networks longer than deep networks giving a less efficient
running time as computational costs are not reused [57].
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3.4 Pre-Processing and Dimensionality Reduction

3.4.1 Pre-Processing

Before any data is sent into an algorithm, it often goes through some form of pre-
processing, as the derived information directly affects the model’s ability to learn [58].
These techniques can be as simple as accounting for missing values in an existing dataset,
to partitioning the data into training sets, test sets and validation sets if required. Once
the data is in some numeric form (relabelling categoric data if necessary), there can then
be some form of feature scaling done before being transformed by the algorithm. This can
include subtracting the mean from the whole set in a centering process. It can also then
involve dividing by the standard deviation, standardising the data (such that the mean
of the data is 0 and the standard deviation is 1 [59]). Alternatively, the original data
can be normalised where the minimum value is taken from each datum and the whole
set is divided by the range. Once the data has been cleaned, the data can go through a
regularisation process such as PCA or ICA.

3.4.2 Principal Component Analysis

Developed by Karl Pearson in 1901 [60], Principal Component Analysis (PCA) is a orthog-
onal basis transformation that diagonalises a covariance matrix such that its eigenvectors
are ranked by how large their respective variances are.
Orthogonal projections onto the eigenvectors are called principal components [61]. In
PCA, the new set of dimensions are linearly independent and ranked according to the
variance of data present in each component, decorrelating the original covariance ma-
trix. As more components are retained, more internal information is kept, however this
information is less necessary as more components are added [62]. For regularisation, it’s
common to pick a decision rule that underlines how many components are kept. Common
examples include taking the first k dimensions, choosing k dimensions whose variance is
greater than a set value, or by using the Kaiser-Guttman test, which keeps all compo-
nents whose eigenvalues are above the mean eigenvalue for the full covariance matrix.
This geometric projection defines the goal of how to find the best summary of the original
data by using a lower number of principal components through the aforementioned rules.
This differs from the linear regression [63] approach, as PCA minimises the perpendicu-
lar distance from a data point and a principal component, while linear regression is the
distance between the actual value of the output and what the line of best fit predicts
the final value [64]. This approach gives the most accurate data representation in lower
dimensional space in the directions of maximum variance.
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(a) Before PCA, this data exists in
both the X and Y dimensions

(b) After PCA all of the variance
is contained within the first principal
component, such that the second can
be dropped entirely.

Figure 8: Using PCA can rank dimensions by how much variance each dimension has in
comparison to the rest of the components. In this example, after PCA the second com-
ponent can be dropped entirely as a two dimensional data set becomes one dimensional.

3.4.3 Independent Component Analysis

The problem with PCA is that decorrelation is not the only factor for ensuring inde-
pendence. This is a desired outcome as for two independent variables, the product’s
expectation will be 0. By this metric, the task is to achieve full independence for each
element x so the inner product for each kernel is 0: κ(x, z) = 〈φ(x) · φ(z)〉 = 0∀x, z ∈ X.
To make sure all components are independent, it’s possible to use Independent Compo-
nent Analysis (ICA) to ensure statistical independence.
ICA is a statistical and computational technique that reveals the hidden factors that
define sets of random variables [65]. The major differences between ICA and PCA is
that all the components remaining after post-processing are of equal weight, with no
hierarchy between vectors. The resulting components are also invariant to the sign of
the sources where a white letter on a black background is the same as a white letter on
a black background [66]. The theoretical foundations of ICA for a randomly observed
vector X = [X1, X2, . . . , Xm]T are given as the product of an m×m mixing matrix that
randomises the position of elements and a random vector S = [S1, S2, . . . , Sm]T given by
X = AS. The goal of ICA is to find the unmixing matrix W = A−1 such that the best
approximation Y of S is given: Y = WX ∼= S. For ICA to be successful, five conditions
must be met [66]:

1. All sources creating a source matrix S must be statistically independent.

2. The mixing matrix A must be square and full rank.
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3. The only probability distribution should be contained in S with no external noise.

4. Data must be centered before further processing where the mean of the data is zero.

5. Only one of the source signals can have a Gaussian probability density function.

Figure 9: The diagram in the paper [66] refers to a ’cocktail party effect’ where two people
are speaking over each other producing mixed signals. The goal of PCA is to increase
the clarity of the mixed signals so they can be audible to the rest of the party. The goal
of the ICA is to retrieve the two original mutually independent sources from the vailable
mixed signals so each person’s voice can be heard clearly.
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3.5 Reflective Summary

Considering kernels as shallow networks with huge hidden layers, comparisons between
the two resemble the advantages and disadvantages of shallow and deep networks re-
spectively. For example, large collections of neurons act like databases which resemble
nonlinear functions. Kernel methods can avoid the large computations present in simi-
larly large shallow neural networks through use of the kernel trick. This involves writing
the optimisation process so that the hidden layers appear in the dot product of another
example < φ(x), φ(x′) > which can be easily calculated.
In practice, kernel methods require support vectors surrounding the decision function
(representing a separating hyperplane) that grows as more data is added, increasing the
computational cost for φ for large datasets. Neural Networks don’t have this issue as
the computational cost is determined by how many connections the neural networks have
and they do not rely on the size of the input data. This is especially true in networks
where not every connection is necessary as applied in Convolutional Neural Networks.
ICA picks independent components without considering their importance unlike PCA.
PCA maps onto projections with the highest variability such that when the first few
components are picked, they are projected into the most relevant directions of the prob-
lem. ICA projects on dimensions which may not be relevant to the data as the actual
dimensionality isn’t featured in ICA.
While ICA can be used as an alternative to PCA, ICA doesn’t do dimensionality reduc-
tion by default. In this respect, if just ICA is performed then because of no dimensionality
reduction, the correctors would pick up noise in the data and the components will not
generalise well. It’s possible to run PCA and then ICA however in the majority of cases
the computational complexity isn’t practical unless the number of dimensions is well
optimised.
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4 Considering Issues In Machine Learning

4.1 Problems Overview

Artificial Intelligence (AI) systems have risen dramatically from being the subject of niche
academic and practical interests to an accepted and widely-spread facet of modern life.
Industrial giants such as Google, Amazon, and Microsoft offer a broad range of AI-based
services, including intelligent image and sound processing and recognition.
Deep Learning and related computational technologies [67], [68] are perceived as state-of-
the art tools for producing various AI systems. In visual recognition tasks, these systems
deliver unprecedented accuracy [69] at reasonable computational costs [70]. Despite these
advances, several fundamental challenges hinder further progress of these technologies.
All data-driven AI systems make mistakes, regardless of how well they are trained. Some
examples of these have received global public attention [71], [72]. Mistakes may arise
due to uncertainty in empirical data, data misrepresentation, and through imprecise or
inaccurate training. Conventional approaches to reducing errors include altering training
data and improving design procedures [73], [74], [75], [76], transfer learning [77], [78], [79]
and privileged learning [80]. These approaches invoke extensive training procedures. The
training itself, whilst eradicating errors, may introduce new errors by the nature of the
steps involved (randomised sampling of mini-batches, randomised training sets etc).
A technology is proposed where errors of the original legacy AI are removed with high
probability, through small cascading neuronal ensembles into the original AI’s decision-
making. Ensembles methods and classifiers’ cascades [81], [82], [83], [84] constitute a
well-known framework for improving classification performance. This shows geometry of
high-dimensional spaces, in agreement with blessing of dimensionality [2], [17], [18] en-
ables efficient construction of AI error correctors with guaranteed performance bounds.
This is similar to neurogenesis deep learning [85], classical cascade correlation [86], greedy
approximation [45], and randomised methods for training neural networks [87], including
deep stochastic configuration networks [88], [89]. This does not require extensive training
or pre-conditioning, and can be set up as a non-iterative procedure. In this case, compu-
tational complexity scales linearly with the training set size in the best possible case.
This stems from concentration of measure phenomenon [90], [91], [92], [93], [94], and
approaches AI learning from conventional probabilistic settings [95], [96], and stochastic
separation theorems [1], [2], [6]. The building blocks of the algorithm are simple thresh-
old, perceptron-type [97] classifiers. It can be shown, subject to mild assumptions on
statistical properties of legacy AI signals, small cascading neuronal ensembles of linear
classifiers are an efficient tool for learning away systematic errors.
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4.2 Issue 1: Separation Of K-tuples For Product Measure Dis-

tribution

An AI system is an operator mapping elements of its input set, U , to the set of outputs,
Q. Examples of inputs u ∈ U are images, temporal or spatiotemporal signals, and
the outputs q ∈ Q correspond to labels, classes, or some quantitative characteristics of
the inputs. Inputs u, outputs q, and internal variables z ∈ Z of the system represent
the system’s state. The state itself may not be available for observation but some of its
variables or relations may be accessed. Alternatively, it can be assumed there is a process
which assigns an element of x ∈ Rn to the triple (u, z, q). A diagram illustrating the
setup for a generic AI system is shown in Figure 10, which considers an add-on ensemble
that maps samples x to auxiliary signals s ∈ S (also known as improvement signals) in
addition to the core AI. These improvement signals are used to improve the performance
of the original AI. An example of such an improvement signal could be an indication that
the current state of the core AI system represented by x corresponds to an erroneous
decision. At the integration stage, this information will alter the overall response.
With regards to the operations fi performed at the individual nodes (circles in the diagram
on Figure 10), this will focus on the following relevant class:

fi(x) = f (〈wi,x〉 − ci) , (54)

where function f : R → R is piece-wise continuous, wi ∈ Rn, and ci ∈ R. This class of
functions is broad enough to enable the ensemble to function as a universal approximation
device (e.g. choosing function f in the class satisfying conditions discussed in [45]) as well
as to fit into a wide range of common AI architectures including decision trees, multilayer
neural networks, perceptions, and deep learning convolutional neural networks.
Additional insight into “isolation” properties of elements (54) compared with more natural
choices such as ellipsoids or balls (see [98]) is provided in Section 9.5. Over a relevant
period of time, the AI system generates a large finite set of measurements xi. This is
assessed by an external supervisor and partitioned into the union of setsM and Y :

M = {x1, . . . ,xM}, Y = {xM+1, . . . ,xM+k}. (55)

The set M may contain measurements corresponding to expected operation of the AI,
whereas elements from Y constitute core AI’s performance singularities. These singular-
ities may be both desired (related e.g. to “important” inputs u) and undesired (related
e.g. to errors of the AI). The function of the ensemble is to respond to these singularities
selectively by producing improvement signals s in response to elements from the set Y .
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Figure 10: Functional diagram of correcting neuronal ensembles for a generic Artificial
Intelligence system.
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A straightforward approach to derive such ensembles is to use standard optimization facil-
ities such as error back-propagation and its modifications, or other iterative procedures
similar to greedy approximation [45], stochastic configuration networks [89] (see [85]).
However, this may require excessive computational resources. Even in the simplest case
of a single-element add-on system that separates the entire set X from Y , determining
the best possible solution, in the form of e.g. support vector machines [96], is non-trivial
computationally. Theoretical worst-case estimates of computational complexity for de-
termining parameters of the single-element system are of the order O((M + k)3) [100].
The question is if there exists a computationally efficient procedure for determining en-
sembles or add-on networks such that:

1) They “improve” performance of a generic AI system with guaranteed probability.

2) They consist of elements (54).

Preferably the computational complexity of the procedure is to be linear or even sub-
linear in M + k. Subject to some mild technical assumptions on the way the setsM and
Y are generated, a family of simple algorithms with the required characteristics can be
derived. These algorithms are motivated by Stochastic Separation Theorems [1], [2], [6].
For consistency, adapted version of these theorems are presented and discussed in Section
9.1.1. The algorithms themselves are presented and discussed in Section 9.1.2.

4.3 Issue 2: Nonlinear Stochastic Separation Theorems

Kernel classifiers have been recognised as a powerful tool for a range of classification
problems [101], [102]. They offer an extension of linear classifiers to the nonlinear ones
and the Representer Theorem [40] states that kernel classifiers minimise a range of risk
functionals that can be expressed as kernel expansions over sample points. This allows an
expansion of support vector machines [103] to the realm of kernel classifiers and offers a
computationally efficient way to construct classifiers with nonlinear decision boundaries.
Choosing a particular kernel for a given task is recognised as a hard theoretical and
computational problem [104]. Several approaches try to address this, such as grid search
algorithms [105], [106], automatic tuning of kernel parameters [107], genetic algorithms
[108], and other heuristics [109]. These methods allow a selection of optimal feature spaces
via explicit statistical evaluation of kernel classifiers over a family of kernel candidates.
Instead of repeatedly solving a given classification problem with a given family of kernel
classifiers directly, relevant statistical properties of kernels and their corresponding feature
maps are investigated and assessed. This motivation stems from Cover’s theorem [110],
[111], suggesting that higher dimensionality of feature maps relative to that of the original
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data may play a role in success of kernel classifiers, and other relevant bodies of work [1],
[2], [5], [6], [18], [93], [112], [113], [114] on properties and geometry of high-dimensional
spaces. Links between dimensionality and separability have been explored in the literature
on statistical learning theory through e.g. the concept of the Vapnik-Chervonenkis (VC)
dimension [115] measuring richness of classification rules which can be implemented by a
classifier. By adapting stochastic separation theorems [4], [1], [3], [5], [6], [116] to kernel
classifiers and providing their kernel generalizations, these results can derive computable
separability measures for kernel classifiers, including given samples of empirical data (see
[117] exploring the notion of the local Rademacher complexity). One of the outcomes of
such generalization is an explicit characterization of kernel separability properties in terms
of finite-dimensional volume integrals over domains determined by the kernel functions
themselves. This suggests that even when kernel feature maps are infinite dimensional,
separability properties of these maps can be expressed in terms of (finite) dimensionality
of the space to which the original data belongs [99].

4.4 Issue 3: Overcoming The Concentration Limit

As more time and resources are dedicated to optimising current AI system technology,
there’s trepidation regarding it’s full potential, with its failings always in the public
eye. A survey polling 2473 AI-Incorporated companies reported that 25% of companies
experience a failure rate of over 50% [118]. This is a widespread issue, contributing to a
high demand for non-destructive corrective AI systems.
A cascading corrector for one shot methods is desirable. The approach in [2] flags new
errors in each iteration preserving the legacy AI’s structure without back propagation
which can introduce new errors [4],[50]. This criteria requires binary classification that
separates correct classifications from incorrect classifications [5]. A new decision rule is
needed, which detects the current systems failings and forms a correct decision rule. The
correction methods proposed in [6] have been applied to distributions of a reasonably
broad class. This has to satisfy the constraint for probability distributions ρ in a ball Bn:

ρ(y) <
Crn

Vn(Bn)
, (56)

for an arbitrary constant C > 0, the volume of the ball Vn(Bn) and a radius r ∈ (0, 2).
The probability of successful correction can be bounded by 1 − CM

(
r
2

)n, where M is
the number of points in the data sample. If r > 2, the boundary is impractical as

(
r
2

)n
grows exponentially such that this may become negative for a single point. The question
is whether this boundary can extend further with probability distributions that satisfy
this constraint with r > 2, and at what cost.
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Part III

Object Recognition And Case Studies

5 Convolutional Neural Networks

Conventional network structures connect every neuron in the hidden layer to every neu-
ron in the input layer. The computational complexity of conventional neural networks in-
creases proportionally to the size of the starting image (For example, a 128x128x24 square
with 24-bit colours will have 393,216 dimensions for each hidden neuron). Connecting
each neuron to a portion of the available connections through a predefined structure of
input neurons reduces this proportional relationship, such that computational complexity
is more manageable at higher dimensions with this altered structure [119]. Forcing these
connections in multiple layers creates a deep locally connected network.
Further parameter reduction is achieved through weight sharing where the parameters

(a) All neurons to hidden layer (b) Adjacent neurons to hidden layer

Figure 11: Examples of input neurons connecting to the first hidden layer of a network.

are made equivalent. This convolution process applies filters to many positions in the
input signals, connecting to a max pooling layer that takes the maximum value of the
output neurons and feeds the information forward to the next highest layer [120]. This
approach means that these neurons are invariant to any shift in the input network.
This reduction creates the structure for the Convolutional Neural Network (CNN) with
successful results in large scale image and video recognition challenges [121], [122], [123].
The application of translational invariance (See Figure 12) feeds forward to multiple fil-
ters attached to each input neuron, creating a structure of maps whose multi-channeled
outputs are similar to images at the input neuron stage which concatenate colour channels
to a single input. CNN’s have gone through a series of improving iterations [124] with
variations aiming to improve object recognition performance and developing increasingly
computationally efficient technologies and these experiments will demonstrate how these
processes can be implemented into standard image recognition practices [125].
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(a) x1 = [0, 1, 0, 0, 0, 0, 0, . . .] (b) x2 = [0, 0, 0, 1, 0, 0, 0, . . .]

Figure 12: 1D representations of a white dot. Figure 12a is transformed by w2 and is two
pixels away from Figure 12b, transformed by w5. As the weights are equalised, the value
after max pooling is unchanged. This property is called Translational Invariance.

6 Image Visualisation: An Example

Figure 13: Three 28x28x1 images. The left and centre images represent the digit 0 and
the right image is the digit 6

The aim is to correctly label the first two images as the image class "0" and the third
image as the image class "6". All single channel grayscale images can be broken down
into a grid of colour intensities between 0 (black) and 255 (white). This representation is
concatenated into a single vector where small position changes to a non-zero digit greatly
changes the composition of the new vector.
In this example, the difference between the two classes is an appendage protruding from
the top of the shape forming the digit "6". The non-zero pixel intensities in this section
are therefore much higher than the "0" counterpart. The euclidian distance between each
image can then be taken using the formula:

d(a, b) =

√√√√ 28∑
i=1

28∑
j=1

(a(i, j)− b(i, j))2. (57)

The pixelwise distance d between the first and second 28x28x1 images is given to be
about 1000 while the pixelwise distance d between the first and third images is about
3000. Each image is handwritten so intra-class variation must be taken into account
when pixel boundaries are implemented. This can then be mapped with a non linear
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Figure 14: The representation of the number 0 in MNIST is translated into it’s grayscale
pixel value equivalent through the recognition software.

function to correctly identify the data [126]. Correct labelling is nearly impossible to
achieve with linear decision functions however nonlinear functions can be employed for
computationally complex problems such as dealing with natural data like speech and
vision recognition [127].

Figure 15: For a case where x1 = 2, x2 = 6, x3 = 4 (so x1 is closer to x3 than x2 the goal
to have a decision that h(x1) = h(x2) 6= h(x3). The linear function of the left fails to
capture the decision while the nonlinear function on the right does [124].

34



7 Case Study 1: Single Set Gesture Recognition

7.1 Overview

As the structure for vastly reducing the required parameters for images to be classified has
been defined in Section 5, this case study provides a demonstration for how images can be
categorised in real time. A hardware based approach to real time detection is explored.
A dedicated ZYNQ-7000 signal processing board acts as an intermediary between a state
of the art camera and an Operating System (OS). This section details the successful op-
eration of the hardware and software necessary to recognise a single set of one handed
gestures in contrast to a class of unrelated images based on research conducted by ARM
LtD. [128]. Integrating techniques employed in Section ImageVisual, after tuning the
lens the camera tracks gestures in real time. These images are captured and transformed
into signals compared against a set of non-gesture images. A simple CNN detects the
presence of gestures and the results are normalised for further distinction. A summary
of the results is then considered. If the results are satisfactory for single gesture class
recognition, more classes can be added for further detection. In the case that gesture
recognition isn’t possible, more techniques will be considered.

(a) Fixed properties for the
Ethernet port to connect to
the board (wifi can inter-
fere with the process so it is
turned off)

(b) The ping command sends
data to the board and retrieves a
result showing the board is active.

(c) The camera used for
tracking data. The squares
represent different tuning
rings for picture quality.

Figure 16: How to set up and check that the board and camera are correctly connected
to the computer.
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7.2 Hardware Specifications And Required Software

Figure 17: The red box (1) shows a 6 pin power supply through a transformer.
The black box (2) has a back row of 6 lights active when the board is and the front 4
lights show external connections. The centre left light flashes when the camera is active.
The pink box (3) holds a SD card which tells the camera to follow the procedural algorithm
for tracking a given object in the camera’s line of sight.
The gray box (4) shows the gold input cable from a HDMI port to a DVI port on the
back of the camera which provides data to the SD card in the circuit board.
The gold box (5) houses the silver input cable which attaches to an Epiphan DVI2USB
capture card that saves images and transfers them through a USB cable from the card.
The blue box (6) is a port housing an Ethernet cable that goes directly to the computer.
This port flashes white when the camera is on.

After initial set up, the computer is configured to the board’s IP address. In Windows
10, Control Panel ⇒ Network + Internet ⇒ View Network Connections brings up the
Ethernet port. Going into Internet Protocol 4 and changing the IP to 10.5.2.111 (the
same address as the board with subnet mask 255.255.255.0 and default gateway). This
is checked by typing ping 10.5.2.252 into command prompt. An additional circuit board
has a HDMI cable that connects to a capture card via a DVI output to a USB 3.0 cable
that captures images and saves them. VirtualDub is installed along with the capture
card drivers, which checks what the camera records. By opening Veedub64, and clicking
Capture AVI, the camera recording is visible for testing purposes.
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The camera has three variable settings to attain a clear image. The green rectangle in
Figure 16c is the focus lens, which moves the focal plane closer to the camera’s sensor.
The red rectangle in Figure 16c controls the camera’s aperture, dictating the light let
into the lens and the blue rectangle in Figure 16c is the zoom lens which manipulates the
angle of the lens, which can switch a panoramic view to a telephoto view.
The ThumbCollect folder contains the tracking demo (one for the internal webcam and
one for the camera’s connection to the circuit board). Participants sit about two metres
away, towards the camera with their flat palm at arms length away from the body. The
algorithm recognises the gesture and the software takes 250 images for one minute once
the palm has been detected.
A green border will then appear around the subjects hand on screen. When this occurs,
the participant’s hand makes an index finger shape so the camera can record these new
images so the neural network can be trained (this transition takes 10 frames so roughly
240 index finger gestures are in a single session). Multiple participants were used in these
experiments (about 50 in total) for a different range of hands and altogether roughly
10,000 images were collected for the total set of gestures.

(a) The flat palm is shown to the cam-
era as the camera searches for the ges-
ture.

(b) The algorithm positively identifies
the palm and begins tracking the ges-
ture.

(c) The subject switches gestures and
the camera follows the hand move-
ment.

(d) An image of the captured index fin-
ger sent to the computer.

Figure 18: The camera captures a given gesture and how it sends it back to the OS.
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7.3 Image Pre-Processing

When all images are taken, they undergo pre-processing before they are sent to the
neural network for training. The data capture process starts taking images the instance
it recognises a given gesture in it’s field of view. As the length of the gesture away from the
camera isn’t consistent, the size of the images varies between different sessions. Before
the set of gestures is processed, the propriety image manipulation software "Xnview"
is used to resize all images to a consistent height, width and format such that every
image that goes into the CNN is a 128x128 24-bit bitmap square. When the image sizes
are consistent, every image is copied and flipped so the set of 10,000 mostly right hands
became a set of 20,000 hand gestures evenly split between both hands. A class of negative
images was formed whose only common link was that they had no presence of gestures in
each image. From over 300,000 images available, two sets were formed, with a 1:3 ratio of
test to training images (a common ratio for Neural Networks) and a 1:9 ratio of gesture
set to negative set ratio (mimicking later experiments with ten gestures):

1. A test set containing 5000 images of index fingers and 45,000 unrelated images.

2. A training set containing 15,000 images of index fingers and 135,000 unrelated
images.

(a) The original unaltered picture attained
from the camera hardware. This example
is a 254x310 PNG image file however the
data in the training and test sets are 24-bit
bitmaps.

(b) The picture has now been resized to a
128x128 PNG. While the picture has been
compressed and the ratio of height to width
has been altered the key features remain so
it can go through to processing.

Figure 19: An example of image transformation. This was done to all 20000 images
collected for the neural network.
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7.4 Gesture Structure

7.4.1 CNN_MNIST Architecture

This algorithm is heavily based on the architecture in the CNN_MNIST algorithm from
the MatConvNet MATLAB Toolbox [129],[130]. This is trained on the MNIST dataset
[131], a series of handwritten numbers between 0 to 9, on 28x28 grayscale squares split
evenly between a 10,000 image test set and a 60,000 image training set that’s typically
used as a benchmark that CNN’s can be trained on, with the current record only misla-
belling 21 images from the test set with an accuracy of 99.79% [132]. The convolutional
neural network trains itself by running through twenty iterations (referred to in the sys-
tem as epochs) on 100 randomly chosen digits labelled correctly. After training, a table
with details on the eight layers of CNN_MNIST and the plot of epochs against the loss of
the objective function and the chance of the correct label not being the highest prediction
result or within the top five results for both the training and validation sets.

(a) The output of the CNN_ MNIST func-
tion. The process is split into 8 sections
consisting of convolution, max pooling and
rectified linear units before the final soft-
max layer.

(b) After each epoch the error of the objec-
tive function is calculated along with the er-
rors for the top 1 & top 5 prediction. With
each epoch, the error rate exponentially de-
creases to a minimum.

Figure 20: The resulting outputs of the CNN_ MNIST MATLAB file. After completion
the function can then analyse images and output their characterisation and the likelihood
of matching with the result.
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Figure 21: 8 index fingers filtered through MNIST before grayscaling (See Appendix).
The score represents the classification result.
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7.4.2 CNN Structure

Figure 20a gives the layer structure for the modified CNN_MNIST program. The algo-
rithm first funnels the data into the input layer by resizing to 28x28 grayscale squares
matching the format of the MNIST training set. The first convolutional layer connects
the concatenated vector to a bank of 20 single precision 5 × 5 × 1 filters to the second
layer of hidden neurons, shrinking the square image further from 28x28 to 24x24 with
relation:

f : RM×N×K → RM ′×N ′×K′ , x 7→ y. (58)

This convolutional layer precedes the first pooling layer of the algorithm. This halves the
dimension sizes of the current layer through a selected feature operator. CNN_MNIST
chooses the max pooling operator, moving a 2x2 square two pixels across the entire image
(this translation is called the stride), taking the largest number to the next layer resulting
in a 12x12x1 square (another common feature operator is Average Pooling, which takes
all values captured in the stride and outputs the mean of them to the next layer). After
repeating the process, the third convolutional layer is followed by the Rectified Linear
Unit (ReLU) activation function:

f(x) = max(0, x). (59)

This is used to improve gradient propagation and gives more efficient computation [133].
After a final layer of convolution, the softmax layer classifies the image with the label that
has the highest probability of matching the original image (Figure 21 gives the normalised
images with their respective probability of being a gesture).

(a) Correct (b) Incorrect (c) Incorrect (d) Incorrect

Figure 22: CNN_MNIST will be trained to successful categorise the gesture as it’s own
class and the other objects as a non-gesture set. This non-gesture set include landscape
scenery, random objects and objects mimicking gestures to train the program not to
misclassify these false images.
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7.5 Results

After training, a small set of fifty gestures and fifty negatives was formed, featuring fifty
index finger gestures from fifty different participants and mixture of negatives as shown
in Figure 22. The trained convolutional neural network predicted the presence of gestures
with 65.01% certainty in the set of gestures and 63.92% certainty in the set of negatives
(See Figure 23), with a 1.09% difference between classifications.
Following the preliminary results, the whole dataset of 20,000 gestures and 180,000 neg-
ative images was fed into the CNN_MNIST algorithm. This iteration gave 67.90% cer-
tainty for the gestures and 63.06% for the negatives with a difference of 3.84% between
them, with the full range of results presented in the table below.

Index Negative Total
Minimum 0.579207658767700 0.536803066730499 0.536803066730499
Maximum 0.729841709136963 0.733080506324768 0.733080506324768
Range 0.150634050369263 0.196277439594269 0.196277439594269
Mean 0.679025549340248 0.630671212495036 0.635506646179557

Table 1: Contrasting the classification scores of all 200,000 images

By taking 50% as the passing threshold, every image is classed as a gesture according
to the smallest percentage of 53.68% in Table 1. Therefore based on this criteria, both
results are very poor, with the small differences in intraclass gestures and large differences
in intraclass negatives contributing little to distinguishing images. A pattern emerges in
the gesture set (the average for each pixel value is plotted in Figures 23a and 23c) where
both experiments have a notably darker section in the bottom third and centre of the
image, with the other 5/9ths having a notably lighter tone. This occurrence is likely due
to the central index finger gesture along with the participants shoulder being caught in
the images (since each image is mirrored, there is a symmetry along the Y axis such that
the darker section occurs regardless of whether the participant is left or right handed). In
contrast, the negative set has no internal correlations and is an amalgamation of pixels
that’s more pronounced in the fullset version which is a nearly perfect gray square, with
the range of pixel values being just 18 compared to the variation in the gestures, from
104 to 122.
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7.5.1 Average Results For Small And Large Datasets

(a) The average of 50 28x28 images consti-
tuting the Index Fingers in the small set as
an image with the accompanying score.

(b) The average of 50 28x28 images consti-
tuting the Negatives in the small set as an
image with the accompanying score.

(c) The average of 20,000 28x28 images con-
stituting the Index Fingers in the full set as
an image with the accompanying score.

(d) The average of 180,000 28x28 images
constituting the Negatives in the full set as
an image with the accompanying score.

Figure 23: The average values for each pixel in the 28x28 image sets were calculated.
The result was divided by 255 and plotted in MATLAB where 0 is a white square and
1 is a black square. The gesture set has distinctive areas emerging in the bottom third
and centre of the image represented by the central gesture and the camera catching the
shoulders while the negative set is an indistinct gray shape.
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7.5.2 Normalised Results

Total Populations Predicted Condition Positive Predicted Condition Negative
True Condition Positive 1808 18182 (Type II Error)
True Condition Negative 77393 (Type I Error) 102607

Table 2: Truth Table of normalised results.

To refine the results produced from the algorithm, the results are normalised. From the
results in Table 2, subtracting the minimum and dividing by the range gives 200,000 values
between 0 and 1. For the set of normalised results, if the new score is higher than 0.5 then
the image is classed as a gesture and the image if classified as a Negative if the threshold
is not met. With these results, a truth table is made showing the likelihood of Type I and
Type II error and a receiver operating characteristic (ROC) curve is used to illustrate this.
From the table below, the normalised accuracy is calculated as True Positive + True Negative

Total Image Number =
1808+102607

200000
= 0.522125, such that each image has a 52.21% chance of being classified

correctly.

Figure 24: The graph occupies the upper left quadrant of the leading diagonal showing
that there is a trend towards a positive classification when predicting data.
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7.6 Single Gesture Summary

The normalised results show a system that categorises images better than generic ran-
dom selection but not by a statistically significant measure. The 3.84% difference for
pre-normalised scores is a large step down from the 99.2% success rate on MNIST. Most
notably, this algorithm was designed exclusively to work on MNIST, and switching to a
general images is not an optimal approach. Even cropped, there is background variation
that CNN_MNIST accounts for which is magnified when shrunk to a small scale. This
applies to colour channels as the algorithm grayscales images before further processing,
so further detail is lost, contrasting with MNIST which only has white text on a black
background with minimal intra-class overlap. Finally while the original intention sought
the most fitting comparison of ten defined classes, these modifications only try and clas-
sify a set of unrelated images with an amalgamation covered by a single class.
Moving forward, a stronger CNN architecture will be chosen that’s proven capable of han-
dling multiple varied coloured classes at once, with proven results in image recognition
challenges such as ILSVRC [134] and a larger set of related classes to give the recogni-
tion application a dedicated purpose. For this reason, a general purpose sign language
detector was formed with one of the most popular algorithms for image recognition in an
entirely software based process, moving away from the hardware restrictions of the image
processor based properties in this experiment.

(a) F in Semaphore Sign Language (b) F in American Sign Language

(c) F in British Sign Language (d) F in Chinese Sign Language

Figure 25: Gestural applications that object detection can be trained to classify.
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8 Case Study 2: Sign Language Classification

8.1 Overview

After the disappointing results obtained in Section 7, a stronger classifier is necessary.
Rather than a dedicated processor which transfers images from a camera to an OS, this
approach will solely focus on the classification of existing images. Rather than aiming
to track motion in real time, which is the larger focus of the supplied hardware, the aim
of this Section is to create a working CNN that’s able to categorise multiple classes of
images successfully in a computationally efficient manner.
For these tests, the recognition of Deafblind sign language will be tested. This is due to
the language’s high novelty and practical use if successful class partitions can be formed.
The structures of popular CNN’s will be contrasted with each other, with a focus on the
variations of Inception and how advancements in AI architecture have evolved over time.
Once the images have been taken, Inception will train on them, and a final accuracy
score is produced. Patterns will be observed in any mislabelled images and some other
applications will be considered, demonstrating the flexibility of the current state of CNN’s.

8.2 Deafblindness

Deafblindness is a sensory disability resulting from hearing and vision loss, significantly
affecting communication, socialisation, and daily living [135]. Studies report between
0.2% and 3.3% of people suffer from this including 36% of individuals over 85. Ac-
quired Deafblindness happens over time [136], often caused by Usher’s Syndrome [137],
which develops in teenagers as a side effect of brain damage. Alternatively, Conditional
Deafblindness is when a person is deafblind from birth, occuring through pregnancy com-
plications or genetic conditions, often before communication is learned. [138]. Hearing
aids, braille, professional interpreters, and recent developments such as PARLOMA have
helped with direct communication [139] however these are cumbersome as professional
translators are expensive and PARLOMA is still in trial stages.
Continuing with gesture recognition, further classification techniques are used on the Deaf
Blind Sign Language alphabet, a variation on British, Austrian and New Zealand Sign
Language (BANZSL) [135]. This has twenty-six unique classes for each letter performed
by two people: The deaf-blind participant and an interpreter. The interpreter signs mo-
tions onto the other person’s hand and these form complete words and sentences.
Translating sign language using neural networks has been around almost as long as CNN’s
[140], with much work done describing their functionalities and applications [141], [142],
[143], with wearable technology that translates gestural movement into a series of letters
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[144]. Through CNN’s, each gesture is assigned a unique label for the network to correctly
classify. Sign Language recognition often prioritises correct identification of singular let-
ters in languages over whole words. This process called Fingerspelling is appealing as
there’s only 26 labels to classify over thousands of words in any given sign language dic-
tionary such as the over 3000 word lexicon present in American Sign Language [145].
A technology that could convert BANZSL into text would be a huge leap forward for
communication between deafblind people. While there have been strides advancing con-
ventional sign language recognition, this form has very little research on it. This program
uses a deep CNN that recognises respective gestures and produce it’s textual equivalent.

Figure 26: Each deaf-blind gesture and their respective class labels from A to Z.
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8.3 Methods

8.3.1 Pre-Processing

After the experimentation with the image processor, a new set of images is required.
No database exists of cataloged image samples for the Deaf-Blind alphabet, so 26,000
colour images with multiple participants with varying age, gender and skin tone were
taken with a Samsung Galaxy S10+’s front facing 10 megapixel camera (see Figure 26
for examples of each gesture). Each class contains 1000 images taken from all possible
angles, distances and sizes including the signed gestures all at different locations to miti-
gate issues of background noise interfering with classification so the only consistent trait
with inter-class images is the gesture itself.
These experiments will be conducted with a Convolutional Neural Network called Incep-
tion. Most naive CNN’s have a common problem that the most relevant section of an
image class have a large variation in size, sometime occupying a large portion of the image
or in other cases being a minute feature of it. As an example, while other popular CNN’s
such as AlexNet and VGGNet have proved successful with repeating convolutional layers
fixed to either large filters or grids of multiple smaller filters [146], they suffer from huge
computational requirements which can compound when working with large datasets as
will be necessary for this stage of the project. For example, VGGNet uses multiple 3x3
filters, at the pre-fully connected layer these require 512 as inputs and outputs giving
9x512x512 calculations in total, nearly two and a half million for each consecutive filter.
This makes choosing the kernel sizes for convolutional operations in deep networks cru-
cial, as larger kernels are recommended for globally distributed information and small
kernels are recommended for locally distributed information [147], with these operations
often being computationally expensive.
The first iteration of Inception (also knows as GoogLeNet) side-stepped this problem

by having filters of multiple sizes (1× 1, 3× 3, 5× 5) operating on the same level, making
a wider network as opposed to a deeper network. The results are the concatenated and
sent to the next inception module until the final softmax layer classifies each resulting
vector (this is the image’s bottleneck). While deep neural networks are usually compu-
tationally expensive, Inception employs extra 1x1 convolutions that limit the amount of
input channels and are less computationally expensive than the regular "naive" method.
The second version of Inception aimed to reduce the number of representational bottle-
necks. This contains a large loss of information through too many dimensions being
reduced from the image’s original state along with improving the factorisation method
that deduced which filter path was the most optimal to decrease computational com-
plexity [149]. As a 5× 5 convolution is 2.78 times more computionally expensive than a
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Figure 27: Cross section of the most common architectures of Inception [148].

3 × 3 variant, two 3 × 3 filters were stacked in place of the 5 × 5 section increasing the
algorithms performance. This process was applied again dimension-wise, as factorising
n× n filters to 1× n then n× 1 also reduced complexity, with the 3× 3 case being 33%
cheaper than the process in Inception Version 1. Along with expanding the filter banks
so that three variants of the regular inception module were utilised related to their place
in the algorithm and this second version was faster computationally and has less errors.

Network Top-5 Error Top-1 Error
GoogLeNet (V1) N/A 7.9%
BN-Inception (V2) 22.0% 5.8%
Inception-V3 18.8% 4.3%

Inception-ResNet-V1 18.8% 3.8%
Inception-V4 17.7% 3.8%

Inception-ResNet-V2 17.8% 3.7%

Table 3: Each variation of Inception along with the Top-1 and Top-5 from a single model
with 144 cropped sections evaluated from the ILSVRC 2012 classification benchmarks
(the variant used for future tests in bold).[149], [150].

The version used for this project is Inception Version 3. Released in 2015, this introduces
minor changes from Inception Version 2 such as the introduction of 7x7 convolution lay-
ers in a 1× 7→ 7× 1 convolution pattern along with label smoothing which regularises
losses that prevents overfitting. The results for Inception Version 3 are superior to sim-
ilar networks of it’s time. Since these experiments were performed, Inception Version 4
was released which streamlines the architecture with reduction blocks that are now ex-
plicitly defined, cleaning the structure leading to improved computational costs. There
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are also two versions of Inception-ResNet, with similar costs to Inception Version 3 &
4 respectively however residual connections are introduced that add the output of the
convolutional operation to the inception module for smaller error loss [150]. While these
versions do work faster and produce better results. The results were given with the third
version so there would be a better spread of label mis-matches to correct in Section IV.

8.3.2 Processing

Each image is resized to a 299x299x3 square regardless of shape where all images comprise
of 268,203 values between 0 and 255 in this structure for each of the three RGB colour
channels. Then the images go through five initial convolutional layers with interspersed
max pooling layers before being filtered into groups based on correlation statistics of the
previous layer [151], with the necessity for the larger filters increasing through each pass
with a module variant with expanded filter banks in the last two blocks before the final
concatenation and grid reductions taking place twice during this process. Inception runs
through all 26,000 images with a learning rate of 0.01 and 15,000 training steps and a
batch size of 100 images for the training, test and validation steps, such that 10% of this
set is used for training and 10% is used for validation. This process creates a single 1x2048
vector for each image before being classification by the final softmax layer. This assigns
a likelihood that the image corresponds to the given label and the highest likelihood is
chosen as Inception’s prediction. With 26 labels and N+2048N parameters where N is
the number of labels, there are 53,274 parameters in total that Inception runs through
in the softmax layer for a single image [152].

8.4 Results

Inception mislabelled 988 deaf-blind gestures, giving a final accuracy total of 96.2% with
zero threshold after the final softmax layer. The error split presented in Figure 28 shows
the ratio of the errors present, with most gestures falling within the baseline of three
standard deviations excepting the gestures for M (and O marginally). Looking into the
abnormal number of errors for M, of the 97 errors present in the 1000 pictures tested, 54
of these predicted N as the correct gesture, with an average difference of 0.17 between
these predictions of N being the present gesture (incorrect) and M being the present
gesture (correct). The difference between these two gestures is slight, as the M gesture
is performed by putting the middle three fingers across the recipients palm and the N
gesture is made by putting just the middle and index finger on the palm (See M & N
in Figure 26). Especially from angles parallel to the participant’s hand, some of the
these can be very hard to distinguish from each other accounting for these large portion
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Figure 28: Percentage split of the 988 errors with a mean of 38 and a standard deviation
of 21.6

of errors. The accuracy values for the mislabelled images is comparatively high (see
Figure 29a), with Inception being assured that the labels it did mismatch are correct,
however looking at the differences between the top labels (see Figure 29b), there is an
exponential curve formed where even having a threshold of 0.1 would cause 474 errors
to be reconsidered (48% of the total amount) with even higher thresholds being worth
considering depending on the data’s sensitivity. This is derived from the normalised data
points 〈 xi

||xi|| ,
yi
||yi||〉 with 209 principal components made in the regularisation portion of

the algorithm, a 90% component reduction from the original 1x2048 bottleneck vector.
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(a) The frequency of the highest accuracy
values for each of the present errors.

(b) Accuracy difference between the two la-
bels Inception predicted the highest.

(c) Plot of the accuracy Inception provides
over the number of epochs.

(d) Plot of the cross entropy from Inception
over the number of epochs

Figure 29: Results from Inception Version 3 tested on the Deaf-Blind dataset.

8.5 Summary

This presents an algorithm capable of detecting BANZSL Deaf-Blind sign language with
a high rate of accuracy. This breaks down communication barriers present between the
Deaf-Blind population and the rest of the world and with these results. Further develop-
ment can expand the current deaf-blind vocabulary as new words can avoid repetitious
dactylologies (BANZSL has over 5000 words in its lexicon and there is no difficulty adding
these as extra classes based on the research provided). Other tactile sign languages can
be added such as TADOMA which involves having your middle three fingers over the face
of the deaf-blind participant to communicate [153], further increasing the field of what
can be recognise by such a technology. Finally, this dataset can be made open source for
other users to contribute their own images for further sign language classification.
With the new technology tested on the BANZSL deaf-blind alphabet, the successful re-
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sults meant that other avenues of image recognition could be tested for further optimiza-
tion analysis. Since the current research was in gesture recognition, this can be expanded
into two further areas of interest with little to no prior research in their fields and both
sets of classes were perfect for further experimentation into dactylological research.

8.6 Further Applications

8.6.1 Semaphore Recognition

Figure 30: Representations of all thirty classes performed with two red and orange flags.
These are all static positions except for Error which places both flags upright and is
unique to the gesture’s motion without conflicting with other signals.

Semaphore is a long range communication system using the transference of visual signals
that has been around since 1792 when Claude Chappe came up with a series of relay
towers equipped with two moveable flagpoles that could be seen up to 20 miles away with
the aid of a spyglass [154]. Today, Semaphore uses two arm length flags to perform full
body gestures that correspond to individual letters and numbers with special positions for
direct signals (See Figure 30). This practice is still used by maritime organisations and
mountaineers where oral and electronic communications can fail with difficult weather
conditions, showcasing a current need for further research in automated detection [155].
Existing Semaphore recognition literature alludes to body recognition systems that track
the position of the body and it’s relation to the gesture being performed [156]. This
approach has the advantage of being able to track movements in real time and often with
small error rates however as with PARLOMA in the deaf-blind situation, these methods
are comparatively impractical to the approach presented here. Using Inception Version
3 for 30,000 images split evenly into 30 classes, the algorithm achieves a 99.82% success
rate, with 53 errors between all classes (12 classes contained no errors while B, E & V
contained more than six mislabels likely due to class overlap although this is relatively
minor).

The technology can be taken even further down this branch, extending the current lexi-
con. Japanese Flag Semaphore uses a solid red and white flag compared to the diagonal
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Figure 31: Each of the forty-eight classes in the Japanese Semaphore Alphabet, performed
with a red flag in the left hand and a white flag in the right hand [157]. Characters in
this format can use combinations of fifteen base signals to represent a larger repertoire of
characters such that a theoretical detection would have to take into account the previous
positions to deduce the currently signed character.

pattern of western semaphore. This language also consists of 48 different characters for
each letter in the katakana alphabet (see Figure 31) and while there have been attempts
to categorise the alphabet [158], further improvements can be made. As the flag colours
have different patterns, no two positions in both languages are exactly alike, leaving a
possible 78 positions that could be tried for an expanded system.

8.6.2 Multiple Sign Language Classification

From the successful results with deaf-blind sign language and the western semaphore
alphabet, building on the suggested idea of a program that could classify two different
semaphore alphabets with no existing overlap, this idea was carried over into translating
multiple tactile sign languages into their textual equivalent. Unlike Semaphore which is
only used to transmit long range signals as a secondary communication method, Sign
Language is spoken by roughly 70 million people in the world. The exact figures of how
many tactile variations there are differ, with some expressions being the visual equivalent
of accents rather than unique lexicons however estimates show there are between 150 and
300 catalogued sign language variants [159].
This technology will focus on recognising the eighty-five unique gestures present in three
of the most widely used sign languages:

1. American Sign Language (Known by 500,000 people in the United States [140]).

2. British Sign Language (Known by 150,000 people in the United Kingdom [160]).

3. Chinese (Pinyin) Sign Language (Estimated to be known by 2,500,000 people in
China).
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American Sign Language
British Sign Language

Chinese Sign Language

Figure 32: For multiple languages it’s important to correctly categorise unique gestures.
For example, the sign for C (Red Box) is consistent through all languages while the
symbols for F (Green Box) only occur in those classes. A preference should also be made
to the user on which language they think is being presented as the gestures presented in
the Blue Box are the same but represent different letters in their respective languages.

While directed single language gesture recognition has produced very promising results,
such as a test on a 5113 word lexicon for Chinese Sign Language giving a final accuracy
rate of 91.9% [161] with motion gloves, class overlap becomes a very big problem when
working with large amounts of gestures. With both intra-class and extra-class similarities
being a problem, the work achieved previously [162] will be amended such that the same
sign will be universal through each sign language lexicon, and a preference could be made
to the end user. This technology is ideal for a user who understands that some tactile
language is being performed however they do not understand which dialectical variation
this could be. With one notable exception [163], this is an under-covered problem and
one where the results could be life changing for the 466 million people in the world who
have hearing loss (34 million of these people being children [164]).
InceptionV3 correctly labeled 90.66% of the images. The difference between chosen label
value and correct label was small through most of the errors. All the errors were within
3 s.t.d’s (43 errors) of the error mean (93 errors), such that there wasn’t any particular
class that consistently gave mislabelled images.
Despite 7941 errors, this is a strong enough result that further tests on gesture recognition
can be warranted. The three datasets were taken by myself and while the most diverse
approach was taken, adding more people of differing ages, genders, races and disabilities
could improve conventional detection. Since a strong foundation has been established,
entire words can be included just as the result for Chinese Sign Language [161] proved
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was possible. More popular languages can be added such as Japanese Sign Language
(JSL) and Spanish Sign Language (SSL) to increase the programs validity. Finally this
research can be made open source, so other users can contribute their own findings or
image classes so the algorithm doesn’t become complacent picking up on details irrelevant
to the gesture classes as a better system is developed within the community.

Figure 33: The confusion matrix shows the performance of the supervised learning algo-
rithm. Each row shows the instance in the predicted class while the column represent
the actual class. The colour bar shows the intensity of how many labels correspond to
that class. The dark red line in the leading diagonal shows a strong rate of true positives
while the dark blue squares surrounding it shows there is a very weak concentration of
errors scattered elsewhere with no strong tendencies towards a particular incorrect label
in any of the 85 cases.
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Part IV

Extensions Of Stochastic Separation
Theorems And Algorithms For Efficient
Error Correction In Legacy AI Systems

9 Separation Of K-Tuples For Product Measure Dis-

tribution

9.1 Main Results

9.1.1 Mathematical Preliminaries

Following standard assumptions (see e.g. [95], [96]), suppose that all x are generated in
accordance with some distribution, and the actual measurements xi are samples from this
distribution. For simplicity, a traditional setting in which all such samples are identically
and independently distributed (i.i.d.) [95] is adopted. With regards to the elements of
xi, the following technical condition is assumed:

Assumption 1 Elements xi are random i.i.d. vectors drawn from a product measure
distribution:

A1) Their xij-th components are independent and bounded random variables Xj: −1 ≤
Xj ≤ 1, j = 1, . . . , n,

A2) E[Xj] = 0, and E[X2
j ] = σ2

j .

The distribution itself, however, is supposed to be unknown. Let

R2
0 =

n∑
i=1

σ2
i > 0. (60)

Then the following result holds (see [1]).

Theorem 4 Let xi ∈ M ∪ Y be i.i.d. random points from the product distribution
satisfying Assumption 1, 0 < δ < 1, 0 < ε < 1 and R0 > 0. Then
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1) for any i,

P

(
1− ε ≤ ‖xi‖

2

R2
0

≤ 1 + ε

)
≥ 1− 2 exp

(
−2R4

0ε
2

n

)
;

P

(
‖xi‖2

R2
0

≥ 1− ε
)
≥ 1− exp

(
−2R4

0ε
2

n

)
;

(61)

2) for any i, j, i 6= j,

P

(〈
xi
R0

,
xj
R0

〉
< δ

)
≥ 1− exp

(
−R

4
0δ

2

2n

)
;

P

(〈
xi
R0

,
xj
R0

〉
> −δ

)
≥ 1− exp

(
−R

4
0δ

2

2n

)
;

(62)

3) for any given y ∈ [−1, 1]n and any i

P

(〈
xi
R0

,
y

R0

〉
< δ

)
≥ 1− exp

(
−R

4
0δ

2

2n

)
. (63)

Proof of Theorem 4 as well as other technical statements are provided in Section 9.4.

Remark 1 Note that if σ2
i > 0, then R2

0 > nmini{σ2
i }. Hence the r.h.s. of (61)–(63)

become exponentially close to 1 for n large enough.

The following Theorem is now immediate:

Theorem 5 (1-Element separation) Let elements of the setM∪Y be i.i.d. random
points from the product distribution satisfying Assumption 1, 0 < ε < 1, and R0 > 0.
Consider xM+1 ∈ Y and let

`1(x) =

〈
x

R0

,
xM+1

R0

〉
, h1(x) = `1(x)− 1 + ε. (64)

Then

P (h1(xM+1) ≥ 0 and h1(xi) < 0 for all xi ∈M)

≥ 1− exp

(
−2R4

0ε
2

n

)
−M exp

(
−R

4
0(1− ε)2

2n

)
.

(65)

(This proof is provided in Section 9.4.)

Remark 2 Theorem 5 establishes the fact that the setM can be separated away from
Y by a linear functional with reasonably high probability. It also specifies the separating
hyperplane, (64), and provides an estimate from below of the probability of such an event,
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(65). This estimate, as a function of n, approaches 1 exponentially fast. Note that the
result is intrinsically related to the work [113] on quasiorthogonal dimension of Euclidian
spaces.

Theorem 6 below summarises the case when the set Y contains more than one element.

Theorem 6 (k-Element separation. Case 1) Let elements of the setM∪Y be i.i.d.
random points from the product distribution satisfying Assumption 1, and R0 > 0. Let,
additionally, 〈

xi
R0

,
xj
R0

〉
≥ β, (66)

for all xi,xj ∈ Y, xi 6= xj. Pick 0 < ε < 1. Observe that

1− ε+ β(k − 1) > 0, (67)

and consider

`k(x) =

〈
x

R0

,
x

R0

〉
, x =

1

k

k∑
i=1

xM+i,

hk(x) =`k(x)− 1− ε+ β(k − 1)

k
.

(68)

Then

P (hk(xj) ≥ 0 & hk(xi) < 0 for all xi ∈M, xj ∈ Y)

≥ 1− k exp

(
−2R4

0ε
2

n

)
−M exp

(
−R

4
0(1− ε+ β(k − 1))2

2k2n

)
.

(69)

(The proof is provided in Section 9.4.) The value of β in estimate (66) may not be
available. If this is the case then the corollaries from Theorems 5 and 6 apply.

Corollary 1 (k-Element separation. Case 1) Let elements of the setM∪Y be i.i.d.
random points from the product distribution satisfying Assumption 1, and R0 > 0. Pick
0 < δ,&0 < ε < 1. Observe that

1− ε− δ(k − 1) > 0, (70)

and let

`k(x) =

〈
x

R0

,
x

R0

〉
, x =

1

k

k∑
i=1

xM+i,

hk(x) =`k(x)− 1− ε− δ(k − 1)

k
.

(71)
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Then

P (hk(xj) ≥ 0 & hk(xi) < 0 for all xi ∈M, xj ∈ Y)

≥ 1− k exp

(
−2R4

0ε
2

n

)
− k(k − 1)

2
exp

(
−R

4
0δ

2

2n

)
−M exp

(
−R

4
0(1− ε− δ(k − 1))2

2k2n

)
.

(72)

Corollary 2 (k-Element separation. Case 2) Let elements of the setM∪Y be i.i.d.
random points from the product distribution satisfying Assumption 1, 0 < ε < 1, 0 < µ <

1− ε and R0 > 0. Pick xj ∈ Y and consider

`k(x) =

〈
x

R0

,
xj
R0

〉
, hk(x) = `k(x)− 1 + ε+ µ,

Ω =

{
x ∈ Rn

∣∣∣∣〈xjR0

,
xj − x
R0

〉
≤ µ

}
.

(73)

Then

P (hk(x) ≥ 0 and hk(xi) < 0 for all xi ∈M,x ∈ Ω)

≥ 1− k exp

(
−2R4

0ε
2

n

)
−M exp

(
−R

4
0(1− ε− µ)2

2n

)
.

(74)

Proofs of the corollaries are provided in Section 9.4. Theorems 4 – 6 and Corollaries 1, 2
suggest that simple elements (54) with f being mere threshold elements

f(s) = Step(s) =

{
1, s ≥ 0

0, s < 0
, (75)

possess remarkable selectivity. For example, according to Theorem 5, the element

f (〈x,w〉 − c) , w =
xM+1

R2
0

, c =
‖xM+1‖2

R2
0

, (76)

assigns “1” to xM+1 and “0” to all xi ∈ M with probability that is exponentially (in
n) close to 1. To illustrate this point, consider a simple test case with a set comprising
of 10, 000 i.i.d. samples from the (uniform) product distribution in [−1, 1]n. For this
distribution, R0 =

√
n/3, |M| = M = 9999, and estimate (65) becomes:

P (h1(xM+1) ≥ 0 and h1(xi) < 0 for all xi ∈M)

≥ 1− exp

(
−2

9
nε2

)
−M exp

(
− 1

18
n(1− ε)2

)
.

(77)
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Figure 34: The probability (frequency) that an element of the setM (formed by random
i.i.d. vectors drawn from the n-dimensional cube [−1, 1]n) is separable from the rest
by hyperplanes (64) (and their variants) as a function of n; M = |M| = 10, 000. Red
stars correspond to empirical frequencies of the events Ai: 〈xi,xj〉 < ‖xi‖2 for all xj ∈
M, xi 6= xj. Blue circles show frequencies of the events Bi: ‖xi‖2/R2

0 ≥ 1 − ε and
〈xi/R0,xj/R0〉 < 1 − ε for all xj ∈ M, xi 6= xj, ε = 0.2. Black squares show the
right-hand side of probability estimate (77) for the same value of ε = 0.2.

The right-hand side rapidly approaches 1 as n grows. The estimate, however, could be
rather conservative as is illustrated with Figure 34. An alternative approach allows a
small margin of error by determining a hyperplane separating the set Y from nearly all
elements x ∈M. An estimate of success for the latter case follows from Lemma 1 below

Lemma 1 Let elements of the setM be i.i.d. random points, and let

`(x) = 〈x,w〉 , h(x) = `(x)− c, (78)

and 0 ≤ p∗ ≤ 1 be such that
P (h(xi) ≥ 0) ≤ p∗, (79)

for an arbitrary element xi ∈M. Then

P (h(x) ≥ 0 for at most m elements x ∈M) ≥

(1− p∗)M exp

(
(M −m+ 1)p∗

1− p∗

)(
1− 1

m!

(
(M −m+ 1)p∗

(1− p∗)

)m)
.

(80)
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Figure 35: Probability estimates (77) (black squares) and (81) (magenta triangles) as
functions of n for the setM formed by random i.i.d. vectors drawn from the n-dimensional
cube [−1, 1]n and ε = 0.2.

(The proof is provided in 9.4.) According to Lemma 1 and Theorem 4,

P (h1(xM+1) ≥ 0 and h1(xi) ≥ 0 for at most n xi ∈M)

≥ (1− p∗)M exp

(
(M − n+ 1)p∗

1− p∗

)(
1− 1

n!

(
(M − n+ 1)p∗

(1− p∗)

)n)
− exp

(
−2R4

0ε
2

n

)
, p∗ = exp

(
−R

4
0(1− ε)2

2n

)
.

(81)

n+ 1 random points (in general position) are linearly separable with probability 1. With
probability 1, spurious n points can be separated away from xM+1 by a second hyperplane.
Figure 35 compares separation probability estimates for such a pair of hyperplanes with
that of the hyperplane formed by h1 in Theorem 5, (65).

9.1.2 Fast AI Up-Training Algorithms

Theorem 6 as well as Corollaries 1, 2 and Lemma 1 provide a simple computational
framework for construction of networks and cascades of elements (54). Following the
setup presented in Section 4.2, recall that the data is sampled from the core AI system
and is partitioned into the setsM and Y . The latter set Y corresponds to singular events
which are picked up by the cascade. Their union, S = M∪ Y , is the entire available
dataset for cascade construction. The algorithms for fast construction of the correcting
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ensembles can now be developed. The first algorithm is a recursion of which each iteration
is a multi-step process. This algorithm is provided below.

Algorithm 1 (Correcting Ensembles) Initialization: set M1 = M, Y1 = Y , and
S1 = S, define a list or a model of correcting actions – formalised alternations of the core
AI in response to an error/error type.

Input to the i-th iteration: SetsMi, Y i, and S i =Mi ∪Y i; the number of clusters,
p, and the value of filtering threshold, θ.

1. Centering. All current data available is centered. The centered sets S ic and Y ic
are formulated by subtracting the mean x(S i) from the elements of S i and Y i,
respectively:

S ic = {x ∈ Rn|x = ξ − x(S i), ξ ∈ S i}, (82)

Y ic = {x ∈ Rn|x = ξ − x(S i), ξ ∈ Y i}, (83)

2. Regularization. The covariance matrix, Cov(S i), of S i is calculated with the cor-
responding eigenvalues and eigenvectors. New regularized sets Sr, Yr are pro-
duced as follows. All eigenvectors h1, h2, . . . , hm with corresponding eigenvalues
λ1, λ2, . . . , λm that are above a given threshold combine into a single matrix H =

(h1|h2| · · · |hm). The threshold can be chosen on the basis of the Kaiser-Guttman
test [165] or otherwise (e.g. by keeping the ratio of the maximal to the minimal in
the set of retained eigenvalues within a given bound). The new sets are defined as:

S ir = {x ∈ Rm|x = HT ξ, ξ ∈ S ic}, (84)

Y ir = {x ∈ Rm|x = HT ξ, ξ ∈ Y ic}, (85)

3. Whitening. The two sets then undergo a whitening coordinate transformation en-
suring that the covariance matrix of the transformed data is the identity matrix:

S iw = {x ∈ Rm|x = Wξ, ξ ∈ S ir, W = Cov(S ir)−
1
2}, (86)

Y iw = {x ∈ Rm|x = Wξ, ξ ∈ Y ir, W = Cov(S ir)−
1
2}, (87)

4. Projection (optional). Project elements of S iw, Y iw onto the unit sphere by scaling
them to the unit length: x 7→ ϕ(x), ϕ(x) = x/‖x‖.

5. Training: Clustering. The set Y iw (the set of errors) is partitioned into p clusters
Y iw,1, . . . ,Y iw,p that’s elements are pairwise positively correlated.
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6. Training: Nodes creation and aggregation. For each Y iw,j, j = 1, . . . , p and its
complement S iw \ Y iw, j the following separating hyperplanes are constructed:

hj(x) =`j(x)− cj,

`j(x) =

〈
wj

‖wj‖
, x
〉
, cj = min

ξ∈Yiw, j

〈
wj

‖wj‖
, ξ
〉

wj =(Cov(S iw \ Y iw,j) + Cov(Y iw,j))
−1(x(Y iw,j)− x(S iw \ Y iw,j)).

(88)

Retain only hyperplanes where cj > θ. For each retained hyperplane, a correspond-
ing element (54) is made:

fj(x) = f

(〈
WHT (x− x(S i)), wj

‖wj‖

〉
− cj

)
, (89)

with f being a function that satisfies: f(s) > 0 for all s ≥ 0 and f(s) ≤ 0 for all
s < 0, and add it to the ensemble. If optional step 4 was used then the functional
definition of fj becomes:

fj(x) = f

(〈
ϕ
(
WHT (x− x(S i))

)
,
wj

‖wj‖

〉
− cj

)
, (90)

where ϕ is the mapping implementing projection onto the unit sphere.

7. Integration/Deployment. Any x generated by the original core AI is put through
the ensemble of fj(·). If for some x, any value of fj(x) > 0, then a correcting action
is performed on the core AI. The action depends on the purpose of correction as
well as on the problem at hand. This could include label swapping, signalling an
alarm, ignoring/not reporting etc. The combined system becomes new core AI.

8. Testing. Assess performance of new core AI on a relevant data set. If needed, gener-
ate new setsMi+1, Y i+1, S i+1 (with possibly different error types and definitions),
and repeat the procedure.

Steps 1–3 of the algorithm are standard pre-processing routines. In the context of The-
orems 4–6, step 1 ensures that the first part of A2) in Assumption 1 holds, and step 2,
along with regularization, guarantees that all components of xi are uncorrelated (a nec-
essary condition for part A1) of Assumption 1 to hold). The Whitening transformation
in step 3, normalizes the data so that σ2

i = 1 for all relevant values of i. Step 4, whilst
optional, is introduced to account for data irregularities and clustering that may nega-
tively affect data separability. An illustration of potential utility of this step is shown in
Figure 36, however individual components of the data vectors may no longer satisfy the

64



Figure 36: Linear separability via projection onto a sphere. Sets A (shown as a shaded
gray domain) and B (depicted as a blue filled hexagon) are not linearly separable in
the original coordinates. Their projections onto the sphere, however, are separable (the
separating hyperplane is shown in red).

independence assumption. Nevertheless, if the data is reasonably distributed, different
versions of separation theorems may apply to this case too [2], [6]. Section 9.2 illustrates
the effect of this step in an example application. Step 5, clustering, is motivated by
Theorem 6 and Corollaries 1, 2 suggesting that the rate of success in isolating multiple
points from the background set M increases when these multiple points are positively
correlated or are spatially close to each other. Step 6 is a version of (68), with a differ-
ent normalization and a slight perturbation of weights. This particular normalization is
motivated by the experiments shown in Figure 34. As for the choice of weights, these
hyperplanes are standard Fisher discriminants, although they are not far from (68). In
view of the previous steps, Cov(S iw \Y iw,j) + Cov(Y iw,j) is diagonally dominated and close
to the identity matrix. When |S iw| � |Y iw,j|, term x(S iw \ Y iw,j) is nearly zero, and hence
wj is approximately at the centroid of the cluster. Node filtering is necessitated by the
concentration of measure effects as exemplified by Theorem 4. Functions f in step 7 can
be implemented using a range of ReLU, threshold, tanh(·), sigmoidal functions etc. These
are available in the majority of standard core AI systems. Computational complexity of
each step in the recursion, except for step 5, is at most M +k. Complexity of the cluster-
ing step may generally be superpolynomial (worst case) as is e.g. the case for standard
k-means clustering [166]. If sub-optimal solutions are accepted [167] then the complexity
of this step scales linearly with M + k. Further computational optimisations are possible
through randomised procedures such as in k-means++ [168]. Algorithm 1 is based on the
intuition and rationale stemming from Theorem 5, 6 and their corollaries. This can be
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modified to take advantage of the possibilities offered by Lemma 1 and the subsequent
discussions. The modifications are that each node added in step 6 is assessed and “cor-
rected” by an additional hyperplane as required. The modified algorithm is summarised
as Algorithm 2 below.

Algorithm 2 (With cascaded pairs) Initialization: setM1 =M, Y1 = Y , and S1 =

S, define a list or a model of correcting actions – formalised alternations of the core AI
in response to an error/error type.

Input to the i-th iteration: SetsMi, Y i, and S i =Mi ∪Y i; the number of clusters,
p, and the value of filtering threshold, θ.

1-5. As in Algorithm 1.

6. Training: Nodes creation and aggregation. For each Y iw,j, j = 1, . . . , p and its
complement S iw \ Y iw, j construct the following separating hyperplanes:

hj(x) =`j(x)− cj,

`j(x) =

〈
wj

‖wj‖
, x
〉
, cj = min

ξ∈Yiw, j

〈
wj

‖wj‖
, ξ
〉

wj =(Cov(S iw \ Y iw,j) + Cov(Y iw,j))
−1(x(Y iw,j)− x(S iw \ Y iw,j)).

(91)

Only retain hyperplanes where cj > θ. For each retained hyperplane, create a
corresponding element fj(·) in accordance to element (89) (or (90) if step 4 was
used). For each retained hyperplane,

• Determine the complementary set Cj comprised of elements x ∈ S iw \ Y iw for
which hj(x) ≥ 0 (the set of points that are accidentally picked up by the fj
“by mistake”)

• project elements of the set Cj ∪Y iw,j orthogonally onto the hyperplane hj(x) =

`j(x)− cj as

x 7→
(
I − 1

‖wj‖2
wjw

T
j

)
x+ cj

wj

‖wj‖
= P (wj)x+ b(wj, cj); (92)

• Determine a hyperplane

hj,2(x) = `j,2(x)− cj,2, `j,2(x) = 〈wj,2,x〉. (93)

Separating projections of Cj from Y iw,j so that hj,2(x) < 0 for all projections
from Cj and hj,2(x) ≥ 0 for all projections from Y iw,j. If no such planes exist,
a fisher linear discriminant or another relevant procedure may be used.
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• Create a node

f⊥j (x) = f
(〈
P (wj)WHT (x− x(S i)) + b(wj, cj),wj,2

〉
− cj,2

)
, (94)

or, in case step 4 was used

f⊥j (x) = f
(〈
P (wj)ϕ(WHT (x− x(S i))) + b(wj, cj),wj,2

〉
− cj,2

)
; (95)

• Create the pair’s response node, f c
j , so that a non-negative response is gener-

ated only when both nodes produce a non-negative response

f c
j (x) =f

(
Step(fj(x)) + Step(f⊥j (x))− 1

)
; (96)

• add the combined f c
j (·) to the ensemble.

7. Integration/Deployment. Any x that is generated by the original core AI is put
through the ensemble of f c

j (·). If for some x any of the values of f c
j (x) > 0 then

a correcting action is performed on the core AI. The action is dependent on the
purpose of correction as well as the current issue. This could include label swapping,
signalling an alarm, ignoring/not reporting etc. The combined system becomes new
core AI.

8. Testing. Assess performance of new core AI on a relevant data set. If needed, gener-
ate new setsMi+1, Y i+1, S i+1 (with possibly different error types and definitions),
and repeat the procedure.

The next section illustrates how these algorithms work in a case study example involving
a core AI in the form of a reasonably large convolutional network trained on a moderate-
size dataset.

9.2 Distinguishing the Ten Digits in American Sign Language: a

Case Study

9.2.1 Setup and Datasets

This case study investigates and tests the approach on a challenging problem of gesture
recognition in the framework of distinguishing ten digits in American Sign Language. To
apply the approach, a core AI had to be generated first. As the core AI, Inception Version
3 [170] (whose architecture is shown in Figure 37) is used. The model was trained on ten
sets of images that correspond to the American Sign Language gestures for 0-9 (see Figure
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38). Each set contained 1000 unique images consisting of profile shots of the person’s

Figure 37: Architecture of the adopted Inception deep neural network model.

hand, along with 3/4 profiles and shots from above and below. The states xi are the
vectors containing the values of pre-softmax layer bottlenecks of size n for however many
neurons are in the penultimate layer. Schematically the network’s layer whose outputs
are xi is shown in the diagram in Figure 37 as the fully connected (bottleneck layer) in
Unit H. Elements of this set that gave incorrect readings are noted and copied into the
set Y .

9.2.2 Experiments and results

Once the network was trained, additional 10,000 images of the same ratio were evaluated
using the trained system. For these experiments the classification decision rule was to
return a gesture number that corresponds to the network output with the highest score if
the highest score exceeds a given threshold, γ ∈ [0, 1]. Ties are resolved by a arbitrarily
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Figure 38: Examples of the sort of images that appear in the current model’s data set of
the American Sign Language single hand positions for 0 (top left) to 9 (bottom right)

Table 4: Error types in the system. Stars mark instances/events that are not accounted
for.

Presence of System’s Error
a gesture response Type

Yes Correctly classified True Positive
Incorrectly classified False Positive

Not reported False Negative
No Reported False Positive*

Not reported True Negative*

random selection. If the highest score is smaller than or equal to the threshold then no
responses are returned. To assess performance of the resulting classifier, the following
indicators as functions of threshold γ hold:

True Positive Rate (γ) =
TP (γ)

FN(γ) + TP (γ)
,

Misclassification Rate (γ) =
FP (γ)

FP (0)
,

(97)

where TP (γ) is the number of true positives, FN(γ) is the number of false negatives, and
FP (γ) is the number of false positives. The definitions of these variables are provided in
Table 4. In these experiments no negatives were added to the test set, as the original fo-
cus is to illustrate how the approach may cope with misclassification errors. This implies
that the number of True Negatives is 0 for any threshold γ ∈ [0, 1] and, consequently,
the rate of false positives is always 1. Therefore, instead of using traditional ROC curves
showing the rate of true positives against the rate of false positives, a different family of
curves in which the rate of false positives is replaced with the rate of misclassification as
defined by (97) are utilised. A corresponding performance curve for this Core AI system
is shown in Figure 39. At γ = 0 the result was an 82.4% success rate. At this end of the
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Figure 39: Performance curve for the Core AI system (Inception) on the testing set of
10,000 images. Threshold γ was varying from 1 (bottom left corner) to 0 (top right
corner)

Table 5: Errors per gesture (misclassifications). Top row corresponds to the gesture
number, the bottom row indicates the number of errors for each gesture.

0 1 2 3 4 5 6 7 8 9
10 52 235 62 410 80 269 327 207 108

curve, the observed performance was comparable/similar to that reported in e.g. [169]
(see also references therein). The numbers of errors per each gesture in the trained system
are shown in Table 5. The variance of errors is mostly consistent among the ten classes
with very few errors for the “0” gesture, likely due to its unique shape among the classes.
Once the errors were isolated, Algorithms 1 and 2 construct correcting ensembles to
improve the original core AI. To train the ensembles, the testing data set of 10,000
images that was implemented to assess performance of Inception was split into two non-
overlapping subsets. The first subset, comprised of 6592 records of data points corre-
sponding to correct responses and 1408 records corresponding to errors, was used to train
these correcting ensembles. This subset was the ensemble’s training set, and it accounted
for 80% of the data. The second subset, the ensemble’s testing set, combined 1648 data
points of correct responses and 352 elements labelled as errors to test the ensemble.
Both algorithms have been run on the first subset, the ensemble’s training set. For
simplicity of comparison and evaluation, this was only iterated once (i.e. did not build
cascades of ensembles). In the regularization step, the Kaiser-Guttman test returned 174

principal components reducing the original dimensionality more than 10 times. After the
whitening transformation, step 3, the values of |〈xi/‖xi‖,xj/‖xj‖〉| (shown in Figure 40)
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Figure 40: Values of |〈xi/‖xi‖,xj/‖xj‖〉| (color-coded) for data points labelled as errors.

were assessed. According to Figure 40, data points labelled as errors are largely orthog-
onal to each other apart from few modestly-sized groups.
The number of clusters, parameter p in step 5, was varied from 2 to 1408 in regular
increments [171]. As a clustering algorithm, standard k-means routine (k-means ++) is
supplied with MATLAB 2016a. For each value of p, k-means algorithm runs 10 times.
For each clustering pass the corresponding nodes fj (or their pairs for Algorithm 2) as
prescribed in step 6 are constructed, and combined them into a single correcting ensem-
ble in accordance with step 7.Before assessing performance of the ensemble, the filtering
properties of the ensemble as a function of the number of clusters used were evaluated.
For consistency with predictions provided in Theorems 4 – 6, Algorithm 1 was used in
this exercise. Results of the test are shown in Figure 41. Note that as the number p
of clusters increases, the True Positive Rate at γ = 0 as a function of p, approaches
1 regardless of the projection step 4. This is in agreement with theoretical predictions
stemming from Theorem 5. It was also observed that performance drops rapidly with
the average number of elements assigned to a cluster. In view of the earlier observation
that vectors labelled as “errors” appear to be nearly orthogonal to each other, this drop
is consistent with the bound provided in Corollary 1.
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Figure 41: True Positive rate at γ = 0 for the combined system as a function of the
number of clusters, p. Left panel corresponds to Algorithm 1 with the optional projection
Step 4. Right panel corresponds to Algorithm 1 without the projection Step 4.

Next, the performance of Algorithms 1, 2 and resulting ensembles on the training and
testing sets for p = 76, 150, 224, 298 are assessed. In both algorithms, optional projec-
tion step 4 was used. The value of threshold θ was set to 0.2. In general, the value of
threshold θ can be selected arbitrarily in an interval of feasible values of cj. When the
optional projection step 4 is used, this interval is (0, 1). Here the value of θ so that the
hyperplanes hj,2 in step 6 of Algorithm 2 produced by standard perceptron algorithm
[97] that consistently yielded perfect separation are set. Results are shown in Figs. 42
and 43. According to Figure 42, performance on the training set grows with p, as ex-
pected. This is aligned with theoretical results presented in Section 9.1.1. The ensembles
rapidly removes misclassification errors from the system, at some cost to True Positive
Rate. The latter cost for Algorithm 2 appears to be negligible. On the testing set (see
Figure 43), the picture changes. As the number p of clusters/nodes grows, performance
of the ensemble saturates, with Algorithm 1 catching-up with Algorithm 2. This signals
an over-fit and indicates a point where further increases in the number of nodes do not
translate into expected improvements of the combined systems’s performance. Lack of
correlations between feature vectors corresponding to errors (illustrated with Figure 40)
may also contribute to the observed performance saturation on the testing set.
For γ small both algorithms removed significant proportions of misclassification errors.
This could be due to that training and testing sets for Algorithms 1 and 2 have been
created from the performance analysis of the original core AI system at γ = 0.
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Figure 42: Combined system performance of the core AI (blue squares) after application
of Algorithms 1 (red triangles) and 2 (green circles) on the training set for different
numbers of clusters p in step 5. Elements in this set constructed the corrector.

9.3 Summary

This study presents a novel method for computationally efficient improvements of generic
AI systems, including sophisticated Multilayer and Deep Learning neural networks. These
improvements are easy-to-train ensembles of elementary nodes. After the ensembles are
constructed, a possible next step could be to further optimise the system via error back-
propagation. Mathematical operations at the nodes involve computations of inner prod-
ucts followed by standard nonlinear operations like ReLU, step functions, sigmoidal func-
tions etc. The technology was illustrated with a simple case study confirming its viability.
These proposed ensembles can also be employed for learning new tasks too.
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Figure 43: Combined system performance of the core AI (blue squares) after application
of Algorithms 1 (red triangles) and 2 (green circles) on the testing set for different numbers
of clusters p in step 5. No elements in this set constructed the corrector.

The proposed concept builds on previous work [3] and complements the results for equidis-
tributions in a unit ball to product measure distributions. When the clustering structure
is fixed, the method is inherently one-shot and non-iterative, and its computational com-
plexity scales at most linearly with the size of the training set. Sub-linear computational
complexity of the ensembles construction makes the technology particularly suitable for
large AI systems that have already been deployed and operational.
An intriguing and interesting feature of the approach is that training of the ensembles is
largely achieved via Fisher linear discriminants. This, combined with the ideas from [6],
paves the way for a potential relaxation of the i.i.d. assuming sampled data.
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9.4 Proofs Of Theorems And Other Technical Statements

Proof of Theorem 4

The proof follows immediately from Theorem 2 in [1] and Hoeffding inequality [172].
Indeed, if t > 0, Xi are independent bounded random variables, i.e. ai ≤ Xi ≤ bi,
i = 1, . . . , n, and X = 1/n

∑n
i=1 Xi then (Hoeffding inequality)

P
(
X − E[X] ≥ t

)
≤ exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
,

P
(
|X − E[X]| ≥ t

)
≤ 2 exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
.

(98)

Given that xij = Xj where Xj are independent random variables with −1 ≤ Xj ≤ 1,
E[X2

j ] = σ2
j (Assumption 1), it’s observed that ‖xi‖2 =

∑n
j=1X

2
j

P

(∣∣∣∣∣
∑n

j=1 X
2
j

n
− E

[∑n
j=1X

2
j

n

]∣∣∣∣∣ ≥ t

)
=

P

(∣∣∣∣∣
∑n

j=1 X
2
j

n
− R2

0

n

∣∣∣∣∣ ≥ t

)
= P

(∣∣∣∣‖xi‖2

R2
0

− 1

∣∣∣∣ ≥ tn

R2
0

)
≤ 2 exp

(
−2nt2

)
.

(99)

Denoting ε = tn/R2
0 and recalling that 0 ≤ X2

j ≤ 1 this concludes that inequalities (61)
holds true. Noticing that E[xikxjk] = E[xik]E[xjk] = 0, E[ykxik] = 0, −1 ≤ xik ≤ 1,
−1 ≤ xjk ≤ 1, and −1 ≤ ykxik ≤ 1, observe that estimates (62) and (63) follow. �

Proof of Theorem 5

Recall that for any events A1, . . . , Ak the following estimate holds:

P (A1&A2& · · ·&Ak) ≥ 1−
k∑
i=1

(1− P (Ai)). (100)

Let
‖xM+1‖2

R2
0

≥ 1− ε (event A1), (101)

and 〈
xM+1

R0

,
xi
R0

〉
< 1− ε (events A2, . . . AM+1). (102)

The statement now follows from (61) and (62) with δ = 1− ε, and (100). �
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Proof of Theorem 6

Suppose that ‖xi‖2/R2
0 ≥ 1− ε for all xi ∈ Y (event A1). Then

`k(xi) =
1

k

‖xi‖2

R2
0

+
∑

xj∈Y, xj 6=xi

〈
xi
R0

,
xj
R0

〉 ≥ 1− ε+ β(k − 1)

k

for all xi ∈ Y .

(103)

Note that x ∈ [−1, 1]n by construction. Consider events

`k(xj) =

〈
xj
R0

,
x

R0

〉
<

1− ε+ β(k − 1)

k
(events A1+j), (104)

j = 1, . . . ,M . According to Theorem 4 and (100)

P (A1) ≥ 1− k exp

(
−2R4

0ε
2

n

)
,

P (A1+j) ≥ 1− exp

(
−R

4
0(1− ε+ β(k − 1))2

2k2n

)
.

(105)

Hence

P (A1& · · ·&A1+M) ≥

1− k exp

(
−2R4

0ε
2

n

)
−M exp

(
−R

4
0(1− ε+ β(k − 1))2

2k2n

)
.

(106)

The result now follows �.

Proof of Corollary 1

Let ‖xi‖2/R2
0 ≥ 1− ε for all xi ∈ Y (event A1), and〈

xi
R0

,
xj
R0

〉
≥ −δ for all xi,xj ∈ Y , xi 6= xj (event A2). (107)

The corollary follows immediately from (100) and Theorem 4 (equations (61), (62)) �.

Proof of Corollary 2

Let ‖xj‖2 ≥ 1 − ε. Then h(x) ≥ 0 for all x ∈ Ω. Estimate (74) hence follows from
Theorem 4 and (100). �.
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Proof of Lemma 1

The proof follows that of Theorem 3 in [3]. Let x be an element of M and ph be the
probability of the event h(x) ≥ 0. Then the probability of the event that h(x) ≥ 0 for
at most m elements fromM is

P (M,m) =
m−1∑
k=0

(
M

k

)
(1− ph)M−kpkh. (108)

Observe that P (M,m), as a function of ph, is monotone and non-increasing on the interval
[0, 1], with P (M,m) = 0 at ph = 1 and P (M,n) = 1 at ph = 0. Hence

P (M,m) ≥
m−1∑
k=0

(
M

k

)
(1− p∗)M−kpk∗ = (1− p∗)M

m−1∑
k=0

(
M

k

)(
p∗

1− p∗

)k
. (109)

Given that (M−m+1)k

k!
≤

(
M

k

)
≤ Mk

k!
for 0 ≤ k ≤ m− 1, this implies:

P (M,m) ≥ (1− p∗)M
m−1∑
k=0

1

k!

(
(M −m+ 1)p∗

1− p∗

)k
. (110)

Expanding ex at x = 0 with the Lagrange remainder term:

ex =
m−1∑
k=0

xk

k!
+
xm

m!
eξ, ξ ∈ [0, x], (111)

results in the estimate

m−1∑
k=0

xk

k!
≥ ex

(
1− xm

m!

)
for all x ≥ 0. (112)

Hence

P (M,m) ≥

(1− p∗)M exp

(
(M −m+ 1)p∗

1− p∗

)(
1− 1

m!

(
(M −m+ 1)p∗

(1− p∗)

)m)
.

(113)

�
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9.5 Hyperplanes Vs Ellipsoids For Error Isolation

Consider
Cn(ε) = Bn(1) ∩

{
ξ ∈ Rn

∣∣∣∣ 〈 x

‖x‖
, ξ

〉
≥ 1− ε

}
. (114)

Let
ρ(ε) = (1− (1− ε)2)

1
2 . (115)

Note that ρ(ε) is the radius of the ball containing the spherical cap Cn. Lemma 2 estimates
volumes of spherical caps Cn(ε) relative to relevant n-balls of radius ρ(ε).

Lemma 2 Let Cn(ε) be a spherical cap defined as in (114), ε ∈ (0, 1). Then

ρ(ε)n+1

2

[
1

π
1
2

Γ
(
n
2

+ 1
)

Γ
(
n
2

+ 3
2

)] < V(Cn(ε))

V(Bn(1))
≤ ρ(ε)n

2
. (116)

Proof of Lemma 2

Note that [173] V(Bn(r)) = rnV(Bn(1)) for all n ∈ N r > 0. Hence the estimate of
V(Cn(ε)) from above is:

V(Cn(ε)) ≤ 1

2
V(Bn(1))ρ(ε)n. (117)

Calculate the estimate of V(Cn(ε)) from below. It is clear that

V(Cn(ε)) = V (Bn−1(1))

∫ 1

1−ε
(1− x2)

n−1
2 dx. (118)

The integral in the right-hand side of (118) can be estimated from below as∫ 1

1−ε
(1− x2)

n−1
2 dx >

∫ 1

1−ε
(1− x2)

n−1
2 xdx

=
1

2
· 1
n
2

+ 1
2

· (1− (1− ε)2)
n+1
2 =

1

2
· 1
n
2

+ 1
2

· ρ(ε)n+1

(119)

Recall that Bn(1) = π
n
2

Γ(n2 +1)
, Γ(x+ 1) = xΓ(x). Hence

Bn−1(1) · 1
n
2

+ 1
2

=
π
n−1
2

Γ
(
n
2

+ 1
2

) 1
n
2

+ 1
2

=
π
n−1
2

Γ
(
n+1

2
+ 1
) , (120)

and ∫ 1

1−ε
(1− x2)

n−1
2 dx >

1

2
V(Bn(1))ρ(ε)n+1

[
1

π
1
2

Γ
(
n
2

+ 1
)

Γ
(
n
2

+ 3
2

)] (121)
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Corollary 3 Let Cn(ε) be a spherical cap defined as in (114), ε ∈ (0, 1), and Bn(kρ(ε))

be an n-ball with radius kρ(ε), k ∈ R>0. Then

V(Bn(kρ(ε)))

V(Cn(ε))
< kn

2π
1
2

ρ(ε)

[
Γ
(
n
2

+ 1
)

Γ
(
n
2

+ 3
2

)]−1

. (122)

Remark 3 Using Stirling’s approximation:

Γ
(
n
2

+ 1
)

Γ
(
n
2

+ 3
2

) = O
(
n−

1
2

)
. (123)

Thus V(Bn(ε))
V(Cn(ε))

< knH(n, ε) where H(n, ε) = O
(
n1/2

ρ(ε)

)
.

According to Corollary 3 the volumes of Bn(ε), Bn(κρ(ε)), κ ∈ (0, 1) decay exponentially
with dimension n relative to that of Cn(ε). This implies that distance-based detectors
are extremely localised. In comparison with simple perceptrons, the proportion of points
to which they respond positively is negligibly small. However, filtering properties of
hyperplanes are extreme in high dimension (see Theorems 5, 6 in Section 9.1.1). This
combination of properties makes perceptrons and their ensembles particularly attractive
for fine-tuning of existing AI systems.

10 Nonlinear Stochastic Separation Theorems

10.1 Kernel Stochastic Separation Theorems

10.1.1 Preliminaries and Problem Formulation

Let X = {x1, . . . ,xM} be a set of vectors in Rn sampled from some distribution with a
corresponding probability density function p. Each element of the sample is subjected to
a transformation

Φ : Rn → H, (124)

called a feature map, mapping xi ∈ Rn into Φ(xi) in some Hilbert space H. This assumes
that the feature map Φ is known. The process induces a new random variable, Φ(x), and
a corresponding distribution. This also assumes that the feature map Φ is such that

E[Φ] =

∫
Φ(x)p(x)dx (125)

exists. For the moment E[Φ] = 0 is assumed, and this technical assumption is explained
later in Section 10.1.4. For the given feature map Φ(x), a kernel function κ is defined as
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follows
κ : Rn × Rn → R, κ(xi,xj) = (Φ(xi),Φ(xj)), (126)

and a kernel classifier is the function

f : Rn → R, f(x) =
m∑
j=1

αjκ(yj,x)− b, (127)

where αj, b ∈ R, and yj ∈ Rn. In the simplest binary classification setting, the classifier
assigns positive values to elements x ∈ Rn from the set corresponding to Class 1 and
negative values to elements from set to Class 2.

Definition 2 A point x ∈ Rn is kernel separable with the kernel function (126) from a
set Y ⊂ Rn, if there exist m ∈ N, αj, yj ∈ Rn, j ∈ {1, . . . ,m} such that

m∑
j=1

αjκ(yj,x) >
m∑
j=1

αjκ(yj,y) (128)

for all y ∈ Y.

Definition 3 A set X ⊂ Rn is kernel separable with the kernel function (126) from a set
Y ⊂ Rn, if there exist m ∈ N, αj, yj ∈ Rn, j ∈ {1, . . . ,m} such that

m∑
j=1

αjκ(yj,x) >
m∑
j=1

αjκ(yj,y) (129)

for all y ∈ Y and x ∈ X .

Definition 4 A set S ⊂ Rn is kernel separable with the kernel function (126) if for each
x ∈ S there exist m ∈ N, αj, yj ∈ Rn, j ∈ {1, . . . ,m} such that

m∑
j=1

αjκ(yj,x) >
m∑
j=1

αjκ(yj,y) (130)

for all y ∈ S, y 6= x.

In addition to the notions of kernel separability, and similar to [6], the notion of Fisher
separability to kernel classifiers is utilised.

Definition 5 A point x ∈ Rn is Fisher separable with the kernel function (126) from a
set Y ⊂ Rn, if

κ(x,x) > κ(x,y) (131)
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for all y ∈ Y. A set S ⊂ Rn is Fisher separable with the kernel function (126) if, for
each x ∈ S, (131) holds for all y ∈ S, y 6= x.

It’s clear that Fisher separability with a given kernel function automatically implies kernel
separability and as such is a stronger property. Note also that the notion of Fisher
separability can be further extended to the notion of Fisher separability with a threshold
γ ∈ [0, 1), see [6], by replacing (131) with

γκ(x,x) > κ(x,y). (132)

This generalization allows to meaningfully pose the separability problem for kernels like
κ(x,y) = (x/‖x‖,y/‖y‖) for which the first part of Definition 5 always holds true.

10.1.2 Kernel Separability Of Points

The first result is provided in Theorem 7

Theorem 7 Let y1, . . . ,yM ∈ Rn in Bn(1) be given, and let x be drawn from a distri-
bution with the probability density function p(x|y1, . . . ,yM) supported inside κ(x, x) ≤ 1.
Then x is Fisher separable with the kernel function (126) from the set Y = {y1, . . . ,yM}
with probability at least

1−
M∑
i=1

∫
γκ(x,x)−κ(x,yi)≤0

p(x|y1, . . . ,yM)dx. (133)

Proof of Theorem 7. Consider events

Ai : x is Fisher separable from yi. (134)

It is clear that
P (not Ai) =

∫
γκ(x,x)−κ(x,yi)≤0

p(x|y1, . . . ,yM)dx. (135)

Recall that

P (A1&A2& · · ·&AM) ≥ 1−
M∑
i=1

P (not Ai). (136)

Combining the last two observations, the probability that x is separable from all yi is
bounded from below by the expression in (133). �

Corollary 4 Suppose that assumptions of Theorem 7 hold. Let us further assume that
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there is a λ ∈ (0, 1), an L ∈ R>0, and a function α : N→ R such that∫
γκ(x,x)−κ(x,y)≤0

p(x|y1, . . . ,yM)dx ≤ Lλα(n) (137)

for all y ∈ Rn in Bn(1). Then x is Fisher separable with the kernel function (126) from
the set Y = {y1, . . . ,yM} with probability at least

1−MLλα(n). (138)

It has been shown in [6] that for the feature maps Φ(x) = x and p(·|y1, . . . ,yM) defined
on Bn and bounded from above by L/Vn(Bn), condition (137) holds with

λ =
1

2
, α(n) = n. (139)

Corollary 5 Consider the set S = {x1, . . . ,xM} in which xi ∈ Rn, i = 1, . . . ,M are
random i.i.d. vectors. Let p : Rn → R be the corresponding probability density function,
and let there exist λ ∈ (0, 1), L ∈ R>0, and a function α : N→ R such that∫

γκ(x,x)−κ(x,y)≤0

p(x)dx ≤ Lλα(n) (140)

for all y ∈ Rn in Bn(1). Then the set S is Fisher separable with the kernel function (126)
with probability at least

1− (M − 1)MLλα(n). (141)

Theorem 7 and Corollaries 4, 5 extend stochastic separation theorems to kernel classifiers.
Note that dimensionality N of the space to which the feature map, Φ(·), maps original
data points x need not be finite. According to these results, the probabilities of ker-
nel separability in these cases can still be estimated via integration in finite dimensional
spaces using e.g. (137), (140). Since Theorem 7 and Corollaries 4 concern Fisher separa-
bility, these bounds apply to kernel separability too (see Definitions 2 – 4). However, all
statements derived so far could be generalised to cases when the functions κ themselves
are not kernels. An interesting question is if these results can be extended to characterise
separability of two random sets. The above formalism can be generalised to answer this
question too.
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10.1.3 Kernel Separability Of Two Random Sets

Consider two random sets X = {x1, . . . ,xM} and Y = {y1, . . . ,yK}. Let there be a
learning algorithm which, for the given X , Y or their subsets, produces a function

f(·) =
d∑
i=1

αiκ(zi, ·), αj ∈ R. (142)

The vectors zi, i = 1, . . . , d are supposed to be known. Furthermore, suppose that the
function f is such that

f(yj) >
d∑

m,k=1

αmαkκ(zm, zk) (143)

for all yj ∈ Y . In other words, denoting w =
∑d

i=1 αiΦ(zi), the following holds true:

(w,w) < (w,Φ(yi)) for all i = 1, . . . , K. (144)

Note that since the Y ,X are random, it is natural to expect that the vector α =

(α1, . . . , αd) is also random. The following statement can now be formulated:

Theorem 8 Consider sets X and Y. Let pα(α) be the probability density function asso-
ciated with the random vector α, and α satisfies condition (143) with probability 1. Then
the set X is kernel separable with the kernel function (126) from the set Y with probability
at least

1−
M∑
i=1

∫
H(α,xi)≤0

pα(α)dα, (145)

where

H(α,xi) =
d∑

k,m=1

αkαmκ(zk, zm)−
d∑

m=1

αmκ(zm,xi). (146)

Proof of Theorem 8. The proof of the theorem is similar to that of Theorem 7. Consider
events

Ai : (w,w) > (w,Φ(xi)). (147)

Events Ai are equivalent to that H(α,xi) > 0. Eq. (145) provides a lower bound for the
probability that all these events hold. Recall that vectors α satisfy (144), and hence:

d∑
m=1

αmκ(zm,xi) =(w,Φ(xi))

< (w,Φ(yj)) =
d∑

m=1

αmκ(zm,yj)

(148)
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for all xi ∈ X and yj ∈ Y with probability at least (145). The statement now follows
immediately from Definition 3. �
Theorem 8 generalises earlier k-tuple separation theorems [4], [116] in that it applies to
a much broader class of classifiers and isn’t limited to a particular set of distributions.
Similar to Corollaries 4, 5, this establishes conditions linking dimensionality of the vector
α with the probability of separation. An example of such condition could be existence
of L > 0, λ ∈ (0, 1) and a function β : N× N→ R such that∫

H(α,y)≤0

pα(α)dα ≤ Lλβ(d,n) (149)

for any y ∈ Rn.

10.1.4 Kernels with E[Φ(x)] 6= 0

Theorems 7, 8, their corollaries, and Fisher separability notions in Definition 5 have been
produced under the simplifying assumption that E[Φ(x)] = 0. These statements can be
surmised to more general settings with

E[Φ(x)] = Φ. (150)

This generalisation can be achieved by replacing kernel functions κ(x,y) = (Φ(x),Φ(y))

with
κ̃(x,y) = (Φ(x)− Φ,Φ(y)− Φ) = κ(x,y)

−
∫
p(x)κ(x,y)dx−

∫
p(y)κ(x,y)dy

+

∫ ∫
p(x)p(y)κ(x,y)dxdy

(151)

in relevant expressions. In practice, E[Φ(x)] can be replaced with the sample mean over
a finite sample X = {x1, . . . ,xM} leading to the following approximations of κ̃(x,y):

κ̃(x,y) = κ(x,y)

− 1

N

M∑
i=1

(κ(xi,y) + κ(x,xi)) +
1

N2

M∑
i,j=1

κ(xi,xj).
(152)
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10.1.5 Kernel Separability Measure

One of the outcomes of the theoretical results is the kernel separability characterisation
expressed e.g. in terms of the upper bound Lλα(n) on the integral∫

κ̃(x,x)−κ̃(x,y)≤0

p(x)dx, (153)

in the left-hand side of (140). The bound determines how well a kernel κ(·, ·) separates
points in samples from a given distribution. The smaller the value of λ, and the faster
the function α(·) grows with n, the better the kernel’s separability is (as per Definition
5). Direct derivation of λ, α(·), requires knowledge or at least bounds on the probability
density functions p, pα. In practice, probability density functions are rarely known.
However, it is not unrealistic to expect that some data sample X from the distribution
might be available. In this case, then evaluation of the above integral may be replaced
with:

ω(y, n) =
|{x ∈ X ⊂ Rn |x 6= y, κ̃(x,x)− κ̃(x,y) ≤ 0}|

|X |
. (154)

The empirical kernel separability measure, can then be defined as the average

Ωa(n) =

∑|X |
i=1 ω(xi, n)

|X |
, (155)

or
Ωmax(n) = max

xi∈X
ω(xi, n). (156)

The next section establishes how these measures can characterise and compare different
kernel functions with respect to their ability to separate points in random sets.

10.2 Examples

10.2.1 Polynomial Kernels For An Equidistribution In The [−1, 1]n Cube

In the first group of experiments, behavior of polynomial kernels in a synthetic test in
which the original data samples are generated from equidistributions in the unit cubes
[−1, 1]n of varying dimension n is observed. The kernel functions were chosen as follows:

κ(x,y) = ((x,y) + 1)p, (157)

where parameter p took values in the set {1, 2, 3}. Observe that for p = 1 the centralised
kernel κ̃ reduces to standard inner product (x,y), and for quadratic kernels, p = 2, the
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Figure 44: Separability characterisations for polynomial kernels with p = 1, 2, 3. Blue
circled line corresponds to p = 1, red starred line corresponds to p = 2, and magenta
squares show performance of the chosen polynomial kernel with p = 3. Black line with
triangle markers corresponds to Fisher discriminants built over quadratic feature maps
followed by centralisation and whitening. The left panel shows original data, and right
panel shows the same data but in the logarithmic scale.

feature map is:

Φ(x) = (x2
1, . . . , x

2
n,
√

2x1x2, . . . ,
√

2xn−1xn,
√

2x1, . . . ,
√

2xn, 1). (158)

For each given value of n a sample of M = 1000 vectors were generated and calculated
the value of Ωmax(n) (see Eq. (156)) from a sub-sample of 1000 points chosen randomly
from this sample. The outcomes of this process for different values of p are summarised
in Figure 44. According to Figure 44, separability of quadratic kernels is higher than
the original Fisher discriminants. This isn’t surprising given that the dimensionality of
the quadratic feature map, n(n+1)

2
+ n + 1, is significantly higher than that of the origi-

nal space, n. Unexpectedly, these experiments reveal that re-weighting of features, e.g.
via the whitening transformation, may produce higher performance gains than choosing
a kernel with a higher-dimensional feature map (black triangled lines in Figure 44 vs
squared magenta lines). Such re-weighting generates a different inner product and hence
corresponds to a kernel function that is different from the ones specified in (157).

10.2.2 Kernels with Polynomial Feature Maps For Inception Bottlenecks

This example investigated and tested kernel separability in the setting when the original
features are bottlenecks of a pre-trained convolutional neural network. In particular, a
network trained to distinguish ten digits in American Sign Language. The network was
an Inception deep neural network model [170] whose architecture and training process
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Figure 45: Separability of the feature vectors sampled from Inception bottlenecks. Blue
circled lines show Ωmax(n)|X | as a function of the number n of the principal components
retained. Red starred line shows Ωmax(n)|X | for kernels with quadratic, centered, and
whitened feature map (158). Left panel shows original data, and right panel shows the
same data but in the logarithmic scale.

has been described in detail in [116]. The model was trained [174] on ten sets of images
corresponding to the American Sign Language pictures for 0-9. Each set contained 1000
unique images consisting of profile shots of the person’s hand, along with 3/4 profiles and
shots from above and below. The states xi are the vectors containing the values of pre-
softmax layer bottlenecks of size n for however many neurons are in the penultimate layer.
It was shown in [116] that these bottlenecks can be used to construct error correcting
cascades for such systems, and using stochastic separation theorems, such cascades can be
derived using mere Fisher discriminants. The higher is the dimension of the bottlenecks
xi the larger is the probability that the error correcting cascades are successful. It is
therefore interesting to see if employing kernels in place of the original linear classifiers
could potentially improve error correction performance. To assess this, original bottle
necks xi were projected on n principal components, and constructed higher-dimensional
representations of the projected data using quadratic kernel feature map (158). This was
followed by centering and whitening transformation. For the new feature vectors defined
in this way, Ωmax(n) for n ranges from 1 to 94. These results are shown in Figure 45,
which suggests that using kernels induced by quadratic feature maps may offer superior
point separability properties as compared to the original feature vectors.
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10.3 Summary

This study an extension of the framework of stochastic separation theorems to arbitrary
kernel classifiers. Separability criteria emerges from these generalisations to reduce to
finite-dimensional volume integrals, despite the fact that the feature maps corresponding
to relevant kernels may be infinite-dimensional. Furthermore, a general separability result
for two random sets was constructed. The latter result assumes some prior knowledge of
the distribution of the weights of the classifier. These results produced empirical kernel
separability characterisations for arbitrary kernel functions. The application of these new
characterisations has been illustrated with two case study examples. These examples
showed that if an additional whitening and re-weighting of features are allowed, then the
point separability performance of the induced kernel may be drastically improved. Further
investigations generalisation capabilities of such kernel classifiers and their derivatives for
the problem of AI error correction [4], [116] can be the subject of future work.
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Part V

Further Applications Of Research And
Conclusions

11 Further Applications

11.1 Myocardular Infarctions

(a) An image of a healthy
heart segmented into cham-
bers and muscle area marked
by the red endocardial rings
surrounded by a black mus-
cular vessel indicated by the
green epicardial ring.)

(b) The white objects inside the
border between the endocardial
and epicardial rings indicate the
presense of a myocardial infarc-
tion. This area is typically con-
toured where the damaged areas
are labelled manually.

(c) This shows a fully la-
belled image, with the pur-
ple blood flow surrounded by
red muscle with yellow scar-
ring and a blue background.
With enough labelled images
an automated process can be
enacted [180].

Figure 46: Cross sections of a CMRI scan of the heart taken from the pericardium at the
bottom to the top pulmonary artery and the human annotations made to each image.

In conjunction with Prof. Gerry McCann at the National Institute Of Health Research
(NIHR) at Glenfield Hospital in Leicester and Dr Shuihua Wang at Leicester University,
the scope of this project expanded it’s applications into the field of medical images and
the automated classification of a series of Cardiovascular Magnetic Resonance Imaging
(CMRI) scans. These scans represent an image slice taken from the heart pointing down-
wards with the pulmonary artery feeding blood into the top to the pericardium at the
bottom. This 3D object is split into between 10-14 horizontal slices depending on the
patient within a few millimetres between each slice (the heart is a comparable size to
a fist, often 12 cm by 8 cm wide by 6 cm thick [175]). In these images, the research
team is looking for the presence of any scarring inside the muscle tissue which is used
as a strong predictor of irregular changes in the left ventricular section of the heart ob-
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struction, [177]. This scarring is often found in patients suffering from acute ST segment
elevation myocardial infarctions (STEMI), where the size of these myocardial infarctions
showed a positive correlation with mortality. [178], [179].
The myocardian CMRI images have three components: The central vessel is a grey cir-
cular object that shows the blood flowing directly into the heart. This is surrounded by
an endocardial border while an outer black layer shows the outside muscle that convulses
to pump the blood into the body. It’s at this area where scarring can occur, shown as
white fragments in this outer layer. The epicardial border then separates these two inner
sections with the rest of the heart scan. Using pixel intensities, it’s possible to build on
the current literature [177], [180] to form the first fully automated process for quantifying
myocardial infarcions through CMRI.

11.2 Protein Folding

Collaborating with the Leicester Institute of Structural and Chemical Biology, work was
conducted on a program that could detect biological specimens present in cryo-electron
microscopy images and provide a self correcting process that would find complete parti-
cles even with noise filters attached to them. In the current selection process outlined by
Dimitry Tegunov and Patrick Cramar [181], a single MRC [182] image contains a combi-
nation of particles representing specimens and artifacts on an unclear background. Using
their selection program Boxnet, the program evaluates, corrects and processes this data
until distinctions can be made. The problem with this process is compared to unfiltered
data, noise distortion makes separating particles and artifacts difficult.

Figure 47: Boxnet is a convolutional ResNet architecture with 72 layers, a set of 35
ResNet blocks with 2 conventional CNN’s. After initial convolution with 32 5x5 kernels
the data is processed through 5 sets of 5 ResNet blocks with factor 2 downsampling and
doubling the number of channels to determine higher order features. This then goes
through 5 sets of 2 ResNet blocks, upsampled by factor 2. Each set is concatenated
with it’s mirrored counterpart, taking the new higher order features with higher spatial
resolutions of old layers. The final output is a 256x256x16 layer that’s projected onto 3
class channels. Similar to bottlenecks in Inception, further tests can be run to determine
false positives, using the Argmax operation to choose the best label over Softmax [181].
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The sample MRC image is a 3838x3710 rectangle of values between 0 and 255, giving
14,238,980 parameters in total. These represent grayscale pixel intensities that mask
hidden particles in a noise filter as shown in Figure 48a. By dividing the square by
the largest pixel value, each number is now between 0 to 1 and as Figure 48b shows,
some patterns start to emerge to a casual observer such as the red square that shows
a small area of comparatively high intensity values. Putting these through Boxnet, 109
particles are detected in the MRC image. These results are hard to verify through usual
means however building on work discussed in Chapter 3, the final 256x256x16 matrix
that ResNet produces goes through a further two ResNet blocks before being split by
three 1x1 convolutional kernels where the pixelwise argmax gives the final judgement on
whether that pixel contains the presence of a particle, an artifact or a background. Using
this technology, it’s possible to pre-assess if these elements have been detected correctly
or not.

(a) Noisy filtered image of masked par-
ticle system

(b) Normalised variant with clearer
particles

Figure 48: While these images appear incomprehensible to most humans and machines
with the large amount of excess noise (even if some elements can be made out such as
the red square in the normalised version in Figure 48b).
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12 Conclusions

In this thesis, three issues with Machine Learning theory have been identified with re-
gards to giving the best possible performance when time and resources have most likely
been spent on developing the core AI system for a given situation. Given that these AI
systems are driven by the requirement to manage large volumes of data, there is always
scope for errors in this system, as the raw data is always biased and uncertain.
This degree of uncertainty varies from known cases which can be modelled, to radical
cases, where the uncertainty presence is to an unknown (This is the case for most ma-
chine learning applications as the probability distribution is usually unknown).
With the identification of these issues, solutions have been proposed in the forms of Al-
gorithms 1, 2 and Theorems 7, 8. These theoretical results have been tested in real life
scenarios and have provide further areas where these results can be applied to in the
future. In addition to these investigations, defining tighter bounds on error correction
performance is known to be a very hard mathematical challenge and the findings estab-
lished here will help further studies in this area of research.
Through these studies, error correction procedures have been reviewed and implemented
successfully into a number of tactile sign languages resulting in a series of novelties. This
work has also proposed the first ever system capable of recognising multiple types of
sign language in one algorithm through a pre-defined legacy AI as shown in Section 8.6.2
along with a novel semaphore recognition system which can be supplemented with the
aforementioned error correction system.
The methods described in this work can be tuned to a degree of success. All parameters
these algorithms are customizable and can be adjusted to suit the corrector’s sensitivity.
For example, Sections 9.2 and 10.2.2 detail transformations made to a 10000x2048 matrix
to single out element clusters relative to their principal dimension.
The first technique clusters singularities out of the core AI. For a training set, this exam-
ple increases the probability of a successful classification from 82.4% to 100% knowing
just 16% of the errors in this set. While this falters at the test set, more clusters would
push these principles forward, and further work can be constructed remedying this.
Section 10.2.2 extends these principals to separating points in random sets. The com-
parison between random elements drawn from the unit cube and the bottlenecks shows
a higher separability for common elements. This is pushed further with dimensionality,
as while 174 principal components are attained for PCA via the Kaiser-Guttman test,
linear and quadratic kernels use 18 and 86 dimensions respectively for complete sepa-
ration. With future work, a system that utilises both of these theories with adequate
prepossessing techniques could create a refined separation system.
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