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Abstract Field line resonances (FLRs) are observed to occur preferentially and have larger amplitudes
at dawn compared to dusk. We present simulations of FLR excitation in a magnetospheric waveguide
that can reproduce this behavior. Crucially, our equilibrium is asymmetric about noon. Even when this
system is driven in a symmetric fashion about noon, the fast waves that are established in the
magnetosphere develop asymmetries—as do the FLRs they excite. Fast mode ray trajectories are
employed to show that the asymmetry evolves due to refraction. Preferential FLR excitation at dawn is
further reinforced by calculating the Resonance Map. This shows that the Resonant Zone at dawn coincides
with a large-amplitude coherent fast mode driver, which is not the case at dusk. These factors result in
FLRs having a larger amplitude at dawn compared to dusk.

1. Introduction

The theory of ultralow frequency (ULF) toroidal Alfvén waves on closed field lines and their resonant excita-
tion has a rich history spanning five decades (Chen and Hasegawa, 1974; Southwood, 1974). Originally, the
theory was based upon 1-D normal mode models, which were extended to include time dependence (Allan
et al., 1986; it ; Mann et al., 1995). Recognizing the importance of a dipolar-like equilibrium magnetic field, 2-D
(axisymmetric) studies by Lee and Lysak (1989) and Wright and Thompson (1994) confirmed the persistence
of resonant coupling more generally. With increasing computer power simulations we are now able to study
excitation of field line resonances (FLRs) in 3-D (Claudepierre et al., 2010; Degeling et al., 2010; Ellington et al.,
2016; Elsden & Wright, 2018).

The simulation work has recently provided enough clues of how the resonant coupling process occurs in
3-D that the formulation of an analytical theory has recently been advanced and corroborated by numerical
solutions (Wright & Elsden, 2016). The 3-D resonant process is quite different from that in an axisymmetric
2-D model: In 2-D there is a unique resonant L shell surface, and the FLR polarization is exactly toroidal. In
contrast, in 3-D there is not a unique resonant L shell, but a range of L shells that can potentially support
FLR excitation in what is termed the Resonant Zone. Moreover, in 3-D the FLRs that are established are not
toroidally polarized, and will occur on a surface that actually crosses L shells. In addition, there are an infinite
number of such permissible resonant surfaces and there is not currently a complete understanding of which
surfaces are favored in a given situation.

When trying to interpret observations from dawn, noon, and dusk, it is not possible to avoid the fact that the
magnetosphere flares out on its flanks and has a plasma density that is asymmetric about noon (Fujita & Iton-
aga, 2003; Gallagher et al., 2000; Sandhu et al., 2017). Both these properties require us to adopt a 3-D model of
FLR excitation. This will be particularly important when trying to understand observed differences between
dawn and dusk. In the outer magnetosphere (L> 6), the most commonly observed ULF waves are Pc5 pulsa-
tions, which exhibit sinusoidal waveforms and have periods typically in the range 150–600 s. The pulsations
are attributed to fundamental toroidal Alfvén waves, and the local time, and L dependence of their ampli-
tude and polarization have been explained by the theory of field line resonance (e.g., Southwood, 1974). An
interesting feature of Pc5 pulsations is that their occurrence is more frequent and amplitude is higher at dawn
than at dusk. This feature has been observed both on the ground (Baker et al., 2003; Gupta, 1975) and in space
(Kokubun, 2013; Nosé et al., 1995; Takahashi et al., 2016). Early theoretical studies attributed the asymme-
try to the dawn/dusk asymmetry of the Kelvin-Helmholtz instability, which is expected from the dawn/dusk
asymmetry of the magnetosheath magnetic field that results from interplanetary magnetic field following the
Parker spiral (e.g., Lee & Olson, 1980). However, this mechanism does not appear to be effective because the
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Figure 1. Variation of the fundamental toroidal Alfvén wave frequency at dawn, noon, and dusk. The black dots are
median fT1 frequencies at noon found from analyzing THEMIS data as described in Takahashi et al. (2016). THEMIS =
Time History of Events and Macroscale Interactions during Substorms.

same Pc5 asymmetry is found even when the interplanetary magnetic field orientation is ortho-Parker spiral
(Takahashi et al., 2016).

Takahashi et al. (2016) interpreted the dawn/dusk asymmetry in FLR amplitude and detection rate in terms
of the coupling efficiency as described in the 1-D (radial) model of Kivelson & Southwood (1986) (see their
Figure 2, and Figure 9 of Takahashi et al., 2016). The coupling efficiency of the fast mode to an FLR depends
fundamentally on the magnetic pressure gradient along the resonance, which can be thought of as analo-
gous to the driving term of a harmonic oscillator (Wright & Thompson, 1994). The magnetic pressure gradient
depends upon many factors such as wave numbers and the structure of the medium. In particular, Takahashi
et al. (2016) noted that the different Alfvén speed (and associated Alfvén frequency) profiles found at dawn
and dusk will mean that stronger coupling is expected at dawn.

The Alfvén speed variation, and in particular how it is different at dawn and dusk, is the key quantity in
understanding why FLRs have different properties at dawn and dusk. This is most likely due to a system-
atic dawn/dusk asymmetry in plasma mass density associated with drainage plumes or the presence of
low-energy O+ ions in the afternoon. Although it is often difficult to measure these ions directly, their pres-
ence has been inferred from magnetosiesmology (Takahashi et al., 2008). Test particle results reported by Nosé
et al. (2015) also show evidence of heavy ion accumulation in the afternoon and at dusk outside the plasma-
sphere. While there may be some dawn/dusk asymmetry of the geomagnetic field, there have not been any
reports of a systematic asymmetry as significant as that of the heavy ions. Moreover, if the additional mass
at dusk is due to low-energy heavy ions, they will contribute mass but not a significant pressure. Hence, we
would not expect these ions to cause an asymmetry in the magnetic field.

Recently, the broadband excitation of a 3-D flaring waveguide has produced a clear picture of how FLRs can
be excited when the system is symmetric about the noon meridian (Elsden & Wright, 2018). In this article we
explore the hypothesis of Takahashi et al. (2016) within the context of a 3-D waveguide model in an effort
to gain more insight into how factors such as fast mode propagation, refraction and dispersion affect FLR
excitation in an asymmetric waveguide.

The paper is structured as follows: Section 2 describes the numerical model; section 3 presents results of
FLR excitation; section 4 interprets properties of fast waveguide modes; and section 5 contains concluding
remarks.

2. Model
2.1. Numerical Model
The simulation domain is based upon a 2-D dipole with a 3-D Alfvén speed variation and has been described
elsewhere (Elsden & Wright, 2017; Wright & Elsden, 2016). A field-aligned coordinate system (𝛼, 𝛽, 𝛾) is
employed for numerical efficiency: 𝛼 labels L shells so plays the role of a radial-like coordinate; 𝛽 is the
azimuthal-like coordinate; and 𝛾 a field-aligned coordinate. In the simulations presented here, 0.5 < 𝛼 < 1.0,
−2.25 < 𝛽 < 2.25, and −0.525 < 𝛾 < 0.525. In the equatorial plane 𝛼 and 𝛽 correspond to distance. For the
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purposes of comparing with observations we map 0.5 < 𝛼 < 1.0 to 6 < L < 11, meaning dL∕d𝛼 = 10 and sim-
ulation lengths are normalized by 10 RE . 12 MLT is at𝛽 = 0, and+ve/−ve𝛽 correspond to the dusk/dawn flanks.
The equatorial plane corresponds to 𝛾 = 0, and on a central L shell (𝛼 = 0.75) 𝛾 corresponds to distance
along that specific field line. (See Wright & Elsden, 2016, for details of the scale factors and numerical grid.)
The observed fundamental toroidal frequency/period at noon for L = 6 (the inner edge of our domain)
are 6.80 mHz/147.1 s (see next section) and is used to normalize time. Hence, speeds are normalized by
10 RE/147.1 s = 433.2 km/s.

The time-dependent, cold linear magnetohydrodynamic equations are formulated in this coordinate system,
and we remove the possibility of resonant singularities by including a small amount of dissipation in the form
of a linear drag coefficient 𝜈 = 0.1 (see equations (9)–(13) of Elsden & Wright, 2017). The waveguide is excited
in a similar fashion to that described in Elsden and Wright (2018): the magnetopause centered on noon experi-
ences an increase in pressure, such as that associated with an increase in solar wind dynamic pressure. The lin-
ear magnetic pressure is Bb𝛾∕𝜇o, where b𝛾 is the compressional (or field-aligned) magnetic field perturbation
and B is the background magnetic field strength. Hence, imposing b𝛾 ∼ sin2(𝜋t∕𝜏d) cos2(𝜋𝛽∕(2𝓁𝛽)) cos(k𝛾 𝛾)
on the magnetopause (𝛼 = 1) when 0 < t < 𝜏d and −𝓁𝛽 < 𝛽 < 𝓁𝛽 (b𝛾 = 0, otherwise) gives a localized
push for a duration of 𝜏d over an extent of 2𝓁𝛽 centered at noon. The wavenumber k𝛾 is chosen to give a
fundamental dependence on 𝛾 . For the results presented here 𝜏d = 𝜋∕2 and 𝓁𝛽 = 1.

The ionospheric boundaries have nodes of velocity and b𝛾 , and antinodes of the other fields, while the inner
boundary (at 𝛼 = 0.5) has a node of the 𝛼 components of velocity and magnetic field and antinodes of the
other fields. The boundary condition at the ends of the 𝛽 domain do not play a role, as we introduce buffer
zones when |𝛽|> 2.0 where 𝜈 is increased to 1. This has the effect of absorbing any waves that impinge on
them, and so allows us to mimic antisunward propagation around the flanks and into the magnetotail. The
simulation uses a grid size of (301, 401, 51) points in (𝛼, 𝛽, 𝛾), and for a typical run energy continuity is met to
one part in 104.

2.2. Alfvén Speed Profile
The Alfvén speed variation is chosen to match observations of the fundamental toroidal Alfvén frequency
(fT1) variation with L shell reported by Takahashi et al. (2016). They used THEMIS observations to determine
the variation at 6 MLT and 18 MLT. The empirical formulas they derived for fT1 at dawn and dusk are plotted in
Figure 1. The dawn/dusk asymmetry in fT1 (in which the value at dawn is always higher than the corresponding
value at dusk) is also consistent with the results in Figure 2 of Sandhu et al. (2018) who used realistic magnetic
field and plasma density to calculate the time-of-flight fT1. In Figure 1 we also plot data (as dots) from the 12
MLT slice of Figure 7 in Takahashi et al. (2016). The blue line is a fit to the dots which has the form

fT1 = 0.9311 + 732.5L−2.694 mHz. (1)

There is evidently considerable asymmetry. For example, at dusk a 3-mHz FLR would be found at L ≈ 8.5,
whereas at dawn it would be located at L ≈ 11. The key step in our simulation is to define an Alfvén speed
variation (VA(𝛼, 𝛽, 𝛾)) that reproduces these profiles at noon (𝛽 = 0), dawn, and dusk (𝛽 = ±2.0). To achieve
this, we note the relation between 𝛼 and L [i.e., 𝛼 = (L − 1)∕10] can be used to determine the variation of fT1

with 𝛼 at dawn, noon, and dusk. We then interpolate the variation with 𝛽 to second order using

fT1(𝛼, 𝛽) = a0(𝛼) + a1(𝛼)𝛽 + a2(𝛼)𝛽2. (2)

The dawn, noon, and dusk frequencies (at a given L, or equivalently 𝛼) are used to determine the quadratic
coefficients a0(𝛼), a1(𝛼), and a2(𝛼). The resulting function will match the profiles shown in Figure 1 and vary
smoothly between them.

With fT1(𝛼, 𝛽) known, we can determine VA(𝛼, 𝛽, 𝛾) that is consistent with these frequencies. There is some
arbitrariness regarding the field-aligned variation of VA since two different profiles could yield the same value
of fT1 on the same field line. For numerical efficiency (related to the CFL condition (de Moura & Kubrusly, 2013))
we take VA to be constant along any given field line, but vary from one field line to another. Hence, we need
to determine the function VA(𝛼, 𝛽) and assign it so that the natural frequencies match those given by fT1(𝛼, 𝛽).
This was achieved by initially setting VA = 1 and shooting for the fundamental toroidal frequency (Wright &
Elsden, 2016) to get the value fT1(𝛼, 𝛽, VA = 1). The VA required to produce observed frequency of fT1(𝛼, 𝛽)
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Figure 2. The variation of key quantities in the equatorial plane: From left to right, (first panel) VA profile; (second panel) FTED; (third panel) square root of kinetic
energy density (the dot is the location of the FTED maximum, and the line indicates the polarization of the Alfvén waves); (fourth panel) ∫ |b𝛾 (𝛼, 𝛽, 0, t)|dt for
5.4 < t < 9.6; (fifth panel) Contours of FFT of (∇b𝛾 )𝛽 . Overplotted are the toroidal (right) and poloidal (left) boundaries of the Resonant Zone. The white line
indicates the Alfvén wave polarization (also shown in the third panel as the black line). FTED = Flux Tube Energy Density; FFT = fast Fourier transform.

is VA(𝛼, 𝛽) = fT1(𝛼, 𝛽)∕fT1(𝛼, 𝛽, VA = 1). This process was repeated for all (𝛼, 𝛽) grid points, and the resulting
VA(𝛼, 𝛽) is shown as the first panel in Figure 2.

The simulation was run as described above to a time of t = 21.41. (A movie of key quantities is available as
supporting information Movie S1.) The results are discussed in the following sections.

3. Field Line Resonances
3.1. FLR Location and Polarization Angle
Elsden and Wright (2017) show how the energy density integrated along an elemental flux tube can be used to
define the Flux Tube Energy Density (FTED). It corresponds to the energy contained in a flux tube of unit area
in the equatorial plane, and a contour plot of FTED can be used to infer the location of FLRs. The second panel
in Figure 2 shows FTED at t = 21.410, and the peaks at dawn (𝛼 = 0.797, 𝛽 = -0.714) and dusk (𝛼 = 0.728, 𝛽 =
0.934) are evident. There is clearly a smaller amplitude at dusk. Structure within the resonance can be studied
using a contour plot of kinetic energy density (or its square root) as shown in the third panel of Figure 2 at
t = 13.916. This reveals phase-mixing ridges whose phase motion runs toward lower Alfvén frequency, that
is, toward the magnetopause.

The results in this simulation can be contrasted with those of Elsden and Wright (2018) where the waveguide
and magnetopause driving were both symmetric about noon. All of their plots for Alfvén and fast modes
showed the expected perfect symmetry about noon. Although the present simulation has a driver that is
symmetric about noon, the asymmetric VA has caused obvious asymmetries in the Alfvén waves—as seen
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in the second and third panels of Figure 2. Since the Alfvén waves are driven by the fast mode we would
anticipate that the fast mode in the current simulation is also asymmetric about noon.

This conjecture can be checked by using the compressional magnetic field in the equatorial plane, b𝛾 (𝛼, 𝛽, 0, t)
as a signature of the fast mode. The fast mode will propagate such that asymmetric features become increas-
ingly obvious as time passes. With this in mind we consider the interval t > 5 to avoid the period immediately
following the symmetric driving. The fast mode will have a complicated spatial structure that varies with time
which we do not wish to analyze here. Rather, we simply want to know where the fast mode is concentrated,
and whether it possesses any asymmetry. For our purposes considering ∫ |b𝛾 (𝛼, 𝛽, 0, t)|dt for 5.4 < t < 9.6
will suffice and is shown as the fourth panel in Figure 2. This is clearly asymmetric (in contrast with Figure 9 of
Elsden & Wright, 2018) and is consistent with an asymmetric Alfvén wave response. The propagation of the
fast mode will be studied in greater detail in the following section.

For the moment we return to properties of the phase-mixed Alfvén waves shown in the third panel of Figure 2.
The black dot plotted in this panel corresponds to the dawn FTED peak (𝛼 = 0.797, 𝛽 = −0.714), and the line
through it was drawn to lie parallel to the ridges. Wright and Elsden (2016) showed that the magnetic field,
plasma displacement (𝝃), and velocity perturbations (u = 𝜕𝝃∕𝜕t) of the Alfvén wave are also aligned with
the ridges in this plot, so measuring the angle of this line to the 𝛽 axis provides the polarization of the Alfvén
wave here (𝜃 = 0.09 rad). Building on the general Alfvén wave eigenfrequency equation of Singer et al. (1981),
Wright and Elsden (2016) showed how it could be adapted for Alfvén waves of any polarization angle,

𝜕

𝜕𝛾

( h𝛽′

h𝛼′h𝛾

𝜕

𝜕𝛾
(𝜉𝛽′nh𝛼′B)

)
+ 𝜔2

Anh𝛽′h𝛾

B
V2

A

𝜉𝛽′n = 0. (3)

Here (𝛼′, 𝛽′) are rotated coordinates such that the unit vector e𝛽′ is aligned with the Alfvén wave fields and
makes an angle 𝜃 to e𝛽 , and 𝜉𝛽′n is the nth Alfvén wave eigenfunction with eigenfrequency𝜔An. Once the scale
factors have been determined for the field-aligned coordinates (𝛼, 𝛽, 𝛾), equations (20) and (22) of Wright and
Elsden (2016) show how the scale factors h𝛼′ and h𝛽′ can be evaluated. Such a calculation gives an Alfvén
frequency for the dawn peak of 𝜔A = 2.914 for the observed polarization angle (𝜃 = 0.09) at the dawn FTED
peak (𝛼 = 0.797, 𝛽 = −0.714).

It is important to note that the FLRs in Figure 2 do not have a toroidal polarization angle (𝜃 = 0), but have
𝜃 = 0.09. This means that they have a polarization angle that is intermediate between the toroidal and the
poloidal Alfvén modes. It is also evident that these FLRs actually cross L shells—something that toroidal Alfvén
waves will not do.

3.2. FLR Driver
To understand how the asymmetric FLRs are driven, it is necessary to study the fast waveguide mode which
drives them. The frequency of this mode can be studied by considering b𝛾 (t) for several points down the cen-
ter of the waveguide and is shown in the left-hand panel of Figure 3 for (𝛼, 𝛽) = (0.75,−1), (0.75,0), (0.75,0.5),
and (0.75,1). The right-hand panel shows that the corresponding frequency spectra have a common waveg-
uide frequency of fwg = 0.46, confirming that the fast wave does indeed have a global nature. The peak FLR
frequency found using the polarization 𝜃 = 0.09 and equation (3) for the fundamental (n = 1) eigenmode
was 𝜔A = 2.914 corresponding to fA = 𝜔A∕2𝜋 = 0.464, confirming that the largest amplitude Alfvén waves
are indeed resonantly driven.

The drift of the fast mode to dusk (𝛽 > 0) seen in the fourth panel of Figure 2 will obviously produce some
asymmetry in the FLRs that it excites; however, it is not clear from this panel alone where FLRs will be excited
preferentially. To gain some insight into this question, we need to recognize that it is not b𝛾 that drives FLRs
but the magnetic pressure gradient: specifically, the component of this gradient aligned with the FLR ridges
in the third panel of Figure 2—that is, (∇b𝛾 ) ⋅ e𝛽′ (Elsden & Wright, 2017). In the present simulation the angle
between e𝛽′ and e𝛽 is quite small (𝜃 = 0.09), so we may approximate the required component as (∇b𝛾 ) ⋅ e𝛽 ,
which is easier to calculate and accurate to leading order in 𝜃.

Simply having a large pressure gradient is not enough to drive a resonant Alfvén wave: it is essential
that the variation in time occurs at the required frequency. With this in mind the frequency spectrum of
𝜕b𝛾 (𝛼, 𝛽, 0, t)∕𝜕𝛽 at f = fwg is the key quantity and is shown as color contours in the fifth panel of Figure 2.
The red regions in this panel indicate where the magnetic pressure gradient in 𝛽 is both large and at the right
frequency to favor resonant Alfvén wave excitation.
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Figure 3. Variation of b𝛾 (t) for several points in the equatorial plane (left) along with the associated frequency
spectra (right).

3.3. Resonance Map
The final requirement is that the Alfvén frequency of field lines in regions colored red in the fifth panel of
Figure 2 be able to match that of the fast mode. To visualize this Wright and Elsden (2016) introduced the
idea of a Resonance Map, which divides the equatorial plane into a Resonant Zone and a Non-Resonant Zone.
Focusing on the fundamental Alfvén eigenmode again, recall that 𝜔A(𝛼, 𝛽, 𝜃) explicitly depends upon the
polarization of the Alfvén wave. Choosing a field line and running through 0 < 𝜃 < 𝜋 allows the maximum
and minimum 𝜔A for that field line to be determined (𝜔Amax(𝛼, 𝛽) and 𝜔Amin(𝛼, 𝛽)). If 𝜔wg = 2𝜋fwg satisfies
𝜔Amin(𝛼, 𝛽) < 𝜔wg < 𝜔Amax(𝛼, 𝛽), then there is a polarization (𝜃) for which the field line may be resonantly
excited, 𝜔A(𝛼, 𝛽, 𝜃) = 𝜔wg, and the field line is said to lie in the Resonant Zone. If this inequality cannot
be satisfied, the field line can never be resonant and lies in the Non-Resonant Zone. In the fifth panel of
Figure 2 the left-hand line corresponds to field lines where 𝜔Amin(𝛼, 𝛽) = 𝜔wg, the right-hand line to where
𝜔Amax(𝛼, 𝛽) = 𝜔wg, and the region between is the Resonant Zone.

For the simple magnetic geometry adopted in our model 𝜔Amax(𝛼, 𝛽) corresponds to the toroidal frequency,
and any field line on the right-hand edge of the Resonant Zone will be resonant if a toroidal polarization is
adopted. Conversely, the left-hand boundary will correspond to resonant field lines for a poloidal polarization.
The intersection of the Resonant Zone with the red region in the fifth panel of Figure 2 identifies the site where
maximum resonant coupling occurs—at dawn. Interestingly, there is smaller peak at dusk (0.82,0.4) but this
does not have a strong intersection with the Resonant Zone. Consequently, the fast waveguide mode does
not couple as strongly to FLRs at dusk. The dawn FTED peak location and associated polarization are also
plotted on the fifth panel of Figure 2. A close inspection shows that the FTED peak is indeed located inside the
Resonant Zone. Moreover it is close to the right-hand boundary of the Resonant Zone, which is to be expected
as this boundary is associated with a toroidal polarization and the FLR polarization deviates from toroidal by
a small amount here (𝜃 = 0.09).

3.4. FLR Evolution
The dawn/dusk asymmetry can also be appreciated from the viewpoint of a driven damped harmonic
oscillator. In terms of the plasma displacement in the e𝛽′ direction (𝜉𝛽′ ) the governing equation is
(Wright, 1992)

𝜕2𝜉𝛽′

𝜕t2
+ 𝜈

𝜕𝜉𝛽′

𝜕t
− 1

h𝛽′h𝛾

V2
A

B
𝜕

𝜕𝛾

( h𝛽′

h𝛼′h𝛾

𝜕

𝜕𝛾
(𝜉𝛽′h𝛼′B)

)
= 1

h𝛾

V2
A

B

(
− 1

h𝛽′

𝜕(b𝛾h𝛾 )
𝜕𝛽′

)
. (4)

Here 𝜈 is the coefficient of a small linear drag term (−𝜈u) added to the equation governing 𝜕u∕𝜕t to prevent
singular behavior developing. The term on the right-hand side is proportional to the magnetic pressure gra-
dient and drives the damped harmonic oscillator on the left-hand side. This can be seen more explicitly by
considering an eigenfunction expansion.

The Sturm-Liouville system (equation ((3))) strictly describes ideal eigenfuctions (𝜉𝛽′n) in the absence of dis-
sipation. However, they have the useful property that they form a complete set, so formally we can write a
general solution in terms of a sum over these eigenfunctions with appropriate coefficients that depend on t
(e.g., as in time-dependent perturbation theory in quantum mechanics),
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𝜉𝛽′ =
∑

n

an(t)𝜉𝛽′n. (5)

The eigenfunctions (𝜉𝛽′n) are also orthogonal (Wright & Thompson, 1994)

∫ 𝜉𝛽′n𝜉𝛽′mh𝛼′h𝛽′h𝛾

B2

V2
A

d𝛾 = 0, n ≠ m. (6)

when integrated along the length of the field line. Returning to the third term on the left of equation (4), if
𝜉𝛽′ is written as a sum using equation (5), the resulting differential operator acting on the eigenfunctions 𝜉𝛽′n

may be substituted for using equation (3) to give

− 1
h𝛽′h𝛾

V2
A

B
𝜕

𝜕𝛾

( h𝛽′

h𝛼′h𝛾

𝜕

𝜕𝛾
(𝜉𝛽′h𝛼′B)

)
=
∑

n

an(t)𝜔2
An𝜉𝛽′n. (7)

Substituting for the remaining 𝜉𝛽′ terms in equation (4) using equation (5), it is possible to determine the
equation governing any coefficient by multiplying the entire equation by the corresponding eigenfunction
and a weighting factor of h𝛼′h𝛽′h𝛾B2∕V2

A before integrating along the field line and making use of equation (6).
The result is an equation for an(t) (n = 1, 2, 3...),

d2an

dt2
+ 𝜈

dan

dt
+ 𝜔2

Anan = −
∫ 𝜉𝛽′nh𝛼′B

𝜕(b𝛾h𝛾 )
𝜕𝛽′

d𝛾

∫ 𝜉2
𝛽′n

h𝛼′h𝛽′h𝛾
B2

V2
A

d𝛾
. (8)

Once the integrals have been performed, the driving term on the right-hand side of equation (8) reduces
to d(t)—i.e., it is solely a function of time. The magnitude of d will depend upon how well the Alfvén wave
eigenfunction (𝜉𝛽′n) and the magnetic pressure gradient (∝ 𝜕(b𝛾h𝛾 )∕𝜕𝛽′) match up with one another. For
example, a fast mode with odd symmetry about the equator and an Alfvén eigenmode with even symmetry
would have d = 0.

It is fairly easy to see the resonant behavior in the above equation by considering a steady driving term that
matches the ideal Alfvén frequency of the rth (resonant) harmonic: d(t) = d0 sin(𝜔Art). The exact solution to
equation (8) with boundary conditions ar = dar∕dt = 0 at t = 0 is

ar(t) =
d0 exp(−𝜈t∕2)

𝜔Ar

(
cos(Ωt)

𝜈
+ sin(Ωt)

2Ω

)
−

d0

𝜔Ar𝜈
cos(𝜔Art) (9)

where Ω =
√

𝜔2
Ar − 𝜈2∕4. In the limit of small dissipation (𝜈 ≪ 𝜔Ar) a series expansion in 𝜈 reveals the leading

order behavior at early times to be

ar(t) ≈
d0

2𝜔2
Ar

sin(𝜔Art) −
d0

2𝜔Ar
t cos(𝜔Art) + (𝜈). (10)

The classic features of a resonant response are present in the second term on the right-hand side: there is
secular growth (∝ t) at early times and it has a phase lag of𝜋∕2 relative to the driving term (which we assumed
was d0 sin(𝜔Art)). At later times the higher-order terms in 𝜈 become more important and allow the resonance
to saturate with ar(t) ≈ −(d0∕𝜈𝜔Ar) cos(𝜔Art), t ≫ 1∕𝜈.

As mentioned previously, the peak FLR amplitudes at dawn and dusk occur at (𝛼, 𝛽) = (0.797,−0.714) and
(0.728, 0.934), respectively. It should be possible to appreciate the preferential FLR excitement at dawn by
comparing the driver 𝜕b𝛾∕𝜕𝛽′ and the response 𝜉′

𝛽
at these two locations. This is done in Figure 4 where we

use 𝜕b𝛾∕𝜕𝛽 and u𝛽 = 𝜕𝜉𝛽∕𝜕t as proxies for these quantities, given that 𝜃 = 0.09 ≪ 1. The bottom two
panels show the pressure gradients that drive the peak FLRs at dawn and dusk. The drift of the fast mode to
dusk evidently has the effect of producing slightly larger gradients at dawn compared to dusk. This can be
appreciated naively by considering a localized fast mode whose pressure is initially symmetric about noon.
The pressure gradient will be zero at noon and switch sign from dawn to dusk—that is, there is a phase change
of 𝜋 of the driver in equation (4).

Consider the structure described above drifting toward dusk (as indicated by the fourth panel of Figure 2)
while it oscillates. A field line located on the dawn flank will always remain dawnward of the fast mode pressure
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Figure 4. The panels show the temporal variations of various quantities in the equatorial plane at the dawn (𝛼 = 0.797,
𝛽 = −0.714) and dusk (𝛼 = 0.728, 𝛽 = 0.934) FTED peaks. From top to bottom, panel (1) u𝛽 at dawn; (2) u𝛽 at dusk; (3)
𝜕b𝛾∕𝜕𝛽 at dawn; 𝜕b𝛾∕𝜕𝛽 at dusk. FTED = Flux Tube Energy Density.

peak so will always experience a pressure gradient with a consistent phase. The same is not true of a field
line on the dusk flank: as the peak pressure reaches the field line, the pressure gradient (the driver) drops
to zero and thereafter changes phase by 𝜋, which could potentially act to decrease the FLR amplitude. The
exact details are complicated by factors such as the location of the field lines we consider, the period of the
fast mode, the azimuthal extent of the fast mode, and the azimuthal propagation speed. It should also be
remembered that the fast mode decays in amplitude as it drives the FLR, so this sets a timescale on which
the above effects need to be considered. Nevertheless, these ideas clearly favor coherent FLR driving at dawn
compared to dusk. This gives some insight into why the early (0 < t < 5) pressure gradients are larger at dawn.
Correspondingly, the early u𝛽 response at dusk is around 70% of that at dawn. At later times (t > 5) a small
coherent pressure gradient persists at dawn, but is completely absent at dusk. Although the dawn driver for
this interval is small, it still has a significant effect as it is resonant. At t = 20 the dusk FLR amplitude is only
60% of that at dawn.

4. Waveguide Refraction

The simulation results and interpretation presented above rely on the fact that our asymmetric waveguide
tends to cause fast mode energy to drift from dawn toward dusk—but why does this occur? A natural way
to discuss fast wave propagation is in terms of phase and group velocities. This was exploited in axisymmet-
ric equilibria by Rickard and Wright (1994) who showed how the frequency of a waveguide mode (for given
radial and field-aligned harmonics) depended upon the azimuthal wave number, 𝜔wg(k𝛽 ). They went on to
determine 𝜔wg(k𝛽) using WKB theory, allowing the phase (𝜔wg(k𝛽)∕k𝛽 ) and group (𝜕𝜔wg(k𝛽)∕𝜕k𝛽 ) velocities
to be used to interpret their simulation results. This approach can work well in an axisymmetric waveg-
uide (𝜕∕𝜕𝛽 = 0); however, in the waveguide we consider here the asymmetry present prohibits considering
a mode with a single value of k𝛽 . Although we cannot use this approach, Wright (1994) showed how ray
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tracing could be bounce averaged to provide an alternative derivation of the group velocity. Moreover, the
ray tracing approach can be used in waveguides that are not axially symmetric.

4.1. Ray Trajectories
In a similar fashion to a light ray being refracted in a medium with a nonuniform refractive index, we can
think of a fast mode ray being refracted by a nonuniform Alfvén speed. Traditionally, the orientation of the
ray trajectory is described in terms of angles, which are related to the wavenumbers that a normal mode
formulation would favor. The fast mode ray equation is (e.g., Chen, 1998)

d
ds

(
1

VA

dr
ds

)
= 𝛁

(
1

VA

)
. (11)

Here VA may be a function of all three coordinates, s is a parameter (path length) along the ray, and r(s) is
a point on the ray trajectory. Figure 5 illustrates some properties of rays. The top of the schematic shows a
wave packet with three wavefronts propagating along a ray path (shown as the solid line with an arrow). As an
illustrative example, we focus on rays confined to the equatorial plane and define their orientation in terms of
the angle (𝜙) that they make to the 𝛼 axis. Exploiting the fact that, in the equatorial plane, 𝛼 and 𝛽 correspond
to Cartesian coordinates we can define

tan𝜙 = |d𝛼|
d𝛽

=
|d𝛼∕dt|
d𝛽∕dt

. (12)

If the Alfvén speed varies along a given wavefront, then one side of the wavefront will travel more quickly than
the other and the ray path will turn, 𝜙 will change, and the ray trajectory will bend. This process of refraction
is described by equation (11). Evidently it operates when 𝛁VA ≠ 0, and the nature of the ray path is sensitive
to the details of VA. In the equilibrium described in section 2.2 there is a tendency to have VA decrease from
dawn to dusk. Imagine how this affects a ray launched earthward from the magnetopause directly along the
𝛼 axis, that is, initially 𝜙 = 0: The dawnside of the wavefront propagates faster than the duskside, so the ray
path turns toward dusk and subsequently propagates in that direction. The ray is also propagating in 𝛼, and
for the equilibria used here is likely to reach an inner boundary (the plasmapause) where it is reflected. This
type of trajectory is shown over a full bounce in the lower part of the schematic in Figure 5. Also indicated
for this ray are 𝜙n and 𝜙n+1 (the magnetopause values of 𝜙 for the n and n + 1 reflections) along with Δ𝛽 , the
distance moved over one full bounce. If the radial variation in VA is increased the wave refraction can be strong
enough to introduce a turning point where the radial motion is reversed. If the time of the magnetopause
encounters are known (call these tn and tn+1), Wright (1994) showed that the bounce-averaged 𝛽 component
of the group velocity is

Vg𝛽 ≡ Δ𝛽
tn+1 − tn

. (13)

Since the time taken for a bounce is found from integrating

dt
ds

= 1
VA

, (14)

ray tracing allows us to deduce the speed at which fast mode energy will propagate azimuthally in an
asymmetric waveguide when it is not appropriate to consider modes proportional to exp i(𝜔t − k𝛽𝛽).

4.2. Wavepacket Refraction and Propagation
For the equilibirium adopted in our simulations, the ray tends to bounce back and forth between the mag-
netopause and plasmapause, while shuffling from dawn to dusk. Elsden and Wright (2018) noted that the ray
tracing behavior could be revealed quite directly in their simulations by adjusting the driving condition by
reducing 𝜏d so that the magnetopause is effectively given a quick push. This has the effect of launching a local-
ized fast mode wave packet into the magnetosphere and is depicted as the three snapshots of |b𝛾 (𝛼, 𝛽, 0, t)|
in the color panels of Figure 5 for 𝜏d = 𝜋∕30. (Other parameters are unchanged.) A crude appreciation of the
ray trajectory for this wave packet may be envisaged by considering the location of the maximum value of|b𝛾 | at any time, (𝛼(t), 𝛽(t)). In each snapshot the dot represents the location of the maximum at that time,
and the line shows the locus of the maximum at previous times.
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Figure 5. Schematic: Ray trajectories and their orientation (𝜙) in the equatorial plane. Color panels: snapshots of |b𝛾 (𝛼, 𝛽, t)| in the equatorial plane.
The dot represents the current location of the maximum, and the line is its locus/path at earlier times. (The duration of driver is 𝜏d = 𝜋∕30. See section 2.1
for further details.).

The t = 0.214 panel in Figure 5 shows the wavefront traveling to the left shortly after it has been launched. By
t = 2.026 it has been reflected twice off the left-hand boundary and is travelling to the right. At this stage it is
already evident that the higher VA at dawn (𝛽 < 0) has caused that part of the wavefront to run ahead and turn
the orientation so that there is now a noticeable motion toward dusk. This becomes increasingly apparent at
later times as shown by the right-hand panel of Figure 5.

To study the properties of the ray trajectories in more detail, we reproduce the path found in Figure 5 as the
middle panel of Figure 6. This path is characterized by being launched at t = 0 with its center at (𝛼, 𝛽) = (1, 0)
and propagating antiparallel to the 𝛼 axis—that is, 𝜙(t = 0) = 0. Similar simulations to that shown in Figure 5
were performed with a modified magnetopause driver that could launch the wavefront from (1,0) but with
an arbitrary initial inclination 𝜙(0). One such run used 𝜙(0) = 0.2, and the corresponding ray is shown as the
right-hand panel of Figure 6. The local group velocity of the wavepacket in the 𝛽 direction is

Vg𝛽 = VA sin𝜙(t), (15)

so it is traveling toward dusk from the start. (Note that the modulus signs in equation (12) mean
duskward/dawnward propagation corresponds to 𝜙 being positive/negative, respectively.) In contrast, the
first panel of Figure 6 shows results for 𝜙(0) = −0.2, so the wavepacket is initially traveling toward dawn. In
this case refraction first reduces the speed of dawnward travel to zero at 𝛽 ≈ −0.22, and thereafter, duskward
propagation is maintained. (The portion of the path colored red corresponds to dawnward propagation.)
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Figure 6. Ray trajectories (based upon tracking |b𝛾 | as in Figure 5) for three simulations with launch angles
𝜙(t = 0) = −0.2, 0.0, and 0.2. All rays start from (𝛼, 𝛽) = (1, 0) at t = 0. The section of raypath colored red corresponds to
dawnward propagation, while black denotes duskward propagation.

The location of the fast mode energy in the fourth panel of Figure 2 over 0.0 < 𝛽 < 1.0 starting at t = 5 can
also be appreciated using ray trajectories. The magnetopause driver is symmetric about noon, and a Fourier
decomposition in terms of wavenumber k𝛽 , or equivalently 𝜙, will have maximum power in a peak centered
on k𝛽 = 0, corresponding to 𝜙 = 0. If most of the initial power is in rays with 𝜙 ≈ 0 launched from (𝛼, 𝛽) =
(1.0, 0.0) around t ≈ 0, we can estimate where they will be at t = 5 from the 𝛽(t = 5) curve in the bottom panel
of Figure 7 for the 𝜙(0) = 0 ray. This suggests that 𝛽 ≈ 0.7. An alternative estimate was found by numerical
integration of the ray equation (11) using the fourth-order Runge-Kutta scheme, which yielded 𝛽 = 0.71 at
t = 5.0. Both these values are in good agreement with observed location in the simulation shown in the fourth
panel of Figure 2.

Information about the speed of propagation along the paths shown in Figure 6 can be gleaned by plotting
the 𝛼 and 𝛽 values as functions of time—as is done in Figure 7. The top three panels show 𝛼(t) for an initial
𝜙 of −0.2, 0.0, and 0.2. The bouncing nature of the ray between 𝛼 = 0.5 and 1.0 is evident. The bottom panel
shows 𝛽(t) for the three wave packet simulations. The section colored red has d𝛽∕dt < 0, so corresponds to
the initial dawnward propagation noted in Figure 6 for 𝜙(0) = −0.2. By calculating d𝛼∕dt and d𝛽∕dt for the
curves in Figure 7 the ratio may be used to determine 𝜙(t) using equation (12), which then allows the local
group velocity of the wave packet in the 𝛽 direction (Vg𝛽 ) to be found from equation (15). The local Vg𝛽 of the
wave packet can also be found directly from the slope of the 𝛽(t) curve shown in Figure 7.

4.3. Bounce-Averaged Propagation
For the purposes of describing the global propagation of fast mode energy, it is useful to form Vg𝛽 —the
bounce-averaged 𝛽 component of the group velocity, as defined in equation (13). We shall illustrate how to do
this for the 𝜙(0) = 0 simulation: In Figure 7 the red dots indicate the values of 𝛼, 𝛽 , and t for which the ray is at
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Figure 7. Variation of 𝛼 and 𝛽 with t for the three rays shown in Figure 6. Top three panels: 𝛼(t) for the simulations with
𝜙(0) = −0.2, 0.0, and 0.2. Bottom panel: 𝛽(t). The portion colored red corresponds to initial dawnward propagation.
The vertical lines identify times for which the 𝜙(0) = 0 ray is at the magnetopause (𝛼 = 1). The red dots identify the
corresponding values of 𝛼, 𝛽 , and t.

the magnetopause. The 𝛽 values at these times allow Δ𝛽 to be determined. Also, 𝜙n is calculated as described
above, and the bounce-averaged value estimated as 𝜙 = (𝜙n+1 + 𝜙n)∕2. On employing equations (12) and
(13) we arrive at a pair of bounce-averaged values, Vg𝛽 and 𝜙.

Calculating values for Vg𝛽 and 𝜙 from 3-D time-dependent simulations is computationally far more expensive
than solving equation (11) for the ray trajectory directly. For this reason further evaluation of Vg𝛽 and 𝜙 is
based upon numerical solutions to (11). The bounces used in these calculations were distributed throughout
the waveguide, and the results are shown as the black dots in Figure 8. The trend is as expected: if 𝜙 ≈ 0 the
ray is propagating in 𝛼, and Vg𝛽 ≈ 0. As 𝜙 increases/decreases, Vg𝛽 increases/decreases. Also included are four
red dots, which resulted from the 𝜙(0) = 0 simulation described in Figure 7. As the red and black dots show
consistency, this validates the use of the ray equation for describing the wave packet simulations. Moreover,
Elsden and Wright (2018) showed how the wave packet simulation bounce period could accurately estimate
the fundamental waveguide mode frequency, which we can now also evaluate using the ray equation.

In the case of a waveguide with uniform VA the local wave packet group velocity (VA sin𝜙, equation (15) would
be the same as the bounce-averaged value. With this in mind we evaluated the spatial average of VA in the
equatorial plane where most of the rays used to calculate Figure 8 were located (0.5 < 𝛼 < 1.0, −1.0 < 𝛽 <

1.0) to be VA = 0.915, and have included the line VA sin𝜙 in Figure 8 as a crude estimate of the general relation
between Vg𝛽 and 𝜙. The general trend is evident, as is the scatter of points around it which is to be expected.
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Figure 8. Bounce-averaged group velocity versus bounce-averaged 𝜙. The black dots are based upon solutions to the
ray trajectory equation, the red dots are from the wave packet simulation in Figure 5. The dashed line is VA sin𝜙, VA
being the mean VA .

5. Discussion and Conclusion

We have presented simulations of ULF waves in an asymmetric waveguide model of magnetosphere. A realis-
tic variation of toroidal Alfvén frequency requires an equilibrium model in which VA is larger at dawn compared
to dusk. When this system is driven by magnetopause pressure perturbations that are symmetric about noon,
the resulting fast mode waves that are produced in the magnetosphere are refracted in a manner that causes
asymmetries to develop: specifically, the fast waves acquire an eastward azimuthal group velocity associated
with refraction. This interpretation has been supported by solving the fast ray trajectory equation.

The asymmetric fast mode produces pressure gradients suitable for driving FLRs at both dawn and dusk.
However, those at dawn are larger and more coherent than those at dusk. Crucially, the Resonant Zone (the
region where it is possible for the Alfvén frequency to match the fast mode frequency) shows a strong overlap
with the region where the coherent pressure gradients exist at dawn, which is not the case at dusk. For these
reasons FLRs are driven preferentially in our simulation on the dawn flank compared to the dusk flank.

The results of the simulations are in good agreement with spacecraft observations of the dawn/dusk asymme-
try of Pc5 Alfvén waves (FLRs) in the outer magnetosphere (period = 150–600 s). Waves on the dawnside with
a strong toroidal component that are consistent with the second and third panels of Figure 2 are well doc-
umented in statistical studies of ground and satellite data as mentioned in section 1. The simulation results
are also quantitatively consistent with satellite observations. For example, Takahashi et al. (2015) indicate that
the median amplitude of the toroidal velocity component of fundamental Alfvén waves at L = 10–12 is 30%
higher at dawn than at dusk. This matches well with the numerical results shown in the first and second panels
of Figure 4.

In some observational studies, ULF wave activity is defined in terms of occurrence of narrowband oscillations
(e.g., Baker et al., 2003; Takahashi et al., 2015). We argue that the occurrence probability is roughly equivalent
to the spectral intensity (or amplitude) of the waves. Occurrence of a wave event is identified when a spectral
peak rises above the background (e.g., Takahashi et al., 2015). If the background remains the same on each
flank, the occurrence probability of a wave increases when its amplitude increases. The simulation results thus
explains observational results that used the occurrence probability as a parameter to describe Pc5 activity.

The simulation indicates that the amplitude of both fast mode waves and Alfvén waves exhibit dawn/dusk
asymmetry and that an interesting propagation, refraction, and coupling process between these wave modes
needs to be taken into account to explain the asymmetry. Simulations can provide valuable information about
the spatial variation of fast mode waves, which can be challenging to measure in the real magnetosphere.
Such measurements inevitably require statistical analysis of spacecraft data, but in doing so, one realizes that
magnetically compressional ULF waves in the outer magnetosphere result both from instabilities in the mag-
netosphere and from propagation of disturbances from the solar wind as the fast mode (Takahashi et al., 2016).
Because the fast mode waves often have small amplitudes (Hartinger et al., 2013), it is difficult to separate
them out from magnetic field time series that contains contribution from both wave types. While the spatial
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distribution of the mass density and amplitudes of the toroidal component of Alfvén waves can be obtained
relatively easily, the behavior of fast mode waves can be studied most easily using numerical simulations.

References
Allan, W., White, S. P., & Poulter, E. M. (1986). Impulse-excited hydromagnetic cavity and field-line resonances in the magnetosphere.

Planetary and Space Science, 34, 371.
Baker, G., Donovan, E. F., & Jackel, B. J. (2003). A comprehensive survey of auroral latitude Pc5 pulsation characteristics. Journal of

Geophysical Research, 108(A8), 1384. https://doi.org/10.1029/2002JA009801
Chen, H.-W. (1998). Three-dimensional geometrical ray theory and modelling of transmitted seismic energy of data from the Nevada Test

Site. Geophysical Journal International, 133, 366–378.
Chen, L., & Hasegawa, A. (1974). A theory of long-period magnetic pulsations: 1. Steady state excitation of field line resonance. Journal of

Geophysical Research, 79, 1024–1032. https://doi.org/10.1029/JA079i007p01024
Claudepierre, S. G., Hudson, M. K., Lotko, W., Lyon, J. G., & Denton, R. E. (2010). Solar wind driving of magnetospheric ULF

waves: Field line resonances driven by dynamic pressure fluctuations. Journal of Geophysical Research, 115, A11202.
https://doi.org/10.1029/2010JA015399

de Moura, C. A., & Kubrusly, C. S. (2013). The Courant–Friedrichs– Lewy condition. New York: Springer.
https://doi.org/10.1007/978-0-8176-8394-8

Degeling, A. W., Rankin, R., Kabin, K., Rae, I. J., & Fenrich, F. R. (2010). Modeling ULF waves in a compressed dipole magnetic field. Journal of
Geophysical Research, 115, A10212. https://doi.org/10.1029/2010JA015410

Ellington, S. M., Moldwin, M. B., & Liemohn, M. W. (2016). Local time asymmetries and toroidal field line resonances: Global magnetospheric
modeling in SWMF. Journal of Geophysical Research: Space Physics, 121, 2033–2045. https://doi.org/10.1002/2015JA021920

Elsden, T., & Wright, A. N. (2017). The theoretical foundation of 3-D Alfvén resonances: Time-dependent solutions. Journal of Geophysical
Research: Space Physics, 122, 3247–3261. https://doi.org/10.1002/2016JA023811

Elsden, T., & Wright, A. N. (2018). The broadband excitation of 3D Alfvén resonances in a MHD waveguide. Journal of Geophysical Research:
Space Physics, 123, 530–547. https://doi.org/10.1002/2017JA025018

Fujita, S., & Itonaga, M. (2003). A plasmaspheric cavity resonance in a longitudinally nonuniform plasmasphere. Earth Planets and Space,
55(4), 219–222. https://doi.org/10.1186/Bf03351751

Gallagher, D. L., Craven, P. D., & Comfort, R. H (2000). Global core plasma model. Journal of Geophysical Research, 105(A8), 18819–18833.
https://doi.org/10.1029/1999ja000241

Gupta, J. C. (1975). Long-period Pc5 pulsations. Planetary and Space Science, 23, 733–750. https://doi.org/10.1016/0032-0633(75)90012-4
Hartinger, M. D., Angelopoulos, V., Moldwin, M. B., Takahashi, K., & Clausen, L. B. N (2013). Statistical study of global modes outside the

plasmasphere. Journal of Geophysical Research: Space Physics, 118(2), 804–822. https://doi.org/10.1002/jgra.50140
Kivelson, M. G., & Southwood, D. J. (1986). Coupling of global magnetospheric MHD eigenmodes to field line resonances. Journal of

Geophysical Research, 91, 4345.
Kokubun, S. (2013). ULF waves in the outer magnetosphere: Geotail observation 1 transverse waves, Earth. Planets and Space, 65(5),

411–433. https://doi.org/10.5047/eps.2012.12.013
Lee, D. H., & Lysak, R. L. (1989). Magnetospheric ULF wave coupling in the dipole model: The impulsive excitation. Journal of Geophysical

Research, 94, 17097.
Lee, L. C., & Olson, J. V (1980). Kelvin–Helmholtz instability and the variation of geomagnetic pulsation activity. Geophysical Research Letters,

7(10), 777–780. https://doi.org/10.1029/GL007i010p00777
Mann, I. R., Wright, A. N., & Cally, P. S. (1995). Coupling of magnetospheric cavity modes to field line resonances: A study of resonance

widths. Journal of Geophysical Research, 100, 19441. https://doi.org/10.1029/95JA00820
Nosé, M., Iyemori, T., Sugiura, M., & Slavin, J. A (1995). A strong dawn/dusk asymmetry in Pc5 pulsation occurrence observed by the DE-1

satellite. Geophysical Research Letters, 22(15), 2053–2056. https://doi.org/10.1029/95gl01794
Nosé, M., Oimatsu, S., Keika, K., Kletzing, C. A., Kurth, W. S., De Pascuale, S., et al. (2015). Formation of the oxygen torus in

the inner magnetosphere: Van Allen Probes observations. Journal of Geophysical Research: Space Physics, 120, 1182–1196.
https://doi.org/10.1002/2014JA020593

Rickard, G. J., & Wright, A. N. (1994). Alfvén resonance excitation and fast wave propagation in magnetospheric waveguides. Journal of
Geophysical Research, 99, 13455. https://doi.org/10.1029/94JA00674

Sandhu, J. K., Yeoman, T. K., James, M., Rae, I. J., & Fear, R. C. (2018). Variations of high-latitude geomagnetic pulsation frequencies:
A comparison of time-of-flight estimates and IMAGE magnetometer observations. Journal of Geophysical Research: Space Physics, 123,
567–586. https://doi.org/10.1002/2017JA024434

Sandhu, J. K., Yeoman, T. K., Rae, I. J., Fear, R. C., & Dandouras, I. (2017). The dependence of magnetospheric plasma mass loading on
geomagnetic activity using Cluster. Journal of Geophysical Research: Space Physics, 122, 9371. https://doi.org/10.1002/2017ja024171

Singer, H. J., Southwood, D. J., Walker, R. J., & Kivelson, M. G. (1981). Alfvén wave resonances in a realistic magnetospheric magnetic field
geometry. Journal of Geophysical Research, 86, 4589.

Southwood, D. J. (1974). Some features of field line resonances in the magnetosphere. Planetary and Space Science, 22, 483–491.
https://doi.org/10.1016/0032-0633(74)90078-6

Takahashi, K., Hartinger, M. D., Angelopoulos, V., & Glassmeier, K.-H. (2015). A statistical study of fundamental toroidal mode
standing Alfvén waves using THEMIS ion bulk velocity data. Journal of Geophysical Research: Space Physics, 120, 6474–6495.
https://doi.org/10.1002/2015ja021207

Takahashi, K., Lee, D.-H., Merkin, V. G., Lyon, J. G., & Hartinger, M. D. (2016). On the origin of the dawn-dusk asymmetry of toroidal Pc5 waves.
Journal of Geophysical Research: Space Physics, 121, 9632–9650. https://doi.org/10.1002/2016JA023009

Takahashi, K., Ohtani, S., Denton, R. E., Hughes, W. J., & Anderson, R. R. (2008). Ion composition in the plasma trough and plasma plume
derived from a combined release and radiation effects satellite magnetoseismic study. Journal of Geophysical Research, 113, A12203.
https://doi.org/10.1029/2008JA013248

Wright, A. N. (1992). Asymptotic and time-dependent solutions of magnetic pulsations in realistic magnetic field geometries. Journal of
Geophysical Research, 97, 6439. https://doi.org/10.1029/91JA02666

Wright, A. N. (1994). Dispersion and wave coupling in inhomogeneous MHD waveguides. Journal of Geophysical Research, 99, 159–167.
https://doi.org/10.1029/93JA02206

Wright, A. N., & Elsden, T. (2016). The theoretical foundation of 3D Alfvén resonances: Normal modes. Astrophysical Journal, 833, 230.
https://doi.org/10.3847/1538-4357/833/2/230

Wright, A. N., & Thompson, M. J. (1994). Analytical treatment of Alfvén resonances and singularities in nonuniform magnetoplasmas.
Physics of Plasmas, 1, 691. https://doi.org/10.1063/1.870815

Acknowledgments
A. N. W. was partially funded by STFC
(ST/N000609/1) and the Leverhulme
Trust (RPG-2016-071). T. E. was funded
by the Leverhulme Trust
(RPG-2016-071). K. T. was supported by
NASA grant NNX17AD34G. Data used
to produce the simulation plots can be
accessed at https://figshare.com/
authors/Tom_Elsden/4743264. The
THEMIS data used in this study are
publicly available from the THEMIS
mission home page maintained by the
Space Science Laboratory, University of
California, Berkeley
(http://themis.ssl.berkeley.edu).

WRIGHT ET AL. 6456

https://doi.org/10.1029/2002JA009801
https://doi.org/10.1029/JA079i007p01024
https://doi.org/10.1029/2010JA015399
https://doi.org/10.1007/978-0-8176-8394-8
https://doi.org/10.1029/2010JA015410
https://doi.org/10.1002/2015JA021920
https://doi.org/10.1002/2016JA023811
https://doi.org/10.1002/2017JA025018
https://doi.org/10.1186/Bf03351751
https://doi.org/10.1029/1999ja000241
https://doi.org/10.1016/0032-0633(75)90012-4
https://doi.org/10.1002/jgra.50140
https://doi.org/10.5047/eps.2012.12.013
https://doi.org/10.1029/GL007i010p00777
https://doi.org/10.1029/95JA00820
https://doi.org/10.1029/95gl01794
https://doi.org/10.1002/2014JA020593
https://doi.org/10.1029/94JA00674
https://doi.org/10.1002/2017JA024434
https://doi.org/10.1002/2017ja024171
https://doi.org/10.1016/0032-0633(74)90078-6
https://doi.org/10.1002/2015ja021207
https://doi.org/10.1002/2016JA023009
https://doi.org/10.1029/2008JA013248
https://doi.org/10.1029/91JA02666
https://doi.org/10.1029/93JA02206
https://doi.org/10.3847/1538-4357/833/2/230
https://doi.org/10.1063/1.870815
https://figshare.com/authors/Tom_Elsden/4743264
https://figshare.com/authors/Tom_Elsden/4743264
http://themis.ssl.berkeley.edu

	Abstract
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


