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Abstract 
As one of the leading killers of females, breast cancer has become one of the heated research 
topics in the community of clinical medical science and computer science. In the clinic, mam-
mography is a publicly accepted technique to detect early abnormalities such as masses and dis-
tortions in breast leading to cancer. Interpreting the images, however, is time-consuming and er-
ror-prone for radiologists considering artificial factors including potential fatigue. To improve 
radiologists’ working efficiency, we developed a semi-automatic computer-aided diagnosis sys-
tem to classify mammograms into normality and abnormality and thus to ease the process of 
making a diagnosis of breast cancer. Through transferring deep convolutional neural network 
DenseNet201 on the basis of suspicious regions provided by radiologists into our system, we ob-
tained the network we termed as DenseNet201-C, which achieved a high diagnostic accu-
racy of 92.73%. The comparison results between our method and the other five methods show 
that our method achieved highest accuracy. 
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1 Introduction 
 
Breast cancer remains one of the common cancers worldwide while it has taken millions of lives away. 
Risk factors inducing cancer include family history and personal factors such as lack of physical exercise, 
obesity and so on [1]. While using certain medicines and controlling methods do decrease the risk of breast 
cancer at the prevention stage, early detection and diagnosis can be an effective way to reduce the mortality 
rate and thus control cancer. To achieve early detection, experts in the field used mammography technique, 
which turned out to be a mainstream technique in this field. With the help of mammography, radiologists 
are able to visualize the abnormalities in the breast. However, due to the overlapping tissues and high com-
plexity of the image, sometimes double reading is required given that the first interpreting procedure is 
already time-consuming. 
The most significant early syndromes of breast cancer are micro-calcification and mass. Calcifications are 
mineral deposits in the form of white small spots or clusters in the presence of mammogram images. The 
clinical practice of diagnosing the calcifications is a challenging task due to the large variations in size, 
shape, and distribution in mammogram images. While radiologists usually have to spot the calcifications in 
mammogram images manually, some of the calcifications may be missed due to the distraction of radiolo-
gists or subtleness of the calcifications. Mass, or lump, is also another typical form of abnormality, which 
can be categorized into being benign and malignancy according to the severity. Unlike the spiculated malig-
nant masses, benign masses are usually circumscribed and non-cancerous. But early identification of both 
types ahead of any further deterioration is still of great significance. Given the challenges in accurate diag-
nosis, the misdiagnosis is nothing but common and falls into two categories, namely false positives, and 
false negatives. Inevitably, the false negatives will increase the mortality rate of breast cancer without noti-
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fiable control while false positives lead to unnecessary measurements and squandering of resources. 
To help radiologists improve their working efficiency as well as the accuracy of diagnosis, considerable 
previous works on designing CAD systems of breast cancer have been done [12] [20] [24] [31]. There are 
two main categories of CAD systems according to the functionality: detection and diagnosis. Usually, locat-
ing the abnormal areas in images is the basic yet most important step in almost all of the CAD systems. They 
can be very helpful when it is difficult for radiologists to detect or locate abnormal areas given complicated 
contents of images. Additionally, diagnosis systems are generally applied afterward to help radiologists make 
decisions on the malignancy of abnormalities when necessary. To detect the  masses in mammograms, 
Neeraj et al. designed an automated detection system with a cascade of deep learning and random forest clas-
sifiers introduced [8]. Deep belief network was used as a classifier to select the multi-scale specious regions 
at the first stage followed by random forests classifier to determine the regions surviving the first stage to be 
mass or not. Experiments on two different data sets showed promising results. A similar work to detect calcifi-
cation was proposed with cascaded classifiers introduced [26]. Also, there is a large number of works on 
diagnosis systems regarding micro-calcification and mass [5] [4] [24]. A trained nine-layer CNN in the 
breast cancer detection system, designed by Pan, outperformed six other the state-of-the-art approaches 
[36]. The diagnosis accuracy reached 94% but is still improvable. In another breast cancer detection system, 
a novel convolutional neural network (CNN) named GlimpseNet was introduced [13]. Multi regions of inter-
est (ROI) are extracted simultaneously and are then classified. A diagnostic result for the full image is then 
given by pooling them to give a disgnostic result for the full image. However, as the authors stated, the over-
fitting problem hasn’t been fixed while the performance of accuracy gained 4.1% compared to existing algo-
rithms. 
Despite the fact that deep CNNs have been widely used in fields including not only medical analysis but also 
industrial application [15] [16] [17] [18] [19], some problems remain to be solved in practical usage. Con-
straints of practical problems such as the limited size of training data refrain the performance of deep CNNs 
trained from scratch to be satisfactory. Also, as pointed out by Jason [34], the bottom layers in deep CNNs 
especially the first layer learn some general features similar to Gabor filters or color blobs, but the top layers 
learn more specific features regarding the data set. Consequently, transfer learning, which is introduced to 
adopt classifiers trained for other categories to classify certain categories, turns out to be an effective way to 
solve the dilemmas [6] [9] [29] [32]. There are grossly two ways of transferring existing networks into problem-
oriented ones. However, the first procedure of two different transfer learning methods is the same that is to 
copy the first n bottom layers from base networks to target networks while parameters in the remaining layers 
of target networks are randomly initialized. The difference between the two methods is that one leaves the pa-
rameters in copied layers frozen while the other fine-tunes the parameters when training the target networks. 
Freezing technique is suggested when the size of the target data set is small while the numbers of parameters are 
large otherwise fine-tuning should be adopted when large data set accompanied with small numbers of pa-
rameters. As such, there are many outstanding jobs of adopting transfer learning to different areas including 
detection and diagnosis of breast cancer. Ravi et al. transferred a nine-layer deep CNN that was pre-trained 
on a large mammogram data set but improved the accuracy of detecting mass in digital breast tomosynthesis 
(DBT) significantly from 0.80 to 0.91 [28]. In another attempt, Benjamin et al. improved the accuracy of 
mammographic tumor classification from 0.81 to 0.86 after applying transfer learning [22]. 
In order to advance the diagnosis system of breast cancer, we proposed a CAD diagnosis system to classify 
abnormalities in mammogram images. For simplicity, we classify regions acquired from mammograms into 
normality class when no abnormality found while regions containing abnormalities like micro-calcifications 
and masses are classified into abnormality class. The input of the system is regions cropped from mammo-
gram images according to hand-crafted labels by experts for MINI-MIAS data set [3], which contains 322 
mammograms in total. We transferred the state-of-the-art networks DenseNet201 into our system as classifiers 
[21], which removes rudimentary procedures such as segmentation in traditional diagnosis systems. To specify 
whether base networks should be frozen or not in this problem, we used two transfer learning methods and 
compared the results. Also, we validated our system by comparing the accuracy of the system with the state-
of-the-art works’ and came to the conclusion that our method worked best amongst all of them. 
 

2 DenseNet 
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Among all of the newly proposed deep CNNs, DenseNet was known for the startling performance on the 
competitive object recognition benchmark tasks such as ImageNet and CIFAR-100 [7] [25]. However, the 
surge of deep CNNs can be dated back to 2012. In 2012, a network with novel architecture named AlexNet, the 
first attempt to solve large scale image classification challenge by deep CNN [2], won the first place and 
second place in localization and classification task respectively. The depth of AlextNet, only comprising of 
five convolutional layers and three fully connected layers, may be shallow compared to that of the state-of-
the-art deep CNNs’ designed in recent years but it indicated a promising future for deep CNNs as can be 
proved by the explosive growth in the number of new deep CNN models. 
For newly developed networks, various shortcut connections turn out to be effective methods to overcome 
possible problems such as vanishing gradient when training deep CNNs. In [30], an improved inception 
module composing of short-cut branch and a few deeper branches solved the problem of vanishing/exploding 
gradients when the networks are going deeper. To ease the training process of deep networks based on gradient, 
networks termed highway networks were designed to allow information produced by preceding layers flow 
to subsequent layers without loss of information. Similarly, residual networks proposed by He et al. achieved 
the same goal but used residual learning method [14]. While taking advantage of deep and wide architectures 
can be useful techniques to improve the performance of deep CNNs, DenseNet realizes the goal of easy training 
and parameter efficiency through feature reuse, which inputs the concatenated feature-maps produced by all 
preceding layers into the subsequent layer. In that way, deep layers in the networks are allowed to access 
all of the feature-maps produced by previous layers and thus reuse features. That means the feature-maps Xl 

in the lth layer can be projected by all feature-maps, X0 ꞏ ꞏ ꞏ Xl-1, in previous layers in the form of: 

Xl = Hl([X
0, ꞏ ꞏ ꞏ, Xl-1]) (1) 

Where [X0, ꞏ ꞏ ꞏ, Xl-1] are feature- maps in 0th, ꞏ ꞏ ꞏ , l – 1th layer respectively. Hl(ꞏ) is defined as a  composite func-
tion of three operations comprising of batch normalization (BN)[23] [10], a rectified linear unit (ReLU) and a 3 
× 3 convolution (Conv). In traditional deep CNNs, convolutional layers were generally followed by down-
sampling layers that reduce the width and height of feature-maps to half of them. Consequently, concatenation 
of feature-maps before down-sampling layers and after would be problematic due to different sizes. To 
solve this problem, dense blocks were craftily designed followed by down-sampling layers while layers in 
dense blocks are densely connected. As a result, the sizes of feature-maps in dense blocks remained un-
changed while were halved after down-sampling. Therefore, for a dense block with L layers, the total number 
of direct connections between layers is L(L+1)/2 whereas the number of connections in a traditional convolu-
tional network with L convolution layers is only L. However, the deeper the layers the larger the number of 
concatenated feature-maps input to the following layers. If no constraints on the linear growth in the number 
of feature-maps, huge computation expenditure would be a disaster. Hence growth rate k is designed to control 
the number of newly produced feature-maps in each layer. As a result, the total number of feature-maps in 
the lth layer of a dense block is k0 + (l − 1) ∗ k, where k0 is the number of the channels in the input layer. 
To reduce the complexity of computation, bottleneck layers were introduced by utilizing a 1 × 1 convolution 
before each 3 × 3 convolution. Besides bottle layers, layers named transition layers serve to control the number 
of output feature-maps in a certain depth of the networks and thus improve the compactness of whole net-
works. Fig. 1 shows the process of concatenating and producing new feature-maps in the first dense block of 
DenseNet201. As transition layer generally appears after dense block in certain depth, there is no transition 
layer after the first dense block. 
 

3 Methodology 
 
3.1 Data set 
 
In this paper, the data set was MINI-MIAS, a public mammogram database which can be acquired at 
http://peipa.essex.ac.uk/info/mias.html. This database contains 114 abnormal tissues images and 208 normal 
images and thus result in 322 images in total with labels of possible lesion regions labeled by radiologists. For 
images with the abnormalities, they can be categorized into six classes including calcification, well-defined 
mass, spiculate mass, ill-defined mass, architectural distortion, and asymmetry. Some typical examples of 
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these classes are presented in Fig. 2. 
 

 
 

(a) Concatenated feature-maps in each layer. The solid 
lines denote the concatenation of previous feature-maps 
and the feature-maps produced in the next layer where the 
arrow is pointing to. The dashed lines present the connec-
tion of different layers. 

(b) Newly produced featured-maps in each layer. Bottle-
neck layer consists of 1 × 1 and 3 × 3 convolutions. 

Figure 1: Connections of first dense block in DenseNet201 (growth rate k = 32) 
 

 
(a) Calcification (b) Well-defined mass (c) Spiculated mass 

 
(d) ill-defined mass (e) Architectural distortion (f) Asymmetry 

Figure 2: Different classes of abnormality in mammograms 
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Figure 3: Preprocessing procedures 

 
3.2 Preprocessing 
 
As can be seen from the examples above, breasts are the foreground of images while the background is 
composed of the black region, white bars, and boxes. However, within the foreground, we only focus on 
ROIs located in breasts. Therefore, the procedure of processing can be divided into two more steps, namely the 
removal of background and selection of ROIs. The flow chart Fig. 3 below illustrated the procedures of ac-
quiring ROIs from mammograms. Morphological opening, erosion followed by dilation, was first applied to 
remove potential noises in the image. Such that, most of the items including characters and white bars are re-
moved. The structural element in opening operation is a disk-like filter in size of 30 pixels. To get the mask 
of the breast in a mammogram image, we then have the image after opening operation binarized by the 
threshold value, which was the average intensity of the whole image being opened. The mask of the breast 
was determined by selecting the connected component with the biggest area from all of the components. Fig. 
4 shows the outcome of each step. According to the labels given by radiologists, we are able to determine 
the ROIs from the original image. Fig. 5 are corresponding ROIs to Fig. 2. Finally, we obtained 330 ROIs in 
total from 322 mammogram images due to the situations where one mammogram contains several suspicious 
regions. 
 

  
(a) Original mammogram image (b) Opening followed by binarization 



6  

  
(c) Selected binarized map (d) Breast image 

Figure 4: Extraction of breast image 
 

 
(a) Calcification (b) Well-defined mass (c) Spiculated mass 

 
(d) ill-defined mass (e) Architectural distortion (f) Asymmetry 

Figure 5: ROIs of different abnormalities 
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Figure 6: Structure of transferred DenseNet201 

 
3.3 Transfer learning methods 
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Transfer learning turns out to be an effective way to introduce networks with good performance on classifica-
tion into practical classification problems provided limited data size. The state-of-the-art deep CNNs are, how-
ever, generally designed for large scale objects recognition [27] [14] [21]. Therefore, in the first step of trans-
fer learning, the fully connected layer with 1000 neurons has to be replaced correspondingly with the one 
with fewer neurons to meet specific classification need. Whether freezing or fine-tuning technique should be 
applied depends on how many parameters to be trained and the size of data. To differentiate the different per-
formance of these two techniques, we used both of the techniques when transferring base networks because 
of the vagueness of the size of the data as well as the number of parameters to be trained. Considering a bi-
nary classification in our work, we replaced all of the fully connected layers in the base networks with a 2-
neuron one. Therefore, only three top layers including the fully connected layer, softmax layer, and classifica-
tion layer were retrained when we froze the layers preceding fully connected layer while retrained the whole 
networks by a small number of epochs to fine-tune parameters in the case of fine-tuning. The structure of 
transferred DenseNet201 is presented in Fig. 6. The output sizes of feature-maps are shown on the right-
hand side of each block while the size of the input is on the top. 
 
3.4 Hold-out validation 
 
We used hold-out validation to examine the performance of our transferred networks. 80% of the whole 
data set was randomly partitioned in training set while the rest remained to be testing set. To rule out the pos-
sibility of accidental results, we ran hold-out validation for ten times repeatedly. Therefore, the performance 
of classifiers was assessed according to the mean classification accuracy produced in ten times running peri-
od. As for the reason why we hold 80% out of data set as the training set is that we followed the general hold-
out rule, which partitioned 80% of whole data set as training set while remained data was used as the testing 
set. 
 

4 Experiment 
 
4.1 Configuration and parameters setting 
 
This research used the SPECTRE High-Performance Computing Facility at the University of Leicester. All of 
the experiments are carried out on a machine with one single GPU Tesla P100 PCI-E 16GB. To compare the 
performance of two different transfer methods, we set the same parameters for the two methods. Without spe-
cial specifications, the parameters are: dropout rate for the fully connected layer is 0.5, adaptive moment esti-
mation is used as the optimization algorithm, mini-batch size of 64, initial learning rate as 0.01, the number of 
maximum epochs is 30, learning rate drops at the rate of 0.1 every 10 epochs. 
 
4.2 Partition and augmentation of data 
 
As aforementioned, we acquired 330 ROIs from 322 mammogram images and have them classified into two 
categories according to labels provided the radiologists. Then we named all of them by numbers from 1 to 
330 and randomly partitioned 80% of them into the training set. Fig.7 shows the indexes of the training set 
and testing set. For a better understanding, we split the 1 × 330 array into a 5 × 66 array. The yellow regions 
indicate that the corresponding ROIs are partitioned into the training set while the blue regions denote testing 
set. The detailed partition of the data set is presented below in Tab 1. To avoid the problem brought by the 
imbalance of positive and negative samples, data augmentation was applied here. Followed the general prac-
tice, we applied random rotation from 0 to 360 and random scaling from 0.5 to 1. 
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Figure 7: Partition of data 

 
Table 1: Training set and testing set of data set 

Categories Training set Testing set Overall 

Abnormality 98 24 112 

Normality 166 42 208 

Overall 264 66 330 

 
Table 2: Comparison of two transfer methods 

Model Sensitivity 
(%) 

Specificity 
(%) 

Overall 
accuracy (%) 

Mean training time 
(Seconds)  

Freezing 86.67 75.71 79.70 7.72 
Fine-tuning 94.58 91.67 92.73 1.62×103 

 
4.3 Freezing or fine-tuning 
 
It needs to be clarified that DenseNet201 here and afterward is referred to the one with last fully connect-
ed layer being replaced with a two-neuron fully connected layer. As there were not quantitative criteria 
when freezing or fine-tuning should be applied, we explored which method would work better in our work. 
We ran each configuration with the same training set and testing set for ten times repeatedly. In Tab 2, the 
mean accuracy of the two methods is presented. As can be seen from the table, the performance of fine-tuned 
DenseNet201, both on sensitivity and specificity, outperformed the one with previous layers being frozen (as 
referred to DenseNet201-0) by a large margin. The reason why fine-tuned DenseNet201 gained better re-
sults could be that the DenseNet-0 lost the ability to learn enough specific features from ROIs because of the 
fixed values of parameters. However, the expenditure on training time of the former, which reaches 1.62×103 

seconds on average, is significantly larger than that of the latter one. 

 
4.4 DenseNet201 being retrained in different depth 
 
While fine-tuned DenseNet201 achieved high accuracy of classification, it is worth noting that the cost of 
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training is too expensive. Therefore, can we find a trade-off between accuracy and computational expendi-
ture? Towards this aim, we retrained DenseNet201 with different depth. To avoid misunderstandings, we 
have DenseNet201-A, DenseNet201-B in correspondence to DenseNet201 with the last two and last one 
dense block being retrained. Then, we denote the DesneNet201 with all of the layers being retrained as 
DenseNet201-C. The detailed results are presented in Tab 3. Analysis of overall accuracy is shown in Fig 8. 
In terms of sensitivity, it seems the more dense blocks being retrained, the higher the accuracy is. A rea-
sonable explanation of this could be that when previous layers in the network are able to learn some specific 
features while these features are lost when leaving the previous layers frozen. Interestingly, the performance of 
DenseNet201-A and DenseNet201-B is quite similar while training time for DenseNet201-B is 5 times more 
than that of DenseNet201-A’s. Therefore, it seems that an appropriate depth of the base network to be frozen 
can lead to a significant decrease in training time without harming the accuracy too much. 
 

Table 3: Comparison of DenseNet201 retrained in different depth 

Model Sensitivity (%)  Specificity (%) 
 Overall 

Accuracy (%) 
Mean training time 

(Seconds) 
DenseNet201-A 90.83 86.67 88.18 105.59 
DenseNet201-B 91.25 85.71 87.73 535.11 
DenseNet201-C 

(Our method) 
94.58 91.67 92.73 1.62 × 103 

 
Table 4: Accuracy of different methods 

Models Method Accuracy (%) 
Yang Li[33] MIP + TPS 84.80 ± 3.10 

Gorgel Sertbas[11] SWT-SVM 90.10 
Liu[37] WFRFT + PCA + SVM 92.16±3.60 
Wu[38] FRFE + CAR-BBO 92.52 

Nguyen[35] HMI + FNN 73.50 ± 1.35 
Our method DenseNet201-C 92.73 ± 2.84 

 

5 Discussion 
 
Generally, preprocessing is an indispensable procedure in traditional computer-aided diagnosis system but 
can be removable in systems equipped with state-of-the-art networks under certain conditions. In our system, 
we added the preprocessing procedure to make sure that the disturbing items in mammogram images can be 
removed since preprocessing is almost real-time and may contribute to higher accuracy. When it comes to 
transferring learning, it can be a tricky problem on whether the target networks should be fine-tuned or be 
frozen in previous layers. The number of parameters to be trained and the size of data are the key factors. 
As shown in the experiment result, the fine-tuning technique performed better than freezing in this work. A 
possible reason is that networks can extract more specific features after fine-tuning. However, the number of 
parameters to be trained in the transferred network is only 2 × 1920, which can be quite small compared to 
that of fine-tuning. That is the reason why it requires a quite long time for the network to be fine-tuned. 
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Figure 8: Accuracy of DenseNet201 trained in different depth. From DenseNet201-0, DenseNet201-A, 
DenseNet201-B, DenseNet201-C corresponds to DenseNet201 being retrained with only the top layer, one 
dense block, two dense blocks and all of the dense blocks respectively. 

 

6  Conclusion 
 
In this paper, we developed a semi-automatic diagnosis system for breast cancer with a mean accuracy of 
92.73%. The input of the system is the original mammogram images while the output of the system is the 
disgnostic results including normality and abnormality, where early syndromes such as calcification, mass, 
and distortion in mammogram images are considered as abnormality. Also, to achieve an accuracy as high as 
possible, we transferred the-state-of-the-art network DenseNet201 into our system. By making a comparison 
of diagnostic results of networks trained by freezing and fine-tuning method, we found that the more dense 
blocks being retrained the higher sensitivity is. Also, the specificity and sensitivity remain high in models 
though transfer methods are different. High specificity and sensitivity, in turn, contribute a high accuracy, 
which was further enhanced by the comparison results of our method and the other state-of-the-art methods. 
 

7 Future Prospects 
 
Though we presented a semi-automatic diagnosis system in this paper, there are several aspects to be im-
proved. One is that our method is only applicable to binary classification. In practical, it is of great signifi-
cance to classify images to be diagnosed into normality and abnormality to improve the working efficiency of 
radiologists. However, classifying abnormalities into detailed categories would help radiologists with better 
decision making policy and improve the diagnosis accuracy of different kinds of abnormalities. Therefore, we 
will focus on the classification of abnormalities in our future work. Our design of semi-automation, which 
limits the capability of our system in practical scenarios, also needs to be improved. Therefore, we will de-
sign abnormality detection system to locate the suspicious regions in mammogram images since detection is a 
basic yet indispensable part in CAD systems. To solve the problem brought by the limited size of data, we 
will examine our method on data with a larger size. Based on these works, we are able to develop an end-to-
end detection and diagnosis CAD system for breast cancer. 
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Congreso Argentino de, pages 1–4. IEEE, 2016. 

[6] Yusuf Aytar and Andrew Zisserman. Tabula rasa: Model transfer for object category detection. In Computer Vision (ICCV), 2011 
IEEE International Conference on, pages 2252–2259. IEEE, 2011. 

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In 
Computer Vision and Pattern Recognition, CVPR 2009. IEEE Conference on, pages 248–255. IEEE, 2009. 

[8] Neeraj Dhungel, Gustavo Carneiro, and Andrew P Bradley. Automated mass detection in mammograms using cascaded deep learning 
and random forests. In Digital Image Computing: Techniques and Applications (DICTA), 2015 International Conference on, pages 
1–8. IEEE, 2015. 

[9] Mengyue Geng, Yaowei Wang, Tao Xiang, and Yonghong Tian. Deep transfer learning for person re-identification. arXiv preprint 
arXiv:1611.05244, 2016. 

[10] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectify er neural networks. In Proceedings of the fourteenth 
international conference on artificial intelligence and statistics, pages 315–323, 2011. 
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