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Abstract

Recent studies have suggested that the cognitive process of the human brain is realized as probabilistic inference and
can be further modeled by probabilistic graphical models like Markov random fields. Nevertheless, it remains unclear
how probabilistic inference can be implemented by a network of spiking neurons in the brain. Previous studies have
tried to relate the inference equation of binary Markov random fields to the dynamic equation of spiking neural networks
through belief propagation algorithm and reparameterization, but they are valid only for Markov random fields with
limited network structure. In this paper, we propose a spiking neural network model that can implement inference
of arbitrary binary Markov random fields. Specifically, we design a spiking recurrent neural network and prove that
its neuronal dynamics are mathematically equivalent to the inference process of Markov random fields by adopting
mean-field theory. Furthermore, our mean-field approach unifies previous works. Theoretical analysis and experimental
results, together with the application to image denoising, demonstrate that our proposed spiking neural network can get
comparable results to that of mean-field inference.

Keywords: Probabilistic Inference, Markov Random Fields (MRFs), Spiking Neural Networks (SNNs), Recurrent
Neural Networks (RNNs), Mean-Field Approximation.

1. Introduction ment inference of undirected probabilistic graphical mod-
els, namely MRF's [I6], which is widely used in computa-
e tional neuroscience [10, 22] 26] [32]. The reason for focus-
presence of sensory uncertainties [21]. For example, one ing on MRFs is that, for directed probabilistic graphical

can'easily localize a bird in a tree via noisy visual and models, one can easily convert them to MRFs via moral-
auditory cues. Such processes can be understood as prob- ization [I3} [16]

abilistic inference and further modeled by probabilistic
graphical models [I6], 33], including Bayesian networks and
Markov Random Fields (MRFs). With an increasing vol-
ume of behavioral and physiological evidence [15] 8] 20, 25]
that humans do actually use probabilistic rules in per-
ception [14, [30], sensorimotor control [Il, I7] and cogni-
tion [3 37, [12], probabilistic brain is getting recognized by
neuroscientists [24]. Nevertheless, it remains unclear how
the brain can perform inference. Or more precisely, how
a network of spiking neurons in the brain can implement
inference of probabilistic graphical models? This problem
is of great importance to both computer science and brain
science [36]. If we known the neural algorithms of proba-

The human brain is able to process information in the

Here we briefly review these previous studies. Litvak
and Ullman [I8] designed neural circuits to implement the
operations of summation and multiplication respectively,
and further implemented probabilistic computation and
inference of MRFs. Steimer et al. [3I] proposed using a
population of spiking neurons to collect messages and an-
other population to send messages, and then implemented
the Belief Propagation (BP) algorithm, a commonly used
inference method in probabilistic graphical models [16], [33].
All these studies require that each neuron and synapse con-
duct complicated computation. However, one often ob-
serves one basic principle of the neuronal system in the

S oo . . ; brain that a single neuron or a group of neurons should
bilistic inference, it is possible to build a machine that can work in a relatively simple style, while complex functions

perform probabili'stic inference like the human brain. could be achieved when they are wired together, i.e., col-
In recent studies, many researchers have been devoted laborated in a network [19 2].

to developing neural circuits that can represent and imple- In order to propose biologically more plausible neural

networks to implement inference, Ott and Stoop [23] es-
*Corresponding author. tablished a relationship between the inference equation of
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networks through BP algorithm and reparameterization.
However, their model relied on the specifically initialized
messages and certain topological structures of MRFs. Yu
et al. [35] went a further step to relax the constraints on
initialized messages, but still required the special topolog-
ical structure and potential function of MRFs. Another
important way is based on tree-based reparameterization
algorithm [27], which, however, is only limited to the case
of exponential family distributions.

In this paper, we use a mean-field approximation to
treat the inference process of MRFs as a time-continuous
system of a recurrent spiking neural network. We ana-
lytically prove a precise equivalence between the inference
equation of Markov random fields and the dynamic equa-
tion of spiking recurrent neural networks. We show that
the firing rates of neurons in the network can encode the
difference between the probabilities of two states. In addi-
tion, we prove that the time course of neural firing rate can
implement marginal inference of arbitrary binary Markov
random fields. In this way, we can obtain the state of the
neuron by counting spikes from each neuron within a time
window. We further show that our mean-field approxima-
tion unifies the previous approach based on BP algorithm
and reparameterization. Theoretical analysis and experi-
mental results, together with an application to the image
denoising problem, show that our proposed spiking neural
network can get comparable results to that of mean-field
inference.

To summarize, our contributions include the following
aspects:

e We propose a spiking neural network model that can
implement inference of arbitrary binary Markov ran-
dom fields.

e We prove that there exists a precise equivalence be-
tween the dynamics of recurrent neural network and
the inference equation of a Markov random field.

e We show that the previous approach based on BP
algorithm and reparameterizations equals mean-field
approximation.

e We show that our proposed spiking neural network
can be used to solve practical computer vision prob-
lems, like image denoising.

The rest of the paper is organized as follows. In section
2 we briefly review MRF's and marginal inference, then we
derive the inference equation of MRF's based on mean-field
approximation and show how it is related to the dynamic
equation of spiking neural networks in section 3. We show
the simulation results in section 4 and conclude in section
5.

2. Markov Random Fields and Marginal Inference

In this section, we briefly review MRFs and marginal
inference. MRFs is one typical undirected probabilistic

graphical model that is widely used in computational neu-
roscience. Thanks to their ability to model soft contextual
constraints between random variables, MRFs provide a
principled probabilistic framework to model various vision
problems [9] [ [7] since the visual scene modeling usually
involves interactions between a subset of pixels and scene
components.
In a MRF, a joint distribution P({z}) = P(z1,x2,...,ys)

is defined on the graph, which can be factorized into a
product of potential functions according to the structure
of the graph. For the MRF in Fig. |1} P({z}) has the form:
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Figure 1: A square lattice pairwise Markov random field. The filled-
in circles represent the observed nodes y;, while the empty circles
represent the “hidden” nodes x;.

P({z}) = H Ui, a) [ Wilwi,we), (1)

( J)eE i€V

where F and V represent the set of edges and nodes in the
graph respectively, ¥;;(x;,2;) and U;(x;,y;) denote the
pairwise and unary potential functions. Z is the partition
function defined as

Z = Z H Wi (i, ) H Ui (24, y5).
T1,%2,..,%n (i,5)EE i€V

If one defines Jij(l'i,l'j) = hl\I/Z‘j(ZEi,Ij) and h,’(.’L‘i) =
In W, (z;, ;) E[, Eq. can be rewritten as:

({x})f*exp Y Jilwia) + ) @) | (2)

(i.j)eE eV

Similar to the studies in [23] [35], we assume that J;;(z;, ;) =

Jijl‘il’j and hi(zi) = hi.fEfL', in which Jz'j and hz are con-
stants.

L As the observed variable y; is fixed, one can subsume it into the
definition of h;(x;).



The inference problems of MRFs include Maximum a
Posterior (MAP) estimation and marginal inference. By
MAP estimation, we refer to the estimation of a maxi-
mum of posterior point estimator. Conversely, marginal
inference refers to inferring the posterior or conditional
distribution over the latent causes of observations. In this
paper, we only consider marginal inference. Specifically,
we compute the marginal distribution of each variable x;,

that is:
x;) = ZP(xl,xg,...,mn). (3)

x\z;

3. Neural Implementation of Marginal Inference
on Binary MRF

In this section, we will prove that there exists a precise
equivalence between the neuronal dynamics of recurrent
neural networks and mean-field inference of binary MRFs.
We first derive a differential equation that has the same
fixed point as the mean-field inference equation of MRF's,
then we show that this differential equation can be easily
implemented by the dynamic equation of recurrent neu-
ral networks. In the end, we demonstrate that the previ-
ous work based on BP algorithm and reparameterization
equals the mean-field approximation.

3.1. Converting Mean-Field Inference into a Differential
Equation

Similar to the studies in [23] [35], we only consider in-
ference of binary MRFs in this paper, which means the
value of the variable x; can be 1 or -1 (z; = 1 or —1).

As exact inference of MRF is a NP-complete prob-
lem [16], approximate inference algorithms like variational
methods are often used. The main principle of variational
methods is converting the inference problem to an opti-
mization problem:

min K L{q(2)[p(z))- (4)

Here the target distribution p(z) is approximated by a
simpler distribution ¢(z), which belongs to a family of

tractable distribution. K L(-) represents the Kullback-Leibler

divergence between two distributions. In the mean-field
method, ¢(x) is set to be a fully factorized distribution,
that is g(z) = []; bi(z;). By constraining > b;(z;) = 1
and differentiating KL (¢(x)||p(x)) with respect to b;(x;),
one can obtain the mean-field inference equation:

Z Z bg(fﬂj) hl \I/ij(l'i,l'j)

JEN(i) Zj

Vit (2:) = a¥y (24, yi) exp

(5)
where a is a normalization constant to make ) b;(x;) =
1 and N (i) denotes the set of all neighboring nodes of
node i. t denotes the number of iterations, and bf(z;)
represents the information received by node i in the ¢ th
iteration, which is a function with respect to the state of

variable x;. When all the message converge to the fixed
point, the marginal probability p(x;) can be approximated
by the steady-state b3°(z;). According to the definition
In \I/ij(.%‘i7.’lfj) = Jij(l‘i,l‘j) = Jijxixj and 1D\I’i<.’lﬁi7yi) =
hi(x;) = hix;, Eq. can be rewritten as:

bﬁ“(mi) = qexp Z Z b;(xj) - Jijxixy + hirg
JEN(i) zj
(6)
In order to convert Eq. @ to a differential equation,
we reparameterize the message bt (z;) of variable z; accord-
ing to:

nt = b = 1) — bl = —1), )

where n! can be seen as the new message received by node
i in the ¢ th iteration. Note that here the message n}
is independent of the state of variable ;. When n! con-
verges to the fixed point, it can approximate the probabil-
ity p(z; = 1) —p(x; = —1). Combining Eq. (6))-(7) and the
condition bt (z; = 1) + b*(x; = —1) = 1 defined on binary
MRF, one can get that:

t+1 bt+1 _ bt+1

= qexp Z Jij - (
JEN (i)

=-1)

- oo (g = 1) = by = 1)) = b
JeN(Z)

=tanh | D, Jy- (bla; = 1) = be; = ~1) +
JEN (i)

= tanh

Z J”TL§+hl

JEN(i)

Note that the third equality of Eq. holds as

= Zexp Z Z bt .TCJ Jijl'ixj + h;x;

JEN(i) =j
=exp | > Jij- bz =1) = bl(z; = —1)) + b,
JEN (i)
texp | Y =iy (W(a; =1) = b(a; = 1)) — b

JEN(Y)
(9)
It is easy to prove that the following differential equa-
tion has the same fixed point as Eq. ().

dnl(t)
dt

= —n;(t) + tanh

Z Jij -mi(t) + hy

JEN(3)

T0 5 (10)



where 19 is a time constant that determines the time needed
for the network to reach the fixed point.

3.2. Dynamic Equation of Spiking Recurrent Neural Net-
works

Recurrent neural networks are composed of a popula-
tion of interconnected neurons, which have been widely
used to model cortical response properties in computa-
tional neuroscience [29] 28]. Here, we drive the firing-rate
based equation of spiking recurrent neural network based
on two steps [B]: 1) Determining how the total synaptic
input to a neuron depends on the firing rate of its presy-
naptic afferents. 2) Modeling how the firing rate of the
postsynaptic neuron depends on its total synaptic input.

First of all, considering the recurrent neural network
consists of N spiking neurons z1, 29, ..., 2y, the input cur-
rent to the neuron z; at time ¢ is I;(¢), which includes the
recurrent input of spike sequence from other neurons and
can be computed as:

N t
Lit) =) wi / Kt — 7)8;(7)dr, (11)
j=1 e

where S;(7) denotes the firing spike sequence of neuron
zj defined as a sum of Dirac § function S;(t) = >, 0(t —
t;)7 tf is firing time of the f th spike of neuron z;. wj;
denotes the synaptic weight between neuron z; and z;, £(t)
is the synaptic kernel that describes the time course of the
synaptic current in response to a presynaptic spike arriving
at time ¢t. The most frequently used form of synaptic kernel
is an exponential kernel, that is, x(t) = L exp (—%) with
the membrane time constant 7.

In fact, the neural response function S;(t) could be
replaced by the firing rate r;(t) of neuron z; as r;(t) =
A tt+At<Sj (7))dr with (S;(t)) denoting the trial-average
neural response function, thus Eq. can be rewritten
as:

S

L(t) = iwﬁ /_; Tlsexp (—t - T) ri(r)dr (12

By taking the derivative of Iy (¢) with respect to time ¢,
one obtain:

dI(t) a
T = —1I;(t) +jz::1wij7‘j(t)a (13)

with 74 denoting the time constant that describes the de-
cay of the synaptic conductance.

So far we can determine the input current to postsy-
naptic neuron in terms of the firing rates of the presy-
naptic neurons. To obtain the firing-rate model, we also
need to determine the postsynaptic firing rate with the
current I;(t). For time-independent inputs, the firing rate
r;(t) of the postsynaptic neuron z; can be expressed as

r;(t) = F(I;(t)), where F(x) denotes the neuronal activa-
tion function. As the firing rate does not follow changes
of the total synaptic current instantaneously, the firing
rate is often modelled by a low-pass filtered version of the
synaptic current:

d’l“i(t)
T

Under the constraints of time-independent inputs, the steady
state of the postsynaptic current I;(t) is lim_ oo [;(t) =

— —ry(t) + F(Li(1)). (14)

Z;V:l w;;rTi(t). If 7. > 75, we can make the approxima-
tion that Eq. comes to equilibrium quickly compared
to Eq. . Consequently, we can further replace I;(t) by

Z?’:l w;jr;(t) in Eq. and obtain:

dri (t)
T

N
=—ri(t) + F sz‘ﬂj(t) - (1)

In recurrent neural networks, except for the input cur-
rent from recurrent neurons, there also exists an external
input current. Incorporating the external input current
Ie7t () to Eq. (1F)), the firing rate of the recurrent neuron
k is determined by:

dri(t)
dt

Tr

N
= —ri(t) + F | I () + Y wigrs () | - (16)

3.8. Implementation of Inference with Neural Network

Now one can relate the inference equation of MRFs
(Eq. (10) to the dynamics of recurrent neural networks

(Eq. (16))). Obviously, Eq. is equivalent to Eq.
if the following equations hold:

Tr = To, (17)

ri(t) = n;(t), (18)
Ji; it j e N(i)

Wij = { 0 otﬁers ’ (19)

I (t) = hy, (20)

F(z) = tanh(z). (21)

Eq. 7 mean that if the synaptic weights w;;
and input current If**(t) of a recurrent neural network
encode the potential functions J;; and h; of a binary MRF
respectively, the firing rate r;(¢) of neuron z; encodes the
probability p(z; = 1) — p(z; = —1). Moreover, the time
course of neural firing rate in the recurrent neural network
can implement marginal inference of the MRF. Thus, we
can read out the inference result by counting spikes from
each neuron within a time window. Note that as the value
of n;(t) varies from —1 to 1, the firing rate r;(¢) in Eq.
could be negative, which is biological implausible. As
discussed in [29], we can assume that the actual firing rate
7;(t) is linearly related to the "firing rate” r;(¢) obtained
from Eq. (16)), that is, #;(t) = ar;(t)+b. Here a is a positive



factor and b is a rectification value that ensure 7;(t) to be
positive. In conclusion, we implement mean-field inference
of binary MRF's with spiking recurrent neural networks.

3.4. Relating Mean-field Inference to Belief Propagation

Here we will build the relationship between mean-field
inference and BP, and show that the previous work based
on BP and reparameterization equals the mean-field infer-
ence.

Previous studies have tried to relate BP algorithm of
binary MRF to the dynamics of Hopfield Networks by de-
riving a new formulation of belief propagation based on
reparameterization [23 [35]:

through simulation experiments. We firstly test the ac-
curacy of the propose method, and then prove that it is
robust to different parameters. At last, we scale up the
proposed spiking neural network to solve practical com-
puter vision problems.

4.1. Testing on the Accuracy of Our Method

In order to test the accuracy of the proposed method,
we generated several MRFs with different graph topolo-
gies (chain, single loop, grid and fully connected graph,
see Fig. , and perform inference of these MRFs with
spiking recurrent neural network and mean-field method
respectively.

For a MRF with M nodes, we calculated marginal prob-
abilities for all these M nodes with mean-field method and

it = tanh Z tanh ™" | tanh(J;;) tanh Z n_,; +the pdrredpohding recurrent neural network respectively.
JEN(i) SEN(5))\i The/ miean r¢lative error § is defined as follows:
(22) y
1 |PME(z; =1) — PENN (g, = 1)
where ,uf»H represents the new message after reparame- = M Zl PMF(z, =1) ’ (25)

teration of node ¢ at the ¢ + 1 th iteration, and p$® =
p(x; = 1) —p(x; = —1). nl_,; is a function of the message
m}_,;(z;) in BP that is sent from node s to node j in the ¢

th iteration. To be specific, n!_, ; = tanh™" (m!_,;(z; = 1)
With the assumptions that the number of neighboring
nodes of each node is large enough (N(j) >> 1) and the
potential function is small (J;; << 1 and h; << 1), Ott
et al. [23] and Yu et al. [35] proved that Eq. can be

simplified to:

pitt = tanh( Y tanh(J;;) - puh + hy). (23)
JEN(4)

As J;; << 1, tanh(J;;) ~ J;;. Thus one can further sim-
plify Eq. to:

pit = tanh( Z Jij '“; + hi). (24)
JEN(3)

One can find that there exists a precise equivalence be-
tween Eq. and Eq. , which implies that the pre-
vious work based on BP and reparameteration equals the
mean-field approximation. These results suggest that the
Hopfield networks used in the previous work actually im-
plement mean-field inference, instead of the BP algorithm.
In addition, our current results explain the experiments
in [35] where the inference result based on Hopfield net-
works is not as accurate as that of BP when the potential
function is large (J;; > 1 and h; > 1). These errors come
from the difference between mean-field inference and the
BP algorithm.

4. Simulation Experiments

To validate the proposed computational framework,
we evaluate the performance of recurrent neural networks

where PM¥ (z; = 1) represents the marginal probabilities
computed with mean-field method, and PRVN(z; = 1)

- Wtﬁpyég’@nﬁs tﬂe)}esult obtained by the corresponding recur-

rent neural network.
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Figure 2: Recurrent neural network achieves similar inference results
as the mean-field method. The mean relative errors rapidly converge
in a few iterations.

All MRF's have nine nodes with different topologies as
chain (A), single loop (B), grid (C) and fully connected
graph (D). Ay = Ay =0.1.

Fig. |2 illustrates how the relative errors rapidly conver-
gence with a few iterations. For each MRF, the potential
functions J;; and h; are drawn from two uniform distri-
butions on [0, A\1] and [z, A2] respectively. One can find
that even for MRFs with different topologies, the error
decreases in a fast way with only a few iterations. These



results imply that the simulation of spiking recurrent neu-
ral networks can get comparable results as an analytical
mean-field method.

To illustrate the inference mechanism of the spiking
recurrent neural network, Fig. [B]A shows the spiking activ-
ity of all 9 neurons in the recurrent neural network when
performing inference of a 9-node MRF with chain struc-
ture (Fig. ) Here the mapping between actual firing
rate 7;(t) and the ”firing rate” r;(¢t) is 7;(t) = 50r;(t) + 50.
Thus the maximum firing rate of each neuron is 100 Hz.
Fig. BB shows the time course of the firing rate of each
neuron. One can see that the firing rate of each neuron
converges to a fixed value and then fluctuates around it.

6
2 @ {00000 00 0 O OO
DN 00O OO AN 0 0
)OO O OO0
A O A R
B
20
80 {
70|

firing rate (Hz)
[
o

Time 5s

Figure 3: Inference of a chain-structured MRF with spiking recurrent
neural network. (A) Spiking activity of the neurons in a recurrent
neural network. (B) Time course of firing rates of 9 neurons shown

in (A).

4.2. Testing on the Robustness of Our Method

The experimental results above indicate that the infer-
ence model of recurrent neural networks can get accurate
results as mean-field inference for a given set of parame-
ters of Ay and Ay as 0.1. Here we make a concrete analysis
of the robustness of our model with different parameters.
Fig. El shows the results where A\; and Ay are set to dif-
ferent combinations of 1 and 0.1, except the setting that
A1 = A2 = 0.1 as shown in Fig. 2] We can see that, in
all cases, the errors converge to almost zero in a fast man-
ner. These results indicate that, different from the previ-
ous works [23 [35] that only apply to MRFs with special

potential function (J;; << 1 and h; << 1), our method is
robust to different parameters and could implement infer-
ence for arbitary MRFs.

Then we investigate whether our framework can be
scaled up to large-scale MRFs with more nodes. Two ex-
amples are included here: a MRF with 25 nodes and 300
edges and a MRF with 100 nodes and 4950 edges. As
shown in Fig. [5| the same conclusion is obtained that the
spiking recurrent neural networks can get comparable re-
sults as the mean-field method.

4.3. Binary Images Denoising by Recurrent Neural Net-
works

Here we investigate whether our spiking neural net-
work can be scaled up to solve more realistic tasks. We
consider the task of image denoising, that is, correcting an
image that has been corrupted. In the field of image pro-
cessing, the researchers often model image denoising prob-
lem by MRFs with grid-like structures (shown in Fig. 1))
and then convert the denoising problem to MAP estima-
tion or marginal inference problem. Based on this, we can
also tackle this problem with recurrent neural networks
by computing the marginal probabilities of each pixel and
then infer whether this pixel is white or black in a binary
setting.

The image denoising experiments are performed on the
NIST Special Database 19 (SD 19), which contains NIST’s
entire corpus of training materials for handwritten doc-
ument and character recognition. This dataset includes
samples from 3600 writers, consisting of 10 digits 0 — 9,
26 lower letters a-z and 26 upper letters A-Z. Therefore
we have totally 62 categories. During the experiment,
100 images of each class are randomly selected as dataset.
All images used here are 128 x 128 pixels. In this ex-
periment, each image is modeled by a square lattice pair-
wise MRF (shown in Fig. [1)), where the hidden variables
{z} = {z1, 29, ..., 2, } represent the denoise image and ob-
served variables {y} = {v1,y2,...,Yn} represent the ob-
served noise image. As observed pixel value is usually the
same as the true pixel value, so the unary potential h(x;)
is set to 0.1 if the variable x; is the same as the observa-
tion variable y; and —0.1 otherwise (h; = 0.1). Besides,
as nearby pixel values are usually the same in an image,
the pairwise potential function Jj;(z;, ;) is set to 0.8 if
z; = x; and —0.8 otherwise (J;; = 0.8). All the other
settings in this experiment are the same as in experiment
4.1 above.

Fig. [6] shows some examples of image denoising with
mean-field inference and the corresponding recurrent neu-
ral network. Here the noise images are generated by ran-
domly flipping the pixel value with a probability of 5%.

We also quantitatively analyze these results by com-
puting the structural similarity index (SSIM) and the peak
signal-to-noise ratio (PSNR). As shown in Fig.[7] the SSIM
of the original image, denoised image by mean-field infer-
ence, and denoised image by recurrent neural networks
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Figure 5: Inference performance of recurrent neural networks on
large-scale MRFs.

are 13.01 £ 0.14, 29.19 £ 1.97 and 29.19 &+ 1.97, respec-
tively. The PSNR of the original image, denoised image
by mean-field inference, and denoised image by recurrent
neural networks are 0.1322 + 0.0207, 0.9905 % 0.0047 and
0.9905 £ 0.0047 respectively. All these results demonstrate
that recurrent neural networks can get the same denois-

ing results as mean-field inference. Fig. |8 illustrates how
the mean relative error between recurrent neural networks
and mean-field inference varies over time. We can find the
error converges to 0 with a few iterations.

4.4. Comparison among Different Neural Network Based
Image Denoising Methods

In section 3.4, we have proved that the previous ap-
proaches based on BP and reparameterization (BP-based
neural networks) can be unified in our framework. In or-
der to test this, we compare our method with the BP al-
gorithm and the BP-based neural network model for the
task of image denoising. In order to increase the diffi-
culty of inference, here we created a dataset of 100 images
with 128 x 128 pixels by making randomly noisy images
and then smooth them to get true output values. Fig. [9]
shows one example of the randomly generated binary im-
ages. One can find that there exists more separated space
in these images compared with the images in NIST SD 19.
Thus it’s more difficult to be denoised.

To compare the performance of these algorithms, we
add the different levels of salt and pepper noise on the bi-
nary images, and characterize the quality of the denoised
images with the criterion of the SSIM and PSNR. Fig. [9]
illustrates one example of image denoising with mean-field
inference, recurrent neural networks, BP algorithm [I6],
and BP-based neural networks [35]. Fig. compares
the SSIM and PSNR of different methods and noise lev-
els. One can see that the performance of recurrent neu-
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Figure 7: Comparison of denoising result on NIST SD 19 Database
with different methods. There are 62 categories from the dataset (10
classes for the digit, 26 kinds of upper letters and 26 lower letters).
Average results over 5 independent trials are shown.
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Figure 8: Recurrent neural networks achieve similar results as those
of mean-field inference.

The relative error decays to 0 rapidly. The red, green and
blue curves represent the results for digit, upper letter
and lower letter respectively. All the results are averaged
over 5 independent trials, shaded area indicates standard
deviation (STD).

ral networks (purple curve) is the same as mean-field in-
ference (red curve). Besides, one can also find that the
performance of BP-based neural networks (green curve)
is nearly the same as that of recurrent neural networks
(purple curve) and mean-field inference (red curve), which

noise image
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Figure 9: Image denoising with mean-field inference, recurrent neu-
ral networks, BP algorithm and BP-based neural networks. Here n
denotes different noise levels.
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Figure 10: Comparison of the performance of difference denoising
methods with respect to noise level.

demonstrates that the previous work equals mean-field in-
ference and can be unified in our framework. Note that



there exists a gap between BP-based neural networks (green
curve) and recurrent neural networks (purple curve) when
the noise level is larger than 0.3, which comes from the

approximation between Eq. and Eq. .

5. Conclusion

In this paper, we prove that there exists a precise equiv-
alence between the dynamics of recurrent neural network
and mean-field inference of binary Markov random fields.
We show that if the synaptic weights and input current
encode the potential function of MRF's, the firing rates of
neuron in recurrent neural networks encode the difference
between the probabilities for two states. The time course
of neuronal firing rate can implement marginal inference.
Theoretical analysis and experiments on MRFs with dif-
ferent topologies show that our neural network can get
the same performance as the mean-field method. Besides,
we also apply our proposed spiking framework to practical
computer vision problem, i.e., binary images denoising.

Differ from previous works based on BP algorithm and
reparameterization, where the potential functions of MRF
should meet some strict conditions, we design a spiking
network that can implement mean-field inference for ar-
bitrary MRFs. What’s more, we have demonstrated that
our work unifies previous works.

The previous work of neural implementation of Bayesian
inference [29} [6} 34] with recurrent neural networks focused
on inference of hidden Markov models. There also ex-
ist some studies [28| [II] that extended the networks to a
multilayer structure to perform hierarchical Bayesian in-
ference. Different from these works, we are focusing on
how spiking neural networks are able to implement prob-
abilistic inference of MRF. In future work, we will try to
extend our proposed framework to tackle more advanced
realistic problems, like recognition and stereo matching.

Acknowledge

This work is supported in part by the National Nat-
ural Science Foundation of China under grants 61806011
and 61825101, in part by National Postdoctoral Program
for Innovative Talents under grant BX20180005, in part
by China Postdoctoral Science Foundation under grant
2018M630036, in part by the Zhejiang Lab under grants
2019KCO0ABO3 and 2019KC0ADO02, in part by the Royal
Society Newton Advanced Fellowship under grant NAF-
R1-191082.

References

[1] Paul M Bays and Daniel M Wolpert. Computational principles
of sensorimotor control that minimize uncertainty and variabil-
ity. The Journal of Physiology, 578(2):387-396, 2007.

[2] Dean V Buonomano and Wolfgang Maass. State-dependent
computations: spatiotemporal processing in cortical networks.
Nature Reviews Neuroscience, 10(2):113, 2009.

(3]

(8]

[11]

[12]

[20]

21]

22]

23]

[24]

[25]

Nick Chater, Joshua B Tenenbaum, and Alan Yuille. Proba-
bilistic models of cognition: where next? Trends in Cognitive
Sciences, 10(7):292-293, 2006.

Jia Chen and Chi-Keung Tang. Spatio-temporal Markov Ran-
dom Field for video denoising. In IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 1-8. IEEE, 2007.
Peter Dayan and Laurence F Abbott. Theoretical neuroscience,
volume 806. Cambridge, MA: MIT Press, 2001.

Sophie Deneve. Bayesian spiking neurons i: inference. Neural
Computation, 20(1):91-117, 2008.

Jianwu Dong, Tian Liu, Feng Chen, Dong Zhou, Alexey Dimov,
Ashish Raj, Qiang Cheng, Pascal Spincemaille, and Yi Wang.
Simultaneous phase unwrapping and removal of chemical shift
(SPURS) using graph cuts: application in quantitative sus-
ceptibility mapping. IEEE Transactions on Medical Imaging,
34(2):531-540, 2015.

Kenji Doya, Shin Ishii, Alexandre Pouget, and Rajesh PN Rao.
Bayesian brain: Probabilistic approaches to neural coding. MIT
press, 2007.

Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient be-
lief propagation for early vision. International Journal of Com-
puter Vision, 70(1):41-54, 2006.

Bruce Fischl, David H Salat, Evelina Busa, Marilyn Albert,
Megan Dieterich, Christian Haselgrove, Andre Van Der Kouwe,
Ron Killiany, David Kennedy, Shuna Klaveness, et al. Whole
brain segmentation: automated labeling of neuroanatomical
structures in the human brain. Neuron, 33(3):341-355, 2002.
Shangqgi Guo, Zhaofei Yu, Fei Deng, Xiaolin Hu, and Feng Chen.
Hierarchical Bayesian inference and learning in spiking neural
networks. IEEE Transactions on Cybernetics, 49(1):133-145,
2017.

Varun Jampani, Sebastian Nowozin, Matthew Loper, and Pe-
ter V Gehler. The informed sampler: A discriminative approach
to Bayesian inference in generative computer vision models.
Computer Vision and Image Understanding, 136:32-44, 2015.
Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and
Lawrence K Saul. An introduction to variational methods for
graphical models. Machine Learning, 37(2):183-233, 1999.
Daniel Kersten, Pascal Mamassian, and Alan Yuille. Object
perception as Bayesian inference. Annual Review of Psychol,
55:271-304, 2004.

David C Knill and Whitman Richards. Perception as Bayesian
inference. Cambridge University Press, 1996.

Daphne Koller and Nir Friedman. Probabilistic graphical mod-
els: principles and techniques. MIT press, 2009.

Konrad P Kording and Daniel M Wolpert. Bayesian integration
in sensorimotor learning. Nature, 427(6971):244, 2004.

Shai Litvak and Shimon Ullman. Cortical circuitry implement-
ing graphical models. Neural Computation, 21(11):3010-3056,
2009.

J. K. Liu and D. V. Buonomano. Embedding multiple trajecto-
ries in simulated recurrent neural networks in a self-organizing
manner. Journal of Neuroscience, 29(42):13172-81, 2009.

Wei Ji Ma and Mehrdad Jazayeri. Neural coding of uncertainty
and probability. Annual Review of Neuroscience, 37:205—220,
2014.

Florent Meyniel, Mariano Sigman, and Zachary F Mainen. Con-
fidence as Bayesian probability: from neural origins to behavior.
Neuron, 88(1):78-92, 2015.

Yansheng Ming and Zhanyi Hu. Modeling stereopsis via Markov
Random Field. Neural Computation, 22(8):2161-2191, 2010.
Thomas Ott and Ruedi Stoop. The neurodynamics of belief
propagation on binary Markov Random Fields. In Advances
in Neural Information Processing Systems, pages 1057—1064,
2007.

Alexandre Pouget, Jeffrey M Beck, Wei Ji Ma, and Peter E
Latham. Probabilistic brains: knowns and unknowns. Nature
Neuroscience, 16(9):1170, 2013.

Alexandre Pouget, Jan Drugowitsch, and Adam Kepecs. Confi-
dence and certainty: distinct probabilistic quantities for differ-
ent goals. Nature Neuroscience, 19(3):366-374, 2016.



[26]

29]

(30]

(31]

32]

Dimitri Probst, Mihai A Petrovici, Ilja Bytschok, Johannes
Bill, Dejan Pecevski, Johannes Schemmel, and Karlheinz Meier.
Probabilistic inference in discrete spaces can be implemented
into networks of LIF neurons. Frontiers in Computational Neu-
roscience, 9:13, 2015.

Rajkumar Vasudeva Raju and Xaq Pitkow. Inference by repa-
rameterization in neural population codes. In Advances in Neu-
ral Information Processing Systems, pages 2029-2037, 2016.
Rajesh P Rao. Hierarchical Bayesian inference in networks of
spiking neurons. In Advances in Neural Information Processing
Systems, pages 1113—-1120, 2005.

Rajesh PN Rao. Bayesian computation in recurrent neural cir-
cuits. Neural Computation, 16(1):1-38, 2004.

Zhuanghua Shi, Russell M Church, and Warren H Meck.
Bayesian optimization of time perception. Trends in Cognitive
Sciences, 17(11):556-564, 2013.

Andreas Steimer, Wolfgang Maass, and Rodney Douglas. Belief
propagation in networks of spiking neurons. Neural Computa-
tion, 21(9):2502-2523, 2009.

Roberta Vasta, Antonio Augimeri, Antonio Cerasa, Salvatore
Nigro, Vera Gramigna, Matteo Nonnis, Federico Rocca, Gi-
ancarlo Zito, Aldo Quattrone, s Disease Neuroimaging Ini-
tiative, et al. Hippocampal subfield atrophies in converted
and not-converted mild cognitive impairments patients by a
Markov Random Fields algorithm. Current Alzheimer Research,
13(5):566-574, 2016.

Martin J Wainwright, Michael I Jordan, et al. Graphical models,
exponential families, and variational inference. Foundations and
Trends® in Machine Learning, 1(1-2):1-305, 2008.

Zhaofei Yu, Feng Chen, and Fei Deng. Unification of MAP
estimation and marginal inference in recurrent neural networks.
IEEE Transactions on Neural Networks and Learning Systems,
29(11):5761-5766, 2018.

Zhaofei Yu, Feng Chen, and Jianwu Dong. Neural network
implementation of inference on binary Markov Random Fields
with probability coding. Applied Mathematics and Computa-
tion, 301:193-200, 2017.

Zhaofei Yu, Jian K. Liu, Shanshan Jia, Yichen Zhang, Yajing
Zheng, Yonghong Tian, and Tiejun Huang. Towards the next
generation of retinal neuroprosthesis: Visual computation with
spikes. arXiw preprint arXiv:2001.04064, 2020.

Alan Yuille and Daniel Kersten. Vision as Bayesian inference:
analysis by synthesis? Trends in Cognitive Sciences, 10(7):301—
308, 2006.

10



	Introduction
	Markov Random Fields and Marginal Inference
	Neural Implementation of Marginal Inference on Binary MRF
	Converting Mean-Field Inference into a Differential Equation
	Dynamic Equation of Spiking Recurrent Neural Networks
	Implementation of Inference with Neural Network
	Relating Mean-field Inference to Belief Propagation

	Simulation Experiments
	Testing on the Accuracy of Our Method
	Testing on the Robustness of Our Method
	Binary Images Denoising by Recurrent Neural Networks
	Comparison among Different Neural Network Based Image Denoising Methods

	Conclusion

