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Abstract: This research provides the first method to simultaneously balance and sequence robotic 

mixed-model assembly lines (RMALB/S), which involves three sub-problems: task assignment, 

model sequencing and robot allocation. A new mixed-integer programming model is developed to 

minimize makespan and using CPLEX solver, small-size problems are solved for optimality. Two 

metaheuristics; restarted simulated annealing algorithm and co-evolutionary algorithm, are developed 

and improved to address this NP-hard problem. Restarted simulated annealing method replaces the 

current temperature with a new temperature to restart the search process. Co-evolutionary method 

utilizes a restart mechanism to generate a new population by modifying several vectors 

simultaneously. Proposed algorithms are tested on a set of benchmark problems and compared with 

five other recent high-performing metaheuristics. The proposed algorithms outperform their original 

editions and the benchmarked methods. Proposed algorithms are able to solve the balancing and 

sequencing problem of a robotic mixed-model assembly line effectively and efficiently.  

 

Keywords: Assembly line balancing; Model sequencing; Robotic assembly line; Simulated annealing; 

Co-evolutionary algorithm 

 

1. Introduction 

Assembly line balancing problems are extensively studied combinatorial optimization problems 

(Sivasankaran and Shahabudeen 2014). They have great applications in the automotive industries and 

consumer electronics industries. It can be characterized with loss of generality, by a set of tasks that 

must be divided to and processed on a set of workstations. In modern industry, different variants of 

assembly lines are studied due to complex realistic production environments. Among these, two 

important variants are robotic assembly line and mixed-model assembly line (Çil, Mete, and Ağpak 

2017). 

 In robotic assembly lines, robots are allocated to workstations to perform tasks replacing manual 

labor (Gao et al. 2009). Robots can operate for 24 hours a day without fatigue and provide large 

flexibility in assembly of products. Robots can be programmed to perform different types of tasks, 

while preserving the quality of products. A layout of a robotic assembly line is depicted in Figure.1. 

Major goal of such a robotic assembly line is to balance it by efficient assignment of tasks and robot 

allocation; two sub-problems that must be optimized simultaneously (Li, Tang, and Zhang 2016a). 
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Figure.1 Layout of robot assembly line 

 

Mixed-model production mode is extensively utilized due to the diversified needs of customers. In 

this type of assembly line, two sub-problems are encountered: mixed-model assembly line balancing 

and model sequencing (Kim, Kim, and Kim 2000a; Kim, Kim, and Kim 2000b). Mixed-model 

assembly line balancing tackles the assignment of the tasks to workstations (Akpinar and Bayhan 

2014), whereas model sequencing determines the model operation sequence on the assembly line 

(Rabbani et al. 2015; Liu et al. 2014). When combining the features of the robotic assembly line with 

the mixed-model assembly line, a robotic mixed-model assembly line emerges, where a robot 

operates variations of tasks of different models on each workstation. In robotic mixed-model 

assembly lines, task assignment, model sequencing and robot allocation are interrelated 

sub-problems. 
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To the authors’ best knowledge, no research has been reported which addresses robotic 

mixed-model assembly line balancing and sequencing. To tackle the balancing and sequencing of 

robotic mixed-model assembly lines (RMALB/S), this paper presents the following main 

contributions. (1) A generic mixed-integer programming model (MILP) is developed to minimize the 

makespan. This model is solved using CPLEX solver for small-size problems and a set of benchmark 

problems are generated to test the performance of the model. (2) Two metaheuristic methods: 

restarted simulated annealing algorithm (RSA) and co-evolutionary genetic algorithm (RCoGA) are 

developed to tackle large-size problems. These algorithms are selected due to their effectiveness and 

wide applications in other mixed-model assembly line balancing and sequencing (Kim, Kim, and Kim 

2000b; Kim, Kim, and Kim 2000a; Mosadegh, Zandieh, and Ghomi 2012). To apply these two 

methods effectively to RMALB/S, several improvements are developed. A comprehensive study and 

comparative evaluation demonstrate the superiority of the two improved methods.  

The remainder of the paper is organized as follows. In Section 2, the relative literature is provided. 

In Section 3, the proposed mathematical model is presented. Section 4 details the proposed two 

algorithms. Section 5 presents the benchmark problems and experimental comparisons. Finally, 

Section 6 concludes this research and presents possible future works. 

 

2. Literature review  

Although robotic assembly lines and mixed-model assembly line balancing and sequencing have 

been thoroughly studied independently, no work has been reported where both the problems are 

solved together. This section first presents a brief review of robot assembly line balancing (RALB) 

problems and later a review of literature on simultaneous balancing and sequencing of mixed-model 

assembly lines (MALB/S).  

Since the first work on RALB problems by Rubinovitz and Bukchin (1991), many contributions 

have been reported. Rubinovitz, Bukchin, and Lenz (1993) develop a branch-and-bound algorithm for 

designing and balancing the robotic assembly lines. After that, metaheuristic methods have been 

widely applied to solve this problem due to its NP-hard nature (Gao et al. 2009). Levitin, Rubinovitz, 

and Shnits (2006) use genetic algorithm for RALB problems with the objective of cycle time 

minimization. Gao et al. (2009) propose an improved genetic algorithm for the same problem. 

Yoosefelahi et al. (2012) presents multi-objective model for the RALB problem and develop an 

evolution-based algorithm. Mukund Nilakantan et al. (2015) utilize bio-inspired search algorithms. 

Subsequently, they tackle the U-shaped layout of the RALB problem (Mukund Nilakantan and 

Ponnambalam 2016) and energy consumption in the RALB problem (Mukund Nilakantan, Huang, 

and Ponnambalam 2015) using particle swarm optimization algorithms. The research on energy 

consumption is followed by Li, Tang, and Zhang (2016a) where the energy consumption on two-sided 

RALB problem is handled. Li et al. (2016) consider the two-sided RALB problem using 

co-evolutionary particle swarm optimization algorithm and Aghajani, Ghodsi, and Javadi (2014) 

consider the mixed-model two-sided RALB problem with a simulating annealing method. Recently, 

Rabbani, Mousavi, and Farrokhi-Asl (2016) tackle the multi-objective type II robotic mixed-model 

assembly line balancing problem. Çil, Mete, and Ağpak (2017) develop a beam search to minimize 

the sum of cycle times of all models in robotic mixed-model assembly lines.  

With regards to mixed assembly line balancing and sequencing (MALB/S) problems, two main 

methods have been applied: hierarchical method and simultaneous approach. This section primarily 

focuses on the simultaneous approach since the simultaneous approach outperforms hierarchical 

method (Kim, Kim, and Kim 2000a) and it is considered in this paper. The research on MALB/S can 

be divided into three categories based on the layout of the assembly line: one-sided MALB/S, U-type 

MALB/S and two-sided MALB/S. For one-sided MALB/S, Kim, Kim, and Kim (2000a) develop a 

co-evolutionary genetic algorithm to minimize the utility work. Battini et al. (2009) consider the 

MALB/S with finite buffer capacity and is tested using simulation software. Özcan et al. (2010) 

consider balancing and sequencing of the parallel mixed-model assembly lines. Mosadegh, Zandieh, 

and Ghomi (2012) take into account the station-dependent MALB/S. Öztürk et al. (2013) introduce 

balancing and scheduling of flexible mixed-model assembly lines. They also extend the problem by 

considering parallel stations and develop a MILP model. Saif et al. (2014) solve the multi-objective 

MALB/S using an artificial bee colony algorithm. Faccio, Gamberi, and Bortolini (2016) solve the 

paced MALB/S with jolly operators and develop a hierarchical approach.  

Regarding the U-type MALB/S, Kim, Kim, and Kim (2000b) solve this problem using a 

co-evolutionary algorithm. Kim, Kim, and Kim (2006) develop a new method called endosymbiotic 

evolutionary algorithm. Kara, Ozcan, and Peker (2007a) address U-type MALB/S where the number 

of stations is optimized. Subsequently, they extend this problem by involving multiple-objectives 

(Kara, Ozcan, and Peker 2007b). Hamzadayi and Yildiz (2012) consider the U-type MALB/S with 



parallel workstations and zoning constraints. In further work they improve the simulated annealing 

algorithm by employing tabu search algorithm (Hamzadayi and Yildiz 2013) to tackle the U-type 

MALB/S with the objective of minimizing workstations. Manavizadeh, Rabbani, and Radmehr (2015) 

consider multiple objectives in U-type MALB/S. In the case of two-sided MALB/S, Kucukkoc and 

Zhang (2014b) report the first research on mixed-model parallel two-sided assembly lines and 

develop an agent-based ant colony optimization method. Kucukkoc and Zhang (2014a) solve the 

same problem with the improved edition of this algorithm. Subsequently, Kucukkoc and Zhang (2016) 

develop a hybrid algorithm by hybridizing ant colony optimization and genetic algorithm for solving 

the same problem. 

From the literature review and to authors’ best knowledge, no research deals with robotic mixed 

model assembly line balancing and sequencing. Furthermore, it is observed that simulated annealing 

and co-evolutionary algorithms are widely utilized in solving MALB/S. Therefore, this research 

applies the simulated annealing and co-evolutionary algorithm to solve this new RMALB/S problem.  

 

3. Mathematical formulation 

 

3.1 Problem assumptions 

In robotic mixed-model assembly lines, several tasks are assigned to each workstation and each 

workstation is allocated with a robot to perform the allocated tasks. Different types of products, 

referred to as models, are assembled in a sequence. RMALB/S involves three sub-problems: task 

assignment, model sequencing and robot assignment. This section mainly presents the basic 

assumptions based on Gao et al. (2009) and Mukund Nilakantan, Huang, and Ponnambalam (2015).  

(1) Tasks are assigned to workstation only when the precedence constraint is satisfied.  

(2) A robot can be allocated to any workstation and each robot must be allocated to a workstation.  

(3) The number of the types of the robots is equal to that of workstations and each workstation has to 

have a robot allocated.  

(4) All models are similar and merged into a combined precedence diagram. 

(5) The operation times of models differ from each other and they are determined by the type of 

robots allocated.  

(6) The operation times of a model by a robot are deterministic.  

(7) Parallel workstations, setup times, work-in-process inventory, material handling are negligible. 

 

3.2 Notations 

 

 Indices: 

i,j,h: Index of tasks. 

k: Index of stations. 

r,t: Index of robots.  

m: Product model. 

s: A model in the model sequence. 

 

 Parameters: 

Nt: Number of tasks.  

Nk: Number of workstations.  

Nr: Number of robots.  

Nm: Types of models.  

I: Set of tasks in combined precedence diagram, 𝐼 = {1,2, … , 𝑖, … . , 𝑁𝑡}. 
K: Set of stations, 𝐾 = {1,2, … , 𝑘, … . , 𝑁𝑘}. 
M: Set of product models, 𝑀 = {1,2, … , 𝑚, … . , 𝑁𝑚} 

dm: Demand for product model m in Master Production Schedule (MPS). 

D: Total demand for all products in minimum part set, 𝐷 = ∑ 𝑑𝑚
𝑁𝑚
𝑚 . 

 
S: Set of sequence of product model, 𝑆 = {1,2, … , 𝑠, … . , 𝐷}. 

timr: Operation time of task i in model m by robot r.  

Pre(i): Set of predecessors of task i. 

Suc(i): Set of successor of task i. 

SNP:
 
Set of ordering pairs which have no precedence relations, 

𝑆𝑁𝑃 = {(𝑖, 𝑗)|𝑖 ∈ 𝐼, 𝑗 ∈ {ℎ|ℎ ∈ 𝐼 − 𝑃𝑟𝑒(𝑖)⋃𝑆𝑢𝑐(𝑖)𝑎𝑛𝑑 𝑖 < 𝑗}}. 

 

 Decision variables:  

xik: 1, if task i is assigned to workstation k; 0, otherwise. 



rrk: 1, robot r is allocated to workstation k; 0, otherwise.  

timr: Finishing time of task i.  

zms: 1, if product model m is in the s sequence; 0, otherwise.  

Pkm: Total operation time of tasks on station k for model m.  

Csk: Completion time of all the tasks of the model in s sequence on workstation k.  

 

 Indicator variables:  

wij: if task i is assigned before task j in the same workstation; 0, if task j is assigned before task i in 

same workstation. 

 

3.3 Mathematical model for RMALB/S 

This research considers RMALB/S with an objective of minimizing the makespan. In RMALB, 

once the robot allocation and task assignment are determined, the model sequencing is somewhat 

transferred into a permutation flow shop scheduling problem (Ruiz and Stützle 2007; Ruiz, Maroto, 

and Alcaraz 2006). In permutation flow shop scheduling, a set of independent tasks are processed on 

a set of machines and job processing sequence are set to be the same throughout all the machines 

(Ruiz and Stützle 2007). In this case, each workstation is regarded as a machine, total assigned tasks 

on a workstation can be regarded as a job and model sequencing corresponds to job sequencing. 

Since the makespan minimization criterion is the most commonly studied in literature, this paper 

adopts it as the objective for both balancing and sequencing problems. The makespan minimization 

criterion is roughly analogue to the reduction of cycle time, which is often found in line balancing 

literature. The detailed formulation is presented as follows.  

 

min 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = max
𝑠={1,2,…,𝐷}

(𝐶𝑠, 𝑁𝑘)          (1) 

∑ 𝑥𝑖𝑘 = 1 𝑁𝑘
𝑘=1  ∀𝑖               (2) 

∑ 𝑘. 𝑥𝑖𝑘 −  ∑ 𝑘. 𝑥𝑗𝑘
𝑁𝑘
𝑘=1 ≤ 0 ∀𝑖 ∈ 𝑃𝑟𝑒(𝑗); 𝑗 𝑁𝑘

𝑘=1                                 (3) 

𝑡𝑗𝑚
𝑓

− 𝑡𝑖𝑚
𝑓

+ 𝜓(1 − 𝑥𝑖𝑘) + 𝜓(1 − 𝑥𝑗𝑘) ≥ ∑ 𝑡𝑗𝑚𝑟
𝑁𝑟
𝑟=! . 𝑦𝑟𝑘    ∀𝑖 ∈ 𝑃𝑟𝑒(𝑗); 𝑗    (4) 

𝑡𝑗𝑚
𝑓

− 𝑡𝑖𝑚
𝑓

+ 𝜓(1 − 𝑥𝑖𝑘) + 𝜓(1 − 𝑥𝑗𝑘) + 𝜓(1 − 𝑤𝑖𝑗) ≥ ∑ 𝑡𝑗𝑚𝑟
𝑁𝑟
𝑟=! . 𝑦𝑟𝑘   ∀(𝑖, 𝑗) ∈ 𝑆𝑁𝑃  (5) 

𝑡𝑖𝑚
𝑓

− 𝑡𝑗𝑚
𝑓

+ 𝜓(1 − 𝑥𝑖𝑘) + 𝜓(1 − 𝑥𝑗𝑘) + 𝜓. 𝑤𝑖𝑗 ≥ ∑ 𝑡𝑗𝑚𝑟
𝑁𝑟
𝑟=! . 𝑦𝑟𝑘   ∀(𝑖, 𝑗) ∈ 𝑆𝑁𝑃   (6) 

𝑡𝑖𝑚
𝑓

+ 𝜓(1 − 𝑥𝑖𝑘) ≥ ∑ 𝑡𝑖𝑚𝑟
𝑁𝑟
𝑟=! . 𝑦𝑟𝑘   ∀𝑖, 𝑘           (7) 

∑ 𝑦𝑟𝑘
𝑁𝑟
𝑟=1 = 1   ∀𝑘                                                   (8) 

∑ 𝑦𝑟𝑘
𝑁𝑘
𝑘=1 = 1  ∀𝑟              (9) 

𝑃𝑘𝑚 +  𝜓(1 − 𝑥𝑖𝑘) ≥ ∑ 𝑡𝑖𝑚𝑟
𝑁𝑟
𝑟=! . 𝑦𝑟𝑘      ∀𝑖, 𝑘         (10) 

∑ 𝑧𝑚𝑠
𝑁𝑚
𝑚=1 = 1      ∀𝑠 ∈ 𝑆             (11) 

∑ 𝑧𝑚𝑠
𝐷
𝑠=1 = 𝑑𝑚     ∀𝑚 ∈ 𝑀              (12) 

𝐶11 + 𝜓(1 − 𝑧𝑚1) ≥ 𝑃1𝑚    ∀𝑚 ∈ 𝑀           (13) 

𝐶𝑠,𝑘+1 + 𝜓(1 − 𝑧𝑚𝑠) ≥ 𝐶𝑠𝑘+𝑃𝑘+1,𝑚   ∀𝑠 ∈ {1,2, … , 𝐷}, 𝑘 ∈ {1,2, … . , 𝑁𝑘 − 1}   (14) 

𝐶𝑠+1,𝑘 + 𝜓(1 − 𝑧𝑚𝑠) ≥ 𝐶𝑠𝑘+𝑃𝑘,𝑚   ∀𝑠 ∈ {1,2, … , 𝐷 − 1}, 𝑘 ∈ {1,2, … . , 𝑁𝑘}   (15) 

 

Equation (1) minimizes the makespan which is the maximum of Cs,Nk. Constraint (2) indicates that 

each task must be allocated to a workstation. Constraint (3) handles precedence constraints that 

guarantee that the processors of task j must be assigned before task j. Constraints (4-6) evaluates the 

finishing time of tasks of models. If there is a precedence relationship between task j and task i, 

constraint (4) takes effect and is reduced to 𝑡𝑗𝑚
𝑓

− 𝑡𝑖𝑚
𝑓

≥ ∑ 𝑡𝑗𝑚𝑟 . 𝑦𝑟𝑘
𝑁𝑟
𝑟=1 . If there is no precedence 

relationship between task i and task j, constraint (5) and constraint (6) come into play. If task i is 

assigned before task j in a same workstation, constraint (5) is reduced to 𝑡𝑗𝑚
𝑓

− 𝑡𝑖𝑚
𝑓

≥ ∑ 𝑡𝑗𝑚𝑟 . 𝑦𝑟𝑘
𝑁𝑟
𝑟=1 ; 

otherwise, constraint (6) is reduced to 𝑡𝑖𝑚
𝑓

− 𝑡𝑗𝑚
𝑓

≥ ∑ 𝑡𝑖𝑚𝑟 . 𝑦𝑟𝑘
𝑁𝑟
𝑟=1 . Constraint (7) ensures that the 

finishing time of each task is larger than or equal to its operation time. Constraints (8-9) deal with the 

robot allocation, where constraint (8) indicates that each workstation has a robot and constraint (9) 

denotes that each robot is allocated to a workstation. Constraint (10) evaluates the total operation 

times of tasks on station k for model m, which is the largest finishing time of tasks assignment station 

k for model m. Constraint (11) guarantees that there is a model at each sequence and constraint (12) 

fulfills the MPS demand. Constraints (13-15) ensures that the completion time of all the tasks of the 

model in the s sequence on workstation k does not exceed the total processing time and that the 



sequence is maintained. Constraint (13) obtains the value of the finish time of the model in the first 

sequence on the first workstation. Constraint (14) indicates that the tasks on the latter workstations 

cannot be operated until the tasks on the former workstations are finished. Constraint (15) ensures 

that the tasks of the model on the latter position of the model sequence can be operated only when the 

tasks of model on the former position are finished.  

 

4. Proposed metaheuristic algorithms 

RMALB/S problems mainly aim at optimizing the assignment of tasks, the allocation of the robots 

and the model sequence simultaneously. The proposed RMALB/S problem belongs to the NP-hard 

category due to the complexity involved. To optimize these sub-problems simultaneously, encoding 

scheme, decoding scheme and effective algorithms are essential. This section first introduces the 

applied encoding scheme and decoding scheme and later describes the two improved metaheuristics 

methods.  

 

4.1 Encoding and decoding 

A task assignment vector, robot allocation vector and model sequence vector are employed to 

encode three sub-problems. Task assignment vector is a 1×Nt vector, in which each element denotes a 

workstation. If element in ith position is k, task i is assigned to workstation k. The robot allocation is a 

vector 1×Nr vector, where each element denotes a robot. If the element in the ith position is r, robot r 

is allocated to workstation i. The model sequence vector is a 1×Nm vector, each element 

corresponding to a model. If the element in the ith position is m, model m is ith one to be assembled. 

Decoding for the robot allocation vector and model sequence is straightforward, whereas the detailed 

task assignment vector needs the task assignment vector and the consideration of precedence 

constraints. A task is assignable only when its predecessors have been applied and task sequence on a 

workstation is determined in sequence based on the precedence constraint. An example with 11 tasks, 

4 robots and 2 models is depicted in Figure.2, where demands for two models (model A and model B) 

from the MPS are 1 and 2. In Figure.2, the element in the third position of the task assignment vector 

is 1, and thus task 3 is assigned to workstation 1. The element in the first position of robot allocation 

vector is 3, and thus robot 3 is allocated to workstation 1. The element in the first position of model 

sequence vector is B, and thus model B is first assembled.  

 

Task assignment

1 2 3 4 5 6 7 8 9 10 11

1 2 1 2 2 3 3 4 3 4 4

Positions

Robot 3 Robot 1 Robot 4 Robot 2

Robot allocation 3 1 4 2

Positions 1 2 3 4

Model sequence B B A

Positions 1 2 3

1 3 5 6 87 9 10 1142

1 3 5 6 87 9 10 1142

1 3 5 6 87 9 10 1142Model B

Model B

Model A

 
Figure.2 Example of encoding and decoding 

 

For the initialization process, three vectors are randomly generated. For task assignment vector, a 

random number between 1 and Nk is generated in each position. This random task assignment vector 

might violate precedence constraints, and thus a repair procedure presented in Li, Tang, and Zhang 

(2016a) is utilized. This repair mechanism exchanges the positions of two tasks when successor of a 

task is assigned to the former workstation. This repair mechanism terminates when corresponding 

workstation of each task is smaller than or equal to any of the corresponding workstations of its 

successors. Regarding the robot allocation vector, a number is randomly selected with uniform 

likelihood from 1,2, … . , Nr in the first position, a number is randomly selected among the remaining 

numbers in the second position and the last remaining number is allocated to the last position. For 

sequence vector, the same method as used for robot allocation is applied. The encoding and decoding 

scheme are the basis of the metaheuristic algorithms and the two proposed metaheuristic algorithms 



are detailed in the following sections.   

  

4.2 Restarted simulated annealing algorithm 

Simulated annealing (SA) algorithms is a local search method that has shown outstanding results 

for solving MALB/S problems (Mosadegh, Zandieh, and Ghomi 2012). This paper improves the 

original edition by employing a restart mechanism, where the current temperature is replaced with a 

new restart temperature when new global best individual cannot be further achieved. The logic behind 

this modification is utilizing proper values of initial temperature (T0) and cooling rate (α) to quickly 

find a local optimum and replacing the current temperature to escape from local optima. The 

procedure of the proposed restarted simulated annealing (RSA) algorithm is illustrated in Figure.3. In 

this figure, T indicates the current temperature updated with 𝑇 = 𝛼 𝑋 𝑇, NS is the number of 

iterations before current temperature update, f(S) is the achieved fitness of solution S, TR denotes 

restart temperature utilized to replace current temperature and RT is the restart time (RT) before 

replacing the current temperature.  

This algorithm has five parameters: T0, α, NS, TR and RT. RSA starts with generating an initial 

solution by generating three vectors randomly. Then a loop repeats until a termination criterion is 

satisfied, in which NewBest is applied to check whether a new best individual is achieved. Within the 

loop, a neighborhood solution is firstly generated utilizing one of neighborhood structures which are 

further explained in Section 4.4. Subsequently, this new solution  𝑆′ is compared with the incumbent 

one 𝑆(∆= 𝑓(𝑆′) − 𝑓(𝑆)) . If this new solution is better than the incumbent one (∆≤ 0) , the 

incumbent one is updated with the new one. Otherwise, the incumbent one is replaced by the new one 

with a probability calculated by 𝑒𝑥𝑝
−∆

(𝑇×𝑓(𝑆))⁄
. Thirdly, if a new best solution has not been achieved 

for RT iterations and the current temperature is less than the restart temperature, the current 

temperature is replaced by the restart temperature. It is to be noted that the restarted simulated 

annealing algorithm is translated into the original edition when the restart temperature is set to 0.0. 

This simple modification improves the performance of the simulated annealing algorithm by 

increasing the capacity of escaping from local optima.  

 

Algorithm RSA for RMALB/S problem 

Begin: 

    ns:= 0, rt:= 0,             ;

    Generate a initial solution S;

    While  (Termination criterion is not met) do

       NewBest:=0; // Check whether new best solution is obtained

       While (ns<NS)

            Obtain new solution     with a neighborhood structure;

            Calculate                            ;  ns:=ns+1;

            If (           )              ;

               If (New best solution is obtained)   NewBest:=1;

            Else                 with a probability of                     ; 

        Endwhile 

        If (NewBest>0)  rt:=0; Else  rt:=rt+1;

        If (rt>=RT) 

            If(T<    )              ;

            Else T:=αT;

       Else  T:=αT; 

    Endwhile

'S

= ( ') ( )  f S f S 

0  'S S

 ( )
exp

T f S 'S S

0:T T

RT : RT T

 
Figure.3 Procedure of the restarted simulated annealing algorithm 

 

4.3 Co-evolutionary genetic algorithm 

Co-evolutionary genetic algorithms have been widely applied to other MALB/S problems (Kim, 

Kim, and Kim 2000a; Kim, Kim, and Kim 2000b), which constitutes several sub-swarms, each 

addressing a sub-problem. Inspired by recent research on co-evolutionary algorithms by Li et al. 

(2016), this research develops a restarted co-evolutionary genetic algorithm (RCoGA). This 

algorithm makes two adjustments in employing vectors of the best solution rather than the best one of 

a sub-swarm for swam evaluation which will help to enhance the local search and application of a 

restart mechanism helps to escape from local optima. The outline of the proposed co-evolutionary 



method is depicted in Figure.4.  

Algorithm CA for RMALB/S problem

Begin: 

    rt=0;

    Initialize three sub-swarms for three sub-problems; 

    Select the best solution by testing the combination of the ith individuals from sub-swarms ;     

      While (Termination criterion is not met) do

      For i=1,2,…,PS do  //Update task assignment 

        Decode with ith individual from task assignment swarm and other two vectors from best solution; 

        Utilize tournament selection, crossover and mutation operators to obtain new sub-swarm; 

        Update best solution if new best solution is achieved;

        The last individual is replaced with the corresponding vector in the best solution;

      For i=1,2,…,PS do  //Update robot allocation

        Decode with ith individual from robot allocation swarm and other two vectors from best solution; 

        Utilize tournament selection, crossover and mutation operators to obtain new sub-swarm; 

        Update best solution if new best solution is achieved; 

        The last individual is replaced with the corresponding vector in the best solution;

      For i=1,2,…,PS do  //Update model sequence

        Decode with ith individual from model sequence swarm and other two vectors from best solution; 

        Utilize tournament selection, crossover and mutation operators to obtain new sub-swarm; 

        Update best solution if new best solution is achieved;

        The last individual is replaced with the corresponding vector in the best solution;

     If (New best solution is obtained)  rt=0;

     Else rt:=rt+1;

     If (rt>=RT)             //Restart mechanism  

       Execute restart mechanism and update the best solution;  

   Endwhile     

 
Figure.4 Procedure of the restarted co-evolutionary genetic algorithm 

 

The proposed co-evolutionary genetic algorithm has four parameters: population size for each 

sub-swarm (PS), crossover rate, mutation rate and restart time before executing the restart mechanism 

(RT). This algorithm begins with initializing three sub-swarms and selecting the best solution from 

PS solutions achieved by combining the ith individuals from the sub-swarms. Then the following 

steps are repeated in a cycle. Three sub-swarms are updated utilizing tournament selection, crossover 

and mutation operations successively, which are further explained in Section 4.4. Each individual is 

evaluated by combining with the other two vectors in the best solution. When a new best solution is 

achieved, the incumbent one is updated with the new one. After generating new offspring, the last one 

is replaced with the corresponding vector in the best solution. When a new best solution cannot be 

found for RT iterations, the restart mechanism is executed. A set of PS solutions are generated by 

modifying all three vectors simultaneously, each going through Num_move’ neighborhood operations. 

Best among them is selected to replace the current best solution and subsequently the individuals of 

the three sub-swarms are replaced with the corresponding vector in the best solution after Num_move’ 

neighborhood operation. With preliminary experiments, the value of Num_move is set to be 2. Further 

descriptions of neighborhood operation are presented in Section 4.4. Utilization of best solution 

serves as the elitist strategy to preserve the best individual in the offering, and restart mechanism 

aims at increasing the search space and escaping from local optima by modifying all the vectors 

simultaneously.  

 

4.4 Neighborhood structures 

Since three sub-problems are encoded with three vectors, this research develops different 

neighborhood operations for these vectors. Regarding task assignment vector, both swap and 

alteration operation are applied and these operations are randomly selected. For alteration operation, a 

task is randomly selected and its corresponding workstation is modified into another different 

workstation. It should be noted that neighborhood operation on the task assignment vector might lead 

to an infeasible task assignment violating precedence constraints. Due to this, this work utilizes the 

same repair mechanism as presented in Li, Tang, and Zhang (2016a) for robotic two-sided assembly 

line balancing problems. Regarding the robot allocation vector, swap operation and insert operation 

are both employed and they are randomly selected. As for model sequence, both swap and insert 



operation are also applied and randomly selected. When applying these neighborhood operations in 

the proposed algorithms, RSA algorithm randomly selects a vector to be modified and RCoGA 

utilizes the neighborhood operation corresponding to the sub-problem.  

For crossover operation, two-point crossover is applied for each vector. The aforementioned repair 

mechanism is also applied after executing crossover operations on the task assignment vector since an 

infeasible task assignment violating precedence constraints might be achieved.  

 

4.5 Numerical example 

A problem instance with 11 tasks, 4 workstations, 4 robots and 2 models is solved to illustrate the 

makespan calculation process. Precedence relationships and task operation times by robots for 

models are shown in Table 1. From this table, the operation times of the same task by robots for a 

same model differ from each other and the operation times of the same task by the same robot for two 

models are different from each other. Supposed that the demands for two models (model A and model 

B) in the MPS are 1 and 2 respectively, an optimal solution is depicted in Figure.5 and the 

corresponding model sequence is {B, B, A}.  

 
Table 1 Precedence relationships and operation times of 11 tasks by 4 robots for two models 

Task 
Immediate 

successors 

Model 1 Model 2 

Robot 1 Robot 2 Robot 3 Robot 4 Robot 1 Robot 2 Robot 3 Robot 4 

1 4 109 61 56 54 144 65 53 54 

2 4, 5 47 28 24 17 60 28 32 19 

3 11 42 32 46 26 37 34 35 29 

4 6 57 40 80 53 63 46 64 53 

5 7 83 40 51 43 90 41 47 35 

6 8 103 50 111 27 91 56 102 29 

7 9 145 96 74 42 168 75 85 35 

8 10 122 32 125 51 148 36 124 38 

9 10 107 22 61 24 129 28 51 24 

10 11 59 27 61 97 58 33 72 92 

11 - 76 24 40 18 72 33 28 20 

 

The detailed makespan calculation is presented in Table 2 and plotted in Figure.6 with the Gantt chart. 

Tasks 1, 2 and 3 are assigned to workstation 1 and robot 3 is allocated to workstation 1, the total 

operation time of tasks on workstation 1 for model A is 56+24+46=126.  

After achieving the workloads on workstations for models, completion time of all the tasks of the 

model in the s sequence on workstation k or Csk is calculated. The tasks of the model in the s 

sequence on workstation k are able to be operated only when the tasks of the model in the s-1 

sequence on workstation k and tasks of the model in the s sequence on workstation k-1 have finished. 

For instance, the completion time of all the tasks of the model A on workstation 2 is calculated with 

max(303, 366)+ 57=423. The makespan is the completion time of all the tasks of the last model in the 

model sequence (Model A) on workstation 4.  

 

1

Task assignment

1 2 3 4 5 6 7 8 9 10 11

1 1 1 2 3 3 3 4 4 4 4

Positions

3 5 6 87 9 10

11

42

Robot 3 Robot 1 Robot 4 Robot 2

Robot allocation 3 1 4 2
 

Figure.5 An example of task assignment and robot allocation 

 

Table 2 Makespan calculation 

Description Workstations 1 2 3 4 

Total operation times on stations 

for models 

Model A 126 57 112 105 

Model B 120 63 99 130 

The completion time of all the 

tasks of the model in the s 

sequence on workstation k 

Model B 120 183 282 412 

Model B 240 303 402 542 

Model A 366 423 535 647 

Makespan calculation Makespan 647 
   



 
 

126 57 112 105

120 63 99 130

120 63 99 130Model B

Model B

Model A

Workstation 1 Workstation 2 Workstation 3 Workstation 4

Workstation 1 Workstation 2 Workstation 3 Workstation 4

Workstation 1 Workstation 2 Workstation 3 Workstation 4

Makespan
 

Figure.6 Gantt chart of the illustrated example 

 

5. Computational study 

This section explains the tested benchmark problems, the compared methods and the termination 

criterion. Since no research has been reported on RMALB/S prior to this, this paper generates nine 

sets of benchmarks based on the instance in Gao et al. (2009). The operation time of task i in model m 

by robot r is a random number within [0.8 × 𝑡𝑖𝑟 , 1.2 × 𝑡𝑖𝑟], where tir is the original published 

operation time of task i by robot r generated in Gao et al. (2009). The tested problem is listed in Table 

3, where there are 104 cases in total.  

 
Table 3 Description of tested cases 

Problem Nm Nk Demands in MPS 

P11 2 2, 3, 4, 5 {1, 2}, {3, 1} 

P25 2 3, 4, 6, 9 {1, 2}, {3, 1} 

P35 2 4, 5, 7, 12 {1, 2}, {3, 1} 

P53 3 5, 7, 10, 14 {1, 1, 1}, {3, 2, 1}, {1, 2, 4} 

P70 3 7, 10, 14, 19 {1, 1, 1}, {3, 2, 1}, {1, 2, 4} 

P89 4 8, 12, 16,21 {1, 1, 1, 1}, {1, 3, 4, 5}, {6, 4, 2,1} 

P111 4 9, 13, 17, 22 {1, 1, 1, 1}, {1, 3, 4, 5}, {6, 4, 2,1} 

P148 5 10, 14, 21, 29 {1, 1, 1, 1, 1}, {5, 3, 2, 1, 1}, {1, 2, 4, 5, 8}, {1, 4, 8, 3, 1} 

P297 5 19, 29, 38, 50 {1, 1, 1, 1, 1}, {5, 3, 2, 1, 1}, {1, 2, 4, 5, 8}, {1, 4, 8, 3, 1} 

 

This paper re-implements some recent and high-performing metaheuristic methods with proper 

adaptations. In addition, several variants of the proposed metaheuristic methods are also included to 

highlight the advantage of the improvements. All the tested algorithms are summarized in Table 4. In 

Table 4, the original simulated annealing algorithm or SA is selected to highlight the improvements. 

Artificial bee colony algorithm or ABC is included since it shows good performance in assembly line 

balancing problems (Tang, Li, and Zhang 2016) and its multi-objective edition has been successfully 

applied to MALB/S (Saif et al. 2014). Genetic algorithm or GA is the original algorithm for MALB/S 

(Kim, Kim, and Kim 2000a), and it is adopted to show the difference between with or without 

application of the co-evolution mechanism. Original co-evolutionary genetic algorithm or CoGA1 is 

applied to show whether the improvements on RCoGA is reasonable. Co-evolutionary genetic 

algorithm described in Section 4.3 without restart mechanism or CoGA2 is also employed to show 

the performance of restart mechanism.  

 
Table 4 Summary and description of tested algorithms 

Algorithms Description 

SA No restart mechanism is applied. 

RSA This is the proposed restarted simulated annealing in Section 4.2. 

ABC One of the neighborhood operations in Section 4.4 is randomly selected for one individual in 

employee bee phase and onlooker phase. A scout is applied to replace the worst individual  

with a neighbor of a randomly selected individual generated by employing one of the 

neighborhood operations in Section 4.4 when no better global best solution is further 

achieved.  

GA The neighborhood structures in Section 4 are shared and tournament selection is applied. Elite 

strategy is applied by cloning the best individual to replace one of the offspring. 

CoGA1 The same neighborhood structures in Section 4 are applied and tournament selection is 

applied. An individual in a sub-swarm is evaluated by combining with the best individuals of 

other two sub-swarms. No elite strategy or restart mechanism is applied. 

CoGA2 It is the same to co-evolutionary genetic algorithm in Section 4.3 except for not applying the 

restart mechanism. 

RCoGA This is the proposed restarted co-evolutionary genetic algorithm in Section 4.3.  

 



It is important to determine a proper termination criterion and this paper sets the termination 

criterion as a maximum elapsed CPU time following Li, Tang, and Zhang (2016a) and Li, Tang, and 

Zhang (2016b). The maximum elapsed CPU time is set to be equal to 𝑁𝑡 × 𝑁𝑡 × 𝜏 milliseconds, 

where it is tested at four levels (τ=10,20,30,40). This expression distributes more computational time 

to large-size problems and four termination criteria are able to analyze the performance of the 

algorithms from short CPU time to large CPU time. All the tested methods are coded in C++ and are 

executed on a cluster of personal computers with Microsoft Visual Studio 2012. All the computers are 

equipped with Intel(R) Core2(TM) CPU 2.33GHZ and 3.036 GB RMA.  

 

5.2 Computational evaluation 

This section presents the comparative study on the algorithms. As parameters play underlying role 

in the final performance of algorithms, this research calibrates the parameters of all tested algorithms 

at first using the full factorial design similar to the ones reported by Li, Tang, and Zhang (2016b) and 

Tang, Li, and Zhang (2016). A test problem with 111 tasks, 13 workstations and 4 models is utilized 

for the calibration and each configuration solves this large-size case for 10 times. The termination 

criterion is an elapsed CPU time of 𝑁𝑡 × 𝑁𝑡 × 10 milliseconds. The relative percentage increase 

(RPI) is employed as the response variable to measure the obtained results. RPI is calculated using 

Equation 16, where Fitsome is the objective function obtained by a configuration and Fitbest is the best 

fitness yielded by all the combinations.  

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 (𝑅𝑃𝐼) = 100 × (𝐹𝑖𝑡𝑠𝑜𝑚𝑒 − 𝐹𝑖𝑡𝑏𝑒𝑠𝑡)/𝐹𝑖𝑡𝑏𝑒𝑠𝑡             (16) 

 

The multifactor analysis of variance (ANOVA) technique (Montgomery 2008) is performed by 

considering the three parameters as factors as reported in Tang, Li, and Zhang (2016) after checking 

the fulfillment of three hypotheses, independence of residuals, homogeneity of the variance and 

normality of residuals. Detailed calibration results are omitted for space reason, but they are available 

upon request.  

After calibrating the parameters, each algorithm solves each case 10 times and the best results 

within ten times’ independent running for small-size problem are first compared with the optimal 

solution achieved by CPLEX solver in Table 5. Nk means the number of workstations and CPU 

refers to the computational time in seconds. The results of algorithms in Table 5 are obtained under 

the termination of an elapsed CPU time of 𝑁𝑡 × 𝑁𝑡 × 10 milliseconds. This table only shows the 

results for the P11 problem due to the high computational time when utilizing CPLEX solver for 

other problems. It is observed that all the optimal solutions for P11 are found by the two proposed 

algorithms, but with much less computational time. These results suggest that metaheuristic 

algorithms are more suitable for solving this problem.   

 
Table 5 Best result comparison among algorithms and CPLEX solver 

Proble

m 
Nk 

Demand 

in MPS 

CPLEX Algorithms 

OP

T 

CPU 

(s) 
SA RSA ABC GA 

COGA

1 

CO

GA

2 

RCOGA 
CPU 

(s) 

P11 2 {1,2} 
143

7 
2 1437 

143

7 
1437 

143

7 
1437 1437 1437 1.2 

P11 2 {3,1} 
177

8 
2.1 1778 

177

8 
1778 

177

8 
1778 1778 1778 1.2 

P11 3 {1,2} 870 6.1 870 870 870 870 870 870 870 1.2 

P11 3 {3,1} 
111

4 
8.8 1114 

111

4 
1114 

111

4 
1114 1114 1114 1.2 

P11 4 {1,2} 647 23.2 647 647 647 647 647 647 647 1.2 

P11 4 {3,1} 729 13.9 729 729 729 729 729 729 729 1.2 

P11 5 {1,2} 553 88 553 553 553 553 553 553 553 1.2 

P11 5 {3,1} 660 
145.

8 
660 660 660 663 660 660 660 1.2 

 

To further evaluate the two proposed algorithms, the average RPI values of all the cases are 

reported in Table 6. This table provides the average RPI values of problems, each containing several 

cases. For instance, each cell for P297 reports the average result of 16 cases generated by four 

workstation numbers and four different demands of the product models. From this table, the RSA is 

the best performer with the smallest average RPI of 5.58 under the termination of an elapsed CPU 

time of 10Nt Nt  milliseconds. Regarding the remaining three termination criteria, RSA is also the 

best performer with average RPI values of 2.84. 2.18 and 1.83 respectively. Among the remaining 



algorithms, SA is the second best performer and RCoGA is the third best performer regarding all the 

four termination criteria.  

 
Table 6 Average RPI comparison among algorithms under four termination criteria 

Problem 
Workstation 

number 

Average relative percentage increase 
CPU time(s) 

SA RSA ABC GA CoGA1 CoGA2 RCoGA 

𝜏 = 10                    

P11 2, 3, 4, 5 0.06  0.04  0.00  1.42  2.20  4.15  1.33  1.2  

P25 3, 4, 6, 9 1.86  1.29  1.04  3.33  3.72  3.79  1.85  6.3  

P35 4, 5, 7, 12 3.36  2.30  1.61  5.22  5.47  5.97  3.16  12.3  

P53 5, 7, 10, 14 4.27  3.70  2.57  6.08  6.97  7.15  4.86  28.1  

P70 7, 10, 14, 19 4.16  3.40  4.47  6.25  7.80  7.42  5.11  49.0  

P89 8, 12, 16,21 4.05  4.07  4.60  6.08  8.06  6.68  5.46  79.2  

P111 9, 13, 17, 22 4.42  4.35  9.38  7.19  11.90  9.44  8.06  123.2  

P148 10, 14, 21, 29 7.18  7.33  16.45  10.16  21.12  15.35  11.89  219.0  

P297 19, 29, 38, 50 15.28  15.47  21.28  14.12  27.84  19.20  15.69  882.1  

Average RPI of all cases 5.81  5.58  8.43  7.46  12.42  9.93  7.44  
 

𝜏 = 20                  - 

P11 2, 3, 4, 5 0.06  0.03  0.00  1.42  2.20  3.91  0.82  2.4  

P25 3, 4, 6, 9 1.86  0.91  0.82  3.23  3.69  3.73  1.56  12.5  

P35 4, 5, 7, 12 3.36  1.61  1.40  4.99  5.39  5.72  2.35  24.5  

P53 5, 7, 10, 14 4.27  2.92  2.00  5.82  6.83  7.05  3.74  56.2  

P70 7, 10, 14, 19 4.15  2.63  3.16  5.82  7.18  7.17  3.81  98.0  

P89 8, 12, 16,21 4.02  2.94  3.13  5.70  7.26  6.35  4.04  158.4  

P111 9, 13, 17, 22 3.74  3.61  6.07  5.99  9.15  7.34  6.50  246.4  

P148 10, 14, 21, 29 3.54  3.45  11.07  7.61  14.90  10.44  8.37  438.1  

P297 19, 29, 38, 50 4.91  4.65  15.87  10.10  22.15  13.83  11.02  1764.2  

Average RPI of all cases 3.57  2.84  5.97  6.16  10.08  7.98  5.43  - 

𝜏 = 30                   

P11 2, 3, 4, 5 0.06  0.03  0.00  1.42  2.20  3.91  0.63  3.6  

P25 3, 4, 6, 9 1.86  0.74  0.72  2.94  3.66  3.69  1.45  18.8  

P35 4, 5, 7, 12 3.36  1.24  1.29  4.88  5.30  5.57  2.11  36.8  

P53 5, 7, 10, 14 4.27  2.56  1.85  5.80  6.78  7.03  3.23  84.3  

P70 7, 10, 14, 19 4.15  2.18  2.60  5.58  6.96  7.07  3.17  147.0  

P89 8, 12, 16,21 4.02  2.35  2.55  5.50  6.93  6.15  3.50  237.6  

P111 9, 13, 17, 22 3.64  3.09  4.70  5.55  8.09  6.64  5.59  369.6  

P148 10, 14, 21, 29 2.81  2.69  8.60  6.47  11.82  8.34  7.12  657.1  

P297 19, 29, 38, 50 3.09  2.87  13.10  8.36  18.92  11.03  8.99  2646.3  

Average RPI of all cases 3.17  2.18  4.84  5.58  8.91  7.10  4.59  - 

𝜏 = 40                   

P11 2, 3, 4, 5 0.06  0.03  0.00  1.42  2.20  3.91  0.63  4.8  

P25 3, 4, 6, 9 1.86  0.67  0.60  2.89  3.59  3.69  1.21  25.0  

P35 4, 5, 7, 12 3.36  0.99  1.23  4.83  5.21  5.52  1.89  49.0  

P53 5, 7, 10, 14 4.27  2.28  1.77  5.72  6.77  6.97  2.92  112.4  

P70 7, 10, 14, 19 4.15  1.83  2.26  5.48  6.84  7.00  2.80  196.0  

P89 8, 12, 16,21 4.02  2.09  2.27  5.38  6.72  6.07  3.05  316.8  

P111 9, 13, 17, 22 3.61  2.65  3.95  5.25  7.40  6.25  4.98  492.8  

P148 10, 14, 21, 29 2.47  2.36  7.13  5.81  10.24  7.09  6.41  876.2  

P297 19, 29, 38, 50 2.32  2.06  11.24  7.25  16.69  9.31  7.91  3528.4  

Average RPI of all cases 2.99  1.83  4.15  5.23  8.19  6.57  4.07  - 

 

RSA benefits from the restart mechanism by replacing the current temperature, and thus it has a 

stronger capacity to escape from local optima and outperforms the compared SA under almost all 

conditions. RCoGA benefits from two aspects: the application of the best solution for swarm 

evaluation and the utilization of restart mechanism. The application of best solution clones the best 

individual to offspring leads to fast convergence and strong search in the search space next to the best 

solution. The advantage of the application of the best solution for population evaluation is further 

proved by the superiority of CoGA2 over the CoGA1. Again, the restart mechanism avoids trapping 

RCoGA in local optima. Surprisingly, the GA outperforms CoGA1 and CoGA2. The reason is that 

the proposed GA employs an elite strategy. GA has two advantages: strong local search on the best 

individual and remained ability of exploring large search space achieved by modifying several 

vectors simultaneously. CoGA1 lacks the strong local search on the best individual since the best 

individual might not be preserved in the search space, and CoGA1 lacks exploration capacity and is 

trapped into local optima. Another interesting conclusion is related to ABC and GA algorithms. ABC 



outperforms GA for small-size problems, whereas the GA outperforms ABC for large-size problems. 

The reason is that the GA utilizes crossover operation for population evolution and the applied ABC 

only propose local search methods and have no interchanges among the individuals.  

To check whether the observed difference is statistically significant, non-parameter Friedman rank 

test (Friedman 1937) is applied since the normality of residuals is slightly violated. The Friedman 

rank test has been applied by Li, Tang, and Zhang (2016b) and Nilakantan et al. (2017) for comparing 

the performance of several algorithms. For Friedman rank test in this research, the best performer for 

each case is given a rank of 1 and the worst performer is given a rank of 7 since a total 7 algorithms 

are compared. Friedman rank analysis shows that the P-value is much lower than 0.01 and very close 

to 0.0 for each termination criterion, indicating that there is a significant statistical difference among 

the average ranks of the seven algorithms. This section presents the means plot of the algorithms in 

Figure.7. Figure.7 (a) and Figure. 7(b) illustrates the means plot with 95% minimal significant 

difference confidence intervals under elapsed CPU times of 𝑁𝑡 × 𝑁𝑡 × 20 milliseconds and 𝑁𝑡 ×
𝑁𝑡 × 40 milliseconds. 

  

A v e ra g e  ra n k s

A
lg

o
ri

th
m

s

0 2 4 6 8

S A

R S A

A B C

G A

C o G A 1

C o G A 2

R C o G A

 A v e ra g e  ra n k s

A
lg

o
r
it

h
m

s

0 2 4 6 8

S A

R S A

A B C

G A

C o G A 1

C o G A 2

R C o G A

 
(a) Average ranks under 20                        (b) Average ranks under 40   

Figure.7 Means plot of the ranks of the average RPI values with 95% confidence level 

 

The statistical analysis results coincide with that presented in Table 6, and the RSA, SA and 

RCoGA are the three best performers. The span in RPI for the 10 problem instances appears to be the 

smallest. An interesting finding is that the gap between RCoGA and ABC is reduced with more 

computational time. All the computational results suggest that the improvements on SA and CoGA 

are reasonable and the RSA and RCoGA are effective for this new RMALB/S problem.  

 

6. Conclusion and future research 

This research presents the first method to address balancing and sequencing of robotic 

mixed-model assembly line (RMALB/S) problems simultaneously. This new RMALB/S contains 

three sub-problems: task assignment, robot allocation and model sequencing. A MILP model is 

presented with the objective of minimizing the makespan. CPLEX solver is applied to obtain optimal 

solutions for small-size problems. This model might receive interests from managers or 

decision-makers in industry, where robots are allocated to assemble kinds of products. This model 

helps managers to make the best of the available robots, reduce waste and ultimately improve the 

productivity and reduces cost.  

To tackle large-size problems, this research proposes two metaheuristic algorithms, restarted 

simulated annealing (RSA) and restarted co-evolutionary genetic algorithm (RCoGA) with 

improvements. RSA replaces the current temperature with a new temperature to increase exploration 

capacity and RCoGA utilizes a restart mechanism to generate new population by modifying several 

vectors all together to avoid being trapped in local optima. To evaluate the proposed algorithms, a set 

of benchmark problems containing 104 cases are generated and solved. The computational results 

demonstrate the superiority of the improvements on the original simulated annealing algorithm and 

co-evolutionary genetic algorithm. Statistical analysis results prove that the proposed RSA and 

RCoGA are effective for solving RMALB/S problems and RSA is the best performer among the 

seven tested algorithms.  

In future, constraint such as robot setup times can be incorporated to make the problem more 

realistic. More data from real-world factories are quite important to further enhance the proposed 

model. Meanwhile, one can consider other objectives such as cost and energy consumption 



minimization. Multi-objective optimization algorithms are also interesting to be developed for 

RMALB/S problems. The model can be extended to other layouts of assembly lines, including U-type 

assembly lines and two-sided assembly lines. The proposed algorithms can also be extended to other 

scheduling problems that have several sub-problems to be addressed.  
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