

Mathematical model and metaheuristics for simultaneous balancing and sequencing of robotic

mixed-model assembly line

Zixiang Li1,2, J. Mukund Nilakantan3*, Qiuhua Tang1,2, Peter Nielsen3

1Industrial Engineering Department, Wuhan University of Science and Technology, Wuhan 430081, Hubei,

China.
2Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of

Science and Technology, Wuhan, Hubei, China.

Email: zixiangli@126.com, tangqiuhua@wust.edu.cn
3Department of Materials and Production, Aalborg University, Denmark.

Email: {mnj, peter}@m-tech.aau.dk

Abstract: This research provides the first method to simultaneously balance and sequence robotic

mixed-model assembly lines (RMALB/S), which involves three sub-problems: task assignment,

model sequencing and robot allocation. A new mixed-integer programming model is developed to

minimize makespan and using CPLEX solver, small-size problems are solved for optimality. Two

metaheuristics; restarted simulated annealing algorithm and co-evolutionary algorithm, are developed

and improved to address this NP-hard problem. Restarted simulated annealing method replaces the

current temperature with a new temperature to restart the search process. Co-evolutionary method

utilizes a restart mechanism to generate a new population by modifying several vectors

simultaneously. Proposed algorithms are tested on a set of benchmark problems and compared with

five other recent high-performing metaheuristics. The proposed algorithms outperform their original

editions and the benchmarked methods. Proposed algorithms are able to solve the balancing and

sequencing problem of a robotic mixed-model assembly line effectively and efficiently.

Keywords: Assembly line balancing; Model sequencing; Robotic assembly line; Simulated annealing;

Co-evolutionary algorithm

1. Introduction

Assembly line balancing problems are extensively studied combinatorial optimization problems

(Sivasankaran and Shahabudeen 2014). They have great applications in the automotive industries and

consumer electronics industries. It can be characterized with loss of generality, by a set of tasks that

must be divided to and processed on a set of workstations. In modern industry, different variants of

assembly lines are studied due to complex realistic production environments. Among these, two

important variants are robotic assembly line and mixed-model assembly line (Çil, Mete, and Ağpak

2017).

 In robotic assembly lines, robots are allocated to workstations to perform tasks replacing manual

labor (Gao et al. 2009). Robots can operate for 24 hours a day without fatigue and provide large

flexibility in assembly of products. Robots can be programmed to perform different types of tasks,

while preserving the quality of products. A layout of a robotic assembly line is depicted in Figure.1.

Major goal of such a robotic assembly line is to balance it by efficient assignment of tasks and robot

allocation; two sub-problems that must be optimized simultaneously (Li, Tang, and Zhang 2016a).

1 3 5 6 87 9 10

114

2

Robot 3 Robot 1 Robot 2

Figure.1 Layout of robot assembly line

Mixed-model production mode is extensively utilized due to the diversified needs of customers. In

this type of assembly line, two sub-problems are encountered: mixed-model assembly line balancing

and model sequencing (Kim, Kim, and Kim 2000a; Kim, Kim, and Kim 2000b). Mixed-model

assembly line balancing tackles the assignment of the tasks to workstations (Akpinar and Bayhan

2014), whereas model sequencing determines the model operation sequence on the assembly line

(Rabbani et al. 2015; Liu et al. 2014). When combining the features of the robotic assembly line with

the mixed-model assembly line, a robotic mixed-model assembly line emerges, where a robot

operates variations of tasks of different models on each workstation. In robotic mixed-model

assembly lines, task assignment, model sequencing and robot allocation are interrelated

sub-problems.

mailto:zixiangli@126.com
mailto:tangqiuhua@wust.edu.cn
mailto:%7d@m-tech.aau.dk

To the authors’ best knowledge, no research has been reported which addresses robotic

mixed-model assembly line balancing and sequencing. To tackle the balancing and sequencing of

robotic mixed-model assembly lines (RMALB/S), this paper presents the following main

contributions. (1) A generic mixed-integer programming model (MILP) is developed to minimize the

makespan. This model is solved using CPLEX solver for small-size problems and a set of benchmark

problems are generated to test the performance of the model. (2) Two metaheuristic methods:

restarted simulated annealing algorithm (RSA) and co-evolutionary genetic algorithm (RCoGA) are

developed to tackle large-size problems. These algorithms are selected due to their effectiveness and

wide applications in other mixed-model assembly line balancing and sequencing (Kim, Kim, and Kim

2000b; Kim, Kim, and Kim 2000a; Mosadegh, Zandieh, and Ghomi 2012). To apply these two

methods effectively to RMALB/S, several improvements are developed. A comprehensive study and

comparative evaluation demonstrate the superiority of the two improved methods.

The remainder of the paper is organized as follows. In Section 2, the relative literature is provided.

In Section 3, the proposed mathematical model is presented. Section 4 details the proposed two

algorithms. Section 5 presents the benchmark problems and experimental comparisons. Finally,

Section 6 concludes this research and presents possible future works.

2. Literature review

Although robotic assembly lines and mixed-model assembly line balancing and sequencing have

been thoroughly studied independently, no work has been reported where both the problems are

solved together. This section first presents a brief review of robot assembly line balancing (RALB)

problems and later a review of literature on simultaneous balancing and sequencing of mixed-model

assembly lines (MALB/S).

Since the first work on RALB problems by Rubinovitz and Bukchin (1991), many contributions

have been reported. Rubinovitz, Bukchin, and Lenz (1993) develop a branch-and-bound algorithm for

designing and balancing the robotic assembly lines. After that, metaheuristic methods have been

widely applied to solve this problem due to its NP-hard nature (Gao et al. 2009). Levitin, Rubinovitz,

and Shnits (2006) use genetic algorithm for RALB problems with the objective of cycle time

minimization. Gao et al. (2009) propose an improved genetic algorithm for the same problem.

Yoosefelahi et al. (2012) presents multi-objective model for the RALB problem and develop an

evolution-based algorithm. Mukund Nilakantan et al. (2015) utilize bio-inspired search algorithms.

Subsequently, they tackle the U-shaped layout of the RALB problem (Mukund Nilakantan and

Ponnambalam 2016) and energy consumption in the RALB problem (Mukund Nilakantan, Huang,

and Ponnambalam 2015) using particle swarm optimization algorithms. The research on energy

consumption is followed by Li, Tang, and Zhang (2016a) where the energy consumption on two-sided

RALB problem is handled. Li et al. (2016) consider the two-sided RALB problem using

co-evolutionary particle swarm optimization algorithm and Aghajani, Ghodsi, and Javadi (2014)

consider the mixed-model two-sided RALB problem with a simulating annealing method. Recently,

Rabbani, Mousavi, and Farrokhi-Asl (2016) tackle the multi-objective type II robotic mixed-model

assembly line balancing problem. Çil, Mete, and Ağpak (2017) develop a beam search to minimize

the sum of cycle times of all models in robotic mixed-model assembly lines.

With regards to mixed assembly line balancing and sequencing (MALB/S) problems, two main

methods have been applied: hierarchical method and simultaneous approach. This section primarily

focuses on the simultaneous approach since the simultaneous approach outperforms hierarchical

method (Kim, Kim, and Kim 2000a) and it is considered in this paper. The research on MALB/S can

be divided into three categories based on the layout of the assembly line: one-sided MALB/S, U-type

MALB/S and two-sided MALB/S. For one-sided MALB/S, Kim, Kim, and Kim (2000a) develop a

co-evolutionary genetic algorithm to minimize the utility work. Battini et al. (2009) consider the

MALB/S with finite buffer capacity and is tested using simulation software. Özcan et al. (2010)

consider balancing and sequencing of the parallel mixed-model assembly lines. Mosadegh, Zandieh,

and Ghomi (2012) take into account the station-dependent MALB/S. Öztürk et al. (2013) introduce

balancing and scheduling of flexible mixed-model assembly lines. They also extend the problem by

considering parallel stations and develop a MILP model. Saif et al. (2014) solve the multi-objective

MALB/S using an artificial bee colony algorithm. Faccio, Gamberi, and Bortolini (2016) solve the

paced MALB/S with jolly operators and develop a hierarchical approach.

Regarding the U-type MALB/S, Kim, Kim, and Kim (2000b) solve this problem using a

co-evolutionary algorithm. Kim, Kim, and Kim (2006) develop a new method called endosymbiotic

evolutionary algorithm. Kara, Ozcan, and Peker (2007a) address U-type MALB/S where the number

of stations is optimized. Subsequently, they extend this problem by involving multiple-objectives

(Kara, Ozcan, and Peker 2007b). Hamzadayi and Yildiz (2012) consider the U-type MALB/S with

parallel workstations and zoning constraints. In further work they improve the simulated annealing

algorithm by employing tabu search algorithm (Hamzadayi and Yildiz 2013) to tackle the U-type

MALB/S with the objective of minimizing workstations. Manavizadeh, Rabbani, and Radmehr (2015)

consider multiple objectives in U-type MALB/S. In the case of two-sided MALB/S, Kucukkoc and

Zhang (2014b) report the first research on mixed-model parallel two-sided assembly lines and

develop an agent-based ant colony optimization method. Kucukkoc and Zhang (2014a) solve the

same problem with the improved edition of this algorithm. Subsequently, Kucukkoc and Zhang (2016)

develop a hybrid algorithm by hybridizing ant colony optimization and genetic algorithm for solving

the same problem.

From the literature review and to authors’ best knowledge, no research deals with robotic mixed

model assembly line balancing and sequencing. Furthermore, it is observed that simulated annealing

and co-evolutionary algorithms are widely utilized in solving MALB/S. Therefore, this research

applies the simulated annealing and co-evolutionary algorithm to solve this new RMALB/S problem.

3. Mathematical formulation

3.1 Problem assumptions

In robotic mixed-model assembly lines, several tasks are assigned to each workstation and each

workstation is allocated with a robot to perform the allocated tasks. Different types of products,

referred to as models, are assembled in a sequence. RMALB/S involves three sub-problems: task

assignment, model sequencing and robot assignment. This section mainly presents the basic

assumptions based on Gao et al. (2009) and Mukund Nilakantan, Huang, and Ponnambalam (2015).

(1) Tasks are assigned to workstation only when the precedence constraint is satisfied.

(2) A robot can be allocated to any workstation and each robot must be allocated to a workstation.

(3) The number of the types of the robots is equal to that of workstations and each workstation has to

have a robot allocated.

(4) All models are similar and merged into a combined precedence diagram.

(5) The operation times of models differ from each other and they are determined by the type of

robots allocated.

(6) The operation times of a model by a robot are deterministic.

(7) Parallel workstations, setup times, work-in-process inventory, material handling are negligible.

3.2 Notations

 Indices:

i,j,h: Index of tasks.

k: Index of stations.

r,t: Index of robots.

m: Product model.

s: A model in the model sequence.

 Parameters:

Nt: Number of tasks.

Nk: Number of workstations.

Nr: Number of robots.

Nm: Types of models.

I: Set of tasks in combined precedence diagram, 𝐼 = {1,2, … , 𝑖, … . , 𝑁𝑡}.
K: Set of stations, 𝐾 = {1,2, … , 𝑘, … . , 𝑁𝑘}.
M: Set of product models, 𝑀 = {1,2, … , 𝑚, … . , 𝑁𝑚}

dm: Demand for product model m in Master Production Schedule (MPS).

D: Total demand for all products in minimum part set, 𝐷 = ∑ 𝑑𝑚
𝑁𝑚
𝑚 .

S: Set of sequence of product model, 𝑆 = {1,2, … , 𝑠, … . , 𝐷}.

timr: Operation time of task i in model m by robot r.

Pre(i): Set of predecessors of task i.

Suc(i): Set of successor of task i.

SNP:

Set of ordering pairs which have no precedence relations,

𝑆𝑁𝑃 = {(𝑖, 𝑗)|𝑖 ∈ 𝐼, 𝑗 ∈ {ℎ|ℎ ∈ 𝐼 − 𝑃𝑟𝑒(𝑖)⋃𝑆𝑢𝑐(𝑖)𝑎𝑛𝑑 𝑖 < 𝑗}}.

 Decision variables:

xik: 1, if task i is assigned to workstation k; 0, otherwise.

rrk: 1, robot r is allocated to workstation k; 0, otherwise.

timr: Finishing time of task i.

zms: 1, if product model m is in the s sequence; 0, otherwise.

Pkm: Total operation time of tasks on station k for model m.

Csk: Completion time of all the tasks of the model in s sequence on workstation k.

 Indicator variables:

wij: if task i is assigned before task j in the same workstation; 0, if task j is assigned before task i in

same workstation.

3.3 Mathematical model for RMALB/S

This research considers RMALB/S with an objective of minimizing the makespan. In RMALB,

once the robot allocation and task assignment are determined, the model sequencing is somewhat

transferred into a permutation flow shop scheduling problem (Ruiz and Stützle 2007; Ruiz, Maroto,

and Alcaraz 2006). In permutation flow shop scheduling, a set of independent tasks are processed on

a set of machines and job processing sequence are set to be the same throughout all the machines

(Ruiz and Stützle 2007). In this case, each workstation is regarded as a machine, total assigned tasks

on a workstation can be regarded as a job and model sequencing corresponds to job sequencing.

Since the makespan minimization criterion is the most commonly studied in literature, this paper

adopts it as the objective for both balancing and sequencing problems. The makespan minimization

criterion is roughly analogue to the reduction of cycle time, which is often found in line balancing

literature. The detailed formulation is presented as follows.

min 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = max
𝑠={1,2,…,𝐷}

(𝐶𝑠, 𝑁𝑘) (1)

∑ 𝑥𝑖𝑘 = 1 𝑁𝑘
𝑘=1 ∀𝑖 (2)

∑ 𝑘. 𝑥𝑖𝑘 − ∑ 𝑘. 𝑥𝑗𝑘
𝑁𝑘
𝑘=1 ≤ 0 ∀𝑖 ∈ 𝑃𝑟𝑒(𝑗); 𝑗 𝑁𝑘

𝑘=1 (3)

𝑡𝑗𝑚
𝑓

− 𝑡𝑖𝑚
𝑓

+ 𝜓(1 − 𝑥𝑖𝑘) + 𝜓(1 − 𝑥𝑗𝑘) ≥ ∑ 𝑡𝑗𝑚𝑟
𝑁𝑟
𝑟=! . 𝑦𝑟𝑘 ∀𝑖 ∈ 𝑃𝑟𝑒(𝑗); 𝑗 (4)

𝑡𝑗𝑚
𝑓

− 𝑡𝑖𝑚
𝑓

+ 𝜓(1 − 𝑥𝑖𝑘) + 𝜓(1 − 𝑥𝑗𝑘) + 𝜓(1 − 𝑤𝑖𝑗) ≥ ∑ 𝑡𝑗𝑚𝑟
𝑁𝑟
𝑟=! . 𝑦𝑟𝑘 ∀(𝑖, 𝑗) ∈ 𝑆𝑁𝑃 (5)

𝑡𝑖𝑚
𝑓

− 𝑡𝑗𝑚
𝑓

+ 𝜓(1 − 𝑥𝑖𝑘) + 𝜓(1 − 𝑥𝑗𝑘) + 𝜓. 𝑤𝑖𝑗 ≥ ∑ 𝑡𝑗𝑚𝑟
𝑁𝑟
𝑟=! . 𝑦𝑟𝑘 ∀(𝑖, 𝑗) ∈ 𝑆𝑁𝑃 (6)

𝑡𝑖𝑚
𝑓

+ 𝜓(1 − 𝑥𝑖𝑘) ≥ ∑ 𝑡𝑖𝑚𝑟
𝑁𝑟
𝑟=! . 𝑦𝑟𝑘 ∀𝑖, 𝑘 (7)

∑ 𝑦𝑟𝑘
𝑁𝑟
𝑟=1 = 1 ∀𝑘 (8)

∑ 𝑦𝑟𝑘
𝑁𝑘
𝑘=1 = 1 ∀𝑟 (9)

𝑃𝑘𝑚 + 𝜓(1 − 𝑥𝑖𝑘) ≥ ∑ 𝑡𝑖𝑚𝑟
𝑁𝑟
𝑟=! . 𝑦𝑟𝑘 ∀𝑖, 𝑘 (10)

∑ 𝑧𝑚𝑠
𝑁𝑚
𝑚=1 = 1 ∀𝑠 ∈ 𝑆 (11)

∑ 𝑧𝑚𝑠
𝐷
𝑠=1 = 𝑑𝑚 ∀𝑚 ∈ 𝑀 (12)

𝐶11 + 𝜓(1 − 𝑧𝑚1) ≥ 𝑃1𝑚 ∀𝑚 ∈ 𝑀 (13)

𝐶𝑠,𝑘+1 + 𝜓(1 − 𝑧𝑚𝑠) ≥ 𝐶𝑠𝑘+𝑃𝑘+1,𝑚 ∀𝑠 ∈ {1,2, … , 𝐷}, 𝑘 ∈ {1,2, … . , 𝑁𝑘 − 1} (14)

𝐶𝑠+1,𝑘 + 𝜓(1 − 𝑧𝑚𝑠) ≥ 𝐶𝑠𝑘+𝑃𝑘,𝑚 ∀𝑠 ∈ {1,2, … , 𝐷 − 1}, 𝑘 ∈ {1,2, … . , 𝑁𝑘} (15)

Equation (1) minimizes the makespan which is the maximum of Cs,Nk. Constraint (2) indicates that

each task must be allocated to a workstation. Constraint (3) handles precedence constraints that

guarantee that the processors of task j must be assigned before task j. Constraints (4-6) evaluates the

finishing time of tasks of models. If there is a precedence relationship between task j and task i,

constraint (4) takes effect and is reduced to 𝑡𝑗𝑚
𝑓

− 𝑡𝑖𝑚
𝑓

≥ ∑ 𝑡𝑗𝑚𝑟 . 𝑦𝑟𝑘
𝑁𝑟
𝑟=1 . If there is no precedence

relationship between task i and task j, constraint (5) and constraint (6) come into play. If task i is

assigned before task j in a same workstation, constraint (5) is reduced to 𝑡𝑗𝑚
𝑓

− 𝑡𝑖𝑚
𝑓

≥ ∑ 𝑡𝑗𝑚𝑟 . 𝑦𝑟𝑘
𝑁𝑟
𝑟=1 ;

otherwise, constraint (6) is reduced to 𝑡𝑖𝑚
𝑓

− 𝑡𝑗𝑚
𝑓

≥ ∑ 𝑡𝑖𝑚𝑟 . 𝑦𝑟𝑘
𝑁𝑟
𝑟=1 . Constraint (7) ensures that the

finishing time of each task is larger than or equal to its operation time. Constraints (8-9) deal with the

robot allocation, where constraint (8) indicates that each workstation has a robot and constraint (9)

denotes that each robot is allocated to a workstation. Constraint (10) evaluates the total operation

times of tasks on station k for model m, which is the largest finishing time of tasks assignment station

k for model m. Constraint (11) guarantees that there is a model at each sequence and constraint (12)

fulfills the MPS demand. Constraints (13-15) ensures that the completion time of all the tasks of the

model in the s sequence on workstation k does not exceed the total processing time and that the

sequence is maintained. Constraint (13) obtains the value of the finish time of the model in the first

sequence on the first workstation. Constraint (14) indicates that the tasks on the latter workstations

cannot be operated until the tasks on the former workstations are finished. Constraint (15) ensures

that the tasks of the model on the latter position of the model sequence can be operated only when the

tasks of model on the former position are finished.

4. Proposed metaheuristic algorithms

RMALB/S problems mainly aim at optimizing the assignment of tasks, the allocation of the robots

and the model sequence simultaneously. The proposed RMALB/S problem belongs to the NP-hard

category due to the complexity involved. To optimize these sub-problems simultaneously, encoding

scheme, decoding scheme and effective algorithms are essential. This section first introduces the

applied encoding scheme and decoding scheme and later describes the two improved metaheuristics

methods.

4.1 Encoding and decoding

A task assignment vector, robot allocation vector and model sequence vector are employed to

encode three sub-problems. Task assignment vector is a 1×Nt vector, in which each element denotes a

workstation. If element in ith position is k, task i is assigned to workstation k. The robot allocation is a

vector 1×Nr vector, where each element denotes a robot. If the element in the ith position is r, robot r

is allocated to workstation i. The model sequence vector is a 1×Nm vector, each element

corresponding to a model. If the element in the ith position is m, model m is ith one to be assembled.

Decoding for the robot allocation vector and model sequence is straightforward, whereas the detailed

task assignment vector needs the task assignment vector and the consideration of precedence

constraints. A task is assignable only when its predecessors have been applied and task sequence on a

workstation is determined in sequence based on the precedence constraint. An example with 11 tasks,

4 robots and 2 models is depicted in Figure.2, where demands for two models (model A and model B)

from the MPS are 1 and 2. In Figure.2, the element in the third position of the task assignment vector

is 1, and thus task 3 is assigned to workstation 1. The element in the first position of robot allocation

vector is 3, and thus robot 3 is allocated to workstation 1. The element in the first position of model

sequence vector is B, and thus model B is first assembled.

Task assignment

1 2 3 4 5 6 7 8 9 10 11

1 2 1 2 2 3 3 4 3 4 4

Positions

Robot 3 Robot 1 Robot 4 Robot 2

Robot allocation 3 1 4 2

Positions 1 2 3 4

Model sequence B B A

Positions 1 2 3

1 3 5 6 87 9 10 1142

1 3 5 6 87 9 10 1142

1 3 5 6 87 9 10 1142Model B

Model B

Model A

Figure.2 Example of encoding and decoding

For the initialization process, three vectors are randomly generated. For task assignment vector, a

random number between 1 and Nk is generated in each position. This random task assignment vector

might violate precedence constraints, and thus a repair procedure presented in Li, Tang, and Zhang

(2016a) is utilized. This repair mechanism exchanges the positions of two tasks when successor of a

task is assigned to the former workstation. This repair mechanism terminates when corresponding

workstation of each task is smaller than or equal to any of the corresponding workstations of its

successors. Regarding the robot allocation vector, a number is randomly selected with uniform

likelihood from 1,2, … . , Nr in the first position, a number is randomly selected among the remaining

numbers in the second position and the last remaining number is allocated to the last position. For

sequence vector, the same method as used for robot allocation is applied. The encoding and decoding

scheme are the basis of the metaheuristic algorithms and the two proposed metaheuristic algorithms

are detailed in the following sections.

4.2 Restarted simulated annealing algorithm

Simulated annealing (SA) algorithms is a local search method that has shown outstanding results

for solving MALB/S problems (Mosadegh, Zandieh, and Ghomi 2012). This paper improves the

original edition by employing a restart mechanism, where the current temperature is replaced with a

new restart temperature when new global best individual cannot be further achieved. The logic behind

this modification is utilizing proper values of initial temperature (T0) and cooling rate (α) to quickly

find a local optimum and replacing the current temperature to escape from local optima. The

procedure of the proposed restarted simulated annealing (RSA) algorithm is illustrated in Figure.3. In

this figure, T indicates the current temperature updated with 𝑇 = 𝛼 𝑋 𝑇, NS is the number of

iterations before current temperature update, f(S) is the achieved fitness of solution S, TR denotes

restart temperature utilized to replace current temperature and RT is the restart time (RT) before

replacing the current temperature.

This algorithm has five parameters: T0, α, NS, TR and RT. RSA starts with generating an initial

solution by generating three vectors randomly. Then a loop repeats until a termination criterion is

satisfied, in which NewBest is applied to check whether a new best individual is achieved. Within the

loop, a neighborhood solution is firstly generated utilizing one of neighborhood structures which are

further explained in Section 4.4. Subsequently, this new solution 𝑆′ is compared with the incumbent

one 𝑆(∆= 𝑓(𝑆′) − 𝑓(𝑆)) . If this new solution is better than the incumbent one (∆≤ 0) , the

incumbent one is updated with the new one. Otherwise, the incumbent one is replaced by the new one

with a probability calculated by 𝑒𝑥𝑝
−∆

(𝑇×𝑓(𝑆))⁄
. Thirdly, if a new best solution has not been achieved

for RT iterations and the current temperature is less than the restart temperature, the current

temperature is replaced by the restart temperature. It is to be noted that the restarted simulated

annealing algorithm is translated into the original edition when the restart temperature is set to 0.0.

This simple modification improves the performance of the simulated annealing algorithm by

increasing the capacity of escaping from local optima.

Algorithm RSA for RMALB/S problem

Begin:

 ns:= 0, rt:= 0, ;

 Generate a initial solution S;

 While (Termination criterion is not met) do

 NewBest:=0; // Check whether new best solution is obtained

 While (ns<NS)

 Obtain new solution with a neighborhood structure;

 Calculate ; ns:=ns+1;

 If () ;

 If (New best solution is obtained) NewBest:=1;

 Else with a probability of ;

 Endwhile

 If (NewBest>0) rt:=0; Else rt:=rt+1;

 If (rt>=RT)

 If(T<) ;

 Else T:=αT;

 Else T:=αT;

 Endwhile

'S

= (') () f S f S 

0  'S S

 ()
exp

T f S 'S S

0:T T

RT : RT T

Figure.3 Procedure of the restarted simulated annealing algorithm

4.3 Co-evolutionary genetic algorithm

Co-evolutionary genetic algorithms have been widely applied to other MALB/S problems (Kim,

Kim, and Kim 2000a; Kim, Kim, and Kim 2000b), which constitutes several sub-swarms, each

addressing a sub-problem. Inspired by recent research on co-evolutionary algorithms by Li et al.

(2016), this research develops a restarted co-evolutionary genetic algorithm (RCoGA). This

algorithm makes two adjustments in employing vectors of the best solution rather than the best one of

a sub-swarm for swam evaluation which will help to enhance the local search and application of a

restart mechanism helps to escape from local optima. The outline of the proposed co-evolutionary

method is depicted in Figure.4.

Algorithm CA for RMALB/S problem

Begin:

 rt=0;

 Initialize three sub-swarms for three sub-problems;

 Select the best solution by testing the combination of the ith individuals from sub-swarms ;

 While (Termination criterion is not met) do

 For i=1,2,…,PS do //Update task assignment

 Decode with ith individual from task assignment swarm and other two vectors from best solution;

 Utilize tournament selection, crossover and mutation operators to obtain new sub-swarm;

 Update best solution if new best solution is achieved;

 The last individual is replaced with the corresponding vector in the best solution;

 For i=1,2,…,PS do //Update robot allocation

 Decode with ith individual from robot allocation swarm and other two vectors from best solution;

 Utilize tournament selection, crossover and mutation operators to obtain new sub-swarm;

 Update best solution if new best solution is achieved;

 The last individual is replaced with the corresponding vector in the best solution;

 For i=1,2,…,PS do //Update model sequence

 Decode with ith individual from model sequence swarm and other two vectors from best solution;

 Utilize tournament selection, crossover and mutation operators to obtain new sub-swarm;

 Update best solution if new best solution is achieved;

 The last individual is replaced with the corresponding vector in the best solution;

 If (New best solution is obtained) rt=0;

 Else rt:=rt+1;

 If (rt>=RT) //Restart mechanism

 Execute restart mechanism and update the best solution;

 Endwhile

Figure.4 Procedure of the restarted co-evolutionary genetic algorithm

The proposed co-evolutionary genetic algorithm has four parameters: population size for each

sub-swarm (PS), crossover rate, mutation rate and restart time before executing the restart mechanism

(RT). This algorithm begins with initializing three sub-swarms and selecting the best solution from

PS solutions achieved by combining the ith individuals from the sub-swarms. Then the following

steps are repeated in a cycle. Three sub-swarms are updated utilizing tournament selection, crossover

and mutation operations successively, which are further explained in Section 4.4. Each individual is

evaluated by combining with the other two vectors in the best solution. When a new best solution is

achieved, the incumbent one is updated with the new one. After generating new offspring, the last one

is replaced with the corresponding vector in the best solution. When a new best solution cannot be

found for RT iterations, the restart mechanism is executed. A set of PS solutions are generated by

modifying all three vectors simultaneously, each going through Num_move’ neighborhood operations.

Best among them is selected to replace the current best solution and subsequently the individuals of

the three sub-swarms are replaced with the corresponding vector in the best solution after Num_move’

neighborhood operation. With preliminary experiments, the value of Num_move is set to be 2. Further

descriptions of neighborhood operation are presented in Section 4.4. Utilization of best solution

serves as the elitist strategy to preserve the best individual in the offering, and restart mechanism

aims at increasing the search space and escaping from local optima by modifying all the vectors

simultaneously.

4.4 Neighborhood structures

Since three sub-problems are encoded with three vectors, this research develops different

neighborhood operations for these vectors. Regarding task assignment vector, both swap and

alteration operation are applied and these operations are randomly selected. For alteration operation, a

task is randomly selected and its corresponding workstation is modified into another different

workstation. It should be noted that neighborhood operation on the task assignment vector might lead

to an infeasible task assignment violating precedence constraints. Due to this, this work utilizes the

same repair mechanism as presented in Li, Tang, and Zhang (2016a) for robotic two-sided assembly

line balancing problems. Regarding the robot allocation vector, swap operation and insert operation

are both employed and they are randomly selected. As for model sequence, both swap and insert

operation are also applied and randomly selected. When applying these neighborhood operations in

the proposed algorithms, RSA algorithm randomly selects a vector to be modified and RCoGA

utilizes the neighborhood operation corresponding to the sub-problem.

For crossover operation, two-point crossover is applied for each vector. The aforementioned repair

mechanism is also applied after executing crossover operations on the task assignment vector since an

infeasible task assignment violating precedence constraints might be achieved.

4.5 Numerical example

A problem instance with 11 tasks, 4 workstations, 4 robots and 2 models is solved to illustrate the

makespan calculation process. Precedence relationships and task operation times by robots for

models are shown in Table 1. From this table, the operation times of the same task by robots for a

same model differ from each other and the operation times of the same task by the same robot for two

models are different from each other. Supposed that the demands for two models (model A and model

B) in the MPS are 1 and 2 respectively, an optimal solution is depicted in Figure.5 and the

corresponding model sequence is {B, B, A}.

Table 1 Precedence relationships and operation times of 11 tasks by 4 robots for two models

Task
Immediate

successors

Model 1 Model 2

Robot 1 Robot 2 Robot 3 Robot 4 Robot 1 Robot 2 Robot 3 Robot 4

1 4 109 61 56 54 144 65 53 54

2 4, 5 47 28 24 17 60 28 32 19

3 11 42 32 46 26 37 34 35 29

4 6 57 40 80 53 63 46 64 53

5 7 83 40 51 43 90 41 47 35

6 8 103 50 111 27 91 56 102 29

7 9 145 96 74 42 168 75 85 35

8 10 122 32 125 51 148 36 124 38

9 10 107 22 61 24 129 28 51 24

10 11 59 27 61 97 58 33 72 92

11 - 76 24 40 18 72 33 28 20

The detailed makespan calculation is presented in Table 2 and plotted in Figure.6 with the Gantt chart.

Tasks 1, 2 and 3 are assigned to workstation 1 and robot 3 is allocated to workstation 1, the total

operation time of tasks on workstation 1 for model A is 56+24+46=126.

After achieving the workloads on workstations for models, completion time of all the tasks of the

model in the s sequence on workstation k or Csk is calculated. The tasks of the model in the s

sequence on workstation k are able to be operated only when the tasks of the model in the s-1

sequence on workstation k and tasks of the model in the s sequence on workstation k-1 have finished.

For instance, the completion time of all the tasks of the model A on workstation 2 is calculated with

max(303, 366)+ 57=423. The makespan is the completion time of all the tasks of the last model in the

model sequence (Model A) on workstation 4.

1

Task assignment

1 2 3 4 5 6 7 8 9 10 11

1 1 1 2 3 3 3 4 4 4 4

Positions

3 5 6 87 9 10

11

42

Robot 3 Robot 1 Robot 4 Robot 2

Robot allocation 3 1 4 2

Figure.5 An example of task assignment and robot allocation

Table 2 Makespan calculation

Description Workstations 1 2 3 4

Total operation times on stations

for models

Model A 126 57 112 105

Model B 120 63 99 130

The completion time of all the

tasks of the model in the s

sequence on workstation k

Model B 120 183 282 412

Model B 240 303 402 542

Model A 366 423 535 647

Makespan calculation Makespan 647

126 57 112 105

120 63 99 130

120 63 99 130Model B

Model B

Model A

Workstation 1 Workstation 2 Workstation 3 Workstation 4

Workstation 1 Workstation 2 Workstation 3 Workstation 4

Workstation 1 Workstation 2 Workstation 3 Workstation 4

Makespan

Figure.6 Gantt chart of the illustrated example

5. Computational study

This section explains the tested benchmark problems, the compared methods and the termination

criterion. Since no research has been reported on RMALB/S prior to this, this paper generates nine

sets of benchmarks based on the instance in Gao et al. (2009). The operation time of task i in model m

by robot r is a random number within [0.8 × 𝑡𝑖𝑟 , 1.2 × 𝑡𝑖𝑟], where tir is the original published

operation time of task i by robot r generated in Gao et al. (2009). The tested problem is listed in Table

3, where there are 104 cases in total.

Table 3 Description of tested cases

Problem Nm Nk Demands in MPS

P11 2 2, 3, 4, 5 {1, 2}, {3, 1}

P25 2 3, 4, 6, 9 {1, 2}, {3, 1}

P35 2 4, 5, 7, 12 {1, 2}, {3, 1}

P53 3 5, 7, 10, 14 {1, 1, 1}, {3, 2, 1}, {1, 2, 4}

P70 3 7, 10, 14, 19 {1, 1, 1}, {3, 2, 1}, {1, 2, 4}

P89 4 8, 12, 16,21 {1, 1, 1, 1}, {1, 3, 4, 5}, {6, 4, 2,1}

P111 4 9, 13, 17, 22 {1, 1, 1, 1}, {1, 3, 4, 5}, {6, 4, 2,1}

P148 5 10, 14, 21, 29 {1, 1, 1, 1, 1}, {5, 3, 2, 1, 1}, {1, 2, 4, 5, 8}, {1, 4, 8, 3, 1}

P297 5 19, 29, 38, 50 {1, 1, 1, 1, 1}, {5, 3, 2, 1, 1}, {1, 2, 4, 5, 8}, {1, 4, 8, 3, 1}

This paper re-implements some recent and high-performing metaheuristic methods with proper

adaptations. In addition, several variants of the proposed metaheuristic methods are also included to

highlight the advantage of the improvements. All the tested algorithms are summarized in Table 4. In

Table 4, the original simulated annealing algorithm or SA is selected to highlight the improvements.

Artificial bee colony algorithm or ABC is included since it shows good performance in assembly line

balancing problems (Tang, Li, and Zhang 2016) and its multi-objective edition has been successfully

applied to MALB/S (Saif et al. 2014). Genetic algorithm or GA is the original algorithm for MALB/S

(Kim, Kim, and Kim 2000a), and it is adopted to show the difference between with or without

application of the co-evolution mechanism. Original co-evolutionary genetic algorithm or CoGA1 is

applied to show whether the improvements on RCoGA is reasonable. Co-evolutionary genetic

algorithm described in Section 4.3 without restart mechanism or CoGA2 is also employed to show

the performance of restart mechanism.

Table 4 Summary and description of tested algorithms

Algorithms Description

SA No restart mechanism is applied.

RSA This is the proposed restarted simulated annealing in Section 4.2.

ABC One of the neighborhood operations in Section 4.4 is randomly selected for one individual in

employee bee phase and onlooker phase. A scout is applied to replace the worst individual

with a neighbor of a randomly selected individual generated by employing one of the

neighborhood operations in Section 4.4 when no better global best solution is further

achieved.

GA The neighborhood structures in Section 4 are shared and tournament selection is applied. Elite

strategy is applied by cloning the best individual to replace one of the offspring.

CoGA1 The same neighborhood structures in Section 4 are applied and tournament selection is

applied. An individual in a sub-swarm is evaluated by combining with the best individuals of

other two sub-swarms. No elite strategy or restart mechanism is applied.

CoGA2 It is the same to co-evolutionary genetic algorithm in Section 4.3 except for not applying the

restart mechanism.

RCoGA This is the proposed restarted co-evolutionary genetic algorithm in Section 4.3.

It is important to determine a proper termination criterion and this paper sets the termination

criterion as a maximum elapsed CPU time following Li, Tang, and Zhang (2016a) and Li, Tang, and

Zhang (2016b). The maximum elapsed CPU time is set to be equal to 𝑁𝑡 × 𝑁𝑡 × 𝜏 milliseconds,

where it is tested at four levels (τ=10,20,30,40). This expression distributes more computational time

to large-size problems and four termination criteria are able to analyze the performance of the

algorithms from short CPU time to large CPU time. All the tested methods are coded in C++ and are

executed on a cluster of personal computers with Microsoft Visual Studio 2012. All the computers are

equipped with Intel(R) Core2(TM) CPU 2.33GHZ and 3.036 GB RMA.

5.2 Computational evaluation

This section presents the comparative study on the algorithms. As parameters play underlying role

in the final performance of algorithms, this research calibrates the parameters of all tested algorithms

at first using the full factorial design similar to the ones reported by Li, Tang, and Zhang (2016b) and

Tang, Li, and Zhang (2016). A test problem with 111 tasks, 13 workstations and 4 models is utilized

for the calibration and each configuration solves this large-size case for 10 times. The termination

criterion is an elapsed CPU time of 𝑁𝑡 × 𝑁𝑡 × 10 milliseconds. The relative percentage increase

(RPI) is employed as the response variable to measure the obtained results. RPI is calculated using

Equation 16, where Fitsome is the objective function obtained by a configuration and Fitbest is the best

fitness yielded by all the combinations.

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 (𝑅𝑃𝐼) = 100 × (𝐹𝑖𝑡𝑠𝑜𝑚𝑒 − 𝐹𝑖𝑡𝑏𝑒𝑠𝑡)/𝐹𝑖𝑡𝑏𝑒𝑠𝑡 (16)

The multifactor analysis of variance (ANOVA) technique (Montgomery 2008) is performed by

considering the three parameters as factors as reported in Tang, Li, and Zhang (2016) after checking

the fulfillment of three hypotheses, independence of residuals, homogeneity of the variance and

normality of residuals. Detailed calibration results are omitted for space reason, but they are available

upon request.

After calibrating the parameters, each algorithm solves each case 10 times and the best results

within ten times’ independent running for small-size problem are first compared with the optimal

solution achieved by CPLEX solver in Table 5. Nk means the number of workstations and CPU

refers to the computational time in seconds. The results of algorithms in Table 5 are obtained under

the termination of an elapsed CPU time of 𝑁𝑡 × 𝑁𝑡 × 10 milliseconds. This table only shows the

results for the P11 problem due to the high computational time when utilizing CPLEX solver for

other problems. It is observed that all the optimal solutions for P11 are found by the two proposed

algorithms, but with much less computational time. These results suggest that metaheuristic

algorithms are more suitable for solving this problem.

Table 5 Best result comparison among algorithms and CPLEX solver

Proble

m
Nk

Demand

in MPS

CPLEX Algorithms

OP

T

CPU

(s)
SA RSA ABC GA

COGA

1

CO

GA

2

RCOGA
CPU

(s)

P11 2 {1,2}
143

7
2 1437

143

7
1437

143

7
1437 1437 1437 1.2

P11 2 {3,1}
177

8
2.1 1778

177

8
1778

177

8
1778 1778 1778 1.2

P11 3 {1,2} 870 6.1 870 870 870 870 870 870 870 1.2

P11 3 {3,1}
111

4
8.8 1114

111

4
1114

111

4
1114 1114 1114 1.2

P11 4 {1,2} 647 23.2 647 647 647 647 647 647 647 1.2

P11 4 {3,1} 729 13.9 729 729 729 729 729 729 729 1.2

P11 5 {1,2} 553 88 553 553 553 553 553 553 553 1.2

P11 5 {3,1} 660
145.

8
660 660 660 663 660 660 660 1.2

To further evaluate the two proposed algorithms, the average RPI values of all the cases are

reported in Table 6. This table provides the average RPI values of problems, each containing several

cases. For instance, each cell for P297 reports the average result of 16 cases generated by four

workstation numbers and four different demands of the product models. From this table, the RSA is

the best performer with the smallest average RPI of 5.58 under the termination of an elapsed CPU

time of 10Nt Nt  milliseconds. Regarding the remaining three termination criteria, RSA is also the

best performer with average RPI values of 2.84. 2.18 and 1.83 respectively. Among the remaining

algorithms, SA is the second best performer and RCoGA is the third best performer regarding all the

four termination criteria.

Table 6 Average RPI comparison among algorithms under four termination criteria

Problem
Workstation

number

Average relative percentage increase
CPU time(s)

SA RSA ABC GA CoGA1 CoGA2 RCoGA

𝜏 = 10

P11 2, 3, 4, 5 0.06 0.04 0.00 1.42 2.20 4.15 1.33 1.2

P25 3, 4, 6, 9 1.86 1.29 1.04 3.33 3.72 3.79 1.85 6.3

P35 4, 5, 7, 12 3.36 2.30 1.61 5.22 5.47 5.97 3.16 12.3

P53 5, 7, 10, 14 4.27 3.70 2.57 6.08 6.97 7.15 4.86 28.1

P70 7, 10, 14, 19 4.16 3.40 4.47 6.25 7.80 7.42 5.11 49.0

P89 8, 12, 16,21 4.05 4.07 4.60 6.08 8.06 6.68 5.46 79.2

P111 9, 13, 17, 22 4.42 4.35 9.38 7.19 11.90 9.44 8.06 123.2

P148 10, 14, 21, 29 7.18 7.33 16.45 10.16 21.12 15.35 11.89 219.0

P297 19, 29, 38, 50 15.28 15.47 21.28 14.12 27.84 19.20 15.69 882.1

Average RPI of all cases 5.81 5.58 8.43 7.46 12.42 9.93 7.44

𝜏 = 20 -

P11 2, 3, 4, 5 0.06 0.03 0.00 1.42 2.20 3.91 0.82 2.4

P25 3, 4, 6, 9 1.86 0.91 0.82 3.23 3.69 3.73 1.56 12.5

P35 4, 5, 7, 12 3.36 1.61 1.40 4.99 5.39 5.72 2.35 24.5

P53 5, 7, 10, 14 4.27 2.92 2.00 5.82 6.83 7.05 3.74 56.2

P70 7, 10, 14, 19 4.15 2.63 3.16 5.82 7.18 7.17 3.81 98.0

P89 8, 12, 16,21 4.02 2.94 3.13 5.70 7.26 6.35 4.04 158.4

P111 9, 13, 17, 22 3.74 3.61 6.07 5.99 9.15 7.34 6.50 246.4

P148 10, 14, 21, 29 3.54 3.45 11.07 7.61 14.90 10.44 8.37 438.1

P297 19, 29, 38, 50 4.91 4.65 15.87 10.10 22.15 13.83 11.02 1764.2

Average RPI of all cases 3.57 2.84 5.97 6.16 10.08 7.98 5.43 -

𝜏 = 30

P11 2, 3, 4, 5 0.06 0.03 0.00 1.42 2.20 3.91 0.63 3.6

P25 3, 4, 6, 9 1.86 0.74 0.72 2.94 3.66 3.69 1.45 18.8

P35 4, 5, 7, 12 3.36 1.24 1.29 4.88 5.30 5.57 2.11 36.8

P53 5, 7, 10, 14 4.27 2.56 1.85 5.80 6.78 7.03 3.23 84.3

P70 7, 10, 14, 19 4.15 2.18 2.60 5.58 6.96 7.07 3.17 147.0

P89 8, 12, 16,21 4.02 2.35 2.55 5.50 6.93 6.15 3.50 237.6

P111 9, 13, 17, 22 3.64 3.09 4.70 5.55 8.09 6.64 5.59 369.6

P148 10, 14, 21, 29 2.81 2.69 8.60 6.47 11.82 8.34 7.12 657.1

P297 19, 29, 38, 50 3.09 2.87 13.10 8.36 18.92 11.03 8.99 2646.3

Average RPI of all cases 3.17 2.18 4.84 5.58 8.91 7.10 4.59 -

𝜏 = 40

P11 2, 3, 4, 5 0.06 0.03 0.00 1.42 2.20 3.91 0.63 4.8

P25 3, 4, 6, 9 1.86 0.67 0.60 2.89 3.59 3.69 1.21 25.0

P35 4, 5, 7, 12 3.36 0.99 1.23 4.83 5.21 5.52 1.89 49.0

P53 5, 7, 10, 14 4.27 2.28 1.77 5.72 6.77 6.97 2.92 112.4

P70 7, 10, 14, 19 4.15 1.83 2.26 5.48 6.84 7.00 2.80 196.0

P89 8, 12, 16,21 4.02 2.09 2.27 5.38 6.72 6.07 3.05 316.8

P111 9, 13, 17, 22 3.61 2.65 3.95 5.25 7.40 6.25 4.98 492.8

P148 10, 14, 21, 29 2.47 2.36 7.13 5.81 10.24 7.09 6.41 876.2

P297 19, 29, 38, 50 2.32 2.06 11.24 7.25 16.69 9.31 7.91 3528.4

Average RPI of all cases 2.99 1.83 4.15 5.23 8.19 6.57 4.07 -

RSA benefits from the restart mechanism by replacing the current temperature, and thus it has a

stronger capacity to escape from local optima and outperforms the compared SA under almost all

conditions. RCoGA benefits from two aspects: the application of the best solution for swarm

evaluation and the utilization of restart mechanism. The application of best solution clones the best

individual to offspring leads to fast convergence and strong search in the search space next to the best

solution. The advantage of the application of the best solution for population evaluation is further

proved by the superiority of CoGA2 over the CoGA1. Again, the restart mechanism avoids trapping

RCoGA in local optima. Surprisingly, the GA outperforms CoGA1 and CoGA2. The reason is that

the proposed GA employs an elite strategy. GA has two advantages: strong local search on the best

individual and remained ability of exploring large search space achieved by modifying several

vectors simultaneously. CoGA1 lacks the strong local search on the best individual since the best

individual might not be preserved in the search space, and CoGA1 lacks exploration capacity and is

trapped into local optima. Another interesting conclusion is related to ABC and GA algorithms. ABC

outperforms GA for small-size problems, whereas the GA outperforms ABC for large-size problems.

The reason is that the GA utilizes crossover operation for population evolution and the applied ABC

only propose local search methods and have no interchanges among the individuals.

To check whether the observed difference is statistically significant, non-parameter Friedman rank

test (Friedman 1937) is applied since the normality of residuals is slightly violated. The Friedman

rank test has been applied by Li, Tang, and Zhang (2016b) and Nilakantan et al. (2017) for comparing

the performance of several algorithms. For Friedman rank test in this research, the best performer for

each case is given a rank of 1 and the worst performer is given a rank of 7 since a total 7 algorithms

are compared. Friedman rank analysis shows that the P-value is much lower than 0.01 and very close

to 0.0 for each termination criterion, indicating that there is a significant statistical difference among

the average ranks of the seven algorithms. This section presents the means plot of the algorithms in

Figure.7. Figure.7 (a) and Figure. 7(b) illustrates the means plot with 95% minimal significant

difference confidence intervals under elapsed CPU times of 𝑁𝑡 × 𝑁𝑡 × 20 milliseconds and 𝑁𝑡 ×
𝑁𝑡 × 40 milliseconds.

A v e ra g e ra n k s

A
lg

o
ri

th
m

s

0 2 4 6 8

S A

R S A

A B C

G A

C o G A 1

C o G A 2

R C o G A

 A v e ra g e ra n k s

A
lg

o
r
it

h
m

s

0 2 4 6 8

S A

R S A

A B C

G A

C o G A 1

C o G A 2

R C o G A

(a) Average ranks under 20  (b) Average ranks under 40 

Figure.7 Means plot of the ranks of the average RPI values with 95% confidence level

The statistical analysis results coincide with that presented in Table 6, and the RSA, SA and

RCoGA are the three best performers. The span in RPI for the 10 problem instances appears to be the

smallest. An interesting finding is that the gap between RCoGA and ABC is reduced with more

computational time. All the computational results suggest that the improvements on SA and CoGA

are reasonable and the RSA and RCoGA are effective for this new RMALB/S problem.

6. Conclusion and future research

This research presents the first method to address balancing and sequencing of robotic

mixed-model assembly line (RMALB/S) problems simultaneously. This new RMALB/S contains

three sub-problems: task assignment, robot allocation and model sequencing. A MILP model is

presented with the objective of minimizing the makespan. CPLEX solver is applied to obtain optimal

solutions for small-size problems. This model might receive interests from managers or

decision-makers in industry, where robots are allocated to assemble kinds of products. This model

helps managers to make the best of the available robots, reduce waste and ultimately improve the

productivity and reduces cost.

To tackle large-size problems, this research proposes two metaheuristic algorithms, restarted

simulated annealing (RSA) and restarted co-evolutionary genetic algorithm (RCoGA) with

improvements. RSA replaces the current temperature with a new temperature to increase exploration

capacity and RCoGA utilizes a restart mechanism to generate new population by modifying several

vectors all together to avoid being trapped in local optima. To evaluate the proposed algorithms, a set

of benchmark problems containing 104 cases are generated and solved. The computational results

demonstrate the superiority of the improvements on the original simulated annealing algorithm and

co-evolutionary genetic algorithm. Statistical analysis results prove that the proposed RSA and

RCoGA are effective for solving RMALB/S problems and RSA is the best performer among the

seven tested algorithms.

In future, constraint such as robot setup times can be incorporated to make the problem more

realistic. More data from real-world factories are quite important to further enhance the proposed

model. Meanwhile, one can consider other objectives such as cost and energy consumption

minimization. Multi-objective optimization algorithms are also interesting to be developed for

RMALB/S problems. The model can be extended to other layouts of assembly lines, including U-type

assembly lines and two-sided assembly lines. The proposed algorithms can also be extended to other

scheduling problems that have several sub-problems to be addressed.

Acknowledgment

This research work is funded by the National Natural Science Foundation of China (Grant No.

51275366) (Qiuhua Tang).

References

Aghajani, Mojtaba, Reza Ghodsi, and Babak Javadi. 2014. "Balancing of robotic mixed-model

two-sided assembly line with robot setup times." Review of. The International Journal of Advanced

Manufacturing Technology 74 (5-8):1005-16.

Akpinar, Sener, and G Mirac Bayhan. 2014. "Performance evaluation of ant colony

optimization-based solution strategies on the mixed-model assembly line balancing problem."

Review of. Engineering Optimization 46 (6):842-62.

Battini, Daria, Maurizio Faccio, Alessandro Persona, and Fabio Sgarbossa. 2009. "Balancing–

sequencing procedure for a mixed model assembly system in case of finite buffer capacity." Review

of. The International Journal of Advanced Manufacturing Technology 44 (3):345-59. doi:

10.1007/s00170-008-1823-8.

Çil, Zeynel Abidin, Süleyman Mete, and Kürşad Ağpak. 2017. "Analysis of the type II robotic

mixed-model assembly line balancing problem." Review of. Engineering Optimization 49

(6):990-1009.

Faccio, Maurizio, Mauro Gamberi, and Marco Bortolini. 2016. "Hierarchical approach for paced

mixed-model assembly line balancing and sequencing with jolly operators." Review of. International

Journal of Production Research 54 (3):761-77.

Friedman, Milton. 1937. "The Use of Ranks to Avoid the Assumption of Normality Implicit in the

Analysis of Variance." Review of. Journal of the American Statistical Association 32 (200):675-701.

doi: 10.1080/01621459.1937.10503522.

Gao, Jie, Linyan Sun, Lihua Wang, and Mitsuo Gen. 2009. "An efficient approach for type II robotic

assembly line balancing problems." Review of. Computers & Industrial Engineering 56 (3):1065-80.

doi: http://dx.doi.org/10.1016/j.cie.2008.09.027.

Hamzadayi, Alper, and Gokalp Yildiz. 2012. "A genetic algorithm based approach for simultaneously

balancing and sequencing of mixed-model U-lines with parallel workstations and zoning

constraints." Review of. Computers & Industrial Engineering 62 (1):206-15. doi:

http://dx.doi.org/10.1016/j.cie.2011.09.008.

———. 2013. "A simulated annealing algorithm based approach for balancing and sequencing of

mixed-model U-lines." Review of. Computers & Industrial Engineering 66 (4):1070-84. doi:

http://dx.doi.org/10.1016/j.cie.2013.08.008.

Kara, Yakup, Ugur Ozcan, and Ahmet Peker. 2007a. "An approach for balancing and sequencing

mixed-model JIT U-lines." Review of. The International Journal of Advanced Manufacturing

Technology 32 (11-12):1218-31.

——— . 2007b. "Balancing and sequencing mixed-model just-in-time U-lines with multiple

objectives." Review of. Applied Mathematics and Computation 184 (2):566-88.

Kim, Yeo Keun, Jae Yun Kim, and Yeongho Kim. 2000a. "A coevolutionary algorithm for balancing and

sequencing in mixed model assembly lines." Review of. Applied Intelligence 13 (3):247-58.

———. 2006. "An endosymbiotic evolutionary algorithm for the integration of balancing and

sequencing in mixed-model U-lines." Review of. European Journal of Operational Research 168

(3):838-52.

Kim, Yeo Keun, Sun Jin Kim, and Jae Yun Kim. 2000b. "Balancing and sequencing mixed-model

U-lines with a co-evolutionary algorithm." Review of. Production Planning & Control 11 (8):754-64.

Kucukkoc, Ibrahim, and David Z. Zhang. 2014a. "Mathematical model and agent based solution

approach for the simultaneous balancing and sequencing of mixed-model parallel two-sided

assembly lines." Review of. International Journal of Production Economics 158:314-33. doi:

http://dx.doi.org/10.1016/j.ijpe.2014.08.010.

——— . 2014b. "Simultaneous balancing and sequencing of mixed-model parallel two-sided

assembly lines." Review of. International Journal of Production Research 52 (12):3665-87. doi:

10.1080/00207543.2013.879618.

———. 2016. "Integrating ant colony and genetic algorithms in the balancing and scheduling of

complex assembly lines." Review of. The International Journal of Advanced Manufacturing

Technology 82 (1):265-85. doi: 10.1007/s00170-015-7320-y.

Levitin, Gregory, Jacob Rubinovitz, and Boris Shnits. 2006. "A genetic algorithm for robotic assembly

line balancing." Review of. European Journal of Operational Research 168 (3):811-25. doi:

http://dx.doi.org/10.1016/j.ejor.2004.07.030.

Li, Z., M. N. Janardhanan, Q. Tang, and P. Nielsen. 2016. "Co-evolutionary particle swarm

optimization algorithm for two-sided robotic assembly line balancing problem." Review of. Advances

in Mechanical Engineering 8 (9):14. doi: 10.1177/1687814016667907.

Li, Zixiang, Qiuhua Tang, and LiPing Zhang. 2016a. "Minimizing energy consumption and cycle time

in two-sided robotic assembly line systems using restarted simulated annealing algorithm." Review

of. Journal of Cleaner Production 135:508-22. doi: http://dx.doi.org/10.1016/j.jclepro.2016.06.131.

——— . 2016b. "Minimizing the Cycle Time in Two-Sided Assembly Lines with Assignment

Restrictions: Improvements and a Simple Algorithm." Review of. Mathematical Problems in

Engineering 2016 (Article ID 4536426):1-15. doi: 10.1155/2016/4536426.

Liu, Qiong, Wen-xi Wang, Ke-ren Zhu, Chao-yong Zhang, and Yun-qing Rao. 2014. "Advanced scatter

search approach and its application in a sequencing problem of mixed-model assembly lines in a

case company." Review of. Engineering Optimization 46 (11):1485-500.

Manavizadeh, Neda, Masoud Rabbani, and Farzad Radmehr. 2015. "A new multi-objective approach

in order to balancing and sequencing U-shaped mixed model assembly line problem: a proposed

heuristic algorithm." Review of. The International Journal of Advanced Manufacturing Technology 79

(1):415-25. doi: 10.1007/s00170-015-6841-8.

Montgomery, Douglas C. 2008. Design and analysis of experiments: John Wiley & Sons.

Mosadegh, H., M. Zandieh, and S. M. T. Fatemi Ghomi. 2012. "Simultaneous solving of balancing and

sequencing problems with station-dependent assembly times for mixed-model assembly lines."

Review of. Applied Soft Computing 12 (4):1359-70. doi:

http://dx.doi.org/10.1016/j.asoc.2011.11.027.

Mukund Nilakantan, J., George Q. Huang, and S. G. Ponnambalam. 2015. "An investigation on

minimizing cycle time and total energy consumption in robotic assembly line systems." Review of .

Journal of Cleaner Production 90:311-25. doi: http://dx.doi.org/10.1016/j.jclepro.2014.11.041.

Mukund Nilakantan, J., and S. G. Ponnambalam. 2016. "Robotic U-shaped assembly line balancing

using particle swarm optimization." Review of. Engineering Optimization 48 (2):231-52. doi:

10.1080/0305215X.2014.998664.

Mukund Nilakantan, J., S. G. Ponnambalam, N. Jawahar, and G. Kanagaraj. 2015. "Bio-inspired search

algorithms to solve robotic assembly line balancing problems." Review of. Neural Computing and

Applications 26 (6):1379-93. doi: 10.1007/s00521-014-1811-x.

Nilakantan, J Mukund, Zixiang Li, Qiuhua Tang, and Peter Nielsen. 2017. "Multi-objective

co-operative co-evolutionary algorithm for minimizing carbon footprint and maximizing line

efficiency in robotic assembly line systems." Review of. Journal of Cleaner Production 156:124-36.

Özcan, Uğur, Hakan Çerçioğlu, Hadi Gökçen, and Bilal Toklu. 2010. "Balancing and sequencing of

parallel mixed-model assembly lines." Review of. International Journal of Production Research 48

(17):5089-113. doi: 10.1080/00207540903055735.

Öztürk, Cemalettin, Semra Tunalı, Brahim Hnich, and M. Arslan Örnek. 2013. "Balancing and

scheduling of flexible mixed model assembly lines." Review of. Constraints 18 (3):434-69. doi:

10.1007/s10601-013-9142-6.

Rabbani, Masoud, Zahra Mousavi, and Hamed Farrokhi-Asl. 2016. "Multi-objective metaheuristics

for solving a type II robotic mixed-model assembly line balancing problem." Review of. Journal of

Industrial and Production Engineering 33 (7):472-84. doi: 10.1080/21681015.2015.1126656.

Rabbani, Masoud, Shadi Sadri, Neda Manavizadeh, and Hamed Rafiei. 2015. "A novel bi-level

hierarchy towards available-to-promise in mixed-model assembly line sequencing problems." Review

of. Engineering Optimization 47 (7):947-62.

Rubinovitz, Jacob, and Joseph Bukchin. 1991. Design and balancing of robotic assembly lines: Society

of Manufacturing Engineers.

Rubinovitz, Jacob, Joseph Bukchin, and Ehud Lenz. 1993. "RALB – A Heuristic Algorithm for Design

and Balancing of Robotic Assembly Lines." Review of. CIRP Annals - Manufacturing Technology 42

(1):497-500. doi: http://dx.doi.org/10.1016/S0007-8506(07)62494-9.

Ruiz, Rubén, Concepción Maroto, and Javier Alcaraz. 2006. "Two new robust genetic algorithms for

the flowshop scheduling problem." Review of. Omega 34 (5):461-76.

Ruiz, Rubén, and Thomas Stützle. 2007. "A simple and effective iterated greedy algorithm for the

permutation flowshop scheduling problem." Review of. European Journal of Operational Research

177 (3):2033-49.

Saif, Ullah, Zailin Guan, Weiqi Liu, Baoxi Wang, and Chaoyong Zhang. 2014. "Multi-objective artificial

bee colony algorithm for simultaneous sequencing and balancing of mixed model assembly line."

Review of. The International Journal of Advanced Manufacturing Technology 75 (9-12):1809-27.

Sivasankaran, P, and P Shahabudeen. 2014. "Literature review of assembly line balancing problems."

Review of. The International Journal of Advanced Manufacturing Technology 73 (9-12):1665-94.

Tang, Qiuhua, Zixiang Li, and Liping Zhang. 2016. "An effective discrete artificial bee colony

algorithm with idle time reduction techniques for two-sided assembly line balancing problem of

type-II." Review of. Computers & Industrial Engineering 97:146-56. doi:

http://dx.doi.org/10.1016/j.cie.2016.05.004.

Yoosefelahi, A., M. Aminnayeri, H. Mosadegh, and H. Davari Ardakani. 2012. "Type II robotic

assembly line balancing problem: An evolution strategies algorithm for a multi-objective model."

Review of. Journal of Manufacturing Systems 31 (2):139-51. doi:

http://dx.doi.org/10.1016/j.jmsy.2011.10.002.

