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Abstract—This paper describes an efficient parallel algorithm that uses many-core GPUs for automatically deriving Unique Input
Output sequences (UIOs) from Finite State Machines. The proposed algorithm uses the global scope of the GPU’s global memory
through coalesced memory access and minimises the transfer between CPU and GPU memory. The results of experiments indicate
that the proposed method yields considerably better results compared to a single core UIO construction algorithm. Our algorithm is
scalable and when multiple GPUs are added into the system the approach can handle FSMs whose size is larger than the memory
available on a single GPU.
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F

1 INTRODUCTION

SOFTWARE testing is an important part of the software
development process but is typically expensive, man-

ual and error prone. This has led to significant interest in
automation and one of the most promising approaches
is model-based testing (MBT) in which test automation
is based on a model of the system under test (SUT) or
some aspect of the SUT. Many MBT methods base test
automation on a finite state machine (FSM), with this line
of work going back to Moore’s seminal paper [1].

Many FSM-based test generation methods check that
the transitions of the FSM specification M have been
implemented correctly. In order to check a transition it is
necessary to have some method that checks that the state
of the SUT, after input x in state s, is the expected state
s′. This is typically achieved by using input sequences
that distinguish the states of M . Ideally, one has a distin-
guishing sequence (an input sequence that distinguishes
all of the states of M ) and early work by Hennie showed
how a test sequence can be automatically derived when
there is a known distinguishing sequence [2]. However,
an FSM need not have a distinguishing sequence and
instead one might use a unique input output sequence
(UIO) for a state s′: an input sequence that distinguishes
s′ from all other states of M but need not distinguish any
other pairs of states of M . Although not all FSMs have a
UIO for each state, it has been reported that in practice
most FSMs do have such UIOs [3] and this has led
to the development of many FSM-based test generation
methods that use UIOs [3], [4], [5], [6], [7], [8], [9], [10],
[11]. However, it is known that the problem of checking
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the existence of a UIO is PSPACE-Hard and so one
cannot expect to find polynomial time algorithms that
construct UIOs and there is no polynomial upper bound
on UIO length. Since the length of a UIO sequence can be
exponential, the duration and hence the cost of deriving
such sequences from large FSMs can be very high. This
has led to interest in methods that relatively efficiently
generate UIOs [12], [13], [14], [15] but ultimately we can-
not get away from the worst case complexity. Previous
approaches for deriving UIOs have developed sequential
algorithms that operate on a single thread and have
not used Graphics Processing Units (GPUs) despite the
increasing interest in GPUs. Recently, with the publica-
tion of the Compute Unified Device Architecture (CUDA)
development toolkit that allows GPU programming in a
C-like language, the use of GPUs has been extended to
a range of application domains [16], [17], [18], [19], [20].

In this paper, we address the scalability problem that
can arise while constructing UIOs for large completely-
specified FSMs through the use of massively parallel
GPU technology. The work was motivated by the fact
that GPUs have become an important tool in large scale
applications in which massively parallel processing is
needed. As far as we are aware, this problem has not
previously been explored. One of the reasons for this
may be that there is a need to model the UIO generation
problem in a manner that is suitable for GPUs and this
is not straightforward; previous algorithms for construct-
ing UIOs have used data structures that are not suitable
for GPU computing. As previously noted [21] this can be
considered to be the biggest difference between CPUs
and GPUs: much of the physical space of a GPU is
reserved for computing units rather than memory. This
space is divided into many relatively simple cores, with
the instruction set of a core being much smaller than that
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of a standard CPU. Despite their limited instruction sets,
the performance of GPUs make them highly effective
when used to solve certain types of problems. In addi-
tion, the demand for high performance graphics (due to
computer gaming, high resolution image processing and
big data research) led to increasing parallelism. In fact,
new massively parallel computing processors such as
the NVIDIA’s Tesla-K40 already have 2880 cores where
a core has clock speed of 745 MHz, 288 GB/sec memory
bandwidth, and 12 GB of memory.

The constraints imposed by GPU computing led to
us devising an algorithm that is entirely new with the
exception of the fact that it utilises the ‘Unique Prede-
cessor’ approach devised by Naik [15]. Otherwise the
proposed algorithm is unique since all the existing brute
force approaches in the FSM based literature construct
a ‘UIO Tree’ and this is not appropriate due to the
space/time limitations (as shown by the experiments).
There were several additional challenges related to mem-
ory management. These challenges include the need to
efficiently distribute data processing between the CPU
and GPU, thread synchronisation, optimisation of data
transfer, and the capacity constraints of GPU memory.

This paper proposes a massively parallel UIO (P-UIO)
generation algorithm that addresses these problems in
the context of deriving UIOs for a deterministic com-
pletely specified FSM. The P-UIO algorithm was evalu-
ated against Naik’s algorithm using randomly generated
FSMs with up to 1,048,576 states. In the experiments
the proposed algorithm constructed UIOs significantly
faster (by a factor of 11000 on average) and for much
larger FSMs (by a factor of 512). For example, the P-UIO
algorithm was able to handle FSMs with 1,048,576 states
in under 2 seconds on average while the implementation
of Naik’s algorithm took 1231 seconds on average for
FSMs with 2048 states. We also performed experiments
on some much smaller benchmark FSMs, with between
4 and 48 states. The performance of the two algorithms
was similar for these FSMs but the P-UIO algorithm took
less time to find UIOs for the larger benchmark FSMs.
Unsurprisingly, the differences in performance were less
significant for the (much smaller) benchmark FSMs.

This paper is organised as follows. Section 2 intro-
duces the terminology used and reviews previously de-
vised UIO generation techniques. Section 3 provides an
overview of the proposed parallel UIO algorithm and de-
scribes the high-level design. Section 4 provides the low-
level design. In Section 5 we describe the experiments
designed to evaluate the proposed UIO construction
algorithm and the results of these experiments. Finally,
in Section 6 we provide concluding remarks and discuss
possible lines of future work.

2 PRELIMINARIES

2.1 Finite State Machines (FSMs)
A finite state machine (FSM) M is defined by a tu-
ple (S,X, Y, δ, λ) where S is a finite set of states,

X = {x1, x2, . . . , xp} is a finite set of inputs, Y =
{o1, o2, . . . , or} is a finite set of outputs, δ is the transition
function of type δ : S × X → S and λ is the output
function of type λ : S × X → Y . The functions δ and
λ are total functions and so M is completely-specified. If
FSM M is in state s ∈ S and input x ∈ X is applied
then M moves to the state s′ = δ(s, x) and produces
output o = λ(s, x). Such a transition will be denoted
τ = (s, x/o, s′) and we say that x/o is the label of τ
(label(τ)), s is the start state of τ (start(τ)), and s′ is the
end state of τ (end(τ)). Note that sometimes the definition
of an FSM includes an initial state; we do not include this
since we are interested in distinguishing states of an FSM
and so do not require there to be an initial state.

We use juxtaposition to denote concatenation: if x1,
x2, and x3 are inputs then x1x2x3 is an input sequence.
Given a set X we let X∗ denote the set of finite sequences
of elements of X and let Xk denote the set of sequences
in X∗ that have length k. The symbol ε is used to denote
the empty sequence.

An input/output sequence consists of a sequence of
input/output pairs of the form x1/o1 x2/o2 . . . xm/om.
We will also write x1x2 . . . xm/o1o2 . . . om to denote this
input/output sequence, where x1x2 . . . xm is called the
input portion and o1o2 . . . om is called the output portion
of the input/output sequence. A path in M is a sequence
of transitions τ̄ = τ1τ2 . . . τm such that start(τi) =
end(τi−1), for all 1 < i ≤ m. The label of a path is
an input/output sequence which is the concatenation
of the labels (input/output pairs) of the transitions in
that path. For path τ̄ = τ1τ2 . . . τm, we define label(τ̄) =
label(τ1)label(τ2) . . . label(τm).

The transition and output functions can be extended
to input sequences as follows. For x̄ ∈ X? and x ∈ X ,
δ̄(s, ε) = s, δ̄(s, xx̄) = δ̄(δ(s, x), x̄), λ̄(s, ε) = ε, λ̄(s, xx̄) =
λ(s, x)λ̄(δ(s, x), x̄). We call a subset B ⊆ S of states a
group. The transition and output functions are extended
to groups as follows. For a group B and x̄ ∈ X?,
δ̄(B, x̄) = ∪s∈B{δ̄(s, x̄)} and λ̄(B, x̄) = ∪s∈B{λ̄(s, x̄)}. We
will use δ and λ to denote δ̄ and λ̄, respectively.

An input sequence x̄ ∈ X? is a splitting sequence for a
group B, if |λ(B, x̄)| > 1. Such an input sequence x̄ leads
to different output sequences from at least two states in
B and so x̄ splits B. We call an input x a splitting input
for B if x is a splitting sequence of length one for B. If
for every pair of states of FSM M there exists a splitting
sequence then M is said to be minimal.

In this work, we consider only deterministic,
completely-specified, minimal FSMs. An FSM can be
minimised in polynomial time [22]. Further, an FSM
that is not completely-specified can often be completed
by adding either an error state or transitions with null
output1. Thus, the main restriction is that we only con-
sider deterministic FSMs. While non-determinism can
be a useful abstraction technique, and some classes of

1. As has been previously noted, it is not always possible to complete
an FSM since, for example, unspecified input may correspond to input
that should not occur [23].
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Figure 1: An example deterministic, completely specified
and minimal FSM M1.

systems are non-deterministic, the main focus of FSM-
based testing work has been on deterministic FSMs and
these have been found to be sufficient in important
application domains such as hardware [24], protocol
conformance testing [5], [25], [26], [27], [28], [29], object-
oriented systems [30], web services [31], [32], [33], [34],
and general software [35].

An FSM M can be represented by using a directed
graph G where the vertices of G correspond to the states
of M and the edges of G correspond to the transitions
of M . An FSM M is strongly connected if the correspond-
ing directed graph G is strongly connected (for any
ordered pair (v, v′) of vertices there is a path from v
to v′). In Figure 1 an example FSM M1 is given, where
S = {s1, s2, s3, s4}, X = {x1, x2}, and Y = {o1, o2}.
It is straightforward to see that this FSM is strongly
connected. Note that M1 is a minimal machine, since
the input sequence x1x2x1x1x2x1 is a splitting sequence
for every pair of different states.

For a given FSM, state verification can be achieved by
using a Distinguishing sequence (DS), unique input/output
sequences (UIOs), a Characterising set (CS), or state identi-
fiers. A distinguishing sequence is an input sequence x̄
such that for every pair (s, s′) of distinct states of FSM
M , M produces different output sequences in response
to x̄ from s and s′ (λ(s, x̄) 6= λ(s′, x̄)). Unfortunately, not
all FSMs have a DS. An alternative is to use an adaptive
distinguishing sequence, which is an adaptive process that
determines the next input to apply on the basis of the
output observed. Since ADSs generalise DSs, an FSM
that has a DS also has an ADS and an additional benefit
is that it is possible to determine whether an FSM has
an ADS in low-order polynomial time [36].

A UIO for state s is an input/output sequence x̄/ō
such that λ(s, x̄) = ō and for all s′ ∈ S \ {s}, we have
that λ(s′, x̄) 6= ō. While not every FSM has UIOs for all
states, some FSMs without a DS or ADS have UIOs for
all states. There may be value in using UIOs even when

an FSM has a DS since the UIOs may be shorter than
the DS. For example, state s1 of M1 has a UIO (x1/o2) of
length 1 but it is straightforward to check that M1 does
not have a DS of length 1. It has also been found that in
practice many FSMs have UIOs for all states [3].

A characterising set (CS) is a set W of input sequences
that can distinguish any pair of states. A minimal FSM
with n states has a CS with at most n − 1 sequences of
length at most n−1 and such a CS can be found in poly-
nomial time. If every sequence in W is executed from
state s, the set of output sequences identifies/verifies
s. However, the use of characterising sets could lead to
long test sequences [37]. In addition, most test generation
techniques that use a characterising set return many
test sequences and it has been noted that the process
of resetting a system between test sequences can be
expensive [38], [39], [40], [41]. As a result, it is desirable
to use a DS or UIOs where they exist (and are sufficiently
short) and use a characterising set otherwise. Since the
size of a characterising set is of O(n2), it has been
suggested that if a UIO or DS is longer than an O(n2)
upper bound then it might be best to use a characterising
set. This has led to the suggestion that one might initially
attempt to find a DS or UIOs but only use a DS/UIOs if
the length is lower that the given bound. There has been
much interest in UIOs [42], [43] since they help in state
transition fault detection and have been found to yield
shorter test sequences than using the DSs and CSs [42],
[43].

It has been observed that it may not be necessary to
use all of the sequences from a characterising set in order
to identify a state s of the FSM [44]. This has led to
the notion of state identifiers, where a state identifier (or
separating set) for state s is a set of input sequences that
distinguish s from all other states of the FSM M . The use
of state identifiers can lead to smaller test suites, when
compared to characterising sets.

2.2 Previous UIO generation methods and Inference
Rules

Since UIOs have been used in automated FSM-based
test generation methods, there has been interest in the
problem of devising UIOs. Although the problem of
checking the existence of UIOs is PSPACE-Complete [36],
the value of UIOs in test generation has led to significant
interest in UIO generation.

It is possible to represent UIO generation in terms of
a UIO tree (Definition 2.1) [15].

Definition 2.1: Let M be an FSM with set of states S
(|S| = n). A Unique Input Output Tree for S is a rooted tree
T such that nodes are labeled with two groups (initial
group I and current group C) and edges are labeled
with input/output pairs. A node of T is called a leaf
node if its groups have cardinality one. If two distinct
edges leaving a node v share the same input label then
these edges have different output labels. For every node
v of T , if x̄/ō is the input/output sequence formed by
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I = {s1, s2, s3, s4}
C = {s1, s2, s3, s4}

I = {s1, s2, s3, s4}
C = {s3, s2, s4, s1}

. . .

. . .
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. . .

x1/o1

x2/o1

I = {s4}
C = {s1}

x1/o2

. . .

. . .

. . . / . . .
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x2/o1

I = {s1}
C = {s1}
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I = {s2, s3, s4}
C = {s3, s4, s2}

I = {s2, s3, s4}
C = {s4, s2, s3}

. . . . . .
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I = {s2, s3, s4}
C = {s4, s1, s2}

I = {s2, s3}
C = {s2, s3}

x1/o1

I = {s4}
C = {s1}

x1/o2

I = {s2, s3, s4}
C = {s1, s3, s2}

x2/o1

x2/o1

x1/o1

... ... ... ... ... ... ... ... ... ... ... ...

`

Figure 2: An example of a UIO Tree of depth ` for FSM
M1 given in Figure 1.

concatenating the edge labels on the path from the root
node to v, then we have that I = {s ∈ S|λ(s, x̄) = ō}
and C = ∪s∈I{δ(s, x̄)}. A UIO tree is complete if for every
state si there exists a leaf node v with initial set I = {si}.

An example UIO tree for M1 is given in Figure 2.
As the upper bound on UIO length is exponential, the

process of constructing UIO trees from scratch can be
expensive. This led to Naik [15] proposing an approach
to construct UIOs in which inference rules are used. In
this method some minimal length UIOs are found and
these UIOs are used to deduce UIOs for other states.
The inference rules operate as follows: If x̄/ō is a UIO
for state s and τ = (s′, x/o, s) is the only transition
that reaches state s with label x/o, then xx̄/oō is a UIO
for s′. Here state s′ is known as a unique predecessor of
state s. Note that the notion of ‘unique’ here is for the
state and input/output; there might be more than one
unique predecessor for a state s. Since a machine M is
assumed to be strongly connected, it may be possible
to use inference rules to compute UIO sequences for all
states once we have constructed only a few UIOs. In
order to achieve this we have a database, called a rule
base, containing the known inference rules for the FSM.
In the following, we formalise what it means for a state
to be a unique predecessor.

Definition 2.2: For state s ∈ S, s′ ∈ S is a unique prede-
cessor for s if there exists a transition τ with start(τ) = s′,
end(τ) = s and label(τ) = x/o such that there exists no
transition τ ′ 6= τ with end(τ) = s and label(τ) = x/o.

As an example, see the FSM M2 in Figure 3a. Note that
for state s1 the unique predecessor is s4 with transition
labeled by x2/o2, for state s4 the unique predecessor is s3
with transition labeled by x1/o1, for state s3 the unique
predecessor is s2 with transition labeled by x2/o2 and
finally for state s2 the unique predecessor is s1 with
transition labeled by x1/o2. The rule base table for FSM
M2 is given in Figure 3b. Let us assume that by using a
UIO tree we can construct a UIO for state s1. Then by
using the rule base table, we can derive UIOs for all of
the states of the FSM (Figure 3c).

If an FSM does not possess UIOs for all of its states,
the inference rules do not solve the problem. Naik’s al-

s1 s2

s3s4

x1/o2, x2/o2

x
1 /
o

1 ,x
2 /
o

2

x1/o1

x2/o2

x1/o1

x2/o2

(a) A deterministic, completely specified and
minimal FSM M2

State unique predecessor τ
s1 s4 x2/o2
s2 s1 x1/o2
s3 s2 x2/o2
s4 s3 x1/o1

(b) Rule base (rb) table for FSM M2 given in
Figure 3a

State UIO
s1 x1/o2

s2 x2x1x2x1/o2o1o2o2
s3 x1x2x1/o1o2o2
s4 x2x1/o2o2

(c) Assume that UIO for state s1 is computed
throught a UIO tree (bold typed). Then by
using the rule base table given in Figure 3b
we can derive UIOs for other states.

Figure 3: An FSM M2 with its rule base. After the UIO
for s1 is computed, UIOs for every other state can be
obtained by using the rule base.

gorithm then constructs the full UIO tree, which requires
exponential time/space.

2.3 The CUDA Programming Model

Compute Unified Device Architecture (CUDA) is
NVIDIA’s parallel computing architecture that combines
software and hardware architectures. We first present an
overview of the CUDA hardware model.

At the hardware level, a CUDA capable GPU proces-
sor is a collection of multiprocessors (SMX), each having
a number of processors. Each multiprocessor has its own
shared memory which is common to all its processors. It
also has a set of 32-bit (or 64-bit depending on the card)
registers, texture memory (a read only memory for the
GPU), and constant (a read only memory for the GPU
that has the lowest access latency) memory caches. In
any given cycle, each processor in the multiprocessor
executes the same instruction on different data and so a
multiprocessor is a single instruction multiple data (SIMD)
processor. Communication between multiprocessors can
be achieved through the global device memory, which is
available to all the processors in all multiprocessors.
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From the programmer’s point of view the CUDA
model is a collection of threads running in parallel,
with a collection of threads, called a warp, running
simultaneously on a multiprocessor. The warp size can
vary according to the GPU. The programmer decides on
the number of threads to be executed. If the number of
threads is more than the warp size then these threads
are time-shared internally on the multiprocessor. At a
given time, a block of threads runs on a multiprocessor.
The maximum number of threads in a block can vary
according to the underlying GPU. However, multiple
blocks can be assigned to a single multiprocessor and
their execution is again time-shared. The collection of
blocks for a single program is called a grid and the
maximum number of grids can vary according to the
GPU.

All threads of all blocks executing on a single mul-
tiprocessor divide its resources equally amongst them-
selves. Each thread executes a piece of code called a
kernel. The kernel is the core code to be executed on
a multiprocessor. Upon execution, thread ti is given a
unique ID and during execution thread ti can access
data residing in the GPU by using its ID. Since the
GPU memory is available to all the threads, a thread can
access any memory location. This allows programmers to
interpret a device as a Parallel Random Access Machine
(PRAM) architecture through the usage of global device
memory. However, the performance improves with the
use of shared memory (which can only be accessed
by threads within a block), as such memory can be
accessed faster than the global device memory. During
GPU computation the CPU can continue to operate.
Therefore the CUDA programming model is a hybrid
computing model in which a GPU is referred as a co-
processor (device) for the CPU (host).

3 HIGH-LEVEL DESIGN

In this section we present the high-level design of the
proposed massively parallel (P-UIO) algorithm for deriv-
ing UIOs from FSMs. We start by discussing the design
decisions made in developing the P-UIO algorithm and
then provide an overview of the P-UIO algorithm. In
Section 4 we provide additional information regarding
the data structures used.

3.1 Parallel design: From UIO-Tree to Sorting

In the proposed parallel algorithm, we aimed to address
several bottlenecks that we may encounter while using
naı̈ve UIO tree construction algorithms.

1) Sequential process: A naı̈ve sequential UIO tree
generation algorithm iterates over a UIO tree T
and would process this tree node-by-node. Here
each node is associated with a group and the same
input is applied to each state in a group (since these
states have yet to be distinguished). (Figure 4).

s1, s2, . . . , sn

si, sj, . . . , sm sk, sl, . . . , sn

CURRENT GROUP

(a) Sequential algorithm selects
a group during execution step i.

s1, s2, . . . , sn

si, sj, . . . , sm sk, sl, . . . , sn

get δ(si, x)

(b) Sequential algorithm se-
lects a state during execu-
tion step i.

s1, s2, . . . , sn

si, sj, . . . , sm sk, sl, . . . , sn

get δ(sj, x)

(c) Sequential algorithm se-
lects another state during
execution step i+ 1.

s1, s2, . . . , sn

si, sj, . . . , sm sk, sl, . . . , sn

CURRENT GROUP

(d) Sequential algorithm se-
lects another group during
execution step i+ (m).

Figure 4: Steps of sequential algorithm overview. Note
only current states are illustrated.

s1, s2, . . . , sn

si, sj, . . . , sm sk, sl, . . . , sn

{si, sj, . . . , sm},{sk, sl, . . . , sn}

(a) Information about how
states are split is kept by a
UIO tree

. . .

. . .

. . .

. . . . . .

. . .

. . .

(b) Algorithm back tracks on a
UIO tree.

Figure 5: Use of tree structure while constructing a UIO-
tree. Note only current states are illustrated.

2) Memory Requirements: During UIO tree computa-
tion, all portions of the UIO tree would be kept in
memory since:
• It includes information about how the states are

split (Figure 5a) and
• It makes it possible to back-track when re-

quired (Figure 5b).
In developing a massively parallel approach, one

might construct a UIO-tree and choose to have a thread ti
process a single node of a UIO-tree. The thread ti would
process all of the data associated with a node [12], [15]
(Figures 7a). However, a node can have many current
and initial states and for an FSM with n states, a node
is associated with data whose size is of O(n). Although
the maximum number of states associated with a node
reduces as the depth of the tree increases, the rate at
which this happens will vary between FSMs (Figure 7b).
As a result, an approach that directly represents the UIO
tree may not scale well for very large FSMs.

These are crucial obstacles in designing a scalable UIO
generation algorithm. In order to ease these issues, we
need to devise a scalable alternative approach which
demands less memory, can be parallelised, and can be
used to derive UIO sequences. We now explain how this
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can be achieved.

s1 s2 s3 s4 s5 . . . sn
o2 o2 o1 o3 o3 . . . o2
o1 o1 o1 o2 o1 . . . o2
...

...
...

...
...

... o1
o1 o2 o1 o2 o2 . . . o1

(a) Output sequences

s3 s9 s1 s7 s11 . . . s4
o1 o1 o2 o2 o2 . . . o3
o1 o1 o1 o2 o2 . . . o3
...

...
...

...
...

... o3
o1 o1 o1 o1 o1 . . . o3

= 6=
6= =

(b) Revealing distinguished states by consider-
ing sorted output sequences

Figure 6: The use of sorting while finding distinguished
states.

Consider Figure 6a, which gives output sequences pro-
duced by the n states of an FSM in response to an input
sequence x̄. Input sequence x̄ uniquely distinguishes a
state if and only if the output sequence produced by this
state is unique. Thus, we can use an approach that finds
columns in which the output sequences are unique. We
can re-formalise this problem as follows: We are given
a set of sequences of the same length and want to find the
different sequences. This problem can be solved by sorting
the output sequences: after sorting, if the column being
considered is different from its neighbouring columns
then it is unique (Figure 6b). A benefit of this is that sort-
ing can be parallelised and can be efficiently performed
by GPUs [19]. Thus, in the P-UIO algorithm we used an
approach based on sorting in order to determine which
states have been distinguished.

In order to be able to use sorting we need to intro-
duce an alternative formalisation for constructing UIO
sequences. Rather than represent the problem in terms
of UIO-trees, we use what we call input output vectors;
later we will see how we can base a scalable parallel UIO
generation algorithm on this formalisation.

. . .

. . .

. . . . . .

. . .

. . . . . .

ti

tj tk

tl tm tn to

(a) Each thread processes a
node of a tree concurrently.

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . . .

.

.

(b) An unbalanced UIO tree
with very large groups.

Figure 7: Different views for parallelism (a),(b) on a UIO
tree and an illustration for an unbalanced UIO-tree (c).

Definition 3.1: An input/output vector (IO-vector) V
for an FSM M = (S,X, Y, δ, λ) with n states is a vector
with n elements such that: For state si ∈ S there exists
an element v in V that is associated with initial state
si, a current state sc ∈ S, an input sequence X̄(v) such
that δ(si, X̄(v)) = sc, and an output sequence Ō(v) such
that λ(si, X̄(v)) = Ō(v). We will say that an IO-vector is
homogeneous if every pair of elements that have the same
output sequence also have the same current state.

We are interested in whether an IO-vector is homoge-
nous since there is no value in extending such an IO-
vector with further input: if two initial states s and s′

have not been distinguished in this IO-vector (they have
the same output sequences) then they are mapped to
the same current state and so cannot be distinguished
by further input. Thus, whenever the search for UIOs
finds a homogenous IO-vector it will back-track.

In UIO generation, we will ‘evolve’ the elements of an
IO-vector and will do so in a manner that is consistent
with the notion of a UIO. We sort the output sequences
to determine whether the states corresponding to two
elements have been distinguished: two elements share
the same output sequence if they have not been distin-
guished. In each iteration, for each output sequence that
appears in the current IO-vector the algorithm chooses
a next input to use. Let us suppose that element v is
associated with initial state si and current state sc. If the
next input to apply in v is x then v is said to evolve to
a new element v′ with input x (evolve(v) = (x, v′)) and
we have that v′ is associated with initial state si, current
state s′c, input and output sequences X̄(si)x/Ō(si)o such
that δ(sc, x) = s′c and λ(sc, x) = o. The P-UIO algorithm
will ensure that given an IO-vector V , if elements v
and v′ have the same associated input/output sequence
then the process of evolving V will lead to the same
next inputs in v and v′. As a result, for any pair of
elements v and v′ such that Ō(v) = Ō(v′) we have that: if
evolve(v) = (x, v′′) and evolve(v′) = (x′, v′′′) then x = x′.
The following shows how IO-vectors are related to UIOs.

Lemma 3.1: Let us suppose that V is an IO-vector for
M and that V has an element v whose initial state is s. If
there does not exist v′ ∈ V \ {v} such that Ō(v) = Ō(v′)
then X̄(v) is a UIO for s.

The proposed algorithm iterates over an IO-vector and
ideally obtains what is called a UIO-vector.

Definition 3.2: An IO-vector V is said to be a unique in-
put output vector (UIO-vector) if for any pair of elements
v, v′ ∈ V with v 6= v′ we have that Ō(v) 6= Ō(v′).

Note that an IO-vector may not evolve into a UIO-
vector. The reason for this is that in evolving an IO-
vector the same input is applied to all elements that have
the same output sequence. The problem here is that, for
example, an FSM might have UIOs for all states but have
a pair of states s, s′ such that the UIOs for s and s′ start
with different inputs: such a scenario cannot be captured
by an IO-vector. Consequently in order to construct UIOs
one may need to construct a set of IO-vectors.

Definition 3.3: A set V = {V0, V1, . . . Vκ} of IO-vectors
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Thread Vector si, x̄/ō, sc si, x̄/ō, sc si, x̄/ō, sc si, x̄/ō, sc . . .

IO-vector V si, x̄/ō, sc s′i, x̄/ō, s′c s′′i , x̄/ō, s′′c s′′′i , x̄/ō, s′′′c . . .

Figure 8: An illustration for a IO-vector. Each element is
associated with an input sequence an initial state, and a
current state.

is a full set for FSM M with state set S if for all s ∈ S,
there exists an IO-vector V ′ ∈ V that has an element v
whose initial state is s and whose input sequence X̄(v)
is such that X̄(v)/Ō(v) is a UIO for s.

The following is an immediate consequence of the
definition of a full set.

Lemma 3.2: If FSM M has a full set V of IO-vectors
then this defines UIOs for all states of M .

Importantly, an element of an IO-vector contains all
information related to the evolution from a single state
including the input/output sequence, initial and current
states. This representation allows us to have a one-to-
one correspondence between threads of the GPU and the
elements of an IO-vector (Figure 8), overcoming the issue
we had with UIO-trees where if a thread ti processes a
node then ti considers O(n) states.

However, note that if we insist on keeping in-
put/output sequences within elements then each thread
will process a whole input/output sequence during ev-
ery iteration. As a result, the memory used by a single
thread will increase and this may reduce the scalability
of the algorithm. In order to avoid this, we devised
an approach in which the input sequence associated
with an element is kept elsewhere (not in the element).
This is not problematic for inputs: when evolving an
IO-vector we do not need to know about the previous
inputs. However, we need to determine which elements
of an IO-vector must be evolved using the same input.
This suggests that threads should consider all the output
sequences observed so far.

We addressed this problem as follows. Instead of
keeping/sorting all output sequences observed, each
element will keep a unique representation of an output
sequence, the aim being to reduce the amount of data
stored. In order to achieve this, an output sequence ō
is represented by an enumeration (enum(ō)) that assigns
a unique representation (number) to ō. For example, if
we reach a point where only two output sequences have
been observed then we could simply use the numbers 0
and 1. In the next section we describe how enumeration
was done.

We will see that one important property of enumera-
tion is that the equality relation over strings is preserved.

Lemma 3.3: Given ō, ō′, ō′′ ∈ Y ?, enum(ō) 6= enum(ō′)
if and only if enum(ōō′′) 6= enum(ō′ō′′).

We also have the following results.

Enumerated vector

...
00001
00001
00002
00003

...

A string vector

...
. . . ababbabab. . .
. . . ababbabab. . .
. . . abaabbbab. . .
. . . aaabbabbb. . .

...

enum(v[i])

Figure 9: An illustration for enumeration. Each string
is compacted to another string. Note that the enum
function produces same values when given the same
input string (red coloured texts).

vector V ′ δ(s, x) δ(s, x) δ(s, x) δ(s, x) δ(s, x) . . .

vector V ′′ δ(s, x) δ(s, x) δ(s, x) δ(s, x) δ(s, x) . . .

vector V δ(s, x) δ(s, x) δ(s, x) δ(s, x) δ(s, x) . . .

Backtrack δ(s, x) δ(s, x) δ(s, x) δ(s, x) δ(s, x) . . .

vector V δ(s, x) δ(s, x) δ(s, x) δ(s, x) δ(s, x) . . .

IDP-d

Homogeneous Vector

× × × × ×

Store, Prepare inputs

Check distinguished states, Use inference
Rules, Update enumerations, Decide to
back-track/continue

Figure 10: Overview of the steps taken in one iteration of
P-UIO algorithm: the algorithm keeps evolving elements
through the IDP. Before each iteration the algorithm
stores the current data and chooses inputs to be applied.
After each IDP, the algorithm checks for distinguished
elements, applies inference rules, updates enumerations,
and decides to continue or not. If the vector is homoge-
neous then it back-tracks.

Lemma 3.4: Let v ∈ V be an element of an IO-vector
associated with initial state s. If there does not exist v′ ∈
V \ {v} such that enum(Ō(v)) = enum(Ō(v′)) then s is
distinguished from all other states of M .

Lemma 3.5: Let v and v′ be two elements of V associ-
ated with initial states s, s′ respectively. If enum(Ō(v)) =
enum(Ō(v′)) then s and s′ are not separated and if
enum(Ō(v)) 6= enum(Ō(v′)) then s and s′ are separated.

We can thus use the enumeration function to reduce
the size of the information stored regarding the output
sequences observed. It will be possible to define an
enumeration function such that the size of the repre-
sentation of the output sequence will be no larger than
log(n) since it takes log(n) space to represent the integers
from 0 to n − 1 and there can be at most n different
output sequences. Further, this information will allow
the algorithm to determine which states have not been
distinguished in constructing an IO-vector (so must be
followed by the same input) using space of size no more
than log(n) (Figure 9). As a result, the proposed approach
will satisfy our requirements regarding GPU memory.

3.2 An overview of the P-UIO algorithm
In this section, we provide an overview of the P-UIO
algorithm.

The P-UIO algorithm receives an FSM and positive
integers d and ` and computes UIOs. The loop iterates
until either (1) UIOs have been found for all states or (2)
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the algorithm cannot back-track. The overall algorithm is
like a depth-first search that, in an iteration of the main
loop, increases the length of the input sequence being
considered by d. We could simply increase the input
sequence length by 1 in each iteration; there would then
be no need to introduce the parameter d. However, as
we will see later, this choice could lead to more frequent
(relatively slow) memory transfers between the GPU and
CPU to store the current data (for back-tracking).

If the overall depth of the process is greater than or
equal to a bound ` at the end of an iteration of the
main loop then the algorithm back-tracks and stores the
elements that are associated with UIOs (those with a
unique enumeration of output sequence). Therefore, the
algorithm stores UIOs for M when they are found.

The algorithm can return UIOs of length greater than
` if d is not a factor of `: if kd < ` ≤ (k + 1)d for integer
k then the main loop back-tracks if the overall depth
reaches (k+1)d. In addition, longer UIOs can be returned
if the inference rules are used. The algorithm has the
following phases in every iteration of the main loop.
• Phase 1: Apply the iterative deepening process.

– Store the current IO-vector (to allow back-
tracking).

– Choose inputs for the next iteration of the deep-
ening process. In this work we selected inputs
randomly in such a way that no input sequence
is applied to an IO-vector twice.

– Apply an iterative deepening process (IDP) on the
elements of the IO-vector, increasing the depth
by d. The inputs used to evolve elements during
the IDP phase are used in-order. By in-order we
mean that elements that are associated with the
same output sequences evolve with the same
inputs. This ensures that if the same output
sequences have been observed from two states
s and s′ then the same next input sequence is
applied. As explained earlier, for reasons of ef-
ficiency the algorithm stores (and so compares)
enumerations of the output sequences and not
the output sequences themselves.

• Phase 2: Gather the outcome of IDP.
– Find elements that define UIOs by sorting; such

an element has a unique enumeration (of the
output sequence).

– By using inference rules, find additional UIOs.
– Update the representations of output sequences.

• Phase 3: Decide to continue.
– Continue from step 1 if some states do not

have known UIOs, the upper bound (`) on UIO
lengths has not been reached, and the IO-vector
is not homogeneous.

– Backtrack if the upper bound on UIO lengths
has been reached and not all UIOs are generated
or the vector is homogeneous.

– Terminate if the algorithm has generated a UIO
for each state or it is not possible to continue or

back-track.
Figure 10 describes the approach.
For a given state s ∈ S we may need to consider

every possible input sequence whose length is below
the upper-bound ` and so the P-UIO algorithm is an
exponential algorithm.

The following is immediate from the definition of the
termination condition of the algorithm.

Theorem 3.1: Let us suppose that the P-UIO algorithm
receives an FSM M and inputs d and `. The P-UIO
algorithm terminates with success if every state of M
has a UIO sequence of length at most `.

Note that this is not an ‘if and only if’ result since the
use of d and inference rules allows the P-UIO algorithm
to return UIOs of length greater than `.

4 LOW-LEVEL DESIGN

In the previous section we provided a high-level
overview of the proposed algorithm. However, there is a
need to map this to a structure that can be implemented
using GPUs. In this section we give these low-level
design details of the P-UIO algorithm. Although the P-
UIO algorithm consists of only a few steps, in order
to obtain high performance from the GPU, one has to
consider the following design principles.

1) Minimise global memory transactions
2) Maximise number of parallel threads per block
3) Prevent thread divergence
Recall that in designing the P-UIO algorithm, our

objective is to realise a one-to-one correspondence be-
tween the states of the FSM and the threads of the
GPU. Therefore, we want to maximise the number of
threads used in a block. However, this has implications
regarding the use of shared memory on a GPU as shared
memory usage limits the number of threads in a block.

Therefore, the P-UIO algorithm we did not use shared
memory but instead we tried to minimise the global
memory transactions latency. As previously reported [45]
global memory transaction latency can be hidden by
using (1) many threads and (2) supporting coalesced
memory access in which the threads in a block access
global memory in a manner that allows the GPU to
bundle a number of memory accesses into one memory
transaction. The principle of memory coalescing is simi-
lar to the cache line principle of a CPU, in which a cache
line is either completely replaced or not at all. Even if
only a single data item is requested, the entire line is
read so whenever a neighbouring item is subsequently
requested, it is already in the cache.

Recall that threads from a block are grouped into
warps for execution on a CUDA core and threads within
a warp must follow the same execution trajectory (oth-
erwise we have thread divergence). That is, all threads
must execute the same instruction at the same time. In
order to satisfy this constraint, in the P-UIO algorithm
we avoided if-else structures where possible.
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Type of Memory Data Structure
Texture Memory D FSM , D inferenceRules
Global Memory D inputs, D outputs,

D states and temporal vectors.
Registers temporary variables
Local Memory NA
Shared Memory NA

Table 1: Summary of the different types of memory used
in the P-UIO algorithm.

We now discuss how the high-level P-UIO algorithm
was refined for use with GPUs. In order to perform
coalesced global memory access, in the P-UIO algorithm
we use several structures to represent an IO-vector V ;
these structures are to be kept in the global memory of
the GPU (as opposed to the local memory of a thread)
and hold the following information.

1) The D states vector holds the relationship between
initial and current states: given initial state si,
D states[i] is the corresponding current state.

2) The D inputs vector holds the inputs that will be
applied during the next step of IDP.

3) The D outputs vector holds output data: enumer-
ations of output sequences observed from initial
states. It therefore provides information regarding
which states have been distinguished (split).

4) The D FSM vector holds the transitions of the
underlying FSM.

5) D inferenceRules holds the unique precedence
information for each state.

Table 1 summarises the memory management. The
FSM and inference rules were associated with the texture
memory. The vectors used to construct UIOs (such as
D inputs, D outputs, D states) were declared as global
memory. Variables used for the computation were au-
tomatically associated with registers by the compiler. In
developing the P-UIO algorithm we did not use local
and shared memory.

As explained in Section 3.2, the P-UIO algorithm has
a main loop that has three phases:

1) In the first phase IDP is applied to extend the depth
by d (Phase 1 in the high-level description of the
loop, described in detail in Section 4.1);

2) In the second phase, the outcome of IDP is analysed
(Phase 2 in the high-level description, described in
detail in Section 4.2); and

3) In the final phase the algorithm decides whether
to continue or back-track (Phase 3 in the high-level
description, described in detail in Section 4.3).

The algorithm is summarised in Algorithm 1. Here
lines 3-5 correspond to Phase 1 in the high-level descrip-
tion (Section 3.2); lines 6-9 correspond to Phase 2; and
lines 10-11 correspond to Phase 3. The shading shows
the steps that are carried out in parallel.

4.1 Applying the Iterative Deepening Process
Before IDP begins, id and vectors are stored in CPU
memory for back-track (Line 4) and then the input vector

Algorithm 1: Parallel UIO construction Algorithm.
Highlighted lines are executed in parallel.

Input: A deterministic completely specified FSM with n
states, p inputs and r outputs and positive integers
d and `.

Output: A set of input sequences
begin

1 id← 0
2 Initialise D states, D inputs, D outputs,D FSM ,

and D inferenceRules vectors.
3 while not all UIOs are computed and the algorithm can

continue do
4 Store current vectors and id value.
5 Construct inputs to be applied and update the id

value.
// Apply iterative deepening

6 Apply iterative deepening process until depth d.
// Gather outcomes of IDP.

7 Sort D outputs vector and retrieve new
distinguished states.

8 while New UIOs are found do
9 Apply inference rules

10 For each state, update enum() values.
// Decide to continue

11 if Algorithm cannot continue then
12 Back-track repeatedly until the algorithm can

continue or the root is reached.

is generated by a parallel random combinator generator
(PRCG) (Line 5). This procedure receives an integer
value id, number of states n, alphabet X , the D inputs
vector, and iterative deepening parameter d. PRCG first
calls a kernel called random number generator (RNG).
RNG receives n, d, and p and it returns an integer value
υ in the range [0, pnd]. Then the algorithm checks if it
can increment2 id, if so the PRCG calls another kernel
(the Fill kernel). The Fill kernel receives υ, X , and the
Dinputs vector as its parameters and fills the D inputs
vector with the representation of υ in base p. Otherwise,
if the algorithm cannot increment id then it calls the RNG
kernel and repeats the process. Later the algorithm enters
IDP (Line 6).

During an iteration (say the jth iteration) of IDP, the
Host calls several kernels one after another. The first
kernel to be called is the Apply kernel. During execution
of the Apply kernel a thread ti reads the ith value on
D states vector and gathers the current state. If the value
is −1 the thread halts. Otherwise thread ti reads the ith
value from the Doutputs vector (Doutputs[i]) and retrieves
input x = D inputs[(j ∗n)+Doutputs[i]] from the Dinputs

vector. Note that as an input is computed based on the
output, at each iteration the same input is applied to
all states for which the values read from the Doutputs

vector are identical. Then, the thread uses the D FSM
vector to determine the next state s ∈ S and output
o ∈ Y . Afterwards, it writes s to the Dstates vector and

2. Note that the algorithm increments id if υ has not been selected
for the IO under consideration.
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it concatenates o with Doutputs[i].
The next step is to update the Doutputs vector. To

achieve this, we follow a similar procedure which is
applied to check if new pairs of states are split. This
procedure is explained in the following section. But in
summary we apply two steps: sort the Doutputs vector,
write integer values (starting with 0) to elements of the
Doutputs vector so that two elements of Doutputs vector
are identical if and only if they receive same integer
value. As there are at most n different possible output
sequences, the number assigned to an element of the
Doutputs vector is between 0 and n.

During IDP, for a state si a thread ti will normally
read the corresponding indexes on D states, D inputs,
D outputs and D FSM , many times. Although the
reads and writes on the D states and D outputs vectors
are coalesced, transactions on D inputs are not. The
index values in the D inputs vector depends on the
data retrieved from the D outputs vector. Moreover,
since the host can write the FSM transition structure
to D FSM once and the kernels can read this FSM
structure many times, the D FSM vector is stored in
the texture memory and so coalescing is not an issue.
On the other hand note that IDP does not allow thread
divergence. That is, all threads in a warp will process
the same instruction of a kernel.

4.2 Gathering outcomes of IDP
Once IDP ends, we need to check if new pairs of states
are split. This is done through a parallel stable sorting
(Line 7). The sorting algorithm gathers vector D outputs
and a vector (D keys) which holds the relative orders of
items of D states (the initial state information). It then
sorts the states according to D outputs3 (Figure 11). The
results of the sort reveals states that are distinguished
from all other states (singleton states) and pairs of states
that produce the same output sequences.

In order to achieve this a temporary
vector (D singletons) is used. After receiving
D keys,D outputs and D singletons a thread (thread
ti) selects a single (ith) item of the D outputs vector
and compares the enumeration of the output sequence
to those of the neighbouring values (the enumeration of
the output sequence read from the i + 1th and i − 1th
locations of the D outputs vector). If the ith value is
different from both of these values then the thread reads
the initial state information from the D keys vector and
stores it in the D singleton vector. In order to determine
which states are split, another temporary vector called
the D groups vector is used as follows: a thread again
selects a single (ith) item of the D outputs vector and
reads the index of the initial state information from the
D keys vector only if one neighbouring output data
is the same as that of the ith item of the D outputs
vector (not both). As a result of this process, for each

3. Note that after the sort, the information in D outputs[i] may not
belong to initial state si.

D outputs

...
01021
02220
02220
02220
00012

...

D keys

...
k+0|
k+1|
k+2|
k+3|
k+4|

...

D outputs

...
00012
01021
02220
02220
02220

...

D keys

...
b+1|
d+1|
h+1|
k+3|
p+1|

...

Before Sorting After Sorting

Figure 11: An illustration for sorting. Stable sorting
algorithm recives D outputs vector and D keys vector
as satellite information.

group of states with the same output data we have two
values in the D groups vector indicating the starting
and ending indexes of the initial states in a group from
the D keys vector (Figure 12). Note that the process of
finding singletons and groups of states can cause thread
divergence, which may prevent threads in a warp from
executing concurrently.

After singletons have been found, a kernel uses
the inference rules to try to find UIOs for other
states (Lines 8–9). In order to achieve this, the ker-
nel receives the list of singletons found and the
D InferenceRules vector. Each thread selects one state
from the D singletons vector and finds its unique pre-
decessors from the D InferenceRules vector. Note that
similar to the D FSM vector, the host can write the
D InferenceRules vector once and the kernels can read
this data many times, therefore the D inferenceRules
vector is stored in texture memory and so coalesced
memory access is not an issue. Moreover, since the
algorithm should also consider unique predecessors of
fresh states, the kernel may be called by the Host until
it reaches a point where no fresh states are found.

Once singletons and groups have been revealed, the
algorithm assigns unique integers (beginning from 0) to
singleton states and groups of states and this defines the
enumeration of each corresponding output sequence (Line
10). The algorithm then updates representations (i.e.
enum(Ō(s))) of states. A thread ti is assigned to a group
S′ and generates a unique integer value (κS′ = i). Then
for all s ∈ S′, ti retrieves the initial state information
from the D keys vector and it writes κS′ to D outputs
(Figure 12).

4.3 Checking Termination Conditions
After enumerations are computed, the algorithm checks
if UIOs of some states have been found in the current
level, if so the algorithm stores the corresponding input
sequences in CPU memory (Lines 11–12). Afterwards
the algorithm decides what to do next. If not all input
sequences of length less than ` have been applied and
either the underlying IO-vector is homogeneous or it has
reached the upper bound ` then the P-UIO algorithm
back-tracks. If it back-tracks, all the data (except data
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D outputs

...
00012
01021
02220
02220
02220

...

D keys

...
b+1|
d+1|
h+1|
k+3|
p+1|

...

D singletons

...
b+1|
d+1|
p+1|

...

D groups

...
i+2|
i+4|

...

D outputs

...
00000
00001
00002
00002
00003

...

i

i+ 1

i+ 2

i+ 3

i+ 4

Before writing enum values After writing enum values

Figure 12: An illustration for enumeration. Each string is
compacted to another string. Note that for same strings
enum function produces same values (red coloured
texts).

related to singletons) computed in the current iteration of
the main loop is discarded and the previous data, which
resides in CPU memory, is brought to GPU memory. The
P-UIO algorithm then continues to execute. Otherwise, if
a UIO has been found for every state then the algorithm
ends execution. If neither of these conditions holds then
the algorithm continues to execute with current D states
and D outputs vectors.

Note that after each IDP the algorithm stores the
current data in CPU memory. As memory transactions
between CPU and GPU are expensive, it is good practice
to reduce the number of such transactions. As a result,
it makes sense to select relatively large values of d. If we
pick d = 1 then each time we increase the input sequence
length by 1 we need to send data back to the CPU and
this will reduce the performance of the algorithm. In
the next section we report on the results of experiments
that show how the value of the parameter d affects the
performance of the algorithm.

4.4 Example
We now show the execution of the P-UIO algorithm
using an example. Consider the FSM given in Figure 3a.
Let us suppose that M2, d = 2 and ` = 5 are provided to
the P-UIO algorithm as parameters. Then the algorithm
first sets id = 0, then initiates vectors (an IO vector).

Dstates = 〈s1, s2, s3, s4〉
Doutputs = 〈0, 0, 0, 0〉

It then stores the values of id and the vectors to CPU
memory. Afterwards it randomly generates an input
sequence, increments id, and sets id = 1. Let us suppose
that

Dinputs =

possible inputs
for 0th iteration︷ ︸︸ ︷
x2x1x2x1

possible inputs
for 1th iteration︷ ︸︸ ︷
x1x1x1x2

Note that the length of Dinputs is dn since n = 4. The P-
UIO algorithm then evolves the elements of the vectors
as follows.

The 0th iteration: as all output values are 0, the Apply
kernel picks the element at index 0 ∗ 4 + 0 of the Dinputs

vector (x2) and the vectors become

Dstates = 〈s2, s3, s2, s1〉
Doutputs = 〈o2, o2, o2, o2〉

The 0th iteration: once the Doutputs vector has been
sorted and updated, the vectors become

Dstates = 〈s2, s3, s2, s1〉
Doutputs = 〈0, 0, 0, 0〉

The 1st iteration: as all the outputs in Doutputs are 0,
during the Apply kernel the element at index 1∗4 +0 of
the Dinputs vector is picked (x1) as input and the vectors
become

Dstates = 〈s3, s4, s3, s2〉
Doutputs = 〈0o1, 0o1, 0o1, 0o2〉

The 1st iteration: after the Doutputs vector is sorted and
updated the vectors become

Dstates = 〈s3, s4, s3, s2〉
Doutputs = 〈0, 0, 0, 1〉

After the second iteration (since d = 2) the algorithm
moves to the next step. Now as the initial state s4 has a
different output, the algorithm concludes that x2x1 in an
input sequence that distinguishes state s4 from any other
states. Later it proceeds with the inference rules given in
Figure 3b and finds input sequences for other states as
s1 = x1x2x1x2x1, s2 = x2x1x2x1 and s3 = x1x2x1. Since
a UIO has been found for each, the algorithm terminates.

5 EMPIRICAL STUDY

In this section we present the results of our experiments.
We used an Intel Core 2 Extreme CPU (Q6850) with
8GB RAM and 64 bit Windows Server 2008 R2 operating
system. The GPU computing approach (separately) used
three NVIDIA GPUs: a TESLA K40, a TESLA c2070, and
a TESLA c1060. In the experiments, we evaluated the
methods by investigating the average time to construct
UIOs for FSMs and the average length of the UIOs
constructed. For the P-UIO method, we used d = 40
as the default value. However, this value affects the
performance of the algorithm and so we also performed
experiments with different d values.

We used several sets of FSMs, described below. More-
over, we also set the upper-bound on the length of
UIOs as ` = n2 where n is the number of states. This
value was chosen since, as noted earlier, it is an upper
bound on the sum of the lengths of the sequences in a
characterisation set (assuming a sensible algorithm has
been applied to generate the characterisation set). In
Naik’s algorithm, there is no upper-bound on the length
of UIO’s. However we believe that this has at least two
drawbacks. First, very long UIOs will typically be of
little value when computing test sequences; instead we
can use alternative approaches (with polynomial upper
bounds on size) such as characterising sets. In addition,
if the FSM does not possess UIOs for all of its states,
then Naik’s algorithm constructs the complete UIO-tree
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in the worst case. Note that some FSMs did not have
UIOs of length ` or less for all states and these were
also discarded; later we report on this.

5.1 FSMs used in the experiments
5.1.1 The FSMs in SUITE I
The FSMs in this suite were designed to investigate the
performance of the methods under varying number of
states. We fixed the number of inputs and outputs to be
p = 2 and r = 2.

The FSMs in this class were generated as follows. First,
for each input x and state s we randomly assigned the
values of δ(s, x) and λ(s, x). After an FSM M was gen-
erated we checked its suitability as follows. We checked
whether M was strongly connected and minimal. If the
FSM failed one or more of these tests then we omitted
this FSM and produced another. Consequently, all FSMs
were strongly connected and minimal.

By following this procedure we constructed 100 FSMs
with n states, where n is a power of 2 and n ∈
{64, 128, . . . , 524288, 1048576}. In total we constructed
1500 FSMs for the first test suite.

5.1.2 The FSMs in test SUITE II
These FSMs were used to explore the effect of the
size of the output alphabet. We fixed the number of
states to be 1024 and constructed 100 FSMs with each
of the following sizes i/o of input/output alphabets:
i/o ∈ {128/2, 128/128, 128/256}. As a result there were
300 FSMs in SUITE II.

5.1.3 The FSMs in test SUITE III
While using randomly generated FSMs allowed us to
perform experiments with many subjects and see how
performance changes as the problem size increases, it is
possible that FSMs used in practice differ from these ran-
domly generated FSMs. We therefore complemented the
experiments with case studies from the ACM/SIGDA
benchmarks, which is a set of test suites (FSMs) used in
workshops between 1989 and 1993 [46]. The benchmark
suite has 59 FSMs, for circuits, obtained from industry.

The circuits were represented using the kiss2 file for-
mat; a standard format devised by manufacturers [46]. In
this format, inputs and outputs are represented as binary
numbers, and states are represented as alphanumeric
characters. For example a transition provided in kiss2
file format (s1, 11/10111000, s1) tells us that if input 3 is
received when the FSM is in the state called s1 then there
is no state change and output 184 is produced. Therefore,
it is straightforward to obtain FSM specification from a
circuit design written in the kiss2 file format.

We used FSMs from the benchmark that were mini-
mal and deterministic. We completed partial FSMs by
introducing self loop transitions for missing transitions.
Thus, for example, if there was no transition from state
s with input x then a transition from s to s with input
x and null output was added.

5.2 Results
In order to carry out these experiments for each FSM we
computed UIO sequences using (1) Naik’s UIO construc-
tion algorithm (implemented as given in [15]), and (2)
the P-UIO algorithm. For a given method we constructed
UIO sequences for each FSM in our pool.

5.2.1 Results of Experiments for FSMs in SUITE I
We present the mean timing results in Figure 13a. As
expected, when the size of the FSM grows, the time
required to construct UIOs increases. We observe that
Naik’s approach took less than three seconds on average
to generate UIOs for FSMs with 512 states. For FSMs
with 1024 states the time rises to 68.45 seconds, for FSMs
with 2048 states the average time to construct UIOs is
1231 seconds. Therefore we did not process FSMs with
more than 2048 states. These results suggest that the
P-UIO algorithm can increase the scalability of Naik’s
algorithm by a factor4 of 512.

The results show that when the NVIDIA TESLA K40
card was used, UIOs for very large FSMs (FSMs with 1
million states) could be constructed in less than two sec-
onds (1626 msec on average). With the TESLA c2070 card
the average time required increased to 3170 msec. and
with the TESLA c1060 card the average time increased
to 3658 msec. In Table 2 we provide the reduction in
timings. The results for SUITE I indicate that P-UIO can
be 11000 times faster then the existing UIO construction
algorithm on average.

In Figure 13b we present the distribution of time spent
by the P-UIO algorithm where Sort, Inference Rules,
MemCpy, and Iterative Deepening stand for the average
time spent for sorting, average time spent for finding
new UIOs using inference rules, average time spent for
memory transactions between the CPU and the GPU and
the average time spent for IDP respectively.

The results suggest that most of the time required to
construct UIO sequences was spent on sorting (averages
vary between 37.6% and 45.01%) and we also observe
that the use of inference rules took 25%−30% of the time
on average, which (compared to time spent on sorting)
was not expected. Therefore we investigated the effect of
using inference rules by counting the number of UIOs
found using inference rules and the number of UIOs
found during exploration. Figure 13d summarises the
results.

The results suggest that on average at least 80% of
the UIOs were found using inference rules. These results
justify the time spent on inference rules. In addition,
the average percentage of time used for back-tracking
(Memcpy) and iterative deepening reduces as the size of
the FSM increase. This implies that as we increase the
number of states, the utilisation of the GPU increases.

Figure 13c gives the results regarding UIO length.
Note that the length of the UIOs returned by the P-UIO

4. The P-UIO algorithm could process FSMs with 220 states and
Naik’s algorithm could process FSMs with 211 states hence we have
220/211 = 29 = 512
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(a) Average time required to construct UIOs
for FSMs in SUITE I

(b) Average time percentages, spent on differ-
ent parts of the P-UIO algorithm for FSMs in
SUITE I

(c) Average lengths of UIOs derived by Naik
and P-UIO algorithms for FSMs in SUITE I

(d) Effect of using inference rules. UIO se-
quences of more than 80% of the states are
computed through inference rules.

(e) Time required to construct UIOs for FSMs
in SUITE I with different iterative deepening
parameter d.

(f) Length of UIOs derived from FSMs in
SUITE I with different iterative deepening
parameter d.

Figure 13: Results of experiments on test SUITE I.

s64 s128 s256 s512 s1024 s2048 Avg.
T(Naik)/T(P-UIOTESLA(K40)) 1.56 33.70 79.56 316.99 6001.64 104091.79 18420.88
T(Naik)/T(P-UIOTESLA(K20))) 0.78 16.20 41.44 166.84 2956.47 49567.52 8791.54

T(Naik)/T(P-UIOC1060)) 0.76 15.60 34.00 126.79 2655.59 45454.93 8047.95
Avg. 1.04 21.83 51.67 203.54 3871.24 66371.41 11753.45

Table 2: The ratio of computation times.

algorithm does not depend on the underlying card and
so we present the results obtained from the TESLA K40
GPU card. The results suggest that compared to the P-
UIO algorithm, Naik’s approach can find shorter UIOs
(13% shorter on average). This result may be caused by
the iterative deepening process. As the P-UIO algorithm
iteratively deepens an IO-vector until it reaches depth d,
it need not find the shortest UIOs. To investigate this we
performed a set of experiments and repeated the tests on
the P-UIO algorithm with different d values.

The results are presented in Figure 13e and Figure 13f.
These results suggest that as we decrease the depth
parameter (to d = 20), the time required to construct
UIOs increases. This is because as we decrease d, the
performance of the GPU reduces due to the frequent
memory copy operations. However, the length of the
UIO sequences reduces: when d = 20, the average differ-
ence between the length of UIO sequences constructed
by the Naik and the P-UIO algorithms reduces to 6%. On
the other hand, as we increase the iterative deepening
parameter d to d = 80 again the time required to
construct UIOs increases. This may be due to the fact

that as we increase d, we also increase the amount of
data that is sorted after IDP. Moreover, when we use
d = 80 the length of the UIOs increase: Naik’s algorithm
generates UIOs that are 38% shorter compared to the
P-UIO algorithm on the average.

During the experiments we observed that some FSMs
did not have UIOs for every state. We observe that as
the number of states increase the chance of generating
FSM reduces. In order to generate 100 FSMs that have a
UIO for each state we generated 232 FSMs when n = 64,
422 FSMs when n = 128, 628 FSMs when n = 256, 839
FSMs when n = 512, 1097 FSMs when n = 1024, 1265
FSMs when n = 2048, 1322 FSMs when n = 4096, 1493
FSMs when n = 8192, 1755 FSMs when n = 16384, 1959
FSMs when n = 32768, 2103 FSMs when n = 65536, 2395
FSMs when n = 131072, 2595 FSMs when n = 262144,
2797 FSMs when n = 524288 and 2903 FSMs when
n = 1048576. Recall that if UIOs are not found for all
states then one can instead use a characterising set that
contains at most n− 1 sequences of length at most n− 1
and a characterising set can be found in polynomial time.
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r/p Naik (msecs) P-UIO (msecs) T(Naik)/
T(P-UIO)

128/2 222345 23.442 9484.89
128/128 136236 15.254 8931.16
128/256 126324 11.002 11481.91

Table 3: Average time to construct UIOs for FSMs in SUITE II
and average increment in timings.

r/p Naik P-UIO L(Naik)/
L(P-UIO)

128/2 10.82 17.27 0.62
128/128 10.27 11.35 0.90
128/256 11.45 11.27 1.01

Table 4: Average length of UIOs for FSMs in SUITE II.aaaaa

5.2.2 Results of experiments for FSMs in SUITE II
The time required to construct UIOs for FSMs in SUITE
II is given in Table 3. Throughout these experiments
we set d = 40. As expected, as the number of outputs
increases, the time required to construct UIOs decreases.
We observe that one particular reason for this is that
as the number of outputs increases the length of the
UIOs derived from FSMs tends to reduce (Table 4). This
is to be expected: as the number of outputs increases,
the algorithms (Naik, P-UIO) have more opportunities
to split states, hence the length of the UIOs reduce.
However, we see that the performance of the P-UIO
algorithm is far better than that of Naik’s algorithm (9900
times faster on average).

5.2.3 Results of experiments for FSMs in SUITE III
The results are presented in Table 5 where we set d = 40.
The time required to construct UIOs with Naik’s al-
gorithm and the P-UIO algorithm (with the Tesla K40
card) are similar for FSMs dk27, bbtas, dk17, and dk15.
Moreover, for these FSMs the P-UIO algorithm is slower
when Tesla C2070 and C1060 were used. However, as the
FSMs get larger the time required to construct UIO with
Naik’s approach increases faster than that required by
the P-UIO algorithm. As before, we also observe that the
UIOs found are shorter when Naik’s approach is used.

5.3 Threats to validity
This section briefly reviews threats to validity and how
these were reduced. We consider threats to internal
validity, construct validity, and external validity.

Threats to internal validity concern factors that might
introduce bias. The main source of such threats is the
tools used to run the experiments. The FSM generation
tool has been used in a number of projects and was
tested. The implementations of the two algorithms were
carefully checked and also tested with a range of FSMs.
To further reduce this threat, we also used an existing
tool that checks if an input sequence is a UIO for
the FSM. This tool was used to check all of the UIOs
generated by the P-UIO algorithm and Naik’s approach.

Another threat to internal validity concerns the ran-
dom process employed while selecting input sequences:
the order of selection may effect the performance of the
algorithm. To investigate this factor, we repeated each
experiment on Test SUITE III 100 times. The results are
provided in Table 6. We observe that, except for the
specification named planet, the variance of timing and
length of UIOs are low, that is to say for this set of FSMs
the random input selection process has limited effect.

Threats to construct validity reflect the potential for
the measurements made to not reflect properties that
are of interest in practice. The main focus of our study
was the time taken to generate UIOs and, as a result,
the scalability of the algorithm. We want FSM-based test
generation techniques that scale to large FSMs and so
scalability is important. Note that FSMs are likely to be
particularly large when one cannot abstract out all of the
data of a model, since we then obtain a separate state
for each logical state of the model combined with each
possible combination of values for the model’s variables.
However, to reduce the scope for threats to construct
validity we also recorded the mean UIO length.

Threats to external validity concern our ability to
generalise from the experiments. There is always such
a threat to validity since we do not know the space
of relevant FSMs and certainly have no good way of
sampling from this. We reduced this threat by using
a combination of randomly generated FSMs and FSMs
from industry that are in a benchmark. We also varied
the number of outputs and states.

5.4 Discussion

Recall that in Section 3 we observed that the P-UIO algo-
rithm is an exponential algorithm; this cannot be avoided
since determining the existence of UIOs is PSPACE-hard.
As the length of the UIO sequences generated from the
FSMs in SUITE I and SUITE II are not longer than the
logarithm of the number of states, it appears that we
have not found such long executions. However, it has
been reported [12] that this is usual: the length UIO
sequences are often no longer than the logarithm of
the number of states of the FSM. Another important
point is the need to select parameter d. The experiments
revealed that when we select a value for d that is too
large, the algorithm gets slower as the size of data to
be sorted increases. However, if d is too small then this
may decrease the GPU occupancy and increasing the
traffic between the CPU memory and the GPU memory.
Therefore, the parameter d should be selected carefully.

6 CONCLUSIONS

This paper explored the problem of constructing UIOs
for very large FSMs. We proposed a new massively
parallel algorithm that can construct UIOs for FSMs with
millions of states. We presented the parallel design, is-
sues encountered, and proposed solutions for the issues.
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FSM Properties Naik (CPU) P-UIO (K40) P-UIO (C2070) P-UIO (C1060)
Name |X| |Q| |Q| ∗ |X| Lmax Tmsecs Lmax Tmsecs Tmsecs Tmsecs
dk27 2 7 14 6 12.65 8 12.26 25.92 27.91
bbtas 4 6 24 8 11.74 10 12.41 25.85 27.26
dk17 4 8 32 2 12.77 3 13.02 27.21 29.16
dk15 8 4 32 2 15.63 3 12.51 25.27 27.17
ex7 11 5 55 1 19.73 1 13.21 27.36 29.22
mc 5 15 75 1 22.27 1 15.11 21.82 23.71

dk512 2 15 105 4 29.63 5 17.25 24.44 26.41
dk16 4 27 108 3 28.35 3 19.22 28.13 30.95

donfile 6 18 180 4 12.34 6 18.71 26.67 28.34
s386 128 13 1664 5 53.73 6 14.14 27.62 29.26
bbsse 128 13 1664 4 49.84 4 15.33 29.32 31.52
s1 256 18 5210 1 31.94 1 17.62 24.72 28.26

planet 128 48 6144 4 37.01 14 17.55 22.53 26.88

Table 5: Results of Case Studies.

Name Lmax Tmsecs Avg(Lmax) Avg(Tmsec)
dk27 7 ≤ . ≤ 9 11.33 ≤ . ≤ 12.78 7.31 11.78
bbtas 9 ≤ . ≤ 10 11.04 ≤ . ≤ 12.69 9.22 11.74
dk17 2 ≤ . ≤ 3 12.44 ≤ . ≤ 13.77 2.25 13.15
dk15 2 ≤ . ≤ 3 12.39 ≤ . ≤ 13.29 2.36 12.99
ex7 1 13.18 ≤ . ≤ 13.22 1 13.19
mc 1 15.17 ≤ . ≤ 15.28 1 15.21
dk512 4 ≤ . ≤ 6 16.01 ≤ . ≤ 17.51 4.89 16.72
dk16 3 18.88 ≤ . ≤ 19.75 3 19.26
donfile 4 ≤ . ≤ 6 17.62 ≤ . ≤ 19.01 5.22 18.67
s386 5 ≤ . ≤ 7 13.21 ≤ . ≤ 14.07 6.64 13.88
bbsse 4 14.93 ≤ . ≤ 15.58 4 15.33
s1 1 17.55 ≤ . ≤ 17.81 1 17.68

planet 6 ≤ . ≤ 14 17.01 ≤ . ≤ 18.77 7.25 17.59

Table 6: Results of test SUITE III obtained after 100
consecutive runs.

The proposed algorithm has exponential worst time
complexity. In order to evaluate the proposed algorithm,
we performed an experimental study by comparing the
proposed algorithm with a well-known UIO generation
algorithm and investigated both the time required to
construct UIOs and the lengths of the UIOs produced. In
the experiments the P-UIO algorithm was able to handle
FSMs with 1,048,576 states in under 2 seconds on average
while the implementation of Naik’s algorithm took 1231
seconds on average for FSMs with 2048 states. The two
algorithms had similar performance for the benchmark
FSMs but these FSMs were much smaller (at most 48
states) and there was a difference in performance for the
larger benchmark FSMs.

There are several possible lines of future research. We
plan to investigate massively parallel UIO generation
algorithms for partial deterministic and nondeterministic
FSMs. We also plan to investigate massively parallel al-
gorithms for generating other types of sequences such as
distinguishing sequences, characterising sets and check-
ing sequences for complete / partial and deterministic
/ nondeterministic FSMs. There is also the question of
whether guidance can be provided regarding the choice
of d. Finally, there may be potential to adapt the pro-
posed approach to problems regarding FSM inference.
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