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ABSTRACT: The lack of reference ground-based PM2.5 observation leads to large gaps in air 24 

quality information, particularly in many areas of the developing world. This study investigated a 25 

new solution for urban air-quality monitoring in regions with limited reference ground-based 26 

monitoring. We developed an observation-based method by combining satellite remote-sensing 27 

techniques and a newly established low-cost sensor network to estimate long-term PM2.5 28 

concentrations over Krasnoyarsk, a highly industrialized Siberian city. First, a physical model was 29 

developed to estimate PM2.5 concentrations using satellite remote-sensing with the aid of ground-30 

based meteorological and radiosonde observations. Observations from the ground-based sensor 31 

network were then used to calibrate the deviations in the satellite-derived PM2.5 concentrations. 32 

The results show that the satellite-based PM2.5 concentrations obtained by our physical model were 33 

in good agreement with the sensor observations (R = 0.78 on the monthly scale). The deviation in 34 

satellite-derived annual PM2.5 concentrations resulted from data restrictions that occurred at noon 35 

and data loss in winter were identified as 20% and 30%, respectively. The regional transport of 36 

smoke from forest wildfires increased PM2.5 concentration to 150 µg/m3 in the summer 2018. The 37 

average PM2.5 concentrations in the urban districts could reach 35 µg/m3, which far exceeded the 38 

World Health Organization air quality guideline. These results underscore the good ability of our 39 

new method to determine PM2.5 concentrations in regions with limited reference ground-based 40 

monitoring. Use of sensor and meteorological observations greatly improved satellite detection of 41 

PM2.5 concentration. In addition, our method has the potential for global application to improve 42 

determination of PM2.5 concentrations, especially in sparsely monitored regions. 43 

Keywords: Satellite; PM2.5; Low-cost sensor; Siberia; Air quality  44 
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1. INTRODUCTION 45 

Given the adverse effects of fine particulate matter (PM2.5) on human health, PM2.5 46 

concentrations should be accurately monitored (Crouse et al., 2012; Guo et al., 2018). It is 47 

particularly important to monitor PM2.5 concentrations in large urban areas, which contain millions 48 

of people in conditions of deteriorated air quality (Baklanov et al., 2016). PM2.5 concentrations 49 

have traditionally been monitored by ground-based networks operated by government agencies 50 

(Rohde and Muller, 2015). However, such networks often fail to provide sufficient observational 51 

coverage for urban air quality monitoring. The resulting lack of governmental PM2.5 data may have 52 

caused long-term deficiencies in air quality measurements in less-developed countries. Recent 53 

advances in satellite-based remote sensing and low-cost sensors are new opportunities to 54 

supplement incomplete conventional monitoring datasets from these regions (Pinder et al., 2019). 55 

Using satellite-detected aerosol optical depth (AOD) to estimate PM2.5 concentration is an 56 

effective tool to fill the data gaps in government-led ground-based observations (Chan et al., 2018; 57 

Lin et al., 2018). The estimation requires an understanding of the vertical distribution, hygroscopic 58 

growth, and characteristics of aerosols (Lin et al., 2016; Liu, 2014). A range of statistical models 59 

has been established to elucidate the link between AOD and PM2.5 concentration using methods 60 

such as machine learning (Di et al., 2016; Xiao et al., 2018) and geographically and temporally 61 

weighted regression (Guo et al., 2017; He and Huang, 2018). These statistical models require 62 

sufficient ground-based PM2.5 measurements as the training datasets, so their use is difficult in vast 63 

regions outside developed countries, where the ground-based monitoring coverage is sparse (Liu, 64 

2014).  65 

Satellite-based estimations of PM2.5 concentrations in these poorly-monitored regions have 66 

to date relied on chemical transport models (CTMs) to simulate AOD-PM2.5 relationships (van 67 
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Donkelaar et al., 2010). These CTM-based methods have no imposed restrictions on ground PM2.5 68 

measurements, but they impose heavy computational demands. Thus, each computation is subject 69 

to certain intrinsic uncertainties, such as those arise from aerosol vertical distribution and optical 70 

properties (van Donkelaar et al., 2006; Jin et al., 2019). It is therefore important to develop 71 

alternative observation-based AOD-PM2.5 algorithms for estimation of PM2.5 concentrations in 72 

these poorly monitored regions. 73 

Technological progress has led to the development of miniaturized low-cost sensor devices 74 

with sufficient sensitivity for air quality monitoring (Kumar et al., 2015; Morawska et al., 2018). 75 

There has been considerable investigation of the utility of low-cost air-quality sensors, and there 76 

is a growing consensus that they could provide valuable information when used appropriately for 77 

suitable applications (WMO, 2018), such as providing indicative and supplementary data rather 78 

than regulatory data. These miniaturized sensors are less bulky, less expensive and easier to deploy 79 

and manage, than the reference instruments (Snyder et al., 2013).  80 

Although PM2.5 datasets with limited accuracy may be obtained from only a single sensor 81 

(Borrego et al., 2016; Castell et al., 2017), the integration of large numbers of sensors into a 82 

network can yield useful and realistic information about a city’s air quality (Schneider et al., 2017). 83 

Some stationary sensor networks have already been established as pilot projects for air quality 84 

monitoring in complex environments, such as urban areas (Gao et al., 2015; Semple et al., 2015) 85 

and airports (Popoola et al., 2018). The United States Environmental Protection Agency (U.S. EPA) 86 

has confirmed the necessity of extending the existing urban air-quality monitoring systems by 87 

introducing low-cost sensors (U.S. EPA, 2014). Long-term measurements from low-cost sensor 88 

networks may ultimately be used to complement the mapping of urban air-quality and to assist in 89 

the calibration and evaluation of deviations in satellite-derived PM2.5 concentration data.  90 
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When urban air quality measurements are severely lacking, the efforts of non-91 

governmental urban air-quality monitoring can encourage citizen action by informing broad 92 

audiences about a city’s air quality. Such a situation has already developed in Krasnoyarsk, a large 93 

industrial center of Siberia. Krasnoyarsk is susceptible to air quality deterioration due to numerous 94 

urban emission sources from chemical and metallurgical industries (including one of the world’s 95 

largest aluminum smelting plants), coal-burning power plants, and transportation (Khleboporos et 96 

al., 2012). Moreover, the region around Krasnoyarsk frequently experiences summer wildfires 97 

(Conard and Davidenko, 1996), which leads to a reduction in ground visibility and cause long-98 

term episodes of air pollution in the city (Damoah et al., 2004). Public concern about air quality 99 

has evolved rapidly in recent years. This concern coincides with an increase in the number of 100 

people with pulmonary disease (Artyukhov et al., 2015). A 2018 report from the Ministry of 101 

Environmental Management concluded that air pollution in Krasnoyarsk was “very high,” and the 102 

city was included in the list of the most polluted urban areas in Russia (Ministry of Environmental 103 

Management, 2018).  104 

To provide more local, accessible data, an unofficial PM2.5 monitoring network named 105 

“Nebo” (“sky” in Russian) was founded in Krasnoyarsk. The numerous low-cost sensors in this 106 

network have rapidly covered the city’s entire urban area; measurements have been collected since 107 

2017, and the data have been periodically released for public access. Moreover, the Nebo network 108 

regularly reports unhealthy or very unhealthy air quality conditions, based on the widely-109 

recognized EPA indices. The Nebo network has developed a high level of trust with a wide range 110 

of users in Krasnoyarsk (>25,000 people follow its activities) and is currently making 111 

recommendations related to outdoor activities for a broad audience within the city. This citizen-112 
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science action is positive, but further scientific investigation of the information potential of the 113 

network is needed, which motivated this study. 114 

This study used Krasnoyarsk as a case study for alternative solutions in urban air-quality 115 

monitoring in regions with poor reference monitoring. We used satellite remote-sensing and newly 116 

developed ground-based low-cost sensors (the Nebo sensor network) as primary tools to measure 117 

the PM2.5 concentrations in Krasnoyarsk. Within the main scope of the study, we analyzed the 118 

agreement of low-cost sensors with available reference observations to determine the validity of 119 

the sensor measurements. Then, by applying an observation-based method to estimate the 120 

distribution of PM2.5 concentration, we characterized PM2.5 variation in Krasnoyarsk during a 2-121 

year period (2017 to 2018), including the anomalous pollution events. Finally, we evaluated the 122 

method’s performance, uncertainty, and long-term applicability. 123 

2. DATA AND METHODS 124 

2.1 Study region 125 

Figure 1 shows the topography of the study region around Krasnoyarsk (92.55°E to 126 

93.15°E, 55.7°N to 56.3°N). Krasnoyarsk is on the Yenisei river in Siberia, Russia, and is 127 

surrounded by forested mountains to the south and west and by plains to the north and east. It is 128 

the regional center of Krasnoyarsk Krai, which is part of the so-called “donor” region of Russia 129 

that supplies 50% of the country’s gross domestic product (GDP). Krasnoyarsk’s economy is 130 

highly industrialized, and some industrial facilities around it are unprecedented and have global 131 

importance. For instance, ~3% of the world’s aluminum is produced there. This industrialized 132 

economy has invariably created environmental challenges in Krasnoyarsk and its surroundings, 133 

such as degraded air quality. Moreover, Krasnoyarsk’s mountainous landscape and its location in 134 

the basin of the Yenisei River make the city more susceptible to fog and haze formation. The 135 
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frequent cold temperatures generate temperature inversion layers, whereby a layer of mountain-136 

derived cold air traps polluted air from the industrial sources in the atmosphere over Krasnoyarsk 137 

(Gosteva et al., 2019). 138 

 139 

Figure 1. Topography of the study region around Krasnoyarsk. White points represent 140 

measurements within the ground-based PM2.5 sensor network, red square represents the ground 141 

meteorological station for visibility and relative humidity measurements, yellow triangle 142 

represents the radiosonde station, and orange triangle represents the PM2.5 reference monitoring 143 

station. 144 

2.2 Ground-based observations of PM2.5 in Krasnoyarsk 145 

2.2.1 Reference observation of PM2.5 146 

 PM2.5 concentration was measured using the β-attenuation monitor (BAM) at Severniy 147 

(SEV, 56.07°N and 92.94°E) station in February 2018. Its location is shown by the orange triangle 148 

in Figure 1. This reference data was provided by the Ministry of Environment to Nebo network as 149 
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a validation dataset for the newly introduced sensors. The BAM analyzer is manufactured by 150 

MetOne Instruments. According to the governmental procurement activities, more BAM analyzers 151 

are expected to be installed within Krasnoyarsk in the near future 152 

(http://zakupki.gov.ru/223/purchase/public/download/download.html?id=45643315). 153 

2.2.2 Sensor observation of PM2.5 154 

The establishment of the Nebo network continues in Krasnoyarsk. The network uses 155 

identical units of the AirVisual Node to measure PM2.5 concentration. The operation of the 156 

AirVisual Node is based on the common light-scattering principle (Singer and Delp, 2018). The 157 

AirVisual machine-learning algorithms then calibrate and validate the sensor using temperature 158 

and humidity values. AirVisual staff conducted a field evaluation of the sensor’s performance in 159 

Beijing in June 2015 (Ng, 2016), and the comparison between observations from AirVisual sensors 160 

and the reference BAM instrument on a daily basis during this period shown good agreement (R = 161 

0.91). Independent laboratory evaluation of AirVisual sensors using DustTrak has also confirmed 162 

that these units reliably and realistically quantify PM2.5 (Tan, 2017), and all sensors were delivered 163 

to the network installation team after the laboratory calibration was conducted by the manufacturer.  164 

PM2.5 concentration was recorded at each measurement site at a high frequency of 20 165 

minutes and then averaged to obtain hourly estimates. The Nebo network has introduced 14 166 

stations for PM2.5 monitoring, as indicated by white points in Figure 1 (see detailed information in 167 

Table S1). This study used the observations from 11 stations (which by January 2019 had 168 

accumulated data for more than 6 months) to calibrate and evaluate satellite observation. The 169 

sensor observations at Komsomolskiy (KOM) station, which is 900 m from SEV station, were 170 

used from February 2018 to determine the sensor’s performance. All sensors were mounted outside 171 

in special boxes situated on the second floors of residential buildings of a similar type. This setup 172 
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was used to ensure as much as possible that the sensors were free from exposure to very strong 173 

emission sources and could thus measure PM2.5 with good spatial representativeness. The data 174 

were uploaded by the AirVisual global project to an air pollution app that offers free access to a 175 

large air quality database that includes observations from thousands of AirVisual Nodes distributed 176 

around the world (https://www.airvisual.com).  177 

2.3 Radiosonde observations 178 

A key parameter in all existing AOD-PM2.5 models is the planetary boundary layer height 179 

(PBLH), which determines the extent to which vertical mixing occurs (He and Huang, 2018; Ma 180 

et al., 2016). Common methods for deriving PBLH have used vertical profiles of meteorological 181 

quantities (Guo et al., 2016; Johnson et al., 2001). In this context, radiosondes remain the standard 182 

for upper-level air monitoring and provide the most accurate information of vertical profiles of the 183 

meteorological variables (Cimini et al., 2013). Radiosondes are thus often adopted as a data source 184 

for operational determination of PBLH (Seibert et al., 2000).  185 

We acquired the radiosonde data from Yemelyanovo (YEM, 56.18°N and 92.62°E) station 186 

in Krasnoyarsk from the World Meteorological Organization’s global telecommunications system, 187 

as shown by the yellow triangle in Figure 1. Radiosondes are routinely launched twice a day at 188 

7:00 am and 7:00 pm local time. We adopted the method proposed by Holzworth (1964, 1967) to 189 

produce diurnal variation in the PBLH at an interval of 1 hour. The Holzworth method has been 190 

widely used in a range of meteorological and environmental studies (Karimian et al., 2016; Yang 191 

et al., 2013). It assumes a constant potential temperature within the PBL. The PBLH is identified 192 

as the height at which the upper potential temperature equal to ground potential temperature. Based 193 

on the estimated hourly PBLH data, the daily noontime average of PBLH (from 11:00 am to 2:00 194 

pm) was obtained to match the time of satellite observation. 195 



10 
 

2.4 Meteorological observation 196 

Hourly surface meteorological parameters, such as relative humidity (RH) and visibility 197 

(L), at Opytnoe Pole (OPY, 56.03°N and 92.75°E, red square in Figure 1) were also acquired from 198 

the World Meteorological Organization. The atmosphere was moderately moist in Krasnoyarsk, 199 

and the average noontime RH was 61.2% ± 16.5% within this 2-year period. The visibility ranged 200 

from 0 to 10 km, with all values above 10 km recorded as 10 km; such visibility upper limits are 201 

frequently registered not only in Siberia but also in regions such as America, Africa, the Middle 202 

East, and southern Asia (i.e., an upper limit can be 10 km or 16 km in these places). The surface 203 

aerosol extinction coefficient (σa,0) can be quantified from visibility by σa,0 = 3.912/L 204 

(Koschmieder, 1925).  205 

2.5 Satellite observation of PM2.5  206 

2.5.1 Satellite observation of AOD 207 

The Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard Terra 208 

and Aqua measure AOD (Chu et al., 2002). In this study, MODIS C6 level-2 AOD data in 209 

Krasnoyarsk for 2017 and 2018 were acquired. The AOD data were retrieved using the dark-target 210 

algorithm over land (Levy et al., 2013). Based on the nominal resolution of the MODIS AOD, we 211 

created 400 grid cells at a spatial resolution of 0.03° × 0.03° that covered the study region. The 212 

measurements from two satellites were averaged to represent the daily noontime value. MODIS 213 

AOD data are often missing due to the presence of clouds and high surface reflectance (Liu, 2014). 214 

Figure S1 shows the sample size of the satellite-based daily AOD within the study region for 215 

different months from 2017 to 2018. The samples were counted when satellite observations were 216 

available in at least 25% of the area within the study region. It was found that the satellite 217 

observations were poor in winter, mainly because snow and ice surfaces in these high-latitude 218 
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regions generate high surface reflectance (van Donkelaar et al., 2006). The data loss in winter 219 

should be therefore considered when we estimate annual PM2.5 concentrations via satellite.  220 

2.5.2 Satellite-based estimation of PM2.5 221 

We adopt and extend an observational data-driven algorithm to retrieve PM2.5 222 

concentrations, showing in supplementary material (Lin et al., 2015). The algorithm introduces 223 

aerosol scale height (H), integrated humidity coefficient (γ’), and integrated reference value under 224 

dry-air conditions (K). 225 

The scale height H can be estimated from the ratio of the satellite-based AOD and the 226 

visibility-derived σa,0. Similar to most other regions, the visibility dataset was affected by an upper 227 

limit of 10 km in Krasnoyarsk. The PBLH provided additional information to characterize the 228 

aerosol vertical distribution. The scale height can be larger than PBLH when a significant 229 

concentration of aerosols accumulates above the PBL. We therefore introduce a ratio (A) of scale 230 

height to the PBLH. Spatial distribution of the PM2.5 concentration can be estimated as follow: 231 

                                                 𝑃𝑃𝑃𝑃2.5 =
𝐴𝐴𝐴𝐴𝐴𝐴

𝐴𝐴∙𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝐾𝐾∙� 1−𝑅𝑅𝑃𝑃1−𝑅𝑅𝑃𝑃0
�
−𝛾𝛾′                                                         (1) 232 

The PBLH and RH derived from the radiosonde and meteorological stations represent 233 

atmospheric conditions over the entire Krasnoyarsk area. The γ’ and K values are prerequisite 234 

parameters in our PM2.5 estimation model, and both are associated with aerosol characteristics (Lin 235 

et al., 2019). The average γ’ and K values across China, where aerosols covered various categories, 236 

were estimated to be 0.50 ± 0.32 and 5.14 ± 1.56 m2/g, respectively (Lin et al., 2015). In the 237 

monitoring-limited regions, assumptions of both γ’ and K values are required. In this work, we 238 

began the estimate of PM2.5 concentration in Krasnoyarsk based on the average γ’ and K values 239 

derived from the Chinese study. Because actual γ’ and K values over Krasnoyarsk were likely to 240 

differ from the values over China, we discuss the effect of the difference in aerosol characteristics 241 
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between China and Krasnoyarsk in Section 3.3 and assess the possible uncertainties based on these 242 

assumptions in Section 3.5. 243 

2.6 HYSPLIT backward trajectory model 244 

We exploited the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) 245 

model to track the origin of air masses in Krasnoyarsk. The HYSPLIT model is one of the most 246 

common models for conducting back-trajectory analysis and is based on source-receptor 247 

relationships (Rolph et al., 2017). In this study, the computation of the backward trajectory used 248 

the meteorological fields of the Global Data Assimilation System with a spatial resolution of 0.5° 249 

× 0.5°. The model ran in a backward trajectory regime for 12 hours, starting from 12:00 UTC in 250 

Krasnoyarsk (56.01°N, 92.87°E) at 200 m above sea level. The backward trajectories of air parcels 251 

were calculated using a free-access online platform developed by the Air Resources Laboratory of 252 

National Oceanic and Atmospheric Administration (https://ready.arl.noaa.gov/HYSPLIT.php).  253 

3. RESULTS 254 

3.1 Evaluation of ground-based sensor observations 255 

 To evaluate the performance of the Nebo network sensors, we compared PM2.5 256 

concentration observations from one sensor with the reference PM2.5 measurement. The BAM 257 

observations from SEV station in February 2018 had been provided to the Nebo network by 258 

governmental agencies. Figure S2 compares the time series of hourly PM2.5 concentrations from 259 

the sensor at KOM station with the reference BAM monitor at SEV station. Good agreement was 260 

obtained between the PM2.5 concentrations from the sensor and BAM observation. Both of sensor 261 

and BAM monitoring detected those high PM2.5 pollution episodes.  262 

Figure 2 shows regression relationship between hourly PM2.5 concentrations from the 263 

sensor and reference BAM monitoring. Slope and intercept were estimated to be 0.95 and 0.41 264 
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µg/m3, respectively. Good agreement between the sensor and reference monitoring was obtained 265 

with a correlation coefficient (R) of 0.94 (N = 672) and a mean absolute percentage deviation 266 

within 20%. The monthly average PM2.5 concentration from the sensor and BAM were estimated 267 

to be 55.4 µg/m3 and 57.7 µg/m3, respectively. The systematic deviation in the monthly average 268 

PM2.5 concentration was -2.3 µg/m3, which was insignificant and was within 5%. Such high 269 

agreement also outperformed the experiment conducted by the AirVisual group in Beijing. 270 

Moreover, this node-to-BAM agreement was as high as that of the previous dataset from the 271 

Chinese city of Xian (R = 0.93–0.95) (Gao et al., 2015) and higher than that of the dataset from 272 

the U.S. city of Oakland (R = 0.80–0.84) (Holstius et al., 2014).  273 

 274 

Figure 2. Regression relationship between hourly PM2.5 concentrations from the sensor at KOM 275 

station and the reference BAM monitoring data from SEV station in February 2018. The statistical 276 

metrics include correlation coefficient (R), root-mean-square deviation (RMSD), mean deviation 277 

(D), mean absolute deviation (|D|), mean percentage deviation (PD), and mean absolute percentage 278 

deviation (|PD|). 279 
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To evaluate the performance of each sensor, we further compare temporal variation in the 280 

hourly PM2.5 concentrations at different stations. Figure 3 shows the correlation coefficient 281 

between hourly PM2.5 concentrations for each pair of stations during the second half year of 2018 282 

(i.e., from July to December), when observations were available at all stations. Average sample 283 

size was 3697. The correlation coefficient ranged from 0.45 to 0.89 with an average of 0.72. The 284 

lowest correlation coefficients were associated with PM2.5 concentration at AKA station, which 285 

was on the westernmost side of the city. The larger distances between AKA station and other 286 

stations could lead to these lower correlation coefficients. Temporal variation in PM2.5 287 

concentrations at AKA and its neighboring stations (e.g., BAZ and KIR stations), however, was 288 

highly consistent with a correlation coefficient exceeded 0.8. These results suggest the good 289 

performance of all sensors from the network. 290 

 291 

Figure 3. Correlation coefficient between hourly PM2.5 concentrations for each pair of stations 292 

during the second half year of 2018 (i.e., from July to December). 293 
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Validation of all sensors of the Nebo network throughout all seasons of the year would 294 

have been an enormous undertaking given the limited data access and the gaps in the spatial 295 

coverage of the government monitoring. Nevertheless, within the observed conditions, the high 296 

sensor-to-BAM agreement and insignificant systematic bias suggest good field performance of the 297 

PM2.5 sensors in Krasnoyarsk, which implies that the use of sensors after laboratory calibration 298 

was acceptable to achieve the desired goals of our study. In case of detecting a significant sensor’s 299 

bias after laboratory calibration, we would recommend an adjustment of the sensor data using the 300 

regression equations. 301 

3.2 Retrieving PBLH and scale height 302 

To define the vertical mixing within our method of PM2.5 data retrieval, we plotted the time 303 

series of the noontime average PBLH (from 11:00 am to 2:00 pm) at the radiosonde station from 304 

2017 to 2018 (see the black line in Figure S3). In general, the noontime PBLHs in spring and 305 

summer were higher than those in autumn and winter. Such seasonal patterns were similar to those 306 

observed in radiosonde or lidar datasets from northern China (Chu et al., 2019; Guo et al., 2016); 307 

these studies have shown that high near-surface wind speed and intense solar radiation favors the 308 

development of the boundary layer in spring and summer. The scale height H was estimated from 309 

the ratio of the satellite-based AOD and the visibility-derived σa,0. The red triangles show the 310 

noontime scale height at the meteorological station on specific dates, when satellite observations 311 

were available and the ground visibility was within the upper limit (i.e., 10 km).  312 

Figure S4 shows the seasonal average ratio (A) of the scale height to PBLH in Krasnoyarsk 313 

during the study period. The seasonal average ratios for spring (MAM), summer (JJA), and autumn 314 

(SON) were estimated to be 0.99 ± 0.52, 1.70 ± 0.62, and 0.99 ± 0.37, respectively. The high ratio 315 
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in summer suggests that approximately 40% of aerosols appeared above the PBL, which resulted 316 

from the vertical convection and regional transport of aerosols such as wildfire smoke.  317 

3.3 Comparison between satellite-based and ground-based PM2.5 concentrations  318 

We applied the method described in Section 2.5.2 to estimate PM2.5 concentrations using 319 

satellite remote-sensing data, coupled with radiosonde and ground meteorological observations. 320 

The satellite-based estimation of PM2.5 concentration used average values of γ’ and K obtained 321 

from China (i.e., 0.50 and 5.14 m2/g) (Lin et al., 2015). We compared the agreement in PM2.5 322 

concentrations between satellite and Nebo sensor observations. Thus, Figure 4 shows correlation 323 

coefficients between the satellite-derived and ground-based daily noontime PM2.5 concentrations 324 

during the study period. The correlation coefficients ranged from 0.36 at PAV station to 0.87 at 325 

AKA station (mean, 0.57 ± 0.14). These correlation coefficients were comparable to those from 326 

the eastern United States (R = 0.30 – 0.80) and higher than those from the western United States 327 

(R < 0.30) obtained with the CTM-based model (van Donkelaar et al., 2006). Our results suggest 328 

that the observation-based model predicted the temporal variations in PM2.5 concentration as 329 

accurately as the simulation-based model.  330 

 331 
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Figure 4. Correlation coefficient between satellite-derived and ground-observed daily noontime 332 

PM2.5 concentrations from various sensors during the study period. 333 

However, systematic deviations were observed between the satellite-derived and sensor-334 

observed PM2.5 concentrations, in that the 2-year averages of the satellite-derived PM2.5 335 

concentrations were consistently higher than the corresponding sensor observations. On average, 336 

these satellite-derived PM2.5 concentrations were overestimated by 5.92 µg/m3 (i.e., 27.6% of 337 

sensor observations), which could have been due to the various chemical compositions and optical 338 

properties of aerosols over Krasnoyarsk compared to the aerosols over China. That is, Siberian 339 

wildfires mean that Krasnoyarsk experiences a higher average loading of carbonaceous aerosols 340 

(e.g., elemental and organic carbons) than does China (Smolyakov et al., 2014). The K value in 341 

Krasnoyarsk is thus expected to be higher than that in China because of the strong light extinction 342 

efficiency of the carbonaceous aerosols (Watson, 2002). Therefore, we made an assumption and 343 

used a higher K value of 6.56 m2/g for the Krasnoyarsk data, 27.6% higher than the average value 344 

in China. This eliminated the systematic error within the satellite-derived data but did not affect 345 

the correlation coefficient between the satellite-derived and sensor-observed daily PM2.5 346 

concentrations.  347 

Figure 5 compares of the satellite-derived and ground-observed daily noontime PM2.5 348 

concentrations from the sensor at SVE station, which has the longest data record (i.e., 349 

measurements started in June 2017). In the Figure, the blue points on both panels show the time 350 

series of the ground-observed daily noontime PM2.5 concentration from 2017 to 2018, and the red 351 

points show the time series of the satellite-derived daily noontime AOD and PM2.5 concentrations, 352 

respectively. Notably, after the conversion from AOD to PM2.5 concentration, the correlation 353 
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coefficient increased from 0.51 to 0.54 (N = 78) during the study period. In particular, the 354 

correlation coefficient substantially increased from 0.09 to 0.67 (N = 24) in 2017.  355 

(a)  356 

(b)  357 

Figure 5. Comparison of satellite-derived and ground-observed daily noontime PM2.5 358 

concentrations from the sensor at SVE station from 2017 to 2018. Blue points in (a) and (b) show 359 

the time series of the ground-observed daily noontime PM2.5 concentrations. Red points in (a) and 360 

(b) show the time series of the satellite-derived daily noontime AOD and PM2.5 concentrations, 361 

respectively. 362 

3.4 Characterization of PM2.5 concentration variation 363 

We combined Nebo monitoring observations and spaceborne data to characterize PM2.5 364 

concentration variations in Krasnoyarsk in the years for which observations were available (2017 365 

and 2018) and during the anomalous pollution events. 366 

3.4.1 Spatiotemporal variation of PM2.5 concentration 367 
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At first, we analyzed the temporal variability of PM2.5 concentration during 2017 and 2018. 368 

Figure S5 shows the time series of PM2.5 concentrations from 11 sensors within this period. The 369 

PM2.5 concentrations varied considerably. The highest PM2.5 concentrations (>200 µg/m3) were 370 

frequently observed in winter (e.g., January and February) and in July 2018. The high PM2.5 371 

concentrations in winter were seemingly driven by enhanced emissions from heating systems and 372 

by weather conditions that were unfavorable for pollution dispersion (Mikhailuta et al., 2009). 373 

Figure S6 demonstrates the diurnal variation in PM2.5 concentration from the sensor 374 

observations. These variations were characterized based on the averaged PM2.5 concentrations 375 

obtained from the four sensors at SVE, PAV, LOP, and ALE stations with full data coverage in 376 

2018. The results show that the PM2.5 concentration reached its peak at 2:00 pm. We also plot the 377 

corresponding PM2.5 concentrations at noontime (indicated by the red solid line), for when satellite 378 

observations were available. We discovered that the noontime average PM2.5 concentration was 379 

higher than the 24-h average by 5.24 µg/m3 (i.e., 20.0% of the 24-h average).  380 

Because satellite observations were only available at approximately noon, a correction 381 

factor was needed to represent the degree of diurnal PM2.5 variation to obtain robust long-term 382 

averages. To obtain the monthly average PM2.5 concentration, we therefore applied a correction 383 

factor of 1.20 to the satellite-derived monthly average of noontime PM2.5 concentrations. This 384 

correction factor was essential because the use of satellite-derived PM2.5 concentrations mainly 385 

focused on the use of long-term averages (e.g., monthly and annual averages). 386 

We further evaluated the correlation between satellite-derived monthly average PM2.5 387 

concentrations against ground-based observations from all sensors during 2017 and 2018 period 388 

(shown in Figure 6). A good correlation coefficient of 0.78 (N = 74) was obtained. This city-scale 389 

correlation is comparable to national-scale comparisons seen in other studies (van Donkelaar et 390 
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al., 2010, 2015; Geng et al., 2015; Peng et al., 2016). The root-mean-square deviation, mean 391 

deviation, and mean percentage deviation were estimated to be 7.1 µg/m3, 1.4 µg/m3, and 18.1%, 392 

respectively. We once again emphasize that the application of the constant correction factor does 393 

not affect the correlation coefficient between the satellite-derived and sensor-observed monthly 394 

PM2.5 concentrations. 395 

 396 

Figure 6. Evaluation of satellite-derived monthly averaged PM2.5 concentration against ground-397 

based observations from all sensors in Krasnoyarsk during 2017 and 2018. Statistical metrics 398 

include correlation coefficient (R), root-mean-square deviation (RMSD), mean deviation (D), 399 

mean absolute deviation (|D|), mean percentage deviation (PD), and mean absolute percentage 400 

deviation (|PD|). 401 

The solid line in Figure S7 shows the monthly variation of the average PM2.5 concentrations 402 

from the four sensors at SVE, PAV, LOP, and ALE stations with a full data coverage in 2018. It 403 

revealed the distinct pollution features in Krasnoyarsk. The highest monthly PM2.5 concentration 404 

was observed in winter (as high as 63 µg/m3 in February). Another peak of PM2.5 concentration 405 
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was observed in summer (40 µg/m3 in July). Both peaks are also displayed in Figure S5, which 406 

depicts results derived from measurements at 11 stations. Because the satellite observations were 407 

only available from April to October (the 7 months shown by the red line), another correction 408 

factor that represented the degree of monthly PM2.5 variation was needed to obtain the annual 409 

average.  410 

We found that the annual average PM2.5 concentration was higher than the 7-month average 411 

by 7.86 µg/m3 (i.e., 30.0% of the annual average), which indicates that the use of uncorrected 412 

satellite data leads to severe underestimation of the annual PM2.5 concentrations in high-latitude 413 

regions such as Krasnoyarsk. To obtain a more accurate annual average of PM2.5 concentration, 414 

we therefore divided the satellite-derived 7-month average of PM2.5 concentration by 0.7.  415 

After the correction factors were determined, we identified the spatial distribution of the 416 

PM2.5 concentrations in Krasnoyarsk by plotting the satellite-derived averages from 2017, 2018, 417 

and 2017–2018 (shown in left, middle, and right panels of Figure 7, respectively).  The points in 418 

the middle panel represent the annual average PM2.5 concentrations from the four sensors with full 419 

data coverage in 2018. The mean deviation of the annual averaged PM2.5 concentrations from 420 

satellite and sensor observations was 1.4 µg/m3 (i.e., 5.3% of sensor observation). Satellite 421 

observations show that the highest PM2.5 concentrations were present over the geographical center 422 

and the southern coast of the city in 2017 and 2018 period. In this area, the PM2.5 concentrations 423 

ranged from 29.5 µg/m3 (Central district) to 35.0 µg/m3 (Sverdlovskiy District) in 2017. In 2018, 424 

the same area had PM2.5 concentrations ranging from 24.7 µg/m3 (Central district) to 33.9 µg/m3 425 

(Sverdlovskiy District). Therefore, the 2-year average PM2.5 concentrations in the central and 426 

southern districts of Krasnoyarsk could reach 35 µg/m3, which far exceeds the World Health 427 

Organization (WHO) Air Quality Guideline (AQG) for annual PM2.5 standards (i.e., 10 µg/m3).   428 
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The higher PM2.5 concentration in the geographical center of the city and southern districts 429 

underscores the high pollutant emission and unfavorable dispersion conditions in this area, and the 430 

increased negative effects on health that these conditions would have. In total, the spatial average 431 

of the 2-year PM2.5 concentration over 400 grid cells within the study region was estimated to be 432 

23.1 ± 3.5 µg/m3. This estimate was ~63% higher than the national averaged PM2.5 concentration 433 

(14.2 µg/m3) in Russia in 2013 (Brauer et al., 2016).  434 

 435 

Figure 7. Left and middle panels show spatial distribution of satellite-derived annual averaged 436 

PM2.5 concentrations in 2017 and 2018, and right panel shows corresponding 2-year average 437 

distribution. Points in middle panel represent annual average PM2.5 concentrations from the four 438 

sensors with full data coverage in 2018. 439 

3.4.2 PM2.5 pollution episode in July 2018 440 

As aforementioned, PM2.5 concentration had a distinct spike in July 2018. Panel a of Figure 441 

8 shows the time series of PM2.5 concentrations at PAV station in the middle of July 2018, where 442 

it can be seen that PM2.5 concentrations reached 150 µg/m3 on July 13. We make use of the true-443 

color images acquired from the MODIS instrument aboard Aqua satellite (shown in panel b) for 444 

further investigation. In the figure, the red points represent the areas of active fire hotspots. We 445 

found that on July 13, 2018, the large forest areas in the close vicinity of Krasnoyarsk were 446 
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engulfed by the wildfires. Analysis of MODIS images reveals that the massive smoke plumes 447 

originated from wildfires in the northeastern direction from Krasnoyarsk. Krasnoyarsk was 448 

directly exposed to the increased aerosol loading driven by smoke particles. Additional analyses 449 

of HYSPLIT back trajectory (shown in panel c) have also supported the smoke-transport 450 

hypothesis, that is, that the air masses transported smoke particles directly from the hotspot regions 451 

to Krasnoyarsk. 452 

(a)  453 

(b) (c)  454 

Figure 8. (a) Time series of PM2.5 concentration at PAV station in the middle of July 2018. (b) 455 

True-color images acquired from the MODIS instrument aboard Aqua satellite on July 13, 2018. 456 

Red points identify actively burning wildfires. (c) HYSPLIT back-trajectory analysis using 12-h 457 

setting (yellow triangles) near Krasnoyarsk (white pixels). 458 

3.5 Performance and uncertainties of the observation-based method 459 
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In this section, we evaluate the performance and describe the uncertainties of our proposed 460 

method and data sources used in this study. 461 

3.5.1 Evaluation of our method compared to other methods  462 

The statistical AOD-PM2.5 methods used extensive PM2.5 observational data to train the 463 

models and therefore tended to have lower estimation errors (He and Huang, 2018; Liu, 2014; Ma 464 

et al., 2016). Their requirement for extensive ground observations hinders their application in the 465 

regions with large observational data gaps (like most developing countries) or with restricted 466 

access to PM2.5 data (e.g., most ex-Soviet countries including Russia). In such regions, traditional 467 

AOD-PM2.5 methods have to rely on simulation results from the CTMs (e.g., GEOS-Chem model) 468 

to give an estimate of PM2.5 concentrations.  469 

Figure S8 shows the spatial distribution of the satellite-derived annual PM2.5 concentrations 470 

based on a CTM-based model in the study region for 2016 (downloaded from 471 

http://fizz.phys.dal.ca/~atmos/martin/?page_id=140). The spatial pattern of PM2.5 concentrations 472 

was similar to the results obtained in this study. In particular, the PM2.5 concentrations were 473 

elevated within the urban area of Krasnoyarsk and in the close vicinity of the city. The spatial 474 

average of PM2.5 concentrations obtained from the CTM-based model was approximately 16.0 475 

µg/m3, which was 30% lower than the concentrations obtained in this study. Such a deviation could 476 

stem from the uncertainties of model simulation and satellite data loss. This would potentially 477 

cause bias in exposure and health impact assessments using this data. Future studies should further 478 

compare data sets obtained from different sources. 479 

3.5.2 Uncertainties of the satellite-derived PM2.5 concentrations 480 

Major uncertainty in the PM2.5 concentrations estimated from satellite data stems from the 481 

input factors such as satellite-based AOD, PBLH, the ratio (A) of scale height to PBLH, and the γ’ 482 

http://fizz.phys.dal.ca/%7Eatmos/martin/?page_id=140
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and K values. Using the same PBLH algorithm as in Krasnoyarsk, we also produced the PBLH 483 

from radiosonde data in Hong Kong, for which ground-based lidar observations are available. 484 

Evaluation of the radiosonde-derived daily noontime PBLH using the lidar observations showed 485 

good agreement, with a correlation coefficient of 0.63 (N = 2075) and a percentage deviation of 486 

around 20% (Su et al., 2017).  487 

It is also essential to consider the difference between the scale height and PBLH for regions 488 

like Krasnoyarsk, in which a large proportion of aerosols are transported above the PBL. Without 489 

introduction of the ratio of scale height to PBLH, the PM2.5 estimation can be greatly biased during 490 

summer. In this study, we used the seasonal average of such a ratio because the AOD-visibility 491 

pairs were limited during the investigation period. If more visibility data are available, more 492 

information on the scale height and its association with PBLH can be obtained.  493 

The γ’ and K are prerequisite parameters in our PM2.5 estimation model. Both are associated 494 

with aerosol characteristics. The use of the average K value from China (i.e., 5.14 ± 1.56 m2/g) 495 

resulted in uncertainty in the PM2.5 concentration of about 30%. Given the higher loading of 496 

carbonaceous aerosols, we used a higher K value to reduce the deviation in the satellite-derived 497 

PM2.5 concentration for Krasnoyarsk.  498 

To assess the uncertainty caused by using the average γ’ value from China (i.e., 499 

0.50 ± 0.32), we performed Monte Carlo simulation, in which we set the values of AOD, PBLH, 500 

A, RH, and K as 0.25, 1 km, 1, 61%, and 6.56 m2/g, respectively. We generated 10,000 γ’ values 501 

from a normalized distribution with a mean and standard deviation of 0.50 and 0.32, respectively. 502 

We then estimated PM2.5 concentrations using these γ’ values. The frequency distribution of the 503 

estimated PM2.5 concentration is shown in Figure S9. The estimated mean (and standard deviation) 504 

PM2.5 concentration was 31.0 ± 4.3 µg/m3, which suggests that the uncertainty caused by direct 505 
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use of the γ’ value from China was less than 15%. Future studies can refine the γ’ and K values 506 

when more detailed information on local aerosol characteristics are available. 507 

3.5.3 Uncertainties of sensor observations 508 

We performed several quality control processes to avert the failure of sensors. First, once 509 

the cheap nodes for PM2.5 observations are calibrated in laboratory conditions, they will endure for 510 

~2 years in the stable conditions without instrumental-related deviations. Our work deals with 1-2 511 

years observations. Second, an automated algorithm sets observation value to N.A. once 512 

observation is physically failed. Third, we performed statistical-based “flagging” the observation 513 

data beforehand. We determined that not more than 4% of point observations were found in the 514 

statistically unrealistic interval for each station. Statistical anomaly is defined as range outside +/- 515 

3 times of standard deviation from hourly mean. Such observations were removed beforehand. 516 

Most malignant observations were found in BOT station (3.9%). However, it is not a problem in 517 

the data since BOT station had provided prominently less observations in total than other stations. 518 

The agreement between low number of total observations at BOT and the presence of the statistical 519 

anomalies indirectly approves the validity of automated sensor algorithm (i.e., sensor adequately 520 

and frequently switches off at station with issues). At every other station, the percentages of the 521 

anomalies found per each station  are: 2.9% at SVE, 1.9% at UDA, 3.3% at VES, 3.1% at AKA, 522 

3.2% at DZH, 3.1% at MUZ, 2.9% at BAZ, 3.4% at KIR, 2.4% at KOP, 2.3% at ADY, 3.5% at 523 

KOM, 3.6% at ZHE, 3.5% at PAV, 3.9% at BOT. 524 

Collocation of BAM-to-node experiment is peculiarly difficult in Krasnoyarsk because of 525 

three malignant factors. Foremost, the access to air quality observations is severely limited and 526 

there is a lack of comprehensive study that can approve that existing governmental sensors are 527 

accurate enough. As we know, the first study about evaluating air quality observations from 528 
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governmental network is under the process. We underline that their effort is independent from our 529 

study and do not provide any synergistic retrieval for PM2.5 monitoring. Once they open all these 530 

datasets or manage to publish their study, it will be easier to compare their observations with our 531 

method. At second, any actions with BAM instrument on-site is challenging for the team behind 532 

this paper. BAM collocation was initiated by Russian government as a result of exceptional top-533 

down decision. After that, we had not noticed any will to make additional experiment from the 534 

governmental side. Despite we want as much as possible inter-comparison data, the combined 535 

manpower-funding limitation for the on-site work does not allow to obtain any additional BAM 536 

sensors in a commercial way. At third, it is a common knowledge about peculiarly difficult 537 

situation with air quality observations in the post-USSR countries. The current situation 538 

description is easily found in the modern research literatures (Strukova et al., 2019). All in all, 539 

although one BAM is not adequate for very comprehensive study, but in our situation and as a first 540 

step towards better understanding of air quality status in industrial city, it is a good start. These 541 

factors are actually the reasons why our work is so helpful in the hindered situation with poor air 542 

quality monitoring, constrained access to most of data, and lack of adequate funding. 543 

Based on the previously discussed results of the Beijing AirVisual comparison and the 544 

AirVisual-BAM comparison in Krasnoyarsk, the credibility of the Nebo sensor network for 545 

measuring PM2.5 concentration was deemed satisfactory. The uncertainty in the validity of data 546 

from low-cost sensors stems from factors such as meteorological influence, unpredictable drift or 547 

unknown seasonality in measurement bias, sensor saturation, and degradation of the sensors, along 548 

with potential variation in sensitivity to aerosols of various properties.  549 

During the month-long comparison, the Nebo sensor exhibited good agreement with the 550 

BAM reference instruments (R = 0.94). Field calibration of each sensor from the Nebo network 551 
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was a major challenge due to the limited reference observations. To address these challenges, we 552 

used only the aggregated and averaged information from sensor observations at multiple stations 553 

(e.g., averaged diurnal and monthly variations in PM2.5 concentration from the four sensors at SVE, 554 

PAV, LOP, and ALE stations) to calibrate the satellite observations. Our evaluation of the monthly 555 

average PM2.5 concentrations in February 2018 from the sensor using reference monitoring 556 

suggested an insignificant systematic bias (<5%).  557 

4. DISCUSSION 558 

This work aimed to find alternative solutions for urban air-quality monitoring for regions 559 

with poor reference monitoring, based on a study conducted in Krasnoyarsk. Low-cost sensors and 560 

satellite observations were used to develop an observation-based method to estimate long-term 561 

PM2.5 concentrations within the city for 2017–2018. Different approaches have unique advantages 562 

and can compensate for the weaknesses when they are deployed together (Pinder et al., 2019). 563 

Deployment of a few reference monitoring pairing with the low-cost sensors ensures the data 564 

quality and quantifies the uncertainty. The low-cost sensor network and satellite remote sensing 565 

then extend spatiotemporal coverage. The satellite-derived PM2.5 concentrations showed good 566 

agreement with the sensor PM2.5 concentrations (R = 0.78 on the monthly scale). The sensor PM2.5 567 

concentrations were used to correct the deviation in the satellite-derived annual PM2.5 568 

concentrations by 20%, resulting from data restriction at noontime, and by 30%, resulting from 569 

the data loss in winter. The deviation between the satellite-derived and sensor-observed annual 570 

PM2.5 concentrations was <10%. Taken together, these data show that our method has satisfactory 571 

performance and reasonable uncertainties. 572 

Our results have both local and global implications. From a local perspective, our results 573 

demonstrate that low-cost sensor data and synergy method are sufficiently accurate that they can 574 
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be used to assist governmental urban air-quality monitoring. Given the high level of agreement 575 

between the BAM and the AirVisual Node with which it was compared, local policymakers may 576 

find it beneficial to co-locate multiple AirVisual sensors with their reference stations for an 577 

extended period of time. This will enable evaluation of the efficacy of these sensors as a potential 578 

supplemental source of information to aid understanding of sources and dispersion of pollution 579 

and of the effectiveness of interventions.  580 

In particular, the method are applicable in cities like Krasnoyarsk, where significant 581 

emission sources are well known but insufficient quantitative information exists. Its use could pave 582 

the way for nationwide projects for air quality improvement. This aspect is particularly important 583 

for Russia because its Clean Air program consists of ambitious plans for improving urban air 584 

quality in 12 industrial cities (including Krasnoyarsk) by 2021 (Government of Russian 585 

Federation, 2019).  586 

From a global perspective, our PM2.5 estimation model relies on widely-available data and 587 

can thus be used to investigate PM2.5 pollution trends and effects in poorly observed regions. Such 588 

investigations may help to reveal previously unreported effects of aerosols on the environment, 589 

health, and climate on global scales. The approach of Shaddick et al. (2018), which filled data gaps 590 

and assigned uncertainties, can be used to identify areas with predicted high exposures and high 591 

uncertainties, which can then be targeted by the new monitoring infrastructure. Understanding how 592 

the linkage of low-cost sensor networks and other observations can improve global estimates of 593 

PM2.5 exposure is thus critical to realize the potential benefits of emerging lower-cost technologies. 594 

Therefore, the method developed here can be extended for global PM2.5 monitoring applications 595 

in the foreseeable future, especially for poorly observed regions such as that in this study. 596 

5. CONCLUSIONS 597 
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The lack of reference ground-based PM2.5 observation has resulted in major gaps in air-598 

quality information globally, particularly in many parts of the developing world. This study 599 

developed and validated an alternative solution for urban air-quality monitoring in regions such as 600 

Krasnoyarsk, which has limited reference ground-based monitoring. We developed an 601 

observation-based method by combining satellite remote-sensing techniques and a low-cost sensor 602 

network to estimate long-term PM2.5 concentrations.  603 

Our method met satisfactory requirements for providing high spatiotemporal PM2.5 604 

distributions for urban air quality monitoring. Our method has been applied for robust 605 

quantification of the PM2.5 concentration in Krasnoyarsk for 2017 and 2018, resolving long-term 606 

ambiguity about aerosol distribution within the city. The PM2.5 concentration in Krasnoyarsk 607 

during these years was 23.1 µg/m3, which is 63% higher than the average PM2.5 in Russia (14.2 608 

µg/m3). Seasonal variability in the PM2.5 concentration over Krasnoyarsk in 2018 revealed two 609 

distinct peaks in winter (e.g., February) and summer (e.g., July). The peak in winter is likely to be 610 

due to increased heating and unfavorable pollution-dispersion conditions. During the pollution 611 

event in summer, the PM2.5 concentrations reached 150 µg/m3 as a result of smoke transport from 612 

forest wildfires.  613 

Further studies should include three key steps. First, AirVisual sensors should be deployed 614 

alongside PM2.5 reference monitors at a variety of urban and rural background locations to 615 

understand the sensors’ response to various aerosol mixes. Second, further study is required to 616 

assess the spatial extent and resolution of the low-cost sensor sampling points and the site 617 

requirements of the sampling locations to provide the most accurate picture of PM2.5 across a city 618 

or region using this technique. Finally, evaluation of how this nonregulatory but potentially quite 619 
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accurate data can inform government and citizen stakeholders is needed to improve public health 620 

and policy. 621 
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