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Abstract

The past three decades have seen a steady increase in the availability of routinely collected health and social care data and
the processing power to analyse it. These developments represent a major opportunity for ageing research, especially with
the integration of different datasets across traditional boundaries of health and social care, for prognostic research and novel
evaluations of interventions with representative populations of older people. However, there are considerable challenges in
using routine data at the level of coding, data analysis and in the application of findings to everyday care. New Horizons in
applying routine data to investigate novel questions in ageing research require a collaborative approach between clinicians, data
scientists, biostatisticians, epidemiologists and trial methodologists. This requires building capacity for the next generation of
research leaders in this important area. There is a need to develop consensus code lists and standardised, validated algorithms for
common conditions and outcomes that are relevant for older people to maximise the potential of routine data research in this
group. Lastly, we must help drive the application of routine data to improve the care of older people, through the development
of novel methods for evaluation of interventions using routine data infrastructure. We believe that harnessing routine data
can help address knowledge gaps for older people living with multiple conditions and frailty, and design interventions and
pathways of care to address the complex health issues we face in caring for older people.
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Key points

* Routine data have potential to improve quality and efficiency of ageing research.
* Applications include prognostic research, clinical trials and service evaluations.
* Routine data record clinical care and may lack what matters most to older people themselves.
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* Incentivising codes that have relevance to older people could improve quality of routine data.
* Progress requires multidisciplinary collaboration, capacity building and developing consensus code lists.

Introduction

Technological advances in data storage and processing have
enabled a magnitude of scale in information that has come
to define big data as a disruptor of our age [1]. The growth
of electronic health records (eHR) worldwide means that
data routinely collected as part of health and social care
interactions, across a patient’s life course, are now available
for research and quality improvement purposes [2]. Mod-
els of data linkage have been developed worldwide, across
boundaries of primary and secondary care, and across health
and social care systems. Supported by this technology, health
and social care are becoming more integrated, proactive and
personalised. This Horizons review will consider the benefits,
challenges and suggested solutions of harnessing routine data
for the purposes of ageing research.

What are the benefits?

Routine data are being generated from a host of differ-
ent sources which together form ever more detailed ‘dig-
ital traces’ of a person’s health [3]. Clinical data are rich
in key symptoms, diagnoses, health status measurements
(e.g. weight, blood pressure and smoking status), prescrib-
ing, investigations and health service use. Using a unique
patient identifier, primary care data are increasingly linked
to records from an individual’s hospital attendances, social
care interactions, census and death records. There is poten-
tial for further linkage to genomic data [4], mobile and
wearable technology. Making use of routine data in research
can reduce research costs and burden on participants and
enables the capture of information in large populations and
many clinical events. Data are continuously updated, and
they may cover long periods of time. Artificial intelligence
(AI) and machine learning techniques enable data analysis
at greater pace and in larger datasets than was previously
possible [5].

People over the age of 85 years, with frailty or dementia,
from ethnic minorities, or living in deprived areas tend to
be poorly represented in research [6]. Historically, these
groups were often excluded by the nature of a study’s
design or methods of recruitment [7]. Additionally, many
older people may choose not to take part because they
feel too unwell, are already overcommitted with hospital
appointments, or for social and health literacy reasons.
These personal factors may themselves correlate with risk
factors for outcomes, and hence participant selection bias
can affect the results. Use of routine data based on, for
example, general practice-level consent and de-identification
of individuals can largely overcome this form of selection

bias [8].
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Follow-up of patients without needing their active par-
ticipation means that participant withdrawal is not as big a
problem as observed in traditional cohort studies and trials,
where loss to follow-up can be significant. The intensity and
duration of follow-up provided by routine data would be
prohibitively expensive in a traditional observational study or
trial based on participant-level data collection. Routine data
also offer comprehensive records of prescriptions across a life
course. This information is particularly important in ageing
research as many medicines are tested in younger, fitter
populations, and there is a recognised need for more robust
data on the benefits and harms of drugs when their use is then
extended to older populations with frailty, multimorbidity
and polypharmacy.

Three key areas where the application of routine data
has potentially major benefits for research in ageing are as
follows.

Prediction

Analysis of large scale observational data may be used to
develop prediction tools to identify levels of future risk of
outcomes, and these can inform shared decision making
[9, 10]. Real-time updating of clinical records can enable
regular re-validation of prediction models according to up-
to-date population health and demographics, as undertaken
by updated versions of the Q-Risk cardiovascular risk cal-
culator [11]. The clinical utility of predictors or prognostic
models developed in routine care can be tested by applying
them to live clinical practice data to deliver stratified care
interventions for individuals based on their personal risk
profile [12], for example, in the prescription of statins on
the basis of a person’s cardiovascular Q-risk [13].

Clinical trials

For older people, whether testing a new complex interven-
tion, device or drug, routine data can help extend partic-
ipation in clinical trials. In particular, routine data can be
used to:

* Demonstrate heterogeneity in practice for particular clin-
ical decisions. For example, variation in prescribing pat-
terns for people with advancing frailty can identify clinical
uncertainty to inform the choice of research question a trial
will address.

* Allow for a broad range of evaluation designs including:
interrupted time series, trials within cohorts, or cluster
randomisation where general practices that are contribut-
ing to a routinely available dataset are randomised to
intervention delivery or control.

* Measure key age-related health indicators at trial recruit-
ment, such as frailty or dementia and compare these
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DEFINE cohort for analysis, exposures,
covariates and outcomes of interest

IDENTIFY relevant data sources

UTILISE shared identifier variable to
facilitate deterministic / probabilistic
linkage using available variables

DESCRIBE quality of linkage and
potential biases

ANONYMISE linked dataset, removing
personal identifiers to provide
researchers with de-identified data

Figure 1. Routine data pathway.

baseline characteristics with the wider population-level
data, to provide greater confidence in the generalisability
of trial findings.

* Provide follow-up of trial endpoints which is less obtrusive
by linkage of trials to participant’s eHR data to measure
outcomes [14]. This enables extended follow-up periods
that are more meaningful in shared decision making.

Service evaluation

The measurement of outcomes in routine data may be used
to indicate performance of clinical services against regional
and national benchmarks. These can be used locally to
inform the design of Quality Improvement Projects, but also
at a regional or national level to inform service redesign or
policy changes [15]. In the UK, Global Digital Exemplars are
NHS providers recognised for championing the use of digital
technologies and information to deliver improvements in
quality of care [16, 17]. Learning healthcare systems, that
use routine data, are already established in primary care and
in single long-term conditions [18]. There is an opportu-
nity to extend these using routine data to involve patients
with multimorbidity and those with complex needs, such as
frailty, particularly if we can better capture outcomes that are
relevant for older people.

What are the challenges and possible
solutions?

‘The application of routine data to research questions remains
relatively new and there are important methodological chal-
lenges involved. We will explore some of the challenges and
propose next steps at three stages of the routine data journey:
at data linkage, analysis and application (Figure 1).
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Linkage
Challenges

Data entry for eHRs is generally undertaken at the time
of the clinical or social care interaction, or is subsequently
coded from medical notes and correspondence by trained
clinical coders. It is helpful to consider both contributors to
the data: the individual patient or client who provides the
information relevant to the interaction and the practitioner
or clinical coder interpreting and entering this information
as data.

With respect to the individual, consent for the release of
their data collected during the course of normal care tends
to follow an opt-out approach, enabling the individual to
withdraw their data from databanks used for research or
planning purposes [19]. The European Union General Data
Protection Regulation requires consent be unambiguous,
clearly affirmative, and that clear information is provided on
how to withdraw consent for data sharing at any time [20]. A
particular challenge of the opt-out model in relation to older
people is that there remains debate over whether people who
do not have capacity have a realistic option of withdrawing
their data.

Routine datasets tend to be pseudonymised, which is
defined as personal data that cannot be attributed to an
individual without the use of additional information, so long
as this additional information is kept separately and that
this separation is secure [20]. However, a residual risk of re-
identification of individuals from their data typically remains
[21]. For example, the relatively low number of centenarians
in a particular location could be linked with other freely
available information online to identify an individual.

Information governance structures protect the confiden-
tiality of those whose data it is and include the provision
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of a Data Protection Officer in the University setting or
Caldicott guardian in the NHS setting. Applications for data
access are reviewed by an independent body in charge of
the dataset, according to operating policies directed by the
ethics committee when the dataset was originally established.
Datasets may also be restricted to remove people with certain
rare conditions, and outputs reviewed for risk of potential
disclosure by an institution’s data custodians. Researchers
involved in the analysis are increasingly required to under-
take accredited training to use data appropriately [22].

With respect to the person inputting or coding the data,
their primary focus will usually be to record a clinical or
non-clinical encounter and the delivery of care, as opposed
to recording data for research purposes. One key challenge
is that eHRs comprise data from multiple sources with a
variety of coding schemes and an event such as a fall may be
represented by over 100 different codes in one coding system
alone. Multiple factors will have an impact on what is coded
and how, introducing recording bias. Coding systems used
by healthcare professionals have been updated over time (e.g.
Clinical Terms Version 2 or 3 or Systemised Nomenclature
of Medicine-Clinical Terms (SNOMED-CT)), and do not
always map directly onto one another [23]. Furthermore,
the choice of codes available can diverge between computer
systems [24] and between prediction models [25]. Coding
habits also vary between professionals, clinical practices [26]
and over time [17]. Coding may be undertaken for remu-
nerative purposes, particularly in insurance-based healthcare
systems, but also relate to incentives and policy change. For
example, the Quality Outcomes Framework in England and
Wales [27] has significantly influenced the way practitioners
record comorbidities [28].

The increasing linkage of shared care records across
different data systems are gradually beginning to align
common terminologies and standardise their representation
[29]. Health Data Research UK is a non-profit organisation
working across universities and the NHS to unify UK
health data assets across health service, cohort, registry and
trial data and facilitate their use in answering key research
questions [30].

Next steps

Greater advocacy is now needed to improve the representa-
tion of and engagement with older people and the conditions
of ageing using routine data. There are specific considerations
relevant to older people in determining the suitability of
routine data to particular research questions and in the need
for additional sources of data to capture missing information.
Developing a research question that can be answered using
routine data is best done in dialogue, and as a collaborative
exercise between the disciplines of data analysts, clinicians
and social care practitioners.

With this in mind, an Ageing Data Research Collabora-
tive (@geridata) has been formed in the UK with the support
of the British Geriatrics Society [31]. This community has
been developed to foster peer support among researchers and
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encourage sharing of pre-analytic protocols, code lists for
conditions relevant to geriatric medicine and gerontology,
darta cleaning and analysis code [32].

Analysis
Challenges

The analyses of routine data require judicious clinical inter-
pretation. The typically large sample sizes of routine datasets
can generate estimates with very narrow confidence limits, as
the sample estimates converge on the true population mean.
This can lead to a situation where results appear statistically
significant, but may be clinically unimportant. Therefore, the
size of the data does not preclude the need for careful design
using the appropriate analyses relevant to the content of the
data to minimise bias.

Important information may be missing in routine data.
Data may be missing when it should ordinarily be recorded,
for example, the date of an event or the dose of a particular
medication. Missing data may affect some people more than
others because some people will have had fewer opportuni-
ties to have their data recorded. On the other hand, there is
a tendency for those assessed regularly in routine healthcare,
and particularly for those with poor health who are assessed
on repeated occasions, to have greater recording of additional
diagnoses, sometimes called informed presence bias [33].

Data may also be missing because of the design of routine
data records. Routine datasets work on the basis of positive
recording: the absence of recording of a particular diagnosis
is assumed to represent the absence of diagnosis. Codes tend
more often to represent disease simply as present or absent,
so that the grade or severity of disease may be difficult to
fully account for in routine data analysis [34]. Particular
conditions are not routinely recorded in clinical care (e.g.
physical disability), or under recorded (e.g. dementia) and
the omission or undercounting of such information in a
research study could lead to spurious findings [17].

Routine datasets only include data items relevant to the
particular clinical or administrative process of care, rather
than what is relevant to an individual research question.
A loss of higher-order function (cognition, mobility or
continence) may be represented by codes for the easiest
attributable cause (e.g. urinary tract infection for delirium),
whether accurate or not. The use of codes in recording
symptoms may be insufficient to represent the complex
interaction of multiple pre-disposing and precipitating fac-
tors involved in a geriatric syndrome. Where the dominant
symptom is the only one recorded, accompanying symptoms
will be missing. In these cases, the content of free text may
be highly informative, and analysis of narrative text using
Al techniques, for example, natural language processing
algorithms is an emerging area in ageing research [35].

Transparency of methods is key in validating findings
of routine data and this is particularly the case in the
development of algorithms using Al and machine learning
techniques [5]. Consensus guidelines have been developed
specifically for the reporting of routine data studies and
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recommendations include the publication of a pre-analytic
protocol, and the code lists for the variables used alongside
any analysis [32].

Next steps

We must advocate as a specialty discipline to champion
the use of codes to record later-life problems including
clinical symptoms experienced in later life, clinical signs of
ageing, problems with activities of daily living, impairments
and social circumstances alongside more typically recorded
diseases. A first step would be to develop consensus code lists
for conditions of ageing (i.e. the geriatric giants) mapped
across different coding systems. This would improve the
efficiency and the standard of research in this area as well
as ease comparisons in meta-analyses. Codes characterising
key outcomes for older people would then need to be val-
idated using linkage to ageing cohorts. Reaching consensus
would require engagement with a wide range of stakeholders,
already achieved for cardiovascular outcomes in the validated
code lists on the CALIBER UK platform [36]. Consensus
could also be reached on what defines likely true and false
data recordings (such as the normal reasonable range of
physiological metrics, for example, blood pressure, heart
rate, body mass index and cholesterol) in the form of data-
preparation algorithms.

Application
Challenges

Models built on big data that are co-designed by those with
knowledge both of the domain and of the datasets have been
shown to improve model performance [37, 38]. However, a
major challenge is that the users of routine data research (e.g.
health and care professionals, commissioners and policymak-
ers) and its beneficiaries (e.g. older people, their families
and carers) have historically not been closely engaged in
the research process. Much of data storage and analysis in
healthcare still uses the infrastructure and systems developed
before the big data era, unintegrated and separate from
those involved in the real-life scenarios which routine data
applications maybe designed to effect. The incorporation of
data-driven techniques to healthcare will be disruptive and
a lack of collaborative working could jeopardise progress. If
the processes of testing and validation in real-life scenarios
require interruption of clinical services, the application of
routine data to clinical care will be slow or non-existent [39].

In the UK, in response to the National Data Guardian’s
call for better public conversation about health data, an inde-
pendent initiative was set up called ‘Understanding Patient
Data’ funded by the Wellcome Trust [5]. The initiative tries
to help make patient data more visible, understandable and
trustworthy to the public.

Next Steps

An ageing big data research user group, with key represen-
tation from older people, carers, professionals, commission-

New Horizons in the use of routine data

ers and policymakers, is needed, with a specific focus on
driving implementation of findings into routine practice.
Better engagement of users and beneficiaries of routine data
research will provide insights that the data alone cannot
capture. This broader collaboration could inform the devel-
opment of research questions, research design and interpreta-
tion of findings [40]. In the future, we need co-development
of core outcome sets meaningful to older people themselves
[29] and patient reported outcomes which could be captured
in routine data [41, 42]. These efforts would help drive the
outputs of big data research into routine practice, as well as
drive improvements in data quality and increase awareness
of the potential for big data research to underpin service
redesign. Engaging public stakeholders also has a role in
increasing public awareness of the utility and application of
data to improve healthcare, which is critically important for
the contract of trust between public and data holders [43].

Conclusion

Routine data have considerable potential to address knowl-
edge gaps for older people living with multiple conditions
and frailty. This includes applied epidemiology and prognos-
tic research, novel clinical trial methods and service evalua-
tions. There are a range of complexities and considerations
in ageing routine data research requiring a multidisciplinary
approach including clinicians, data scientists, biostatisti-
cians, epidemiologists and trial methodologists. Multidisci-
plinary collaboration is paramount to harness the potential
of routine data to improve delivery of evidence-based care
for older people.
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