
Generating a Gray code for prefix normal words in amortized polylogarithmic time
per word

Péter Burcsia, Gabriele Ficib, Zsuzsanna Liptákc,∗, Rajeev Ramand, Joe Sawadae

aDept. of Computer Algebra, Eötvös Loránd University, Budapest, Hungary
bDip. di Matematica e Informatica, Università degli Studi di Palermo, Italy

cDip. di Informatica, Università degli Studi di Verona, Italy
dDept. of Informatics, University of Leicester, UK

eSchool of Computer Science, University of Guelph, Canada

Abstract

A prefix normal word is a binary word with the property that no substring has more 1s than the prefix of the
same length. By proving that the set of prefix normal words is a bubble language, we can exhaustively list
all prefix normal words of length n as a combinatorial Gray code, where successive strings differ by at most
two swaps or bit flips. This Gray code can be generated in O(log2 n) amortized time per word, while the
best generation algorithm hitherto has O(n) running time per word. We also present a membership tester for
prefix normal words, as well as a novel characterization of bubble languages.1

Keywords: prefix normal words, binary languages, combinatorial Gray code, combinatorial generation,
jumbled pattern matching

1. Introduction

A binary word of length n is prefix normal if for all 1 ≤ k ≤ n, no substring of length k has more 1s than
the prefix of length k. For example, the following are the 14 prefix normal words of length n = 5:

11111, 11110, 11101, 11100, 11011, 11010, 11001, 11000, 10101, 10100, 10010, 10001, 10000, 00000.

The word 10011, for instance, is not prefix normal because the substring 11 has more 1s than the prefix
10; similarly 11100110110 is not prefix normal, because the substring 11011 has more 1s than the prefix of
length 5. The number pnw(n) of prefix normal words for n = 1, 2, . . . , 12 is

2, 3, 5, 8, 14, 23, 41, 70, 125, 218, 395, and 697,

respectively. This enumeration sequence is included as sequence A194850 in The On-Line Encyclopedia of
Integer Sequences (OEIS) [30], listing pnw(n) up to n = 50. It is not difficult to show that pnw(n) grows
exponentially. Some bounds and partial enumeration results were presented in [12], and it was conjectured

∗Corresponding author
Email addresses: bupe@inf.elte.hu (Péter Burcsi), gabriele.fici@unipa.it (Gabriele Fici),

zsuzsanna.liptak@univr.it (Zsuzsanna Lipták), r.raman@leicester.ac.uk (Rajeev Raman),
jsawada@uoguelph.ca (Joe Sawada)

1Some of the results contained in this paper were presented in a preliminary form at CPM 2014 [11] and FUN 2014 [10].

Preprint submitted to Theoretical Computer Science June 22, 2020

there that pnw(n) = 2n−Θ(log2 n). This conjecture was recently proved by Balister and Gerke in [5]. Finding
a closed form formula or generating function for pnw(n), however, remains an open problem.

Prefix normal words were originally introduced in [18] by two of the current authors, in the context of
Binary Jumbled Pattern Matching (BJPM): Given a binary string w of length n, and a pair of non-negative
integers (x, y), decide whether w has a substring with x 1s and y 0s. While the online version of this problem
can be solved naively inO(n) time, the indexed version has attracted much attention during the past decade [8,
9, 24, 22, 3, 13, 4, 14, 2, 21, 23, 17, 1]. As was shown in [18, 12], every binary word w can be assigned two
canonical prefix normal words, called its prefix normal forms, which can then be used to answer BJPM queries
in constant time.

1.1. Our contributions

In this paper, we deal with the question of generating all prefix normal words of a given length n. In
combinatorial generation, the aim is to exhaustively list all instances of a combinatorial object. Typically, the
number of these instances grows exponentially, and time is measured per object, and excluding the time for
outputting the objects. For an introduction to combinatorial generation, see [26].

The current best generation algorithm for prefix normal words runs in O(n) time per word [15]. Our
algorithm improves on this considerably, using amortizedO(log2 n) time per word.2 It is based on the theory
of bubble languages [27, 28, 31], an interesting class of binary languages defined by the following property:
L is a bubble language if, for every word in L, replacing the first occurrence of 01 (if any) by 10 results in
another word in L [27, 28]. Many important languages are bubble languages, including binary necklaces,
Lyndon words, and k-ary Dyck words3. A generic generation algorithm for bubble languages was given
in [28], yielding cool-lex Gray codes for each subset of a bubble language containing all strings of a fixed
length and weight (number of 1s). In general, a (combinatorial) Gray code is an exhaustive listing of all
instances of a combinatorial object such that successive objects in the listing are “close” in some well-defined
sense. In the case of cool-lex order, the strings differ by at most two swaps. The generic algorithm’s efficiency
depends only on a language-dependent subroutine called an oracle, which in the best case leads to CAT
(constant amortized time) generation algorithms.

In the following, we show that the set of all prefix normal words forms a bubble language; it is the first new
and interesting language shown to be a bubble language since the original exposition [27, 28]. We develop
an oracle for prefix normal words and apply the generic generation algorithm to obtain a cool-lex ordering
of prefix normal words with length n and weight d. Concatenating together these lists in increasing order of
weight, we obtain a Gray code for all prefix normal words of length n where successive words differ by at
most two swaps or by a swap and a bit flip. We then present an optimized oracle for prefix normal words,
and, based on recent results from [5], we prove that our new generation algorithm runs in amortized time
O(log2 n) per word. Even though the previous O(n) time per word algorithm of [15] also provided a Gray
code for prefix normal words (albeit with respect to a different measure of closeness), we are achieving a very
considerable improvement in running time.

As an example, the listing of prefix normal words of length n = 7 that results from our algorithm,
partitioned by weight, is given in Table 1.

2This algorithm was originally presented in [11], where we proved that it ran in amortized O(n) time per word, and conjectured
amortized Θ(logn) time per word. Based on the result of [5] on the asymptotic number of prefix normal words, we have been able
to prove the amortized O(log2 n) running time per word.

3Those languages are actually 10-bubble, while prefix normal words are 01-bubble: the difference is simply exchanging the role
of 0 and 1 in the definition, see [27, 28].

2

d = 0 d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7

0000000 1000000 1010000 1101000 1101100 1110110 1110111 1111111
1001000 1010100 1110100 1111010 1111011
1000100 1100100 1101010 1101101 1111101
1000010 1010010 1100110 1110101 1111110
1000001 1100010 1110010 1101011
1100000 1010001 1101001 1110011

1001001 1010101 1111001
1100001 1100101 1111100
1110000 1100011

1110001
1111000

Table 1: All prefix normal words of length 7 as output by our algorithm.

A second contribution of this paper is a new characterization of bubble languages. We show that bubble
languages can be described in terms of a closure property in the computation tree of a simple recursive
generation algorithm for all binary strings. We believe that this view could aid other researchers in applying
the powerful tool of bubble languages and their accompanying Gray codes. In fact, it was the discovery that
prefix normal words formed a bubble language that led to an efficient generation algorithm and Gray code for
our language.

The final part of the paper deals with membership testing, i.e. deciding whether a given binary word is
prefix normal. Several quadratic-time membership testers for prefix normal words were given in [18, 12].
The best worst-case time tester can be obtained by using the connection to Indexed Binary Jumbled Pattern
Matching (BJPM), for which the current best algorithm, by Chan and Lewenstein, runs inO(n1.864) time [13].
We present a new membership tester for prefix normal words which applies a simple two-phase approach and
is conjectured to run in average-case O(n) time, where the average is taken over all words of length n.

1.2. Related work

In addition to the connection to jumbled indexing, prefix normal words are also increasingly being studied
for their own sake. Enumeration and language-theoretic results were given by Burcsi et al. in [12], and Balister
and Gerke strengthened some results in [5]: in particular, they proved a conjecture about the asymptotic
growth behaviour of the number of prefix normal words and gave a new result about the maximal size of the
equivalence classes. Cicalese et al. gave a generation algorithm in [15], with linear running time per word,
and studied infinite prefix normal words in [16]. Prefix normal words and prefix normal forms have been
applied to a certain family of graphs by Blondin-Massé et al. [7], and were shown to pertain to a new class of
languages connected to the Reflected Binary Gray Code by Sawada et al. [29]. Very recently, Fleischmann et
al. presented some results on the size of the equivalence classes [20].

1.3. Overview

The paper is organized as follows. In Section 2, we give the necessary terminology and some basic facts
about prefix normal words, and we develop a result on the average critical prefix length of a prefix normal
word. This result will later be used in the analysis of our generation algorithm. In Section 3, we give a
simple generation algorithm which, based on the result of [5], is proved to run in amortized O(n) per word.

3

In Section 4, we present our novel view of bubble languages. In Section 5, we introduce our new generation
algorithm, which uses the bubble framework. In Section 6, we present the new membership tester. We close
with some open problems in Section 7.

2. Preliminaries

A binary word (or string) w = w1 · · ·wn over Σ = {0, 1} is a finite sequence of elements from Σ. Its
length n is denoted by |w|, and the i-th symbol of a word w by wi, for 1 ≤ i ≤ |w|. We denote by Σn the
set of words over Σ of length n, by Σ∗ = ∪n≥0Σn the set of all words over Σ, and by ε the empty word. Let
w ∈ Σ∗. If w = uv for some u, v ∈ Σ∗, we say that u is a prefix of w and v is a suffix of w. A substring
of w is a prefix of a suffix of w. A binary language is any subset L of Σ∗. We denote by |w|c the number of
occurrences in w of character c ∈ {0, 1}. The number of 1s in w, |w|1, is also called the weight of w. For a
binary language L, let L(n) denote the subset of all strings in L with length n, and L(n, d) that of all strings
in L with length n and weight d.

We denote by swap(w, i, j) the string obtained from w by exchanging the characters in positions i and j.
We define combinatorial Gray codes, following [26, ch. 5]: Given a set of combinatorial objects S and

a relation C on S (the closeness relation), a combinatorial Gray code for S is a listing s1, s2, ..., s|S| of the
elements of S, such that (si, si+1) ∈ C for i = 1, 2, ..., |S| − 1. If we also require that (s|S|, s1) ∈ C, then
the code is called cyclic.

2.1. Prefix normal words

Let w = w1w2 · · ·wn be a binary word. For each i = 0, 1, . . . , n, we define P (w, i) = |w1 · · ·wi|1, the
weight of the prefix of length i, and F (w, i) = max{|u|1 : u is a substring of w and |u| = i}, the maximum
weight of i-length substrings of w. The function F is sometimes called maximum-ones function, while in the
context of compact data structures, function P is often called rank1(w, i) [25].

Definition 2.1. A word w ∈ Σ∗ is called prefix normal if for all 1 ≤ i ≤ |w|, F (w, i) = P (w, i). We denote
by LPN the language of prefix normal words, and by pnw(n) = |LPN(n)|, the number of prefix normal words
of length n.

In [18, 12] it was shown that for every word w there exists a unique word w′, called its prefix normal form,
such that for all 1 ≤ i ≤ |w|, F (w, i) = F (w′, i), and w′ is prefix normal. We give the formal definition:

Definition 2.2. Given a word w ∈ {0, 1}n, the prefix normal form of w, denoted PNF(w), is the prefix
normal word w′ given by w′i = F (w, i) − F (w, i − 1), for i = 1, . . . , n. Two words w, v are prefix normal
equivalent if PNF(w) = PNF(v).

As an example, the wordw = 11100110110 has the maximum-ones functionF (w, ·) = 0, 1, 2, 3, 3, 4, 4, 5,

5, 6, 7, 7, as can be checked easily. It is furthermore not difficult to see that for all i < n: F (w, i+1) = F (w, i)

or F (w, i + 1) = F (w, i) + 1. Thus the sequence of first differences F (w, i + 1) − F (w, i) yields a binary
word, in this case the word 11101010110. In Table 2 we list all prefix normal words of length 5 followed by
the set of binary words with this prefix normal form.

The next lemma lists some properties of prefix normal words which will be needed in the following.
Proofs can be found in [12].

Lemma 2.3 ([12]). Let w be a binary word.

4

LPN ∩ Σ5 Words with this prefix normal form LPN ∩ Σ5 Words with this prefix normal form

11111 {11111} 11000 {11000, 01100, 00110, 00011}
11110 {11110, 01111} 10101 {10101}
11101 {11101, 10111} 10100 {10100, 01010, 00101}
11100 {11100, 01110, 00111} 10010 {10010, 01001}
11011 {11011} 10001 {10001}
11010 {11010, 10110, 01101, 01011} 10000 {10000, 01000, 00100, 00010, 00001}
11001 {11001, 10011} 00000 {00000}

Table 2: All prefix normal words of length 5 and their equivalence classes.

1. w is prefix normal if and only if all of its prefixes are prefix normal.
2. If w is prefix normal, then so is w0.
3. Let w be prefix normal. Then the word w1 is prefix normal if and only if, for every suffix u of w,
|u|1 < P (w, |u|+ 1).

4. w is prefix normal if and only if PNF(w) = w.

We refer the interested reader to [12] for more on prefix normal words.

2.2. Critical prefix length

It will often be useful to write binary words w 6= 1n as w = 1s0tγ, where s ≥ 0, t ≥ 1 and γ is either ε or
a binary word beginning with 1. In other words, s is the length of the first, possibly empty, 1-run of w, t is the
length of the first 0-run, and γ the remaining, possibly empty, suffix. Note that this representation is unique.

Definition 2.4. Let w ∈ {0, 1}n \ {1n}, w = 1s0tγ, where 0 ≤ s, 1 ≤ t and γ ∈ 1{0, 1}∗ ∪ {ε}. We refer to
1s0t as w’s critical prefix, and denote by cr(w) = s+ t the critical prefix length of w, with cr(1n) = n.

For example, the critical prefix length of 11101010110 is 4, that of 11111000000 is 11, and that of
00101110110 is 2.

Lemma 2.5. The expected critical prefix length of a binary string w of length n is 3− n+3
2n .

Proof. Let w = 1s0tγ, with γ ∈ 1{0, 1}∗ ∪ {ε}. Let X be a random variable with X = cr(w), where
w is chosen uniformly randomly from {0, 1}n. We have that X = n if and only if w = 1s0n−s, with
s = 0, 1, . . . , n, so for n+ 1 words. Otherwise X = k for some 0 < k < n, and

Pr(X = k) =
k−1∑
s=0

ps(1− p)k−sp =
k−1∑
s=0

(
1

2
)k+1 =

k

2k+1
,

since the probability of having a 1 is 1
2 . Therefore,

Exp(X) =

n∑
k=0

k · Pr(X = k) =

n−1∑
k=0

k2

2k+1
+
n(n+ 1)

2n
= 3−

∞∑
k=n

k2

2k+1
+
n(n+ 1)

2n
= 3− n+ 3

2n
,

5

where we have used in the last two equations that
∑

k≥1
k2

2k+1 = 3, and that the tail of the infinite sum has the
closed form 2−n(n2 + 2n+ 3). 2

Remark: It can be shown in a similar way that the expected critical prefix length of a randomly chosen
infinite binary word is 3.

Lemma 2.6. The sequence C(n) of the sum of cr(w) over all words w of length n obeys the recurrence
C(n) = 2C(n− 1) + (n+ 1), with C(0) = 0.

Proof. Consider all strings of length n− 1 and what happens to their critical prefix length if one character
is added. For those w with cr(w) < n−1, it just stays the same, and since we get two new strings w1 and w0,
these cr(w) are counted twice. The remaining strings are either of the form1s0n−1−s, with s = 0, . . . , n− 2,
in which case adding a 0 will increase cr(w) by 1, and adding a 1 will not; there are n − 1 many of these.
Else it is 1n−1, in which case adding a 0 or a 1 will increase cr(w) by 1. So altogether we get C(n) =∑
|w|=n cr(w) =

∑
|w|=n−1 2cr(w) + (n− 1) + 2 = 2C(n− 1) + (n+ 1). 2

Incidentally, the sequence C(n) = 3 ·2n− (n+3), is listed as sequenceA095151 of the OEIS [30], along
with the second-order recurrence C(n) = 3C(n− 1)− 2C(n− 2) + 1, for n ≥ 3, and C(0) = 0, C(1) = 2.

That it also obeys the recurrence of Lemma 2.6 can be seen by computing the difference C(n + 1) − C(n)

and substituting the recursive formula of order 2 for both.

Next we show that the expected critical prefix of the prefix normal form of a randomly chosen word is
Θ(log n). Note that this is not the same as the expected critical prefix length of a random prefix normal word,
due to the fact that the equivalence class sizes of the prefix normal equivalence vary considerably (see [18],
and Thm. 2 in [5]).

Lemma 2.7. Given a random word w, let w′ be the prefix normal form of w. Then the expected critical prefix
length of w′ is Θ(log n).

Proof. Let w′ = 1s
′
0t
′
γ′, with γ′ ∈ 1{0, 1}∗ ∪ {ε} and the r.v.’s S′ = s′ and T ′ = t′. It is known that

the expected maximum length of a run in a random word of length n is Θ(log n) [19]. Clearly, S′ equals the
length of the longest run of 1’s of w, thus Exp(S′) = Θ(log n). What about T ′? Consider a 1-run of w of
maximum length s′. If w has more than s′ 1’s, then there is a substring of w consisting of this 1-run and one
more 1; the number of 0’s in this substring is an upper bound on t′. Since these 0s form one single run, their
number is again O(log n) in expectation. If w has exactly s′ 1’s, then w′ = 1s

′
0n−s

′
, so t′ = n− s′ ≤ n. The

number of words with at most one 1-run is
(
n+1

2

)
+ 1. So we have:

Exp(cr(w′)) = Exp(S′ + T ′) = Θ(log n) + (1− Θ(n2)

2n
)O(log n) +

Θ(n2)

2n
n = Θ(log n).

2

It is not difficult to see that the number of prefix normal words grows exponentially (just note that 1|w|w is
prefix normal for everyw). Balister and Gerke [5] recently proved a conjecture from [12] about the asymptotic
number of prefix normal words:

Theorem 2.8 ([5], Thm. 1). The number of prefix normal words of length n is 2n−Θ(log2 n).

We will use this theorem to prove an upper bound on Exp(cr(w)) for prefix normal words w. We need
the following lemma.

6

Lemma 2.9. Let t = o(n) and t ≥ 2 log n, and suppose that pnw(n) ≥ 2n−t. Let Z be a random variable
taking values cr(w) for prefix normal words w ∈ LPN(n). Then Exp(Z) = O(t).

Proof. Consider all prefix normal words w ∈ LPN(n) with cr(w) < 2t. These contributeO(t) to Exp(Z).
Now consider all prefix normal words w ∈ LPN(n) with cr(w) ≥ 2t. There are at most (2t+ 1)2n−2t binary
words with cr(w) ≥ 2t, since these words must begin with one of the patterns 12t, 12t−10, 12t−200, . . . , 02t,
and therefore, at most this number of prefix normal words with cr(w) ≥ 2t. Each prefix normal word can
only contribute at most n to the average. So the contribution to the average summed over all prefix normal
words with cr(w) ≥ 2t is at most n(2t + 1)2n−2t/pnw(n) ≤ n(2t + 1)2n−2t/2n−t, which is O(1), since
t ≥ 2 log n, and hence negligible:

Exp(Z) =
1

pnw(n)

 ∑
w∈LPN(n),
cr(w)<2t

cr(w) +
∑

w∈LPN(n),
cr(w)≥2t

cr(w)

 ≤ |{w ∈ LPN(n) | cr(w) < 2t}| · 2t
pnw(n)

+

+
(2t+ 1)2n−2t · n

2n−t
≤ |{w ∈ LPN(n) | cr(w) < 2t}| · 2t

pnw(n)
+

(2t+ 1) · n
n2

≤ 2t+
(2t+ 1)

n
= O(t).

2

Theorem 2.10. The expected length of the critical prefix of a prefix normal word of length n is O(log2 n).

Proof. By Theorem 2.8, we know that there exists a constant c > 0 such that, for sufficiently large n,
pnw(n) ≥ 2n−c log2 n. Applying Lemma 2.9, we get Exp(cr(w)) = O(log2 n), where w ranges over all
prefix normal words of length n. 2

3. A Simple Generation Algorithm for Prefix Normal Words

Our first generation algorithm uses Lemma 2.3: (1) A word is prefix normal if and only if all of its prefixes
are prefix normal; (2) if w is prefix normal, so is w0, but not necessarily w1; and (3) w1 ∈ LPN if and only if
for every suffix u of w, the number of ones in u is strictly less than P (w, |u|+ 1). Words w ∈ LPN for which
w1 is not prefix normal are called extension critical. Thus, whether a word is extension critical can be tested
in linear time in |w|.

We can therefore generate all prefix normal words of length n by iteratively generating all prefix normal
words of length k, for k = 1, . . . , n− 1, and extending each one by a 0 if it is extension critical, or by a 0 and
a 1 if it is not. This yields a computation tree whose leaves are precisely the prefix normal words of length n.
We refer to this algorithm as Simple Generation Algorithm.

Theorem 3.1. The Simple Generation Algorithm generates all prefix normal words of length n inO(n) amor-
tized time per word.

Proof. Notice that an extension critical test is performed in each inner node, taking O(k) time if the node
is at depth k. An inner node at depth k corresponds to a prefix normal word of length k, so the number of
tests equals the total number of prefix normal words of length smaller than n. From Theorem 2.8 (Balister
and Gerke, 2019 [5]) it follows that most prefix normal words are not extension critical, in particular more
than half of all prefix normal words of a given length can be extended. Therefore, pnw(n) ≥ 3

2pnw(n − 1),

7

and by induction
∑n−1

k=1 pnw(k) ≤ 2pnw(n), implying that the total time taken by the algorithm to generate
all prefix normal words of length n is

n−1∑
k=1

k · pnw(k) ≤
n−1∑
k=1

n · pnw(k) = O(n) · pnw(n).

2

4. Bubble Languages and Combinatorial Generation

In this section we give a brief introduction to bubble languages, mostly summarising results from [27, 28].
However, our presentation is different in that it presents the generation of a bubble language as a restriction of
an algorithm for generating all binary words. This view also yields a new characterization of bubble languages
in terms of the computation tree of this generation algorithm (Prop. 4.2).

Definition 4.1 ([27, 28]). A language L ⊆ {0, 1}∗ is called a first-01 bubble language if, for every word
w ∈ L, exchanging the first occurrence of 01 (if any) by 10 results in another word in L. It is called a a
first-10 bubble language if, for every word w ∈ L, exchanging the first occurrence of 10 (if any) by 01 results
in another word in L. If not further specified, by bubble language we mean first-01 bubble.

For example, the languages of binary Lyndon words and necklaces are 10-bubble languages. As was
shown in [27], a language L ⊆ {0, 1}n is a bubble language if and only if each of its fixed-weight subsets
L(n, d) is a bubble language. This implies that for generating a bubble language, it suffices to generate its
fixed-weight subsets.

Next we consider combinatorial generation of binary strings. Let w be a binary string of length n, let d
be its weight, and let i1 < i2 < . . . < id denote the positions of the 1s in w. Clearly, we can obtain w from
the word 1d0n−d with the following algorithm: first swap the last 1 with the 0 in position id, then swap the
(d − 1)st 1 with the 0 in position id−1 etc. Note that every 1 is moved at most once, and in particular, once
the k’th 1 is moved into the position ik, the suffix wik · · ·wn remains fixed for the rest of the algorithm.

These observations lead to the RECURSIVE SWAP GENERATION ALGORITHM (Algorithm 1). Starting
from the string 1s0tγ, it generates recursively all n-length binary strings with weight d and fixed suffix γ,
where γ ∈ 1{0, 1}∗ ∪ {ε}. The call RECURSIVESWAP(d, n − d, ε) generates all binary strings of length n
with weight d. The algorithm swaps the last 1 of the first 1-run with each of the 0s of the first 0-run, thereby
generating a new string each, for which it makes a recursive call. During the execution of the algorithm, the
current string resides in a global array w. The function SWAP(i, j) swaps the values stored in wi and wj . In
the subroutine VISIT() we can print the contents of this array, or increment a counter, or check some property
of the current string. Crucially, VISIT() is called on every string exactly once.

Let Tn
d denote the computation tree of RECURSIVESWAP(d, n−d, ε). As an example, Fig. 1 illustrates T 7

4

(ignore for now the highlighted words). In slight abuse of notation, in the following we identify a node v with
the string it represents. The depth of Tn

d equals d, the number of 1s, while the maximum degree (number of
children) is n−d, the number of 0s. Consider the subtree rooted at v = 1s0tγ: its depth is s and the maximum
degree of nodes is t; the number of children of v itself is exactly t, and v’s ith child is 1s−10i10t−iγ. Note that
suffix γ remains unchanged in the entire subtree; that the computation tree is isomorphic to the computation
tree of 1s0t; and that the critical prefix length strictly decreases along any downward path in the tree. The

8

Algorithm 1 Recursive Swap Generation Algorithm to generate all binary strings of length n.

1: procedure RECURSIVESWAP(s, t, γ)
2: if s > 0 and t > 0 then
3: for i← 1 to t do
4: SWAP(s,s+i)
5: RECURSIVESWAP(s−1, i, 10t−iγ)
6: SWAP(s,s+i)
7: VISIT()

8: for d← 0 to n do
9: RECURSIVESWAP(d, n− d, ε)

1111000

1110100 1110010 1110001

1101001

1011001
0111001

1100101 1100011

1010101 1001101
0110101 0101101 0011101

1010011
0110011

1001011
0101011 0011011 0100111

1000111
0010111 0001111

1101100

1011100
0111100

1101010 1100110

1011010
0111010

1010110 1001110
0110110 0101110 0011110

Figure 1: The computation tree Tn
d for n = 7, d = 4. Prefix normal words in bold.

algorithm performs a post-order traversal of the tree, yielding a listing of the strings of length n with weight
d, in what is referred to as cool-lex order [31, 28, 27].

We can express the property of bubble language in terms of the computation tree Tn
d as follows:

Proposition 4.2. A language L ⊆ {0, 1}n is a bubble language if and only if, for every d = 0, . . . , n,
its fixed-density subset L(n, d) is closed w.r.t. parents and left siblings in the computation tree Tn

d of the
Recursive Swap Generation Algorithm. In particular, if L(n, d) 6= ∅, then it forms a subtree rooted in 1d0n−d.

Proof. Follows immediately from the definition of bubble languages. 2

Using Prop. 4.2, the RECURSIVE SWAP GENERATION ALGORITHM can be applied to generate any fixed-
weight bubble language L, as long as we have a way of deciding, for a node w = 1s0tγ, already known to
be in L, which is its rightmost child (if any) that is still in L. If such a child exists, and it is the jth child
u = 1s−10j10t−jγ, then the bubble property ensures that all children to its left are also in L. Thus, line 2. in
Algorithm 1 can simply be replaced by “for i = 1, . . . , j”.

The framework provided in [27, 28] to list the strings in L(n, d) for a given bubble language L, can
thus be viewed as a restriction of the RECURSIVE SWAP GENERATION ALGORITHM: Given a string w =

1s0tγ ∈ L, compute the largest integer j such that 1s−10j10t−jγ ∈ L, in other words, the rightmost child
of node 1s0tγ ∈ L which is still in L, called the bubble upper bound4. This simple framework is outlined
in Algorithm 2 for a given bubble language L, where the current word w = w1w2 · · ·wn is stored globally.
The function ORACLE(s, t) returns the bubble upper bound for w with respect to L. The membership tester
MEMBER(L, w) returns true if and only if w ∈ L. The initial call is GENBUBBLE(d, n−d) with w initialized

4In [27, 28], actually a “bubble lower bound” is computed. Because we feel it simplifies the discussion, here we introduce a
related value called the “bubble upper bound”. The bubble lower bound is equal to t minus the bubble upper bound.

9

to 1d0n−d.

Algorithm 2 Generic algorithm to list L(n, d) for a given bubble language L in cool-lex order.

1: function ORACLE(s, t)
2: j ← 1
3: while j ≤ t and MEMBER(L, 1s−10j10t−jγ) do j ← j + 1

4: return j − 1

5: procedure GENBUBBLE(s, t)
6: if s > 0 and t > 0 then
7: for i← 1 to ORACLE(s, t) do
8: SWAP(s, s+i)
9: GENBUBBLE(s−1, i)

10: SWAP(s, s+i)
11: VISIT()

It was further shown in [27] that cool-lex order, the order in which the generic algorithm visits the strings
of L(n, d), gives a Gray code. This can be seen on the tree Tn

d as follows:

Lemma 4.3. Let u be a node in the computation tree Tn
d . Then each of the following can be obtained from u

by a single swap operation: (a) any sibling of u, (b) parent(u), and (c) any node on the leftmost path in the
subtree rooted in u.

Proof. Let u and u′ be siblings, and let their parent be v = 1s0tγ. Then there exist i, j such that
u = 1s−10i10t−iγ and u′ = 1s−10j10t−jγ. Then u′ = swap(u, s + i, s + j), while v = parent(u) =

swap(u, s+ i, s). For (c), let u = 1s0tγ and u′ = 1k01s−k0t−1γ for some k; then u′ = swap(u, k+1, s+1).
2

We now report the main result on bubble languages from [27, 28], for which we give a proof using
Prop. 4.2.

Proposition 4.4 ([27, 28]). Any fixed-length bubble language L(n), where L(n, d) 6= ∅ for all d = 0, . . . , n,
can be generated such that subsequent strings differ by at most two swaps, or by a swap and a bit flip. Given
a membership tester MEMBER(L, w) which runs in O(m) time, this generation algorithm takes amortized
O(m) time per word.

Proof. For a fixed-weight subset L(n, d), let TL denote the subtree of Tn
d corresponding to L(n, d). Note

that in a post-order traversal of TL, we have:

next(u) =

{
parent(u) if u is rightmost child

leftmost descendant of u’s right sibling otherwise.

By Prop. 4.2, we have that the leftmost descendant of any node in TL lies on the leftmost path in Tn
d .

Thus, by Lemma 4.3, next(u) can be reached in one or two swaps.
By concatenating the lists for weights 0, 1, . . . , n, the procedure GENERATEALL(n) shown in Algorithm 3

will exhaustively list L(n) for a given bubble language L. To see the Gray code property, notice that for any
weight d, the last string visited is 1d0n−d, while the first string visited for the next weight d+ 1 is the leftmost

10

descendant of 1d+10n−d−1, i.e. a string of the form 1i01d+1−i0n−d−2, which is one swap and one bit flip
away from 1d0n−d.

For the running time, notice that for w = 1s0tγ, we do at most j + 1 membership tests, where j is the
bubble upper bound for w. The j successful tests can be charged to the j children of w, while the possible
last unsuccessful test can be charged to w itself. 2

Algorithm 3 A Gray code to exhaustively list L(n) for a given bubble language L.

1: procedure GENERATEALL(n)
2: for d← 0 to n do
3: w1w2 · · ·wn ← 1d0n−d

4: GENBUBBLE(d, n− d)

Remark: It is even possible to give a cyclic Gray code for L(n), by giving the fixed-weight subsets listed
first by the odd weights (increasing), followed by the even weights (decreasing).

The oracle of Algorithm 2 applies a simple membership tester to compute the bubble upper bound for
given w ∈ L. However, we do not actually need a general membership tester, since all we want to know is
which of the children of a node already known to be in L are in L; moreover, the membership tester is allowed
to use other information, which it can build up iteratively while examining earlier nodes. In the next section,
we will apply this method to the language of prefix normal words.

5. A Gray Code for Prefix Normal Words

In this section, we prove that the set of prefix normal words LPN is a bubble language. Then using the
bubble framework and applying a basic quadratic-time membership tester, we show how to generate all words
in LPN(n, d) in Gray code order. By concatenating the lists together for all weights in increasing order, we
obtain an algorithm to list LPN(n) as a Gray code in O(n2) amortized time per word. By then providing an
enhanced membership tester for prefix normal words specific to the bubble framework, we further show how
this Gray code can be generated in O(log2 n) amortized time per word.

Theorem 5.1. LPN is a bubble language.

Proof. Let w be a prefix normal word containing an occurrence of 01. Let w′ be the word obtained from w

by replacing the first occurrence of 01 with 10. Then w = u01v, w′ = u10v for some u, v ∈ Σ∗. Let z be a
substring of w′. We have to show that |z|1 ≤ P (w′, |z|).

Note that for any k, P (w, k) ≤ P (w′, k). In fact, P (w′, |u| + 1) = P (w, |u|) + 1, and for every
k 6= |u| + 1, P (w, k) = P (w′, k). Now if z is contained in u or in v, then z is a substring of w, and thus
|z|1 ≤ P (w, |z|) ≤ P (w′, |z|). If z = u′10v′, with u′ suffix of u and v′ prefix of v, then |z|1 = |u′01v′|1 ≤
P (w, |z|) ≤ P (w′, |z|). If z = 0v′, with v′ prefix of v, then |z|1 < |1v′|1, and 1v′ is a substring of w,
thus |z|1 ≤ P (w, |z|) ≤ P (w′, |z|). Else z = u′1, with u′ suffix of u. We can assume that u′ is a proper
suffix of u. Let z′ be the substring of w′ of the same length as z and starting one position before z (in other
words, z′ is obtained by shifting z to the left by one position). Since u does not contain 01 as a substring, we
have u = 1n0m for some n ≥ 1,m ≥ 0. If z′ is a power of 0’s, then |z|1 = 1 and the claim holds. Else,
|z|1 = |z′|1, and z′ is a substring of w. Thus |z|1 ≤ P (w, |z|) ≤ P (w′, |z|). 2

11

gammas t

w

gammas-1 i

w'

t-i
k

Figure 2: Illustration of Lemma 5.2. On the right we have the two cases of a substring u (in gray) of w′ which may violate the prefix
normal property.

Since there is a membership tester for prefix-normal words that runs in O(n2) time, e.g. as described
in Algorithm 4, the aforementioned Gray codes for both LPN(n, d) and LPN(n) can be generated in O(n2)

amortized time (Prop. 4.4). We show the computation tree T 7
4 in Fig. 1, with prefix normal words in bold.

The complete listing for d = 0, 1, . . . , 7 is given in Table 1.

Algorithm 4 Test if w1w2 · · ·wn ∈ LPN in O(n2) time.

1: function MEMBER(LPN, w1w2 · · ·wn)
2: p0 ← 0
3: for i← 1 to n do pi ← pi−1 + wi

4: for i← 2 to n do
5: f ← 0
6: for j ← i to n do
7: f ← f + wj

8: if f > pj−i+1 then return FALSE

9: RETURN TRUE

5.1. A More Efficient Approach

Now we develop a more efficient membership tester forLPN that is specific to one required by an oracle for
bubble languages. In particular, membership tests are only made on strings of the form w = 1s−10j10t−jγ,
given that 1s0tγ ∈ LPN.

Lemma 5.2. Let w = 1s0tγ be a word in LPN where s ≥ 0, t ≥ 1 and γ ∈ 1{0, 1}∗ ∪ {ε}. Let w′ =
b1b2 · · · bn = swap(w, s, s+ j) for some 1 ≤ j ≤ t. Then w′ is not in LPN if and only if either

1. F (γ0s+t, s+ j − 1) ≥ s, or
2. |bs+jbs+j+1 · · · b2(s+j−1)|1 ≥ s.

Proof. The proof is illustrated in Fig. 2. Note that w′ = 1s−10j10t−jγ.
(⇐) The prefix of b1b2 · · · bs+j−1 of w′ has s− 1 ones. If F (γ0s+t, s+ j − 1) ≥ s, then it must be that γ

contains a substring of length s+j−1, or less, with at least s ones. Similarly, if |bs+jbs+j+1 · · · b2(s+j−1)|1 ≥
s thenw′ also contains a substring of length s+j−1 with at least s ones. Thus, if either F (γ0s+t, s+j−1) ≥ s
or |bs+jbs+j+1 · · · b2(s+j−1)|1 ≥ s then w′ is not in LPN.

(⇒) Assume w′ is not in LPN. Then there is a shortest substring u = bibi+1 · · · bi+m−1 with length m
in w′ such that |u|1 > P (w′,m). Clearly i > 1 and since m is minimal bi = bi+m−1 = 1. Suppose
i+m−1 ≤ s+ j. Then u can have at most s−1 ones since i > 1 and thus |u|1 ≤ P (w′,m), a contradiction.
Thus i + m − 1 > s + j. We now consider three cases for i. If i < s + j then since bi = 1, 2 ≤ i < s.
But since b1b2 · · · bi−1 = 1i−1, this means P (w′,m) ≥ |u|1. Thus i ≥ s + j. Suppose i = s + j. If

12

m > s + j − 1 then the prefix of w′ of length m overlaps with u, i.e. we can write b1b2 · · · bm = vv′ and
u = v′u′ for some non-empty v′ containing the swapped 1. Since |u|1 > P (w′,m), this implies that also u′

has more 1s than the prefix of the same length, a contradiction to our choice of u. Thus m ≤ s+ j − 1. Since
w′ starts with 1s−1 and |u|1 > P (w′,m) it must be that |u|1 ≥ s. By extending u to have length s + j − 1

we have |bs+jbs+j+1 · · · b2(s+j−1)|1 ≥ s. Finally, suppose i > s + j. Then because bi = 1, u is a substring
of γ and hence a substring of w. Since w ∈ LPN we have |u|1 ≤ P (w,m). Since P (w,m) = P (w′,m) for
all m < s and m ≥ s + j, and |u|1 > P (w′,m), it must be that s ≤ m ≤ s + j − 1. For each of these
possible values for m, P (w′,m) = s− 1. Thus |u|1 ≥ s which means F (γ,m) ≥ s. Finally, since the length
of γ0s+t is at least s + j − 1, we also have F (γ0s+t, s + j − 1) ≥ s. Considering all cases, we must either
have F (γ0s+t, s+ j − 1) ≥ s, or |bs+jbs+j+1 · · · b2(s+j−1)|1 ≥ s. 2

Let fi denote the value F (γ0s+t, i). By maintaining f1, f2, . . . , fs+t as GENBUBBLE iterates through
the prefix normal words, we can apply the previous lemma to optimize a membership tester. Pseudocode is
given in Algorithm 5. This function requires the passing of the variables s and j from the function ORACLE,
recalling that the current string w1w2 · · ·wn is stored globally.

Algorithm 5 Membership testing for LPN specific to cool-lex framework in O(s+ t) time.

1: function MEMBERPN(s, j)
2: ones← 1 . first 1 accounted for by the (proposed) swap of a 1 to ws+j

3: for i← s+ j + 1 to 2(s+ j − 1) do
4: if wi = 1 then ones← ones+ 1

5: if ones ≥ s or fs+j−1 ≥ s then return FALSE

6: RETURN TRUE

The resulting membership tester clearly runs in O(s+ t) time since j ≤ t. In order to apply the oracle, we
must maintain the data structure f1, f2, . . . , fs+t as we proceed through the recursive generation algorithm.
Since the length of the critical prefix 1s0t decreases as we go deeper in the computation tree, it is sufficient
to update f1, f2, . . . , fs+i as the bits in positions s and s + i get swapped. Observe that this swap changes γ
by replacing the prefix 0i with 1. Thus, to update the f values we can simply scan the first s + i bits (of the
updated γ) as illustrated in UPDATEF(x) of Algorithm 6, where x corresponds to s+ i. This function should
be inserted just before the recursive call is made in GENBUBBLE(s, t) on line 9 of Algorithm 2. Since these
values need to be restored after the recursive call, we need to first save the initial values f1, f2, . . . , fs+i in a
temporary array so they can be restored. A complete C implementation is given in Appendix A.

Algorithm 6 Update required values for f where x = s+ i.

1: procedure UPDATEF(x)
2: ones← 0
3: for k ← x to 2x do
4: if wk = 1 then ones← ones+ 1

5: fk−x+1 ← MAX(fk−x+1, ones)

5.2. Analysis

For each prefix normal word w generated by GENERATEALL(n), using the optimized membership tester
for prefix normal words, the algorithm requires O(cr(w)) time to update f1, f2, . . . , fcr(w). Thus, the over-

13

all work done by the algorithm is proportional to C(n) =
∑

w ∈ LPN(n) cr(w) = pnw(n) · O(log2 n), by
Theorem 2.10. We summarize:

Theorem 5.3. The set of words LPN(n), where n > 1, can be generated in amortized O(log2 n) time per
word.

Prefix normal words are the first interesting example of a bubble language for which no O(1) amortized time
generation algorithm is known.

6. Membership Testing

The best membership testing algorithm uses the fact that a word is prefix normal if and only if it equals
its prefix normal form (see Lemma 2.3). As mentioned before, the most efficient algorithm for computing the
F -function of a word w, and thus its prefix normal form, is from [13] and runs in time O(n1.864). Here we
present a simple two-phase membership tester which, even thoughO(n2) in the worst-case, could outperform
other algorithms in practice.

Now consider the following two-phase approach. Suppose there is an O(n) test that rejects Xn binary
strings of length n (Phase I). Then, for the remaining Yn = 2n−Xn strings, apply the worst case O(n2)

algorithm (Phase II). On average this will lead to a membership algorithm that runs in time:

c1n ·Xn + c2n
2 · Yn

2n
,

for some constants c1 and c2. This expression will be less than (c1 + c2)n if Yn ≤ 2n/n, which implies
an O(n) average case tester. Thus, when designing an O(n) time rejection tester in Phase I, we are aiming
to reject a number proportional to 2n − 2n/n. Without knowing exactly how many strings get rejected by a
particular tester, we can focus on the following ratio:

ratio =
nYn
2n

.

As n grows, if this ratio is decreasing and bounded by a constant c, then Yn ≤ c2n/n, which implies an O(n)

average case time tester.
Applying this approach, we try the following trivial O(n) test for Phase I: a string will not be prefix

normal if the longest run of 1s is not a prefix. Applying this test as the first phase, the resulting ratios for
some increasing values of n are given in Table 3(a). Since the ratios are increasing as n increases, we require
a more advanced rejection test.

The next attempt uses a more compact run-length representation for w. Let w be represented by a series
of c blocks, which are maximal substrings of the form 1∗0∗. Each block Bi is composed of two integers
(si, ti) representing the number of 1s and 0s respectively. For example, the string 11100101011100110 can
be represented by B1B2B3B4B5 = (3, 2)(1, 1)(1, 1)(3, 2)(2, 1) where c = 5. Such a representation can
easily be found in O(n) time. A word w will not be prefix normal word if it contains a substring of the form
1i0j1k such that i + j + k ≤ s1 + t1 and i + k > s1 (the substring is not longer, yet has more 1s than the
critical prefix). Thus, a word is not prefix normal if for some 2 ≤ i ≤ c:

si−1 + ti−1 + si ≤ s1 + t1 and si−1 + si > s1.

14

Algorithm 7 Membership tester: returns whether or not w = w1w2 · · ·wn ∈ LPN.

1: function MEMBERPNF(w)
2: (s1, t1)(s2, t2) · · · (sc, tc)← the run-length block encoding of w
3: . Phase I: linear time rejection tests
4: for i← 2 to c do
5: if si > s1 then return FALSE

6: if si−1 + ti−1 + si ≤ s1 + t1 and si−1 + si > s1 then return FALSE

7: . Phase II: call O(n2) membership tester
8: return MEMBER(LPN, w)

By applying this additional test in our first phase, we obtain Algorithm 7. The ratios that result from this
algorithm are given in Table 3(b). Similar decreasing ratios also occur for odd n.

n ratio

10 2.500
12 2.561
14 2.602
16 2.631
18 2.656
20 2.675
22 2.693
24 2.708

(a)

n ratio

10 2.168
12 2.142
14 2.121
16 2.106
18 2.093
20 2.083
22 2.075
24 2.067

(b)

Table 3: (a) Ratios from the trivial rejection test. (b) Ratios by adding secondary rejection test.

Since the ratios achieved by the combination of the two tests are decreasing as n increases (see Table 3(b)),
we make the following conjecture:

Conjecture 6.1. The membership tester MEMBERPNF(w) for LPN runs in O(n)-time on average, where the
average is taken over all words of length n.

We note that one can conceive of several other (perhaps more advanced) rejection tests that run in O(n)

time, however, these two were sufficient to obtain our desired experimental results.

7. Conclusion and Open Problems

The main result of this paper is a generation algorithm for prefix normal words, which is shown to run
in amortized O(log2 n) time per word, as opposed to the hitherto best O(n) time per word algorithm. Our
algorithm is based on the fact that prefix normal words form a bubble language, thus the general framework
for bubble languages can be applied, and the algorithm outputs the language as a Gray code.

We further presented a novel view of bubble languages, in terms of subtrees of the computation tree of
a generating algorithm for all binary strings. We hope that this view will aid readers to apply the bubble

15

framework to other binary languages. Finally, we gave a membership tester for prefix normal words, which
we conjecture to run in average linear time over all binary words.

We conclude with the following open problems on prefix normal words:

1. Given a prefix normal word w, efficiently list all words with prefix normal form w (i.e., its equivalence
class). The maximum size of an equivalence class is listed in the OEIS as sequence A238110 [30]. Note
that in the recent article [5], the authors prove that the maximum equivalence class size is asymptotically
2n−O(

√
n logn).

2. Derive a closed form enumeration formula for the number pnw(n) of prefix normal words of length n,
or a generating function for pnw(n).

3. Develop an algorithm to exhaustively list all prefix normal words in constant amortized time per word.
4. Develop a general membership tester for prefix normal words which runs in o(n1.864) time in the worst

case.

Acknowledgements

We thank Frank Ruskey for useful discussions. We further thank the organizers of the Dagstuhl Seminar
no. 18281 [6], which took place in July 2018, and which gave some of the authors an opportunity to collaborate
on prefix normal words.

Bibliography

[1] P. Afshani, I. van Duijn, R. Killmann, and J. S. Nielsen. A lower bound for jumbled indexing. In Proceedings of
the 2020 ACM-SIAM Symposium on Discrete Algorithms, (SODA 2020), pages 592–606, 2020.

[2] A. Amir, A. Apostolico, T. Hirst, G. M. Landau, N. Lewenstein, and L. Rozenberg. Algorithms for jumbled
indexing, jumbled border and jumbled square on run-length encoded strings. Theoret. Comput. Sci., 656:146–159,
2016.

[3] A. Amir, A. Butman, and E. Porat. On the relationship between histogram indexing and block-mass indexing.
Philosophical Transactions of The Royal Society A: Mathematical Physical and Engineering Sciences, 372(2016),
2014.

[4] A. Amir, T. M. Chan, M. Lewenstein, and N. Lewenstein. On hardness of jumbled indexing. In 41st International
Colloquium on Automata, Languages, and Programming (ICALP 2014), volume 8572 of LNCS, pages 114–125,
2014.

[5] P. Balister and S. Gerke. The asymptotic number of prefix normal words. Theoret. Comput. Sci., 784:75–80, 2019.

[6] J. Barbay, J. Fischer, S. Kratsch, and S. R. Satti. Synergies between Adaptive Analysis of Algorithms, Parame-
terized Complexity, Compressed Data Structures and Compressed Indices (Dagstuhl Seminar 18281). Dagstuhl
Reports, 8(7):44–61, 2019.

[7] A. Blondin Massé, J. de Carufel, A. Goupil, M. Lapointe, É. Nadeau, and É. Vandomme. Leaf realization problem,
caterpillar graphs and prefix normal words. Theoret. Comput. Sci., 732:1–13, 2018.

[8] P. Burcsi, F. Cicalese, G. Fici, and Zs. Lipták. Algorithms for Jumbled Pattern Matching in Strings. International
Journal of Foundations of Computer Science, 23:357–374, 2012.

[9] P. Burcsi, F. Cicalese, G. Fici, and Zs. Lipták. On approximate jumbled pattern matching in strings. Theory
Comput. Syst., 50(1):35–51, 2012.

16

[10] P. Burcsi, G. Fici, Zs. Lipták, F. Ruskey, and J. Sawada. Normal, abby normal, prefix normal. In Proc. of the 7th
International Conference on Fun with Algorithms (FUN 2014), volume 8496 of LNCS, pages 74–88, 2014.

[11] P. Burcsi, G. Fici, Zs. Lipták, F. Ruskey, and J. Sawada. On combinatorial generation of prefix normal words. In
Proc. of the 25th Ann. Symp. on Comb. Pattern Matching (CPM 2014), volume 8486 of LNCS, pages 60–69, 2014.

[12] P. Burcsi, G. Fici, Zs. Lipták, F. Ruskey, and J. Sawada. On prefix normal words and prefix normal forms. Theoret.
Comput. Sci., 659:1–13, 2017.

[13] T. M. Chan and M. Lewenstein. Clustered integer 3SUM via additive combinatorics. In Proc. of the 47th Ann.
ACM on Symp. on Theory of Computing (STOC 2015), pages 31–40, 2015.

[14] F. Cicalese, E. S. Laber, O. Weimann, and R. Yuster. Approximating the maximum consecutive subsums of a
sequence. Theoret. Comput. Sci., 525:130–137, 2014.

[15] F. Cicalese, Zs. Lipták, and M. Rossi. Bubble-flip - A new generation algorithm for prefix normal words. Theoret.
Comput. Sci., 743:38–52, 2018.

[16] F. Cicalese, Zs. Lipták, and M. Rossi. On infinite prefix normal words. In Proc. of the 45th International Confer-
ence on Current Trends in Theory and Practice of Computer Science (SOFSEM 2019), volume 11376 of LNCS,
pages 122–135, 2019.

[17] L. F. I. Cunha, S. Dantas, T. Gagie, R. Wittler, L. A. B. Kowada, and J. Stoye. Faster jumbled indexing for binary
RLE strings. In 28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017), volume 78 of LIPIcs,
pages 19:1–19:9. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[18] G. Fici and Zs. Lipták. On prefix normal words. In Proc. of the 15th Intern. Conf. on Developments in Language
Theory (DLT 2011), volume 6795 of LNCS, pages 228–238. Springer, 2011.

[19] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, USA, 1 edition, 2009.

[20] P. Fleischmann, D. Nowotka, M. Kulczynski, and D. B. Poulsen. On collapsing prefix normal words. In Proc. of
the 14th International Conference Language and Automata Theory and Applications (LATA 2020), volume 12038
of LNCS, pages 412–424. Springer, 2020.

[21] T. Gagie, D. Hermelin, G. M. Landau, and O. Weimann. Binary jumbled pattern matching on trees and tree-like
structures. Algorithmica, 73(3):571–588, 2015.

[22] E. Giaquinta and S. Grabowski. New algorithms for binary jumbled pattern matching. Inf. Process. Lett., 113(14–
16):538–542, 2013.

[23] T. Kociumaka, J. Radoszewski, and W. Rytter. Efficient indexes for jumbled pattern matching with constant-sized
alphabet. Algorithmica, 77(4):1194–1215, 2017.

[24] T. M. Moosa and M. S. Rahman. Sub-quadratic time and linear space data structures for permutation matching in
binary strings. J. Discr. Alg., 10:5–9, 2012.

[25] G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Comput. Surv., 39(1):2, 2007.

[26] F. Ruskey. Combinatorial Generation. 2003. Working Version (1j-CSC 425/520).

[27] F. Ruskey, J. Sawada, and A. Williams. Binary bubble languages and cool-lex order. J. Comb. Theory, Ser. A,
119(1):155–169, 2012.

[28] J. Sawada and A. Williams. Efficient oracles for generating binary bubble languages. Electr. J. Comb., 19(1):P42,
2012.

17

[29] J. Sawada, A. Williams, and D. Wong. Inside the Binary Reflected Gray Code: Flip-Swap languages in 2-Gray
code order. Unpublished manuscript, 2017.

[30] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. Available electronically at http://oeis.
org.

[31] A. Williams. Shift Gray Codes. PhD thesis, University of Victoria, Canada, 2009.

18

Appendix A: C code
//---
// COOL-LEX GRAY CODE for Prefix Normal Words
// OEIS: http://oeis.org/A194850
//---
#include <stdio.h>
#define MAX(a,b) ((a > b) ? a : b)

int a[100], F[100], N, NO_OUTPUT=0, COLEX=0;
long long int total = 0;

//---------------------------------
void Visit() {
int i;

if (!NO_OUTPUT) {
for (i=1; i<=N; i++) {

if (a[i] == 0) printf("1");
else printf("0");

}
printf("\n");

}
total++;

}
//---------------------------------
void Swap(int i, int j) {
int tmp;

tmp = a[i]; a[i] = a[j]; a[j] = tmp;
}
//---------------------------------
int Member_PNF(int s, int j) {
int i, ones=1;

for (i=s+j+1; i<=2*(s+j-1); i++) if (a[i] == 1) ones++;
if (ones >= s || F[s+j-1] >= s) return 0;
return 1;

}
//---------------------------------
int Oracle_PNF(int s, int t) {
int j=1;

while (j <= t && Member_PNF(s,j)) j++;
return j-1;

}
//---------------------------------
int UpdateF(int x) {
int j, ones=0;

for (j=x; j<=2*x; j++) {
if (a[j] == 1) ones++;
F[j-x+1] = MAX(F[j-x+1],ones);

}
}
//----------------------------
// COOL LEX GRAY CODE or COLEX
//----------------------------
void Gen(int s, int t) {
int i, j, k, G[100];

if (COLEX) Visit();
if (s > 0 && t > 0) {

19

j = Oracle_PNF(s,t);
for (i=1; i<=j; i++) {

Swap(s,s+i);
for (k=s+i; k<=2*(s+i); k++) G[k-(s+i)+1] = F[k-(s+i)+1];

UpdateF(s+i);
Gen(s-1,i);

for (k=s+i; k<=2*(s+i); k++) F[k-(s+i)+1] = G[k-(s+i)+1];
Swap(s,s+i);

}
}
if (!COLEX) Visit();

}
//---------------------------------
int main() {
int i, j, output, D;

//-------
// INPUT
//-------
printf("\nSELECT output [1]Cool-lex Gray code [2]Co-lex [3]Just counts: ");
scanf("%d", &output);

if (output == 2) COLEX = 1;
if (output == 3) NO_OUTPUT = 1;

printf("ENTER length n: "); scanf("%d", &N);
printf("ENTER # of a’s (or -1 for all PN words): "); scanf("%d", &D);
printf("\n");

for (i=1; i<=N; i++) F[i] = 0;

//-----------
//GENERATION
//-----------
if (D == -1) {

for (j=0; j<=N; j++) {
for (i=1; i<=j; i++) a[i] = 1;
for (i=j+1; i<=2*N; i++) a[i] = 0; // PAD WITH N 1s
Gen(j,N-j);

}
}
else {

for (i=1; i<=D; i++) a[i] = 1;
for (i=D+1; i<=2*N; i++) a[i] = 0; // PAD WITH N 1s
Gen(D,N-D);

}

printf("Total = %lld\n", total);
}

20

