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Abstract 27 

Purpose: Recent investigations failed to reproduce the positive rotor-guided ablation outcomes shown 28 

by initial studies for treating persistent atrial fibrillation (persAF). Phase singularity (PS) is an 29 

important feature for AF driver detection, but algorithms for automated PS identification differ. We 30 

aim to investigate the performance of four different techniques for automated PS detection.  31 

Methods: 2048-channel virtual electrogram (VEGM) and electrocardiogram signals were collected for 32 

30 s from ten patients undergoing persAF ablation. QRST-subtraction was performed and VEGMs 33 

were processed using sinusoidal wavelet reconstruction. The phase was obtained using Hilbert 34 

transform. PSs were detected using four algorithms: 1) 2D image processing based and neighbour-35 

indexing algorithm; 2) 3D neighbour-indexing algorithm; 3) 2D kernel convolutional algorithm 36 

estimating topological charge; 4) topological charge estimation on 3D mesh. PS annotations were 37 

compared using the structural similarity index (SSIM) and Pearson’s correlation coefficient (CORR). 38 

Optimized parameters to improve detection accuracy were found for all four algorithms using Fβ score 39 

and 10-fold cross-validation compared with manual annotation. Local clustering with density-based 40 

spatial clustering of applications with noise (DBSCAN) was proposed to improve algorithms 3 and 4. 41 

Results: The PS density maps created by each algorithm with default parameters were poorly 42 

correlated. Phase gradient threshold and search radius (or kernels) were shown to affect PS detections. 43 

The processing times for the algorithms were significantly different (p<0.0001). The Fβ scores for 44 

algorithms 1,2, 3, 3+DBSCAN, 4 and 4+DBSCAN were 0.547, 0.645, 0.742, 0.828, 0.656 and 0.831. 45 

Algorithm 4 + DBSCAN achieved the best classification performance with acceptable processing time 46 

(2.0 ± 0.3 s).  47 

Conclusion: AF driver identification is dependent on the PS detection algorithms and their parameters, 48 

which could explain some of the inconsistencies in rotor-guided ablation outcomes in different studies. 49 

For 3D triangulated meshes, algorithm 4+DBSCAN with optimal parameters was the best solution for 50 

real-time, automated PS detection due to accuracy and speed. Similarly, algorithm 3+DBSCAN with 51 

optimal parameters is preferred for uniformed 2D meshes. Such algorithms – and parameters – should 52 

be preferred in future clinical studies for identifying AF drivers and minimising methodological 53 

heterogeneities. This would facilitate comparisons in rotor-guided ablation outcomes in future works. 54 
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1 Introduction 56 

Atrial fibrillation (AF) is the most common cardiac arrhythmia in clinical practice, affecting 1-2% of 57 

the worldwide population (1). AF increases five-fold the risk of stroke and is related with increased 58 

mortality and significant high costs in medical treatments (1). Although catheter ablation has been 59 

shown effective in treating paroxysmal AF, the identification of areas for successful ablation in patients 60 

with persistent AF (persAF) remains challenging due to the possible existence of multiple 61 

arrhythmogenic mechanisms (2, 3). Recently, the localized sources and rotors theory has gained 62 

evidence to explain sustained fibrillatory behaviour during AF (4-6). Early data have shown ablation 63 

of localized sources to be useful to eliminate AF (7-9), but subsequent works have failed to reproduce 64 

such results, which motivated intense debate on the efficacy of rotor-guided ablation as a therapy for 65 

persAF (10, 11). 66 

Phase mapping has become broadly accepted to map rotors in AF since it facilitates the visualization 67 

of the underlying dynamics and spatiotemporal behaviour of cardiac activations (12-15). Phase 68 

singularity (PS) – found at the tip of a rotor – is a key feature for the location and tracking of such 69 

rotational activities (12). Therefore, the analysis of PS dynamics is important for understanding the 70 

mechanisms of the arrhythmia (16). As illustrated in Figure 1A, PS is generally defined as the point – 71 

in a single phase map – around which the phase progresses monotonically through a complete 2𝜋 cycle 72 

(12, 17, 18). During automated PS detection, it is common that i) a phase threshold is used to facilitate 73 

the detection of phase gradients – usually slightly lower than a full 2𝜋 rotation around the point of 74 

interest and; ii) a search radius is considered to define the most distant neighbouring node used by the 75 

algorithm for assessing phase gradients (15). 76 

Different techniques for automated PS detection have been proposed and have been broadly used in 77 

electrophysiological (EP) studies, each of which considering different aspects and characteristics of 78 

the phase map (19-21). In 2001, Bray et al. developed a ‘topological charge’ method for PS detection, 79 

based on convolutional kernels which became one of the most popular methods for PS detection (20). 80 

Iyer and Gray suggested a shorter path length may give a more precise localisation but may miss phase 81 

singularities (22). Different convolutional kernels which modify the path length for the topological 82 

charge integral have been used (20, 23, 24), but the effect of using different kernels has not been 83 

investigated. Rantner and colleagues developed a topological charge solution that can be used on 3D 84 

triangular meshes (21). These methodologies – based on different criteria – might culminate in distinct 85 

detected PSs, subsequently affecting AF driver identification, which could partially explain the recent 86 

inconsistencies in rotor-guided ablation outcomes (11, 25-27). Finally, the absence of investigations 87 

regarding the details of different methodologies used for automated PS identification and their 88 

spatiotemporal behaviour makes the comparison among studies – and assumptions about the 89 

arrhythmia – difficult. Therefore, the quantitative analysis of the underlying fibrillatory activations 90 

based on dynamic phase mapping remains a challenge (16). In this study, we aim to investigate the 91 

performance of four different techniques for automated PS detection and the effect of two important 92 

parameters – the phase gradient threshold and the search radius – using non-contact mapping (NCM) 93 

in human persAF. 94 

2 Methods 95 

2.1 Electrophysiological study 96 

The present study was approved by local ethics committee for patients undergoing AF ablation at the 97 

University Hospitals of Leicester NHS Trust. Ten patients undergoing catheter ablation of persAF for 98 

the first time were recruited for the USURP-AF (Understanding the electrophysiological SUbstRate of 99 
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Persistent Atrial Fibrillation) study. The details of the patients’ baseline characteristics are presented 100 

in the Supplementary Materials (Figure S1). 101 

Prior to the EP study, all drugs except amiodarone were stopped for at least 4 half-lives. Bilateral 102 

femoral venous access was achieved under fluoroscopic guidance, and a quadripolar catheter and a 103 

deflectable decapolar catheter were placed at the His position and Coronary Sinus (CS), respectively. 104 

Trans-septal puncture was performed to gain access to the left atrium (LA). A noncontact multi-105 

electrode array (MEA) catheter (EnSite Velocity, St. Jude Medical, USA) and a conventional 106 

deflectable mapping catheter were deployed in the LA. Anticoagulant drugs were administered to 107 

maintain an activated clotting time > 300 s. A high-resolution 3D LA geometry was created using 108 

EnSite Velocity electro-anatomical mapping system (St Jude Medical, now Abbott) and anatomical 109 

locations were annotated (Figure 1B). No rotors were ablated in this protocol. 110 

2.2 Left atrial geometry and virtual electrogram 111 

The noncontact MEA catheter from EnSite Velocity is composed of 64 electrodes. The EnSite system 112 

employs an inverse solution to estimate the potentials on the endocardium. The potentials from the 64 113 

electrodes on the MEA are used to estimate virtual electrograms (VEGMs) in 64 locations on the 114 

endocardium, which are further interpolated to provide a total of 2048 VEGMs. The 3D vertices 115 

corresponding to the locations of the 2048 VEGMs were exported from the mapping system and 116 

triangulated to a 3D mesh for each patient. The 2048 locations on the 3D shell are organised by the 117 

EnSite system in the same way as the ‘map projection’ of the globe, where there are 64 ‘longitude 118 

lines’ and 32 ‘latitude lines’ with the intersecting points being the 2048 vertices. Therefore, this setting 119 

provides a natural point-by-point cylindrical projection when opening the 3D mesh to a 2D rectangular 120 

mesh (64 x 32), which does not induce additional distortions. 121 

2.3 Data acquisition and signal processing 122 

2048 baseline VEGMs and surface electrocardiogram were collected with a sampling frequency of 123 

2034.5 Hz (Figure 1C). The signals were band-pass filtered (1-150 Hz) by the Ensite system with 124 

default setting, exported and analysed offline using Matlab (Mathworks, MA, USA, version 2018a). 125 

For each patient, 30 s of VEGMs were resampled to 512 Hz using a cubic spline interpolation to reduce 126 

processing time. Downsampling the electrograms to 512 Hz does not result in loss of information in 127 

the VEGMs, as the signals were sampled at a relatively high frequency. The down sampled version is 128 

still comfortably within the Nyquist criterion – considering the frequency content with relevant 129 

electrophysiologic information (1-150 Hz) – and allows the capture of details of even the fastest 130 

physiological fluctuations(28). Ventricular far-field activity was removed from the recorded VEGMs 131 

using a QRST subtraction technique previously described (Figure 1C) (29). 132 

2.4 VEGM pre-processing  133 

The wavelet/sinusoidal reconstruction proposed by Kuklik and colleagues (13) is commonly used in 134 

intracardiac signals to unveil the underlying wavefront propagation and investigate re-entry circuits 135 

(14). Accordingly, the local atrial cycle length (in seconds) is used as an input for the 136 

wavelet/sinusoidal reconstruction. In the present work, the local atrial cycle length was calculated as 137 

the inverse of the dominant frequency (DF, in hertz) for each VEGM. The reconstructed VEGMs were 138 

then used for the phase calculation (Figure 1C). 139 

2.5 Phase mapping 140 



Phase Singularity Identification in Non-contact Mapping 

 
5 

Hilbert transform ℎ(𝑡) of the reconstructed VEGMs 𝑓(𝑡) was used to generate an analytic signal 𝐹(𝑡), 141 

from which the instantaneous phase 𝜑(𝑡) of the VEGMs was obtained as the four-quadrant inverse 142 

tangent (function atan2 in MATLAB) of the ratio of the imaginary ℎ(𝑡) and real part 𝑓(𝑡) of the 143 

analytic signal (Equation 1, Figure 1C) (12, 30, 31).  144 

𝐹(𝑡) = 𝑓(𝑡) + 𝑗 ℎ(𝑡) = 𝐴(𝑡) 𝑒𝑗 𝜑(𝑡) 

𝜑(𝑡) = 𝑎𝑡𝑎𝑛2[ ℎ(𝑡), 𝑓(𝑡) ] 
(1) 

2.6 The detection of phase singularities 145 

Four consolidated techniques commonly used for the automated detection of PSs were considered in 146 

the current study, as illustrated in Figure 2. The details are described in the following sections. 147 

2.6.1 Algorithm 1 – image processing-based algorithm 148 

This algorithm was originally designed to work with 2D optical mapping (32), for applications on 2D 149 

uniform rectangular meshes. First, the 2D meshes were generated using cylindrical projection in the 150 

triangulated 3D meshes exported from the EnSite system (33). Sharp edges of relative large phase 151 

gradients were then detected using Canny edge detector, as illustrated in Figure 2 (34). Points at the 152 

ends of the edge lines were detected and selected as candidates for PSs. The neighbours around the 153 

candidates were defined as a ‘diamond’ expansion and sorted clockwise (Figure 2, Algorithm 1), and 154 

a PS was marked if i) a monotonic increase/decrease was detected along a loop of neighbouring nodes 155 

around the node of interest and; ii) the phase gradient within that loop of neighbouring nodes 156 

[max (𝜑𝐿𝑜𝑜𝑝) − min (𝜑𝐿𝑜𝑜𝑝)]  exceeded an operator-defined threshold. The default threshold for this 157 

algorithm is 1.5 𝜋 (32).  158 

2.6.2 Algorithm 2 – 3D triangulation algorithm  159 

This is an in-house algorithm developed for analysing the triangulated 3D mesh with VEGMs. The 160 

neighbour indices of the nodes were found from the 3D triangulation mesh, and the neighbours were 161 

sorted clockwise (Figure 2, Algorithm 2). Increases or decreases of the phase of the neighbours were 162 

detected and a PS was identified if i) a monotonic increase/decrease was detected from the sorted 163 

neighbours along a loop of neighbouring nodes around the node of interest and; ii) the phase gradient 164 

within that loop of neighbouring nodes [max (𝜑𝐿𝑜𝑜𝑝) − min (𝜑𝐿𝑜𝑜𝑝)] exceeded an operator-defined 165 

threshold. The default threshold for this algorithm is 1.5 𝜋 (35). The detections were translated into the 166 

2D mesh using cylindrical projection.  167 

2.6.3 Algorithm 3 – topological charge algorithm  168 

This algorithm is one of the most commonly used PS detection methods by investigators, which 169 

estimate the topological charge from 2D uniform rectangular meshes. It evaluates the contour integral 170 

of the phase gradient around the nodes of interest using a sliding matrix (kernel) in the 2D space. The 171 

PSs are detected by computing the topologic charge density as the curl of the spatial phase gradient 172 

(Figure 2, Algorithm 3). Bray et al. (20, 24) implemented this technique based on the ‘topologic 173 

charge’ index, 𝑛𝑡: 174 
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 175 

 176 

 177 

where 𝑛𝑡 is the topologic charge index, 𝜑(�⃗�) is the local phase, the line integral is taken over path 𝑙 on 178 

a closed curve c surrounding the PS candidate (the region where the phase is undefined). Bray et al. 179 

(20) also demonstrated the computation of the line integral (Equation 3) in Equation 2 at any location 180 

may be expressed as a 2D convolution operation using a 3x3 matrix of weights – i.e., a kernel – in each 181 

of the x and y directions, which allows efficient computation (20): 182 

 183 

 184 

Where  is the convolutional operator, 𝑘𝑥 and 𝑘𝑦 are the phase gradients in vertical and horizontal 185 

directions. Different convolutional kernels were used in different works(20, 24), and 4 kernels were 186 

included in the present study: sobel 3x3, sobel 5x5, nabla 2x2 and nabla 3x3 (Figure 2 illustrated 187 

colour-coded examples of the kernels, in Algorithm 3 column). The kernels are illustrated in the 188 

Supplemental material (Figure S1). As an example, the sobel 3x3 convolutional kernels (𝛻𝑥 and 𝛻𝑦 ) 189 

are defined as (Equations 4-5): 190 

 191 

 192 

 193 

 194 

 195 

 196 

Similarly, Equations 6-7 are an example for the nabla 2x2 kernel: 197 

 198 

 199 

 200 

 201 

 202 

𝑛𝑡 ≡
1

2𝜋
∮∇φ(𝑟) ∙ 𝑑𝑙

𝑐

, (2) 

𝑙𝑖𝑛𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙  𝛻𝑥  𝑘𝑦 + 𝛻𝑦  𝑘𝑥  (3) 

𝛻𝑥 = [
−1/2 0 +1/2

−1 0 +1
−1/2 0 +1/2

]  (4) 

𝛻𝑦 = [
+1/2 +1 +1/2

0 0 0
−1/2 −1 −1/2

]  (5) 

𝛻𝑥 = [
1 −1
0 0

]  (6) 

𝛻𝑦 = [
−1 0
1 0

]  (7) 
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The default phase threshold for PS detection is 1.9π. Therefore, PSs were annotated if 2π ∙ 𝑛𝑡 was more 203 

negative than -1.9π or if it was higher than +1.9π – the sign being the chirality of the rotation, i.e., the 204 

direction in which the associated wave front circulates about the PS (clockwise or counter clockwise).  205 

2.6.4 Algorithm 4 – 3D topological charge algorithm  206 

This 3D topological charge algorithm (21) is based on the concept of estimating the topological charge 207 

as in Equation 2 (20, 24). The neighbour index of the nodes was found from the triangulated 3D mesh, 208 

and the neighbours were sorted clockwise (Figure 2, Algorithm 4). The sorted neighbours form a 209 

closed path around the node of interest, and the radius of the path can be defined as a search parameter 210 

of N nodal distance. From this closed path, the algorithm counts the occurrence of sudden ‘phase 211 

jumps’ from – π to π and vice-versa (Figure 2, Algorithm 4). This ‘phase jump’, however, is usually 212 

below 2π due to limited resolution of discrete meshes. Therefore, a ‘phase jump’ is annotated when the 213 

difference of two neighbouring nodes along the circular path exceed a phase gradient threshold. The 214 

default of this threshold is 3.5 (~1.1 π) (21). As illustrated in Figure 2 (Algorithm 4), it is expected an 215 

odd number of ‘phase jumps’ at PS points, whereas even numbers suggests no PS. Topological charge 216 

of value 1 will be assigned to positive od number counts, -1 is for negative odd number, and 0 for all 217 

even number counts – where there is no topological charge. The sign of this topological charge 218 

corresponds to the chirality of the rotation.  219 

2.6.5 Local cluster refinement 220 

In PS detection, the neighbouring nodes of a detected PS may also satisfy conditions for PS annotation, 221 

resulting in a small cluster of nodes next to each other. Therefore, PS detection methods might benefit 222 

from a local cluster refinement that select one single PS as representative of such cluster.  223 

The default version of algorithms 1 and 2 already include methods for filtering out extra detected PSs, 224 

whereas the default version of algorithms 3 and 4 consider none. Algorithm 1 adopts the centre of 225 

gravity of a cluster as the representing PS, and algorithm 2 considers a modified version of the density-226 

based spatial clustering of applications with noise (DBSCAN) (36).  227 

DBSCAN arranges high-density points that are closely packed and rejects neighbouring points that lie 228 

alone in low-density regions as outliers. Usually, a distance threshold is considered to define the 229 

neighbours. In the present work, this neighbour-searching distance threshold has been replaced by 230 

direct neighbours from a triangulation mesh. A distance threshold of 5 mm was introduced for each 231 

iteration.  232 

Since algorithms 3 and 4 have no clustering step by default, the effect of adding clustering via 233 

DBSCAN was also included in this studied. In summary, the following analyses were performed in the 234 

subsequent parts of this work: algorithm 1, algorithm 2, algorithm 3, ‘algorithm 3+DBSCAN’, 235 

algorithm 4 and ‘algorithm 4+DBSCAN’. 236 

Examples of the effect of DBSCAN on removing multiple PSs referring the same location can be found 237 

in Supplementary Materials (Figure S2). 238 

2.7 Parameter sensitivity 239 

2.7.1 Phase gradient  240 

A set of phase gradient thresholds ranging from 0.1π to 2π were investigated and applied on all the 241 

algorithms. The phase gradient parameter was also investigated for the 2D topological charge 242 
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(algorithm 3). In this case, however, the thresholds applied were an equivalent to the topological charge 243 

instead of the phase gradient.  244 

2.7.2 Search radius 245 

The phase spatial diffusion was also considered in the analysis for marking a PS. Therefore, different 246 

search radii were tested, varying from 1 to 8 nodal distances from the node of interest – i.e., nodes with 247 

potential PSs – with exception for algorithm 1 that starts from 2 nodal distances.  248 

Search radii were not investigated in algorithm 3 as it uses convolutional operators (kernels) instead of 249 

iterations of neighbouring node (as in algorithms 1-2). In order to investigate the effect of the phase 250 

spatial diffusion using algorithm 3, four different kernels were investigated: sobel 3x3, sobel 5x5, nabla 251 

2x2 and nabla 3x3 (Supplemental Materials, Figure S1). 252 

2.8 Similarity measurements 253 

Once PSs were detected for the different parameters configurations, PS density (PSD) maps were 254 

created for the algorithms. Each PSD map was defined as a 64 x 32 matrix with each ‘pixel’ 255 

representing the number of times that a PS has been visited (Figure 1A, PSD). The normalized PSDs 256 

were compared using two indices measuring the similarity between the PSD maps and those annotated 257 

by an expert (see ‘Clinical Annotation’ section below): structural similarity Index (SSIM)(37) and 258 

Pearson’s Correlation Coefficient (CORR)(38).  259 

2.8.1 Structural similarity index 260 

The SSIM ranges between -1 and 1, where 1 corresponds to two identical sets of data, 0 represents no 261 

correlation and -1 represents inversed sets of data. In Equation 8, three factors (first row) estimate 262 

similarity according to luminance, contrast and structure (37). 263 

𝑆𝑆𝐼𝑀 =
(2𝜇𝑥𝜇𝑦 + 𝑐1)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝑐1)
∙

(2𝜎𝑥𝜎𝑦 + 𝑐2)

(𝜎𝑥
2 + 𝜎𝑦

2 + 𝑐2)
∙

(𝜎𝑥𝑦 + 0.5𝑐2)

(𝜎𝑥𝜎𝑦 + 0.5𝑐2)

=
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝑐1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝑐2)
, 

(8) 

where 𝜇𝑥 and 𝜇𝑦 are the average values, 𝜎𝑥
2 and  𝜎𝑦

2 are the variances, 𝜎𝑥𝑦 is the covariance of 𝑥 and 264 

𝑦, 𝑐1 = (𝑘1𝐿)2 and 𝑐2 = (𝑘2𝐿)2 are two variables where 𝐿 is the dynamic range of the pixels (here 1 265 

for normalised PSD), and 𝑘1 = 0.01 and 𝑘2 = 0.03 by default. 266 

2.8.2 Pearson’s correlation coefficients (CORR) 267 

CORR is defined by Equation 9, where A and B represent 2D matrices; �̅� and �̅�  represent their 268 

respective average values and; 𝑖 and 𝑗 are the rows and columns of the matrices (38). 269 

𝐶𝑂𝑅𝑅 =  
∑ ∑ (𝐴𝑖𝑗 − �̅�)(𝐵𝑖𝑗 − �̅�)𝑗𝑖

√(∑ ∑ (𝐴𝑖𝑗 − �̅�)
2

𝑗𝑖 )(∑ ∑ (𝐵𝑖𝑗 − �̅�)
2

𝑗𝑖 )

 
(9) 

2.9 Performance assessment 270 
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2.9.1 Clinical annotation 271 

From the 30-second data, the longest episode that contains at least one localised stable ‘rotor’ (a ‘rotor’ 272 

being defined as a series of PSs detected at a ‘similar’ location across subsequent frames over time. – 273 

please see section 4.4 for a more detailed discussion on PSs and rotors) was selected visually, by an 274 

expert, for each patient. The time of the onset and offset of the rotors were used as starting and ending 275 

points of the segments. A total of ten phase episodes of localised stable ‘rotors’ were selected (394.7 ± 276 

59.2 ms), and all PSs were identified frame-independently as ‘gold standard’. All PSs occurring inside 277 

the defined segments were visually annotated, independently of being the longest rotor or not, by an 278 

expert. These locations of PSs were considered as the ‘gold standard’ for measuring the performance 279 

of all algorithms. The performance of PS detection from all algorithms were compared with this ‘gold 280 

standard’ (Supplementary Materials / Supplementary Videos. In the videos, the red dots refer to 281 

manually annotated PSs of the stable rotor, based on which the episodes were selected and the white 282 

dots refer to PSs that were also manually annotated).  283 

Definition of true/false positives/negatives 284 

The PS detections were applied on the 2048-channel maps, with each channel associated with a unique 285 

node from the mesh – which can be either a 2D uniform rectangular projected mesh or a 3D triangular 286 

mesh representing true LA geometry (Figure 1B). For each frame, we have tested each node on the 287 

2048 mesh, whether this node has been identified as PS or not, and a true positive (TP) value was 288 

defined in case an automatically identified PS was within a pre-defined tolerance of 5 mm from a 289 

manually annotated PS. The choice of this 5 mm tolerance was defined considering that catheter 290 

ablation usually creates a lesion size from 6 mm to 9 mm (39). The average inter-electrode distance of 291 

the VEGMs is around 3-4 mm, hence the error of detection for 5 mm distance would represent no more 292 

than the averaged one-node distance. If more than one PS were detected by the algorithms referring to 293 

the same manually annotated PS, false positives (FPs) were recorded. After the TPs and the FPs around 294 

the manually annotated PSs were defined, a FP was also recorded if no manually annotated PS were 295 

present in regions where the algorithms detected PSs. Similarly, a false negative (FN) was recorded 296 

when no PSs were detected within a distance of 5 mm of the manually annotated PS, and a true negative 297 

(TN) was recorded when no PSs were detected within that 5 mm radius.  298 

 299 

2.9.2 Precision and recall 300 

Phase maps have been shown to usually contain 1 to 4 PSs from 2048 nodes during persAF (40). Such 301 

dataset is highly imbalanced with many more negatives than positives classes. The commonly used 302 

receiver operating characteristic curve is not appropriate for measuring the quality of detector 303 

techniques for such highly skewed data (41). Precision-Recall (PR) values were used to assess the 304 

algorithms, offering a more informative picture of their performance (41), accordingly (Equation 10):  305 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(10) 
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2.9.3 F1 score in general form  306 

PS detection is the first step towards finding a rotor – which is usually defined as a PS that persists for 307 

multiple consecutive frames either anchored in a location or meandering within nearby regions (16). 308 

The best strategy to accurately characterise a rotor as potential ablation target using PS detection might 309 

be decreasing FPs and maximising TPs. Over-detection (FPs) may be less important than missed-310 

detections (FNs) since PSs are usually checked against a time threshold for rotor identification (see 311 

section 4.4 Rotor identification from detected PSs) (15, 42, 43). Precision is, therefore, less important 312 

than recall for the optimisation of the parameters, considering the much higher occurrence of negative 313 

values than positive values. Consequently, the general form of the Fβ score formula was used 314 

(Equation 11), where the weight for precision (β) chosen was 2, which weighs recall higher than 315 

precision. Fβ scores in such form are used as measures of performance of the algorithms with all 316 

possible combinations of parameters. 317 

𝐹𝛽 = (1 + 𝛽2) ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (11) 

PS detections were performed by the different algorithms using different combinations of the phase 318 

gradient threshold (from 0.1π to 2π, with 0.1π step) and the search radii (from 1 to 8 nodes, four kernels 319 

for algorithm 3). The optimal parameter settings were found by maximising the Fβ score in the training 320 

set. 321 

2.9.4 Cross-validation 322 

10-fold cross-validation was used to test the performance of the binary classifiers/detectors, to 323 

minimise the effect of over-fitting from limited data samples. For each iteration, data were divided into 324 

training set and testing set. We have tested all possible parameter combinations with the phase gradient 325 

thresholds ranging from 0.1π to 2π and the search radii varying from 1 to 8 nodal distances (four kernels 326 

for algorithm 3). The parameter settings of the maximum Fβ score generated from all the training sets 327 

were selected and tested in the testing set (Supplementary Materials, Figure S1). 328 

2.10 Processing time 329 

Processing times for the algorithms using default threshold and different search radii were measured 330 

using MATLAB (R2018a). A desktop PC running 64-bit Windows 10 professional (Microsoft, 331 

Redmond, WA, USA, Intel Xeon CPU E5-1630 v4 @ 3.70 GHz quad-core processor with 32 GB 332 

DDR4 RAM) was used to test the processing speed in all cases. 333 

2.11 Statistical analysis 334 

All data are presented as average value and standard deviation. Ordinary one-way ANOVA test was 335 

performed for the processing time comparisons. P value lower than 0.05 was considered statistically 336 

significant.  337 

3 Results 338 

3.1 Agreement between automated PS detection algorithms 339 

Figure 3A illustrates the resulting PSs detected by each algorithm using their default thresholds 340 

(starred with *) for both phase gradient and search radius at one time instant. Comparing with the ‘gold 341 
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standard’ (manual annotation), both under-detection and over-detection can be observed from the 342 

resulting maps. 343 

PSD maps (476.5 ms) using default thresholds (starred with * in Figure 3B) highlights different 344 

accuracy performance when compared with the PSD of the ‘gold standard’.  345 

The differences in performance using the default parameters in each algorithm are also reflected by the 346 

Fβ scores (row 3 in Table 1).  347 

SSIM and CORR were measured and compared between PSD maps created by each algorithm using 348 

their default settings for all patients, and were found to have relatively low agreement between each 349 

other – except algorithms 3 and 4 and their respective application of DBSCAN clustering (Figure 4). 350 

3.2 Phase gradient threshold 351 

The average node distance for all patients was 3.45 ± 2.03 mm. Search radius was defined as N = 3 352 

(nodes) by default for algorithms 1 and 2, not applicable for algorithm 3, and N = 1 for algorithm 4. 353 

Figure 3A shows the phase maps at one time instant and PS detections from the algorithms using 0.5π, 354 

1.1π, 1.5π and 1.9π as phase gradient thresholds, respectively. Different phase gradient thresholds 355 

resulted in different PS concentrations as illustrated by the PSD maps in Figure 3B. Consequently, 356 

each method – and their respective thresholds – annotated distinct LA regions as potential targets for 357 

ablation.  358 

Figure 5A highlights the effect of different phase gradient thresholds on the number of PSs per frame 359 

for each algorithm. As expected, the number of PSs per frame decreases with the increase of the 360 

threshold.  361 

3.3 Search radius  362 

Similarly, Figure 5B illustrates the effect of adjusting the search radius – or kernel types – on the 363 

number of PSs per frame for each algorithm, with different behaviours. Figure 6A illustrates an 364 

example of a phase map with the detections performed by the different algorithms using their respective 365 

default phase gradient thresholds. Figure 6B shows their respective PSD maps, demonstrating the 366 

effect of changing the search radius on the number of PSs per frame for algorithms 1, 2 and 4, and the 367 

effect of different convolutional kernels for algorithm 3. While algorithm 1 showed relatively small 368 

changes, algorithm 2 was more sensitive to different search radii. Algorithm 4 was the most sensitive 369 

to different search radii, producing more over-detections with larger search radius. The DBSCAN 370 

clustering step in algorithm 3 and 4 improved the results.  371 

3.4 Processing time 372 

Figure 7A illustrates the behaviour of the processing time of all algorithms varying the phase gradient 373 

thresholds. The processing time decreased with higher phase gradient thresholds, especially for the 374 

algorithms with clustering steps (algorithms 1, 2, 3+DBSCAN, 4+DBSCAN). 375 

Figure 7B illustrates the processing time of all algorithms with search radius up to 8 circles of 376 

neighbours around the points of interest. Except for algorithm 3 and 3+DBSCAN with kernels, the 377 

processing time increased with when more neighbours were included – with an exponential behaviour 378 

for algorithms 1, 4, and 4+DBSCAN.  379 
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The overall processing time for PS detection for an average of 394.7 ms long 2048-channel VEGMs 380 

using optimal thresholds for algorithms 1, 2, 3, 3+DBSCAN, 4 and 4+DBSCAN were 8.9 ± 1.4 s, 6.4 381 

± 0.7 s, 0.02 ± 0.003 s, 0.45 ± 0.13 s, 0.38 ± 0.05 s and 2.0 ± 0.3 s , respectively (p<0.0001, Figure 382 

7C). 383 

3.5 Performance assessment 384 

In Figure 8, the colours on the 3D surface colour-coded maps represent the Fβ scores of the testing 385 

data sets of all possible parameters for all algorithms. The setting with maximum Fβ score was 386 

considered as optimal (Table I). With optimised settings, Fβ score for algorithm 1 increased from 0.527 387 

to 0.547; for algorithm 2, from 0.532 to 0.645; for algorithm 3, from 0.517 to 0.742; for algorithm 3 + 388 

DBSCAN, from 0.524 to 0.828; for algorithm 4, from 0.654 to 0.656; and for algorithm 4 + DBSCAN, 389 

from 0.606 to 0.831. 390 

Algorithm 4 + DBSCAN clustering showed the best performance over the algorithms according to the 391 

Fβ score.  392 

4 Discussion 393 

In the present work, we compared four computer algorithms for automated PS identification from phase 394 

maps calculated from high-density NCM during human persAF. Two important parameters commonly 395 

used for PS detection were investigated: i) the phase gradient threshold for the dispersion of phase 396 

values around points of interest and; ii) the searching radius, i.e., the number of direct neighbours to 397 

be included for the phase gradient probing (different kernels for algorithm 3). Our results show that 398 

AF driver identification is dependent on the PS detection algorithm and their parameters – the phase 399 

gradient and the search radius. Accordingly, different parameters applied by different research groups 400 

would result in distinct AF driver detection, which could explain inconsistencies in rotor-guided 401 

ablation outcomes in recent investigations (11, 25-27). Additionally, our results suggest that the 402 

algorithm that best performs for real-time automated PS detection is based on topological charge from 403 

3D triangular meshes with additional spatial clustering. Interestingly, topological charge using 404 

convolutional kernel and further spatial clustering has also shown best results for 2D uniformed 405 

rectangular meshes. Those two algorithms resulted in best performance and the fastest computational 406 

speed highlighting their potential use in real-time EP studies. Such algorithms – and their respective 407 

optimal parameters – should be considered in future clinical studies for the identification of AF drivers 408 

in order to minimize methodological heterogeneities.  409 

4.1 Phase mapping using NCM 410 

Previous studies showed moderate correlation between non-contact and contact mapping (44-46). 411 

Schilling and colleagues found a correlation of 0.74 ± 0.19 for 3600 electrograms tested in the right 412 

atrium (44); Earley et al. showed similar correlation 0.81 (0.27 to 0.98) from the LA (45); Jarman and 413 

colleagues showed a correlation of 0.7 ± 0.15 for 62 random locations in the LA (46); finally, it was 414 

also shown that correlation decreased with increasing distance between the endocardial node and the 415 

balloon (45, 47, 48). These comparisons, however, were limited on the correlation of the electrograms’ 416 

morphology. The use of NCM in the frequency domain was validated by Gojraty et al., where no 417 

significant difference was found in the mean DFs between contact and noncontact signals (49). 418 

Recently, we have shown co-localized behaviours of high frequency sites and PSs in humans (16), 419 

suggesting that non-contact phase mapping could be a reliable technique to investigate pro-arrhythmic 420 

re-entrant activity, supporting the concept of rotors co-existing with high frequency in isolated sheep 421 

hearts(50). 422 
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Roney and colleagues have recently suggested the accuracy of PS detection might be dependent on the 423 

spatial resolution of the atrial map (i.e., the inter-electrode distance) (15). The authors also concluded 424 

that the inter-electrode distance should not be higher than 14.2 mm for a robust phase analysis. 425 

Interestingly, 12.6% of the inter-electrode distances in the 64-electrode global basket catheter 426 

commonly used during focal impulse and rotor modulation (FIRM) mapping were >20 mm, suggesting 427 

these leads could be prone to false PS detections (15). 428 

NCM provides an interesting solution for phase mapping by providing high-density simultaneous 429 

panoramic atrial coverage and 3D geometry. It provides up to 2048 measuring points in the atrium – 430 

resulting in an average node distance of 3.45 mm in the present cohort. The 2048 VEGMs, however, 431 

are a result of numerical computation from the non-contact 64 physical electrodes, which may share 432 

similar limitations with the 64-electrode contact basket. Further validation of phase mapping using 433 

different inter-electrode distances for NCM should be performed in future studies. 434 

When considering the robustness of the algorithms with different spatial resolution, algorithm 435 

4+DBSCAN is less affected by changing the search radius from 1 to 4 (Figure 5B). This suggests that 436 

algorithm 4 would be able to provide accurate detection from 3.45 mm (search radius =1) to 13.8 mm 437 

(search radius =4), in line with recent findings (15). 438 

4.2 Pre-processing of phase mapping 439 

Different methods can be considered for generating instantaneous phase signals from time series data 440 

– such as the VEGMs (12, 18). One of the methods extracts instantaneous phase of the signal from 441 

phase-state plots created with delayed versions of the original signal, which requires a judicial choice 442 

of the delay (12, 18). Hilbert transform provides a solution for generating a phase-shifted signal without 443 

the need to choosing a delay. This made Hilbert transform a popular choice when computing 444 

instantaneous phase (12, 51, 52). Signal processing algorithms have been applied on intracardiac 445 

signals prior to Hilbert transform – and consequently phase mapping – to ‘unmask’ the rotary 446 

behaviours within narrower frequency ranges. These include wavelet/sinusoidal reconstruction and 447 

band-pass filters centred at DFs to filter out unwanted and/or non-physiologic activations (14, 53). In 448 

addition, further spatial filtering  was shown to reduce noise and increase accuracy in sparse grids (54). 449 

Naturally, different processing steps prior to the phase mapping may result in different phase maps. 450 

Considering that wavelet/sinusoidal reconstruction (14) was frequently used in intracardiac 451 

electrograms – which has been reported to producing comparable results as the FIRM mapping (55) 452 

and local activation maps (56) – the wavelet/sinusoidal reconstruction has been chosen for NCM 453 

processing in the present study (14). However, a less aggressive wider band pass filter could be 454 

preferred considering the turbulent nature of persAF that results in unstable DF over time. NCM 455 

considers an inverse-solution that can ‘smooth’ the estimated intracardiac signals and generate more 456 

sinusoidal-like unipolar VEGMs. The effect of such ‘strong’ filtering/reconstruction steps should be 457 

investigated in NCM, which is out of the scope of the current study.  458 

4.3 Optimised PS detection  459 

Different methods for automated PS detection have been proposed and have been broadly used in EP 460 

studies, each of which considering different aspects and characteristics of the phase map (19-21). In 461 

the present study, we have demonstrated that automated PS detection – and consequently ablation 462 

target identification – vary significantly for the same individual, depending on the method being used 463 

and parameters being applied. We propose revised parameters that optimize the PS detection performed 464 

by the different algorithms according to a clinical ‘gold standard’. 465 
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In the present study, the best Fβ score among all algorithms using their respective optimal parameters 466 

was 0.831. Optimised parameters resulted in a lower phase gradient thresholds comparing to the default 467 

for the majority of the algorithms, indicating that default threshold might have been over-estimated, 468 

which might contribute in generating a discontinuity in PSs tracking across different time frames. This 469 

could impose limitations especially when rotor duration is defined as a key parameter for defining 470 

ablation targets (8, 57, 58). A lowered and optimised phase gradient threshold could generate clusters 471 

of ‘over detection’ points referring to the same PS. With additional spatial clustering method, the over 472 

clustered PSs could be easily refined and replaced by the one PS in cluster with greatest phase gradient 473 

around. This could be beneficial, as it will minimise the chances of causing discontinued PSs across 474 

time. 475 

All algorithms demonstrated value ranges for phase gradient that generated a flat PS detection (Figure 476 

5A). This suggests the algorithms might be ‘robust’ if the optimal threshold lies in the region of flat 477 

detection – where performance is less sensitive to the choice of parameter. Algorithms 3, 3 + DBSCAN, 478 

4 and 4 +DBSCAN showed a faster coverage to a relatively ‘stable’ region of the curve, demonstrating 479 

they could be more robust to be used on different datasets. 480 

4.4 Rotor identification from detected PSs 481 

Rotor-guided ablation has become an important topic in AF treatment (8, 58).While early data helped 482 

to consolidate rotor-guided ablation as a promising therapy for persAF (8, 58), more recent works have 483 

failed to reproduce such promising results (11, 25-27). While a PS is defined as a ‘phase discontinuity’  484 

around which the phase changes over 2𝜋 in a single frame, a rotor is described as a series of PSs 485 

detected at a ‘similar’ location across subsequent frames over time.  Therefore, the identification of 486 

PSs represents a crucial step for the detection of rotors – and consequently AF drivers – during EP 487 

studies (13, 30). Usually, PSs are detected from a single frame, whilst a rotor is associated with a PS 488 

that persists for multiple consecutive frames either anchored in a location or meandering within nearby 489 

regions, both which consider a given spatial threshold (16). There is, however, little literature regarding 490 

how different research groups define this spatial threshold. Spatial threshold can be defined based on 491 

different criteria, such as 1) fixed threshold on distance between the PS first appearance to find stable 492 

rotors; and 2) fixed threshold on the distance between consecutive frames, which allows the rotor to 493 

drift along (35). Meandering rotors were recently reported by our group using NCM in humans (16, 494 

35). In such cases, a robust tracking method would help to distinguish different types of rotors, and 495 

different ablation strategies could be delineated according to the spatial stability and size of the rotor. 496 

Such strategy might include the decision whether to ablate at the core of the rotor or to create lines for 497 

objecting the wave front propagation around the rotor. 498 

Similarly, the temporal stability is another important feature of a ‘rotor’. Even though there is no 499 

unified definition of a ‘rotor’, it is usually the case that the core of the rotor needs to stay anchored in 500 

a location for a certain duration, in order to be considered as a ‘true’ re-entry circuit (7, 8). Two forms 501 

of temporal measurement are usually adopted when assessing PSs in subsequent frames during rotor 502 

classification: 1) completeness of rotation, i.e., a rotor is defined when one or two full circles of 503 

movement are observed (8) and; 2) duration thresholding, i.e., a PS should exist for a minimum 504 

duration (subsequent frames) to be considered a rotor (42, 43). However, that it is not fully known 505 

whether the rotational characteristics of such ‘rotors’ are directly related to AF drivers. These would 506 

require prospective studies and the confirmation from ablation strategies targeting such regions to 507 

validate their relevance. Whilst still a subject under debate, there are reports on ‘rotors’ with turns of 508 

less than 360° that may represent relevant substrate features (59-61). The rotors found in the present 509 

cohort were not spatially stable. On the contrary, they drifted to different regions of the left atrium 510 
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(Supplemental Videos). The longest rotor lasted for 460 ms, and the average duration of the rotors were 511 

394.73 ± 59.23 ms. These observations might not be considered rotors if a stricter definition is applied 512 

(e.g., with a full ‘turn’ or longer than 1 second). 513 

The present work helps to objectively outline a universal definition of PSs during human persAF, which 514 

could prove crucial for comparing rotor-guided ablation outcomes amongst different research/clinical 515 

centres.  516 

4.5 Processing time 517 

Novel computer algorithms for AF driver identification – and consequently targets for ablation – have 518 

been extensively explored to study the underlying persAF mechanisms aiming to improving ablative 519 

treatment outcomes (7, 62, 63). Real-time implementation of rotor detection has shown great potential 520 

(62), hence the investigation of the processing time is important for the further development of real-521 

time EP tools to guide catheter ablation of AF. Our results show the convolutional kernel method 522 

(Algorithm 3) was faster than the neighbour-indexing algorithms (algorithms 1 and 2) – in which the 523 

latter needed a larger number of loop operations for checking the monotonic increase/decrease in phase 524 

values in loops of neighbours. Algorithm 4 has shown to have reasonable processing time and was 525 

faster than algorithms 1 and 2, as fewer loops were used in counting the ‘phase jump’ comparing to 526 

checking monotonic increase/decrease.  527 

DBSCAN has shown to increase the processing time in algorithm 3 and 4, and the choice parameters 528 

could influence the processing time of DBSCAN steps - as it is expected that more PS candidates will 529 

result in longer clustering time. Therefore, an optimal set of parameter setting would benefit the 530 

application of automated PS detection methods in real-time EP studies with minimal increase in 531 

procedure time. 532 

4.6 Limitations 533 

The current study was conducted with a relatively small number of patients. In Vivo data was analysed 534 

retrospectively, which hinders the identification of the ‘ground truth’ for rotor-based AF perpetuation. 535 

Nevertheless, the visual annotation performed by a specialist provides a clinically-driven ‘gold 536 

standard’. Further investigations using computer models, in which the ‘ground truth’ is known, would 537 

be helpful to validate the recommended thresholds (64), but since the end application is for performing 538 

AF ablation in humans, the approach taken here is somehow justified.  539 

Not all PS detection algorithms were included in the comparison (19, 65). Visual annotation of stable 540 

rotary PS episodes used as a ‘gold standard’ for assessing performance ensured the true existence of 541 

rotational behaviours but would have introduced a further degree of subjectivity in the current study 542 

which should be avoided. A more accurate annotated PS database may help to improve the performance 543 

of these algorithms. Manual identification of PS points, frame-by-frame is rather time-consuming, so 544 

only part of the full data length was manually annotated and used in this study.  545 

5 Conclusions 546 

In the present study, we demonstrate that automated PS detection – and consequently persAF ablation 547 

target identification – vary significantly for the same individual, depending on the method being used 548 

and parameters being applied. We propose revised parameters that optimize the PS detection performed 549 

by the different algorithms according to a clinical ‘gold standard’. Four algorithms were evaluated – a 550 

2D image node-neighbour; a 3D node-neighbour; a 2D convolutional kernel topological charge; and a 551 
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3D topological charge. Optimal parameters were proposed for each algorithm and should be used in 552 

future studies to improve the accuracy of PS detection. The 3D topological charge with DBSCAN 553 

clustering and proposed parameters has shown the best accuracy. Similarly, the algorithm that 554 

estimates topological charge using a convolutional kernel with DBSCAN clustering and proposed 555 

parameters should be preferred for uniformed 2D meshes. The present study represents a step towards 556 

a unified definition/algorithm of phase-derived PS detection with standardised gradient and spatial 557 

thresholds, which is essential to allow objective comparisons of outcomes of rotor ablation for persAF 558 

therapy among different research/clinical centres.  559 
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11 Tables 762 

Table 1. The Fβ scores (accuracy measurement vs. ‘gold standard’) of each algorithm with their 763 

default parameter settings and revised optimal settings.  764 

 765 

              Algorithm 

Parameter            
1 2 3 

3  

DBSCAN 
4 

4  

DBSCAN 

Default 

Phase gradient 1.5 π 1.5 π 1.9 π 1.9 π 1.1 π 1.1 π 

N or kernel 3 3 Sobel 3x3 Sobel 3x3 1 1 

Fβ 0.527 0.532 0.517 0.524 0.654 0.606 

Optimal 

Phase gradient 0.8 π 0.1 π π  1.9 π 1.2 π  π 

N or kernel 2 3 Nabla 2x2 Nabla 3x3 1 2 

Fβ 0.547 0.645 0.742 0.828 0.656 0.831* 

N: search radius (# nodes); * best performance 766 

 767 

  768 
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12 Figure Captions 769 

Figure 1. Data acquisition and signal processing. A. Reconstructed 3D left atrial geometry with colour-770 

coded phase map, its 2D representation (cylinder projection) showing PS points (green circles) and 771 

example of a 2D PSD map; B. The screenshot of the Ensite Velocity mapping system showing a 772 

isopotential/voltage map with the non-contact Ensite Array catheter; C. Example of ECG (Lead I), 773 

VEGM, QRST-subtracted VEGM, recomposed signal using sinusoidal wavelet reconstruction and 774 

Phase signal (colour-coded by phase), with the QRST segments highlighted in blue. LUPV: Left Upper 775 

Pulmonary Vein; RUPV: Right Upper Pulmonary Vein; LLPV: Left Lower Pulmonary Vein; SVC: 776 

Superior vena cava; MV: Mitral valve. 777 

Figure 2. Schematic of the three algorithms of phase singularity detection. Briefly, Algorithm 1 – 778 

Image Processing-based Algorithm: 1) Canny edge detector to locate the line with large phase gradient; 779 

2) PS candidates pre-selected as the ends of the edge lines; 3) checking the neighbours of each 780 

candidate for monotonic change of phase, 4) applying phase gradient threshold to locate PS points; 5) 781 

Clustering PSs referring same PS using centre of gravity of the cluster. Algorithm 2 – 3D Triangulation 782 

algorithm: 1) neighbours of all nodes on the 3D mesh were indexed from triangulation 2) checking the 783 

neighbours of each node for monotonic change of phase, 3) applying phase gradient threshold to locate 784 

PS points, and 4) clustering using DBSCAN; Algorithm 3 – Topological charge: 1) calculating 785 

topologic charge using different kernels, and 2) applying topological charge threshold; Algorithm 4 – 786 

Topological charge on a 3D mesh: 1) ) neighbours of all nodes on the 3D mesh were indexed from 787 

triangulation, and 2) count number of ‘phase jumps’ using topological charge;3) assigning topological 788 

charge based on the count number. 789 

Figure 3. The effect of different phase gradient thresholds. A. An example of the performance of the 790 

Algorithms 1 to 4 and Algorithm 3 and 4 with DBSCAN different phase gradient thresholds, the bottom 791 

row is the 3D and 2D phase map with manual annotation B. PSD maps of the example VEGMs (476.5 792 

ms) using algorithms with different phase gradient thresholds, the bottom row is the 3D and 2D PSD 793 

maps with manual annotation 794 

Figure 4. A. The correlation coefficient (CC) of the PSD maps between the Algorithms 1 to 4 and 795 

Algorithm 3 and 4 with DBSCAN based on default parameter settings; B. The Structural Similarity 796 

Index (SSIM) of the PSD maps between the Algorithms 1 to 4 and Algorithm 3 and 4 with DBSCAN 797 

based on default parameter settings. 798 

Figure 5. A. The effect on the number of detected PSs by changing the phase gradient thresholds; B. 799 

The effect on the number of detected PSs by changing the search radius (kernels in Algorithm 3). 800 

Figure 6. The effect of different choice of search radius (kernels in Algorithm 3). A. An example of 801 

the performance of the Algorithms 1 to 4 and Algorithm 3 and 4 with DBSCAN different search radius 802 

parameter, the bottom row is the 3D and 2D phase map with manual annotation B. PSD maps of the 803 

example VEGMs (476.5 ms) using algorithms with different search radius parameter,, the bottom row 804 

is the 3D and 2D PSD maps with manual annotation 805 

Figure 7. A. Processing time of the PS detection by changing the phase gradient thresholds; B. 806 

Processing time of the PS detection of different search radius; C. Processing time (mean and standard 807 

deviation) of PS detections using the Algorithms 1 to 4 and Algorithm 3 and 4 with DBSCAN with 808 

optimal thresholds. 809 
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Figure 8. The surface and line plots of Fβ score of the testing data sets of all possible combinations of 810 

phase gradient and search radius (kernels for Algorithm 3 and Algorithm 3 +DBSCAN) thresholds of 811 

A. Algorithm 1; B Algorithm 2; C. Algorithm 3; and D. Algorithm 3 + DBSCAN; E. Algorithm 4; and 812 

F. Algorithm 4 + DBSCAN (optimal settings regarding each metric highlighted as with circle). 813 
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