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Abstract 

In this novel research, the use of optical and SAR images for separate and joint 

investigations were explored, with the aid of machine learning classifiers for 

detecting hydrocarbon spill impact on cropland, grassland and dense forested 

vegetation types. Optical image spectral bands across the Visible, Near-Infrared and 

Shortwave-Infrared spectrum, various vegetation health indices (including NDVI, 

NDWI, LAI and SAVI) and SAR derived variables (including backscatter, coherence 

and textural variables) were used to detect and map oil spill sites within cropland, 

grassland and TCA vegetation types. Results generally showed that the integration 

of multi-frequency L, C and X band SAR in the wet (summer) season yielded the 

best overall classification accuracy in discrimination of polluted and oil-free 

vegetation types. An overall accuracy (OA) of 82.3%, 66.67% and 70.93% were 

obtained for Cropland, Grassland and Tree Cover Areas (TCA) vegetation types, 

respectively. The accuracies recorded were significantly better (P>0.05) than when 

the spill was classified using optical imagery only and when integrated optical and 

SAR image variables are classified. These results were further corroborated by the 

multi-temporal Sentinel – 1 backscatter analysis, which showed that mean 

backscatter difference between polluted and oil-free cropland and grassland 

vegetation are significantly different (P>0.05) in the wet season than in the dry 

season. Furthermore, the new fuzzy forest method used for multi-frequency (C and 

X band) SAR and Optical variable reduction was able to achieve a good result in 

addressing high dimensionality in cropland and grassland vegetation. This research 

demonstrates that SAR based monitoring of petroleum hydrocarbon impacts on 

vegetation is feasible and has high potential for oil pipeline monitoring and facility 

management. The research also presented a new paradigm into terrestrial oil spill 

detection, which largely can replace the use of optical data.  
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1.1 Oil Exploration and Spill in the Niger Delta 

Rapid human capital development and the expansion of socio – economic activities 

worldwide have led to evolvement and demand for various forms of energy. This is 

required to cope with the urgent needs of the rapid growing global population in the 

areas of electricity, agriculture, transportation, housing and infrastructure 

development, which are fundamentally driven by multiple sources of energy. 

Since the early emergence of the first oil producing area in Pennsylvania in 1861 

there has been an increase in oil demand and at an annual rate higher than 20% since 

2000 (Glover and Economides, 2010). This has led to the steady development of 

allied industries such as the aviation sector and automobile industry (Rodrigue, 

2009). Activities in these main stream industries are largely dependent on by-

products of crude oil, which also accounts for more than 75% of the global utilization 

of the product (Aleklett et al., 2010). By virtue of hydrocarbon’s portability, dense 

energy source and as the base of many industrial chemicals, petroleum is one of the 

world's most important commodities (Sarma, 2012). Today about 90% of fuel needs 

are met by oil. Other by-products such as carbon blacks, greases, transformer and 

cable oil, waxes, lubricating oil, white oils, rust preventatives and miscellaneous, 

solvents are among other derivatives of the petroleum industry. These products are 

however in high demand as they are necessary to fulfill basic human needs to foster 

and sustain livelihood (Younes, 2012). 

Crude oil is an actively traded commodity globally and its demand has grown steadily 

over the decades, from 60 million barrels per day in the 1980s to 84 million barrels 

per day in the 1990’s  (Hasan, Ghannam and Esmail, 2010). Figure 1-1 shows the 

increasing trend in global oil demand and refining activities of petroleum. The current 

global daily demand for oil is roughly around 90 million barrels of oil to satisfy the 

world's daily needs, 'compared with 31.2 barrels in 1965' (Rodrigue, 2009) and the 

International Energy Agency forecasts that demand will be 121 million barrels a day 

by 2030 (Judkoff and Neymark, 1995). 
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Figure 1-1: Global Oil Demand, refining capacity and crude runs, 1980 – 2022 

Source: (Countries, 2017) 

Generally, the petroleum industry is a large scale industry characterized by large 

scale mechanization process of drilling for extraction, transportation, refining and 

distribution of the final end products (Hasan, Ghannam and Esmail, 2010). In most 

cases, when the product is extracted at the initial stage, large scale well-coordinated 

piping systems are required for effective transportation to refining stations, where a 

fractional distillation process is used to separate the petroleum products into various 

primary by-products (Ohsol et al., 1999). Similarly, upon successful extraction of the 

various by-products, another highly mechanized pipeline system is required to 

distribute the by-products for third party consumption or for further processing to 

obtain other essential commodities (Ohsol et al., 1999).  

Thus, due to the large-scale production, distribution and transmission, pipeline 

networks are required to move crude oil in a large-scale production process. This is 

usually at very high pressure of more than 1000 pounds per square inch (psi). The 

slightest malfunction or accident can result to catastrophic spill incidents. These 

spills are characterized by discharge of huge volume of raw unrefined hydrocarbon 

crude into the marine or terrestrial environment (depending on where it occurs). The 

results are usually very devastating and detrimental to the environment. Also, 

complexities involved in the operational control of pipeline facilities can often result 

to hydrocarbon crude oil gush for several days and weeks before normalcy is restored 

(O'Rourke and Connolly, 2003), further complicating these incidents. 
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Crude oil exploration in Nigeria began around 1903, while the first discovery was 

made in 1956. Nigeria joined the ranks of oil producers in 1958 producing around 

5100 Barrels Per Day when its first oil field came on stream and further expanded in 

its exploration, as concessionaire rights were extended to other companies to explore 

the onshore and offshore areas of the Niger Delta after 1960. Nigeria is currently the 

largest oil producer in Africa (Taiwo, Otolorin and Afolabi, 2012) and has the 8th 

largest crude oil reserves in the world (Biersteker, 2014). ChevronTexaco, 

ExxonMobil, Total, Agip, and ConocoPhillips are the major multinationals involved 

in the Nigeria oil sector (Taiwo, Otolorin and Afolabi, 2012).  

Crude oil, which is the main stay of the Nigerian economy, accounts for more than 

80% of the country’s revenue and derived foreign exchange, and has seen production 

increase from as little above 1000 barrels per day in 1970 to over 3000 barrels per 

day in 2010 (Figure 1-2) (Taiwo, Otolorin and Afolabi, 2012). This has largely 

accounted for the huge economic prosperity the country currently enjoys having 

substituted for agriculture which used to be the main stay of the economy (Biersteker, 

2014). In spite of the tremendous gains, activities of oil exploration in the Niger Delta 

region has led to concomitant increase in oil spill incidents. Reasons for these spill 

incidents have been largely linked to decay in oil pipeline infrastructure, operational 

failure and sabotage (UNEP, 2011). 

 

Figure 1-2: Nigeria Crude Oil Production Trend since 1970 up until 2010. Source: 

(Ayanlade, 2016) 
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Crude oil spill incidents have been observed to be on the rise since 1975 to 2015. 

Data provided by the Nigerian National Petroleum Corporation (NNPC) in Figure 1-

3 shows that spill incidents has been on the rise since 1976 when oil production 

export began to 2009. The increased oil production activities have substantially led 

to the expansion of oil pipeline facilities, which is not unconnected to the rise in oil 

spill incidents (Taiwo, Otolorin and Afolabi, 2012). Other factors such as rising 

population trends and neglect of the Niger Delta host community have also been 

noted as prime cause of sabotage to oil facilities (UNEP, 2011) leading to some of 

the very large devastating spill incidents. 

 

Figure 1-3: Oil Spill Incident Trend between 1970 and 2010. Source: (Ayanlade, 

2016). 

Major oil spills in the Niger delta include the Forcado tank 6 Terminal incident in 

Delta state where 570,000 barrels of crude was spilt into the Forcados estuary in July 

1979. This affected the aquatic environment and surrounding swamp forest. The 

Funiwa No.5 Well in Funiwa field is also another major spill where an estimated 

421,000 barrels of oil gushed into the ocean from January 17 to January 30 1980. 

The incident was reported to have affected marine lives and destroyed over 836 acres 

of mangrove forest (Gabriel, 2004; Tolulope, 2004; Ukoli, 2005). The Oyakama oil 

spill occurred on the 10th May 1980, with a spill volume of approximately 30,000 

barrels of unrefined raw crude into the environment (Ukoli, 2005).   
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Furthermore, in August 1983 the Oshika village in Rivers state witnessed a spill 

incident where 5,000 barrels of oil from the Ebocha-Brass (Ogada-Brass 24) pipeline 

flooded the lake and swamp forest leading to the mortality of various aquatic life 

forms such as crabs, fish and shrimp. The impact of the spill was reported to have 

persisted eight months after its occurrence and there was high mortality in embryonic 

shrimp and reduced reproduction due to retained oil in the lake sediments (Gabriel, 

2004). The Ogada-Brass pipeline oil spillage in February 1995 was also reported to 

have spilled around 24,000 barrels of crude oil over freshwater swamp forest and into 

the brackish water mangrove swamp (Kadafa, 2012; Ukoli, 2005). 

Other devastating spill incidents have also occurred in recent time in the Niger delta. 

The Shell Bonga oil spill is one of such incidents, where over 40,000 barrels of crude 

was spilt into the adjoining environment. The incident which occurred in December 

20th 2011 affected over 20 riverine communities across Akwa Ibom, Bayelsa and 

Delta State in Nigeria (Ladan, 2012; Ogbonna and Ebimobowei, 2012). The worse 

yet, is the Bodo oil spill in Bodo Village where a 55-year-old pipeline owned by Shell 

ruptured twice spilling an estimated 600,000 barrels of crude oil into the surrounding 

creeks in 2008. Residents of the community were compensated in 2015 by Shell 

petroleum in a payout of $83.2m in compensation for the various impacts and 

hardship caused by the spills (Aljazeera report, 2017). 

The Nigerian Conservation Foundation in a study in 2006 put the figure for oil spilt, 

onshore and offshore, at 9 to 13 million barrels of oil over the past 50 years, creating 

a black-spotted landscape that can be seen from space (Jernelöv, 2018). This has led 

to continuous contamination of all types of land and water, dams, canals, delta arms, 

agricultural lands, forests and mangroves alike with oil at different stages of 

weathering. 

Jernelöv (2018) observed that oil fractions like asphalt and tar dominate polluted 

areas given the many decades of oil spills and as new oil is intermittently spilt, the 

recovery processes are repeatedly interrupted, resulting in widespread oil damage to 

waterbodies, land and ground water.  
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1.2 Environment and Social Impact of Oil Pollution in the Niger Delta 

1.2.1 Land Degradation 

Various harmful and organic compounds introduced into the natural environment in 

an event of oil spill can alter the geochemical and physical properties of soil, river, 

and other components of the environment. The potential for fire hazard is also very 

high due to the volatility of crude oil and also because spilt crude oil is occasionally 

burnt rendering the soil unfit for cultivation. This in turn can affect agriculture and 

lead to drastic decline in output from farming activities (Nriagu, 2011). Water 

pollution of aquatic ecosystems also has the ability to damage fisheries and 

contaminate water in shallow wells, which residents depend on for drinking and other 

domestic purposes. Between 50% and 70% of the Niger Delta inhabitants depend on 

the natural environment for agriculture, fishing, and the collection of forest products 

as their principal source of livelihood. For most of the people of the Niger Delta, 

unsoiled and sustainable environment is fundamental to their overall well-being and 

development (Nriagu, 2011; UNEP, 2011). 

In the long-term, oil spill can lead to land degradation and emigration of local 

inhabitants to other rural and urban areas, exerting pressure on the often inadequate 

and dilapidated infrastructure, which leads to increase in poverty (Nriagu, 2011; 

UNEP, 2011). Investigations carried out by Lindén and Pålsson (2013) as part of the 

UNEP-lead study to assess the environmental conditions in the Niger Delta region of 

Nigeria showed that oil induced impact on vegetation led to extensive mortality of 

mangrove vegetation. Laboratory tests of drinking water and soil sediment samples 

also indicated that inhabitants were exposed to contaminated drinking water 14000 

times higher than the Nigerian standard of drinking (Jernelöv, 2018; Nriagu, 2011; 

UNEP, 2011). 

1.2.2 Physical Health Impact 

Oil spills also have an associated impact on the physical health of people within 

affected communities. Direct or indirect contact with crude oil through for example, 

inhalation of vapors, coating on skin and consumption of tainted seafood can cause 

deleterious health effects ranging from dizziness, skin rashes, nausea, cancer (in 

extreme cases) and issues with the central nervous system (Aguilera et al., 2010; 

Chang et al., 2014; Herrington et al., 2006; Jenssen, 1996; Major and Wang, 2012). 
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Although long-term hydrocarbon toxicity effects on humans are less understood 

(Aguilera et al., 2010; Jenssen, 1996), they have been linked with volatile organic 

compounds (VOCs) that are capable of causing severe DNA degradation, cancers, 

birth and reproductive defects, irreversible neurological and endocrine damage, and 

impaired cellular immunity (Aguilera et al., 2010; Chang et al., 2014; Jenssen, 1996). 

Similarly, Orisakwe (2009), also observed that the Funiwa oil well blow-out, which 

occurred in January 1980 (involving about 200,000 barrels of crude oil) deprived the 

inhabitants of the affected area of access to potable water. Inhabitants were also 

deprived of their fishing occupation, resulting in a massive displacement of 

thousands of farmers and fishermen. Just like in the case of Valdez oil spill where 

medical doctors and dispensers in the area reported a prompt increase in the incidence 

of vaginitis, gastroenteritis, conjunctivitis, dermatitis and vulvitis among the people 

(Aguilera et al., 2010). 

1.2.3 Psychological Health Impact 

Similarly, Chang et al. (2014) have particularly noted that technological disasters 

such as oil spill in the United States, were more psychologically stressful than natural 

disasters. This threatened the stability of livelihoods, coupled with new flows of 

recovery money into the community, leading to various forms of stress and social 

breakdown (Chang et al., 2014). It was observed that following the Valdez oil spill, 

high rates of alcohol and drug use were associated with recovery jobs, especially in 

indigenous communities, and there were higher rates of domestic violence and crime 

more broadly (Chang et al., 2014). This in turn led to increased demands on clinic, 

mental health, and rehabilitation programs and further impacted not only on direct 

costs through hospital bills and related expenses, but also on broader social cost 

through, work stoppages and shorter life expectancy (Chang et al., 2014). 

1.2.4 Social Structure to Mitigate Impact 

The use of social and welfare initiatives is a common practice to mitigate the impacts 

of oil pollution on inhabitants. Social impacts have however been alleviated in some 

spill events. An example is in the case of the Hebei-Spirit and Prestige spill (Jernelöv, 

2018), where interim aid payments, NGO support, volunteer mobilization and 

support from unaffected populations were provided to assist the affected populations 

(Chang et al., 2014). A study of the Galician coast affected by the Prestige spill found 
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that, in contrast to the Valdez oil spill, there was no significant impact on mental 

health, social relationships, or confidence in institutions, because of the strong 

support of social groups and appropriate levels of interim financial aid (Chang et al., 

2014). 

1.3 Rationale for this Research 

Spills on terrestrial landscapes, which are the primary focus of this research are far 

more frequent compared to the marine oil spill. Large scale spills on the terrestrial 

landscape can cause immeasurable damage to vegetation and inland aquatic life as 

toxins can totally render an area completely in inhabitable. Studies in this regard 

(Aislabie et al., 2001; Ribeiro et al., 2013; Zabbey and Uyi, 2014) have shown that 

the microbial impact caused on soil organism can prevent optimal vegetation growth 

and crop yield for up to a decade if proper post spill remediation measures are not 

implemented. Similarly, human health and socio – economic impact of oil is not 

uncommon and can prove very detrimental, as livelihood of rural agrarian and 

peasant farmers can be affected.   

It becomes therefore imperative to devise means through which the precise area 

affected by oil pollution can be readily established. This would foster all post spill 

recovery, remediation and rehabilitation work. In the past, approaches such as field 

reconnaissance survey and helicopter flybys have been relied on to visually reconcile 

areas affected by oil pollution (Murvay and Silea, 2012). However, field based 

methods are heavily constrained by inaccessible terrains such as marsh, mangrove 

and densely forested areas. Similarly, there is also the challenge of cost efficiency, 

loss of manpower and valuable time associated with these approaches.  

Recently, remote sensing satellite image-based detection is becoming a more popular 

method for oil spill detection. This has proven useful in formulating mitigation 

strategies to facilitate post disaster recovery and damage assessment. Remote sensing 

satellites platforms are particularly equipped with wide synoptic view and the 

capability of capturing extensive areas at a single pass, potentially saving the huge 

human and financial cost associated with other techniques. In addition, satellite 

images from remote sensing platforms provide the opportunity of providing more 

detailed and unbiased spatial information of an area, most of which human efforts 

cannot effectively provide or reconcile. Also, satellite remote sensing platforms 
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offers repetitive and revisit capabilities, this can be weekly, monthly or yearly, 

providing an avenue for studying changes caused by oil spill impact on both flora 

and fauna communities.  

As the orbital presence of satellite sensors increase, so does their potential, hence the 

opportunity to better understand the environmental trends due to oil pollution. Over 

the years, there has been increasing capability of orbital satellites to capture 

electromagnetic radiation at different part of the spectrum, from optical, near 

infrared, shortwave infrared and to microwave. These images come in various 

temporal, spatial and spectral resolutions, providing a huge potential for obtaining 

more detailed information to study oil spill impacts on the environment. The 

emphasis here is on both short, medium and long term responses of the terrestrial 

ecosystem. This research focuses on assessing the spatial and temporal dimensions 

of terrestrial oil spills, with emphasis on detection and mapping, whilst bridging 

existing gaps in the literatures. It also aims at utilizing some of the most innovative 

tools, satellite image processing methodologies and a range of complex data for 

detecting and mapping terrestrial oil spill impact. 

1.4 Thesis Structure 

This thesis comprises of seven chapters. Chapters 1, 2 and 3 are the introduction, 

literature review and methodology, respectively. Chapters 4, 5 and 6 presents the 

result of the data analysis, while chapter 7 provides a summary discussion, 

conclusion, limitations and areas of possible further research. Figure 1-4 is a 

graphical illustration showing the various chapters of this thesis and the connection 

between them. 

Chapter 1: Provides a general overview of the research. It provides a general 

background of oil exploration in Nigeria and some notable oil spill incidents over the 

past 4 decades. The environmental and social impact caused by oil spill incidents in 

the Niger Delta are also highlighted, while the rationale for detecting and mapping 

terrestrial oil spills with satellite remote sensing is also discussed. 

Chapter 2: Presents some of the previous studies on terrestrial oil spill detection and 

the findings from various approaches used for this purpose. It also critically evaluates 

the reflectance characteristics from field and image-based spectroscopy of various 

oiled and oil-free surface types. The general characteristics of vegetation bio-
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chemical and biophysical responses to crude oil and the potential of SAR image for 

monitoring changes as a result of oil spill impact was also discussed. This chapter 

goes further to assess some notable machine learning methods used for image 

classification and how they have improved for better classification accuracy. 

Furthermore, previous studies on the assessment of oil spill impact and land cover 

change in the Niger Delta using satellite remote sensing methods are discussed. 

While finally, the observed gaps in the literature, the rationale for the current 

research, the research questions, aims and objectives are also highlighted.       

Chapter 3: Provides a general methodology for this research. It further provides 

information on the various remote sensing satellite data, spill incident data, field data 

and existing land cover data used to address the various research objectives. It also 

provides an overview of the study area in the Nigeria’s Niger Delta region, with 

emphasis on the location, size, population, ecology, soil geology and climate of the 

study area.     

Chapters 4: Presents the result of the first research objective to answer the research 

question of ‘to what extent can optical image spectral band and vegetation health 

indices be used to discriminate oil-free and oil-polluted cropland, grassland and tree 

cover area’. Here, machine learning RF was used to classify Landsat – 8 spectral 

bands and vegetation health indices in two separate classification scenarios namely; 

full study area image and land cover type specific image classification to discriminate 

oil-free and polluted vegetation.   

Chapter 5: Presents the result of the second research objective to answer the research 

question of ‘to what extent can the integration of optical derived variables, multi-

frequency (C and X band) SAR and geo-environmental variables be used to detect 

and discriminate between oil-free and oil-impacted cropland, grassland and tree 

cover areas. The emphasis here is on the detection of oil pollution impact using 

variables derived from Sentinel – 1, Sentinel – 2, Cosmo Skymed and TanDEM X 

images. The utility and performance of a novel method ‘fuzzy forest’ in selecting 

unbiased variables for the classification process is tested and compared to the result 

of the traditional random forest classifier.  

Chapter 6: Presents the result of the third research objective to answer the research 

question of ‘to what extent can multi-temporal, multi-frequency and multi-seasonal 
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SAR images be used for detecting and discriminating oil-free and oil-polluted 

cropland, grassland and tree cover area. The chapter specifically examines sentinel – 

1 time series backscatter characteristics of a typical oil-free and oil-polluted cropland, 

grassland and tree cover areas to infer vegetation temporal characteristics. It further 

analyzes wet and dry season stack of multi-frequency (L, C and X band) SAR 

classification with random forest and support vector machine classifiers to improve 

classification and discrimination accuracy. 

Chapter 7: Provides a summary discussion of the results obtained from the three 

analysis chapters (Chapters 4, 5 & 6) with a view of harmonizing all findings and 

evaluating how these compares with existing literature in addressing the research 

gaps observed. It also provides conclusion to the thesis, highlighting implication of 

the findings and contributions to wider knowledge, the several limitations 

encountered in the course of the research and finally areas of possible further 

research. 
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Figure 1-4: A graphical illustration of the various chapters in the thesis and the 

connection between them  

 

Chapter One – Introduction 

Chapter Two – Literature Review 

Chapter Three – General Methodology 

Chapter Four – Mapping Terrestrial Oil Spill Impact Using Random 

Forest and Landsat-8 OLI  

Chapter Five – Detection of Oil Pollution Impacts on Vegetation 

Using Multi-frequency SAR, Multispectral Images; with Fuzzy forest 

and Random Forest Classifiers  

Chapter Six – Seasonal Based assessment of Terrestrial Oil Impacted 

Vegetation Using Multi-temporal and Multi-frequency L, C, X SAR   

Chapter Seven – Summary Discussion, Conclusion, Limitations 

and future work 
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2.1 Terrestrial Oil Spill Remote Sensing: An Overview 

Terrestrial oil spills have been identified as one of the main causes of environmental 

degradation (Orisakwe, 2009). These occurs through the uncontrolled discharge of 

oil or its by-products including chemicals and wastes, as a result of equipment failure, 

operational errors, or willful damage. Other major causes of hydrocarbon pollution 

on land include: near shore drilling, off shore oil pollution and hydrocarbon micro 

and macroseepage. Pollution from oil seepage occurs through a natural process of 

vertical or near-vertical movement of oil from a sub-surface reservoir to the surface 

(Yang et al., 2000). Tedesco (2012) has emphasized that Macroseeps and Microseeps 

do not always indicate the presence of economic recoverable hydrocarbons at depth, 

but rather may represent leakage from a temporarily stationary sources of petroleum.  

Methods and approach used for detecting hydrocarbon microseeps, macroseeps and 

oil spills on terrestrial landscape are similar. The hydrocarbon compositions from the 

two sources are largely same, as they both constitute raw and unrefined hydrocarbon 

crude content. Hence, it can be assumed that microseeps, macro seeps and oil spills 

pose the same kind of effects on both vegetation and bare surfaces.  Schumacher 

(1996), in describing the major characteristics of hydrocarbon on land, noted that 

hydrocarbon beneath soil subsurface creates a chemically reducing zone in the soil 

column at depths shallower than would be expected in the absence of oil. This 

stimulates the activity of hydrocarbon-oxidizing bacteria, which decreases soil 

oxygen concentration while increasing the concentration of CO2 and organic acids. 

These changes affect pH and Eh in soils, which in turn affect the solubility of trace 

elements altering the root structure of vegetation, ultimately influencing plant vigor 

and hence, spectral change. 

Several advances have been made in the detection and characterization of terrestrial 

oil spills since the early periods of 1950 before the launch of the first satellite. 

Traditional methods often relied on airborne camera images and field reconnaissance 

surveys to establish precise oiled surface extent (Murvay and Silea, 2012). Many 

satellite platforms now provide synoptic views of the landscape at various temporal, 

spatial and spectral resolutions; and within the Visible (VIS), Near Infrared (NIR), 

Shortwave Infrared (SWIR) to the microwave part of the electromagnetic spectrum. 

Field based methods, such as ground spectroscopy have also received considerable 

attention in exploring the characteristics of polluted landscapes to compliment 
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measured reflectance spectra of oil polluted land and vegetation from the satellite 

sensor.  

Brooks (1979) noted that the applications of remote sensing for oil monitoring on 

land should ideally cover two aspects for effectiveness: the first is to research into 

the spectral characteristics of the anomalous or stress vegetation species caused by 

hydrocarbon, while the second should focus on mapping the anomalous or stress 

vegetation species extent from imagery. Furthermore, Siegel (1974) has stated that 

in order to identify vegetation anomalies caused by oil pollution using remote 

sensing, “normal” plant variability has to be assessed by judging the plant 

distribution, presence of indicator plants, or morphological changes in plants induced 

by excesses or deficiencies in available soil nutrients (Brooks, 1979; Yang et al., 

2000). 

The use of remote sensing techniques to evaluate and map the extent of impact of oil 

spill on land has not received a lot of attention. Fewer efforts have been devoted for 

monitoring onshore oil spills and reasons for this are partly due to the complexities 

associated with clearly distinguishing oil from other features with similar spectral 

characteristics (Mahdianpari et al., 2018). Similarly, oil under a dense vegetation 

canopy layer is even more difficult to detect, especially with optical sensors, as they 

rely on earth reflected energy from the sun. As such, the sensor only captures top of 

vegetation canopy reflectance. Figure 2-1 demonstrates this problem.  

 

Figure 2-1: Earth Energy Interaction in an Oil Spill Polluted Site 

In addition, the difficulty of acquiring cloud free high spatial and spectral resolution 

optical images has also contributed to the use of optical data for inland oil spill 

detection (Figure 2-2). This is unfortunate given the large numbers of oil spills that 

occur annually in terrestrial areas globally and their devastating economic and 

environmental impacts (Mahdianpari et al., 2018).  
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Figure 2-2: Images of the Niger Delta Showing Persistent Cloud Cover 

As a result of these myriad of factors, some research (Li, Ustin and Lay, 2005; 

Noomen et al., 2015) has focused on the use of vegetation greenness and health status 

as a proxy to detect the presence (through impact) or absence of Petroleum crude oil 

products from in-land spillages. However, relatively few studies (Ramsey Iii et al., 

2011; Ramsey, Rangoonwala and Jones, 2015) have focused on SAR images to 

detect oil contamination on terrestrial landscape. SAR has the capability of 

penetrating and imaging through cloud as it is an active sensor, which does not rely 

on the earth reflected sun energy. Evidence from research has generally shown that 

advance sensors such as Microwave sensors, Laser fluoro sensors and LIDAR has 

not been extensively explored in the detection and mapping of hydrocarbon crude oil 

impact on the terrestrial landscape.  

In this chapter, the literature is surveyed with a specific focus on understanding 

spectral responses of various landscapes (both vegetated and non-vegetated) to oil 

spill impact, within the VIS-NIR-SWIR and Microwave part of the spectrum. The 

potential of microwave-based vegetation responses to physical changes caused by oil 

and the potential of ground spectroscopy methodology is also assessed and discussed. 

Similarly, the capabilities of optical and SAR images to detect and map oil impact of 

affected areas using machine learning classifiers are highlighted. 

2.2 Detection of Hydrocarbon Pollution Using Hyperspectral and 

Multispectral Images  

2.2.1 Characteristics of Oil Affected Surface 

Terrestrial oil spill remote sensing in the visible (Red, Green and Blue) spectrum is 

complex because there are limited mechanism for positive and accurate oil detection 
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(Fingas and Brown, 2014). Research has shown that oil on shorelines is even more 

difficult to identify positively because other features such as non-photosynthetic 

vegetation, dense vegetation, shallow waterbodies as well as rich soil may exhibit 

similar spectral characteristics as oil. This would however necessitate adequate 

reconciliation of visible optical sensors with precise field spectral reflectance 

measurements of oiled surface to improve detection and classification accuracy. This 

approach was partly implemented in Khanna et al. (2013), where Advanced Visible 

Infrared Imaging Spectrometer (AVIRIS) data and field based observations such as 

species composition, canopy condition, presence of oil and penetration of oil into the 

marsh of Barateria bay were used to map polluted marsh following the deep water 

horizon oil spill. This significantly helped in the final characterization of oil-

impacted and oil-free marshes. 

Oil-contaminated soils generally exhibit a significant decrease in reflectance and this 

is due to strong absorptions induced by electronic transitions in molecular orbits 

(Gaffey et al., 1993). Cloutis (1989) observed that the decrease in VIS-NIR 

reflectance is due to charge transfer between carbon atoms. Orlov et al. (1993) in an 

experimental study also noted a decrease in reflectance of oil-contaminated soils in 

the VIS-NIR region (400–800 nm), following progressive contamination with oil. 

This produced a rather flattened spectral curve for strongly contaminated soils 

compared to the oil free soil (Li, Ustin and Lay, 2005).  

Cloutis (1989) further found that the wavelength positions of hydrocarbon overtones 

and band combinations is usually at 1700nm, but bands between 2200nm and 

2600nm were the most promising regions to search for hydrocarbons using 

spectroscopy and analysis of satellite data. It was further emphasized that carbon–

hydrogen stretch overtones and combinations dominate the 1700nm region, and the 

region from 2200 to 2600nm is affected by overlapping combination. This position 

is also supported by the work of Hörig et al., (2001). Hörig et al. (2001), presented 

similar observations in the spectral region of 1400–2500nm with GER Mark V 

Infrared Intelligent Spectroradiometer and HyMap data. They observed that the 

decrease in the NIR-SWIR reflectance is primarily due to the most intense overtones 

and combinations of major fundamental absorptions of hydrocarbons (Li, Ustin and 

Lay, 2005).  
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Recent studies carried out by Douglas et al., (2018) specifically showed that 

contaminated soils were characterized by high absorbance particularly in the NIR 

range of 700 – 2500nm. They further observed two absorption peaks at 1415nm and 

1914nm, which they attributed to water absorption overtones, and a third peak at 

2200nm, which they also attributed to metal-hydroxyl stretching. The results 

obtained in their study was further validated using Total Petroleum Hydrocarbon 

(TPH) measurement values from ultrasonic solvent extraction-gas chromatography 

in a linear partial least square regression (PLSR) and a non-linear random forest 

regression.  

Oil spill remote sensing for vegetation stress detection is based upon vegetation 

response to solar radiation (Li, Ustin and Lay, 2005). The spectral response of healthy 

plants to solar radiation is in general similar, though difference exists between plants 

due to morphology and physiology, background soil types, and the climate (Li, Ustin 

and Lay, 2005). Noomen et al. (2015) observed that stressed vegetation typically 

exhibits a shift of the red edge position towards shorter wavelengths when exposed 

to natural hydrocarbon seepage or to simulated gas leakage. In this regard, reflectance 

properties of vegetation in the visible part of the spectrum are dominated by the 

absorption properties of photosynthetic pigments including chlorophyll, which have 

absorption at 660nm and 680nm (Smith et al., 1990). And changes in the chlorophyll 

concentration produce spectral shifts of the “red edge” absorption near 700nm. 

Hutchinson and Hellebust (1974) particularly noted that vegetation response to oil 

presents stages of effects in which, leaves progressively loose photosynthetic 

pigments leading to color changes from green to pale-green, yellowish-green, and 

then finally yellow. In advance stages the leaves, stems and trunks would become 

ash-brown, dark-brown or darkened after long exposure.  

In the biochemical realm of things, plants begin to exhibit chlorosis due to the loss 

of both chlorophyll a and b, defoliation, enhanced litter fall, dwarfed seedlings and 

in some cases mortality. In addition, plants affected by oil pollution experience 

desiccation of the mesophyll tissue and collapse of cell walls resulting to substantial 

reduction in intercellular surface area and air space. This causes more reflection of 

red light and less reflectance in the near-infrared region compared to green healthy 

plants. Greater reflection of red light (by polluted vegetation) is due to the loss of 
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photosynthetic pigments, resulting in less absorption (Hutchinson and Hellebust, 

1974; Li, Ustin and Lay, 2005; Rosso et al., 2005). Healthy plants however have 

diagnostic high reflectance in the near-infrared region of solar radiation because of 

strong internal scattering of incident light from cell walls and intercellular spaces 

(Hutchinson and Hellebust, 1974). 

Crude oil on vegetated land can lead to disruption of plant and seed water balance, 

metabolism, and toxicity. This can consequently lead to a reduction in plant 

germination and growth, inhibition of seedling and development process, which can 

characteristically change plant spectral reflectance (Li, Ustin and Lay, 2005; 

McCown and Deneke, 1972). 

2.2.2 Field and Image Spectroscopy for Terrestrial Oil Spill Detection and 

Mapping 

The detection and mapping of oil-affected areas on land is an important process that 

helps to reconcile and discriminate between actual contaminated vegetation from oil-

free vegetation. It further forms the basis of establishing the total area affected by oil 

pollution. Maps established from this process are a useful medium to facilitate post 

oil spill recovery, remediation and rehabilitation exercise. Effective discrimination 

of oil-polluted and oil-free land cover can provide information on the location of oil 

pipeline leakages and the extent of land area affected by oil in regions with limited 

accessibility. In the long term however, this approach can be used to formulate robust 

and transferable image processing models, which can be used to track future 

terrestrial oil spills leveraging on the pool of spectral library generated. 

The detection (Arellano et al., 2015; Khanna et al., 2013; Kokaly et al., 2013) and 

mapping (Bianchi et al., 1995b; Van der Werff et al., 2007) of inland (terrestrial) 

based oil spills using high end spectral data have proved valuable in several remote 

sensing applications. This is because the oil signal is characterized by absorption 

features in the near-infrared (NIR) and shortwave-infrared (SWIR) regions of the 

spectrum, which are rather effectively captured by hyperspectral sensors in radiance 

of more than 300 distinctive narrow bands. Khanna et al. (2013) have emphasized 

that the NIR 1730nm and SWIR 2300nm bands are best suited for detecting oil on 

bare soil. The result of their assessment is presented in figure 2-3 and figure 2-4, and 

this shows that oil does not overlap with absorption features of soil background 
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materials and non-photosynthetic vegetation (Cloutis, 1989; Kühn et al., 2004) in 

this spectral region.  

 

Figure 2-3: Reflectance Curve for Oiled soil, Oil-free soil, Oiled Non-photosynthetic 

Vegetation (NPV), Oil-free NPV and Healthy vegetation from AVIRIS data (Khanna 

et al., 2013). 

Kokaly et al. (2013) also argued that hyperspectral sensors for oil spill detection have 

the potential for detailed materials identification and precise estimation of their 

abundance. It was further noted that with more than one hundred wavelengths 

provided by a hyperspectral sensor, the spectral signature of oil can be harnessed to 

distinguish between different oil types (crude or light oil) and among features of 

interest, which can also eliminate the false alarm rate of features that have the same 

appearance as oil (Brekke and Solberg, 2005).  

Past laboratory and field studies have indicated the potential for using imaging and 

field spectrometer data for detecting oil contamination on land (Kühn et al., 2004). 

Kühn et al. (2004) developed a hydrocarbon index (HI), which focused on the 

detection of oil based on a single absorption feature in the radiance data measured by 

imaging spectrometers. Background materials with overlapping absorption features, 

such as dry vegetation, were observed to have had high Hydrocarbon Index values 

similar to hydrocarbons (Kokaly et al., 2013).  
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Figure 2-4: NDVI and Classified Image used to analyze oil Spill Impact (a) Gray 

scale NDVI image (b) The classified image (c) The zones from the shoreline (d) The 

low-NDVI bands of pixels right next to the oiled shoreline. For comparison, (e) 

shows the NDVI profile for an oil-free section of the shoreline (Khanna et al., 2013) 

Goodman (1994) has particularly stressed that reliable detection typically requires 

highly detailed spectral information provided by imaging spectrometers on terrestrial 

environments. Khanna et al. (2013) have also noted that high spectral resolution data 

are necessary to establish oil presence and attribute whether observed stress is due to 

oil or other stress factors. These have formed the basis of very recent studies where 

field and image spectroscopy have been applied to detect hydrocarbon crude oil 

impact on vegetation. 

In addition, Mishra et al. (2012) used hyperspectral sensor to quantify the short-term 

impacts of oil spill on the photosynthetic activity and physiological status of coastal 

salt marshes. This study was able to demonstrate the impact of oil spill on salt marsh 

vegetation drawing from the phenological indicators from polluted and non-polluted 

sites. This further helped in the successful delineation of the critical hotspots of marsh 

stress, for the prioritization of immediate restoration. Arellano et al. (2015) also 

investigated the suitability of satellite image spectrometry for the detection of oil 

contamination in the Ecuadorian Amazon forest. EO-1 (Earth-Observation 1) 

Hyperion images were used for analysis in conjunction with supporting field data on 
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soils and foliar properties. The results indicated that tropical dense forests exposed 

to petroleum pollution show reduced levels of chlorophyll content, accompanied by 

higher levels of foliar water content.  

Khanna et al. (2013) also demonstrated the viability and efficiency of high spectral 

resolution imaging spectroscopy in the detection and mapping of oil spill impact in 

the near shore marshes of Barataria Bay, Louisiana in September 2010 and August 

2011. The study used AVIRIS data to assess the impact of oil spill on the salt marsh 

plant community. Oil contamination was mapped using oil absorption features in 

pixel spectra to examine the impact of oil along the oiled shorelines. Results from 

the study showed that stress was restricted to the tidal zone extending 14m inland 

from the shoreline in September 2010.  

Kokaly et al. (2013) also successfully mapped oil contamination along the shoreline 

after the British Petroleum – Deep Water Horizon (BP – DWH) spill using AVIRIS 

data acquired on July 31, September 14 and October 2 of 2010 over Barataria Bay. 

They used hydrocarbon absorption features centered at 1720nm and 2300nm as 

inputs to the United States Geologic Survey (USGS) Material Identification and 

Characterization Algorithm (MICA) to map oil presence. Huang et al. (2019) also 

used airborne hyper-spectral images for the detection of plant stress as a result of 

hydrocarbon micro-seepage based on the PROSPECT model in a laboratory setting. 

Similarly, other researchers (Lassalle et al., 2018; Reséndez-Hernández, Prudencio-

Csapek and Lozano-García, 2018) have also used hyperspectral images to assess 

vegetation affected by oil pollution, all as indirect methods of detecting hydrocarbon 

crude oil presence and impact. 

2.2.3 Classifying oil-polluted area 

In recent time however, newer studies have sought to explore other image derived 

mediums and techniques for classifying oil polluted areas. Susantoro et al. (2018) 

explored image-derived NDVI, LAI and ENDVI variables to detect and map 

vegetation affected by oil and gas micro seepages. Results obtained showed that 

NDVI and ENDVI allowed good identification of oil polluted areas. While 

Mahdianpari et al. (2018) also used high spatial resolution UAV and electromagnetic 

(EM) induction data for terrestrial oil spill detection and mapping in a small area in 

Dixonville, Alberta, Canada. Their results showed that soil salinity from EM data 
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coupled with UAV derived variables have much potential for the classification and 

discrimination of oil-polluted land from adjoining oil-free vegetation and other land 

cover components. In addition Achard et al. (2018) also investigated airborne 

hyperspectral derived variables and SVM methodology for terrestrial oil spill 

mapping.  

Image spectroscopy provides a very unique and reliable opportunity of observing 

vegetation stress posed by crude oil pollution. Many studies rely on these vegetation 

spectra to detect and map hydrocarbon impacted areas. For example Bianchi et al. 

(1995a) used airborne hyperspectral images from the Multispectral Infrared Visible 

Imaging Spectrometer (MIVIS) to map the spatial distribution of oil spilled during 

the February 1994 Trecate blow-out in Northern Italy. The study used hyperspectral 

unmixing methods, oil fractional areas, as well as other classes (such as water, woods, 

cultivated fields, smooth surface soil, grooved surface soil and rice fields) as end-

members in the image analysis process. Results obtained and validated in the study 

using ground reference points showed reasonable agreement between the 

unconstrained unmixing technique and the ground truth relating to the volume of oil 

information. 

Van der Werff et al. (2007) also experimented two pixel based classifications 

methods (minimum distance to class means and Spectral Angle Mapper) to classify 

an hyperspectral Probe – 1 (HyMap) image to discriminate crude oil resulting from 

macroseepage and an anomalous halo bare soil resulting from microseepage. The 

result however showed that at best only 48% and 29% of the pixels that respectively 

contain crude oil and seepage-affected soil were detected. They further observed that 

confusion mainly resulted from the physical characteristics of the anomalies, as these 

are not unique to seepages. It was recommended that remote sensing of natural 

hydrocarbon seepages or oiled surface can be improved by image processing 

algorithms that makes use of spatial information.  

Similarly, Hese and Schmullius (2009) in the Oil Spill Contamination Mapping in 

Russia (OSCAR) project used Landsat images to discriminate between oil-free 

vegetation, oil-contaminated vegetation, soil and industrial land use. Results obtained 

showed that NDVI and shortwave infrared bands significantly improved 



 

 

48 

 

discrimination of polluted vegetation from other land cover types. This underlines 

the intrinsic importance of vegetation indices for detecting oil impacts. 

However, several factors can hinder the effective utilization of Spaceborne 

hyperspectral imaging in mapping oil polluted areas, especially within developing 

economies and areas within the mangrove ecosystem, such as in the Niger Delta 

region of Nigeria. Constraints such as the cloudy weather conditions experienced 

almost all year round (i.e. between February and November) limits the applicability 

of field and image spectroscopy for the detection and mapping of terrestrial oil spills. 

In addition, limited freely accessible hyperspectral images exist for the Niger Delta 

region, especially after the decommissioning of the NASA EO – 1 satellite. In 

addition, the cost prohibitive nature of Airborne hyperspectral imaging also limits 

applicability of image spectroscopy for the assessment of terrestrial oil spills.  

These necessitates the use of alternative datasets, image processing methods and 

techniques to harness the utility of available NIR and SWIR of readily accessible 

multispectral images, such as the freely accessible Sentinel – 2A and 2B, which has 

high spatial and temporal resolution of 10m and 5 days respectively. It also captures 

reflectance in three unique Red-Edge bands and multiple shortwave infrared bands. 

This can potentially help in the discrimination of polluted and oil-free land cover 

types (i.e. both on land and on vegetation). In addition, the use of Spaceborne 

Synthetic Aperture Radar (SAR) images within the microwave region of the 

spectrum has seen little application for terrestrial oil spill mapping and can provide 

reliable temporal monitoring of affected areas. SAR Images are increasingly been 

used to assess and monitor the state of earth surface dynamics, especially within 

forest and cropland vegetation, landslide detection, deforestation mapping and 

mapping soil moisture. As such their application for mapping terrestrial oil spill 

would greatly profit the oil spill remote sensing research community. 

2.2.4 Application of Vegetation Health Indices 

Vegetation Indices (VIs) are mathematical combinations of various satellite image 

bands. They have been used by scientists since the 1960s (Jensen, 2009). Satellite 

vegetation indices products are commonly used in a wide variety of terrestrial science 

applications aimed at monitoring and characterizing Earth’s vegetation cover from 

space (Myneni et al., 2002). Indices retrieved from remotely sensed satellite data can 
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provide information on vegetation growth, vigor and their dynamics, and also provide 

useful insights for various application areas such as: in environmental monitoring, 

agriculture, biodiversity conservation, urban green infrastructures, forestry and other 

related fields (Xue and Su, 2017).  

VIs have been extensively explored using spectral bands from airborne and satellite 

sensors to examine vegetation spectral signature characteristics, in the visible and 

near-infrared part of the electromagnetic spectrum. This is because vegetation stress 

associated with various forms of disturbance are likely to present symptoms, such as 

stunted growth and defoliation, most of which can only be significantly detected 

when sensitive and non-sensitive spectral bands of the image are logically 

manipulated (White et al., 2008).  

Stagakis et al. (2010) have observed that canopy reflectance in the visible and near 

infrared is strongly dependent on both structural (i.e., amount of leaves per area, leaf 

orientation, canopy structure) and biochemical properties (i.e. chlorophyll, 

carotenoids) of the canopy. Hence, it is difficult to develop and utilize a “unique” 

Vegetation Index that is exclusively sensitive to one plant variable, or a specific kind 

of disturbance alone (Agapiou et al., 2012a). 

Several studies have developed and utilized a number of indices to robustly capture 

the structural and bio-chemical stress caused by oil pollution on vegetation. Table 2-

1 shows some of the VIs developed and used in several studies for detecting 

vegetation impact of hydrocarbon oil pollution. VIs often used can be either retrieved 

from multispectral or hyperspectral satellite images. Most studies in this regard often 

explore several indices in an attempt to find the best Vegetation Index that is most 

suitable to detect hydrocarbon presence or impact on plant health. This is however 

necessitated due to natural factors such as the influence of soil background, solar 

illumination, atmospheric conditions, soil moisture, surface water and the sensor 

observation geometry, which vary from ecosystem to ecosystem and can alter 

spectral reflectance characteristics (Hadjimitsis et al., 2010). 
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Table 2-1: Vegetation Health Indices derived from Multi-spectral Broad-band 

Vegetation Health Indices (BVI’s) and Hyper-spectral Narrow-Band Vegetation 

Indices (NBVI’s) Investigated by several authors on the detection of stress caused by 

oil pollution. 

Author Indices Explored Category Main result 

(Adamu et al., 2015) ARVI2, ClGreen, 

EVI, EVI2, 

GBNDVI, GLI, 

G\NIR, G\RED, 

G\SWIR, GRNDVI, 

MSAVI2, MSI, 

MSR705, NBR, 

NDVI, NIR\R, PPR, 

SAVI, SRI, TNDVI 

BVIs NDVI, SAVI, ARVI2, 

G/NIR and G/SWIR; were 

found to be sensitive to 

the effects of oil pollution 

(Adamu et al., 2016) NDVI and NDWI BVIs NDVI showed good 

sensitivity to oil induced 

stressed over time than 

NDWI 

(Adamu et al., 2018) NDVI, ARVI2, G-

NIR 

BVIs All indices explored 

showed significant 

changes in a multi-

temporal detection of 

stress caused by 

hydrocarbon crude  

(Zhu et al., 2013b) TSAVI, SAVI2, 

ARVI, OSAVI, 

SAVI2, ARVI, 

OSAVI, PSSRc, 

PSNDc, TCARI, 

fpnRES, c2RES, 

GauREA, spnREA, 

sumREA 

BVIs and 

NBVIs 

MCARI and NDVI was 

observed to best estimate 

Total Petroleum 

Hydrocarbon (TPH) 

concentration than other 

NBVI’s and BVI’s 

respectively  
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(Arellano et al., 2015) SR, NDVI, GNDVI, 

EVI, ARVI, SG, 

PSSRa, NDVI705, 

mSR705, 

mNDVI705, CTR 2, 

LIC 1, PSNDa, 

OSAVI, MCARI, 

Der725-702, REP, 

VOGI, CI590, 

MTCI, SIPI, RG, 

ARI1, ARI2, WBI, 

NDWI, MSI, NDII, 

NHI 

BVIs and 

NBVIs 

SR, NDVI and NDVI705 

were found to be more 

appropriate to detect the 

effects of petroleum 

pollution 

(Onyia et al., 2018) NDVVI, NDVI, 

RENDVI, 

MRENDVI, 

MRESRI, VREI1, 

PRI, SIPI 

NBVIs NDVVI showed strong 

linkage with vascular 

plant species diversity and 

associated stress caused 

hydrocarbon pollution 

compared to other indices 

(Khanna et al., 2013) NDVI, mNDVI, 

NDII, ANIR, 

ARED, ADW1, 

ADW2 

NBVIs All indices were found 

suitable in detecting oil 

induced stress with the 

exception of the ANIR 

(Khanna et al., 2018) NDVI, NDVII, 

ANIR, ARed 

NBVI’s 

and BVIs 

It was observed that ARed 

and NDII exhibited better 

performance at 

differentiating vegetation 

stress due to oil 

contamination 

(Shapiro et al., 2016) NDVI, mNDVI, 

NDII, ANIR, ARed, 

ADW1, ADW2 

BVIs and 

NBVIs 

Non of the indices were 

best at measuring oil 

impact across the sites 

investigated but the 

indices consistently 

differed between oiled and 

unoiled pixels 
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(Susantoro et al., 

2018) 

NDVI, ENDVI, LAI BVIs Observed that ENDVI is 

better than NDVI in 

detecting vegetation stress 

as result of oil pollution 

(Ramsey et al., 2015) LAI, LAD BVIs The two indices explored 

showed substantial 

changes and relationship 

with Polarimetric SAR 

images in detecting 

stressed marsh 

(Hese and Schmullius, 

2009) 

NDVI BVIs NDVI was able to 

differentiate between 

impacted and oil free 

vegetation 

 

In addition, Clerici et al. (2017) have particularly noted that the use of multiple 

vegetation health indices for detection and classification purpose can also 

systematically help to counteract the effect of diversity in vegetation structural stand 

and species (especially in image classification operation). This is because the use of 

a single index may not capture the variability of the diverse species present in a 

particular area. 

2.3 Application of SAR data for On-shore Oil Spill Detection 

Synthetic Aperture Radar (SAR) is a form of Radar that is used to create two-

dimensional images of objects. It uses the motion of its antenna over a target area to 

provide finer spatial resolution than the conventional Real Aperture Radar, such as 

the Side-Looking Airborne Radar (SLAR) or Side-Looking Radar (SLR) (figure 2-

5). 
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Figure 2-5: Acquisition geometry of a Satellite SAR system. Source: (Spies et al., 

2013) 

Synthetic Aperture Radar (SAR) sensors are active sensors, as they do not rely on 

the sun energy. Rather they are equipped to beam electromagnetic pulses over a 

target. SAR generally operates within the microwave part of the spectrum and 

capable of observing the Earth’s surface in all-weather conditions, day and night. The 

operational principle behind the capture of a SAR image relies on emitting of pulsed 

beam on the side of the antenna, unto a target (earth surface) and measuring the 

intensity and time taken for the signal to return to the platform. Signals that take a 

longer time to return are reflected much farther from the sensor in the range direction 

and as the platform moves, each pulse gives information about the target in the 

azimuth (Lillesand et al., 2014). 

The intensity of a SAR image is a measure of the strength of the returned signal, and 

is affected by geometric and dielectric properties (the moisture content) of the target. 

The strength of the returned signal for a particular pixel depends on a complex 

addition of numerous signal interactions with surface scatterers contained within the 

target area (Ban et al., 2015). 
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Emitted signals from a SAR sensor is polarized in either Horizontal (H) or Vertical 

(V) planes, and the returned signal is also received in either Horizontal or Vertical 

planes. Co-polarized SAR data (VV - vertical send, vertical receive, and HH – 

horizontal send, horizontal receive) has less utility than cross-polarized (HV and VH) 

SAR data for vegetation monitoring as the configuration of cross-polarized sensor is 

more sensitive to the changes in polarization produced by volume scattering elements 

within a tree canopy (Mitchard et al., 2011). 

Full Polarimetric SAR data provides a scattering matrix (consisting of intensity and 

phase) of a terrain’s surface at the four polarizations channels of HH, HV, VH, and 

VV (Boerner et al., 1997; Henderson and Lewis, 2008). Recorded Polarimetric data 

allows for a better characterization of features of interest based on backscatter returns 

or feedback from the backscatter decomposition (Cloude and Pottier, 1996).  

In principle, the backscattering properties of a Radar signal is a function of the 

electromagnetic wave frequency, its incidence angle, its polarization, the target 

geometry and dielectric properties of the observed medium (Ouarzeddine et al., 2007; 

Ulaby et al., 2015). Figure 2-6 shows the position of the Radar portion within the 

microwave part of the electromagnetic spectrum. 

 

Figure 2-6: The Electromagnetic Spectrum Highlighting the Microwave/Radar 

Region of the Spectrum (Fingas and Brown, 2014) 

Synthetic aperture radar signals in longer wavelengths have higher penetration of 

vegetation canopies. Figure 2-7 is an illustration of the penetration capabilities of the 

various Bands of SAR Sensors. L-band and P-band sensors have the highest 

penetration capabilities, as opposed to C-band and X-band SAR. The longer 

wavelength SAR has the utility of depicting detailed structural changes in vegetation 

canopies at the understory and sub canopy level compared to shorter wavelengths 

(Ghulam et al., 2014; Lee and Pottier, 2009). 
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Figure 2-7: The Penetration Capability of the Different Bands of SAR Sensors 

(Woodhouse, 2005) 

Literature survey on existing application areas of Polarimetric SAR data have shown 

that 3 common approaches are normally used in the utilization and analysis of SAR 

images for land cover assessment, change detection, anomaly detection, biomass 

estimation and modelling, and image classification. These are backscatter 

decomposition, Multi-frequency SAR Image Integration and Multi-temporal SAR 

Image Analysis. 

2.3.1 Backscatter Decomposition 

The concept behind a Polarimetric decomposition is that backscattered SAR signals 

can be deconstructed to extract meaningful information about the structure of the 

ground target, the scattering mechanism of the return signal as well as the apparent 

shift in the phase of the signal from the target (Henderson and Lewis, 2008; van 

Beijma et al., 2014). Several methods have been used to obtain earth surface 

characteristics from full Polarimetric data. Eigenvector decompositions of a 

coherency or covariance matrix were proposed by Cloude and Pottier (1996). An 

approach to the three-component scattering mechanism model was presented by 

Freeman and Durden (1998), and a four-component approach was presented by 

Yamaguchi et al. (2005). Figure 2-8 shows the various components of the Freeman 

and Durden; and Cloudier Pottier decomposition algorithms. 

These methods have formed the basis for several Polarimetric SAR (PolSAR) 

applications in the areas of vegetation mapping and biomass estimation (Kattenborn 

et al., 2015) as well as invasive species mapping (Ghulam et al., 2014).  
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Figure 2-8: Polarimetry SAR Decomposition Techniques. (a) Cloudier and Pottier 

Decomposition (b) Freeman and Durden Decomposition. (c) Four-component 

scattering Power Decomposition. Adapted from (Cloude and Pottier, 1996; Freeman 

and Durden, 1998; Yajima et al., 2008; Yamaguchi et al., 2005) 

Polarimetric decomposition relies on the scattering matrix, which describes mainly 

how radar targets or the elements on the ground surface scatter the electromagnetic 

energy. The matrix is of dimension (2x2) and built for each Pixel. (Touzi and 

Chabonneau, 2002) define it as: 

 

𝑆 = (
𝑆𝐻𝐻 𝑆𝐻𝑉

𝑆𝑉𝐻 𝑆𝑉𝑉
)       (1) 
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Where  

S= Scattering Matrix 

SHH= Horizontal Send and Receive Polarization 

SHV= Horizontal Send and Vertical Receive Polarization 

SVH= Vertical Send and Horizontal Receive Polarization 

SVV= Vertical Send and Vertical Receive Polarization 

 

The pauli vector, similar to other vectors such as the Stokes Parameter, is obtained 

from the complex pauli spin matrix basis set. This splits the scattering matrix into the 

sum of elementary scattering matrices, each one defining a deterministic scattering 

mechanism (Cloude and Pottier, 1996). The Pauli vector is given by: 

Ḱp= 
1

√2
[

𝑆ℎℎ + 𝑆𝑣𝑣

𝑆ℎℎ − 𝑆𝑣𝑣

2𝑆ℎ𝑣 𝑟
]      (2) 

The first element of the vector (Shh + Svv) expresses odd bounce scatter such as the 

sphere, the plane surface or reflectors of trihedral type. The second vector (Shh - Svv) 

is related to a dihedral scatter or double isotropic bounce, while the third element 

(2Shv) is related to horizontal and cross polarization associated to the diffuse 

scattering or volume scattering. The polarimetry decomposition is based on the 

coherency matrix given by Cloude and Pottier (1996).  

However, there is limited application of this SAR processing approach for general 

land cover assessment owing to several difficulties relating to limited capability of 

separating PolSAR signals of different surface types (Cable et al., 2014). Recently, 

the characterization and classification of marshland and oil spill features using 

Airborne polarimetric SAR data was investigated by Ramsey Iii et al. (2011) and 

Ramsey et al., (2015). The study utilized Freeman-Durden (Freeman and Durden, 

1998) and Cloude-Pottier (Cloude and Pottier, 1996) decomposition to deconstruct 

SAR backscatter signals before implementing a Wishart classification (Cloude and 

Pottier, 1996). It was found to be particularly useful given the constraints of weather 

primarily affecting optical images in the mapping of inland oil pollution. Their result 
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sufficiently proved the utility of UAVSAR data in depicting changes in interior 

marshes, possibly as a result of the impact of the deep water horizon spill. They 

further stressed that high variability in canopy structure even within the same 

environmental composition can be profound. As such, this suggests that a multi-

polarization SAR sensor can be better suited than one with single or double 

polarizations, because other additional information can be used to better differentiate 

changes in backscatter that are caused by changes in vegetation structure (Ghulam et 

al., 2014).  

2.3.2 Multi-frequency SAR Image Integration 

This approach to the use of SAR images for detecting and mapping land cover has 

gained a lot of attention recently, owing to its capability in capturing vegetation 

variability and further providing precise land cover extent. The approach simply 

entails the integration of multiple SAR images acquired from different SAR sensors 

across different wavelengths and polarizations for classification. The approach is 

complementary, as dominant backscatter return and phase, from the different 

frequencies (multi-frequency), polarizations and temporality of SAR images 

adequately captures the heterogeneity and characterize the variability that often exists 

in vegetation canopy stands in a typical terrestrial landscape.  

Improved overall classification result using multi-frequency SAR integration 

obtained in Mohammadimanesh et al., (2018) sufficiently justifies this position. 

Multi-frequency SAR features ranging from intensity, interferometric coherence and 

Polarimetric scattering were derived from RADARSAT – 2 and TanDEM-X images 

to map the wetland extent in the north eastern part of Newfoundland. Similarly results 

obtained from van Beijma et al., (2014) have also shown that the integration of multi-

frequency SAR image variables has the potential to increase overall classification 

accuracy, as the multi-polarization and multi-frequency of integrated SAR images 

captures the variability of vegetation structural change across space. Several studies 

(Ghulam et al., 2014; Rajah et al., 2018) have also used multi-frequency SAR 

variables for mapping and distinguishing native from invasive species. Their results 

show moreover that the integration of optical in addition to multi-frequency SAR 

image derivatives can improve intra-vegetation class discrimination further. This is 

especially the case when more advanced techniques as machine learning, data fusion 

and object based image classification methods are used.  
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To the best of my knowledge, no current published study has used the multi-

frequency SAR analysis approach to study the variability and changes in vegetation 

composition as a result of the impact of oil spills on the terrestrial habitat. This 

approach could have a huge potential in characterizing vegetation affected by oil 

pollution, as the basic backscatter theorem stipulates that variability in the structural 

composition of the vegetation canopy would significantly alter backscatter attributes 

(Cable et al., 2014). As such, vegetation exposed to consistent stress conditions may 

lose foliage and canopy cover might drop, which has the potential of altering the 

scattering characteristics of the canopy. Most of these changes would be detected if 

various frequencies of SAR images across different wavelengths and temporal 

domain are used harmoniously for the combined process of detecting and mapping 

polluted vegetation.  

2.3.3 Multi-temporal SAR Image Analysis 

The increasing availability and improvements in both spatial and temporal resolution 

of SAR images have seen the emergence of various multi-temporal application of 

SAR images to monitor vegetation changes and capture the phenological 

characteristics. Several studies have employed SAR as a meaningful alternative to 

optical data in multi-temporal time series analysis. Gao et al. (2018) used Sentinel – 

1 SAR in a time series assessment for irrigation mapping. Vreugdenhil et al. (2018) 

also relied on multi-temporal sentinel – 1 SAR backscatter data to establish 

vegetation dynamics and map various cropland features in Australia. Similarly, 

Rüetschi et al. (2017) also used multi-temporal sentinel – 1 SAR backscatter data to 

monitor phenology and map deciduous and coniferous forests in Northern 

Switzerland.  

Multi-temporal SAR image analysis has also seen little to no application in terrestrial 

oil spill monitoring.  As previously mentioned, SAR is an all – weather, day and night 

sensor, capable of capturing the structural change of vegetation through temporal 

backscatter return. As such it can offer the potential for the extensive assessment of 

an oil-affected area over a long period of time. This could give the opportunity of 

fostering a deeper understanding of how factors such as seasonality and 

environmental changes can influence the impact recovery cycle of oil-affected 

vegetation. 
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Research by Ramsey Iii et al. (2011) and Ramsey et al. (2015) as previously 

mentioned remains the foremost application of SAR data (in single frequency mode 

and Polarimetric decomposition) for characterizing inland vegetation as a result of 

oil pollution. There is certainly need for more research in the use of microwave 

datasets, especially within the tropical and densely forested ecosystems like the Niger 

Delta region of Nigeria, where persistent spills, most of which are located inland, 

occur frequently. The varying physical and geographic conditions within the Niger 

Delta region, coupled with the extensive crude oil pipeline facilities and oil incidents 

provides a rare opportunity for the assessment of multi-frequency and multi-temporal 

SAR in detecting the effects of crude oil spills on vegetation.  

In addition, the potentials of Spaceborne SAR as opposed to UAVSAR (Ramsey et 

al., 2015; Ramsey Iii et al., 2011); and single frequency SAR (Ramsey et al., 2015; 

Ramsey Iii et al., 2011) compared to multi-frequency SAR data has not been fully 

implemented to assess and map the impact posed by oil spills on the terrestrial 

landscape. This is particularly important given the cost prohibitive nature of 

acquiring airborne/UAV SAR data, the penetration capabilities of various multi-

frequency Spaceborne SAR and many of which are becoming freely accessible. As 

such, the potential of freely accessible Space borne SAR data needs to be investigated 

and effectively harnessed to establish the impact posed by oil pollution on the various 

vegetation types on the terrestrial landscape.  

2.4 Oil Spill Induced Land Cover Assessment in the Niger Delta Using 

Remote Sensing techniques 

While terrestrial oil spills in the Niger Delta region of Nigeria remain recurring 

phenomena, the methodological approaches employed to assess the detrimental 

consequences of this situation on the environment still lack cutting edge precision. 

The use of popular remote sensing satellite data and techniques has not produced 

exceptional results, and the reason for this is mostly associated with the immense 

cloud cover experienced within the region all year round, which inadvertently 

constrains the use of optical satellite images for near real-time monitoring, 

characterization and mapping changes associated with terrestrial oil pollution. 

Attempts have been made to map land cover changes in the Niger Delta as a result of 

the direct influence of anthropogenic activities, and secondary influences such as oil 
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pollution and climate change. Kuenzer et al. (2014) used Landsat time series images 

to assess Niger Delta land surface dynamics over a period of 3 decade spanning from 

1986 to 2013. This depicted the extensive changes in the broad land cover classes, 

assessment of coastline dynamics and manifestation of oil exploitation activities. 

Results showed a significant amount of mangrove lost, expansion of the urban cities, 

increase in gas flaring and expansion of oil exploitation activities have occurred over 

the period.  

Similarly, Ayanlade and Howard (2016) also used Landsat images with decadal 

intervals spanning between 1984 and 2011 to assess the spatiotemporal change in 

land cover in Tsekelew area of the Niger Delta. The study integrated both social 

media data and remote sensing image analysis to establish the environmental impact 

of oil production within the study area. Result of the NDVI analysis showed that 

several mangrove forests in the study area were degraded as a result of oil exploration 

activities, while they also observed that assessing the impact of oil spills empirically 

was not possible in an image classification operation, as a result of confusion among 

several land cover features. Contrary to this position, Ochege et al. (2017) employed 

Landsat image derived NDVI and maximum likelihood image classification to assess 

dominant vegetation change between 1987 and 2013 to establish the impact of human 

induced oil exploration activities and oil pollution. Result from their study suggested 

a decline in healthy forests and vegetation cover between 1987 and 2002, conversely 

in 2013 a vegetation gain was observed based on NDVI differential, which they 

linked to the effect of oil and gas exploration within the case study. 

In the area of microwave remote sensing, research carried out by Balogun (2015) on 

the utility of microwave remote sensing in oil spill detection on mangrove did not 

yield any significant results. This possibly is due to the fewer variables and 

algorithms explored in the study. However, they came to the conclusion that further 

research on the use of SAR data for terrestrial oil spill monitoring is needed due to 

the limited ability to discriminate between backscatter of oil on land and that of soil 

with high water content. As such it is recommended that a synergy and integration of 

optical and SAR image could provide a strong medium for mapping oil spill on 

mangrove. 
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In general, there is limited application of contemporary SAR imagery in the detection 

and mapping of oil-impacted vegetation within the tropical-mangrove ecosystem. 

Studies as (Ramsey et al., 2015; Ramsey Iii et al., 2011) still remains the only 

substantial application of single frequency SAR imagery for terrestrial oil spill on 

marsh land cover assessment.  

2.5 Machine Learning Algorithms for Satellite Image Processing 

The last decade has seen a rise in the development and utilization of more 

sophisticated algorithms such as artificial intelligence and big data analytic 

approaches for remotely sensed satellite images. Of particular interest are the use of 

machine learning algorithms. Machine learning itself has been defined by Arthur 

Samuel in 1959 as a "Field of study that gives computers the ability to learn without 

being explicitly programmed", through pattern recognition and computational 

learning theory in artificial intelligence (Puissant et al., 2014). While some machine 

learning algorithms do not require and assume specific data distribution to separate 

multi-dimensional feature space into classes, others such as linear regression 

methods do require and assume specific data distribution characteristics to make 

inferences. They rely extensively on learning data characteristic values from which 

tentative inferences are deduced. Examples of commonly used non-parametric 

machine learning classifiers include Decision Trees, Support Vector Machines, 

Artificial Neural Networks and Random Forest.   

A wide range of methods have been employed to analyze multi-temporal remote 

sensing satellite images for detecting oil induced stress on vegetation change. While 

some image processing methods are based on the post classification comparison of 

direct image classification for multi-temporal change (Li and Yeh, 1998; Mas, 1999; 

Singh, 1989), others are based on image regression, band ratio, change-vector 

analysis and principal component analysis (Li et al., 2005; Singh, 1989).  

Several terrestrial oil spill studies have used a number of machine learning algorithms 

for the assessment of the impact of oil contamination on mangrove and marshland. 

Giri et al. (2011), used a decision tree classifier based on a univariate decision tree 

(C45.5) algorithm to classify Landsat and Airborne Photography of the Louisiana 

Mangrove, to depict the spatio-temporal characteristics of ecosystem shift, in terms 

of expansion, retraction and disappearance. Results of visual comparison with 
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Google Earth and discussion with wetland experts indicate high confidence of 

classification results. Khanna et al. (2013) used a binary decision tree based on 

vegetation index, angle index, and depth of oil absorption continuum to produce a 

classification map for six classes (i.e. oiled soil, oiled dry vegetation, oil-free soil, 

oil-free dry vegetation, green vegetation and water) to asses oil impact on marshland 

vegetation on the Louisiana coast. Results also demonstrated the utility of machine 

learning algorithms in depicting the impact of oil, using vegetation indices localized 

within pixels of contaminated and non-contaminated pixel. Recently, Mahdianpari et 

al. (2018) also employed the random forest machine learning method to map and 

discriminate land-based oil spills from other land cover features using high spatial 

resolution unmanned aerial vehicle imagery and electromagnetic induction survey 

data.  

Random forest is one of the most popular and effective machine learning methods 

commonly used for satellite image processing (Jhonnerie et al., 2015; Juel et al., 

2015; Mutanga et al., 2012; Rodriguez-Galiano et al., 2015; van Beijma et al., 2014). 

Proposed by Breiman (2001), the Random Forest (RF) method itself is an ensemble 

of classification trees, where each tree contributes with a single vote for the 

assignment of the most frequent class to the data (Breiman, 2001). RF typically uses 

a random subset of the input features or predictive variables in the subdivision of 

every node, as opposed to using the best variables, thereby reducing error from 

generalization (Breiman, 2001; Guo et al., 2011; Rodriguez-Galiano et al., 2012).  It 

uses bootstrapping to form an ensemble of classification trees and it generally works 

well with the identification of strong predictors of a specified outcome without 

making assumptions about an underlying model.  

However, a common problem of high-dimensionality in the presence of correlated 

predictors impacts RF ability to identify the strongest predictors by decreasing the 

estimated importance scores of correlated variables (Darst et al., 2018; Nicodemus 

and Malley, 2009; Strobl et al., 2008). To this end, Millard and Richardson( 2015) 

have recommended that high dimensionality owing to use of high number of input 

feature variables should be eliminated as much as possible from RF operation, using 

only uncorrelated important variables for classification for a better prediction to be 

achieved. Studies such as Mohammadimanesh et al. (2018) resolved the issue of high 

dimensionality with Spearman’s rank order correlation amongst and between input 
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variables. This was used to select only important non-correlated features for a random 

forest image classification. This allowed for a high overall classification accuracy of 

85.40% in a wetland classification in the Newfoundland and Labrador area of 

Canada.   

In this research, the potential of Fuzzy Forest (FF) machine learning method is 

explored for the prime purpose of effective selection and use of only high performing 

non-correlated variables for image classification process. FF is a relatively new 

concept introduced in 2015 by Conn et al. (2015) and it is an extension of the generic 

random forests methodology.  

FF is mainly formulated to yield less biased variable importance rankings when there 

is high correlation among variables. The method is still based on the traditional 

bagging approach, which infers that each base classifier in the tree is constructed with 

different subset samples of the input variables (Conn et al., 2015). The theoretical 

underpinning of the FF method is specifically aimed at using a piecewise screening 

process to eliminate features from initially assigned variable clusters through 

Weighted Gene Correlation Network Analysis (WGCNA) for detecting correlation 

networks. Then a selection phase is implemented through the Recursive Feature 

Elimination Random Forest RFE-RF process to allow for the interaction between 

different variable clusters for the selection of unique/important variables from each 

cluster.  

Weighted Gene Correlation Network Analysis (WGCNA) is a biological statistical 

network tool that is primarily used to analyze genes through a network correlation 

assessment across micro array of samples (Conn et al., 2015). The method is robust 

for finding the linkages among gene clusters, which are necessary steps for 

developing sound clinical gene and cell therapies. The application of fuzzy forest and 

WGCNA in this research thesis is, to the best of my knowledge, the first in the area 

of satellite image processing for image derived variable selection and classification, 

especially for terrestrial oil spill mapping. The method is employed to address the 

challenge associated with high dimensionality often associated with the use of 

multiple variables in a single classification operation. This should improve the 

variable selection process and reduce the redundancy presented by less important 

variables in the classification. The latter can often translate to less accurate maps 
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(Darst et al., 2018; Schmidt et al., 2017; Strobl et al., 2008) due to the effect of 

overfitting or underfitting in the final model from the n variables to be used for the 

classification process.  

For the purpose of this research, the random forest, fuzzy forest and support vector 

machine methods will be interactively explored for the classification of Optical only, 

Optical and SAR; and SAR only images for effective detection and mapping of oil-

impacted vegetation in a case site within the Niger Delta region of Nigeria.  

2.6 Research Gap 

The following Gaps were identified in the course of literature review: 

 The integration of optical derived image variables and spectral bands in a 

machine learning classifier has not been tested for oil spill detection with 

specific focus on different land cover types. 

 The application of multi-frequency and multi-temporal Spaceborne SAR data 

has not been fully assessed for the specific purpose of terrestrial oil spill 

impact mapping. 

 The effect of seasonality on detectability of oil impact on vegetation has not 

been investigated and less understood most especially with SAR data. 

 No existing study at the moment has leveraged on the variable importance 

information of random forest to discriminate between oil polluted and oil-free 

vegetation. 

 The fuzzy forest methodology as adapted by Conn et al., (2015) has seen no 

application in the area of remote sensing satellite image classification to date. 

 The potential of the fuzzy forest methodology as an effective variable 

selection method has not been tested in mapping terrestrial oil spill impact.  
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2.7 Research Questions 

In order for the identified gaps to be critically examined, the following research 

questions are therefore asked: 

I. To what extent can multispectral optical image only, vegetation health indices 

and land cover specific classification be used to detect, map and discriminate 

between oil-free and oil impacted vegetation types with machine learning 

classifier? 

II. To what extent can the integration of optical derived variables (i.e. 

multispectral bands and vegetation indices), multi-frequency SAR and geo-

physical variables improve the classification accuracy of polluted and oil-free 

vegetation types? 

III. Can the use of fuzzy forest resolve the high dimensionality problem 

associated with the integration of Optical, SAR and Geo-physical variables 

(in RQ II above) to improve classification accuracy? 

IV. To what extent can SAR only (i.e. multi-temporal and multi-frequency SAR) 

variables improve discrimination and classification accuracy (between oil-

free and oil-impacted vegetation) using a machine learning classifier? 

V. Can the result in Research Question (RQ) IV be improved by seasonal stack 

classification, using multi-temporal and multi-frequency SAR variables in the 

study area. 

VI. Can multitemporal SAR analysis depict dominant characteristics of the 

polluted and oil-free vegetation 

2.8 Rationale of Implementation 

Following the establishment of the research questions, the first objective was to 

integrate optical image bands and the vegetation indices generated thereof to 

discriminate between healthy and oil-impacted vegetation using a random forest 

classifier. Emphasis here was to investigate the utility of micro level classification 

(i.e. for the individual land cover vegetation type) compared to the macro level 

classification (i.e. at the entire study area image comprising of all land cover types).  

Particular emphasis was also given to the variable importance as a means of 

identifying the best discriminatory indices. These approaches has never been tested 

in the literature for oil pollution mapping, as previous studies achieve this through 

the use of study area wide image and parametric methods. 
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However, in order to improve classification accuracy further in the discrimination of 

polluted and oil-free vegetation, multi-frequency C and X Band SAR variables, as 

well as other geologic variables (including Digital Elevation Model, Soil - Geology) 

were introduced into the random forest classifier. Furthermore, the operational 

paradigm of random forest method was re-worked to further improve classification 

accuracy. In this regard, the fuzzy forest method was introduced to resolve the 

problem of high dimensionality associated with the use of multiple SAR derived 

image variables and Optical variables in a classification process. 

In the final analysis, the role of seasonality in the discriminability of polluted and oil-

free vegetation was investigated. Here the potential of multi-temporal Sentinel – 1 

SAR was assessed to show vegetation temporal characteristics of polluted and oil-

free vegetation types. Furthermore, the dry and wet season image stack of the multi-

temporal Sentinel – 1 C band SAR, Cosmo Skymed and TanDEM-X X band SAR, 

and ALOS PALSAR 2 L – Band SAR, were investigated and classified to 

discriminate between healthy/oil-free vegetation and oil spill impacted vegetation.  
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2.9 Research Conceptualization into achievable objectives 

 

 

 

 

 

 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

Detection of Oil spill impact on different 

vegetation canopy types using Sentinel-2 

optical variables and multi-frequency C 

and X Band SAR data 

Establish vegetation temporal behavior for 

polluted and oil-free vegetation for different 

vegetation types using multi-temporal 

Sentinel-1 SAR data analysis 

Integrate optical, SAR and geo-physical 

variables to discriminate impacted and oil-

free vegetation for the different types using 

random forest method 

 

Investigate the capability of fuzzy forest 

methodology in comparison with random forest 

in improving classification accuracy through 

variable reduction. 

Compare temporal pattern of vegetation from 

SAR backscatter with corresponding temporal 

soil moisture and NDVI data with emphasis on 

seasonality  

 

Identify the best seasonal multi-frequency L, C, 

X Band SAR combination in discriminating oil-

impacted and oil-free vegetation for the 

different vegetation types 

Implementation of random forest 

Classification algorithm for integrated 

Landsat-8 bands and vegetation health 

indices of full study area extent 

Implementation of random forest 

Classification algorithm for integrated 

Landsat-8 bands and vegetation health 

indices by vegetation types 

 

Identification of Best Variables to 

discriminate oil–free and oil-impacted 

vegetation at the full study area extent 

and for the different vegetation types 

 

First Objective 

Second Objective 

Third Objective 

Establish firm and reliable mapping protocols and products for oil polluted and oil-free 

cropland, grassland and tree cover area vegetation types 



 

 

69 

 

2.10 Aim and Objectives 

2.10.1 Aim 

The aim of this PhD is to apply state of the earth remote sensing data and methods to 

facilitate the detection and mapping of oil-polluted areas on the terrestrial landscape. 

2.10.2 Objectives 

1. To evaluate the capabilities of Optical Derived Indices and Spectral bands of 

Landsat – 8 OLI and Machine Learning RF to discriminate between oil-

polluted and oil-free vegetation (i.e. cropland, grassland and tree cover area 

in dry and wet seasons).  

a. To investigate the potential of optical derived vegetation indices and 

spectral bands in a machine learning random forest classifier to 

discriminate between oil-free and oil (spill) impacted vegetation (land 

cover).  

b. To investigate the capabilities of a land cover specific (vegetation 

specific) image classification operations to discriminate oil-impacted 

and oil-free vegetation types. 

c. To identify the best vegetation indices that best characterize and 

discriminate between the oil-impacted and the oil-free vegetation. 

2. To analyze the potential of Integrating Optical (Sentinel 2) derived variables 

and Multi-frequency C and X band – SAR backscatter using a fuzzy forest 

and random forest classifiers to discriminate between the oil-polluted and oil-

free vegetation types (i.e. cropland, grassland and tree cover area in dry and 

wet seasons). 

a. To investigate the potential of various frequencies of SAR (C and X 

band) backscatter to detect hydrocarbon crude oil impact on 

vegetation.  

b. To assess the relationship between various optical derived indices and 

multi-frequency SAR (C and X band) in various vegetation types 

c. To implement random forest classification using the multi-frequency 

C and X band SAR to discriminate between oil-free and oil-impacted 

vegetation. 
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d. To investigate the potentials of the fuzzy forest classifier in 

comparison with the results of the random forest classifier (above) in 

addressing high dimensionality associated with SAR (i.e. multi-

frequency C and X band SAR) and Optical image integration to  

discriminate oil-free and oil-impacted vegetation types. 

3. To evaluate the potential of Multi-temporal, Multi-seasonal and Multi-

frequency L, C and X band SAR; with machine learning support vector 

machine and random forest classifier in discriminating between oil – polluted 

and oil-free vegetation types (i.e. cropland, grassland and tree cover area in 

dry and wet seasons).  

a. To investigate the temporal backscatter characteristics of a typical oil-

free and oil-impacted vegetation types. 

b. To assess and compare the temporal SAR backscatter response to 

optical image derived health response from MODIS NDVI and the 

SMAP soil moisture. 

c. To investigate the role of seasonality in the detection and 

discrimination of polluted and oil-free vegetation types in a number 

of classification scenarios using multi-temporal, multi-frequency and 

multi-seasonal SAR images, together with support vector machine 

and random forest classifiers, in an attempt to evolve the best data 

combination and methodology for discriminating oil-polluted and oil-

free vegetation types.  
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3.1 Introduction 

The general methodology chapter describes all the datasets used in addressing all of 

the research objectives. It also highlights the image classification methods and data 

pre-processing used during the course of data analysis. It goes further to describe the 

study area with respect to location and size, population, climatic conditions, ecology 

and geology. 

3.2 Data 

The dataset used in this research comprises of both optical multispectral image 

dataset (from Landsat – 8 and Sentinel – 2 A), Synthetic Aperture Radar (from 

Sentinel – 1 A, Cosmo Skymed, TanDEM – X and ALOS PALSAR), Oil spill 

Incident data (from SPDC and NOSDRA), Existing Land cover dataset (from ECCI), 

Soil Moisture data (from SMAP), MODIS NDVI data (from NASA), Digital 

Elevation Model - SRTM (from NASA), Soil and Geology data (NGSA) and field 

acquired (Spectroradiometric) primary data.     

3.2.1 Optical Reflectance Data 

Three optical reflectance data were used in the course of this research to investigate 

the potential of optical spectral bands and their derived vegetation health indices in 

discriminating between oil-impacted and oil-free vegetation types. These include 

Landsat – 8 Optical Land Imager (OLI), Sentinel – 2 A Multispectral Imager (MSI) 

and the MODIS 1Km Vegetation Indices. 

3.2.1.1 Landsat – 8 Imagery 

The Landsat 8 – OLI data for the year 2016 was the first multispectral optical image 

data used in the course of this research. The data was downloaded from the USGS 

website (earthexplorer.usgs.gov/). The acquired image is a Landsat Surface 

reflectance Higher – Level Data Product, processed using the Landsat Surface 

Reflectance Code (LaSRC). The LaSRC makes use of the coastal aerosol band to 

perform aerosol inversion tests using auxiliary climate data from MODIS and a 

unique radiative transfer model (Roy et al., 2014). Additionally, LaSRC hardcodes 

the view zenith angle to “0” and solar zenith, which are used for calculations as part 

of the atmospheric correction process.   
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The Landsat – 8 OLI image was used in the 1st analysis chapter (i.e. chapter 4) of this 

thesis to investigate the capabilities of multispectral optical image spectral bands and 

derived vegetation indices in discriminating between oil-impacted and oil-free 

vegetation types in a machine learning random forest classifier. Results obtained 

from the normalized variable importance chart also offered insight on the best optical 

variable for discriminating between oil-impacted and oil-free cropland, grassland and 

tree cover area vegetation types. 

The study used a post-spill dry season multispectral image acquired on the 6th of 

December, 2016. This ensured that there was little cloud, aerosol and haze cover, as 

images between the months of February to November have significant cloud cover 

due to the wet season. 

3.2.1.2 Sentinel – 2 Imagery 

Sentinel 2 is an European Space Agency (ESA) and European Commission satellite 

sensor launched under the Copernicus joint initiative programme. The satellite was 

launched on the 23rd of June 2015 with a Multi Spectral Imager (MSI) sensor for 

monitoring the variability in coastal and terrestrial environment. The sensor acquires 

multispectral image across 13 spectral channels through Visible (VIS), Near Infrared 

(NIR) and Shortwave Infrared (SWIR) at a spatial resolution of 10m, 20m and 60m. 

The Sentinel – 2 data is open access, which means the data is available for the public 

to download and use free of charge from any of the download platforms. However, 

the Sentinel – 2 data for this research was obtained from the Sentinel Copernicus Hub 

(https://scihub.copernicus.eu/dhus/#/home).  

In this research, the Sentinel – 2A image was used in the 2nd analysis chapter (i.e. 

chapter 5) of this thesis to evaluate the capabilities of integrating optical and multi-

frequency SAR derived image variables to discriminate oil-impacted and oil-free 

vegetation types in a machine learning fuzzy forest and random forest classifiers. For 

this purpose, the post-spill Orthorectified image with Universal Transverse Mercator 

(UTM) projection and the World Geodetic Survey (WGS) 1984 Datum, Zone 32N 

acquired in December 2016 was used for analysis. The choice of image date (i.e. 

December 2016) is premised on the fact that most images of the study area had 

extensive cloud and haze cover all year round (especially between February and 

November). The research used all the image bands with 20m spatial resolution, as 

https://scihub.copernicus.eu/dhus/#/home
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this provided extensive coverage of the near infrared and shortwave infrared (NIR-

SWIR) part of the spectrum. This range of the spectrum is particularly efficient for 

oil spill detection on terrestrial landscape as emphasized by Cloutis (1989) and Hörig 

et al. (2001). 

3.2.2 Synthetic Aperture Radar (SAR) Images 

SAR images from four sensors with various polarizations were obtained from their 

respective vendors and used interactively in the course of this research. They include; 

Sentinel – 1 A (C-Band SAR), TanDEM X (X-Band SAR), Cosmo Skymed (X-Band 

SAR) and ALOS PALSAR (L-Band SAR) images. 

3.2.2.1 Sentinel – 1 

 SLC Product 

In this study, single Sentinel 1 A interferometric wide swath (IWS) single look 

complex (SLC) image in the ascending mode was acquired for individual months 

from April 2015 to December 2016 (i.e. one image per month). Thus, 22 sentinel – 1 

A-image scenes for the period of April 2015 to December 2016 were acquired, pre-

processed and analyzed for multitemporal assessment. The data was obtained from 

the Sentinel Copernicus Sci-hub (https://scihub.copernicus.eu/dhus/#/home). 

Sentinel – 1 A is part of the European Space Agency and European Commission 

Copernicus launched satellite sensors. It was launched on the 3rd of April 2014 to 

monitor both marine and terrestrial ecosystem for the effective management and 

monitoring of earth’s resources. The sensor is a C – band SAR that acquires 

amplitude and phase information from VH and VV polarization, with a 250-km swath 

width and at 5 x 20m spatial resolution. The images used in the course of this research 

were the VH and VV polarization, as not all locations have the two polarizations in 

a single capture. Table 3-1 shows the date of the Sentinel – 1 A image acquisition. 

 

 

 

 

 

https://scihub.copernicus.eu/dhus/#/home
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Table 3-1: Sentinel – 1 Image List Acquisition Dates 

Date Date Date Date 

2015 – April 05 2015 – Oct 26 2016 – March 06 2016 - Sept 26 

2015 – May 23 2015 – Nov 19 2016 – April 11 2016 – Oct 20 

2015 – June 16 2018 – Dec 01 2016 – May 17 2016 – Nov 25 

2015 – July 22 2015 – Dec 25 2016 – June 10 2016 – Dec 07 

2015 – August 27 2016 – Jan 30 2016 – July 28 - 

2015 – Sept 20 2016 – Feb 22 2016 – August 21 - 

 

The Sentinel – 1 A Single look Complex (SLC) image datasets were used in the 3rd 

analysis chapter (i.e. chapter 6) of this thesis for two major analysis. First, to evaluate 

the capabilities of Multi-temporal Sentinel – 1 C band SAR backscatter to infer 

vegetation temporal characteristics to investigate the role of seasonality in the 

detectability of the impact of oil spill on the predominant vegetation types. Secondly, 

the Sentinel 1 multitemporal images were integrated with L – Band Advance Land 

Observation Satellite Phased Array type L-Band Synthetic Aperture Radar 2 (ALOS 

PALSAR-2) and X – Band TanDEM – X in a seasonal image classifications to further 

discriminate between oil-impacted and oil-free vegetation types.  

 GRD Product 

The Sentinel 1 C – band SAR, Level-1 Ground Range Detected (GRD) format, was 

downloaded and used in the course of this research, primarily because of its utility in 

providing a radar cross-section of both distributed and point targets. This image  was 

used in the 2nd analysis chapter (i.e. chapter 5) of this thesis to evaluate the 

capabilities of integrating multispectral optical and SAR derived image variables in 

a machine learning fuzzy forest and random forest classification, to discriminate oil-

impacted from oil-free vegetation types. For the purpose of this study, a single post 

spill image of January 27 2017 with VH and VV polarizations was downloaded, pre-

processed and used in fulfilling this research objective.  
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3.2.2.2 TanDEM – X 

Tandem – X data consisting of multiple scenes covering the study area, were acquired 

from the German Space Agency (DLR) and used in the 2nd analysis chapter (i.e. 

chapter 5) of this thesis. The satellite, which is jointly operated by the German Space 

Agency (DLR) and EADS Astrium, is a bi-static X-band sensor, which consist of 

two twin satellites, namely: TerraSAR-X (launched June 15, 2007) and the TanDEM-

X (launched June 21, 2010). It was the first X-band single-pass SAR interferometer 

in space. The images used in this study are both post spill wet and dry season images 

captured in April 2016 and February 2017, respectively. The two image sets (i.e. both 

wet and dry season) were used in chapter 6 for the multi-temporal, multi-frequency 

and multi-seasonal based image classification. Only the dry season post-spill image 

was used in chapter 5 for the multi-frequency SAR and Optical image classification, 

using the fuzzy forest and random forest methods. The images are Level 1b 

Geocoded Ellipsoid Corrected (GEC) images captured in Strip map mode. 

3.2.2.3 Cosmo Skymed 

Cosmo Skymed is a high resolution SAR launched and operated by the Italian space 

agency (ASI) acquiring backscatter return in dual polarization mode of HH and HV. 

Several image scenes covering the study area were requested and acquired through 

the COSAIR programme. The image used in this study is a level 1A image, which 

needed to be corrected for the Range Spreading loss effect using antenna pattern gain 

compensation and incidence angle effect (Sportouche et al., 2012). The images used 

in the course of this research were post-spill images with acquisition dates in 

December 2016 in the dry season. The Cosmo Skymed images was used in both the 

2nd analysis chapter (i.e. chapter 5) and the 3rd analysis chapter (i.e. chapter 6) of this 

thesis. These were used to evaluate the capabilities of integrating optical and SAR 

derived image variables in both machine learning fuzzy forest and random forest 

classifications, as well as multifrequency SAR seasonal image-based classification 

respectively, to discriminate between oil-impacted and oil-free vegetation types.  

3.2.2.4 ALOS PALSAR 

The Advance Land Observation Satellite Phased Array type L-band Synthetic 

Aperture Radar (ALOS PALSAR) data as Single Look Complex (SLC) at processing 

level 1.1, in slant range and HBQ mode of acquisition (high sensitivity) was acquired 

in CEOS format for this research. The images where provided by the japan space 



 

 

77 

 

agency (JAXA) for this research. The images acquired were ascending orbit in a left 

looking off nadir angle mode and has a nominal resolution of 2.86m and 3.13m in 

range and azimuth respectively. Two image pairs covering the study area for both 

dry and wet season acquisitions on 28th December 2016 and 23rd May 2016 in HH, 

HV, VV and VH polarizations were used in the course of this research. The images 

were used mainly in the 3rd analysis chapter (i.e. chapter 6) of this thesis for the multi-

temporal, multi-frequency and multi-season based image classification. 

3.2.3 Oil Spill Incident Data 

Nigeria’s oil-rich Niger Delta is characterized by a prevalence of both old and new 

oil spills totaling about 9,343 incidents in the last 10 years, according to official 

records by National Oil Spill Detection and Response Agency (NOSDRA). This 

translates to an average of nearly one thousand spills yearly, the highest rate of spills 

globally. NOSDRA reported that, within the period from 2006 to 2015, there were 

over 5000 spill sites from the over 9000 spills. The average volume of oil spill 

annually is about 115,000 barrels, totaling around 1,150,000 in the past 10 years 

(Ndimele et al., 2018).  

The spill incident data is an important dataset for this research, as it provides actual 

locations of oil spill sites and other relevant information for past and present spills. 

The oil spill datasets used for this research were obtained from two published 

sources. These are the Shell Petroleum Development Corporation (SPDC) 

(https://www.shell.com.ng/sustainability/environment/oil-spills.html) oil spill 

incident data and the National Oil Spill Detection and Response Agency (NOSDRA) 

(https://oilspillmonitor.ng/) oil spill data. Shell Petroleum Development Corporation 

is the largest private crude oil extractive company, both on marine and terrestrial 

ecosystems within the Niger Delta region of Nigeria, while the National Oil Spill 

Detection and Response Agency is the government outfit tasked with responsibility 

of capturing and monitoring all oil spill incidents in the country. The agency has 

published oil spill incidents on its website since 2006 to date.  

The incident data are obtained through a joint investigative visits (JIV) that normally 

follows an oil spill incident. Appendix I and II shows a sample of the SPDC Joint 

Investigative Visit report and picture photograph of an oil-polluted site visited in 

Bodo West community. The investigative team is usually comprised of necessary 

https://oilspillmonitor.ng/
https://oilspillmonitor.ng/
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stakeholders in the oil and gas industry. This includes the government agency, civil 

society, security agencies, representative of the host community and the principal oil 

company. SPDC started this mode of spill data capture from 2011 and it remains the 

only mode through which spills are recorded and published across the country. 

Information published includes the location (in actual coordinates), cause of spill, 

estimated volume of oil spilled, estimated area coverage of oil spilled, observed 

impacts on the environment, the spill boundary coordinates as well as necessary 

remediation activities recommended or ongoing as at the time of the joint 

investigative visit.  

Figure 3-1 shows the oil spill incident points obtained from both NOSDRA and 

SPDC from 2011 to 2017 combined, as well as the 2015 and 2016 oil spill incidents 

within the proposed study site specifically used in this research. 
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Figure 3-1: Shows the oil spill incident points obtained from both NOSDRA and 

SPDC from 2011 to 2017. ‘inset A and B’ shows the combined oil spill datasets from 

the two published sources, while ‘inset C’ shows the 2015 and 2016 SPDC/NOSDRA 

data for the study site investigated. 

 

The two sources (NOSDRA and SPDC) are similar in most respects, that is, they 

both capture, record and publish oil spill incidents following a joint investigative visit 

of an oil spill site. Both datasets were used in this research to ensure that a more 

comprehensive oil spill incident database is established, upon which further 

deductions and processing would be carried out. For the purpose of this research, the 

spill data for the year 2015 and 2016 were used for data analysis (Figure 3-1).  
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The rationale for using the 2015/2016 spill incident data is premised on the fact that 

it provides a spatial concentration and number of incident points sufficient for image 

analysis, classification and validation process. In addition, the 2015 and 2016 oil spill 

dataset also coincided more with the most available optical and SAR image datasets 

available for analysis. Figure 3-1 shows the oil spill point spatial distribution, while 

Table 3-2 shows the requisite information concerning the date of spill, location of 

spill and the total reference points selected within the spill area.  

The spill data as shown in Table 3-2 were used in the data analysis in chapter 4 and 

5, while the number of reference points was expanded for the analysis in chapter 6. 

The rationale for the expansion of the number of reference points for the multi-

temporal, multi-frequency SAR and multi-season assessment (i.e. in chapter 6), is to 

ensure that there is spatio – temporal stability between the number of image datasets 

and the number of samples used for machine learning calibration and classification 

(Maxwell et al., 2018). Similarly, Khatami and Mountrakis (2018) also noted in this 

regard that the use of a higher number of training sample can substantially help in 

improving learning and classification accuracy in a multi-temporal image 

classification.    

3.2.4 Existing Land Cover data 

The existing land cover map for the African Continent produced by the ESA Climate 

Change Initiative (ECCI) 2016 is a freely accessible dataset (accessible via: 

https://www.esa-landcover-cci.org/?q=node/187) used in the course of this research. 

This was used to establish the baseline land cover types and their spatial extent for 

subsequent image analysis. The product contains 10 classes for different land cover 

classes including built – up areas, waterbody and various vegetation types produced 

from a 10m high spatial resolution Sentinel – 2A image over Africa. The major land 

cover classes used in this research are cropland, grassland and tree covered areas. 

These were primarily used to establish the three vegetation types (cropland, grassland 

and TCA) investigated for separate spill detection and image classification process. 

Essentially, the land cover extent was used to subset the various images to extract the 

various vegetation types in the three analysis chapters of this thesis. Figure 3-2 shows 

the predominant land cover types used in this research from the ECCI land cover 

dataset. 

https://www.esa-landcover-cci.org/?q=node/187


 

 

81 

 

Table 3-2: Oil spill incident locations and the total number of ground reference selected 

Location Year/Month State LGA 
Ref. 

Points 
 Location Year/Month State LGA 

Ref. 

Points 

Atali 01/10/2015 Rivers Obio/Akpor 3  Gio 01/08/2015 Rivers Gokana 7 

Ayama 01/06/2016 Rivers Oyigbo 4  Gio 01/09/2016 Rivers Tai 7 

Ayama - Noke 01/12/2015 Rivers Oyigbo 3  Gio 01/08/2015 Rivers Gokana 1 

Ayama - Noke 14/01/2016 Rivers Oyigbo 2  Imeh 01/09/2015 Rivers Etche 1 

B-Dere 01/06/2015 Rivers Gokana 3  Komkom 01/05/2015 Rivers Oyigbo 4 

B-Dere 01/06/2015 Rivers Gokana 1  Komkom 12/05/2015 Rivers Oyigbo 4 

B-Dere 14/01/2016 Rivers Gokana 1  Komkom 01/09/2016 Rivers Oyigbo 1 

B-Dere 28/05/2015 Rivers Gokana 3  Komkom 01/05/2015 Rivers Oyigbo 1 

B-Dere 16/02/2016 Rivers Gokana 1  Kpoghor and Gio 01/05/2015 Rivers Tai 3 

B-Dere 01/06/2015 Rivers Gokana 2  Kpoghor and Gio 16/02/2016 Rivers Tai 6 

B-Dere 01/06/2015 Rivers Gokana 2  Kpoghor and Gio 01/09/2015 Rivers Tai 5 

Egberu 01/08/2015 Rivers Obigbo 3  Norkpo 01/09/2015 Rivers Tai 4 

Egberu 16/02/2016 Rivers Obigbo 5  Odagwa 01/09/2016 Rivers Etche 1 

Egberu 01/08/2015 Rivers Obigbo 1  Ogale 01/08/2016 Rivers Eleme 5 

Ejamah Ebubu 01/06/2015 Rivers Eleme 1  Ogale 16/02/2016 Rivers Eleme 1 

Ejamah Ebubu 21/02/2015 Rivers Eleme 3  Owaza 01/05/2015 Abia Ukwa West 1 

Ejamah Ebubu 01/06/2015 Rivers Eleme 1  Owaza 28/05/2015 Abia Ukwa West 5 
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Figure 3-2: The Study Area (B) is shown within the Niger Delta Region of Nigeria 

(A), indicated by the yellow outline. The red points in ‘C’ are the oil spill sites as 

retrieved from SPDC and NOSDRA database. ‘B’ shows the predominant land cover 

types (Cropland, Grassland and Tree Cover Areas) as provided by the European 

Climate Change Initiative Derived from Sentinel 2A dataset. The northern part of the 

study area has a higher concentration of riparian forest and dense vegetation, while 

patches of grassland are concentrated in the central part of the study area connecting 

the much cultivated part of the study area to the south eastern corner. 
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Pictures of the cropland, grassland and tree cover areas are shown in Figure 3-3a, 3-

3b and 3-3c respectively. Features such as built – up areas, waterbody and bare 

surfaces were excluded from this study as most oil pipelines and the corresponding 

spill incidents occur on vegetated landscape. Thus, their exclusion should help in 

reducing artifacts and mis-classification errors as this was major issue observed in 

previous studies (e.g. Hese and Schmullius, 2009; Van der Werff et al. 2007 and 

Bianchi et al. 1995a).  

For the purpose of this research, the study area shape file was used to subset and 

extract existing land cover extent upon which further analysis was carried out. 

Principal among them is the implementation of the class wise or vegetation specific 

detection of oil spill impact and the subsequent mapping of the corresponding extents 

to discriminate between spill-impacted vegetation and healthy vegetation for the 

different land cover (i.e. vegetation) types in this study.  

 

  (a)         (b) 

 

     (c) 

Figure 3-3: Pictures of the predominant land cover types within the study area 

investigated (a) Cropland (b) Grassland (c) Tree Cover Areas. (Source: Authors 

fieldwork, January 2017) 
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3.2.5 Soil Moisture Data – Soil Moisture Active Passive (SMAP) 

Soil moisture was used in this study to establish the dominant state of the top soil 

activity as it contributes to vegetation growth across multi-temporal scale. This has 

been observed by Kramer and Boyer (1995) as being more efficient and influences 

plant growth than precipitation, as the influence of rainfall runoff especially in high 

elevated areas can impede on soil retention capacity. This study used the Soil 

Moisture Active Passive (SMAP) Soil Moisture (Radiometer) Level 2 data, which 

nominally represents volumetric soil moisture in the top soil layer of 5m3. The data 

is derived from an L – Band radiometer measurements with a 9km spatial resolution 

and with a revisit period of 3 days.  

In this study, a single monthly acquisition was obtained for the study area for the year 

2015 and 2016 (amounting to a total of 24 images for the two years), to effectively 

align with the dates for the Sentinel 1 A temporal backscatter and MODIS temporal 

NDVI retrievals for effective comparison. Data acquired for this study are for the 

descending overpass (6 a.m. local time) as the data effectively demarcates the daily 

periods as observed by Draper et al. (2018). The data were mainly used in the analysis 

of biochemical and biophysical factors in the 3rd analysis chapter (i.e. chapter 6) of 

this thesis. This essentially provided an avenue to evaluate and compare the observed 

multi-temporal backscatter trends and soil moisture. 

3.2.6 Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI 

The 1 – Kilometer spatial resolution monthly Aqua Moderate Resolution Imaging 

Spectroradiometer (MODIS) Vegetation Indices (MYD13A3) Version 6 data was 

used in the course of this research to investigate the bio-physical response of 

vegetation to oil spill. The monthly product is generated from the integration of all 

the 16 – day 1 kilometer product using a weighted temporal average. The NDVI 

image scene covering the study area was obtained free of charge (from 

https://modis.gsfc.nasa.gov/data/) for the period April 2015 through December 2016 

to coincide with the monthly Sentinel – 1 A (SAR) temporal backscatter. The 

vegetation index was used to establish the temporal variability of vegetation status 

(as affected by oil pollution) within the study area to provide a basis for evaluating 

the results of the multi-temporal SAR backscatter analysis. The data were mainly 

used in the analysis of biochemical and biophysical factors in the 3rd analysis chapter 

https://modis.gsfc.nasa.gov/data/
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(i.e. chapter 6) of the thesis essentially to provide an avenue to compare the result of 

the seasonal and temporal SAR backscatter of polluted and oil-free vegetation types. 

3.2.7 Elevation Data (Digital Elevation Model) 

Digital elevation model obtained from the Shuttle Radar Topography Mission 

(SRTM) was used in the course of this research. The SRTM 1 Arc-Second Global 

dataset acquired 23rd September 2014 was obtained from the USGS website 

(https://earthexplorer.usgs.gov/). The void filled product resampled from the initial 

3Arc-Seconds to 1 Arc-Second was used, which corresponds to a 30m spatial 

resolution elevation model dataset.  

The SRTM mission was one of the earliest missions to produce a global terrain 

dataset using a C-band Spaceborne imaging radar and X-Band SAR on board the 

space shuttle endeavor in 1994. These data were used in the chapter 5 of this thesis 

to investigate the role of elevation and topography in the detectability and 

discrimination of oil-polluted and oil-free vegetation in both a fuzzy forest and a 

random forest classification. Previous studies have suggested that elevation plays a 

significant role when discriminating oil-free and oil-impacted vegetation (Hester and 

Mendelssohn, 2000; Hester et al., 2016).   

3.2.8 Soil and Geology Data 

Soil type and geology as compiled by the Nigerian Geologic Survey Agency (NGSA) 

http://ngsa.gov.ng/GeoMaps were obtained, pre-processed and incorporated into the 

image classification process in the 2nd analysis chapter (i.e. chapter five) of this 

thesis. The data were incorporated to investigate the role of soil characteristics and 

the underlying geologic landforms in the detectability and discrimination of oil-

polluted and oil-free vegetation. Previous studies (Abdel-Moghny et al., 2012; 

Klamerus-Iwan et al., 2015; Wang et al., 2013) have suggested that soil type and 

geological composition of an area can play a significant role in the detection of 

hydrocarbon and oil spill impact, as this to a large extent determines penetrability of 

oil through the soil column to the vegetation root layer. 

   

http://ngsa.gov.ng/GeoMaps
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3.2.9 Field Validation Exercise 

Two fieldwork exercises were undertaken in the course of this research. The exercise 

were mainly conducted to evaluate the results obtained in the course of this research. 

This are discussed under fieldwork 1 referring to the oldest (January 2017) and 

fieldwork 2 referring to the most recent (November 2018) 

3.2.9.1 Fieldwork – 1  

The objective of the first fieldwork exercise was to implement field spectroscopy 

with the aid of a Handheld 2 Spectroradiometric device to establish vegetation 

spectral properties. This fieldwork exercise was conducted between 24th and 28th 

January 2017 (see Table 3-3) in Bayelsa state of Nigeria, specifically in Ikarama 

community located in Kaiama Local Government Area.  

One recent spill site, one old spill site and a non – spill (oil-free) site were visited as 

part of the investigation conducted. The Old spill site is a spill location where the oil 

spill incident occurred as far back as January 2010, while the recent spill site is a spill 

incident site which occurred in November 2016.  

 

Figure 3-4: Google Earth Image Showing the field established Plots within the Niger 

Delta Region of Nigeria. Spectroradiometric measurement of dominant vegetation 

reflectance were acquired from the various micro-plots. 
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The location of the non – spill site, which served as the control site is located about 

1km from the current site (as shown in Figure 3-4). The various sites were chosen as 

part of recommendation made by Siegel (1974) to allow for comparison between a 

site of known impact to a normal site (i.e. healthy plant void of any stress) before a 

conclusion can be reached on the dominant biochemical state of the vegetation 

samples investigated as a result of oil spill impact. 

The field visit was carried out through the technical support of an NGO called SACA 

(Shareholder Alliance for Corporate Accountability). The organization played a 

significant role in providing logistics and access to the spill site.  

Table 3-3: Showing the Date of Field Experimental Activities were carried out 

S/No Date/Day Activity Carried out 

1. 24th Tuesday January 2017 Implementation of Plots for the 

New/Recent Spill Site  

2. 26th Thursday January 2017  Implementation of Plots for the Old Oil 

Spill Site 

3. 28th Saturday January 2017 Implementation of Plots for the Control 

Site 

 

Evidence of oil slick coating on vegetation stem layer were still observed in the most 

recent spill site during the field exercise as shown in Figure 3-5. In order for the 

current research to effectively assess the influence of oil pollution on vegetation 

characteristics, 3 plots and 16 micro plots measuring 20 by 20 meters and 5 by 5 

meters respectively, were set up along a transect of 120m in each of the three sites.  

The coordinates of each of the corner plots and the center points were acquired with 

the aid of a GPS device. This was later mapped into a GIS environment for image 

spectral information retrieval. The result of this field experiment is presented in 

Chapter four and six of this thesis. 
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   (a)      (b) 

 

(c) 

Figure 3-5: Showing Oil Coating on Vegetation Sub Canopy 

3.2.9.2 Fieldwork – 2 

The second fieldwork was carried out between 18th October and 22nd October 2018 

(Table 3-4 shows the date the various locations were visited). The main objectives 

and activities carried out during the course of the fieldwork exercise is summarized 

into four broad parts. 
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Table 3-4: Showing the Date of Field Experimental Activities were carried out 

S/No Date/Day Location Activity Carried out 

1. 19th October 

2018 

Etche Soil Sample Collection in Control 

Site  

2. 20th October 

2018  

TAI Soil Sample Collection in Recent 

Spill Site 

3. 21st October 

2018 

GOKANA Soil Sample Collection in Recent 

Spill Site 

4. 22nd October 

2018 

Eleme Soil Sample Collection in Recent 

Spill Site 

 

 Toxicology analysis 

Three recent spill sites located in TAI, GOKANA and ELEME local government 

areas of Rivers State were visited. Soil samples were taken from each of the spill 

sites for toxicology analysis to measure and establish the Total Hydrocarbon Carbon 

Content (THC) volume in each of the site. Figure 3-6 is a map showing the location 

of the three spill and one non – spill (control) site visited during the second fieldwork 

exercise. 

 

Figure 3-6: Showing Oil Spill Site and the Oil free Site Visited during the fieldwork 
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 Soil Sampling and Preparation 

Three different samples of contaminated soil were collected around the spill epicenter 

location. A hand held auger was used to bore a hole and excavate the soil to a depth 

of around 40cm before soil samples were taken. This was repeated across the 

different locations within the affected spill area. The collected samples were then 

combined to form one sample for each spill site visited, making a total of three soil 

samples, one each for TAI, GOKANA and ELEME spill site. Figure 3-7 a, b and c 

shows the recent spill site visited in Eleme, while figure 3-7d is a picture of the oil 

free non – polluted site visited in Etche. 

   

        (a)           (b) 

   

        (c)           (d) 

Figure 3-7: Showing Picture of Oil Spill Site and Oil Coating on Vegetation Sub 

Canopy (a) Eleme Site (b) TAI (c) Gokana and Oil free Site (d) Etche 

The same procedure was repeated for the non – spill/control site location in Etche. 

Collected samples were stored in a zip lock and kept in a cool and iced environment 
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to prevent vaporization. It was ensured that Samples collected got to the laboratory 

before the end of the day in order for proper storage to be carried out.  

 Hydrocarbon Test Procedure 

The methods adopted for the laboratory analysis were in line with the American 

Society for Testing and Materials (ASTM) Analytical Protocol. For the purpose of 

this study, toxicology analysis was made to reveal the total hydrocarbon content 

(THC) present in each of the soil samples. Method used in the laboratory for the test 

procedure was the ASTMD3921, which is a standard test method for oil and grease 

and petroleum hydrocarbon concentration in sediment. The method uses CFCs for 

infrared spectroscopy to separate the different liquid content before the actual volume 

of the THC is ascertained. The result of the hydrocarbon test analysis was compared 

to the result of the image classification in chapter 5 of this thesis in the four locations 

to establish if classes are assigned to the corresponding oil-free and oil-impacted 

areas. 

 Ground Truth of False Positives sites. 

The second part of the fieldwork was a qualitative ground truth exercise. This 

generally involved going round the study area to directly validate and compare the 

results obtained from the image classification process to actual realities on ground. 

Attention was focused mainly on only false positives in the classified image, as 

initially visited sites (for toxicology analysis) were true positive sites. However, due 

to logistics and political volatility of the study area, only four (4) large expanse of 

fields were visited. The locations visited were Obio/Akpor, Oyigbo, Etche and 

Emohua. 

3.3 Image Classification Methods 

The image classification methods highlights the methods adopted in the assignment 

of pixels to specific classes based on the training sites of polluted and oil-free 

vegetation established in section 3.2.3. Three machine learning classifiers namely: 

Random forest (RF), Fuzzy forest (FF) and Support Vector Machine (SVM) methods 

were used interactively to address the various research questions (section 2.7) and 

research objectives (section 2.10.2) posed in the course of the research. While the RF 

method was used in chapter 4 to investigate the utility of the vegetation specific 
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classification against the general image classification, both RF and FF methods were 

used in chapter 5 of this thesis to assess the integrated use of optical – SAR image 

variables, as well as high dimensionality effect in discrimination of polluted and oil-

free vegetation. Lastly, the RF and SVM methods were both used in chapter 6 of the 

thesis in the multifrequency SAR, Multitemporal and Multi-seasonal based image 

classification.  

3.3.1 Random forest 

The Random Forest (RF) is an ensemble classification method proposed by Breiman 

(2001). It is an ensemble method for supervised classification and regression, based 

on classification and regression trees (Caret). It works on the assumption that an 

aggregation of correctly predicted classes from the decision trees that make-up the 

RF can improve the general classification accuracy. Figure 3-8 shows a graphical 

representation of a typical random forest ensemble with three classification trees. 

 

Figure 3-8: Random forest with ‘3’ trees. Image source: (Gislason et al., 2006) 

Each ensemble in the classifier is trained on a subset of the various input variables 

using two thirds of these samples. The remaining one third is used to generate the 

out-of-bag error, which is an internal validation process that evaluates the final model 

for classification or regression. Random forest is one of the most efficient machine 

learning based classifiers used for various land cover and land use classifications 

(Adam et al., 2014; Barrett et al., 2014; Du et al., 2015; Gislason et al., 2006; Guo 

et al., 2011; Juel et al., 2015; Samat et al., 2018; Son et al., 2018; van Beijma et al., 

2014; Ye et al., 2013).  

As a machine learning base classifier, RF offers the opportunity to incorporate as 

many spatial variables in a single classification operation, which in turn should 

contribute positively to the prediction of the final class. The importance of the 

individual variables is estimated through random permuting of the value of the out-
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of-bag samples, which produces a measure of how important a specific variable or 

data layer is in the classification operation (Genuer et al., 2010). Random forest also 

offers huge flexibility in the tuning of the two major parameters, the number of trees 

in the forest (ntree) and the number of variables to use at each node (mtry). Similarly, 

the method also seeks to generate a measure of importance for each of the 

subsampled variables used in the classification process on the account of the Gini 

index and mean decrease in Gini.  

However, it is believed that RF variable importance measures could be biased when 

highly correlated features are incorporated in a single classification operation 

(Nicodemus and Malley, 2009; Strobl et al., 2008), thereby generally influencing the 

overall classification accuracy. In order to arrive at an optimal ntree value, several 

iterative runs were carried out in this research, and it was discovered that an optimal 

ntree value of 500 produced the best accuracy. Similarly, the square root of the 

number of input variables was used as mtry in the random forest image classification 

both in the EnMap box (Waske et al., 2012) used in chapter 4 and the R software 

(TeamR, 2017) used in chapter 5 and 6 of this thesis. 

3.3.2 Fuzzy forest 

Fuzzy Forest (FF) is an extension of the RF approach which seeks to obtain less 

biased variable importance rankings in the presence of high correlated features. This 

is accomplished in two fundamental steps. First is a screening process aimed at 

eliminating unimportant variables by assigning features to separate variable clusters 

called ‘modules’. Here, the target is for fuzzy forest to produce a partition of the 

features with high correlation using Weighted Gene Correlation Network Analysis 

(WGCNA).  

This feature can be denoted by the set𝑄 =  {𝑄1, … … . , 𝑄𝑚}. Let 𝑞𝑙 = |𝑄𝑙| so that 

∑ 𝑞𝑙 = 𝑞𝑚
𝑙=1  (Conn et al., 2015).      (3)  

The screening step operates independently on each partition and each element of the 

partition 𝑄𝑙 is relieved of unimportant variables using the Recursive Feature 

Elimination Random Forest (RFE-RF). Starting with all features in partition 𝑄𝑙, a 

random forest is fit and the least important features are eliminated. The resultant 

features after the first round of elimination can be called 𝑄𝑙
(1)

. Consequently, a 
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second random forest is then fit using features in the 𝑄𝑙
(1)

 and the least important 

features are also eliminated leading to a further reduced set of features 𝑄𝑙
(2)

⊂  𝑄𝑙
(1)

⊂

 𝑄𝑙 . The subset obtained after iteration t can be denoted as 𝑄𝑙
(𝑡)

 which is the number 

of features in 𝑄𝑙
(𝑡)

. The process of feature elimination continues until a user defined 

threshold is reached, which could be for instance until 25% of the most important 

variables in 𝑄𝑙 are remaining (Conn et al., 2015). For the full potential of the most 

important variables to be selected, the user must specify how many features are to be 

dropped after each iteration by specifying and tuning various screening parameters 

and specifying a stopping criterion (Conn et al., 2015). This process was 

implemented in the R software environment (TeamR, 2017) in comparison with the 

RF method.  

However, given the variable reduction potential of fuzzy forest and its ability to select 

only high performing non-correlated variables for a single classification operation. It 

is expected that its utilization in this research would help cope with the diversity and 

complexity associated with the integration of multifrequency and multitemporal 

SAR, optical and geophysical variables for effective discrimination of polluted and 

oil-free vegetation.  

3.3.3 Support Vector Machine 

Propounded by Cortes and Vapnik (1995), the SVM algorithm in a classification 

operation seeks  to find a linear separating hyperplane with the maximum margin in 

a higher dimensional space to distinguish input data into distinct number of classes.  

Given a training set of an instance – label pair (𝑥𝑡, 𝑦𝑡), i = 1, .….., l where (𝑥𝑡  ∈

 𝑅𝑛) and 𝑦  ∈ {1, −1}𝑙, the support vector machines (SVM) require the solution of 

the following optimization problem (Hsu et al., 2003): 

𝑚𝑖𝑛
𝑤, 𝑏, 𝜀

   
1

2
 𝑤𝑇𝑤 + 𝐶 ∑ 𝜀𝑖

𝑙

𝑖=1

 

Subject to       𝑦𝑖(𝑤𝑇𝜙(𝑥𝑖) + 𝑏) ≥ 1 −  𝜀𝑖,        𝜀𝑖 ≥ 0.   (4) 
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Here xi and w are training vector mapped into a higher (maybe infinite) dimensional 

space by the function ∅ and b, which are bias. SVM finds a linear separating 

hyperplane with the maximal margin in this higher dimensional space. To accomplish 

this, the penalty parameter of the error term  C > 0 and the kernel function  

K(xi, yj) ≡  𝜙(xi )
T ∅(xj) are used to efficiently distinguish the training data into 

predefined classes for a better prediction of the test data. Figure 3-9 is an illustration 

of how a SVM seeks to find the best separating hyperplane for a test data, usually 

through a grid search operation.  

 

Figure 3-9: Demonstrates how SVM seeks to project test data in a hyperplane to 

obtain the best class separation. Image Source: (Chang and Lin, 2011) 

The Support Vector Machine image classification was carried out using the ‘rpart’ 

(Therneau et al., 2015) and ‘e1071’ (Meyer et al., 2017) packages in the R Software 

environment (TeamR, 2017). 
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3.4 Study Area 

3.4.1 Location and Size 

The Niger Delta region is one of the 8 geopolitical zones in Nigeria. It is located on 

latitude 4o10’ to 6o20’ north and longitude 2o35’ east of the equator with a total 

landmass of ~72,000km2, making it the world’s third largest and Africa’s largest 

delta (Akegbejo-Samsons and Omoniyi, 2009). The region is comprised of 8 states; 

Abia, Akwa Ibom, Bayelsa, Cross River, Delta, Edo, Imo, Ondo and Rivers states 

(Figure 3-10). 

The region is situated right about the Gulf of Guinea on the coast of Atlantic Ocean 

(Hooper et al., 2002; Imoobe and Iroro, 2009; Onuoha, 2007). The Niger Delta is a 

low lying area, approximately 3.5m above mean sea level and an area of about 

112,110 square kilometers, making up 12% of Nigeria's total land mass (NDDC, 

2004). The region cuts across the coasts of Ondo, Delta, Bayelsa, Rivers, Akwa Ibom 

to Cross Rivers’ states (Imoobe and Iroro, 2009). The Delta is a large flood plain area 

built up as a result of accumulation of sediments washed down for over 100 million 

years from the Benue and Niger Rivers (Lindén and Pålsson, 2013).  

The region has an extensive hydrology system connecting rivers, creeks, and 

estuaries flowing towards the Atlantic Ocean (Abam, 2001; Akpokodje, 1987). The 

River Niger axis of the Delta has its headwaters from Guinea, passing through Mali 

to Republic of Benin, Niger republic and Nigeria. Similarly, the river Benue axis of 

the Delta has its own headwaters in from the Cameroon highlands and traverses both 

the Cameroon and Adamawa highlands in Nigeria (Abam, 2001). 
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Figure 3-10: Showing the Location of the Study Area used for this research (A) Map 

of Africa Showing Nigeria (B) Map of Nigeria Showing the Niger Delta Region (C) 

Study Area 

The actual study site for this research is bounded by four corner coordinates of 

(6.9570E, 5.0250N), (7.2470E, 5.0250N), (6.960E, 4.7950N) and (7.2540E, 4.8040N), 

and covers an area of 1320 km2 (Figure 3-11), which represents a small part of the 

region. This site was chosen because it represents a rare oil spill hotspot area, with a 
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high concentration of oil spill incidents (see figure 3-1). This particularly made the 

area suitable for image analysis to carry out the important process of calibration and 

validation of the machine learning random forest, fuzzy forest and SVM models. 

 

Figure 3-11: Showing the Location of the Study Area used for this research with 

emphasis on the Landcover Map and Oil Spill Incident Data (A) Map of the Niger 

Delta Region Showing the Oil Spill Incident Points (B) Map of the Study Area 

showing names of communities within the study site (C) Predominant Land cover 

within the Study Area 
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3.4.2 Population 

The population of the Niger Delta region stood at about 20 million at the time of the 

1991 census (Figure 3-12), accounting for 23% of the Nigeria’s population. Current 

estimates from government sources put the total population of the region at 27 million 

in 2005 (NDDC, 2005). The National Population Commission (NPC) has estimated 

that the population of the Niger Delta region would be nearly 33 million people by the 

end of 2013 (NPC, 2006). The 2006 census also showed that the Niger Delta region has 

the highest population density in the country. A report by NDDC, (2004) estimated that 

the population density is about ~450 persons per km2, making it the most densely 

populated region in Africa (Ayanlade, 2015). 

 

 

Figure 3-12: Showing the Population Map and Projection of the various States of 

the Niger Delta Region for 2005, 2010, 2016 and 2020 

Major factors responsible for the sharp population increase in the Niger Delta region, 

on the account of previous studies (Ayanlade, 2015; Ebeku, 2006; Eregha and Irughe, 

2009; International, 2009), are due to high rate of migration into the Delta region by 

people from other parts of Nigeria seeking opportunities and employment into the oil 
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industry. The majority of the population in the region (about 90%) depend mainly on 

agriculture and forest material for their fuel and means of livelihood (Ayanlade, 

2015; Ibaba, 2010; Mmom and Arokoyu, 2010). 

3.4.3 Climate 

The Niger Delta area lies within the wet equatorial climate with high cloud cover and 

it is influenced by the localized convection of the West African monsoon, with less 

contribution from the mesoscale and synoptic system of the Sahel (Adejuwon, 2012; 

Okoro et al., 2014). In between the months of March and October the climate of the 

region is characterized by the tropical maritime air mass, while in the months of 

November to February the region is under the influence of dry tropical continental 

air mass (Dada et al., 2015). The average annual rainfall of the region ranges from 

2000 to 4021mm (Adejuwon, 2012), with precipitation increasing from North of the 

Delta towards the coast (Figure 3-13) (Ayanlade, 2015).  

 

Figure 3-13: Mean Seasonal Wet and Dry Season rainfall map of part of the Niger 

Delta Region of Nigeria. Source: (Adejuwon, 2012). 
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The rainy season generally lasts for about nine months in the south, and less than four 

months in the north (Nigerian Meteorological Agency, 2010). Precipitation however 

increases from the Northern axis of the Delta region down towards the coast 

(Ayanlade, 2015). This region is also characterized with high surface humidity that 

rarely dips below 75% and the coastal areas also experience much higher humidity 

than the inland areas (Sorgwe, 1997). 

The temperature variability across the region is relatively constant throughout the 

year over with average annual temperature of about 27oC (Figure 3-14) and with little 

seasonal variation (Adejuwon, 2012). In addition, much of this high humidity (80% 

to 90%) is usually recorded within the months of June through September, and lower 

humidity occurs from December to March (Adejuwon, 2012).  

 

Figure 3-14: Mean Annual Temperature Map of the Niger Delta Region. Source: 

Federal Ministry of Environment 
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3.4.4 Ecology of the Niger Delta 

The Niger Delta region has diverse mosaics of ecological types (as shown in Figure 

3-15) made up of five distinct ecological zones ranging from barrier island forest and 

coastal vegetation areas to montane habitats (Twumasi and Merem, 2006). Twumasi 

and Merem (2006) conceptualized the Niger Delta ecology into several zones: 

mangrove and coastal vegetation, fresh water swamp and rainforest zones. The first 

eco-zone has the features of a mangrove forest and coastal vegetation zone with a 

chain of low sandy barrier islands that protects the coast of the Niger Delta, between 

the Benin and Imo estuaries. Omo-Irabor et al. (2011) also noted that the mangrove 

forest zone extends from Lagos to Sapele (Delta state) connecting with the freshwater 

swamp some few kilometers inland, which in turn gives way to the rainforest inland. 

 

Figure 3-15: Map of the Niger Delta Showing the Geomorphological units (Source: 

Urhobo Historical Society, 2009)  

The second eco-zone is characterized by the freshwater swamp forest zone, covering 

approximately 17,000 square kilometers or about half of the region. The third eco-
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zone is predominated with mostly lowland rain forest zone, which stretches over non-

riverine areas flanking the Delta, while the fourth eco-zone is made up of the derived 

savannah and this is found in the northern part of the Niger Delta region.  

However, the fifth and last eco-zone constitutes mostly of the montane zone and this 

is also concentrated in the north eastern part of Cross River state of the region 

(NDDC, 2005; Twumasi and Merem, 2006). Osuji and Opiah (2007) have 

particularly noted that generally, mangrove forest, freshwater swamp and rainforest, 

which are the most predominant ecological zone of the Delta are dominated by the 

tree species Elaeis guineensis (Shittu, 2014).  

Similarly, predominant land cover types as provided by the European Climate 

Change Initiative for the Niger Delta region include: Cropland, Grassland, Marsh, 

Mangrove, Bareland, Waterbody and Tree Cover Areas. Three of the 8 land cover 

types were given greater attention in this research, due to their extensive coverage in 

the study area. From the data provided (Figure 3-2), the northern axis of the study 

area has higher concentration of riparian forest and dense vegetation types, while 

patches of grassland are concentrated in the central part of the study area connecting 

the much cultivated part of the study area to the south eastern corner. 

3.4.5 Geology 

The landforms of the Niger Delta region were created from the accumulation of 

marine and deltaic sediment of over 50 million years ago in the upper Cretaceous 

period (UNEP, 2011). The sediments deposited by fluvial processes centuries ago led 

to the formation of a relatively flat alluvium basin with natural levees and ox-bow 

lakes (Abam, 2001). The sediments in the Coastal sand plains vary from medium-coarse 

grained sands, fine clayey sands in natural levees to clayey and peaty deposits in swamps 

and lagoons as shown in Figure 3-16 (Tuttle et al., 1999).  

The deltaic plain lies flat at about 40m above sea level towards the interior, and less 

than 8m above sea level on approaching the coast (Akpokodje, 1987). Deltaic Plain 

and Western coastal plain are non-tidal zones, which are characterized by seasonally 

flooded small lakes. The soils obtainable in this region were formed through the 

deposition of alluvium sediment materials during the late Pleistocene to early 

Holocene time (Ugochukwu and Ertel, 2008). 
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Figure 3-16: Geologic Map of the Niger Delta. Source: Ayanlade (2015 

The alluvial soils are usually found in the flood plains of the deltas and along coastal 

flats. They extend from the inland coastal areas to the valleys of the Niger and the Benue 

rivers, cutting across the various vegetation zones (Akpokodje, 1987). Owing to the 

high rainfall regime, shallow aquifer, and the predominant flat topography, there is 

usually perennial river inundation and overflow in the coastal axis of the region 

occasionally causing flooding (Akpokodje, 1987). 

Abam (2001) noted that soils in the flood plains are characteristic of freshwater soil of 

grey to white sand, grey clay and sandy clay with humus topsoil. Another group consists 

of brownish to black saline mangrove soils, with a mat of rootlets. Additionally, the soils 

of this region are all of fluvial origin, except for the coastal areas that consist of marine 

sand overlain with an organic surface layer. 
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The work presented in this chapter has been published as: 

 

M. S Ozigis; J. D Kaduk and C. H Jarvis (2019). Mapping Terrestrial Oil Spill 

Impact Using Machine Learning Random Forest and Landsat 8 OLI Imagery: A Case 

Site within the Niger Delta Region of Nigeria. Environmental Science and Pollution 

Research 

 

4.1 Introduction 

This chapter explores the potentials of the non-parametric – Random Forest Machine 

Learning Classifier to discriminate between pixels of oil-polluted from oil-free 

vegetation types within the Niger Delta region of Nigeria, using Landsat 8  Visible 

(VIS), Near Infrared (NIR), Short wave Infrared (SWIR) spectral bands and derived 

vegetation health indices. It goes further to identify the variables that provide most 

information for this discrimination/classification process, as previous studies 

(Adamu et al., 2015; Arellano et al., 2015; Khanna et al., 2013; Zhou et al., 2014) 

have tested the sensitivity of some of these variables to detect oil spill using 

parametric methods. The role of subset classification for the separate vegetation types 

(i.e. cropland, grassland and tree cover area) in the possible reduction of confusion 

between oil-impacted and oil-free classes was explored. Results of the field 

spectroscopy carried out in the course of the research is also presented and discussed 

in this chapter. 
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4.2 Methodology and Data Pre-processing 

4.2.1 Oil Spill Incident Data Pre-processing and Sampling Regime 

4.2.1.1 Spill Incident Harmonization 

The oil spill data harmonization sought to integrate and expand the oil spill database 

for this research. The harmonization operation was carried out by overlaying both 

datasets (NOSDRA and SHELL) in a GIS environment. Points with repeated 

information as a result of duplicate capture and multiple spill incidents over the years 

were identified and marked. Duplicates (in most cases the SPDC data) were deleted 

since the dataset provided by NOSDRA is all encompassing as the Government’s 

regulatory agency with the responsibility of documenting all spill incidents. The spill 

information relating to volume, size and date of spill was checked, as this provided 

the basis for tracking the spill intensity on the different vegetation types. The 

minimum area covered by the spill data used for this exercise is 1000sqm, which is 

greater than a single Landsat – 8 image pixel of 900sqm. This is to ensure that pixels 

used for training, testing and validation of the final model as well as the image 

classification have the dominant spectral reflectance of a typical oil polluted site.  

4.2.1.2 Assignment of Spill Incidents to Land cover 

The assignment of oil spill incidents to the corresponding vegetation type is an 

important step in this study, as the RF method relies on the spectral signatures 

provided by these training sites to build a robust model. For each vegetation class 

(cropland, grassland and tree cover areas) spill incidents located within them were 

identified and extracted using requisite GIS selection tools. This provided the various 

training and validation sites for the identification of oil-impacted (polluted 

vegetation) classes (See Table 3-2 and Table 4-1).  

4.2.1.3 Selecting Non – Polluted Sites for the Different Landover 

Non – polluted sample sites are necessary in this study for two main reasons. First 

for the identification of oil-free (Non – Polluted) vegetation within the study area and 

secondly for an effective discrimination between pixels of oil-free and oil-impacted 

vegetation as stressed by Siegel (1974). Proximity analysis as suggested by a number 

of researchers (Obida et al., 2018; Park et al., 2016; Whanda et al., 2016) provided 

the basis for the selection of the polluted and oil-free vegetation pixels. The minimum 

rule was set that all non – polluted sites must be located at least 600m away from all 
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polluted sites based on the maximum area of spill recorded. This resulted in an 800m 

buffer ring around all existing spill points, which avoided any overlap with any likely 

spill-impacted area. The procedure ensured that sample sites selected for the 

respective oil-free vegetation are reasonably well spaced from the respective oil-

polluted sites/vegetation. Thereafter the training sites for the non – polluted 

vegetation were selected at random outside the buffer ring established. Furthermore, 

specifically only healthy vegetation as inferred from high-resolution google earth 

image were chosen.  

4.2.1.4 Pixel selection using buffer analysis 

Following the reconciliation and extraction of the oil spill points and the non – 

polluted sites respectively according to their respective vegetation class (cropland, 

grassland and TCA), the points were then sub-divided into two categories for training 

and validation purpose. A total of 60% of the points for individual vegetation type 

were randomly selected for training, while the other 40% were set aside for validation 

in a post classification confusion error matrix. Table 4-1 shows the distribution of the 

Polluted spill sites and oil-free sites according to their respective vegetation type. To 

this end, 30m buffer ring polygons were established around all the training sites to 

ensure that only adjacent pixels within the High Consequence Area close to the point 

of impact were selected for the polluted sites (Adamu et al., 2015; Alexakis et al., 

2016).  

Table 4-1: Total number of Sites used for Calibrating and Validating the Random 

Forest Classification operation. 

Class Label Number of spill sites 

Non – Polluted Cropland 41 

Non – Polluted Grassland 27 

Non – Polluted Tree Cover Areas 25 

Polluted Cropland 44 

Polluted Grassland 26 

Polluted Tree Cover Areas 26 
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4.2.2 Image Preprocessing 

As the Landsat surface reflectance higher – level data product was obtained, there 

was no need to carry out any atmospheric correction operations. 

4.2.2.1 Geometric Correction 

In order to ensure that the Landsat 8 – OLI satellite image co-registered properly with 

other datasets (such as the oil spill sites and boundary dataset), the satellite image 

was re-projected to the Universal Transverse Mercator Projection and the World 

Geodetic Survey 1984 Datum of Zone 32 North (UTM WGS84 Zone 32N). 

4.2.2.2 Retrieval of Important Vegetation Health Indices 

Eight vegetation health indices were generated using the formulae presented in Table 

4-2. The indices were generated from the pre-processed Landsat 8 – OLI image of 

the study area using the Red, Green, Blue, Near Infra-Red, Short-Wave Infra-Red 1 

and Short Wave Infra-Red 2 bands. 

4.2.2.3 Land cover Image Masking 

Following the geometric correction of the study area image, the three dominant 

existing vegetation class extent extracted from the ESA CCI data (section 3.2.4) were 

used to subset the final layer stacked image comprising of the spectral bands and 

vegetation health indices for cropland, grassland and TCA. This provided the basis 

of implementing a general study area wide classification operation (at macro level) 

and individual vegetation subset classification (at micro level). The image extents 

generated were for cropland, grassland and tree cover areas (i.e. dense woody 

vegetation), in which the harmonized oil spill and oil-free training sites were used to 

implement a macro and micro level classification. This produced six different class 

schemes, that is, polluted (oil-impacted) cropland, polluted grassland, polluted TCA, 

non – polluted (oil-free) cropland, non – polluted grassland and non – polluted TCA. 
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Table 4-2: Vegetation Health Indices Generated Using the RED, GREEN, BLUE, NIR and SWIR Bands 

Vegetation Indices Formula Author 

Difference Vegetation Index  𝑅𝑁𝐼𝑅 − 𝑅𝑅𝐸𝐷 (Tucker, 1980) 

Modified Soil Adjusted Vegetation Index 1/2[2𝑅𝑁𝐼𝑅  + 1/ √(2𝑅𝑁𝐼𝑅 + 1) − 8(𝑅𝑁𝐼𝑅 − 𝑅𝑅𝐸𝐷)] (Qi et al., 1994) 

Moisture Stress Index 𝑅𝑀𝑖𝑑𝐼𝑅/𝑅𝑁𝐼𝑅 (Doraiswamy and Thompson, 1982) 

Normalized Difference Vegetation Index (𝑅𝑁𝐼𝑅 − 𝑅𝑅𝐸𝐷)/(𝑅𝑁𝐼𝑅 + 𝑅𝑅𝐸𝐷 ) (Rouse Jr et al., 1974) 

Normalized Differential Water Index (𝑅𝑁𝐼𝑅 − 𝑅𝑆𝑊𝐼𝑅)/(𝑅𝑁𝐼𝑅 + 𝑅𝑆𝑊𝐼𝑅) (Hardisky, Klemas and Smart, 1983) 

Renormalized Difference Vegetation Index 𝑅𝑁𝐼𝑅 − 𝑅𝑅𝐸𝐷/√𝑅𝑁𝐼𝑅 + 𝑅𝑅𝐸𝐷 (Roujean and Breon, 1995) 

Ratio Vegetation Index 𝑅𝑅𝐸𝐷/𝑅𝑁𝐼𝑅 (Jordan, 1969) 

Soil and Atmospherically Resistant Vegetation Index (1 + 0.5) (𝑅𝑁𝐼𝑅 − 𝑅𝑅𝐵)/(𝑅𝑁𝐼𝑅 + 𝑅𝑅𝐵 + 0.5) (Qi et al., 1994) 

Soil Adjusted Vegetation Index (1 + 𝐿)(𝑅𝑁𝐼𝑅 − 𝑅𝑅𝐸𝐷)/(𝑅𝑁𝐼𝑅 + 𝑅𝑅𝐸𝐷 + 𝐿) (Huete, 1988) 

Transformed Difference Vegetation Index √𝑅𝑁𝐼𝑅 − 𝑅𝑁𝐼𝑅/((𝑅𝑁𝐼𝑅 + 𝑅𝑅𝐸𝐷) + 0.5) (Bannari, Asalhi and Teillet, 2002) 
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Figure 4-1: Methodological Flowchart of the Data Analysis for Chapter 4 
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4.2.3 Random Forest Classifier 

The RF classification was used to distinguish and effectively characterize vegetation 

impacted by oil pollution from oil-free healthier vegetation. The analysis was carried out 

using the ImageRF component of the EnMap Box (Waske et al., 2012) application. To 

achieve this, various vegetation health indices (Table 4-2) together with the seven Landsat 

– 8 OLI bands (across Visible, NIR and SWIR) were fused for the classification process. 

The tree size (ntree) used for classification was determined through repetitive runs before 

an optimal value of 500 (ntree) was arrived at and used for parametrization in all 

classification scenarios implemented. Table 4-3 outlines the list of variables used for the 

RF classification.  

Table 4-3: List of Variables used for the RF Classification. 

S/No Spectral Variables 

1 Band 2 - Blue 

2 Band 3 - Green 

3 Band 4 - Red 

4 Band 5 - Near Infrared (NIR) 

5 Band 6 - Shortwave Infrared (SWIR) 1 

6 Band 7 - Shortwave Infrared (SWIR) 2 

7 Difference Vegetation Index (DVI) 

8 Modified Soil Adjusted Vegetation Index (MSAVI) 

9 Moisture Stress Index (MSI) 

10 Normalized Differential Vegetation Index (NDVI) 

11 Normalized Differential Water Difference (NDWI) 

12 Renormalized Difference Vegetation Index (RDVI) 

13 Ratio Vegetation Index (RVI) 

14 Soil and Atmospherically Resistant Vegetation Index (SARVI) 

15 Soil Adjusted Vegetation Index (SAVI) 

16 Transformed Normalized Difference Vegetation Index (TNDVI) 

17 Band 1 – Ultra-Blue Band 
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4.2.4 Accuracy Assessment 

Two performance indicators were employed to assess the RF Calibration Model and the 

resulting classified image obtained. First is the F1 Accuracy, which is the harmonic mean 

of Precision and Sensitivity (Recall) accuracy statistics. This is used in the ImageRF to 

assess the out of bag error of the RF calibration. The precision is the ratio of correctly 

predicted positive pixels to the total positive observations (incorporating true positives and 

false positives), while the recall is the ratio of correctly predicted positive observations to 

the sum of true positives and false negative observations. This however can be further 

interpreted as the measure of truly assigned pixels to a particular class (recall) and the 

measure of truly assigned pixels in the image space. The F1 score is a robust accuracy 

measure for model performance measurement, because it seeks to balance the influence of 

recall and precision through the use of harmonic mean of both measures.  

This is denoted by the formulae below (Kuhn, 2012): 

𝐹1 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
                    (5) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                (6)   

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                              (7)  

                              

Where 

TP = True Positives 

FP = False Positives 

FN = False Negatives 

The error matrix as described by Congalton, (1991) was also used to assess the classified 

image output from the RF classification using the 40% validation points (section 3.2.3). 

This enabled an effective comparison of the classified image outputs to the original 

reference sites. Specific attention was given to the users, producers and the overall 

accuracies in the assessing classified image. 
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4.2.5 Field Spectral Measurement 

4.2.5.1 Field Spectroscopy Experimental Procedure 

Field spectral reflectance was acquired using a Handheld 2 Field spectroradiometer device 

as implemented in Arellano et al., (2015) and Zhu et al., (2013b). The device was used to 

measure the absorption and reflectance characteristics across the visible and NIR spectrum 

for the different micro – plots within the sites investigated (as explained in section 3.9.2.1). 

The spectral device covers between 325nm and 1075nm of the spectrum, with a spectral 

interval of 1nm. Vegetation spectra were acquired using the handheld device positioned at 

an angle of 900 pointing vertically to the target (vegetation canopy) and all experimental 

readings were acquired when the sun was at nadir between 11:30am and 12:30pm under 

bright skies without cloud cover. This significantly affected and accounted for variability 

in the dates in which the experiments were carried out since cloud conditions are an issue 

in the Niger Delta. Before readings were obtained the device was calibrated using the White 

Background Spectralon and dark current as prescribed by Zhu et al., (2013b). The device 

was set at obtaining 20 readings for a single acquisition at one point before re-calibration 

was carried out. A minimum of two readings were obtained from individual micro plots 

and in total of 40 readings were obtained from the main plots (see section 3.2.9.1). The 

Handheld device was position at an approximate height of 45cm above the vegetation 

canopy.  

In order to retrieve the spectral reflectance from the Digital Number (DN) measurements 

made in the field, the formula below was used as prescribed by Thenkabail et al.,  (2000): 

𝑃 =
Target – Darkcurrent

 Reference – Darkcurrent
 × 100                 (8) 

 

4.2.5.2 Analysis 

The extracted spectral reflectance values were further averaged for individual macro plots 

as implemented by a number of other researchers, e.g. (Arellano et al., 2017a; Davidson et 

al., 2016; Domínguez-Beisiegel et al., 2016; Zhu et al., 2013a) to obtain a mean 

representative spectral signature of a particular plot. The mean spectral reflectance values 

were used to establish the dominant and general reflectance characteristics from the plant 

communities within the three sites. This result was obtained by summing up all the 120 

spectral reflectance values from the three main plots in each site (i.e. the recent, old and 

non-polluted site). Reflectance values recorded from 325nm to 1061nm of the spectrum 
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were summed up and divided by the total number of readings (in this case 120) to obtain a 

unified reading for the recent polluted, old polluted and non – polluted sites. This created 

the basis for comparing the vegetation canopy health among sample plots, with emphasis 

on the absorption and reflectance characteristics. To further ensure that the results from the 

spectral reflectance values are free from external noise interference, the reflectance values 

were smoothed with a Savitzky – Golay Filter (Chen et al., 2004) to remove noise and 

improve the signal to noise ratio. The final result from this experiment compared the 

spectral reflectance of the recent, old and non-spill site. 

4.3 Results 

4.3.1 Random Forest Calibration 

Figure 4-2 shows the result of the RF out of bag error. In general, the results indicated that 

the calibration carried out on the stacked image subset for the different vegetation types 

had lower out of bag errors and consequently higher calibration accuracy, compared to the 

result obtained from the full image calibration. This further showed that of the six classes, 

the Non – Polluted (NP) and Polluted (P) TCA and grassland vegetation had better 

calibration results ranging from 45% to 70% F1 Accuracy. On the contrary, both the P (oil-

impacted) and NP (oil-free) cropland had lower calibration accuracies when the full study 

area image was calibrated. It also showed that of the six different schemes investigated the 

NP – grassland and NP TCA had the best prediction to error ratio of 86% and 84% as 

indicated in the F1 Accuracy when the respective vegetation types were trained separately. 

In contrast, the Polluted (P) and NP – cropland had the least calibration accuracy. 

In terms of the implication for inter – class separability and model fit, it is observed that 

calibration accuracy increased gradually from zero and mostly attained saturation when the 

tree size (ntree) in the RF reached 50, although for some cases the F1 accuracy increased 

up to 100 ntree before maximum saturation was reached. This implied that an even lower 

ntree value could yield sufficient calibration result. 
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Figure 4-2: RF parameterization result for the full study area image and individual 

vegetation types subset images, using training samples of oil-free and oil-impacted 

vegetation. The green line represents parameterization F1 accuracy for the individual 

vegetation landcover subset images, while the brown line represents F1 accuracy for the 

full study area image parameterization result. 

4.3.2 Landcover Subset Vs Full Image Classification 

Figure 4-3 and 4-4 shows the image classification result from the two scenarios 

implemented. It was observed that the image classification at the micro-level of different 

vegetation types had better representation of polluted and impacted classes with more 

generalized spatial extents compared to the full image classification, which had a crisper 

and noisy representation. This supports various assertions in several studies where subpixel 

classification has been implemented (Aplin and Atkinson, 2001; Arif et al., 2015; 

MacLachlan et al., 2017). A major reason for the observed disparity could be as a result of 

the presence of multiple signatures from conflicting land cover features causing high 

spectral mixing for the RF classifier. Fröhlich et al. (2013) also observed that textural 

characteristics of neighboring adjacent features can inadvertently cause false representation 

of image features. Similarly, the spectral diversity of the features investigated had a smaller 

separability index as observed from the out of bag error for the full study area image. This 

can indirectly inhibit the RF classifier in adequately producing generalizable extents.  
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Figure 4-3: RF Image Classification Result for the Full Study Area Image and Individual 

vegetation Subsets. It is observed that the former produced a more generalized 

representation of vegetation extents compared to the crisp output from the full study area 

image 

 

Figure 4-4: Subset of the study area showing the RF classified image for cropland 

vegetation extent into polluted and oil-free cropland. Inset is high-resolution image from 

google earth for the same area. This showed that spill impacted and oil-free cropland were 

better captured by the image subset classification (left), compared to the more crisp extent 

from the full study area image classification (right).   
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4.3.3 Variable Importance 

The variable importance chart is a standard output from a typical RF classification 

operation (Gislason et al., 2006). This essentially provides an insight on the performance 

of the sub-sampled variables that gave most of the best splits in the classification process. 

Figure 4-5 shows the variable importance chart for the full study area and vegetation type 

(subset) Image Classification results.  

The Near Infra Band had the highest contribution to the assignment of endmember classes 

for the six classes (i.e. oil-free cropland, oil-free grassland, oil-free TCA, polluted cropland, 

polluted grassland and polluted TCA) when the full study area image with all land cover 

types was classified at once (Figure 4-5). Other variables however such as moisture stress 

index, normalized difference water index, shortwave infrared 1 (Mid infrared region) and 

the green band also contributed substantially in the classification process.  

At the subset level, the result showed that the Normalized Difference Water Index and 

Moisture Stress Index were very influential in providing the best splits between polluted 

and oil-free cropland vegetation class. This conforms with results obtained in Kalubarme 

and Sharma (2014) where NDWI index is observed to be sensitive to water stress 

conditions in wheat cultivated farm plantations. Similarly, results obtained by 

Benabdelouahab et al., (2015) also showed that MSI and NDWI are sensitive indicators of 

stress also in a wheat cultivated farm field.  

However, the Near Infrared and Shortwave Infrared bands were also observed to have the 

highest contribution in splitting oil-contaminated and oil-free grassland vegetation class. 

The Difference Vegetation Index (DVI) and Normalized Differential Water Index clearly 

had strong contribution in splitting oil-polluted from oil-free TCA. 
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Figure 4-5: Variable Importance chart of the RF classification operation for the full study 

area image and vegetation masked image classification  

In general, the moisture related indices and sensitive bands (shortwave infrared 1) were 

observed to have a more significant contribution in distinguishing oil-polluted from oil-

free vegetation types both at the macro level of the entire study area and at the micro level 

of the individual land cover subsets. This is expected as the fundamental characteristics of 

stressed vegetation are their inability to carry out basic life supporting functions such as 

respiration, transpiration and photosynthesis (Arellano et al., 2015), which the classifier 

can evidently rely on from the distinctions provided by the indices for class assignment. 

Figure 4-6 shows the most important variable (i.e. NDWI, SWIR and DVI) in the 

classification process for cropland, grassland and TCA vegetation subset respectively and 

their respective oil-free and oil-polluted extents. 
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Figure 4-6: The most important variable for each vegetation type classification. NDWI, SWIR and DVI for cropland, grassland and TCA. Result shows that the most important variable for cropland and grassland 

classification had the best split into oil-impacted and oil-free vegetation, as opposed to the TCA subset where the most important variable did not give favorable split into oil-impacted and oil-free TCA. 
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Figure 4-6 indicates that areas with high vegetation health indices and greenness are 

predominantly associated with oil-free vegetation especially for the oil-free cropland 

and grassland vegetation classes. Areas with low vegetation health and greenness are 

mostly associated with polluted vegetation classes, in this case the polluted cropland 

and grassland.  

However, TCA had a poor split as indicative of the most important variable from the 

RF classification (Figure 4-6). This could be associated to the fact that most areas 

within the Niger Delta are characterized by dense and mangrove forest vegetation 

(James et al., 2007), in which case the impact of crude oil would pose minimal 

discernible effect within a typical oil free vegetation. 

4.3.4 Vegetation Greenness Distribution 

Figure 4-7 is a box plot showing vegetation greenness retrieved from NDWI for the 

various polluted and oil-free vegetation training sites. This was the most influential 

index when the full study area image was classified together with the moisture stress 

index (MSI). Their performance in the classification operation further reinforces the 

strength of moisture-based indices in depicting stress on vegetation. The plot shows 

the degree of variation in the health status of the oil-impacted and oil-free vegetation 

classes. Non-polluted tree cover areas were observed to have the highest NDWI index 

compared to the non – polluted cropland and grassland.  

Generally, polluted grassland and cropland had the least NDWI greenness compared 

to their respective non – polluted classes. This is an indication that their health status 

could have been affected by the oil spill in the respective locations, thereby accounting 

for lower health indices compared to the respective oil-free vegetation. Similarly, the 

distribution of the indices for the six classes shows little to no overlap between oil-

polluted and oil-free vegetation, a trend which could have accounted for the high 

performance of the NDWI in the classification process. 
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Figure 4-7: Box plot of vegetation greenness retrieved from NDWI for the polluted 

and oil-free vegetation samples. 

4.3.5 Accuracy Assessment 

The confusion matrix was computed with the validation data (section 3.2.3) (Table 4-

4) and used to evaluate the result of the RF classification for the two scenarios 

implemented. The overall accuracy from the full image classification gave much lower 

accuracy of 45.45%, 33.33% and 28.5% overall accuracies for cropland, grassland and 

tree cover areas, respectively compared to the result obtained from the various land 

cover vegetation subset. Results from the subset classification of tree cover areas gave 

the highest accuracy of 70%, while the grassland and cropland classification gave 

accuracies of 65% and 60.61% overall accuracy respectively. In terms of inter class 

accuracy, the result from the confusion matrices showed that the highest user 

accuracies were obtained from the Non – Polluted grassland and Polluted TCA with 

80% from the subset classification.  

Similarly, the vegetation class with the highest accuracy when the full study area image 

was classified is the Polluted and oil free TCA classes with Producer and User 

Accuracy’s of 50% and 40% respectively. This is not surprising as the result from the 
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parameterization operation in Figure 4-2 showed that the training sites used for 

classification had better characterization between polluted and oil-free TCA.  

Furthermore, the result also showed that most of the classes that had better calibration 

also recorded higher accuracy. An example is in the case of TCA and grassland 

vegetation which recorded high accuracies of above 80% out of bag error, and  also 

70% and 65% overall accuracies at the micro-level classification. 

Table 4-4: Accuracy Assessment Result for the Full Study Area and individual 

vegetation subset Classification  

Map Class 

Full-Image 

Classification 

  Masked-Image 

Classification 

 

User's 

Accuracy 

[%] 

Producer's 

Accuracy 

[%] 

Overall 

Accuracy 

[%] 

 User's 

Accuracy 

[%] 

Producer's 

Accuracy 

[%] 

Overall 

Accuracy 

[%] 

Non-Polluted 

Cropland 25 18.75 
45.45 

 

58.82 62.5 
60.61 

Polluted 

Cropland 29.17 41.18 

 

62.5 58.82 

Non-Polluted 

Grassland 18.18 20 
33.33 

 

61.54 80 
65 

Polluted 

Grassland 30 30 

 

71.43 50 

Non-Polluted 

Tree Cover 

Areas 50 40 
28.5 

 

75 60 
70 

Polluted  

Tree Cover 

Areas 37.5 30 

 

66.67 80 

 

4.3.6 Spill Impacted Vs Non Spill Spatial Extent 

Figure 4-8a and 4-8b present a stacked bar plot comparing the total estimated area 

covered by oil-impacted and oil-free vegetation classes from the full study area and 

individual vegetation subset classification, respectively. The results were compared to 

the total area coverage for the different land cover as provided by the ECCI. Generally, 

the results showed that aggregated areas of polluted and oil-free classes were closer to 

the areas from the ECCI when the image subsets are classified than when the full image 

is classified.   
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Figure 4-8: Spatial extent of oil-impacted and oil-free classes retrieved from (a) full 

study area image and (b) vegetation subset classification. The orange and blue stacks 

represents polluted and oil-free vegetation classes, while the ash coloured line 

represents the aggregate obtained from the ECCI land cover dataset.  

Similarly, the extent of spill impacted grassland and TCA were larger than their 

respective oil-free vegetation, except in cropland vegetation where the area covered 

by oil-free cropland had a larger coverage than the oil-impacted cropland. In addition, 

of the six vegetation classes used in the analysis, the spatial extent of oil-impacted 

cropland in the full study area image and cropland vegetation in the subset image 

classification remained similar. This suggests that the spectral characteristics of the 

polluted cropland remained largely unchanged in the two experimental classifications. 

This is an indication that this class could have been more heavily impacted from the 

2015 and 2016 spill incidents in the area. 
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4.3.7 Field Validation Result Using Field Spectroscopy 

Figure 4-9 shows the mean spectral reflectance curves for vegetation assessed in the 

recent, old and non-polluted sites. The result of this exercise indicates that plants 

within the non – polluted site are predominantly healthier and highly photosynthetic. 

This is because of the high absorption of visible energy between the 325nm and 650nm 

regions of the wavelength spectrum and high reflectance of NIR energy starting from 

the Red edge region of 750nm to 1075nm of the spectrum. The absorption – reflectance 

characteristic of vegetation within the two polluted sites shows that they have much 

lower absorption and reflectance of visible and NIR energy respectively.  

The vegetation spectral profile of plants within the recent polluted site showed that 

much of the vegetation within this site is partly photosynthetic, which could be as a 

result of the impact of hydrocarbon crude oil pollution. Similarly, the result obtained 

from the old polluted site also showed that the plant community were partially 

photosynthetic, as the mean spectral reflectance within the Near Infrared region fell 

between the healthy non – polluted plant community and the stressed plant community 

within the recent polluted site. This however suggests that the impact of crude oil 

pollution might still be present and pose some impact on plant community within the 

old polluted site. 

 

Figure 4-9: Spectral Reflectance Curves for the three sites investigated. Separate 

lines denote the mean reflectance spectra for the recent, old and non – polluted sites. 
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Results obtained from the field spectroscopy using the Handheld spectroradiometric 

device depicts that the potential elevated levels of hydrocarbon crude oil observed 

during the field visit (Figure 3.5) within the recent polluted site had significant impact 

on the vegetation within the experimental plots. This is because the result clearly 

indicates that there is low absorption of green and red energy within the visible portion 

of the spectrum and low NIR reflectance. However, when compared to the old and non 

– polluted site it is observed that there is high absorption of green and red energy, as 

well as high reflectance of NIR energy from vegetation within these sites. 

This is in line with several studies (Arellano et al., 2015; Kokaly et al., 2013; Mishra 

et al., 2012; Zhu et al., 2013b) where similar technique have been employed to 

investigate the adverse effect of hydrocarbon crude oil on vegetation. It was observed 

that hydrocarbon crude oil significantly alters the biochemical components of plants, 

leading to low chlorophyll generation, which is essential for the absorption of green 

and blue energy for carrying out photosynthesis in the oil polluted site (Arellano et al., 

2015; Arellano et al., 2017b). This can also lead to partial or complete defoliation of 

plant leaves in oil affected vegetation (Mishra et al., 2012).  

In contrast, the vegetation within the non – polluted site did not show as much of 

physical stress also compared to the old – polluted site, as the reflectance values 

retrieved were quite high within the near – infrared region of the spectrum.  

4.4 Discussion 

Oil pollution and contamination of vegetation canopies within the Niger Delta region 

is a common and almost a consistent phenomenon. Few studies have focused on 

leveraging on the potentials of machine learning approaches (such as RF) to map the 

exact oil spill extent for different vegetation types. This study attempted to bridge this 

gap by using RF classification to first establish the precise extent of oil-impacted and 

oil-free vegetation types and secondly to identify the most useful optical discriminators 

for distinguishing oil-impacted vegetation from the corresponding oil-free vegetation. 

The result obtained from these experiments after calibration of sample sites and 

implementation of the classification operations showed that RF algorithm has the 

potential of providing reliable maps of oil-free and oil-impacted vegetation, especially 

at the micro-subset level of classification. The RF Classifier produced better results 

with the different vegetation subsets (especially for grassland and TCA) as opposed to 
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when the full study area image is classified at once, reinforcing the findings of Arroyo, 

Johansen and Phinn, (2010) were image space delineation for automatic classification 

of land cover features proved very successful.   

The high calibration accuracy obtained from the out of bag errors during the 

parameterization exercise of the RF at the micro level clearly accounts for the high 

accuracies of 70% and 65% obtained for the tree cover areas and grassland vegetation 

types respectively. These values were much higher than accuracies obtained in Bianchi 

et al. (1995a) and Van der Werff et al., (2007) where minimum distance to means, 

spectral angle mapper and hyperspectral unmixing methods were used to process 

hyperspectral images. Overall accuracy assessment result obtained in Van der Werff 

et al., (2007) ranged from 48% and 29% in the mapping of microseepage induced 

anomalies on baresurface. While spectral angle mapper determines end member 

classes by matching reference pixels to target class based on proximity of spectral 

angle to established threshold in the n-Dimensional space. Minimum-distance to mean 

method assigns classes to target pixels based on pixel values arithmetically close to 

mean spectral values of training sample spectra. Random forest method on the hand 

uses boosting and bagging technique where multiple arrays of input features are 

selected at random without replacement to train the classier. This to a large extent 

ensures that the effect of over-fitting is reasonably addressed; as such classes are not 

assigned based on predefined threshold which could give rise to over-generalization.  

The result of the confusion matrix for cropland when the masked image classification 

operation was implemented shows that more than half of the sample sites were 

correctly classified into their respective class of polluted and oil-free cropland. 

However, when compared to the confusion matrix (Appendix – XII ) results of the full 

image classification, it is observed that only 3 and 7 of the total reference classes were 

classified correctly for the non-polluted and polluted cropland classes respectively. It 

was also evident from Appendix - XII that reference sites for polluted cropland were 

mostly mis-classified as non-polluted cropland or non-polluted grassland. This implied 

that the RF classifier was able to identify more polluted and non-polluted sites 

correctly when the masked image classification process was implemented than when 

the full study area image classification was implemented. Non-polluted grassland 

cover had the best prediction to error ratio as 80% of the total reference sites were 

correctly classified accordingly, while polluted grassland had an average of 50% 
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reference site prediction accuracy. In tree cover areas, there were better reference site 

prediction accuracy for the polluted TCA, as 80% of the total reference sites were 

correctly classified as polluted TCA at the subset level of classification. In addition, 

more than half (i.e. 60%) of the total reference sites for Non-polluted TCA were also 

correctly classified at the subset level representing nearly 200% improvement in 

classification accuracy. This is because the classification accuracy at the entire image 

level only yielded 28.5% overall classification accuracy, as only 40% and 30% of the 

original reference sites of Non-polluted TCA and polluted TCA were correctly 

classified. 

However, the result of the most important variable in the classification process (Figure 

4-5) does not mirror an excellent split for TCA and grassland subsets compared to 

cropland, which had a good split between polluted and oil-free classes. A major reason 

for this trend can be attributed to the fact that most cropland vegetation are distinctly 

sparse in nature and a huge volume of the oil spilt in these areas experience significant 

seepage into the soil sub surface and immediately causing detectable impact on crops. 

This invariably account for a better split of oil-polluted and oil-free cropland, as 

indicative of the NDWI.  

Similarly, the exposed soil in cropland fields also means that much of the oiled sand 

surface is reflective, accounting for the significant influence of shortwave infrared 

band (Ben-Dor et al., 1997; Cloutis, 1989; Kühn et al., 2004) and its derived indices 

in distinguishing oil-impacted from oil-free croplands (Adamu et al., 2015; Ben-Dor 

et al., 1997; Brekke and Solberg, 2005; Khanna et al., 2013; Kühn et al., 2004).  

The variable importance plot obtained from the RF image analysis also showed that 

the Near Infrared, Shortwave infrared bands, Normalized Difference Water Index, 

Difference Vegetation Index and Moisture Stress Index are particularly influential in 

pixel class assignment. Some of these variables (shortwave infrared, moisture stress 

index and NDWI) are mostly sensitive to vegetation moisture content (Gao, 1996). 

Several studies (Agapiou et al., 2012b; Arellano et al., 2015; Benabdelouahab et al., 

2015; Dotzler et al., 2015; Kalubarme and Sharma, 2014) have also demonstrated that 

SWIR, MSI and NDWI variables are a useful indicators of stress in vegetation canopy 

as a result of their sensitivity to water net loss or gain.  
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Similarly, the NIR band is also well known for its ability to distinguish between 

stressed and stress free vegetation. This is because a major characteristic of a stress 

free vegetation will be the absorption of visible light for photosynthesis necessary to 

propagate the high reflectance of near infrared energy (Ben-Dor et al., 1997; Knipling, 

1970). It is without doubt that these variables have the most ideal spectral information 

to characterize oil-free from oil-polluted vegetation. The complex interaction of these 

variables is a major reason for their investigation in this research, suggesting that 

vegetation stress as a result of oil pollution can be better characterized and mapped.  

In addition, the result obtained from the spatial extent of the classified maps for 

polluted and oil-free vegetation further suggests that cropland cover had the most 

significant impact, as the area coverage and extent obtained from the full study area 

image and cropland vegetation subset classification remained similar. This contrast to 

the results obtained from the TCA and grassland vegetation classification, where the 

spatial extent of the polluted class had a much higher area than their non-polluted/oil-

free class. A possible reason for this trend could be as a result of over generalization 

of the extent of spill-impacted vegetation overlapping with other areas where 

vegetation stress by other types of stressors exist.  

A post-classification ground truth exercise carried out in October 2018 showed that 

features such as water logged areas, dried vegetation, burned vegetation and 

cleared/exposed vegetation surface often exhibited similar spectral signatures as 

polluted sites and were classified as such. This is in line with observations made by 

Khanna et al., (2013) and Kokaly et al., (2013). Most of the aforementioned 

misclassification anomalies are also vegetation stress related, accounting for the 

superior performance of the NDWI, NDVI, SWIR and NIR in the classifications 

processes. Figure 4-10 shows some the areas that exhibited similar spectral response.  
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  (a)    (b)    (c) 

Figure 4-10: Potential influences to pixel mis-classification of oil polluted site. (a) 

Water Log areas (b) Cleared and exposed surfaces (c) Dried Vegetated areas which 

often leads to burning/burn scars. 

In addition, the results from the field spectroscopy analysis of polluted and oil-free 

vegetation undertaken in the course of this research also demonstrated clearly that 

impacts of oil pollution are strong in both the recent and old spill site, due to reduced 

NIR reflectance compared to the high NIR in the oil-free site. Generally, the polluted 

sites and other aforementioned features such as water, exposed surface (bare land) and 

burnt surface share similar characteristic low reflectance within the NIR region as 

indicated in figure 4-11. This is an indication that net primary productivity of 

vegetation within oil-affected areas can remain characteristically low long after the 

incident, thereby influencing detectability. As such, for effective detection and 

characterization to take place between polluted and oil-free vegetation, healthy 

vegetation must be properly identified. However, this may not completely eliminate 

pixel mis-match in the classification process. 
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Figure 4-11: Spectral reflectance curve for various land cover features with emphasis 

on the low NIR reflectance of dry soil, litter and water body, compared to the high NIR 

reflectance from healthy vegetation. Source: (Huete, 2004) 

The problem of pixel mis-classification in image classification is a general problem as 

also observed by other researchers e.g. (Ishida et al., 2018; Xiao and McPherson, 2005; 

Zlinszky et al., 2012) where the characterization of a single vegetation type into a 

narrower group by species or health status delineation has been implemented. The 

occurrence of pixel mis-match and over generalization of land cover spatial extent is 

very much apparent in this study. One way of addressing this problem is the 

incorporation of other relevant variables (such as Radar datasets, Digital Elevation 

Model, Soil - Geology map, as well as soil moisture) which generally do not 

specifically rely only on the bio-chemical components of vegetation, rather the 

structural characteristics of vegetation and environmental factors are relied on for class 

assignment.  

Similarly, the result of the RF image classification at the macro (study area) level 

showed that the NIR band was characteristically useful in discriminating between 

polluted and oil-free vegetation. This could be connected with the presence of other 

features such as bare surface, built-up areas and waterbody in the classification 

process, reinforcing the utility of the NIR band in the discrimination of these features 

in the classification process. In contrast however, the influence of the NIR band is 
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minimal in the land cover specific classification (i.e. at the micro level), as the 

influence of bare soil and waterbody signature is substantially reduced. This saw the 

influence of other wave bands such as the SWIR and moisture stress indices. 

However, it must be noted that the concentration and size of spill also plays a 

significant role in the detection and mapping of affected areas using satellite image. A 

number of other studies (Adamu et al., 2016; Khanna et al., 2013; Kokaly et al., 2013; 

Mendelssohn et al., 2012; Mishra et al., 2012; Noomen et al., 2015; Onwurah et al., 

2007; Ramsey et al., 2015; Ramsey III et al., 2011; Shi et al., 2007; Sun et al., 2016; 

Zabbey and Uyi, 2014) have shown that the size of oil spill with respect to volume and 

age of oil are a major determinant of detectability of spill effect. This is largely 

predicated on the fact that not all spill incidents come in large sizes or quantities that 

can be meaningfully captured by the satellite sensors, or pose detectable stress on 

vegetation communities. In this study, this challenge was addressed by using only 

spills with 1000sqm or above in size to ensure that the characteristics of a typical spill 

site are reasonably captured within the spill epicenter and adjacent pixel used for 

classification. It was however observed that other stress factors and features with same 

spectral characteristics can be potentially misclassified as oil-polluted vegetation with 

this threshold. These certainly call for further research, especially using fuzzy 

techniques in establishing precise spill threshold values for adequate detection and 

classification purpose, or the incorporation of other variables to improve the machine 

learning models used for the discrimination exercise.   

4.5 Summary and Main Findings 

This chapter of the thesis aimed at implementing a novel method of mapping terrestrial 

oil spill through the integration of optical spectral reflectance bands and vegetation 

health indices in a machine learning random forest classifier to discriminate polluted 

and oil-free vegetation. Another novel approach was also introduced by specifically 

focusing the detection and discrimination process for different vegetation types, which 

has not been tested in the literatures.  Initial results from field spectroscopy analysis of 

polluted and oil-free vegetation before image analysis showed that the impact of oil 

pollution was substantial in recent and old oil spill sites compared to the oil-free 

(control) site. This is owing to reduced NIR reflectance in the former compared to the 

high NIR in the latter, further reinforcing the rationale for the use of both old and recent 

spill sites in the calibration and classification process in this research.  
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Results obtained from the implementation of the image classification process in this 

chapter showed that RF algorithm provides better results of oil-free and oil-impacted 

vegetation when the image classification is carried out at the micro-subset level of 

different vegetation types, as opposed to when the entire full study area image 

containing all classes are classified at ones. However, the problem of pixel mis-match 

and over generalization of land cover spatial extent was imminent in the results 

obtained. Ground truth exercise carried out in October 2018 to ascertain the major 

reason for these confusion showed that water logged areas, dried vegetation, burned 

vegetation and cleared/exposed surface (which are also stressed vegetation) were very 

much present in the study area. They also had similar spectral signatures as polluted 

sites and were mis-classified as such.  

This invariably necessitate further exploration of other relevant variables which 

generally do not specifically rely on the bio-chemical components of vegetation (i.e. 

using optical reflectance data), rather, the structural characteristics of vegetation and 

environmental factors are used and incorporated in the machine learning method as 

dependencies to unravel class membership. In the next chapter, these variables are 

incorporated into the machine learning random forest model to explore their 

capabilities in improving classification accuracy. Specific variables to be explored are 

Radar Images, Digital Elevation Model, Soil geology and Soil type map into the 

machine learning classification to attempt to improve classification accuracy. In 

addition, the potential of variable reduction using the fuzzy forest method would as be 

explored as the integration of the optical and SAR derived variables could present 

issues of high dimensionality. 
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5.1 Introduction 

In this Chapter, the potentials of C and X band SAR derived textures, interferometric 

coherence, backscatter, topography and soil-geology variables, as well as multispectral 

optical image derived variables for identifying oil pollution using machine learning 

fuzzy forest (FF) (Conn et al., 2015) and random forest (RF) (Breiman, 2001) 

classifiers were investigated. The rationale for the choice of classifier is that RF 

classifier has high flexibility in the use of input variables for describing different 

situations. This should allow for optimal use of diverse range of input variables in the 

discrimination of polluted and oil-free vegetation. In addition, the potential of FF was 

also explored. The FF method seeks to use only high performing non-correlated 

variables for classification. The potentials of multi-frequency SAR image fusion 

(MSIF) only classification; and multi-frequency SAR and Optical image fusion 

(MSOIF) classification was specifically investigated in the discrimination of oil-

impacted and oil-free cropland, grassland and tree cover areas.  

Furthermore, effort was made to model the relationship between bio-chemical 

indicators of vegetation stress as captured in the derived vegetation indices, with 

vegetation structural component as captured in the various multi-frequency SAR 

backscatter, to understand the relationship between optical and SAR data integration 

for monitoring vegetation affected by oil pollution. It is also worthy of note to mention 

that the image analysis implemented in this chapter was carried out on the different 

vegetation subset, as opposed to the entire study area image (as previously 

implemented in chapter 4) . This is because results from previous analysis chapter (i.e. 

chapter 4) of this thesis suggests that detection and characterization of vegetation 

affected by oil pollution yield substantially better results at the micro-level of 

vegetation type than at the macro-level consisting of several land cover features in the 

image space. 

5.2 Data Preprocessing  

Datasets used in this chapter ranged from remote sensing multispectral optical images 

and Synthetic Aperture Radar (SAR) images (Table 5-1), as well as other secondary 

derived ancillary dataset such as digital elevation model, soil and geologic map. Figure 

5-1 shows the overall methodological and data processing flow chart.  
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Table 5-1: List of all Remote sensing data 

Platform Sensor Swath Spatial res. Image dates Season  

Sentinel 1 C SAR 250km 5x20m Jan. 2017 Dry Season 

Tandem X X SAR 30km 6m Feb. 2016 Dry Season 

Cosmo Skymed X SAR 40km 3m x 3m Dec. 2016 Dry Season 

Sentinel 2 Optical 290km 20m Dec. 2016 Dry Season 

Endeavour Shuttle SRTM 225km 30m Sep. 2014 - 

 

5.2.1 Optical reflectance data and vegetation indices from Sentinel 2 

The major pre-processing operation implemented was the radiometric correction using 

the Sen2Cor tool in the Sentinel Application Platform (SNAP) software environment 

(Zuhlke et al., 2015). This converted the data from radiance to top of atmosphere 

reflectance. The image pixels as contained in the six spectral bands with 20m spatial 

resolution were then resampled to 10m spatial resolution to ensure that information 

across the different spectral bands were uniform for analysis. The radiometrically 

corrected images were converted to native coordinate system of UTM Zone 32 North 

and WGS1984 Datum. This was done to ensure that spatial information contained in 

the spill data, the SAR image derived variables (i.e. interferometric coherence and 

backscatter), digital elevation model and geo-physical variables (Soil – Geology) 

effectively coincides and geometrically aligned with the S2 image. 

The final pre-processed bands were used as direct input in the experimental image 

classification and generation of Vegetation Health Indices. Three vegetation health 

indices were generated and incorporated into the machine learning classification, as  

they were particularly efficient in identifying stressed vegetation in previous studies 

(Adamu et al., 2015; Arellano et al., 2015). This include the Normalized Differential 

Vegetation Index (NDVI), Leaf Area Index (LAI) and the Normalized Differential 

Water Index (NDWI). The NDVI is widely used for remote sensing of vegetation 

health because of its ability to depict stress in vegetation. It derived using radiance 

from the red channel, which is the strong chlorophyll absorption region, and Near 

Infrared, which represents a high reflectance plateau of vegetation canopies (Eq. 8).  

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
                                    (8) 
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Figure 5-1: Methodological Flowchart of the Data Analysis for Chapter 5 
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The NDWI is another index proposed by Gao (1996). The NDWI basically uses the Mid 

Infrared and near infrared bands, which are located in the high reflectance plateau of 

vegetation (Eq. 9). However, owing to the weak liquid absorption in the mid infrared, the 

index is sensitive to change in liquid water content of vegetation, and vegetation with 

near or absolute water loss is effectively detected with the index than with NDVI.  

𝑁𝐷𝑊𝐼 =  
𝑁𝐼𝑅−𝑆𝑊𝐼𝑅

𝑁𝐼𝑅+𝑆𝑊𝐼𝑅
                                   (9) 

The leaf area index is commonly defined as the ratio of green leaf area to horizontal 

ground surface. Various methods ranging from field based measurement and remote 

sensing data are used to compute LAI. LAI is an important variable for establishing gross 

photosynthesis, net primary productivity, evapotranspiration and bi–directional 

reflectance as it depicts the structural properties of vegetation. The index can reveal a lot 

about the health and structural state of vegetation. In this chapter, LAI from Sentinel 2 

optical imagery using the bio-physical processor in the SNAP software (Zuhlke et al., 

2015) was generated. The processor primarily relies on radiative light transfer process 

from 8 Sentinel 2 bands, sun zenith and viewing zenith and viewing geometry to estimate 

LAI within a three layered neural network.      

5.2.2 Normalized Radar Cross Section Backscatter 

5.2.2.1 Sentinel 1 – GRD Product 

In order to generate the normalized radar cross section backscatter for the Sentinel – 1 A 

GRD image. The scene was first radiometrically calibrated before multilooking (one look 

in range and four in azimuth), then geocoded based on Shuttle Radar Topography Mission 

(SRTM) data, and radiometrically calibrated with a final pixel spacing of 10m × 10m.  

Pixel values were then converted to backscattering (or normalized radar cross section), 

measured in decibels (Db) using the formula in Equation 10 within the SNAP software. 

𝜎0dB = 10 log 10 𝜎0                     (10) 

Where 

dB Normalized radar cross section 

σ0 is the backscatter for a specific polarization 

log is the decimal logarithm. 
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5.2.2.2 TanDEM X 

The TanDEM-X is the second SAR image used in this study. However, only the return 

signal in the HH polarized channel was used in this analysis, as the cross polarization HV 

channel data was not readily available for the desired period and for the study area. The 

acquired image was first radiometrically calibrated before Terrain correction was 

implemented using SRTM data. The final backscatter values were further converted from 

DN to linearized cross sectional values in decibels  using the formula in equation 11 below 

(Sportouche et al., 2012): 

                             𝜎0𝑑𝑏

𝑇𝑆𝑋(𝑖, 𝑗) = 10 ∗ log (|𝑥(𝑖,𝑗)|
2

∗  sin(𝜃𝑖𝑛𝑐
𝑙𝑜𝑐) ∗  𝑘𝑠)    (11) 

Where 

𝜃𝑖𝑛𝑐
𝑙𝑜𝑐 is the local incidence angle 

𝑘𝑠 is the calibration and processor scaling factor 

𝑥(𝑖,𝑗) is the image value at pixel (𝑖, 𝑗)  

log is the decimal logarithm.  

5.2.2.3 Cosmo Skymed 

The cosmo skymed is the third SAR image used in this chapter. Major pre-processing on 

the cosmo skymed image include correction for the range spreading loss effect using 

antenna pattern gain compensation and incidence angle effect. The corrected image was 

further multilooked (one look in range and two in azimuth), geocoded based on the 

SRTM, and radiometrically calibrated with a final pixel spacing of 10m × 10m. Pixels 

values were converted to backscattering (or normalized radar cross section), measured in 

decibels using formula in equation 12 (Sportouche et al., 2012).  

                     𝜎0𝑑𝑏

𝐶𝑆𝐾(𝑖, 𝑗) = 10 ∗ log (
|𝑥(𝑖,𝑗)|

2
∗ sin(𝜃𝑖𝑛𝑐

𝑟𝑒𝑓
)∗ 𝑅𝑆𝑅2𝛼

𝐶𝐶∗ 𝑅𝐹2 )                             (12) 

Where  

𝑥(𝑖,𝑗) is the image value at pixel (𝑖, 𝑗) 

𝜃𝑖𝑛𝑐
𝑟𝑒𝑓

 is the reference incidence angle 
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𝑅𝑆𝑅 is the reference slant range 

𝛼 is the reference slant range exponent 

𝐶𝐶 is the calibration constant 

𝑅𝐹 is the rescaling factor.  

Terrain correction was also implemented using the range Doplar terrain correction 

module in the Sentinel Application Platform (SNAP) (Zuhlke et al., 2015). 

5.2.3 Coherence 

The interferometric coherence is a function of decorrelation of two SAR images, which 

measures the degree of similarity between two co-registered SAR image pairs. Coherence 

was only generated for the TanDEM-X data, as the image typically consist of two pairs 

in a simultaneous acquisition mode from different side-track of the TerraSAR and 

TanDEM-X. Coherence decreases with increasing volume scattering and temporal 

changes due to abrupt movement of targets such as vegetation and flooded areas (Bamler 

and Hartl, 1998). Coherence values range between 0 and 1, where 0 represents a low and 

incoherent target and 1 represents high and absolute coherence. Interferometric coherence 

was generated for the post spill TanDEM-X image in the SNAP software (Zuhlke et al., 

2015). Topographic phase was removed with the aid of the SRTM 3 data and the final 

product was multi-looked with ratio 2:2 to obtain the same spatial resolution as the 

Sentinel 1, Sentinel 2 and Cosmo Skymed images. The Refined Lee filter was used for 

noise suppression before range Doplar terrain correction was applied to geometrically 

correct the final coherence image. 

5.2.4 Texture features 

Textural features and extraction in the spatial domain were first introduced and applied 

using the Gray-level co-occurrence matrix (GLCM) by Haralick and Shanmugam, (1973). 

They provide meaningful spatial statistical descriptors of image features, which generally 

help to understand how the grey level scale of an image affects feature presentation 

(Eckert, 2012). Textural features were used in this study because they have the ability to 

depict important rapid change in vegetation structural composition, which in turn can 

influence grey level tonation of SAR images (Hlatshwayo et al., 2019; Jin et al., 2014). 

Eight GLCM were generated as prescribed by Haralick and Shanmugam, (1973) from the 
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high resolution Cosmo Skymed and TanDEM-X images. These include Contrast, 

Correlation, Dissimilarity, Homogeneity, Mean, Second Moment, Variance and Entropy. 

5.2.5 Digital elevation model 

The major pre-processing operation implemented on the SRTM data is re-sampling of 

60m to fit the pixel resolution of 10m baseline used for all other images in the data 

analysis process.  

5.2.6 Oil Spill Point and Incident data 

The full pre-processing operations implemented on the oil spill incident data can be found 

in the overall methodology in Chapter 3 (section 3.2.3) of this thesis. The incident data 

from the two published sources were combined and large spill incidents covering areas 

of not less than 1000m2 identified to ensure that the area covered is greater than a single 

pixel of 100m2 of the Sentinel – 2 pixel of 10m spatial resolution. As such, the greater the 

spill size, the higher the number of sample points selected within the spill area (Table 5-

2) and conversely, only a single sample point was selected for relatively small spill sites.  

Furthermore, as the focus of the study is to distinguish between oil spill impacted and oil-

free vegetation, it was necessary to select sample location of non-spill/oil-free sites 

sufficiently separated from the known spill sites (Siegel, 1974). To achieve this, a buffer 

ring of 600m was implemented around the spill areas to create the High Consequence 

Area (HCA) isolating all existing spill points. Outside the HCA, non – polluted sites were 

selected at random (Whanda et al., 2015). The selected spill site and non – spill points 

were thereafter assigned to different vegetation types (cropland, grassland and tree cover 

areas) as provided by the ECCI dataset (http://2016africalandcover20m.esrin.esa.int/) and 

as given in Table 5-2. The processed points served two major purposes in this analysis.  

First, they were used for the class-wise assignment of pixels in the fuzzy forest and 

random forest image classification operation. Here points were divided into two sets by a 

ratio of 60:40 for training and validation respectively. Secondly, the processed points 

were used in extracting requisite spectral and backscatter information from the images for 

further statistical analysis. 

 

 

http://2016africalandcover20m.esrin.esa.int/


 

 

142 

 

Table 5-2: Total number of sample points used for training and validation 

Class Label Total Number of Sites Training Validation 

Non – Polluted Cropland 41 26 15 

Non – Polluted Grassland 27 17 10 

Non – Polluted Tree Cover Areas 25 15 10 

Polluted Cropland 44 27 17 

Polluted Grassland 26 16 10 

Polluted Tree Cover Areas 26 16 10 

 

5.2.7 Soil Map and Geologic data 

Several studies have suggested that the dominant soil type and geology are capable of 

influencing oil seepage, which in part can rapidly influence fragile plant mortality as a 

result of crude oil pollution. The soil and geology data (see section 3.4.5) were first 

georeferenced using the map coordinates provided by Longitudes and Latitudes in the 

World Geodetic Survey (WGS) Datum and were later re-projected to the UTM projection. 

The study area extent was extracted from the entire map before intersecting layers were 

digitized. The vector map was further rasterized using the kriging interpolation technique.  

The soil geology data comprised of two predominant soil types, Ferrosols and Fluvisols, 

while the geology comprised two predominant geologic layers of Coastal Plains Sands 

and Alluvium. The layers were all incorporated into the classification process as several 

studies (Abdel-Moghny et al., 2012; Klamerus-Iwan et al., 2015; Wang et al., 2013) have 

suggested that soil type and geologic characteristics can to a large extent influence 

hydrocarbon crude seepage and runoff effect. This to a large extent determines the extent 

of the impact posed on vegetation.  

5.3 Methodology 

5.3.1 Evaluation of Discriminatory Potential of the Developed Variables 

Backscatter from the various SAR sensors and the optical-derived vegetation health 

indices were tested for their potential to discriminate between oil-polluted and oil-free 

areas within each of the three vegetation types (cropland, grassland and tree cover areas). 

Box plots, corresponding median values and interquartile range for each variable for the 

polluted and oil-free reference sites were analyzed and tested for significant differences.  
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The paired sample t-test was used to compare pairwise differences in means between oil-

free and oil-impacted vegetation as implemented in Khanna et al., (2013). A critical value 

= 0.05 was used at 95% confidence to infer significant difference in the backscatter means 

between polluted and oil-free vegetation. The information content of the SAR backscatter 

characteristics independent of the optical variables was also assessed using linear 

regression of the SAR variables on the three vegetation indices for polluted and oil-free 

sites. 

5.3.2 Image Classification and Experimental Scenarios 

In order to investigate the functionality of the fuzzy forest methodology for image 

classification considering the variable reduction potential of the algorithm, the random 

forest image classification was implemented for comparison. A bilinear interpolation 

technique was used to resize and re-sample all 37 derived image variables (consisting of 

textural measures, interferometric coherence, normalized backscatter values, optical 

reflectance bands, vegetation indices, digital elevation model, aspect, slope and 

geophysical variables) into a uniform pixel size of 10m. The WGS 1984 UTM Zone 32N 

projection system was used for all input features to ensure that sufficient and reliable 

geometric alignment among all variables.  

Two experimental image classification scenarios were implemented in this analysis to 

assess the potentials of multi-frequency SAR Image Fusion (MSIF) and a combination 

with optical variables i.e. ‘multi-frequency SAR Optical Image Fusion’ (MSOIF). The 

total number of variables for the MSIF and MSOIF were 29 and 37 respectively. The 

Fuzzy forest and Random forest classifiers were trained separately on each of the three 

vegetation types with the reference spill and oil-free sites before classification was 

implemented. Table 5-3 is list of variables used in the image classification process.        
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Table 5-3: List of SAR, Optical, Elevation and Geophysical Variables used for image classification. S1 (Sentinel 1), CSM (Cosmo Skymed), TDX 

(TanDEM X) and S2 (Sentinel 2) 

S/No Variables S1 CSM TDX S2 
 

S/No Variables S1 CSM TDX S2 

1 Sigma Nought v v v  
 

15 SLOPE   v  

2 VV/VH v    
 

16 ASPECT   v  

3 VV+VH v    
 

17 Soil Map     

4 VV-VH v    
 

18 Soil Geology     

5 Texture-Variance  v v  
 

19 NDWI    v 

6 Texture-Second Moment  v v  
 

20 LAI    v 

7 Texture-Mean  v v  
 

21 NDVI    v 

8 Texture-Homogeneity  v v  
 

22 WDVI    v 

9 Texture-Entropy  v v  
 

23 B11    v 

10 Texture-Dissimilarity  v v  
 

24 B12    v 

11 Texture-Correlation  v v  
 

25 B5    v 

12 Texture-Contrast  v v  
 

26 B6    v 

13 Coherence   v  
 

27 B7    v 

14 DEM   v  
 

28 B8A    v 
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5.3.3 Random Forest 

In this chapter, RF image classification was implemented in the R software (TeamR, 2017) 

using the Caret package (Kuhn, 2012). Several calibration/parameterization runs were carried 

out to determine the optimal ntree and mtry values for training the random forest models in 

each of the 3 vegetation cover type, using all the image input variables. Results as 

experimented and as shown in Figure 5-2 indicates that the ntree = 500 and mtry=6 yielded 

the best calibration accuracy with the lowest out-of-bag error. It also showed that the 

calibration result for the tree cover area vegetation had the lowest out-of-bag-error of around 

0.06% while grassland had the highest out-of-bag-error of around 0.2%.  

 

 

Figure 5-2: Out-of-bag accuracy (1 - OOB error) as a function of number of decision trees for 

the three vegetation class subsets. (a) Cropland (b) Grassland (c) TCA and; (d) Overall 

Calibration Accuracy 
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5.3.4 Fuzzy Forest 

In this chapter, FF image classification was also implemented in the R Studio package version 

1.0.143 using the fuzzy forest and WGCNA packages. Several calibration/parameterization 

runs were also carried out to determine the optimal model parameters. Similar results with the 

RF method was obtained, in that, ntree value of 500 and square root of the number of input 

variables for mtry produced the best calibration accuracy.  

However, several other parameters such as the drop fraction, keep fraction and the number 

selected must be specified prior to the implementation of fuzzy forest classification. The drop 

fraction refers to the number of features (mostly weak and correlated input variables) to be 

dropped after each iteration of the recursive feature elimination – random forest. While the 

keep fraction refers to the percentage of the original input features to be retained at the end of 

the process, which must also logically corresponds to the fraction of the ‘number selected’ for 

the final classification. All input parameters must be specified by the user at the beginning of 

the model calibration phase of implementation. 

For the purpose of this study, screening parameters were set as: ntree = 500; drop_fraction = 

0.5; keep_fraction = 0.5; number_selected = 5. These were used in the final classification to 

ensure that only 10% of the original variables, which corresponds to the most important, 

uncorrelated and unbiased 5 variables are kept for the final fuzzy forest classification.  

Five variables were chosen as the most preferred choice of the final number of variables to be 

used as it offered an optimal and balanced representation of the input variables used for 

effective comparison with the top 5 random forest variables and variable importance 

information.  An experimentation of 75%, 50% and 25% of the original input variables was 

carried out, however, the final variable importance chart didn’t give better avenue for robust 

comparison. Hence 10% yielded a much simplistic value for baseline comparison with the 

random forest method. 

5.3.5 Confusion Matrix 

The results produced from the RF and FF classification were assessed using the error matrix 

(Congalton, 1991) produced with the remaining 40 percent oil-free and oil-polluted ground 

reference data, resulting in 180 pixels per vegetation type. Hence, selected pixels representing 

actual classes from classification result were compared to the ground truth reference class as 

determined in (3.2.3). The validation process evaluated whether the True Positive Sites known 

as oil spill sites were correctly classified as oil polluted (oil-impacted) vegetation and if the 
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known non-polluted (oil-free) sites were also positively classified as oil-free vegetation. The 

performances of the two methods were further assessed using the overall accuracy (OA), 

producer’s accuracy (PA) and user’s accuracy (UA).  

In addition, whether the FF or RF classification provided better results was evaluated using 

McNemars's test (de Leeuw et al., 2006). This has been applied in several studies (Onojeghuo 

et al., 2018a; Son et al., 2018; Whyte et al., 2018). McNemars's test is  a nonparametric test 

based on 2 using  a 2 X 2 contingency matrix to assess the level of performance of multiple 

classifier outputs based on the number of correctly predicted samples. The accuracies were 

considered as statistically significant at a confidence level of 95% if the calculated 2 (from 

equation 13) score is larger than the critical value of 1.5. The samples are labelled as f12 and 

f21 which represents the correctly classified samples for FF that were mis-classified by RF, 

and the number of correctly classified samples for RF that were mis-classified by FF, 

respectively (Whyte et al., 2018).  

𝑋2 =
(𝑓12−𝑓21)2

𝑓12+𝑓21
                                                                       (13) 

5.3.6 Field and Qualitative Validation 

A qualitative validation to assess prediction performance was also undertaken using high-

resolution google earth image. The spatial extent of classified image as determined by the 

different classification processes to the known oil spill extent was visually evaluated and 

compared between the different methods. In addition, field validation data were collected 

during a post-spill fieldwork assessment carried out in October 2018 (3.2.8) in some of the oil 

spill sites. It formed the basis of a toxicology analysis carried out during the fieldwork to 

establish the volume of hydrocarbon content present in the soil. The toxicology analysis of 

soil sediment sample from three spill site locations and one oil-free site location are displayed 

on the high-resolution image for comparison purpose. The toxicology analysis tested for the 

Total Hydrocarbon Content (THC) levels within the respective location and this was 

compared visually to the result of the classified map from the two classifiers. 
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5.4 Results 

5.4.1 Vegetation Health Response from Different Derived Sentinel – 2 Indices 

In general, result of the retrieved vegetation indices for polluted and oil-free vegetation types 

showed that the values are normally distributed with the exception of the NDWI values for 

the polluted TCA which were slightly skewed. Pairwise comparison using t-test was used to 

compare the means of polluted and oil-free health indices retrieved from the various 

vegetation types. For cropland, the vegetation indices LAI, NDWI and NDVI tended to be 

higher for unpolluted cropland than for polluted cropland, with significantly different means 

for LAI, NDVI and NDWI (P<0.05) as obtained from the paired sample t-test (Figure 5-3). 

The range of the indices was smaller (median < 0.3 and smaller interquartile range) for oil-

free cropland compared to the large median and interquartile range for the polluted cropland 

(median > 0.3). For grassland areas, the results indicate significant differences between the 

means for oil-impacted and oil-free grassland (P<0.05 for all three indices), as the retrieved 

LAI and NDVI for oil-free grassland often had a higher median and interquartile range. This 

indicates a larger heterogeneity of the unpolluted sites. With respect to TCA, the results shows 

that all three indices retrieved and explored were more dissimilar and heterogeneous, as 

P<0.005 and the median for oil-free TCA were higher than those retrieved from polluted TCA.  

 

Figure 5-3: Distribution of retrieved NDWI (blue), LAI (pink) and NDVI (green) for both 

Polluted and oil-free land cover types in the study area (a) cropland (b) grassland (c) forest. 

Results show that median values of indices for oil-free land cover types are mostly 

significantly higher than the polluted land cover.  
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5.4.2 SAR C- and X-band Backscatter for Detecting Hydrocarbon Pollution 

Figure 5-4 shows boxplots of retrieved backscatter values for different classes. Backscatter 

values for both polluted and oil-free vegetation types had similar distribution characteristics. 

It was observed that backscatter values from the cross polarization ratio of sentinel-1 VV/VH 

had low variability across the three vegetation types investigated. To this end, pairwise 

comparison of polluted and oil-free backscatter values was implemented for the various 

vegetation types.  

 

(a)             (b) 

 

(c) 

Figure 5-4: The distribution of TDX Backscatter, TDX coherence, Cosmo Skymed and 

Sentinel 1 VV – VH backscatter for polluted and oil-free land cover types in the study area. 

(a) Cropland (b) Grassland (c) TCA. Result shows that median backscatter values and 

interquartile range in oil-free TCA are significantly higher than the polluted TCA. 
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The results indicate that backscatter values from unpolluted cropland often had lower 

interquartile ranges with median values > -35dB, compared to the polluted cropland, which 

often had larger interquartile spread and median values > -35dB. The significant variations 

were observed more with the Sentinel-1 derived polarizations and cross-polarization ratios. A 

similar trend was also observed for grassland areas as retrieved backscatter values for 

unpolluted grassland had much lower variability and lower median backscatter. Variations 

were also associated more with the Sentinel-1 cross-polarization ratios and the TanDEM-X 

data. However, these results were not statistically significant (P>0.05) for cropland and 

grassland.  

In TCA however, the results generally showed that backscatter values retrieved from the 

unpolluted sites had higher medians of -10dB, -17dB, -8dB, 7dB and -19dB from the CSM, 

S1 VH, S1 VV, S1 VV–VH and S1 VV+VH respectively. In contrast, the polluted TCA had 

median values of -13dB, -14dB, -9dB, 6dB and -17dB from the CSM, S1 VH, S1 VV, S1 VV 

– VH and S1 VV/VH respectively. Interquartile range of backscatter between the oil-free 

(unpolluted TCA) and polluted TCA were uniform across the different sensors. The paired 

sample t-test result showed that the difference between means was statistically significant (P 

< 0.05). These were mostly obtained with S1 derived products of S1 VV (P=0.0006), S1 VV 

+ VH (P=0.0008) and S1 VH (P=0.0229). 

5.4.3 Relationship Between and Among Various Biophysical Variables 

For croplands, there is generally a poor association between the SAR variables and the optical 

derived LAI indices as indicated by the results of least square regressions (Table 5-4). The 

NDWI was observed to have a strong association of R >0.4 (R2 >0.17) or above with the 

Sentinel 1 VV, VH, and VV + VH derived backscatter (P<0.05). TanDEM-X (TDX) 

backscatter had R = 0.3 (R2 = 0.13) with the NDWI and this was statistically significant. LAI 

did not show strong association with backscatter, as R and R2 values were much lower and the 

corresponding P values were much higher than the critical value.  

However, the result for NDVI showed a rather strong linear association with CSM, S1 VV, 

VH + VH and VV-VH. R and R2 values were above 0.3 and 0.17 respectively, and the result 

was statistically significant (as P<0.05).  
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For grassland, there is generally a strong relationship between backscatter and plant health 

indices (Table 5-5). The NDWI and LAI were observed to have the strongest association with 

the S1 Variables. R2 values obtained for NDWI with S1 VV, S1 VH, S1 VV+VH, S1 VV/VH, 

were 0.38, 0.30, 0.39 and 0.22 respectively. R2 values between LAI and S1 VV, S1 VH, VV 

+ VH, VV/VH, TDX Coherence, were 0.12, 0.22, 0.21, 0.25, 0.10 respectively. The results 

obtained were statistically significant (P < 0.05). 

The result of linear regressions for TCA vegetation is shown in Table 5-6. This indicates that 

the NDWI and LAI had the strongest association with the various backscatter for this 

vegetation type. High R2 values obtained for NDWI were with TDX coherence, S1 VV, S1 

VH, S1 VV+VH, S1 VV-VH and S1 VV/VH, and this gave R2 values of 0.23, 0.53, 0.21, 

0.39, 0.19 and 0.49 respectively. Similarly, high R2 values recorded for LAI were with S1 

TDX Coherence, S1 VV, S1 VV + VH, S1 VV – VH and VV/VH. Values obtained are 0.25, 

0.32, 0.21, 0.20 and 0.33 respectively. The results obtained were also statistically significant, 

as P values were in most cases below 0.005.
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Table 5-4: Linear regressions result of C and X band SAR backscatter retrieved from the polluted cropland sites against the optical derived health 

indices. Results with statistical significance (P <0.05) regression coefficient (R) are indicated in green colour. 

  NDWI   LAI   NDVI 

Variable R R2 P Value Std. Error  R R2 P Value Std. Error   R R2 P Value Std. Error  

TDX 0.36 0.13 0.004 0.063  0.26 0.07 0.037 0.112  0.24 0.01 0.059 0.031 

Coherence 0.28 0.08 0.027 0.065  0.1 0.01 0.441 0.116  0.06 0.00 0.595 0.032 

CSM 0.28 0.08 0.026 0.065  0.10 0.01 0.433 0.116  0.32 0.10 0.011 0.03 

S1 VV 0.40 0.17 0.001 0.062  0.04 0.00 0.714 0.117  0.20 0.04 0.112 0.031 

S1 VH 0.44 0.20 0.000 0.06  0.07 0.01 0.575 0.116  0.43 0.20 0.001 0.029 

S1 VV+VH 0.45 0.21 0.000 0.06  0.06 0.00 0.616 0.116  0.34 0.01 0.006 0.03 

S1 VV-VH 0.16 0.03 0.214 0.067  0.05 0.00 0.700 0.117  0.39 0.16 0.002 0.029 

S1 VV/VH 0.08 0.01 0.501 0.067  0.03 0.00 0.786 0.117  0.21 0.05 0.094 0.031 
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Table 5-5: Linear regressions result of C and X band SAR backscatter retrieved from the polluted grassland sites against the optical derived health 

indices. Results with statistical significance (P <0.05) regression coefficient (R) are indicated in green colour. 

 NDWI 
 

 LAI 
 

 NDVI 

Model R R2 P Value Std. Error   R R2 P Value Std. Error  R R2 P Value Std. Error  

TDX 0.13 0.02 0.536 0.062 
 

0.00 0.00 0.569 0.039 
 

0.122 0.15 0.569 0.026 

Coherence 0.23 0.05 0.286 0.061 
 

0.35 0.12 0.087 0.037 
 

0.206 0.04 0.334 0.025 

CSM 0.17 0.03 0.439 0.062 
 

0.16 0.03 0.433 0.039 
 

0.043 0.00 0.840 0.026 

S1 VV 0.62 0.38 0.001 0.049 
 

0.46 0.22 0.021 0.035 
 

0.107 0.01 0.619 0.026 

S1 VH 0.55 0.30 0.006 0.053 
 

0.46 0.21 0.023 0.035 
 

0.055 0.00 0.799 0.026 

S1 VV+VH 0.62 0.39 0.001 0.049 
 

0.49 0.25 0.13 0.034 
 

0.027 0.00 0.899 0.026 

S1 VV-VH 0.09 0.01 0.666 0.063 
 

0.00 0.00 0.998 0.039 
 

0.226 0.05 0.289 0.025 

S1 VV/VH 0.44 0.20 0.032 0.056 
 

0.31 0.10 0.134 0.037 
 

0.181 0.03 0.398 0.025 
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Table 5-6: Linear regressions result of C and X band SAR backscatter retrieved from the polluted TCA sites against the optical derived health 

indices investigated in the study. Results with statistical significance (P <0.05) regression coefficient (R) are indicated in green 

NDWI 
 

LAI 
 

 NDVI 

Model R R2 P Value Std. Error   R R2 P Value Std. Error   R R2 P Value Std. Error  

TDX 0.03 0.00 0.881 0.073   0.01 0.00 0.932 0.046   0.02 0.00 0.917 0.024 

Coherence 0.48 0.23 0.007 0.064   0.50 0.25 0.005 0.04   0.102 0.01 0.590 0.024 

CSM 0.22 0.04 0.247 0.071   0.24 0.10 0.185 0.045   0.037 0.00 0.844 0.024 

S1 VV 0.73 0.53 0.000 0.05   0.56 0.32 0.001 0.038   0.143 0.02 0.451 0.024 

S1 VH 0.45 0.21 0.12 0.065   0.30 0.01 0.099 0.041   0.115 0.01 0.546 0.024 

S1 VV+VH 0.62 0.39 0.000 0.057   0.46 0.21 0.010 0.041   0.136 0.02 0.473 0.024 

S1 VV-VH 0.44 0.19 0.015 0.066   0.415 0.20 0.023 0.042   0.047 0.00 0.806 0.024 

S1 VV/VH 0.7 0.49 0.000 0.052   0.575 0.33 0.001 0.038   0.142 0.02 0.455 0.024 
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5.4.4 Classifying and Mapping Oil Polluted Sites 

Figure 5-5 shows the classification results. The best overall accuracies were obtained when 

the FF and RF methods were used to classify the multi-frequency SAR, optical image, 

DEM, Soil and Geology fusion (MSOIF) for tree cover areas and cropland areas (Figure 5-

5). Generally, overall accuracies presented slight differences in the output from the FF and 

RF; however, MSOIF yielded about 10% higher overall accuracy than the multi-frequency 

SAR image fusion (MSIF) only.  This implied that the exclusion of the optical variables in 

the second classification scenario increased inter-class errors, thereby reducing the overall 

accuracy. 

A visual assessment of the outputs showed that the spatial extent of oil-polluted cropland 

within the cropland vegetation subset from the MSOIF using FF was larger than the extent 

from RF, which could have led to lower classification accuracy. The results for the TCA 

using the RF with the MSOIF dataset also had large oil-impacted class especially within 

the central parts of the study area. This also must have accounted for the lower 

classification accuracy, compared to the results obtained from the FF, which had smaller 

segments of polluted areas. However, the results obtained for the grassland areas did not 

show as much contrast and dissimilarity as in the cropland and TCA classes.  

A similar overall accuracy was obtained when FF and RF were used to classify the MSIF 

variables for cropland and TCA areas (60% for FF and 60% for RF). The RF outperformed 

the FF when the same data were used to classify grassland. Overall accuracies of 55% and 

40% were obtained for RF and FF respectively. 
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(a)                 (b) 

Figure 5-5: Classified maps of polluted and oil-free areas for the three vegetation types. (a) Using multi-frequency SAR Image Variables, Sentinel 2 Spectral Bands and Vegetation Health Indices (MSOIF). (b) Using 

only multi-frequency SAR Image Variables (MSIF). Results show that FF had highest performance (OA 75%) in TCA using the MSOIF variables, while RF had highest performance (75%) in Cropland Using MSOIF 

variables. Note that crop cover is more dominant in the south west of the study area and tree cover more in the north (Figure 3-9). 
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5.4.5 Multi-frequency SAR – Optical Image Fusion (MSOIF) Variable Importance 

The result of the variable importance from the RF and FF using the MSOIF dataset is 

presented in Figure 5-6. Elevation-derived variables including the DEM were the most 

important variables. For cropland vegetation classification, the Red Edge (band 7), Aspect 

and NDVI were the most important variables in the discrimination of oil-free and oil-

impacted cropland areas when FF method was used for classification. In contrast, for RF, 

slope, aspect and the DEM were the three most important variables. The result implied 

that more diverse features were selected for the FF than the RF in the classification of 

cropland vegetation.  

For grassland areas, it was observed that the DEM, SWIR and Red bands were the most 

important explanatory variables in the fuzzy forest classification. However, the result 

from the RF classification showed that the three elevation variables (Aspect, DEM and 

Slope) and SWIR bands had higher importance. The result obtained from the 

classification of tree cover vegetation showed that NDVI, DEM, SWIR and the Red Edge 

(band 7) were the most important variables in the FF classification. Only the DEM and 

Red Edge bands featured in the Top 5 variables when the RF method was used for 

classification.  

This exploration of the variable importance highlights that the use of the reduced 

variables, which were free of high dimensionality, in the FF classification yielded 

comparable or improved performance in the discrimination of oil-polluted and oil-free 

grassland and TCA compared to RF (Figure 5-6). This further indicates that the FF was 

able to optimize the n input variables to select the most important uncorrelated variables 

for the classification of the MSOIF data. However, the reduced variables for cropland did 

not necessarily translate into better classification accuracy. 

5.4.6 Multi-frequency SAR Image Fusion (MSIF) Variable Importance 

The results of the variable importance obtained from the RF and FF classifications from 

the MSIF variables are shown in Figure 5-7. Elevation variables had greater importance 

than any other variables used in the classifications. In cropland areas, the results of the 

RF showed that the 5 most important variables were mostly derived from the elevation 

model, including slope, aspect and DEM, and textural variables.  
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However, the variable importance chart from the FF showed that both elevation-derived 

variables and Sentinel-1 backscatter data were the variables selected by the FF classifier 

in the classification process. This is partly different for grassland areas, as the 5 most 

important variables obtained from the RF classification were mostly the S1 and elevation-

derived variables. On the contrary, important variables obtained from the FF classifier 

were more diverse, as all three elevation-derived variables, the soil map and Sentinel-1 

data were used for the classification of grassland areas.  

Results for TCA areas also followed a similar trend as the cropland areas, as the most 

important variables in the FF classification were Sentinel-1 and elevation variables. In 

contrast, S1, elevation and soil type variables were the top 5 variables in the RF 

classification. It must be mentioned that the result of the classification using only the 

MSIF variables in the FF performed comparatively with RF, especially in cropland and 

TCA, as the best overall classification accuracies of 62.5% and 60% respectively were 

obtained. However, RF outperformed FF in the grassland areas, overall accuracy 

assessment results were 55% and 40% respectively. 
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Figure 5-6: Variable Importance (VI) plot from the Fuzzy forest and Random forest classification of the multi-frequency SAR and Optical Image Fusion (MSOIF) derived variables. This shows that Aspect, DEM and 

SWIR have been consistently identified by the FF and RF classifiers as the most important variables for discriminating polluted Cropland, Grassland and TCA from their respective oil-free cover types.  
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Figure 5-7: Variable Importance (VI) plot from the Fuzzy forest and Random forest classification of the multi-frequency SAR Image Fused (MSIF) derived variables. This shows that Aspect, DEM and DEM have been 

consistently identified by the FF and RF classifiers as the most important variables for discriminating polluted Cropland, Grassland and TCA from their respective oil-free cover types. 
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5.4.7 Accuracy Assessment 

Table 5-7 and 5-8 presents the overall accuracy (OA), user accuracy (UA) and producer’s 

accuracy (PA) (Congalton, 1991) for cropland, grassland and TCA classification using the 

RF and FF methodologies. The OA often measures the accuracy of a map with respect to 

its ability to correctly identify the ground reference points for all classes utilized, while PA 

and UA measures individual map class accuracy in terms of its ability to correctly identify 

class specific ground reference points.  

This concomitantly accounts for the error of omission i.e. as a result of the classified map 

not correctly identifying a ground reference (Producer Accuracy) and error of commission 

i.e. as a result of wrong assignment of a map class in a classified image (User Accuracy).   

The results in this study showed that the cropland and TCA classified maps with RF and 

FF respectively, using the MSOIF dataset, gave the highest overall classification accuracy 

of 75% each. It is clear from the results (in Table 5-7 and Table 5-8) that RF had better 

prediction of the ground reference site for polluted cropland as user accuracy was above 

75%, while FF also had superior performance in polluted TCA prediction as user accuracy 

also reached 100%.  

Table 5-7: OA, UA and PA of the MSOIF data with Fuzzy forest and Random forest 

Cropland 

 

Producer's Accuracy 

[%] 
User's Accuracy [%] 

Overall Accuracy 

[%] 

F
F

 Oil-free Cropland 56.25 60 
59.4 

Polluted Cropland 62.5 41.2 

R
F

 Oil-free Cropland 73.33 73.33 
75 

Polluted Cropland 76.47 76.47 

Grassland 

 

Producer's Accuracy 

[%] 
User's Accuracy [%] 

Overall Accuracy 

[%] 

F
F

 Oil-free Cropland 63.63 70 
65 

Polluted Cropland 66.66 60 

R
F

 Oil-free Cropland 70 63.6 
65 

Polluted Cropland 60 66.7 

Tree Cover Areas 

 

Producer's Accuracy 

[%] 
User's Accuracy [%] 

Overall Accuracy 

[%] 

F
F

 Oil-free TCA 100 50 
75 

Polluted TCA 66.67 100 

R
F

 Oil-free TCA 70 70 
70 

Polluted TCA 70 70 
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Table 5-8: OA, UA and PA of the MSIF data with Fuzzy forest and Random forest 

Cropland 

 

Producer's 

Accuracy [%] 

User's 

Accuracy [%] 

Overall 

Accuracy [%] 

F
F

 Oil-free Cropland 58.82 66.66 
62.5 

Polluted Cropland 66.66 58.82 

R
F

 Oil-free Cropland 66.67 58.82 
62.5 

Polluted Cropland 58.82 66.67 

Grassland 

 

Producer's 

Accuracy [%] 

User's 

Accuracy [%] 

Overall 

Accuracy [%] 

F
F

 Oil-free Grassland 40 40 
40 

Polluted Grassland 40 40 

R
F

 Oil-free Grassland 50 55.56 
55 

Polluted Grassland 60 54.55 

Tree Cover Areas 

 

Producers 

Accuracy 

Users 

Accuracy 

Overall 

Accuracy [%] 

F
F

 Oil-free TCA 75 30 
60 

Polluted TCA 56.25 90 

R
F

 Oil-free TCA 40 66.67 
60 

Polluted TCA 80 57.14 

 

The result of McNemar’s test (de Leeuw et al., 2006) presented in Table 5-9 shows that 

RF outperformed FF in cropland areas, as the difference between the errors was significant 

(2-test P<0.05), compared to the low 0.2 2 – value (P>0.05) obtained when the MSIF 

data were classified. The result of McNemar’s test for grassland show no significant 

difference between the errors in the FF and RF classifications (overall classification 

accuracies of 65%). However, of the two classes investigated, the oil-free grassland had 

higher UA=70% when FF was used to classify the MSOIF. McNemar’s test also showed 

that there is no significant difference between the oil-free and oil-impacted grassland areas 

for the MSOIF and MSIF (P>0.05). 

Results for tree cover areas showed that FF outperformed RF in the discrimination of oil-

free and oil-polluted TCA vegetation. OA was 75% and 70% for FF and RF respectively 

when the MSOIF data were classified. McNemar’s test showed that a significant difference 

between the OA values (P<0.05). In addition, a low 2 of 0.3 was also obtained when the 

MSIF data for TCA was classified. An overall accuracy of 60% was recorded by the two 

classifiers, explaining why there is no significant difference between them (P>0.05).  
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Table 5-9: McNemar’s test used to test the performance of Fuzzy forest and Random forest. 

Number in bold represents classification scenario with statistical significant difference in 

overall accuracy at 95% confidence 

Cropland 
RF 

 Grassland 
RF 

 TCA 
RF 

MSOIF MSIF 
 

MSOIF MSIF 
 

MOIF MSIF 

FF 
MOIF 4.17   

 FF 
MSOIF 0.2   

 FF 
MOIF 1.62   

MSIF   0.2 
 

MSIF   0.57 
 

MSIF   0.3 

 

5.4.8 Field and Qualitative Validation 

The results of the field and qualitative validation are presented in Figure 5-8. The results 

of the lab test showed that spill sites visited in Eleme, TAI and Gokana had THC values of 

641 mg/kg, 620 mg/kg and 605 mg/kg respectively. The areas around the oil spill locations 

were correctly classified as true positive sites of oil-impacted cropland by both the FF and 

RF Classifiers. The non-spill site visited in Etche had a THC volume of 548 mg/kg, which 

is slightly lesser than the THC for the spill sites. Very-high-resolution google earth imagery 

in a true color composite over the polluted sites was used to evaluate the extent classified 

as oil-polluted by the two classifiers. The spatial extent of oil-polluted sites obtained from 

FF were broader and captured the extensive vegetated areas impacted by the oil spill extent. 

While the extent of the RF on the other side was also able to capture the extent of the spill 

site but with less coverage as captured by the high spatial resolution imagery. 
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Figure 5-8: Spill points and Total Hydrocarbon Content (THC) on a true colour composite Sentinel 2A image of December 2016 (Source: https://scihub.copernicus.eu/dhus/#/home) of the study area. Results show that 

THC around the spill points is much higher than at the unpolluted site. FF represented the polluted sites better than RF.  
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5.5 Discussion 

This chapter aimed at mapping and categorizing cropland, grassland and TCA 

vegetation into distinct class of oil-polluted and oil-free vegetation cover using 

training samples of oil spill incident locations and oil-free sites. Results obtained 

from Sentinel-2 vegetation indices (NDWI, NDVI and LAI) for detecting the effects 

of hydrocarbon crude oil largely showed that oil-free vegetation types were healthier 

due to the higher vegetation health indices values (with respect to median and 

interquartile range) obtained, compared to the low values retrieved from the oil spill 

sites. This is an indication that vegetation in the oil-polluted sites could be 

undergoing stress due to the presence of oil. Fundamental characteristics of typical 

oil-polluted vegetation are immediate alteration of the bio-physical and bio-chemical 

properties leading to reduction of plant growth and active function causing collapse 

of mesophyll cells, cuticle fragmentation and the disintegration of chloroplasts and 

nuclei (Samat et al., 2018). This often results in changes to plant functional traits and 

characteristics such as biomass, leaf area index (LAI), water content and chlorophyll 

concentration (Douaoui et al., 2006; Kozlowski, 1997; Leone et al., 2007; Samat et 

al., 2018).  

The result obtained in this study have shown that NDVI and NDWI are effective 

indicators of plant stress. However, in this chapter the potentials of LAI was further 

investigated to depict the relationship between plant stress as a result of hydrocarbon 

crude oil pollution and the corresponding SAR backscatter signals. The results 

obtained here are also in keeping with previous studies in this regard, as LAI also 

showed significant levels of heterogeneity between the oil-impacted and oil-free 

vegetation types, especially in grassland and TCA. 

Investigation of the potential of backscatter from the various SAR sensors for 

detecting and discriminating oil-free and oil-impacted vegetation yielded comparable 

result with the Sentinel-2 indices especially with the C-SAR variables. The 

distribution of backscatter values for the oil-polluted vegetation class usually had 

higher variation in backscatter, compared to oil-free vegetation for both X band 

(Cosmo – Skymed and TanDEM-X) SAR and the C band (Sentinel – 1) SAR. Initial 

assessment of the cropland and grassland vegetation showed that both C band 

(Sentinel – 1) and X band (Cosmo – Skymed and TanDEM-X) SAR backscatter had 
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higher variance and range for the oil-polluted cropland and grassland areas, while the 

corresponding oil-free vegetation had smaller variability. A possible reason for this 

is that the leaves and branches within healthy cultivated farmland and grassland fields 

are wider and broader in nature (Baudena et al., 2015) than those of stressed fields. 

This can ultimately lead to stable scattering in the former, accounting for the narrow 

interquartile range of backscatter values when compared to the unstable backscatter 

trend and concomitant large interquartile range within the polluted fields (Pampaloni 

and Paloscia, 1985).  

With respect to TCA, the result showed that Sentinel-1 single-polarization (i.e. VV 

and VH), co-polarization (VV) and cross polarization (VH) bands gave a more 

distinct difference between higher and lower backscatter distribution for oil-free and 

oil-polluted areas respectively. Cosmo Skymed (CSM) backscatter also showed a 

similar trend, reinforcing the notion that oil-free woody vegetation stands often 

presents higher backscatter, represented by the volume scattering compared to the 

lower backscatter from oil-impacted TCA. This position is supported by Costa, 

(2004) where backscatter from densely matted vegetation stands (which are typical 

characteristics of oil-free vegetation) are in most cases higher than returns in loose 

vegetation stands (which also characterizes stressed vegetation). This is because the 

oil-free woody canopy generally has a higher volume scattering as a result of the 

presence of leaves, foliage and branches presenting a higher density of scattering 

elements in the canopy volume. In contrast, the polluted sites exhibit lower 

backscatter because of the ground surface scattering as a result of loss of leaves and 

foliage.  

However, microwave radiation interacts differently with different plant types and 

communities. The characteristics of the plant in terms of density, distribution, 

orientation, dielectric constant, height and branches and the condition of the ground 

in terms of dryness, moisture, as well as the sensor characteristics in terms of 

polarization, incidence angle and wavelength are important determining factors of 

the strength of backscatter radiation towards the antenna (Costa, 2004; Dobson et al., 

1996).          
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The result obtained from the least square regression is an indication that moisture and 

biomass content are very important determinants of vegetation impacted by oil 

pollution in the terrestrial ecosystem. The utility of NDWI and LAI has been 

demonstrated in Arellano et al., (2015) and Ramsey et al., (2015) respectively for 

monitoring terrestrial oil spills. Owing to the dielectric property of the targets imaged 

by SAR sensors, which make the imagery sensitive to surface roughness and 

moisture, they can be very useful in studies where moisture and biomass content of 

vegetation are important. Variables such as SWIR and Red Edge bands have been 

analyzed by a number of researchers (Adamu et al., 2015; Cloutis, 1989; Hörig et al., 

2001; Khanna et al., 2013; Kokaly et al., 2013; Kühn et al., 2004) to be within the 

fundamental spectral region for terrestrial oil spill detection. They also form the basic 

component of the NDVI, NDWI and LAI, utilized in this study for the primary 

purpose of detecting the impact of oil pollution.  

NDWI is more associated with the backscatter from the three vegetation types 

investigated. This is in accordance with Vreugdenhil et al., (2018) where a moisture 

derived measure (Vegetation Water Content) had the best association with Sentinel 

1 derived cross polarization ratios. Similarly, in this chapter LAI showed significant 

association with backscatter in tree cover areas, as R2 often reached 0.5 with S1 VV 

single-polarization, VV/VH cross polarization ratios and interferometric coherence. 

This is to be expected, as TCA in the study area are mostly composed of ever green 

broad-leaf woody vegetation, whose attributes are better captured with the LAI 

measures compared to any other indices. In addition, studies carried out by 

Stankevich et al. (2017) have also demonstrated that Sentinel 1 C-Band SAR has 

huge potentials for predicting LAI in forested areas, while Rüetschi et al., (2017) 

have shown that Sentinel-1 C SAR was able to generate forest maps with 

classification accuracy of as high as 86% OA. This implies that polarization is an 

important factor in the use of SAR data for monitoring vegetation dynamics within 

the terrestrial landscape, primarily because stronger levels of associations were 

observed for the C-band backscatter compared to the X-band backscatter. This is 

largely a result of the high capability of C-band SAR to reasonably penetrate through 

the vegetation canopy compared to the surface penetration in the X-band.  



 

 

168 

 

The study by Spies et al., (2013) has substantiated this further. Results obtained from 

the experimentation of L, C and X band SAR have shown that L-band had better 

prediction and mapping capabilities for vegetation and land cover in parts of Africa, 

followed by C and X band data. This is due to the wavelength and frequency of the 

SAR products used, although, derivatives such as DSM (Chen et al., 2007), 

Interferometric Digital Elevation Model (Solberg et al., 2018), Canopy Height 

Models (Schlund et al., 2016) from X-band SAR such as TanDEM-X and COSMO 

SkyMed have   performed well in mapping forest cover. 

Results from the image classification have shown that the combination of optical and 

SAR-derived variables offer better discrimination between oil-free and oil-polluted 

vegetation. This showed better improvement compared to the results obtained from 

the previous analysis chapter (i.e. in Chapter 4) where only optical data and random 

forest method were used for classification. This has also been the conclusion of 

various other contemporary studies (Clerici et al., 2017; Gao et al., 2017; Mansaray 

et al., 2017; Onojeghuo et al., 2018a; Schmidt et al., 2017; Whyte et al., 2018) where 

the integration of optical and SAR derived variables improved the classification 

accuracy. This reinforces the position of Joshi et al., (2016) that the combined use of 

SAR and optical data has great potential for land cover mapping based on their 

biophysical and biochemical properties as they are affected by external factors such 

as oil spills. The type of methodology is often experimental and its adoption can 

sometimes affect the outcome of these studies. In this study, fuzzy forest proved to 

be a good match with contemporary classification methods, such as random forest, 

especially in the grassland and TCA areas where the classification accuracy 

assessment result was either equal to or higher than the result obtained from random 

forest.  

The fuzzy forest model can be used for the optimization and selection of unbiased 

input variables to achieve a better classification result. Results obtained from the 

variable importance chart have confirmed this, as only few, most diverse, 

uncorrelated variables were used for classification and an improved result in terms 

of overall classification accuracy was obtained. Furthermore, the spatial extent of the 

predicted oil polluted site had less generalization error, better prediction and was 

more in tune with the high-resolution image when the fuzzy forest was used for 
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classification. Results obtained here show that the FF methodology can be a remedial 

alternative to Random forest, especially when high volume of input variables are 

used for classification, most of which often present problems of high dimensionality. 

In this regard, elevation-derived variables (DEM, Aspect and Slope) consistently 

featured as the highest contributors in the variable importance charts from the two 

classifiers. This highlights the importance of topography in the characterization of 

oil-impacted areas in terrestrial landscape. Areas with low-lying elevation can be 

more susceptible to the impacts of oil due to the influence of gradient and slope in 

oil flow and runoff mechanism. However, some researchers (Hester and 

Mendelssohn, 2000; Hester et al., 2016) have observed that the influence of elevation 

on plant stress can be due to soil erosion and flooding as well, and not necessarily 

the impact of oil. Further investigation into the reliability and influence of elevation 

models and variables for terrestrial oil spill impact are required, as it is possible that 

oil residues have greater concentrations in low-lying areas.     

Observed limitations with the fuzzy forest method in this study is its inability to 

further improve classification accuracy on the multifrequency SAR image fusion 

(MSIF) classification for the three vegetation types investigated. More also, 

classification accuracy was also observed to be lower in cropland vegetation when 

the multifrequency SAR optical image fusion (MSOIF) classification was 

implemented. Reasons for the poor performance of fuzzy forest in this case could be 

attributed to the in ability of the fewer variables used for the classification to 

significantly improve classification accuracy. In this regard, Maxwell et al. (2018) 

have argued that the diversity often provided by multiple variables in a machine 

learning classification yields much more substantially improved results than when 

only fewer variables are used. The random forest particularly uses random samples 

across all input variables for training purpose, hence creates a unique generalization 

balance of false positives and true positives in a classification operation thereby 

translating to increase accuracy. Conversely, when fewer or reduced variables are 

used, only strong variables capable of instigating true positive characterization are 

used and hence true negative representation are seldomly captured in the 

classification result. As such reduced number of input variables may not necessarily 

translate to improve classification accuracy. 



 

 

170 

 

5.6 Summary and Main Findings 

This chapter aimed at implementing a novel approach (of integrating optical image 

variables, multifrequency SAR image derived variables, Digital elevation model 

variables and geo-physical variables) into a machine learning random forest classifier 

to discriminate oil-free from oil-polluted vegetation types. In addition, a novel fuzzy 

forest (FF) image classification method was also introduced to reduce dimensionality 

and cope with multi-collinearity associated with the variables used for classification. 

Results obtained from NDWI, NDVI and LAI for detecting the effects of 

hydrocarbon crude oil on vegetation largely showed that oil-free vegetation were 

healthier due to the higher indices values obtained (with respect to median and 

interquartile range), compared to the low values retrieved for the oil spill sites. 

Multifrequency backscatter from the various SAR sensors were also retrieved for the 

various site to detect and map oil-free and oil-impacted vegetation. Results obtained 

showed comparative result with the health indices, as the distribution of backscatter 

values for the oil-polluted vegetation had higher variation in backscatter, compared 

to oil-free vegetation. Significant difference in means were mostly associated with X 

band (Cosmo – Skymed and TanDEM-X) SAR and the C band (Sentinel – 1) SAR, 

in which LAI and NDWI for grassland and TCA vegetation had higher correlation 

values with SAR backscatter, reinforcing a stronger linkage between LAI of 

vegetation and longer wavelength C-band SAR.  

Furthermore, image classification result have also shown that the combination of 

optical, SAR and geo-physical derived variables offer better discrimination 

potentials. This showed better improvement compared to the results obtained from 

the previous analysis chapter (i.e. in Chapter 4) where only optical data and random 

forest method were used for classification. Similarly, the fuzzy forest method also 

proved as effective variable reduction method as the optimization and selection of 

unbiased input variables achieved better classification results for TCA. Results 

obtained from the variable importance chart have also shown that elevation-derived 

variables (DEM, Aspect and Slope) had higher contribution in the discrimination of 

oil-free from oil-polluted vegetation. This highlights the importance of topography 

in the characterization of oil-impacted areas in terrestrial landscape, which is also 
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quite different from the result obtained from the first analysis chapter where health 

indices and spectral bands were the most important variables. 

In the next chapter, the utility of longer wavelength L-band SAR would be tested in 

the discrimination and classification process. In addition, the seasonal dimensions 

and implication to mapping terrestrial oil spill would be evaluated using 

multitemporal Sentinel-1 SAR and multifrequency L-C-X band SAR in both dry and 

wet season classifications, in attempt to identify the best possible dataset, method 

and season to detect and map oil pollution in vegetated area.  
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Chapter 6 : Wet and Dry Season 

Assessment of Oil Polluted 

Vegetation Using Multi-temporal 

and Multi-frequency L, C and X 

Band SAR  
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6.1 Introduction 

The analysis of data implemented in Chapter’s 4 and 5 has shown that the integration 

of optical and SAR data improves the classification and discrimination of impacted 

and oil-free vegetation compared to using optical only data. Most importantly, the 

field spectroscopy experiment showed that for effective detection of oil-impact on 

terrestrial vegetation, there is need for healthy vegetation component to exhibit 

exceptional plant functional traits with respect to photosynthesis and structural 

development.  

Figure 6-1 shows the spectral reflectance curves of vegetation in three different 

locations with varying degree of oil spill impact based on the age of oil. Similarly, 

Figure 6-2 shows comparison of spectral reflectance of oil-impacted and oil-free 

vegetation in other studies as well as pictures during the authors fieldwork exercise.  

Figure 6-1 shows that the vegetation within the non-polluted site had strong NIR 

reflectance, compared to the much lower NIR reflectance from the old and the most 

recent spill sites. This implies that proper differentiation between healthy and 

stressed vegetation stands within a particular area of interest would greatly influence 

detectability and discriminability of impacted and oil-free vegetation. The healthier 

the vegetation stand is, the better the detection, classification and discrimination 

accuracy.   

 

Figure 6-1: Mean vegetation Reflectance spectra for the recent, old and non – 

polluted sites. (Source: Authors fieldwork) 
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Figure 6-2 (a) Reflectance average of Reed vegetation communities and bare soil at same distance to source of contamination. The numbers in 

the legend are soil TPH concentration for each plot mg kg -1 (Source: Zhu et al., 2013b). (b) Averaged reflectance values of an oil polluted 

vegetation, oil-free Secondary forest and oil-free Pristine Forest (Source: Arellano et al., 2015). (c) Oil-polluted cropland vegetation along an oil 

pipeline facility (Source: Authors fieldwork). (d) Oil-free cropland vegetation (Source: Authors fieldwork). 

a b 

c d 
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A major factor that militates against proper discrimination in this context could be the 

effect of seasonality. Dry season/wintery conditions in most part of the world leads to 

increased moisture stress and vegetation senescence (Cissé et al., 2016). This tends to 

lead to loss of green pigment, defoliation, and increased litter fall.  

In this chapter, the potential of deriving vegetation phenological descriptors and 

temporal characteristics from multi-temporal Sentinel 1 VH VV backscatter in 

detecting oil spill impact on vegetation was investigated. Machine learning RF and 

SVM methods were used to classify and discriminate between oil-impacted and oil-

free vegetation, on separate dry and wet season multi-frequency L, C and X band SAR 

(for ALOS PALSAR-2, Sentinel – 1 VV and VH backscatter, TanDEM-X and Cosmo 

Skymed images). This provided a perspective on the potential influence and effects of 

seasonality on discrimination and classification accuracy.  

The role of L – Band SAR in further improving classification accuracy is particularly 

highlighted in a multi-frequency SAR analysis, since a previous study (Ramsey et al., 

2015; Ramsey III et al., 2011) has used only single frequency L-Band SAR in the 

characterization of oil-impacted marsh vegetation of Barateria bay. 

6.2 Data Preprocessing 

Datasets used in this chapter consist of remote sensing optical and SAR images for 

different dry and wet season acquisitions (Table 6-1). Figure 6-3 shows the 

methodology and data processing flow chart; the list of multi-temporal Sentinel – 1 

data and dates acquired are detailed in section 3.2.2.  
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Figure 6-3: Methodological Flowchart of the Data Analysis for Chapter 6. Refer to further sections on the Data pre-processing (6.2) 
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Table 6-1: List of all Remote sensing data 

Platform Sensor Swath Spatial res. Number of Scenes 

Sentinel 1 C SAR 250km 5x20m 12 Dry and 30 Wet season 

images (VV VH) 

TanDEM X X SAR 30km 6m 2 Wet Season (HH) 

Cosmo Skymed X SAR 40km 3m 2 Dry Season (HH) 

Endeavour Shuttle SRTM 225km 30m 1 

ALOS PALSAR 2 L SAR 70km 10m 2 Dry and 4 Wet season images 

(HH HV VV VH) 

SMAP Data L SAR 36km 9km 24 Scenes 

MODIS NDVI Optical 2330km 1km 24 Scenes 

6.2.1 Sentinel 1 – SLC 

The sentinel – 1 Single Look Complex (SLC) product as explained in section 3.2.2 was 

used in this Chapter. The first pre-processing step was the cropping operation; here, 

individual scenes were splitted to extract study area specific swaths to reduce processing 

time. Subsequently, scenes were radiometrically corrected to obtain initial backscatter 

values as DN before the multilooking operation was implemented. One look in range 

and four in azimuth (1:4) was used as the multilooking specification. The scenes were 

then geometrically rectified using the SRTM 1 Arc Second. Furthermore, the product 

was radiometrically calibrated from digital number values to a normalized cross section 

backscattering values in decibels using equation 14 (Laurin et al., 2018). 

σ0 dB = 10 log 10𝜎0                         (14) 

Finally, the images were subjected to terrain correction using the range Doplar terrain 

correction module within the Sentinel Application Platform (SNAP) software 

environment (Zuhlke et al., 2015). The final pre-processed backscatter images were 

used for two separate operations. First, they served as direct input to the experimental 

seasonal image stack classification. Secondly, backscatter values were retrieved for the 

pre-processed polluted and oil-free sample site/points for the three different vegetation 

types (cropland, grassland and TCA) investigated in this research. Extracted values form 

the basis of the multi-temporal backscatter analysis used to explore temporal 

characteristics of polluted and oil-free vegetation.  
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6.2.2 COSMO SKYMED 

The Cosmo Skymed image used in this analysis is a level 1 A image which needed to 

be corrected for the Range Spreading loss effect using antenna pattern gain 

compensation and incidence angle effect following (Sportouche et al., 2012). The 

corrected image was further multilooked (one look in range and two in azimuth), 

geocoded based on the SRTM, and radiometrically calibrated with a final pixel spacing 

of 10m × 10m. Pixels values were converted to backscatter (or normalized radar cross 

section), measured in decibel using the formula in equation 15 (Sportouche et al., 2012).  

 𝜎0𝑑𝑏

𝐶𝑆𝐾(𝑖, 𝑗) = 10 ∗ log (
|𝑥(𝑖,𝑗)|

2
∗ sin(𝜃𝑖𝑛𝑐

𝑟𝑒𝑓
)∗ 𝑅𝑆𝑅2𝛼

𝐶𝐶∗ 𝑅𝐹2 )                       (15) 

 

where 

𝑥(𝑖,𝑗) is the image value at pixel (𝑖, 𝑗), 

 𝜃𝑖𝑛𝑐
𝑟𝑒𝑓

 is the reference incidence angle, 

𝑅𝑆𝑅 is the reference slant range, 

𝛼 is the reference slant range exponent, 

𝐶𝐶 is the calibration constant, 

𝑅𝐹 is the rescaling factor, 

Terrain correction was also implemented as for the Sentinel – 1 data (6.2.1). 

6.2.3 TanDEM X 

The TanDEM-X co polarized channel return signal in the HH channel was used in this 

study as the cross polarization HV channel data was not readily available for the desired 

period and study area. The acquired image was first radiometrically calibrated using the 

formula in equation (16) (Sportouche et al., 2012). Terrain correction was subsequently 

carried out using SRTM data, Backscatter values were then converted from DN to 

linearized cross sectional backscatter values in Decibel. 
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 𝜎0𝑑𝑏

𝑇𝑆𝑋(𝑖, 𝑗) = 10 ∗ log (|𝑥(𝑖,𝑗)|
2

∗  sin(𝜃𝑖𝑛𝑐
𝑙𝑜𝑐) ∗  𝑘𝑠)     (16) 

where  

𝜃𝑖𝑛𝑐
𝑙𝑜𝑐 is the local incidence angle 

𝑘𝑠 is the calibration and processor scaling factor 

𝑥(𝑖,𝑗) is the image value at pixel (𝑖, 𝑗)  

log is the decimal logarithm. 

6.2.4 ALOS PALSAR 

The multiple ALOS PALSAR scenes with HH, HV, VV and VH polarizations were pre 

– processed using a standard pre-processing chain operation. First, the scenes were 

radiometrically calibrated and thereafter they were multilooked (one look in range and 

two in azimuths) before being geocoded based on Shuttle Radar Topography Mission 

(SRTM) data, and finally radiometrically calibrated with a final pixel spacing of 10m × 

10m.  Pixels values were converted to backscattering measured in decibel using the 

formula below (Eqn 17) (Sportouche et al., 2012)in SNAP. 

𝜎𝑠𝑙𝑐
0 = 10 ∙ 𝑙𝑜𝑔10〈𝐼2 +  𝑄2〉 +  𝐶𝐹1 − 𝐴                    (17) 

where 

DN Digital number (or raw pixel value)  

σ0 is the backscattering coefficient (Sigma naught) for a specific polarization 

𝐶𝐹1, 𝐴: is Calibration factor (Unit: dB). 

6.2.5 Soil Moisture Data 

Monthly SMAP raster data were imported into the ArcGIS software package and layer 

stacked without resampling (as the SMAP data were not used in the classification). The 

preprocessed points were then used to retrieve the soil moisture values across the 

multitemporal SMAP stack. The data was subjected to statistical analysis to infer 

secondary relationship between dominant soil moisture characteristics, health of 

vegetation as indicated by NDVI and temporal backscatter characteristics.   
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6.2.6 MODIS NDVI 

A major preprocessing operation on the MODIS NDVI data is similar to the SMAP data, 

as the dataset is a ready to use product.     

6.2.7 Oil Spill Point and Incident Data 

The processed points (3.2.3) were used for class-wise assignment of pixels into oil-free 

and polluted vegetation class using the random forest and support vector machine image 

classification operation. Informational classes include oil-free cropland, oil-free 

grassland, oil-free TCA, polluted cropland, polluted grassland and polluted TCA. The 

selected points (Table 6-2) were divided into two sets by a ratio of 60:40 for training 

and validation respectively. The processed spill and oil-free sample points were also 

used to retrieve backscatter values from the pre-processed SAR images for the multi-

temporal/multi-seasonal analysis. Table 6-2 shows the locations of the various oil spill 

incidents and number of points selected from the spill sites, while Table 6-3 shows the 

total number of training and validation sites used for model calibration and 

classification. 
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Table 6-2: Oil spill incident locations and the total number of ground reference selected 

Location Year/Month LGA 
Ref. 

Points  
 Location Year/Month LGA 

Ref. 

Points  

Atali 01/10/2015 Obio/Akpor 10  Gio 01/08/2015 Gokana 23 

Ayama 01/06/2016 Oyigbo 7  Gio 01/09/2016 Tai 22 

Ayama - Noke 01/12/2015 Oyigbo 4  Gio 01/08/2015 Gokana 5 

Ayama - Noke 14/01/2016 Oyigbo 4  Imeh 01/09/2015 Etche 4 

B-Dere 01/06/2015 Gokana 4  Komkom 01/05/2015 Oyigbo 9 

B-Dere 01/06/2015 Gokana 2  Komkom 12/05/2015 Oyigbo 10 

B-Dere 14/01/2016 Gokana 3  Komkom 01/09/2016 Oyigbo 4 

B-Dere 28/05/2015 Gokana 5  Komkom 01/05/2015 Oyigbo 4 

B-Dere 16/02/2016 Gokana 2  Kpoghor and Gio 01/05/2015 Tai 7 

B-Dere 01/06/2015 Gokana 2  Kpoghor and Gio 16/02/2016 Tai 10 

B-Dere 01/06/2015 Gokana 1  Kpoghor and Gio 01/09/2015 Tai 7 

Egberu 01/08/2015 Obigbo 2  Norkpo 01/09/2015 Tai 7 

Egberu 16/02/2016 Obigbo 8  Odagwa 01/09/2016 Etche 3 

Egberu 01/08/2015 Obigbo 1  Ogale 01/08/2016 Eleme 10 

Ejamah Ebubu 01/06/2015 Eleme 1  Ogale 16/02/2016 Eleme 3 

Ejamah Ebubu 21/02/2015 Eleme 2  Owaza 01/05/2015 Ukwa West 3 

Ejamah Ebubu 01/06/2015 Eleme 1  Owaza 28/05/2015 Ukwa West 11 
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Table 6-3: Specific Number of Polluted and Oil free (Non – Polluted) Sites for the 

Different Landcover 

Class Label Total Number of Sites 

Non – Polluted Cropland 131 

Non – Polluted Grassland 84 

Non – Polluted Tree Cover Areas 124 

Polluted Cropland 148 

Polluted Grassland 79 

Polluted Tree Cover Areas 114 

6.3 Methodology 

6.3.1 Establishing Temporal Variability Using Sentinel 1 Backscatter 

To investigate potential variations of bio-physical properties of vegetation due to oil 

pollution, temporal backscatter profiles were produced for different polluted and oil-

free vegetation types investigated in both VV and VH channel. In addition, mean 

backscatter values were computed for the different vegetation types and finally 

seasonal variability was tested using statistical measures to ascertain if there is 

statistically significant difference between the observed mean seasonal trends. 

6.3.2 Temporal Backscatter Profile 

Furthermore, temporal backscatter descriptors were retrieved to capture the 

predominant vegetation dynamics because of the presence or absence of the impact of 

oil and cross section backscatter values from the representative samples of the six 

vegetation classes evaluated. This had the advantage of showing the upper and lower 

interquartile ranges, as well as highlighting the lowest, highest and median backscatter 

values. 

6.3.3 Mean Backscatter Profile 

Results from the temporal backscatter profile were further condensed to give a 

generalized figure for the respective polluted and oil-free vegetation types. The mean 

backscatter values were computed for the respective polluted and oil-free cropland, 

grassland and TCA sites from the VV and VH channel of the Sentinel – 1. This gave 

a better overview of how vegetation canopy structure changed intermittently and 



 

 

183 

 

varied over the 22 months investigated. Mean backscatter values were considered 

appropriate for this purpose because they represent global averages which can 

effectively capture the characteristics of all the different samples and reduce the effect 

of variance from the upper and lowest return signal. Similarly, Rüetschi et al., (2017) 

have also recommended mean backscatter value to describe and infer dominant 

temporal backscatter trends. However, the rationale behind the use of the mean values 

is that the initial investigation carried out to assess backscatter difference before and 

immediately after spill incident in Ramsey et al., (2015) did not show any significant 

and conspicuous change in backscatter.   

6.3.4 Comparison of Backscatter for Various Targets 

The result of the mean temporal backscatter profile from the polluted and oil-free 

vegetation types were further compared to other land cover types within the study area. 

This included the mean temporal backscatter from built – up areas, bareland and 

waterbody within the study site. This helped in conceptualizing the result of the 

temporal returns from the primary targets (oil-free and polluted-vegetation) in this 

research with results from other land cover components in the study area. 

6.3.5 Assessing Seasonal Variability 

Seasonality plays a significant role in the determination of the health status of 

vegetation (Cissé et al., 2016), as environmental conditions (with respect to soil 

moisture, precipitation and humidity) particular to a specific season can positively 

influence plant growth or negatively influence it through senescence and moisture 

stress. In order to establish if the difference observed in the mean backscatter values 

across different seasons for the polluted and oil-free vegetation are substantial enough 

to infer dependable change in vegetation attributes. The paired samples t – test was 

used to compare the result of the retrieved mean backscatter values for oil-polluted 

with oil-free vegetation in the dry season and in the wet season. A critical value = 0.05 

was used at 95% confidence to infer significant difference in the mean backscatter 

values for the polluted and oil-free vegetation in a particular season assessed. 
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6.3.6 Relationship between Dominant Bio – Physical Characteristics and Temporal 

Backscatter 

To further assess and validate trends of the multi-temporal backscatter characteristics, 

the retrieved mean temporal soil moisture index from SMAP data 

(https://smap.jpl.nasa.gov/data/) and the mean temporal NDVI index from the Terra 

MODIS sensor (https://search.earthdata.nasa.gov/search) were visually compared 

using line plots. This was used to check for temporal variability and analyze for 

seasonal dynamics of vegetation health owing to the impact of oil.  

For an independent assessment of vegetation biophysical characteristics within the 

study area, mean values from separate independent oil-free vegetation sample points 

were used to retrieved temporal NDVI, soil moisture and backscatter (VV – VH) 

values. The temporal NDVI and soil moisture values were then used to establish a 

relationship with the corresponding VV and VH backscatter using least square 

regression. This was done to assess and establish trends, dependencies and agreement 

between the various biophysical factors (soil moisture and NDVI) within a typical 

vegetated area in the study site and their specific relationship to dominant temporal 

backscatter.  

The R2 value from the modelled relationship was used to characterize the dominant 

backscatter against, the soil moisture and NDVI relationships. This provided an avenue 

to compare the result of the retrieved temporal backscatter for the polluted and oil-free 

vegetation types to show if observed temporal backscatter trends are in alignment with 

available optical derived indices, and examine the role of soil moisture condition.  

Emphasis was not given to establishing a similar modelled relationship for both the 

polluted and oil-free sites separately used in this study. This is because of the coarse 

resolution of the data sets, that is, 9km for SMAP soil moisture and 250km for the 

MODIS NDVI. Compared to the 10m spatial resolution used for the derived temporal 

backscatter, as observation may not reflect the actual realities on ground. 

 

https://smap.jpl.nasa.gov/data/
https://search.earthdata.nasa.gov/search
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6.3.7 Multi Seasonal Image Classification (MSIC) 

The multiseasonal image classification (MSIC) followed the image pre-processing of 

the Sentinel – 1 dual polarization (VV and VH), ALOS PALSAR quad polarization 

(HH, HV, VH and VV), the Cosmo Skymed single Polarization (HH) and TanDEM – 

X single polarization (HH) images for the various months of the dry and wet season. 

Both dry and wet season image stack for the aforementioned images were generated 

in the order of Table 6-4 for experimental image classification scenarios.  

The classification operation was on the image subset for the three vegetation types of 

cropland, grassland and TCA to discriminate between polluted and oil-free vegetation 

components. Machine learning Random Forest classifier (3.3.1) and Support Vector 

Machine (3.3.3) were used for the image classification. 

Table 6-4: Showing input data for the different image classification scenario’s 

implemented 

Classification 

Scenarios 

Season Datasets Used Total No. of 

Images 

Scenario – 1 Dry Season Multi-temporal S1 12 

Scenario – 2 Wet Season Multi-temporal S1 30 

Scenario – 3 Wet Season Multi-temporal S1 + ALOS 2 34 

Scenario – 4 Dry Season Multi-temporal S1 + ALOS 2 14 

Scenario – 5 Dry Season Multi-temporal S1 + ALOS 2 + CSM 16 

Scenario – 6 Wet Season Multi-temporal S1 + ALOS 2 + TDX 36 

 

6.3.8 Assessing Classification Accuracy  

The process of classification accuracy was carried out to assess the performance of the 

classification methodologies (RF and SVM) in discriminating between polluted and 

oil-free vegetation types using wet and dry season multifrequency L, C and X band 

SAR images. The data were combined classified separately for different vegetation 

types. Error matrix (Congalton, 1991), was first used to determine the correctness of 

the map generated, by comparing with the 40% reference points for polluted and oil-

free sites (oil-free cropland, oil-free grassland, oil-free TCA, polluted cropland, 

polluted grassland and polluted TCA). Here, emphasis was on the Producers, Users 

and Overall Accuracy.  
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Secondly, the McNemar’s tests (de Leeuw et al., 2006) was also employed to measure 

and assess class predictions errors among the two classifiers and between the various 

seasonal classifications to correctly predict the reference oil-impacted and oil-free 

sites.  

The McNemar's test is a nonparametric test based on 2 using  a 2 x 2 contingency 

matrix to assess the performance of multiple classifier outputs based on the number of 

correctly predicted samples. The accuracies were considered as statistically significant 

at a confidence level of 95% if the calculated 2 (from equation 18) is larger than the 

critical value of 2.5. The samples are labelled as f12 and f21 which represents the 

correctly classified samples by a particular scenario (e.g. sc1) that were misclassified 

by sc2, and the number of correctly classified samples for sc2 that were misclassified 

by sc1, respectively (Whyte et al., 2018).  

 

𝑋2 =
(𝑓12−𝑓21)2

𝑓12+𝑓21
                                                                   (18) 
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6.4 Results 

6.4.1 Temporal Sentinel – 1 VV – VH Backscatter 

The temporal VV – VH backscatter for the polluted and oil-free vegetation types is a 

representation of the dominant characteristics of the reflective surface illuminated by 

the Radar sensor. This was obtained from the single monthly Sentinel – 1 single look 

complex (SLC) image from April 2015 to December 2016 (i.e. 22 months), allowing 

for reasonable deductions such as: the maximum, minimum and mean temporal 

backscatter values for individual vegetation types to be assessed.       

 Cropland 

Retrieved VH backscatter values from the polluted and oil-free cropland vegetation 

have similar scattering tendencies (Figure 6-4a and 6-4b). Backscatter from the 

polluted and oil-free vegetation often ranged between -17 and -13dB in the late spring 

month of March and the summer month of August. The signals in the VH channels 

from the two cropland vegetation were observed to attenuate from the early winter and 

generally reached their minimum in the late winter. Backscatter ranges in this case was 

between -20 and -14. In addition, the median backscatter values for oil-free cropland 

in both the VV and VH channels were observed to be much higher than those of the 

polluted cropland vegetation.     

The retrieved backscatter values from the VV channel for polluted and oil-free 

cropland vegetation (Figure 6-4b), show that backscatter strength from this channel is 

higher than the VH channel for both polluted and oil-free cropland. Backscatter values 

were slightly different between the two targets, owing to the wider range and intra 

backscatter variation in polluted cropland vegetation compared to the oil-free 

cropland. 

Backscatter for polluted cropland were observed to range between -11 and -6 during 

the late spring month of March. These generally reached their peak in the summer 

month of August and thereafter a decline in the backscatter strength followed. 

Generally, low backscatter returns were recorded in the winter months of November, 

December through to February and often ranged between -14 and -7. For oil-free 

cropland vegetation, results show that backscatter in the late spring month of March 
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ranged between -12 and -6; and this gradually rose to -7 and -5 during the peak summer 

period of August, before a steady decline was observed in September through into the 

winter months of October and November. Low backscatter values were also recorded 

during the winter period for the oil-free cropland vegetation, which was slightly 

different to the polluted cropland; the backscatter range in this case was between -14 

and -8dB. 
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                                                                (a)                                                           (b) 

Figure 6-4: Box plot showing the multi-temporal sentinel – 1 backscatter distribution of Polluted and Oil free (Non – Polluted) Cropland. (a) 

VH Channel (b) VV Channel 
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 Grassland 

Figure 6-5a presents the result of the multi-temporal VH backscatter for polluted and 

oil-free grassland vegetation. This shows a slight difference from the cropland VH 

backscatter. The backscatter in this case showed little multi-temporal variability across 

the months assessed. Backscatter for polluted grassland often ranged between -13 and 

-17dB at the beginning of the year (during the spring month of March), which largely 

remained same throughout most parts of the spring and summer months. It was also 

observed that the VH backscatter strength gradually declined from early winter month 

of November and generally reached its minimum in the month of February. Minimum 

backscatter in the winter months for this vegetation type ranged between -19 and -17 

at the peak of winter.  

However, for oil-free grassland, the results showed meaningful variability in the 

strength of retuned backscatter across the 22 months assessed, mostly accounted for as 

a result of the close values across multiple sites. Backscatter values often ranged 

between -16 and -13 in the early spring month of April and generally reached its peak 

scatter intensity in the late summer month of October. Minimum backscatter values 

were between -20 and -14 in the winter months of January and February.        

Figure 6-5b presents the result of the multi-temporal backscatter from the VV channel 

for the Polluted and Oil-free grassland vegetation. This shows that there is a huge 

contrast between retrieved backscatter values for Polluted and Oil-free grassland 

vegetation. While oil-free grassland showed meaningful multi-temporal seasonal 

variance in VV backscatter, the polluted grassland showed little variability. In 

addition, backscatter intensity values were substantially higher in the VV channel 

compared to the VH channel for grassland, and median backscatter value for oil-free 

grassland vegetation is much higher than the corresponding polluted grassland 

vegetation. Backscatter often ranged between -10 and -7 at the beginning of the year 

during the late spring period of March and mostly reached saturation and maximum 

return in the summer month of September. 
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(a)       (b) 

Figure 6-5: Box plot showing the multi-temporal sentinel – 1 backscatter distribution of Polluted and Oil free (Non – Polluted) Grassland. (a) 

VH Channel (b) VV Channel 
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Backscatter in this case ranged between -7 and -5 during the peak summer period, 

before a gradual decline in backscatter strength began in October and generally 

reached its minimum in February. Minimum backscatter also ranged between -14 and 

-10. In contrast, polluted-grassland was observed to have backscatter range of between 

-10 and -6 in the early spring period of April and generally reached its peak intensity 

in the summer month of August with a maximum backscatter range of -9 and -7. 

Minimum backscatter values were between -15 and -11dB in the winter months of 

January and February.  

 Tree Cover Areas 

The result for the retrieved multi-temporal VH backscatter for tree cover area 

vegetation is presented in Figure 6-6. Multi-temporal trends observed in this case were 

somewhat similar to the result obtained for grassland vegetation in the VH channel. 

Figure 6-6 shows that the polluted TCA had little multi-temporal variance across the 

months assessed. Backscatter often ranged between -14 and -8dB in the early months 

of March and remained largely same throughout the subsequent months. Variations as 

a result of seasonality is not as pronounced as was observed with the grassland and 

cropland vegetation.  

In contrast, however, the result obtained for oil-free TCA in the VH channel showed 

high temporal variability. Backscatter ranges in the early spring month of March were 

between -16 and -12. Backscatter strength was highest in the summer month of 

September, before a decline was observed as the dry winter period set in. Minimum 

retrievals were between -17 and -14 in the peak of the winter month of February.  
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                                                             (a)                                                  (b) 

Figure 6-6: Box plot showing the multi-temporal sentinel – 1 backscatter distribution of Polluted and Oil free (Non – Polluted) Tree Cover 

Areas. (a) VH Channel (b) VV Channel 
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Figure 6-6b presents the result of the temporal VV backscatter for the polluted and oil-

free TCA vegetation. The VV returns for the polluted-TCA shows considerable 

dissimilarity when compared with the result obtained in the VH. The result show that 

there is more temporal variance, suggesting the effect and influence of seasonality in 

the backscatter return for the polluted-TCA. In addition, backscatter strength was 

much higher in the VV channel as was the case with cropland and grassland vegetation, 

compared to the low VH backscatter values. Backscatter often ranged between -9 and 

-6 decibel in the early spring period and this gradually rose to reach peak backscatter 

return in the summer month of August. Similarly, as the autumn and winter months set 

in, the backscatter values are observed to decline accordingly, until a minimum 

backscatter return range of -14 and -7 is reached. This result tends to be similar to the 

oil-free TCA vegetation, where backscatter range is between -10 and -5dB in the early 

spring months, and also gradually increases to attain peak backscatter intensity values 

in the summer months.  

6.4.2 Mean Temporal Backscatter Profile 

The mean temporal backscatter profile shows the average backscatter from the 

sampled sites of polluted and oil-free cropland, grassland and tree cover areas for 

individual months from April 2015 through to December 2016. This allowed for 

general comparison to be made of the dominant vegetation characteristics within the 

respective polluted and oil-free vegetation types. In addition, mean values of polluted 

and oil-free cropland, grassland and tree cover area that fell within the corresponding 

wet season (March to October) and dry season (November to February) were analyzed 

for seasonal differences. Here, pairwise comparison of backscatter values for polluted 

and oil-free vegetation were tested using paired sample t-test to test for difference in 

means for specific season (i.e. wet or dry) at a 95% confidence interval. This allowed 

for conclusive deductions to be made regading the characteristics of oil-free and oil-

polluted vegetation within a particular season.     

6.4.2.1 Cropland 

The results of the mean temporal VV and VH backscatter for polluted and oil-free 

cropland is presented in figure 6-7a. This figure shows that during the spring month of 

April (in the early rainy season), mean temporal backscatter values for polluted and 

oil-free cropland are marginally separable in the VH channel. Separability between 
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oil-free and polluted cropland however gradually increased as the rainfall season 

progressed through the months of June, July and August, to the peak rainfall summer 

month of September. Disparity between the means of polluted and oil-free cropland 

trend continued into the early dry season months of October, November and 

December. However, in the peak of the winter (dry) season months of February and 

March, mean temporal backscatter from oil-free and oil-polluted cropland became 

inseparable in the VH channel until April of the preceding year, before mean 

backscatter became separable. Result of the paired samples t – test showed that the 

difference in the mean VH backscatter values for polluted and oil-free cropland during 

the dry season is not significant (P>0.05). While the t – test showed that the difference 

in the mean temporal VH backscatter values in the summer period for polluted and oil-

free cropland is significant (P<0.001). 
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 (a)                                                       (b) 

Figure 6-7: Mean temporal backscatter values for Polluted (maroon coloured line) and Oil free (Non – Polluted) Cropland vegetation (green 

coloured line). (a) VH Channel (b) VV Channel. The figure indicates that mean backscatter values for polluted cropland is significantly lower 

than the mean backscatter of oil-free cropland vegetation during the rainy/summer season in the VH channel. While in the dry/winter season, the 

difference is not statistically significant. In the VV channel the difference between the polluted and oil free cropland are significantly different 

throughout both wet and dry season. 
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The result obtained in the VV channel shows a huge contrast to the result obtained in 

the VH channel. Figure 6-7b shows that polluted and oil-free cropland vegetation 

remained highly separated for most part of the wet and dry season. Result of the paired 

sample t – test showed that the difference in mean temporal backscatter between 

polluted and oil-free cropland vegetation in the two seasons investigated were 

significantly different (P>0.001). 

6.4.2.2 Grassland 

The results for the comparison of the mean temporal VV and VH backscatter values 

for the polluted and oil-free grassland vegetation are presented in Figure 6-8. This 

figure shows that there is high mean temporal backscatter separability between 

polluted and oil-free grassland in VH channel. This is also reflected in the paired 

sample t – test result, which showed that the difference between polluted and oil-free 

grassland vegetation in the summer (wet) season is statistically significant (as P value 

= 0.003). In contrast, result obtained for the winter (dry) season showed very little to 

no separability as the t – test result showed that the difference in mean VH backscatter 

between polluted and oil-free grassland is not significant (as P value = 0.608).  

Trends observed in the VV channel are not different from the observations in the VH 

channel for polluted and oil-free grassland. At the start of the spring of 2015, mean 

VV backscatter of polluted and oil-free grassland were observed to exhibit 

conspicuously high degree of separability and this trend was largely sustained through 

the summer – wet season. However, in the onset of the autumn and further into the dry 

(winter) season, backscatter strength gradually reduced until the signal from both 

polluted and oil-free grassland became inseparable. Results of the paired sample t – 

test also affirmed that the difference in mean VV temporal backscatter (between 

polluted and oil-free grassland) in the dry (winter) season is slightly significant (with 

P value = 0.034). In addition, the result of the paired sample t – test showed that the 

difference in mean temporal VV backscatter retrieval between polluted and oil-free 

grassland in the wet (summer) season is statistically significant. 
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           (a)             (b) 

Figure 6-8: Mean temporal backscatter profiles for Polluted (maroon coloured line) and Oil free (Non – Polluted) Grassland vegetation (green 

coloured line). (a) VH Channel (b) VV Channel. The figure also indicates that mean backscatter values for polluted grassland and oil-free 

grassland is significantly different during both the rainy/summer season in both VH and VV channel. While in the dry/winter season, the 

difference between the polluted and oil free grassland vegetation is not significantly different throughout. 
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6.4.2.3 Tree Cover Areas 

The result of the mean temporal VV and VH backscatter for polluted and oil-free TCA 

is presented in Figure 6-9. This showed that the mean VH temporal backscatter 

between polluted and oil-free TCA exhibited little to no separability both in the dry 

(winter) and wet (summer) seasons. Results from the paired sample t – test also 

confirmed this position as P values (P>0.804 and P>0.720 were obtained for the dry 

winter and wet summer seasons respectively) did not record any significant difference. 

Similar characteristics were also observed for the mean temporal VV backscatter, as a 

rather unstable mean temporal scatter trend was observed for both polluted and oil-

free TCA, although, the t – test was significant for the VV channel. 

However, it is observed that the mean scattering trend was largely influenced by 

seasonal variations, as maximum scattering values for both polluted and oil-free TCA 

reached their respective peak values during the summer (wet) season, while minimum 

scattering values were observed during the dry (winter) season. The paired sample t – 

test result showed that the difference between the mean VV temporal backscatter of 

polluted and oil-free TCA vegetation is not significant in the dry (winter) season (P 

value = 0.296 was recorded). However, the results of the t – test showed that the 

difference in mean VV temporal backscatter between the two TCA vegetation was 

slightly significant (as P value = 0.044 was obtained) in the dry – summer season.   
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(a)           (b) 

Figure 6-9: Mean temporal backscatter values for Polluted (maroon coloured line) and Oil free (Non – Polluted) Tree Cover Area vegetation 

(green coloured line). (a) VH Channel (b) VV Channel.  Results did show any significant difference between polluted and oil free TCA in both 

dry and wet season in both the VH – VV channel 
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6.4.3 Comparison with other Land cover types 

Figure 6-10 shows line plots of other land cover features (built-up areas, bare land and 

waterbody) including the oil-free and oil-polluted vegetation in the VV and VH 

channel. This showed that the vegetation generally has a more distinct temporal 

backscattering pattern, suggesting the influence of seasonality in the backscatter 

strengths in both VV and VH channel. Most of the vegetation showed that backscatter 

is much higher during the summer – wet season than in the winter – dry season. The 

backscatter range of vegetation is often between -18 and -13dB in the VH channel. In 

addition, the backscatter range for bare land ranged between -11 and -12 for most part 

of the year, while waterbodies had the lowest and an uncommon backscatter range of 

-18 and -22 for most part of the year in the VH channel. Built-Up areas had the highest 

backscatter values in the VH channel, which ranged from -13 and -10dB for the entire 

year. These observation agree with previous research (Cable et al., 2014).  

However, in the VV channel (Figure 6-10b) backscatter values are much higher in 

strength than the VH channel. The reason for this is not farfetched, as several studies 

and investigations have posited that returns from co-polarized SAR backscatter 

feedback are usually higher than those of cross polarized backscatter (Mitchard et al., 

2011). Result obtained in this study show that bare land had much higher backscatter 

of between -6 and -3dB than most of the other features in the study area. It is also 

observed that the temporal VV backscatter for bare land is slightly influenced by 

seasonality, as backscatter strength slightly reduced during the winter months. 

Waterbodies also had the lowest backscatter range of -18 and -16dB for most parts of 

the year, while built-up areas had optimal temporal VV backscatter ranging between -

8 and -6dB. With respect to the various vegetation types, results from the temporal 

profile show that there is a distinct temporal characterization of most oil-free and oil-

polluted vegetation, as temporal backscatter for the former tends to be meaningfully 

lower than the initial’s values. However, oil-polluted TCA had a much higher temporal 

backscatter in comparison with the other oil-polluted vegetation. This certainly 

suggests a huge potential for the use of multi-temporal backscatter for terrestrial oil 

spill monitoring. 
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(a)   

 

(b) 

Figure 6-10: Mean temporal backscatter profile for the respective Polluted and Oil-

free vegetation cover types, compared to other land cover types (i.e. built – up areas, 

bare land and waterbody). (a) VH Channel (b) VV Channel. 
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6.4.4 Relationship between Biophysical factors and Backscatter  

6.4.4.1 MODIS NDVI 

Results of the temporal MODIS NDVI for polluted and oil-free vegetation as presented 

in Figure 6-11 show that all of the six vegetation types (i.e. oil-free and polluted, 

cropland grassland and TCA) have similar temporal trends. In general, the mean 

retrieval of vegetation greenness is largely characterized by low NDVI values in the 

months of August and February across the different vegetation types, while high 

greenness values are recorded in the months of May and October.  

 

Figure 6-11: Line plots of retrieved MODIS NDVI for both polluted and oil free 

range of vegetation; the green coloured line represents the mean temporal value.  
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High mean NDVI values of up to 0.8 were often recorded in the peak vegetation 

greening month of October, while high values of up to 0.7 are recorded during the 

early growing summer month of May. Conversely, the lowest mean NDVI greenness 

values of 0.3 were often recorded in the peak of the rainy season months of August, 

compared to the much improved low values of 0.5 recorded at the peak of the winter 

(dry) season of February.     

6.4.4.2 SMAP Soil Moisture 

Results of the temporal soil moisture index as retrieved from the SMAP data are 

presented in Figure 6-12. The results show considerable differences from the temporal 

NDVI values. However, certain uniquely similar seasonal trends are peculiar between 

observed soil moisture and vegetation growth. In general, soil moisture values ranged 

from as low as 0m3 to 0.6m3 across the six vegetation types. However, the computed 

mean moisture index varied between 0.2m3 and 0.4m3 within the peak of the rainy 

(summer) season of July, August and September, while the lowest moisture index was 

often recorded in the peak of dry (winter) season of December through to February. 

Temporal trends showed that of the six vegetation types investigated, oil-free (non – 

polluted) cropland, grassland and TCA had better alignment with the seasonal rainfall 

trends of the Niger delta as observed by Adejuwon, (2012), where high rainfall are 

recorded in the months of July through to September and low rainfall dominates 

between the months of November through to February. This particularly explains why 

most of the observations (believed to be intense rainfall, flooding or runoff) are well 

situated within the rainy season of July through September, while the months of 

November through March are characteristically smoother. 
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Figure 6-12: Line plots of retrieved SMAP soil moisture for both polluted and oil free 

range of vegetation; the brown coloured line represents the mean temporal value. 

6.4.5 Relationship between Temporal NDVI, Soil Moisture and Backscatter 

Figure 6-13 presents the result of the least square regression comparing the temporal 

VV and VH backscatter with corresponding NDVI and Soil moisture. This shows that 

temporal VV and VH backscatter from vegetation across the study area are in 

agreement with the temporal NDVI retrievals. This is as indicated by the high R2 values 

of 0.715 and 0.712 obtained from the VH and VV backscatter respectively. The results 

also showed that a rather weak agreement exist between the backscatter and the SMAP 

soil moisture. In this case, the R2 value from the VV channel (0.252) is observed to be 

much higher than those of the VH channel (0.117). In general, it is particularly 
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observed that the VH backscatter have a slightly and negligible higher R2 value with 

the NDVI. This is however expected as most feedback from the cross polarization 

channel has a more shallow depth penetration and greater interaction with vegetation 

canopy, branches and trunks causing a double bounce scatter and consequently 

capturing much of the variability in the vegetation canopy.  

Similarly, it is also observed that the R2 value for the VV channel Vs soil moisture is 

slightly higher than the R2 value (0.117) for the VH channel Vs soil moisture. The 

reason for this is also premised on the fact that most SAR co-polarization (i.e. VV and 

HH) returns have greater penetration into vegetation canopy with double bounce 

scatter, capturing much of the variability below the canopy layer and the consequent 

soil moisture condition. 

 

    (a)        (b) 

Figure 6-13: Mean Temporal Soil Moisture and MODIS NDVI Retrieved from study 

area vegetation modelled against Backscatter in VV and VH Channel (a) NDVI (b) 

Soil Moisture 

6.4.6 RF and SVM Classification of Multi-temporal, Multi-frequency and Multi-

seasonal SAR images 

Table 6-5 shows the various multi-frequency L, C and X band SAR data combinations 

according to the season they were acquired. The dataset were integrated and 

formulated into a number of experimental image classification scenarios. Six different 

scenarios were implemented in this analysis: 3 wet seasons scenarios and 3 dry season 

scenarios. Scenario 1 and 2 are single (C-Band) frequency dry and wet season image 
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classification, while scenario 3 and 4 are dual frequency (L and C) band wet and dry 

season classification. The last two scenarios of 5 and 6 represents multiple frequency 

(L, C and X) band SAR dry and wet season classification. In addition, the wet season 

image classification scenario’s had higher number of images as they represent the 

longest season (between March to October). While conversely, the dry season image 

scenarios had fewer images due to the short duration (i.e. between November to 

February) of the season. The overall classification accuracy from the six experimental 

image classification scenarios for cropland, grassland and TCA vegetation are shown 

in Table 6-6 below. 

Table 6-5: Input data for the different image classification scenario’s implemented 

Classification 

Scenarios 

Season Datasets Used Total 

No. of 

Images 

Scenario – 1 Dry Season Multi-temporal S1 12 

Scenario – 2 Wet Season Multi-temporal S1 30 

Scenario – 3 Wet Season Multi-temporal S1 + ALOS 2 34 

Scenario – 4 Dry Season Multi-temporal S1 + ALOS 2 14 

Scenario – 5 Dry Season Multi-temporal S1 + ALOS 2 + CSM 16 

Scenario – 6 Wet Season Multi-temporal S1 + ALOS 2 + TDX 36 

 

Table 6-6: Shows the Overall Classification Accuracy (OA). The overall accuracy 

measures the correctness of the map class to the total ground truth used for validation.  

Cropland Grassland TCA 

Classification  

Operations 

RF 

OA (%) 

63.7 

71.7 

82.3 

63.7 

68.1 

71.7 

SVM 

OA (%) 

58.4 

67.3 

80.5 

64.6 

65.5 

74.3 

RF 

OA (%) 

60.3 

60.3 

59 

59 

61.5 

59 

SVM 

OA (%) 

62.8 

62.8 

66.7 

65.4 

65 

61.5 

RF 

OA (%) 

64.8 

67 

71 

60.4 

62.6 

74.7 

SVM 

OA (%) 

52.8 

61.5 

62.8 

52.8 

52.8 

67 

Dry/Sc - 1  

Wet/Sc - 2 

Wet/Sc - 3 

Dry/Sc - 4 

Dry/Sc - 5 

Wet/Sc - 6 
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Results indicates a high overall accuracy (OA) for cropland vegetation when the wet 

season Sentinel 1 (VV and VH) image stack are classified in scenario 2, compared to 

the low overall accuracy obtained when the dry season Sentinel 1 (VV and VH) image 

stack was classified in scenario 1. The best output for multi-temporal Sentinel – 1 

(single frequency) image to discriminate between polluted and oil-free cropland 

vegetation was obtained with the random forest classifier in scenario 2. An overall 

accuracy of 71.7% was obtained, while an OA of 67.3% was obtained when the 

Support Vector Machine classifier was used for the same classification.  

In grassland areas, results obtained from the multi-temporal Sentinel – 1 (single 

frequency) image classification (i.e. for both dry and wet season) were same across the 

different classifiers used. Overall accuracies of 62.8% OA was obtained for both the 

SVM and RF classifier outputs. In the TCA, the result obtained from the confusion 

matrix shows that the best OA result of 67% was obtained when the random forest 

classifier was used to classify the multi-temporal Sentinel – 1 (single frequency) image 

stack of scenario 2. An OA of 64.8% was also obtained when the dry season multi-

temporal Sentinel – 1 (single frequency) image stack was classified for TCA. The best 

SVM result was obtained in the wet season stack classification with OA of 61.5%.  

The integration of the L-Band ALOS PALSAR 2 with the single frequency multi-

temporal Sentinel – 1 VV VH in the third (Sc3) and fourth (Sc4) scenarios led to 

substantial improvement in classification accuracy. In the wet season (scenario – 3), 

classification accuracy for cropland increased to 82.3% OA when the RF classifier was 

used for the classification. Similar improvement was recorded with the SVM classifier 

as OA increased from 67.3% to 80.5%. Result obtained for grassland vegetation 

classification also showed an improvement with the incorporation of the L – Band 

ALOS PALSAR 2 wet season images. The best OA result of 66.7% and 33.1% was 

obtained when the SVM classifier was used for the grassland classification, while a 

low OA of 59% was obtained with the RF classifier. In addition, the classification 

accuracy of TCA was also observed to have improved, as an OA result of 71% was 

obtained when the RF method was used to classify the multitemporal Sentinel – 1 and 

ALOS PALSAR (L and C band) wet season image stack.  

In contrast, however, the integration of the L-Band ALOS PALSAR 2 dry season 

images did not improve classification accuracy as was observed with the wet season. 
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The best OA result of 64.6% was obtained for cropland when the SVM classifier was 

used to classify the multitemporal Sentinel – 1 and ALOS PALSAR 2 (L and C band) 

stack. For grassland, the best OA result of 65.4% was obtained with the SVM 

classifier; while for TCA 60.4% was obtained with the RF classifier. This represented 

a reduction of nearly 10% in overall accuracy when compared to the result of scenario 

– 3 where the wet season L – Band images were integrated with the wet season C – 

Band SAR.  

Furthermore, attempt was made to integrate X - band SAR image from Cosmo Skymed 

and TanDEM – X into the Dry and Wet Season Sentinel – 1 and ALOS PALSAR 

combinations (previous scenarios). This only successfully improved classification 

accuracy for TCA in the wet summer season in scenario - 6. An OA result of 74.7% 

was obtained using the RF classifier, representing nearly 5% improvement from the 

initial 71% OA obtained in scenario 3. Additionally, cropland dry season image 

classification also saw an improvement by almost 5% following the incorporation of 

the Cosmo Skymed (X-Band SAR) images. An overall accuracy assessment result of 

68.1% was obtained with the RF classifier, compared to the best result obtained in 

scenario 1 and 4 dry season (i.e. OA 63.7%). Figure 6-14, 6-15 and 6-16 shows the 

result of the various experimental image classifications.  

In addition, the results from the McNemar test are presented in Table 6-7, 6-8 and 6-

9, for cropland, grassland and TCA respectively. These tables were used to compare 

the performance of individual image combinations based on SAR frequency, the 

season undertaken and the classification methodology employed and against the 

number of samples correctly or incorrectly assigned to the respective polluted and oil-

free vegetation ground reference samples. 
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Figure 6-14: Image Classification Result Using Random forest and Support Vector Machine for Cropland Vegetation 



 

 

211 

 

 

Figure 6-15: Image Classification Result Using Random forest and Support Vector Machine for Grassland Vegetation 



 

 

212 

 

 

Figure 6-16: Image Classification Result Using Random forest and Support Vector Machine for Tree Cover Area vegetation 
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The statistical comparison of the corrected predict reference points against the wrongly 

assigned class reference in the various classification scenarios of the McNemar Test is 

presented in Table 6-7, 6-8 and 6-9.  

This shows that the use of the wet season images with the Random forest classifier 

gave a better classification accuracy when compared with the result obtained from the 

dry season image classification using both the random forest and support vector 

machine.  

In cropland areas, the result of the McNemar Test showed that the use of wet season 

multitemporal Sentinel – 1 VV VH and ALOS PALSAR 2 images (Sc2) improved 

overall classification accuracy and significantly outperformed the result obtained from 

classifying the Sentinel 1 VV VH (single frequency) dry season images. This gave the 

highest Z – value of 14.0 and 19.3 respectively when SVM and RF were used for the 

classification.  Similarly, the use of the wet season multitemporal Sentinel – 1 and 

ALOS PALSAR 2 product significantly outperformed the dry season multi-frequency 

(L, C and X band) SAR stacked image classification for polluted and oil-free cropland 

discrimination. In addition, the use of the wet season multi-frequency (L, C, and X 

band) SAR stacked product using both RF and SVM significantly outperformed most 

of the dry season experimental scenarios in Scenario 1, 4 and 5 for cropland. 

In grassland areas, the result of the McNemar test showed that the incorporation of the 

wet season L – Band ALOS PALSAR 2 and multitemporal Sentinel 1 images 

significantly outperformed most of the other classification scenarios. The most 

significant difference was the comparison between the aforementioned and the Dry 

season Sentinel 1 VV VH multi-temporal image pair (scenario 1) with Z – Value of 

3.27. However, in general the result for grassland areas did not show as much 

variability as the cropland classification. This can be attributed to the general low 

performance of the classification scenarios as depicted by the overall classification 

accuracy.  
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In TCA, the result showed that the integrated use of wet season multi-frequency (L, C 

and X band) SAR data using the random forest classifier outperformed most of the 

other scenarios. It was observed that this scenario (Scenario – 6) outperformed most 

of the other scenarios by a greater margin, largely due to the 15% improvement 

recorded in the overall classification accuracy between the last scenario (scenario 6) 

tested against all other classification scenarios implemented.  

Furthermore, the results have also shown that random forest classifier had the highest 

number of best results as evident from the overall classification accuracy and the 

McNemar test Z – score. 
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Table 6-7: McNemar Test of statistical significance between the various results comparing the Multi-temporal/Multi-frequency SAR 

Classification Using Random forest and Support Vector Machine in Cropland Areas 

Code SVM_Sc1 RF_Sc1 SVM_Sc2 RF_Sc2 SVM_Sc3 RF_Sc3 SVM_Sc4 RF_Sc4 SVM_Sc5 RF_Sc5 SVM_Sc6 RF_Sc6 

SVM_Sc1 0 1.25 2.13 5.93 14.045 19.3 4 2.72 6.13 5.3 9 6.32 

RF_Sc1  0 0.26 2.06 8.31 13.8 0 0.17 0.06 2.3 4.03 2.21 

SVM_Sc2 
  

0 0.76 7.84 8.3 0.12 0.03 0.03 0 3.1 1.7 

RF_Sc2 
   

0 1.94 0.03 1.75 1.88 1.33 0.38 0.31 0.17 

SVM_Sc3 
    

0 0.06 8.5 6.6 7.3 4.5 1.44 2.533 

RF_Sc3 
     

0 13 11.17 11.17 8.7 2.37 5.04 

SVM_Sc4 
      

0 0 0 0.267 3.23 1.88 

RF_Sc4 
       

0 0.07 1.33 3.12 1.57 

SVM_Sc5 
        

0 0.27 2.9 1.44 

RF_Sc5 
         

0 0.64 0.41 

SVM_Sc6 
          

0 0.31 

RF_Sc6 
           

0 
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Table 6-8: McNemar Test of statistical significance between the various results comparing the Multi-temporal/Multi-frequency SAR 

Classification Using Random forest and Support Vector Machine in Grassland Areas 

Code SVM_Sc1 RF_Sc1 SVM_Sc2 RF_Sc2 SVM_Sc3 RF_Sc3 SVM_Sc4 RF_Sc4 SVM_Sc5 RF_Sc5 SVM_Sc6 RF_Sc6 

SVM_Sc1 0 0.05 0.3 0.32 2.8 0.16 1.53 0.16 1.16 0.64 3.2 0.24 

RF_Sc1  0 0.32 0.03 2.12 0 0.83 0.04 0.55 0.16 0.31 0 

SVM_Sc2 
  

0 0.07 0.13 0.15 0.07 0.267 0 0 0 0.15 

RF_Sc2 
   

0 0.6 0 0.75 0 0.36 0 0 0 

SVM_Sc3 
    

0 3.27 0 1.04 0.35 0.35 0.45 3.06 

RF_Sc3 
     

0 0.55 0.45 0.32 0 0.05 0.83 

SVM_Sc4 
      

0 1.23 0 0.36 0.14 0.6 

RF_Sc4 
       

0 1.46 0.25 0.19 0 

SVM_Sc5 
        

0 0.1 0.036 0.35 

RF_Sc5 
         

0 0 0.05 

SVM_Sc6 
          

0 0.07 

RF_Sc6 
           

0 
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Table 6-9: McNemar Test of statistical significance between the various results comparing the Multi-temporal/Multi-frequency SAR 

Classification Using Random forest and Support Vector Machine in Tree Cover Areas 

Code SVM_Sc1 RF_Sc1 SVM_Sc2 RF_Sc2 SVM_Sc3 RF_Sc3 SVM_Sc4 RF_Sc4 SVM_Sc5 RF_Sc5 SVM_Sc6 RF_Sc6 

SVM_Sc1 0 5.3 1.17 2.75 0.02 0.02 0.25 2.4 0.125 3.76 3.51 7.9 

RF_Sc1  0 0.11 0.03 1.02 1.31 5.26 0.9 5.88 0.13 0.03 2.06 

SVM_Sc2 
  

0 1.23 0.88 0.66 1.225 0 2.75 0.103 1.45 6.72 

RF_Sc2 
   

0 2.63 3.51 3.51 0.88 3.51 0.63 0 0 

SVM_Sc3 
    

0 2.12 0 0.57 0 0.55 3.18 7.54 

RF_Sc3 
     

0 0.085 0.76 0.02 0.74 2.7 8.31 

SVM_Sc4 
      

0 2.12 0.17 3.77 3.51 9.5 

RF_Sc4 
       

0 2.12 0.5 0.66 3.89 

SVM_Sc5 
        

0 4.27 3.51 4.45 

RF_Sc5 
         

0 0.43 2.86 

SVM_Sc6 
          

0 2.12 

RF_Sc6 
           

0 
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6.5 Discussion 

This Chapter set out to investigate the potential of multi-temporal backscatter analysis to 

infer the primary response of vegetation (based on SAR backscatter sample mean 

difference) affected by oil pollution. Secondly, the chapter inferred secondary attributes 

to determine the spatial extent of the oil-free and polluted vegetation through a random 

forest and support vector machine classification, with particular emphasis on seasonal 

difference. The results show that retrieved temporal backscatter profiles generated from 

the 2015 – 2016 images using oil-free and polluted sample points for cropland, grassland 

and TCA vegetation indicate that vegetation exhibits similar temporal behaviors in terms 

of response to seasonal effects.  

Similarly, the inter-quartile range and median values for oil-free vegetation were much 

higher across temporal scale and evolution when compared to the polluted vegetation. 

However, mean descriptors for cropland and grassland vegetation were largely similar, 

as they both depicted higher separability in the wet (summer) season than the dry (winter) 

season. In addition, results of the paired sample t-test showed that the difference was 

statistically significant (P<0.05) for cropland and grassland.  

In contrast, results obtained for TCA showed little separability between oil-free and 

polluted TCA vegetation in both wet and dry season in the VH channel. However, during 

the wet season the VV channel separability was observed to be marginal as P value of 

0.04 was obtained. A possible reason for this trend might be the fact that both cropland 

and grassland vegetation are mostly shrub vegetation types, where water stress and 

senescence during the dry (winter) season can profoundly affect their structural condition 

(both polluted and the oil-free components) making them exhibit similar structural and 

biochemical deficiencies to a typical oil-polluted site. This increases the likelihood of 

lower backscatter return in the dry season. In contrast, in the dense woody TCA 

vegetation, they are predominantly deciduous broad-leafed vegetation types and hence 

little separability is observed especially in the VH channel.  

The general seasonal traits observed in this study is similar and agrees with results 

obtained in a number of research (Betbeder et al., 2014; Gao et al., 2018; Laurin et al., 

2018; Rüetschi et al., 2017; Vreugdenhil et al., 2018) using Sentinel 1 data. Additionally, 

studies carried out by Osunmadewa et al. (2018) in the spatio-temporal analysis of 

vegetation phenology using AVHRR NDVI in the southern part of Nigeria also showed 
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that annual rainfall trend coincided effectively with vegetation growth pattern. As such, 

this is most likely to be responsible for the observed temporal backscatter variations.  

Furthermore, results of the retrieved mean temporal values for the respective oil-free and 

polluted vegetation were compared to the mean temporal values of other features, which 

include waterbody, built-up areas and bare/exposed surfaces. The results obtained 

demonstrated contemporary similar trends as observed in Cable et al., (2014), where 

backscatter return from water are usually lower owing to higher dispersion of incident 

energy as a result of the smooth surface, while built – up areas and exposed surfaces have 

similar characteristic higher backscatter returns in both the co (VV) and cross (VH) 

polarized channels. This is mostly owing to the diffuse scattering surfaces of edges of 

buildings and terrain leading to a double bounce and smooth surface specular reflectance 

respectively. 

In terms of assessment of bio-physical assessment of vegetation attributes as deduced 

from MODIS NDVI and SMAP soil moisture index, the results obtained reinforce the 

notion that the temporal response of vegetation as obtained from the NDVI and soil 

moisture are very much sensitive to seasonal influence. Major low and high vegetation 

health and growth peaks coincided strongly with peak rainfall months (in the month of 

August) and senescence in the winter (dry season) month of February. Further assessment 

showed that lowest mean NDVI was observed in the month of August (rainfall peak 

period) compared to the mean observed in the winter period. This certainly suggests that 

factors such as intense rainfall and concomitant flooding events in most vegetated areas, 

especially within the sampled location could be responsible.  

Results obtained from the temporal soil moisture retrieval also reaffirms this position, as 

more unstable soil moisture variation and feedback are predominant in the rainy season, 

compared to the much smoother feedback in the dry season. In addition, Ologunorisa and 

Adeyemo (2005) have observed that most flooding incidents experienced in the country 

are mostly between the months of July through September, most of which occur around 

states bordering the Niger – Benue River (Ologunorisa, 2004) and the Niger delta region 

where the current study has been implemented. 
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Comparison of SAR based temporal trends with an optical dataset is one of the most 

effective ways of ascertaining the validity of results obtained. This has been demonstrated 

in several studies (e.g. Gao et al., 2018; Gao et al., 2017; Laurin et al., 2018; Lussem et 

al., 2016; Mansaray et al., 2017). The R2 result of the modelled relationship between the 

temporal NDVI and VV – VH backscatter is an indication that observed temporal 

backscatter trends and analysis carried out in this study for polluted and oil-free 

vegetation are in agreement.  

With respect to the multi-temporal, multi-seasonal and multi-frequency image 

classification, the research has demonstrated that the use of wet season multi-frequency 

SAR images for  classification and discrimination of oil-free and polluted vegetation gave 

the best result. Temporal seasonal assessment showed that there is statistically significant 

difference between retrieved backscatter for oil-free and polluted vegetation in the wet 

season compared to the insignificant difference observed in the dry season. Mean 

temporal backscatter for oil-free cropland and grassland were always higher than the 

backscatter for polluted cropland and grassland vegetation. Similarly, the wet-summer 

season is more suitable for plant growth and greenness especially in the mangrove 

ecosystem. This is largely owing to increased precipitation events and concomitant 

increase in soil moisture, which inadvertently leads to increased vegetation net primary 

productivity.  

It is thus, expected that healthy uncontaminated vegetation would record peak 

productivity, more structural viability and greenness during the wet season than a typical 

contaminated vegetation, allowing for better discrimination accuracy. In the dry season, 

in contrast, productivity is expected to be greatly diminished in both healthy and 

contaminated vegetation samples owing to the effect of water stress and unfavorable 

temperature, which may lead to increased senescence, reduced greenness and defoliation 

in both healthy and unhealthy vegetation. The effect of this is that both healthy (oil-free 

vegetation) and contaminated vegetation (as a result of oil pollution) exhibits similar 

structural and spectral characteristics leading to poor separability in the image 

classification.  

Differentiation and classification accuracy for cropland vegetation improved significantly 

with the incorporation of L Band SAR together with the multi-temporal Sentinel – 1 (C 

Band SAR) for the wet season, while in grassland and TCA vegetation the incorporation 
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of multifrequency (L and X Band) SAR led to significant improvement in classification 

accuracy. The results also supports findings from Numbisi et al. (2019) where the use of 

multi – date seasonal SAR and textural measures offered the highest classification 

accuracy.  

In terms of the performance of the classifier used in this chapter, results have shown that 

RF outperformed SVM in most of the scenarios implemented. This is evident from the 

McNemar test implemented, further reinforcing the position of the mean seasonal 

backscatter difference, classification operation (multi-seasonal/multi-frequency 

classification) and more specifically the classifier performance implemented in this study. 

High Z – values were mostly recorded when the combined multi-frequency wet season, 

all three SAR band types and random forest classification was used in the course of the 

classification process.  

The discrimination between polluted and oil-free cropland vegetation recorded the most 

significant highest OA (82.3%) when the multi-temporal/multi-frequency wet season 

images (Scenario – 3) were classified using the random forest method. In contrast, the 

lowest OA (58.4%) was obtained when the SVM classifier was used to classify the dry 

season multi-temporal Sentinel – 1 images (Scenario – 1). This was followed by TCA, 

which also recorded a significant increase in OA (74.7%) when the combined multi-

temporal, multi-frequency wet season (Scenario – 6) images were classified using the RF 

method. Compared to the low OA (60.4%) when the dry season multi-temporal Sentinel 

– 1 and ALOS PALSAR 2 (Scenario – 4) was classified. Overall accuracy assessment 

results obtained for cropland area classification in the wet season were higher than results 

obtained in the 2nd and 3rd analysis chapters (chapter four and chapter five) and certainly 

better than results obtained in other similar studies (e.g. Bianchi et al., 1995a; 

Mahdianpari et al., 2018; Hese and Schmullius, 2009; Van der Werff et al., 2007).   

 However, in grassland areas, the most significant highest classification OA (66.7%) was 

obtained when the wet season multi-temporal Sentinel – 1 and ALOS PALSAR 2 images 

(Scenario – 3) was classified using the SVM.  The lowest OA (59%) was obtained when 

the same dataset was classified with the Random forest classifier, suggesting high 

influence of methodological performance in improving the result over the influence of 

the various input data used. 
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6.6 Summary and Main Findings 

This chapter implemented a novel study of assessing multi-temporal backscatter from 

Sentinel-1 SAR data analysis to infer the primary response of vegetation affected by oil 

pollution. Secondly, the chapter also saw the implementation of multitemporal, 

multifrequency and multiseasonal SAR image classification to infer and determine the 

spatial extent of the oil-free and polluted vegetation using both random forest and support 

vector machine (SVM) methods.  In general, the chapter assessed the effect and influence 

of seasonality in the detection and mapping of oil-polluted vegetation, results of which 

provided new perspectives and fundamental basis and reasons for low discrimination and 

classification accuracy.  

Results of the temporal backscatter profiles show that oil-free and oil-polluted vegetation 

exhibits similar temporal behaviors in terms of response to seasonality. Cropland and 

grassland vegetation had higher separability in the wet (summer) season than in the dry 

(winter) season, while TCA showed little separability in both wet and dry season. 

Furthermore, results from the comparison of mean temporal backscatter values for the 

respective oil-free and polluted vegetation with other features (i.e. waterbody, built-up 

areas and bare/exposed surfaces) showed good agreement with previous literatures, an 

indication that result obtained in this study were valid. Effort to further validate the results 

obtained in this study through the comparison of bio-physical factors (as deduced from 

MODIS NDVI and SMAP soil moisture index) showed that temporal response of 

vegetation as obtained from the NDVI and soil moisture are very much sensitive to 

influence of seasonality as with the results obtained from the multitemporal backscatter. 

Major lows and high vegetation health index values as well as vegetation growth peaks 

coincided strongly with backscatter trends and mildly with soil moisture. 

In terms of the multi-temporal, multi-seasonal and multi-frequency image classification, 

results obtained showed that the implementation of the image classification process in the 

wet season using multi-frequency L and C band SAR images provides a better result tha 

when this is implemented in the dry season. This reinforced the position of earlier findings 

in this research where discriminability is observed to be better in the wet season than the 

dry season, owing to significant backscatter difference in the wet season than in the dry 

season especially for cropland and grassland vegetation. Discrimination and classification 

accuracy for cropland vegetation improved significantly with the integration of L-band 

SAR together with C Band SAR for the wet season, while in grassland and TCA 
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vegetation the incorporation of multifrequency L, C and X Band SAR led to significant 

improvement in classification accuracy. This generally gave the best overall classification 

accuracy of 82.3% for cropland 66.7% for grassland and 75% for TCA vegetation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

224 

 

 

 

 

 

 

 

 

 

Chapter 7 : Summary, Conclusion, 

Limitations and Possibilities for Future 

Research 

 

 

 

 

 

 

 

 

 



 

 

225 

 

7.1 Introduction 

This section discusses and summarizes the results obtained in the analysis Chapters (i.e. 

Chapters 4, 5 and 6), which focused on evaluating the potential of optical variables, 

integrated optical – SAR variables and, multi-temporal – multi-frequency SAR 

respectively, with machine learning (Random forest, Fuzzy forest and Support Vector 

Machines) methods. This were used to discriminate between oil-polluted and oil-free 

cropland, grassland and tree cover areas. The chapter highlights the important findings 

that emanated in the course of this research, stressing the contribution to the existing body 

of knowledge within the specific aspect of terrestrial oil spill remote sensing. The chapter 

also highlights the summary findings related to the various research questions, the 

limitations encountered in the course of this research and finally areas of possible future 

work.  

7.2 Summary Discussion 

This research explored the capability of a range of remote sensing data and new 

methodologies for detecting terrestrial oil pollution. It was evident from Chapter 4 that 

the discrimination of oil-polluted and oil-free vegetation types yielded better results when 

vegetation types are assessed separately as opposed to when entire images with all land 

cover features are assessed at once. This formed the rationale for the subsequent use of 

this image processing technique (i.e. at the micro – scale level of the different vegetation 

types) for the optical – SAR variable integration (using FF and RF) and the multi-

temporal – multi-frequency SAR (using RF and SVM) in Chapters 5 and 6 respectively. 

Similarly, results obtained from the field validation work suggested that the differences 

in spectral reflectance of polluted and oil-free vegetation were larger in periods when 

vegetation is in the best condition, rather than in periods when vegetation is under stress. 

This specifically suggested the implementation of the multi-seasonal image analysis, to 

investigate the potential role of seasonality in the discrimination of polluted and oil-free 

vegetation. Specific outcomes from the research are discussed as follows: 
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 Overcoming the limitation with Multispectral Optical Sensors 

Using multispectral optical data for the detection and mapping of oil-impacted vegetation 

canopy has been implemented in several studies. While most of these studies represent 

small-scale application of oil spill detection and mapping, there are also challenge of 

spectral mis-match among features. This occurred as a result of the characteristic nature 

of absorption features within the shortwave infrared spectral wavelength as mentioned by 

Cloutis (1989) and Hörig et al. (2001). This issue has characterized most oil spill 

detection studies that have had relatively little success, especially in cases where 

multispectral images are used. Bianchi et al. (1995a) used airborne hyperspectral images 

from the Multispectral Infrared Visible Imaging Spectrometer (MIVIS), hyperspectral 

unmixing methods and oil fractional areas for water, woods, cultivated field, smooth 

surface soil, grooved surface soil and rice fields classes were used as end-members in the 

image analysis process. Similarly, Achard et al. (2018) explored several un-supervised 

classifications including an original method of classification combining an unmixing 

approach and SVM on digitally acquired hyperspectral images. They noted the difficulty 

associated with comparing unsupervised classification results and assigning class 

members to potential features; which links to the problem of handling multiple image 

features. They also reported that the water feature (class) in the maximum abundance 

classification had several displaced pixels owing to the threshold limit.  

In addition, Mahdianpari et al. (2018) also reported confusion among successional classes 

of low and moderate contaminated sites and between moderate and high contamination 

site from their level – 2 classification to characterize polluted land into different classes 

using random forest and electromagnetic induction data. The reason for confusion in the 

level – 2 classification to discern the intensity levels of polluted land was however not 

stated in the study, but evidence from the base map suggests that features such as trees, 

herbaceous vegetation, man-made path and water were present within the polluted land, 

thus possibly accounting for the minuet scale confusion. Hese and Schmullius (2009) 

particularly noted that the spectral characteristics of oil spills complicated the analysis in 

their study because specific spectral signatures of oil-polluted features are difficult to 

create. This according to the authors is because crude oil has the spectral properties of a 

complete absorber just like features such as waterbodies and bare surface in the VIS/NIR 

range of the spectrum.  Another source of spectral confusion according to the authors has 

to do with the complexity created by additional oil spill events on areas that have already 
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been contaminated earlier. This study, which relied mostly on Landsat images and object-

based classification sought to discriminate between oil free vegetation, oil contaminated 

vegetation, soil and industrial land use areas. Results showed low discrimination accuracy 

primarily because of limited capabilities in separating oil-polluted areas from other 

features with similar spectral characteristics (such as soil reflections and regenerating 

vegetation signatures) using the Landsat TM 5 imagery.  

This research employed novel image processing techniques and explored the potential of 

wide array of datasets (from visible through to the microwave) part of the spectrum to 

overcome the mix-pixel problem. In the use of optical reflectance data (i.e. in the Chapter 

four) in the course of this research, machine learning random forest and assessment of 

specific vegetation types were introduced which have not been previously experimented 

prior to this research. The results showed that the new approach can reasonably resolve 

the discrimination issues between oil-impacted vegetation and other feature types, since 

image analysis is concentrated on specific feature (vegetation) types within the image 

space. This effectively reduces the effect of spectral confusion among features. In 

addition, the use of machine learning methods benefits from an increased learning rate if 

different thematic feature layers are introduced compared to when only restricted few 

input variables are explored in the discrimination process.  

This thesis implemented this approach for monitoring the impact of oil on vegetation, 

through the exploration of optical – spectral reflectance data within the VIS-NIR-SWIR 

and various vegetation health indices using the random forest method. The use of these 

variables together with random forest methods for different vegetation types yielded 

significant improvement in the discrimination accuracy of end member classes compared 

to results obtained in previous studies (e.g. Hese and Schmullius, 2009; Van der Werff et 

al., 2007 and Bianchi et al., 1995a).  

 Overcoming the limitation with Hyperspectral Sensors 

The use of hyperspectral images should reasonably resolve and overcome the problem of 

spectral confusion among features in the detection and mapping of oil polluted areas. 

However, one particular challenge in the use of both multispectral and hyperspectral 

sensor for terrestrial oil spill mapping is the lack of sufficient cloud free optical images 

to limited capability in validating results obtained. Adamu et al., (2018) and Ayanlade, 

(2015) had reported that persistent cloud cover in the Niger Delta especially in the wet 
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season had restricted their image processing to dry season analysis. Similarly, Arellano 

et al., (2015) also reported that analysis of hyperspectral Hyperion image used for 

detecting oil pollution impact in the Amazonian rain forest was also restricted to dry 

season image of February 2005 owing to cloudy weather condition preventing new 

acquisition.  

This research sought to overcome this challenge by first exploring the potential of 

integrating optical, SAR and geo-physical variables in detecting oil pollution within 

different vegetation canopy types and further mapping the corresponding extent of the 

vegetation types. Secondly, SAR only image analysis was also implemented to counteract 

the challenges associated with cloud cover affecting effective use of spaceborne 

hyperspectral and multispectral images especially in data scarce region. Results provided 

new perspectives, insights into terrestrial oil spill monitoring than were previously known 

as the implementation of multi-temporal, and multi-frequency SAR image analysis for 

both dry and wet seasons revealed astonishing trends in a typical oil-polluted sites. It was 

specifically discovered that the wet season is the best time to implement detection 

protocols of oil pollution. Result obtained for the wet season image analysis yielded the 

highest classification accuracy in this research.  Results also obtained from the 

exploration of multitemporal C-SAR images to establish vegetation temporal 

characteristic within a typical polluted and oil-free site further corroborated the 

classification result, temporal results demonstrated that characterization, and 

discrimination of impacted and oil-free vegetation in the wet season offers better results, 

hence the best period for carrying out activities as fieldwork and data analysis. 

 Implication of the findings and Contribution to Wider Knowledge 

The results obtained in this research have shown that class specific vegetation assessment 

can help resolve the problem of mis-classification among features and has proved very 

useful in this study to improve classification accuracy. The use of SAR images for 

terrestrial oil spill detection in itself have seen very limited application previously. 

Challenges hindering the effective deployment and use of SAR images are the restrictions 

of accessibility to the imagery, huge memory requirement and the time required for 

processing multiple SAR image scenes. In addition, signal responses from SAR images 

are usually measured in terms of backscatter (Decibel) return strength, which does not 
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necessarily depict the changes in bio-chemical processes of plant ecology. Rather, it relies 

on the physiognomic and structural changes in vegetation canopy composition.  

Results obtained from the operational integration of multi-temporal, multi-frequency and 

multi-seasonal SAR from various sensor as demonstrated in this research (Chapter six) 

yielded the highest overall accuracy than any other data combination (Optical Only: 

Chapter Four and Optical – SAR Integration: Chapter five) implemented in the course of 

this research. Results obtained were far better than the results obtained in other similar 

studies (e.g. Bianchi et al., 1995a; Mahdianpari et al., 2018; Van der Werff et al., 2007). 

The singular inclusion of wet season L – Band SAR together with the wet season C and 

X band SAR led to a significant improvement in the classification accuracies. Thus, it is 

likely that L – Band SAR has a better performance in detecting hydrocarbon-induced 

stress as a result of the high accuracy obtained for cropland vegetation (OA of 82%) in 

this research.  

Another major important finding and novelty from this research is the applicability of 

multi-temporal SAR backscatter data to explore vegetation temporal characteristics in oil-

affected areas. Evidence from the results obtained through statistical test showed that 

better detectability is more assured during the wet (summer) season than the dry (winter) 

season. Possible reasons are that in the winter (dry) season, there is generally low 

precipitation and soil moisture in the Niger Delta mangrove region. This tends to induce 

negative vegetation feedback such as stress, senescence and defoliation to the entire 

vegetation within the study area (i.e. both oiled and oil-free), thereby reducing 

detectability and discrimination accuracy. In contrast, in the summer (wet) season, 

precipitation and soil moisture are usually high, which ultimately presents good 

conditions for oil-free vegetation to thrive (in both biochemical processes and structural 

development), especially in sparser vegetation, while the oil-impacted vegetation 

typically exhibits limited growth as a result of the impact of hydrocarbon in the wet 

season. 

The methods and approach used in this research with specific reference to land cover 

specific image processing and the machine learning methodologies (random forest, fuzzy 

forest and support vector machines) is another novel contribution to existing knowledge 

space. This data and methodological integration approach holds huge potential for 

monitoring leakages in oil and gas transportation facilities, hydrocarbon micro and macro 
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seepage detection and estimating the general area impacted by oil pollution. The approach 

provides a basis for further developing an early warning detection system for pipeline 

monitoring, especially when a staggered processing chain is followed to reduce the 

influence of spectral mixing as machine learning methods in this case offers flexibility in 

using wide array of useful thematic layers for both detection, training (calibration phase) 

and classification. In addition, the results of this research present a more robust, cost 

efficient and environmentally friendly approach for pipeline monitoring when compared 

to field inspection and other intrusive methods, owing both to the revisit capabilities of 

remote sensing satellite platforms to an area of interest and recent improved spectral, 

spatial and temporal resolutions. This provides a unique opportunity for monitoring 

changes along pipeline right of ways, oil production facilities and oil well locations, 

especially in areas with limited accessibility and intermittent cloud cover.   

Furthermore, another important novelty of this research is the introduction and use of 

fuzzy forest method. Certainly, the remote sensing community would profit immensely 

from the application and use of this methodology in other relevant studies where the 

influence of high dimensionality is critical owing to use of high number of input variables. 

This research represents the first application of this methodology in the processing and 

analysis of remote sensing earth observation satellite images, and also certainly the first 

application in the discrimination and mapping of terrestrial oil pollution. Results obtained 

in this research demonstrated quite clearly that the method can effectively reduce variable 

bias through the arbitrary elimination of non-performing variables in the classification 

process, thereby improving classification accuracy (as was obtained for grassland and 

TCA vegetation types). However, as mentioned in the concluding parts of section 5.5, 

reduced variables may not always translate into improve classification accuracy, hence 

the reason for the poor performance of the FF method in cropland vegetation and the 

entire MSIF image classification. 

On the other hand, Fuzzy forest offers a unique ability of resizing, reshaping and reducing 

the number of input variables where there is high number of input features. Thus, can be 

operationally prudent when computational efficiency is lacking especially in data scarce 

regions. The Fuzzy forest approach can replace operationally intensive procedures 

associated with such data preprocessing as it provide one stop solution for variable 

elimination based on machine learning random forest, thereby improving reliability in 

variable importance. 
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7.3 Conclusion 

In conclusion, this research was able to answer and fulfill all of the research questions 

and objectives it set out to achieve. Based on the result presented in the analysis chapters 

of this thesis and the follow on discussion, the following concluding points are further 

noted based on the research question: 

I. To what extent can multispectral optical image only, vegetation health indices and 

land cover specific classification be used to detect, map and discriminate between 

oil-free and oil impacted vegetation types with machine learning classifier? 

Results obtained from the first research objective (Chapter Four) on the utilization of 

Landsat – 8 spectral bands and derived vegetation health indices in a machine learning 

random forest classifier, showed that this procedure can be very cumbersome especially 

when there are ambiguities among features in the image space. This was characterized by 

low classification accuracy caused by spectral confusion amongst the diverse features 

present in the image space. Similar observation were also made by Ayanlade, (2015) and 

Hese and Schmullius, (2008; 2009) and other previously mentioned studies where 

attempts were made to map oil-polluted areas on terrestrial landscape without specific 

recourse to land cover specific classification. However, following the implementation of 

the image classification on vegetation specific extents, there was generally improved 

accuracy in the result obtained (as shown in table 4.4). Classification accuracy 

significantly improved from 45.45%, 33.33% and 28.5% OA when the entire study area 

image was classified to 60.61%, 65% and 70% for cropland, grassland and tree cover 

areas respectively, representing significant improvement in accuracy. The improved 

accuracies recorded in this chapter were also better than those reported in previous studies 

(Bianchi et al. 1995b; Van der Werff et al., 2007).  

II. To what extent can the integration of optical derived variables (i.e. multispectral 

bands and vegetation indices), multi-frequency SAR and geo-physical variables 

improve the classification accuracy of polluted and oil-free vegetation types? 

This research question was answered in Chapter Five of this thesis. The focus here was 

to improve the overall classification accuracy and further subdue the effect of spectral 

confusion between oil-impacted and oil-free vegetation stands. The incorporation of SAR 

derived backscatter images (from C and X band SAR), interferometric coherence and 

other geo-physical variables was necessary for this purpose. In addition, machine learning 
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fuzzy forest classifier was introduced to further resolve high dimensionality in multiple 

variable inputs. This was achieved by specific selection of only high performing 

biophysical, bio-chemical and geophysical variables to improve the discrimination further 

between oil-free and oil-impacted vegetation. This is also as a result of the fact that the 

random forest has a limitation of inability to effectively handle the effect of high 

dimensionality and multi-collinearity as observed by Nicodemus and Malley, (2009) and 

Strobl et al., (2008).  

In this chapter, 37 different variables consisting of SAR derived backscatter from 

TanDEM X, Sentinel 1 and Cosmo Skymed images, interferometric coherence and 

textural variables, Sentinel 2 spectral bands, NDWI and LAI, soil type and geology were 

integrated and classified to map oil-polluted vegetation. Results showed that the 

exploration of other datasets and integration of optical and SAR variables gave an 

improved classification accuracy compared to when only optical image derived variables 

(chapter 4) are used for classification. The reason for this improvement is because the 

integration of vegetation biochemical response (optical variables) and vegetation bio-

physical responses (SAR) (Joshi et al., 2016; van Beijma et al., 2014) have greater 

potential in reducing the effects of over generalization, spectral confusion and thus, an 

improved classification accuracy, than when only either bio-chemical and bio-physical 

indicators are assessed separately.  

In addition, the fuzzy forest method achieved a good selection of the most important non 

– correlated variables for classification, especially for the TCA and grassland vegetated 

areas. The result of the confusion matrix, high-resolution image validation and field 

toxicology analysis showed that fuzzy forest variable reduction is able to improve 

classification accuracy for TCA. This represented almost a 10% increment in the overall 

accuracy’s recorded in Chapter 4. The Random forest approach also had a superior 

performance, which was significantly different from result obtained with Fuzzy forest for 

cropland vegetation when the entire 37 image variables were used.  
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III. To what extent can SAR only (i.e. multi-temporal and multi-frequency SAR) 

variables improve discrimination and classification accuracy (between oil-free 

and oil-impacted vegetation) using a machine learning. 

This research question was answered in Chapter Six of this thesis, where the potential of 

multi-temporal Sentinel – 1 backscatter in depicting temporal characteristics for impacted 

and oil-free vegetation was investigated. The potential influence and effect of seasonality 

in detecting and discriminating oil-impacted vegetation from oil-free healthy vegetation 

was also explored using multi-temporal – multi-frequency L, C and X band SAR 

classification. This became necessary as the field spectral reflectance of polluted and oil-

free vegetation showed huge contrast between sites of varied oil impact, suggesting that 

externalities such seasonal influence can hinder effective discrimination.  Results from 

this Chapter indicated that retrieved backscatter from polluted and oil-free vegetation 

types depicted reliable vegetation temporal characteristics, compared to coarse resolution 

MODIS NDVI data. This particularly demonstrated the suitability of multi-temporal SAR 

to unravel seasonal dimensions associated with terrestrial oil spills. This is as a result of 

significant differences in mean backscatter descriptors between polluted and oil-free 

vegetation during the summer (wet) season relative to the winter (dry) season.  

The effect of seasonality as observed in this chapter displayed similar temporal 

backscatter trends to those observed in Onojeghuo et al., (2018b) and Rüetschi et al., 

(2017), where high backscatter values are recorded during the summer (wet season) 

growing season, while low backscatter values dominates in the winter (dry) harvest 

season. Classification accuracies also showed that the integration of L, C and X band 

SAR data in the summer season gave the best result of over 80% OA in the discrimination 

of polluted and oil-free cropland vegetation, representing an over 10% improvement over 

the previous best classification in Chapter five (using dry season images). Grassland 

vegetation also had a marginal improvement of more than 1.6% from the previous 

implemented classification. A major reason for the improved accuracies can be attributed 

to the use of multi-frequency and multi-polarization stacked images. This have been 

previously recommended by Ramsey et al., (2015) to effectively capture the structural 

variability of sparse vegetation across space and depth in comparison with denser 

vegetation. This is also the position of Shang et al. (2009) where multi-frequency SAR 

proved to be a reliable solution for crop vegetation classification due to high accuracies 
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observed from the integration of L-C-X band SAR as opposed to when single or two 

frequencies of SAR images were integrated.  

Similarly, Hagensieker and Waske (2018) also came to the conclusion that the integration 

of multifrequency – multiSAR sensor is worthwhile as it significantly improves tropical 

land cover classification. Martinis and Rieke (2015) also concluded that the use of 

multifrequency SAR in the mapping of flood areas yielded remarkable improvement in 

accuracy due to the suitability of all three (L-C-X) frequencies of SAR in mapping 

flooded vegetation even in sparse vegetation. 

The inclusion of L – Band SAR in the classification led to a significant improvement in 

the general classification accuracy. The reason for this is that L – Band SAR has higher 

penetration into the vegetation sub canopy (15m depth), representing radiation interaction 

with vegetation trunks, crown, ground and vegetation branches. In contrast, the C and X 

Band SAR have a much shallow penetration (of 7m and 3m, respectively), which 

represents backscattering radiation interaction with vegetation canopy, leaves, and 

secondary branches. In addition, results obtained in this study are also in line with 

findings from Ramsey et al., (2015), where L – Band SAR gave a positive result in the 

detection of structural defect caused by oil pollution on marsh vegetation owing to the 

better penetration of incident beam from the L – Band sensor. 

To conclude, this research discovered that using multispectral optical image derivatives 

for the prime purpose of detecting and mapping terrestrial oil spill gives stronger results 

when specific land cover types are assessed separately than when the entire image 

consisting of different features are assessed at once. Image spectral bands, especially 

those within the Shortwave and Near – Infrared parts of the spectrum, are better suited 

for discriminating between polluted and oil-free vegetation than vegetation health indices 

in the machine learning approach. Thirdly, the incorporation and integration of SAR with 

multispectral optical images presents greater potential for the mapping of polluted 

vegetation with higher accuracy than when optical data alone is used. The use of SAR 

images for the purpose of detecting and mapping oil-affected vegetation are more assured 

in areas with moderate vegetation canopy, in terms of biomass density. Better results were 

also gained when prior knowledge of the predominant land cover and vegetation type are 

known and used individually, than when the entire image scene with all other features are 

assessed at once. The reliability and assurance of an improved detection and mapping of 
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oil-impacted vegetation using SAR images is much higher during the summer/wet season 

than during the dry/winter season due to homogenous representation of both stressed and 

healthy vegetation in the dry season. It is also the case that L – Band SAR are more suited 

for detecting oil-impacted vegetation of all types than C and X band SAR.  

7.4 Limitations 

Several limitations encountered in the course of this research are discussed below: 

Oil Spill Incident data: The oil spill data used in this research were obtained from the 

website of the national oil spill detection and response agency (NOSDRA), which is the 

government agency responsible for documenting all spill incidents and the shell 

petroleum development corporation (SPDC). The research relied mostly on the 

information provided in the joint investigative reports (JIV) on size, area and date of spill. 

Hence, independent verification of most of the information provided by the stakeholder 

was not achievable. Therefore, critical assumption and judgements had to be applied in 

the selection of spill sites used in the course of this research. An example is in the case of 

reference coordinate system conversion from the old ‘Minna Mid-Belt’ coordinate system 

to contemporary Universal Transverse Mercator (UTM) reference system. This was to 

ensure proper alignment of all datasets used in the course of this research. Another 

example in this regard is the fact that not all the spill incidents reported had GPS 

coordinates establishing the spatial extent and coverage of the spill. As such, certain 

assumptions and generalizations had to be made considering the large volume and spatial 

coverage of spill reported. These were considered with care in the number of training sites 

selected.  

Existing Land cover: This research greatly relied on the existing land cover map 

produced by the European Space Agency - Climate Change Initiative (ECCI) in 2015, 

using Sentinel – 2 optical reflectance data and random forest method. The land cover 

classes served as the primary basis for establishing the different vegetation types used 

throughout this research. In this regard, it was impossible to independently verify the 

authenticity of different land cover extent on ground, as this would have required 

extensive fieldwork. However, visual comparison with high resolution Google Earth 

image (HRGEI) was carried out to verify that the vegetation extent as provided by ECCI 

were in agreement with the realities on ground. 
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Generalization of the extent of polluted/impacted vegetation extent: An important 

exercise undertaken in the course of this research was to map the spatial extent of oil-

impacted vegetation through machine learning classification, following the detection of 

impact posed on vegetation using a number of statistical tools. The spatial extent outputs 

representing oil-impacted or polluted vegetation does not exclusively represent polluted 

areas with active pools of oil, but provide reliable information on vegetation undergoing 

stress as a result of the impact posed by oil pollution. In addition, evidence from the field 

exercise also indicated certain areas affected by other stressors may also be wrongly 

assigned as polluted vegetation. 

Limited field validation: Field validation is an essential requirement in satellite remote 

sensing based studies. This usually provides basis for establishing the performance of 

methodologies employed to adequately and accurately predict land cover classes. It also 

provides a means through which the authenticity of map features can be reconciled with 

actual ground features, as such areas of false positives can then be noted and improved 

on subsequently. In the course of this research, only six spill sites were accessible for visit 

and used to conduct ground truth. Challenges such as political insecurity, host community 

conflict, general bureaucratic procedures and clearance to visit major spill sites severely 

hampered efforts to validate the results of this research further. This greatly impeded 

effort to ascertaining the status of some of the polluted areas predicted from the image 

classification.  

7.5 Future Work 

 Exploring the potential of Hyperspectral data in machine learning 

Hyperspectral images and Hyperspectral-derived variables as mentioned in section 2.2 

provide a reliable means for detecting oil-polluted areas. Evidence from previous studies 

shows that the use of this data can sufficiently overcome the spectral confusion challenge 

associated with oil spill detection and mapping on terrestrial landscape. However, their 

incorporation into machine learning classifiers for mapping oil-polluted areas has not 

been experimented. This is especially necessary given that a number of hyperspectral 

satellite missions have been proposed as EnMAP Hyperspectral Imager, Spaceborne 

Hyperspectral Applicative Land and Ocean Mission (SHALOM) and Hyperspectral 

Infrared Imager (HyspIRI). This certainly would form a substantive area for further 
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research as the integration of this data can improve the general process of oil spill 

detection, mapping and oil pipeline monitoring on the terrestrial landscape.  

 Exploration of Newer Image Processing Methods 

The last decade has seen the emergence of very sophisticated image processing 

methodology drawn from the field of computer science. Notable among them is the Deep 

Learning methods, which are further improvements on the existing neural network 

methods. The potential and capability of deep learning for the specific processing and  

discrimination of oil-impacted from oil-free vegetation is an area that needs to be explored 

further owing to achievements already recorded by the methodology in the area of signal 

processing.  

 What role does elevation data plays in terrestrial oil spill detection? 

There is certainly need to further investigate the role of elevation models in the detection 

and mapping of hydrocarbon-induced stress, since results obtained in chapter five of this 

thesis consistently showed that digital elevation model derived variables (i.e. slope, aspect 

and DEM) were the most important variable in the classification process. The utility of 

DEM and associated variables such as terrain and topography are yet to be explored in 

detail when detecting terrestrial oil spills. An in-depth analysis of the dynamics of oil spill 

movement on the terrestrial landscape and its influences in producing accurate maps of 

polluted areas, especially with machine learning would greatly enrich the terrestrial oil 

spill remote sensing research community. 

 Further SAR Investigation Using Scatterometer 

A scatterometer device works on the same operational principle of a SAR sensor. It 

operates by transmitting a pulse of microwave energy towards a target on the earth’s 

surface and measuring the reflected energy. This device can also be manually operated to 

obtain and characterize the dominant scattering tendencies of a specific target. The 

operational use of this device for the specific monitoring and measurement of a typical 

oil polluted site is an area that is worth investigating. This would help in further 

reconciling and complimenting the progress made in this research in terms of the image 

derived scattering characteristics of oil polluted land cover types as compared to the field 

observed scattering tendencies. Effort such as this would further improve the 

understanding of physical characteristics of various oil-polluted surfaces. 
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Appendix 

Appendix I – Oil polluted sites within the study area captured by the National Oil Spill Detection and 

Response Agency. 

 

 

Appendix II – Sample of Joint Investigative Visit (JIV) form used to capture oil spill incidents 
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Appendix III – Google Earth Image Showing the Established Plot within the Recent Oil Spill Site 

 

 

 

 

Appendix IV – Google Earth Image Showing the Established Plot within the Recent Oil Spill Site 
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Appendix V – Google Earth Image Showing the Established Plot within the Non-Polluted Site 

 

 

 

Appendix VI – Showing the Coordinates of the Plots 
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Appendix VII – Several Pictures Taken during the course of the Field Spectroradiometric Data acquisition 
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Appendix VIII – Mean Spectral Reflectance from individual plots of the recent, old and non-polluted site 
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Appendix IX – Detailed Confusion Matrix – Masked Image Classification – Cropland (Samples) 

 

Map class 

Non-Polluted 

Cropland 

Polluted 

Cropland Total 

Non-Polluted Cropland 10 7 17 

Polluted Cropland 6 10 16 

Total 16 17 33 

 

 

Appendix X - Detailed Confusion Matrix – Masked Image Classification – Grassland (Samples) 

Map class 

Non-Polluted 

Grassland Polluted Grassland Total 

Non-Polluted 

Grassland 
8 5 13 

Polluted Grassland 2 5 7 

Total 10 10 20 

 

 

Appendix XI - Detailed Confusion Matrix – Masked Image Classification – TCA (Samples) 

Map class Non-Polluted TCA Polluted TCA Total 

Non-Polluted TCA 6 2 8 

Polluted TCA 4 8 12 

Total 10 10 20 

 

 

 

 

 

 

 



 

 

244 

 

 

 

 

Appendix XII - Detailed Confusion Matrix – Entire Image Classification (Samples) 

Map class 

Non-Polluted 

Cropland 

Non-Polluted 

Grassland 

Non-Polluted 

TCA 

Polluted 

Cropland 

Polluted 

Grassland 

Polluted 

TCA Total 

Non-Polluted Cropland 3 1 1 4 1 2 12 

Non-Polluted Grassland 4 2 2 1 1 1 11 

Non-Polluted TCA 1 0 4 0 1 2 8 

Polluted Cropland 8 4 0 7 3 2 24 

Polluted Grassland 0 1 1 5 3 0 10 

Polluted TCA 0 2 2 0 1 3 8 

Total 16 10 10 17 10 10 73 
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