
Noname manuscript No.
(will be inserted by the editor)

An Adversarial Model for Scheduling with Testing

Christoph Dürr · Thomas Erlebach · Nicole
Megow · Julie Meiÿner

the date of receipt and acceptance should be inserted later

Abstract We introduce a novel adversarial model for scheduling with explorable un-

certainty. In this model, the processing time of a job can potentially be reduced (by

an a priori unknown amount) by testing the job. Testing a job j takes one unit of

time and may reduce its processing time from the given upper limit p̄j (which is the

time taken to execute the job if it is not tested) to any value between 0 and p̄j . This

setting is motivated e.g. by applications where a code optimizer can be run on a job

before executing it. We consider the objective of minimizing the sum of completion

times on a single machine. All jobs are available from the start, but the reduction in

their processing times as a result of testing is unknown, making this an online problem

that is amenable to competitive analysis. The need to balance the time spent on tests

and the time spent on job executions adds a novel �avor to the problem. We give the

�rst and nearly tight lower and upper bounds on the competitive ratio for deterministic

and randomized algorithms. We also show that minimizing the makespan is a consid-

This research was carried out in the framework of Matheon supported by Einstein Foundation
Berlin, the German Science Foundation (DFG) under contract ME 3825/1 and Bayerisch-
Französisches Hochschulzentrum (BFHZ). Further support was provided by EPSRC grant
EP/S033483/1 and the ANR grant ANR-18-CE25-0008. The second author was supported by
a study leave granted by University of Leicester during the early stages of the research. A
preliminary version of this paper appeared in The 9th Innovations in Theoretical Computer
Science Conference (ITCS), January 2018 [16].

Corresponding author

Christoph Dürr
Sorbonne Université, CNRS, Laboratoire d'informatique de Paris 6, Paris, France. E-mail:
Christoph.Durr@LIP6.fr. ORCID: 0000-0001-8103-5333.

Thomas Erlebach
School of Informatics, University of Leicester, UK. E-mail: te17@leicester.ac.uk. ORCID: 0000-
0002-4470-5868.

Nicole Megow
Department of Mathematics and Computer Science, University of Bremen, Germany. E-mail:
nicole.megow@uni-bremen.de. ORCID: 0000-0002-3531-7644

Julie Meiÿner
Institute of Mathematics, Technical University of Berlin, Germany. E-mail: jmeiss@math.tu-
berlin.de

2 C. Dürr, T. Erlebach, N. Megow and J. Meiÿner

erably easier problem for which we give optimal deterministic and randomized online

algorithms.

Keywords Explorable Uncertainty · Competitive Analysis · Lower Bounds ·
Scheduling

1 Introduction

Uncertainty in scheduling has been modeled and investigated in many di�erent ways,

particularly in the frameworks of online optimization, stochastic optimization, and

robust optimization. All these di�erent approaches have the common assumption that

the uncertain information, e.g., the processing time of a job, cannot be explored before

making scheduling decisions. However, in many applications there is the opportunity

to gain exact or more precise information at a certain additional cost, e.g., by investing

time, money, or energy. It is a challenging problem to design algorithms that balance

the cost for data exploration and the bene�t for the quality of a solution. This involves

quantifying the trade-o� between exploration and exploitation, as it is ubiquitous in

numerous applications.

In this paper, we introduce a novel model for scheduling with explorable uncer-

tainty. Given a set of n jobs, every job j can optionally be tested prior to its execution.

A job that is executed without testing has processing time p̄j ≥ 0, while a tested job

has processing time pj with 0 ≤ pj ≤ p̄j . Testing a job takes one unit of time on the

same resource (machine) that processes jobs. A tested job does not need to be executed

right after its test.

Initially the algorithm knows for each job j only the upper limit p̄j , and gets to

know the time pj only after a test. Tested jobs can be executed at any time after their

test. An algorithm must carefully balance testing and execution of jobs by evaluating

the bene�t and cost for testing. The resulting schedule is constructed by the algorithm

adaptively. This means that at every moment, the choice of a job, and the decision

whether to execute or to test it, may depend on the outcome of previous tests.

We focus on scheduling on a single machine. Unless otherwise noted, we consider

the sum of completion times as the minimization objective. We use competitive analysis

to assess the performance of algorithms.

For the standard version of this single-machine scheduling problem, i.e., without

testing, it is well known that the Shortest Processing Time (SPT) rule is optimal

for minimizing the sum of completion times. The addition of testing, combined with

the fact that the processing times pj are initially unknown to the algorithm, turns

the problem into an online problem with a novel �avor. An algorithm must decide

which jobs to execute untested and which jobs to test. Once a job has been tested,

the algorithm must decide whether to execute it immediately or to defer its execution

while testing or executing other jobs. At any point in the schedule, it may be di�cult

to choose between testing a job (which might reveal that it has a very short processing

time and hence is ideally suited for immediate execution) and executing an untested

or previously tested job. Testing a job yields information that may be useful for the

scheduler, but may delay the completion times of many jobs. Finding the right balance

between tests and executions poses an interesting challenge.

An Adversarial Model for Scheduling with Testing 3

1.1 Motivation and applications

Scheduling with testing is motivated by a range of application settings where an

information-revealing test can be applied to jobs before they are executed which leads

to a trade-o� regarding how to allocate resources for performing a test and actually

executing the job. We discuss some examples of such settings from very di�erent do-

mains.

First, consider the execution of computer programs on a processor. A test could

correspond to a code optimizer that takes unit time to process the program and poten-

tially reduces its running-time. The upper limit of a job describes the running-time of

the program if the code optimizer is not executed. See [10, Chapter 5] for an overview

of various code otimization techniques.

Second, consider the transmission of �les over a network link. It is possible to run

a compression algorithm that can reduce the size of a �le by an a priori unknown

amount. If a �le is incompressible (e.g., if it is already compressed), its size cannot be

reduced at all. Running the compression algorithm corresponds to a test. See [54, 59]

for some practical techniques balancing compression time with transmission time.

An algorithmic application concerns jobs, which can be executed in two di�erent

modes, a safe mode and an alternative mode. The safe mode is always possible. The

alternative mode may have a shorter processing time, but is not possible for every

job. A test is necessary to determine whether the alternative mode is possible for a

job and what the processing time in the alternative mode would be. One example

would be computing shortest paths in several given graphs. Solving it in the safe

mode would involve the Bellman-Ford algorithm, while the faster alternative mode uses

Dijkstra's algorithm requiring a preliminary non-negativity test on the edge weights.

This situation would be faced by a server that solves shortest paths problems submitted

by users. See [34] for a survey on algorithm selection techniques.

As a �nal application area consider scenarios, where a diagnosis can be carried

out to determine the exact processing time of a job. This is the case in very di�er-

ent domains such as diagnostics in maintenance or in medical environments such as

emergency departments. A fault diagnosis can determine the time needed to repair

or replace a device, which allows for an e�cient schedule of maintenance operations.

There is a vast amount of literature on maintenance models; see e.g. [49, 51]. In med-

ical diagnostics, information can be acquired about the time needed for consultation,

treatment session and other activities with the patient. This information can help to

prioritize and e�ciently allocate limited medical resources; cf. [2,39,46]. Assuming that

the resource that performs the diagnosis is the same resource that executes the job,

e.g., an engineer or a medical doctor, we are in our problem setting of scheduling with

testing with the trade-o� regarding how to allocate resources between diagnostics and

actual execution of jobs.

In some applications, it may be appropriate to allow the time for testing a job to be

di�erent for di�erent jobs (e.g., proportional to the upper limit of a job). Furthermore,

there are applications where the job processing time is pj even if executed untested,

and the test reveals pj , which otherwise is only known to belong to the interval [0, p̄j].
We leave the consideration of such generalizations of the problem to future work.

4 C. Dürr, T. Erlebach, N. Megow and J. Meiÿner

competitive ratio lower bounds upper bounds

deterministic algorithms 1.8546 (Thm 9) 2 Threshold (Thm 7)
randomized algorithms 1.6257 (Thm 11) 1.7453 Random (Thm 10)
uniform instances (det) 1.8546 (Thm 9) 1.9338*BEAT (Thm 12)
extreme uniform instances (det) 1.8546 (Thm 9) 1.8668 UTE (Thm 18)
extreme uniform with p̄ ≈ 1.989 (det) 1.8546 (Thm 9) 1.8552 UTE (Cor 19)

Table 1 Our results for minimizing the sum of completion times. * holds asymptotically

1.2 Our contribution

A scheduling algorithm in the model of explorable uncertainty has to make two types

of decisions: which jobs should be tested, and in what order should job executions

and tests be scheduled. There is a subtle compromise to be found between investing

time to test jobs and the bene�t one can gain from these tests. We design scheduling

algorithms that address this exploration-exploitation question in di�erent ways and

provide nearly tight bounds on the competitive ratio. In our analysis, we �rst show

that worst-case instances have a particular structure that can be described by only a

few parameters. This goes hand in hand with analyzing also the structure of both an

optimal and an algorithm's schedule. Then we express the total cost of both schedules as

functions of these few parameters. It is noteworthy that, under the assumptions made,

we typically characterize the exact worst-case ratios of the considered algorithms. Given

the parameterized cost ratio, we analyze the worst-case parameter choice. This technical

part involves second order analysis which we perform with computer assistance. These

computations are provided as notebook- and pdf-�les at a companion webpage.1

Two variants of the problem attracted our attention in particular. In an uniform

instance all jobs have the same upper limit p̄j , which makes them initially undistin-

guishable to the scheduler. This means that the algorithm's decision whether to test

a job, does not depend on the job itself, but only on the outcome of previous tests.

Moreover in an extreme uniform instance, after testing a job j its processing time is

either 0 or p̄j . This means that the bene�t of a test is either maximized or none at

all. Intuitively one would think that extreme uniform instances capture the worst case

instances of the problem, hence it is not surprising that our lower bound constructions

are of this form. In addition we design speci�c algorithms for these variants. One mo-

tivation was to follow a detour in order to �nd a better deterministic algorithm for the

general problem, which unfortunately failed. Another motivation is that there is a huge

amount of literature for scheduling problems with equal processing time. Therefore we

believe that these variants are interesting for their own.

Our results are the following. For scheduling with testing on a single machine with

the objective of minimizing the sum of completion times, we present a 2-competitive

deterministic algorithm and prove that no deterministic algorithm can achieve com-

petitive ratio less than 1.8546. We then present a 1.7453-competitive randomized al-

gorithm, showing that randomization provably helps for this problem. We also give a

lower bound of 1.626 on the best possible competitive ratio of any randomized algo-

rithm. Both lower bounds hold even for extreme uniform instances, i.e. instances with

uniform upper limits where every processing time is either 0 or equal to the upper limit.

1 Files that can be opened with the algebraic solver Mathematica are available at the URL
http://cslog.uni-bremen.de/nmegow/public/mathematica-SwT.zip.

http://cslog.uni-bremen.de/nmegow/public/mathematica-SwT.zip

An Adversarial Model for Scheduling with Testing 5

For such instances we give a 1.8668-competitive algorithm. In the special case where

the upper limit of all jobs is ≈ 1.9896, the value used in our deterministic lower bound

construction, that algorithm is even 1.8552-competitive, which is nearly optimal. For

the case of uniform upper limits and arbitrary processing times, we give a deterministic

1.9338-competitive algorithm. An overview of these results is shown in Table 1.

Finally, we give tight results for the simpler problem of minimizing the makespan

in scheduling with testing. The best possible deterministic algorithm has competitive

ratio ϕ ≈ 1.618, where ϕ is the Golden ratio. The optimal randomized algorithm has

competitive ratio 4/3.

In the problem that we introduce in this paper, the interplay between the online

algorithm and the adversary has a novel �avor due to the presence of tests: Testing a

job forces the adversary to select a speci�c processing time right away, while otherwise

the adversary can make this choice after the algorithm has completed all jobs. To our

knowledge, this kind of interaction does not appear in the standard online computation

framework.

From a technical perspective, our contribution consists of two parts. First we

present techniques to modify instances in an adversarial manner, while reducing the

number of distinct job parameters. This allows us to describe the competitive ratio with

a few parameters. Second we show how second order analysis can be used to optimize

these parameters.

Organization of the paper. In Section 2, we give the problem de�nition, some obser-

vations and structural properties. Section 3 is devoted to lower and upper bounds for

deterministic algorithms for general instances for minimizing the sum of completion

times. Section 4 addresses randomized algorithms. In Section 5, we give more �ne-

grained results for special cases of the problem with uniform upper bounds. Finally, in

Section 6 we give optimal deterministic and randomized algorithms for minimizing the

makespan.

1.3 Related work

The arguably most classical framework modeling sequential decision making problems

with an exploration-exploitation trade-o� is the stochastic multi-armed bandit prob-

lem. In each round, one choses from a set of actions (bandit arms) and obtains some

observable payo�, where the goal is to maximize the total payo�. Since its introduction

in 1933 in [57] a plethora of variants has been analyzed and till today this is an actively

studied area with applications particularly in online auctions, adaptive routing, and

the theory of learning in games; see e.g. [9, 24].

One of the oldest stochastic problems with explicit exploration cost is Weitzman's

Pandora's box problem [58]. Given n random variables with probability distributions,

the goal is to �nd a single variable of largest value, but one needs to pay a cost for

each probe of a variable. Its solution can be stated as a special case of the Gittins

index theorem [25,36]. A nice exposition of an application of a variation of the Gittins

index to a problem that can be stated as `playing golf with two balls' can be found

in [15]. Only recently, combinatorial otimization problems have been studied in this

context with the goal of optimizing the sum of query costs and the objective value

of the selected solution. This includes problems such as matching, set cover, facility

6 C. Dürr, T. Erlebach, N. Megow and J. Meiÿner

location, and prize-collecting Steiner tree; see, e.g., [27,56] and references therein, also

with uncertainty in the cost function [41].

Other stochastic problems taking exploration cost into account, such as stochastic

knapsack [13, 40], orienteering [5, 28], matching [3, 4, 6, 7, 11], and probing problems

[1, 29, 30], employ a query-commit model, which means that queried elements must be

part of the solution, or it is required that the solution elements are queried. These are

quite strong restrictions which change the nature of the bene�t-cost trade-o� that an

algorithm experiences when making queries.

All these models have in common that the uncertain information follows some

stochastic model. We follow a more pessimistic approach, by studying an online or

robustness model where the algorithm has no prior stochastic information. As usual in

the absence of a known distribution, we assume the worst case and let an adversary

chose the hidden information.

This adversarial model falls in the area of deterministic explorable (or queryable)

uncertainty, where additional information about the input can be learned using a query

operation, a test in our setting. The line of research on optimization with explorable

uncertain data has been initiated by Kahan [32] in 1991. His work concerns selection

problems with the goal of minimizing the number of queries that are necessary to

�nd the optimal solution. After the initiation by Kahan [32] on selection problems.

further problems have been studied in this uncertainty model including �nding the k-

th smallest value in a set of uncertainty intervals [19, 31, 32] (also with non-uniform

query cost [19]), caching problems in distributed databases [50], computing a function

value [35], and classical combinatorial optimization problems, such as shortest path [18],

�nding the median [19], the knapsack problem [26], and the MST problem [17,23,43].

While most work aims for minimal query sets to guarantee exact optimal solutions,

Olsten and Widom [50] initiate the study of trade-o�s between the number of queries

and the precision of the found solution. They are concerned with caching problems.

Further work in this vein can be found in [18,19,35].

In all this previous work, the execution of queries is separate from the actual opti-

mization problem being solved. In our case, the tests are executed by the same machine

that runs the jobs. Hence, the tests are not considered separately, but they directly

a�ect the objective value of the actual problem (by delaying the completion of other

jobs while a job is being tested). Therefore, instead of minimizing the number of tests

needed until an optimal schedule can be computed (which would correspond to the

standard approach in the work on explorable uncertainty discussed above), in our case

the tests of jobs are part of the schedule, and we are interested in the sum of completion

times as the single objective function.

Our adversarial model is inspired by (and draws motivation from) recent work on a

stochastic model of scheduling with testing introduced by Levi, Magnanti and Shaposh-

nik [39,55]. They consider the problem of minimizing the weighted sum of completion

times on one machine for jobs whose processing times and weights are random variables

with a joint distribution, and are independent and identically distributed across jobs.

In their model, testing a job does not make its processing time shorter, it only pro-

vides information for the scheduler (by revealing the exact weight and processing time

for a job, whereas initially only the distribution is known). They present structural

results about optimal policies and e�cient optimal or near-optimal solutions based on

dynamic programming.

Scheduling problems, in general, have been studied extensively over decades. They

occur in many di�erent variations in a wide range of applications ranging from tradi-

An Adversarial Model for Scheduling with Testing 7

tional production scheduling and project planning to new resource management tasks

arising in the advent of internet technology such as distributed cloud service networks

and the allocation or virtual machines to physical servers. For a general overview and

classi�cation, we refer to the reference works [38,52].

The most common frameworks for modeling scheduling with uncertain input are

stochastic scheduling [45,47,48], online scheduling [22,53], a generalization of the former

two [12, 44] and robust scheduling [14, 33, 37]. These models di�er in the way that

information is made available to an algorithm and in the performance metrics. We do

not aim at a comprehensive review and, instead, refer the reader to the pointers in the

literature. Regarding the access to information, our scheduling with testing model is

closest to online and robust optimization, where information (e.g. about job processing

times) is revealed incrementally and adversarially. However, in stochastic scheduling,

a job's processing time can be explored by partially executing a job and observing

its processing time. Clearly, there is much less �exibility in exploiting the learned

information, than when testing, as the job might have �nished before any action can

be taken.

A new learning-based scheduling model was proposed by Marban, Rutten and Vre-

develd [42]. They introduce a Bayesian model, in which jobs belong to classes and the

stochastic processing times of jobs in the same class are drawn from the same unknown

distribution. This distribution can be learnt by executing jobs. Besides this Bayesian

model and the aforementioned stochastic model of scheduling with testing by Levi et

al. [39], none of the traditional uncertainty models for scheduling takes the opportunity

of actively exploring unknown information at some cost into account explicitly.

Finally, it appears noteworthy that the concept of taking exploration cost into

account when dealing with uncertainty gains momentum also in other �elds such as,

e.g., random graphs. Recently some research papers ask the question of how many

edges must be queried in a given random graph, in order to verify that some graph

property is satis�ed. There are results on �nding Hamiltonian cycles [20] and �nding

paths [21] in random graphs with few queries.

2 Preliminaries

Problem de�nition. The problem of scheduling with testing is de�ned as follows. We

are given n jobs to be scheduled on a single machine. Each job j has an upper limit

on the processing time2 p̄j ∈ Q+. It can either be executed untested (taking time p̄j),

or be tested (taking time 1) and then executed at an arbitrary later time (taking time

pj ∈ Q+, where 0 ≤ pj ≤ p̄j). Initially only p̄j is known for each job, and pj is only

revealed after j is tested. The machine can either test or execute a job at any time.

The completion time of job j is denoted by Cj . Unless noted otherwise, we consider

the objective of minimizing the sum of completion times
∑
j Cj .

The optimal o�ine solution. If the processing times pj that jobs have after testing are

known, an optimal schedule is easy to determine: Testing and executing job j takes

time 1 + pj , so it is bene�cial to test the job only if 1 + pj < p̄j . Since the SPT rule is

optimal for minimizing the sum of completion times, in the optimal schedule, jobs are

2 We de�ne the problem with rational numbers for the ease of representing them in a com-
puter, but all our results and proofs also hold for real numbers.

8 C. Dürr, T. Erlebach, N. Megow and J. Meiÿner

ordered by non-decreasing min{1 +pj , p̄j}. In this order, the jobs with 1 +pj < p̄j are

tested and executed while jobs with 1 + pj ≥ p̄j are executed untested. (For jobs with

1 + pj = p̄j it does not matter how they are processed.)

Performance analysis. We compare the performance of an algorithm Alg to the opti-

mal schedule using competitive analysis [8]. We denote by Alg(I) the objective value
(cost) of the schedule produced by Alg for an instance I, and by Opt(I) the op-

timal cost. An algorithm Alg is ρ-competitive or has competitive ratio at most ρ if

Alg(I)/Opt(I) ≤ ρ for all instances I of the problem. For randomized algorithms,

Alg(I) is replaced by E[Alg(I)] in this de�nition. If the instance I is clear from the

context and no confusion can arise, we also write Alg for Alg(I) and Opt for Opt(I).
When we analyze an algorithm or the optimal schedule, we will typically �rst

argue that the schedule has a certain structure with di�erent blocks of tests or job

completions. Once we have established that structure, the cost of the schedule can be

calculated by adding the cost for each block taken in isolation, plus the e�ect of the

block on the completion times of later jobs. For example, assume that we have n jobs

with upper limit p̄, that αn of these jobs are short, with processing time 0, and (1−α)n
jobs are long, with processing time p̄. If an algorithm (in the worst case) �rst tests the

(1 − α)n long jobs, then tests the αn short jobs and executes them immediately, and

�nally executes the (1− α)n long jobs that were tested earlier (see also Figure 1), the

total cost of the schedule can be calculated as

(1− α)n2 +
αn(αn+ 1)

2
+ αn(1− α)n+

(1− α)n((1− α)n+ 1)

2
p̄

where (1 − α)n2 is the total delay that the (1 − α)n tests of long jobs add to the

completion times of all n jobs, αn(αn+1)
2 is the sum of completion times of a block

with αn short jobs that are tested and executed, αn(1−α)n is the total delay that the

block of short jobs with total length αn adds to the completion times of the (1− α)n

jobs that come after it, and (1−α)n((1−α)n+1)
2 p̄ is the sum of completion times for a

block with (1− α)n job executions with processing time p̄ per job.

p p p p p11 1 1 1 1
1-α α

ALG: 11
1-α

Fig. 1 Typical schedule produced by an algorithm. White boxes represent tests and grey
boxes represent job executions. The completion time of a job is depicted by a thick bar. Test
and execution of a job might be separated. A job of length 0 completes immediately after its
test.

Lower limits. A natural generalization of the problem would be to allow each job j to

have, in addition to its upper limit p̄j , also a lower limit `j , such that the processing

time after testing satis�es `j ≤ pj ≤ p̄j . We observe that the presence of lower limits

has no e�ect on the optimal schedule, and can only help an algorithm. As we are

interested in worst-case analysis, we assume in the remainder of the paper that every

job has a lower limit of 0. Any algorithm that is ρ-competitive in this case is also

ρ-competitive in the case with arbitrary lower limits (the algorithm can simply ignore

the lower limits).

An Adversarial Model for Scheduling with Testing 9

Preemption. The ability to preempt the execution of a test or of a (tested or untested)

job would be of no bene�t to the algorithm or the adversary as no new information is

obtained during the execution. Therefore, we only consider algorithms and schedules

that do not preempt tests and that do not preempt job executions. However, as noted

above, the execution of a tested job can be scheduled any time after the completion of

the test.

Jobs with small p̄j . We will consider several algorithms and prove competitiveness for

them. We observe that any ρ-competitive algorithm may process jobs with p̄j < ρ

without testing in order of increasing p̄j at the beginning of its schedule.

Lemma 1 Without loss of generality any algorithm Alg (deterministic or random-

ized) claiming competitive ratio ρ starts by scheduling untested all jobs j with p̄j < ρ in

increasing order of p̄j . Moreover, worst case instances for Alg consist solely of jobs j

with p̄j ≥ ρ.

Proof We transform Alg into an algorithm Alg
′ which obeys the claimed behavior

and show that its ratio does not exceed ρ. Consider an arbitrary instance I.

Let J be the sequence of jobs j with p̄j < ρ ordered in increasing p̄j order. We

divide J into J0, J1, where J0 consists of the jobs j with 0 ≤ p̄j < 1 and J1 consists of

the jobs j with 1 ≤ p̄j < ρ. Alg′ starts by executing the job sequence J untested, and

then schedules all remaining jobs as Alg, following the same decisions to test and the

order of tests and executions. In a worst-case instance all the jobs in J have processing

time 0. By optimality of the SPT policy Opt schedules �rst J0 untested as well, and

then schedules J1 tested spending time 1 on each job. The ratio of the costs of these

parts is
Alg

′(J)

Opt(J)
< ρ

where the inequality follows from p̄j/min{1, p̄j} < ρ for all j ∈ J . Let len denote the

length of a schedule. Then by the same argument we have

len(Alg′(J))

len(Opt(J))
< ρ.

Let I ′ be the instance I without the jobs in J . Let k be the number of jobs in I ′.
Since I ′ contains only jobs with large upper limit, we have Alg(I ′) = Alg

′(I ′). We

have

Alg
′(I) = Alg

′(J) + k · len(Alg′(J)) +Alg
′(I ′)

Opt(I) = Opt(J) + k · len(Opt(J)) +Opt(I ′).

From these (in)equalities we conclude

Alg(I)

Opt(I)
≤ ρ⇒ Alg

′(I)

Opt(I)
≤ ρ

Alg(I)

Opt(I)
≥ ρ⇒ Alg

′(I)

Opt(I)
≤ Alg(I ′)

Opt(I ′)

which means that if Alg is ρ competitive then so is Alg′ and that there are worst-case

instances for Alg only with jobs having upper limit at least ρ. ut

10 C. Dürr, T. Erlebach, N. Megow and J. Meiÿner

Increasing or decreasing Alg and Opt. Throughout the paper we sometimes consider

worst-case instances consisting of only a few di�erent job types. In order to do so we

need to change carefully the parameters of a given instance, in such a way that the

competitive ratio does not decrease and the number of distinct job types decreases.

The following generic proposition allows us to do so in some cases.

Proposition 2 Fix some algorithm Alg and consider a family of instances described

by some parameter x ∈ [`, u], which could represent pj or p̄j for some job j or for some

set of jobs. Suppose that both Opt and Alg are linear in x for the range [`, u]. Then
the ratio Alg/Opt is maximized, among all choices of x ∈ [`, u], for at least one of

the two choices x = ` or x = u. Moreover, if Opt and Alg are increasing in x with

the same slope, then this holds for x = `.

Proof The proof follows from the fact that an expression of the form Alg/Opt =
(a+ bx)/(a′ + b′x) is monotone in x. Indeed its derivative is

a′b− ab′

(a′ + b′x)2

whose sign does not depend on x. The last statement follows from the fact that if

Alg > Opt and 0 < δ ≤ Opt then (Alg− δ)/(Opt− δ) > Alg/Opt. ut

We can make successive use of this proposition in order to show useful properties on

worst-case instances.

Lemma 3 Suppose that there is an interval [`′, u′] such that Opt schedules all jobs j

with pj ∈ [`′, u′] either all tested or all untested, independently of the actual processing

time in [`′, u′]. Suppose that this holds also for Alg. Moreover, suppose that the sched-

ules of Opt and Alg do not change (in the sense that the order of all tests and job

executions remains the same) when changing the processing times in [`′, u′] as long as

the relative ordering of job processing times does not change. Then there is a worst-case

instance for Alg where every job j with pj ∈ [`′, u′] satis�es pj ∈ {`′, u′}.

Proof Fix some worst-case instance for the algorithm Alg. Let S be the set of jobs j

with pj = x for some x with `′ < x < u′. Let `, u be the values ` = max({`′} ∪ {pi :
pi < x}) and u = min({u′} ∪ {pi : pi > x}). Informally ` is the largest processing

time strictly smaller than x or `′ if x is already the smallest processing time or if this

would make ` smaller than `′. Also u is the smallest processing time strictly larger

than x or u′ if x is already the largest processing time or if this would exceed u′. Since
the schedules are preserved when changing the processing times of S, both costs Alg

and Opt are linear in x within [`, u]. Now we can use Proposition 2 to show that

there is a worst-case instance where all jobs in S have processing time either ` or u.

In both cases we have reduced the number of distinct processing times strictly being

between `′ and u′. By repeating this argument su�ciently often we obtain the claimed

statement. ut

3 Deterministic Algorithms

3.1 Algorithm Threshold

We show a competitive ratio of 2 for a natural algorithm that uses a threshold to decide

whether to test a job or execute it untested.

An Adversarial Model for Scheduling with Testing 11

Algorithm 1 (Threshold) First jobs with p̄j < 2 are scheduled in order of non-

decreasing upper limits without testing. Then all remaining jobs are tested. If the re-

vealed processing time of job j is pj ≤ 2 (short jobs), then the job is executed immedi-

ately after its test. After all pending jobs (long jobs) have been tested, they are scheduled

in order of increasing processing time pj .

By Lemma 1 we may restrict our competitive analysis w.l.o.g. to instances with

p̄j ≥ 2. Note, that on such instances Threshold tests all jobs. From a simple inter-

change argument it follows that the structure of the algorithm's solution in a worst-case

instance is as follows.

� Test phase: The algorithm tests all jobs that have pj > 2, and defers them.

� Short jobs phase: The algorithm tests short jobs (pj ≤ 2) and executes each of

them right away. The jobs are tested in order of non-increasing processing time.

� Long jobs phase: The algorithm executes all deferred long jobs in order of non-

decreasing processing times.

An optimal solution will not test jobs with pj + 1 ≥ p̄j . It sorts jobs in non-

decreasing order of values min{1 + pj , p̄j}.
First, we analyze and simplify worst-case instances.

Lemma 4 There is a worst-case instance for Threshold in which all short jobs with

pj ≤ 2 have processing time either 0 or 2.

We give a proof without modifying upper limits, which is not necessary in this section

but will come handy later when we analyze Threshold for arbitrary uniform upper

limits.

Proof Consider short jobs that are tested by both, the optimum and Threshold, i.e.,

short jobs with pj < p̄j − 1. We argue that we can either decrease the processing time

of a short job j to 0 or increase it to min{2, p̄j − 1} without decreasing the worst-case

ratio. With respect to the order in which Threshold executes the jobs, let ` be the

�rst short job with p` < min{2, p̄` − 1} and let i be the last short job with pi > 0.
Suppose i 6= `. Let ∆ = min{pi,min{2, p̄` − 1} − p`}. We decrease pi by ∆ and at

the same time increase p` by ∆. The value ∆ is chosen in such a way that either pi
will become 0 or p` will be min{2, p̄` − 1}, as desired. The schedule produced by the

algorithm will be the same except that jobs `, . . . , i− 1 complete ∆ units later. In the

optimal schedule ` and i are scheduled in opposite order. Suppose we keep the schedule

�xed when changing the processing times of jobs i and `. Then i's completion time as

well as those of jobs between i and ` decreases. In an optimal schedule jobs might be

re-ordered, but this only improves the total objective further. Hence, the total ratio of

objective values does not decrease.

Now, assume i = `, i.e., there is exactly one short job with processing time pi
strictly between 0 and min{2, p̄i−1}. We argue that either increasing or decreasing pi
to min{2, p̄i − 1} or 0 will not decrease the worst-case ratio. Such a change ∆ does

not change the order of jobs in the algorithm's solution and thus the change in the

objective is ∆ times the number of jobs completing after i. In an optimum solution,

there are untested short or long jobs which are scheduled between short tested jobs

and their relative order with i may change when i is in-/decreased by ∆. However, let

us consider a possibly not optimal schedule that simply does not adjust the order after

changing i. Then the change in the objective is linear in ∆ in the above-given range,

12 C. Dürr, T. Erlebach, N. Megow and J. Meiÿner

as it is for the algorithm, and thus, by Proposition 2 either increasing or decreasing pi
by ∆ does not decrease the ratio of objective values. Now, the truly optimal objective

value is not larger and thus, the true worst-case ratio is not smaller.

Now, we may assume that all short jobs remaining with processing times di�erent

from 0 and 2 are untested in the optimum solution because their processing time is at

least p̄j − 1. Again, the optimum does not test those jobs, and hence, increasing the

processing time to 2 has no impact on the optimal schedule, while our algorithm's cost

only increases. Thus, the worst-case ratio increases, which concludes the proof. ut

Threshold tests all jobs and makes scheduling decisions depending on job pro-

cessing times pj but independently of upper limits of jobs. Since all short jobs have

pj ∈ {0, 2}, we can reduce all their upper limits to p̄j = 2 without a�ecting the sched-

ule, whereas it may only improve the optimal schedule. In particular we may assume

now the following.

Lemma 5 There is a worst-case instance in which all short jobs have p̄j = 2 and

execution times are 0 or 2.

Lemma 6 There is a worst-case instance in which long jobs with pj > 2 have a

uniform upper limit p̄ and processing times pj = p̄j = 2 + ε for in�nitesimally small

ε > 0.

Proof For all long jobs, which are tested by the optimum, we reduce the upper limit

to p̄j = 1 + pj . This does not change the algorithm's solution. But the optimum may

as well run those previously tested jobs also untested and would not change its total

objective value.

Now the optimum solution runs all long jobs without testing them. Thus, increasing

the processing time of long jobs to pj = p̄j does not a�ect the optimum cost whereas

the algorithm's cost increases.

Lemma 5 implies that all long jobs are scheduled in the same order by the algorithm

and an optimum without any short jobs in between. Then, setting p̄ = 2 + ε decreases

the objective values of both algorithms by the same amount and thus does not decrease

the ratio. The lemma follows. ut

Now we are ready to prove the main result.

Theorem 7 Algorithm Threshold has competitive ratio at most 2 for scheduling

with testing with the objective of minimizing the sum of completion times.

Proof We consider worst-case instances of the type derived above. Let a be the number

of short jobs with pj = 0, let b be the number of short jobs with p̄j = pj = 2, and let c

be the number of long jobs with p̄j = 2 + ε, see Figure 2.

Threshold's solution for a worst-case instance �rst tests all long jobs, then tests

and executes the short jobs in decreasing order of processing times, and completes with

the executions of long jobs. The total objective value ALG is

Alg = (a+ b+ c)c+ b(b+ 1)/2 · 3 + 3b(a+ c)+

+ a(a+ 1)/2 + a · c+ c(c+ 1)/2 · (2 + ε).

An optimum solution tests and schedules �rst all 0-length jobs and then executes

the remaining jobs without tests. The objective value is

Opt = a(a+ 1)/2 + a(b+ c) + b(b+ 1)/2 · 2 + 2bc+ c(c+ 1)/2 · (2 + ε).

An Adversarial Model for Scheduling with Testing 13

2 2+ε 2+ε 2+ε2

2+ε 2+ε2+ε12 1 1111 2

c

1 1 1

b a c

1 1 11

a b c

ALG:

OPT:

Fig. 2 Worst case instance for Threshold.

Simple transformation shows that Alg ≤ 2 ·Opt is equivalent to

2ab+ 2c2 ≤ a2 + b2 + a+ b+ c(c+ 1)(2 + ε) ⇔

0 ≤ (a− b)2 + a+ b+ c2ε+ c(2 + ε),

which is obviously satis�ed and the theorem follows. ut

Note that the analysis of Threshold is tight. Indeed it has ratio 2 − ε on the

instance consisting of a single job j with pj = 0 and p̄j = 2 − ε, for arbitrarily small

ε > 0. The algorithm does not test the job, but the optimal schedule does.

We conclude this section with an observation that was brought to our attention.

Consider a slight modi�cation of Threshold that delays all jobs after their test,

regardless of the revealed processing time. This algorithm, which we call DelayAll,

seems to produce worse schedules than Threshold. For example, when all jobs have

upper bound 2 and processing time 0, DelayAll has a cost of n2, while Threshold

has a cost of n(n + 1)/2. Nevertheless, the competitive ratio of DelayAll is also 2,
which can be shown as follows: Again, by Lemma 1 we may assume that all jobs have

upper limit at least 2. Hence, DelayAll starts by testing all jobs, and then executes

them in order of non-decreasing processing times. By Lemma 3, we can assume that

all jobs j with 0 ≤ pj ≤ 1 (which are tested by both Opt and DelayAll) satisfy

pj ∈ {0, 1}. For the jobs with pj ∈ [1, 2], we can then �rst set p̄j = 2 (this can only

help Opt) and next set pj = 2 (this can only increase the cost of DelayAll but does

not a�ect Opt). Finally, we can set p̄j = pj for all jobs with pj > 2 (this can only help

Opt) and then set pj = p̄j = 2 for all these jobs (this decreases the objective values of

Opt andDelayAll by the same amount and thus does not decrease the ratio). Let the

resulting instance consist of a jobs with processing time 0 and b jobs with processing

time 2. The cost of DelayAll is A = (a+ b)(a+ b) + b(b+ 1) = a2 + 2ab+ 2b2 + b,

and the cost of Opt is 1
2a(a+ 1) + ab+ b(b+ 1) = a2

2 + a
2 + ab+ b2 + b ≥ 1

2A.

3.2 Deterministic lower bound

In this section we give a lower bound on the competitive ratio of any deterministic

algorithm. The instances constructed by the adversary have a very special form: All

jobs have the same upper limit p̄, and the processing time of every job is either 0 or p̄.

Consider instances of n jobs with uniform upper limit p̄ > 1, and consider any

deterministic algorithm. We say that the algorithm touches a job when it either tests

the job or executes it untested. We re-index jobs in the order in which they are �rst

touched by the algorithm, i.e., job 1 is the �rst job touched by the algorithm and job

14 C. Dürr, T. Erlebach, N. Megow and J. Meiÿner

p111 p p 11ppp p 1 1 1 pp
ν λ δ-ν-λ 1-δ δ-ν-λ

1 1 1 1 1 p p p p p p

1+ν-δ δ-ν

ALG:

OPT:

Fig. 3 Lower bound construction.

n is the last. The adversary �xes a fraction δ ∈ [0, 1] and sets the processing time of

job j, 1 ≤ j ≤ n, to:

pj =

{
0 , if j is executed by the algorithm untested, or j > δn

p̄ , if j is tested by the algorithm and j ≤ δn

A job j is called short if pj = 0 and long if pj = p̄. Let j0 be the smallest integer that

is greater than δn. Job j0 is the �rst of the last (1− δ)n jobs that are short no matter

whether the algorithm tests them or not.

We assume the algorithm knows p̄ and δ, which can only improve the performance

of the best-possible deterministic algorithm. Note that with δ and p̄ known to the

algorithm, it has full information about the actions of the adversary. Nevertheless, it

is still non-trivial for an algorithm to decide for each of the �rst δn jobs whether to

test it (which makes the job a long job, and hence the algorithm spends time p̄ + 1
on it while the optimum executes it untested and spends only time p̄) or to execute

it untested (which makes it a short job, and hence the algorithm spends time p̄ on it

while the optimum spends only time 1).
Let us �rst determine the structure of the schedule produced by an algorithm that

achieves the best possible competitive ratio for instances created by this adversary, as

displayed in Figure 3.

Lemma 8 The schedule of a deterministic algorithm with best possible competitive

ratio has the following form, where λ, ν ≥ 0 and ν+λ ≤ δ: The algorithm �rst executes

νn jobs untested, then tests and executes λn long jobs, then tests (δ−ν−λ)n long jobs

and delays their execution, then tests and executes the remaining (1 − δ)n short jobs,

and �nally executes the (δ − ν − λ)n delayed long jobs that were tested earlier, see

Figure 3.

Proof It is clear that the algorithm will test the last (1 − δ)n jobs and execute each

such job (with processing time 0) right after its test, as executing any of them untested

does not a�ect the optimal solution but increases the objective value of the algorithm.

Furthermore, consider the time t when the algorithm tests job j0. From this time until

the end of the schedule, the algorithm will test and execute the last (1 − δ)n jobs

(spending time 1 on each such job), and execute all the long jobs that were tested

earlier but not yet executed (spending time p̄ > 1 on each such job). As the SPT rule

is optimal for minimizing the sum of completion times, it is clear that from time t

onward the algorithm will �rst test and execute the (1− δ)n short jobs and afterwards

execute the long jobs that were tested but not executed before time t.

Before time t, the algorithm touches the �rst δn jobs. Each of these can be executed

untested (let νn be the number of such jobs), or tested and also executed before time t

An Adversarial Model for Scheduling with Testing 15

(let λn be the number of such jobs), or tested but not executed before time t (this

happens for the remaining (δ−ν−λ)n jobs). To minimize the sum of completion times

of these jobs, it is clear that the algorithm �rst executes the νn jobs untested (spending

time p̄ per job), then tests the λn long jobs and executes each of them right after its

test (spending time 1 + p̄ per job), and �nally tests the remaining (δ − ν − λ)n long

jobs. ut

The cost of the algorithm in dependence on ν, λ, δ and p̄ can now be expressed as:

Alg(ν, λ, δ, p̄) = n2
(
ν2

2
p̄+ νp̄(1− ν) +

λ2

2
(1 + p̄) + λ(1 + p̄)(1− ν − λ)

+ (δ − ν − λ)(1− ν − λ) +
(1− δ)2

2
+ (1− δ)(δ − ν − λ) +

(δ − ν − λ)2

2
p̄
)

+O(n)

=
n2

2

(
1 + 2δ(1− νp̄) + δ2(p̄− 1) + 2ν(ν + p̄− 2) + λ2 + 2λ(ν + p̄− 1− δp̄)

)
+O(n)

The optimal schedule �rst tests and executes the (ν + 1 − δ)n short jobs and then

executes the (δ− ν)n long jobs untested. Hence, the optimal cost, which depends only

on ν, δ and p̄, is:

Opt(ν, δ, p̄) = n2

(
(ν + 1− δ)2

2
+ (ν + 1− δ)(δ − ν) +

(δ − ν)2

2
p̄

)
+O(n)

=
n2

2

(
1 + (δ − ν)2(p̄− 1)

)
+O(n)

We introduce the notations

Alg
′(ν, λ, δ, p̄) = lim

n→∞
2

n2
Alg(ν, λ, δ, p̄) and

Opt
′(ν, δ, p̄) = lim

n→∞
2

n2
Opt(ν, δ, p̄).

As the adversary can choose δ and p̄, while the algorithm can choose ν and λ, the value

R = max
δ,p̄

min
ν,λ

Alg
′(ν, λ, δ, p̄)

Opt
′(ν, δ, p̄)

gives a lower bound on the competitive ratio of any deterministic algorithm in the limit

for n → ∞. By making n su�ciently large, the adversary can create instances with

�nite n that give a lower bound arbitrarily close to R.

The exact optimization of δ and p̄ is rather tedious and technical as it involves the

optimization of rational functions of several variables. In the following, we therefore

only show that the choices δ = 0.6306655 and p̄ = 1.9896202 give a lower bound

of 1.854628 on the competitive ratio of any deterministic algorithm. (The fully opti-

mized value of R is less than 1.1 · 10−7 larger than this value.) For this choice of δ and

p̄ we have:

Alg
′(ν, λ, δ, p̄) ≈ 1.32747 + ν(ν − 1.26516) +

1

2
λ2 + λ(ν − 0.265165)

Opt
′(ν, δ, p̄) ≈ 0.696805 + ν(0.49481ν − 0.624119)

The part of Alg′(ν, λ, δ, p̄) involving λ is 1
2λ

2 +λ(ν+ p̄−1− δp̄), which is a quadratic

function minimized at λ = 1 + δp̄− p̄− ν ≈ 0.265165− ν. As λ must be non-negative,

we distinguish two cases depending on whether this expression is non-negative or not.

Let τ = 1 + δp̄− p̄ ≈ 0.265165.

16 C. Dürr, T. Erlebach, N. Megow and J. Meiÿner

Case 1: ν ≤ τ . In this case the best choice of λ for the algorithm is λ = τ − ν. The
ratio Alg′/Opt′ then simpli�es to:

f(ν) =
1.29231 + ν(1

2ν − 1)

0.696805 + ν(0.49481ν − 0.624119)
= 1.01049 +

1.18874− 0.746417ν

1.40823 + ν(ν − 1.26133)

In the range 0 ≤ ν ≤ τ , the only local extremum of this function is a local maximum

at ν ≈ 0.201266, so the function attains its minimum in the range at one of the two

endpoints. As we have f(τ) > f(0) ≈ 1.854628, the function is minimized at ν = 0,
giving a lower bound of 1.854628 on the competitive ratio.

Case 2: ν > τ . In this case, the best choice of λ for the algorithm is λ = 0. The ratio
Alg

′/Opt′ then becomes:

g(ν) =
1.32747 + ν(ν − 1.26516)

0.696805 + ν(0.49481ν − 0.624119)
= 2.02098 +

−0.163208− 0.00774781ν

1.40823 + ν(ν − 1.26133)
.

This function is monotonically decreasing in the range τ < ν ≤ δ, so it is minimized

for ν = δ, giving a ratio of g(δ) ≈ 1.854628.
As we get a lower bound of 1.854628 in both cases, this lower bound holds generally.

Theorem 9 No deterministic algorithm can achieve a competitive ratio or asymptotic

competitive ratio below 1.854628 for scheduling with testing with the objective of mini-

mizing the sum of completion times. This holds even for instances with uniform upper

limit where each processing time is either 0 or equal to the upper limit.

4 Randomized Algorithms

4.1 Algorithm Random

Algorithm 2 (Random) The randomized algorithm Random has parameters 1 ≤
T ≤ E and works in 3 phases. First it executes all jobs with p̄j < T without testing in

order of increasing p̄j . Then it tests all jobs with p̄j ≥ T in uniform random order. Each

tested job j is executed immediately after its test if pj ≤ E and is deferred otherwise.

Finally all deferred jobs are executed in order of increasing processing time.

We analyze the competitive ratio of Random, and optimize the parameters T,E

such that the resulting competitive ratio is T .

By Lemma 1 we restrict to instances with p̄j ≥ T for all jobs. Then, the schedule

produced by Random can be divided into two parts. Part (1) contains all tests, of

which those that yield processing time pj at most E are immediately followed by the

job's execution. Part (2) contains all jobs that have been tested and with processing

time larger than E. These jobs are ordered by increasing processing time. Jobs in the

�rst part are completed in an arbitrary order.

Furthermore, we can assume p̄j = max{pj , T} for all jobs. Reducing p̄j to this

value does not change the cost or behavior of Random, but may decrease the cost of

Opt. We make further assumptions along the following lines. Let ε > 0 be an arbitrary

small number such that pj ≥ E+ ε for all jobs j with pj > E. These jobs are executed

by Random in part (2) of the schedule in non-decreasing order of processing time. The

same holds for Opt, which by the SPT Policy also schedules these jobs in the end in

An Adversarial Model for Scheduling with Testing 17

E+εT E+ε E+εEEEET T

1

tests in random order deferred jobs

1 1 1 1

1-α-β-γ α

ALG:

OPT:

1 E1 T1

1-α-β-γfractions: α β γ γ

β γ

E+εE+ε E+ε

Fig. 4 Worst case analysis of the algorithm Random.

exactly the same order. Hence if we set p̄j = pj = E + ε for all these jobs, then we

reduce the objective value of Random and of Opt by the same value. According to

Proposition 2 this transformation only increases the competitive ratio of the algorithm.

Using again the assumption that p̄j = max{pj , T} for all jobs, we now have that

all jobs j in part (2) satisfy p̄j = pj = E + ε and the remaining jobs satisfy either

p̄j = pj ∈ [T,E] or p̄j = T and pj ≤ T . Now we apply Lemma 3 to show that for

all jobs j with p̄j = pj ∈ [T,E] we can in fact assume p̄j = pj ∈ {T,E}. The usage

of the lemma is a bit subtle as the output of Random is a distribution of schedules.

For any �xed scheduling order corresponding to a realization of the random execution

of the algorithm, the conditions of the lemma are satis�ed. But we cannot apply the

lemma on each order individually, as we might end up with di�erent problem instances.

However, the expected cost of Random is linear in the execution times of jobs j within

pj ∈ [T,E]. This is the key condition which is used in the proof of Lemma 3. Hence we

conclude that the statement of the lemma still holds.

Now we turn to jobs j with p̄j = T and pj ≤ T . For the jobs with 0 ≤ pj ≤ T − 1,
the same argument implies that pj ∈ {0, T − 1}. However jobs j with p̄j = T and

T − 1 ≤ pj ≤ T are not tested in Opt. Therefore increasing their processing time to

pj = T does not change Opt but increases the cost of Random and therefore increases

the competitive ratio.

In conclusion a worst case instance is described completely by the number of jobs

n and fractions α, β, γ as follows, see Figure 4.

� A 1− α− β − γ fraction of the jobs have p̄j = T and pj = 0. (type 0 jobs)

� An α fraction of the jobs have p̄j = T and pj = T . (type T jobs)

� A β fraction of the jobs have p̄j = E and pj = E. (type E jobs)

� A γ fraction of the jobs have p̄j = E + ε and pj = E + ε for some arbitrarily small

ε > 0. (type E+ jobs)

4.1.1 Cost of Random

Let n be the total number of jobs in the instance. In the following expressions for

simpli�cation we will omit ε. We denote by L := n+Tαn+Eβn the length of part (1).

This means that for a job j of type 0, T or E, the expected time its test starts is

(L−1−pj)/2 and hence its expected completion time, which is 1+pj time units later,

18 C. Dürr, T. Erlebach, N. Megow and J. Meiÿner

is (L+ 1 + pj)/2. The expected objective value of Random can be expressed as

ALG =(1− γ)n(n+ 1 + Tαn+ Eβn)/2 (1)

+ Tαn/2 + Eβn/2 (2)

+ γn(n+ Tαn+ Eβn) (3)

+ Eγn(γn+ 1)/2 (4)

where (1) is the sum of (L + 1)/2 for all jobs completed in the �rst part, (2) is the

additional part in the expected completion time for job types T and E. Jobs completed

in the second part have all the same processing time. The i-th to be completed in part

(2) has completion time L + Ei. Hence the total completion time of these jobs is

expressed as the sum of the expressions (3) and (4).

4.1.2 Cost of Opt

By the smallest processing time �rst rule, the optimal schedule �rst tests and executes

all type 0 jobs. Then it executes untested all type T,E and E+ jobs in that order.

Hence the optimal objective value is stated as follows, where every other expression

represents the total completion times of some job type followed by the delay these jobs

induce on subsequent job types.

Opt =(1− α− β − γ)n((1− α− β − γ)n+ 1)/2+

(1− α− β − γ)n(α+ β + γ)n+

Tαn(αn+ 1)/2+

Tαn(β + γ)n+

Eβn(βn+ 1)/2+

Eβnγn+

Eγn(γn+ 1)/2.

4.1.3 Competitive ratio

We say that fractions α, β, γ are valid i� α, β, γ ≥ 0 and α+β+ γ ≤ 1. The algorithm
is T -competitive if T ·OPT−ALG ≥ 0 for all n ≥ 0 and all valid fractions α, β, γ. The

costs can be written as Alg = n2

2 Alg2 + n
2Alg1 and Opt = n2

2 Opt2 + n
2Opt1 for

Alg2 =1 + γ + βE + βγE + γ2E + αT + αγT

Alg1 =1− γ + βE + γE + αT

Opt2 =1− α2 − 2αβ − β2 − 2αγ − 2βγ − γ2

+ β2E + 2βγE + γ2E + α2T + 2αβT + 2αγT

Opt1 =1− α− β − γ + βE + γE + αT.

It su�ces to show separately the inequalities T ·Opt2−Alg2 ≥ 0 and T ·Opt1−Alg1 ≥
0 for all valid α, β, γ fractions.

We start with the �rst inequality, and consider the following left hand side.

G = T [1+(β+γ)2(E−1)+α2(T−1)+2α(β+γ)(T−1)−α−αγ]−γ−1−E(γ2+βγ+β).

An Adversarial Model for Scheduling with Testing 19

α

0

1

1

1

β

γ

Fig. 5 Validity region for (α, β, γ).

4.1.4 Breaking into cases

We want to �nd parameters T,E with minimal T such that G(T,E, α, β, γ) ≥ 0 for all

valid fractions, i.e. α, β, γ ≥ 0 with α + β + γ ≤ 1. We call this the validity polytope

for α, β, γ, see Figure 5. For this purpose we made numerical experiments which gave

us a range where the optima could belong, namely T ∈ [1.71, 1.89], E ∈ [2.81, 2.89].
Our general approach consists in identifying values (α, β, γ) which are local min-

ima for G. Each of these points (α, β, γ) generate conditions on T,E of the form

G(T,E, α, β, γ) ≥ 0. The optimal pair (T,E) is then the pair with minimal T satisfy-

ing all the generated conditions.

The analysis follows a partition of the validity polytope. First we consider the open

region {(α, β, γ)|0 < α, 0 < β, 0 < γ, α + β + γ < 1}. Then we consider the 4 open

facets on the border de�ned by the equations α + β + γ = 1, α = 0, β = 0, γ = 0.
Finally we consider the 6 closed edges that form the edges of the polytope. Note that

the vertices of the polytope (0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0) belong each to several

edges.

� Case 1: open polytope. The second order derivatives of G in α, β, γ are

∂2G

∂2α
= 2T (T − 1)

∂2G

∂2β
= 2T (E − 1)

∂2G

∂2γ
= 2T (E − 1)− 2E

which are all positive in the considered T - and E-range. Hence a local minimum

on the open polytope must be a point (α, β, γ) that is a root for the derivative in

each of the 3 directions. Hence we choose α as the root

α = β − γ +
1 + γ

2(T − 1)
,

20 C. Dürr, T. Erlebach, N. Megow and J. Meiÿner

β as the root

β =
1 + γ − 2γT

2T
,

and γ as the root

γ =
(E(T − 1)− T)(2T − 1)

E(T − 1) + T
.

For this point the condition G ≥ 0 translates into the following condition on T,E.

E2(T − 1)2 + T (2T − 1)− ET 2 ≥ 0. (5)

� Case 2: facet α+ β + γ = 1. In that case the derivative of G in β is 1− α(E − T).
This means that G is linear in β, and a local minimum lies on the boundary of the

triangle, which we considered open. Hence such a local minimum will be considered

in a case below. Note that in the degenerate case α = 1/(E − T) the value of G

is independent of β, hence it is enough to consider an equivalent point on the

boundary.

� Case 3: facet γ = 0. In this case the extreme α value for G is

α =
1

2(T − 1)
− β,

and then the extreme β value for G is β = 1/2T. For this point the condition G ≥ 0
translates into the following condition on T,E.

1

T − 1
+ 4(T − 1)− E

T
≥ 0. (6)

� Case 4: facet α = 0. In this case the extreme β value for G is

β =
E + γE + 2γT − 2γET

2T (E − 1)
,

but then the second order derivative of G in γ is

∂2G

∂2γ
= − E2

2T (E − 1)

which is negative. Hence local minimum of this triangle is on its boundary.

� Case 5: facet β = 0. The extreme α value for G is

α =
1 + 3γ − 2γT

2(T − 1)
,

and then the extreme γ value for G is

γ =
(2− T)(2T − 1)

4E(T − 12)− T (5− 4T (2− T))
.

But in the considered region for (T,E) the value of α+γ exceeds 1, and is therefore

outside the boundaries of the triangle.

� Case 6: edge (α, β, γ) = (x, 1− x, 0) for 0 ≤ x ≤ 1. The extreme point for x is

x = 1− 1

2T
.

For this point the condition G ≥ 0 translates into the following condition on T,E.

T (T − 1)− 3

4
− E

4T
≥ 0. (7)

An Adversarial Model for Scheduling with Testing 21

� Case 7: edge (α, β, γ) = (x, 0, 1− x) for 0 ≤ x ≤ 1. The extreme point for x is

x =
2ET + 2T − 2T 2 − 2E − 1

2(E − T)(T − 1)
,

which generates the following condition

4E(1− (2− T)T 2)− (2T (T − 1)− 1)2 ≥ 0. (8)

� Case 8: edge (α, β, γ) = (0, x, 1 − x) for 0 ≤ x ≤ 1. Here G is linear increasing in

x, hence a local minimum is reached at x = 0, generating the condition

E(T − 1)− 2 ≥ 0. (9)

� Case 9: edge (α, β, γ) = (x, 0, 0) for 0 ≤ x ≤ 1. The extreme point for x is

x =
1

2(T − 1)
,

generating the condition

4T − 5− 1

T − 1
≥ 0. (10)

� Case 10: edge (α, β, γ) = (0, x, 0) for 0 ≤ x ≤ 1. The extreme point for x is

x =
E

2T (E − 1)
,

generating the condition

4(T − 1)− E2

T (E − 1)
≥ 0. (11)

� Case 11: edge (α, β, γ) = (0, 0, x) for 0 ≤ x ≤ 1. The extreme point for x is

x =
1

2(ET − E − T)
,

generating the condition

T − 1− 1

4(ET − E − T)
≥ 0. (12)

In summary we want to �nd values T,E that satisfy all conditions (5) to (12) and

minimize T . In the considered region for T and E, the conditions (7), (9), (10) and

(11) are satis�ed. Hence we focus on the remaining conditions, and �nd out that the

optimal point lies on the intersection of the left hand sides of condition (6) and (8).

The solutions are roots to a polynomial of degree 5, and in only one of them T is larger

than the golden ratio, which it has to. Numerically we obtain the optimal parameters

T ≈ 1.7453 and E ≈ 2.8609.
We conclude the proof by considering the inequality T ·Opt1−Alg1 ≥ 0 which is

γ(E − 1)(T − 1) + β(E − 1)t+ (1− α(2− T))T − 1− βE ≥ 0.

Taking the derivative of the left hand side reveals that it is decreasing in α and in-

creasing in β and γ for the chosen values T,E. Hence the expression is minimized at

α = 1, β = 0, γ = 0, where its value is T (T − 1)− 1 > 0. Therefore we have shown the

following theorem.

Theorem 10 The competitive ratio of the algorithm Random is at most 1.7453 for

scheduling with testing with the objective of minimizing the sum of completion times.

22 C. Dürr, T. Erlebach, N. Megow and J. Meiÿner

1.71 1.72 1.73 1.74 1.75 1.76 1.77 1.78

2.82

2.84

2.86

2.88

Fig. 6 Regions where conditions (5):blue, (6):orange, (8):green and (12):red are satis�ed by
points (T,E), with T ranging horizontally and E ranging vertically.

4.2 Lower bound for randomized algorithms

In this section we give a lower bound on the best possible competitive ratio of any ran-

domized algorithm against an oblivious adversary. We do so by specifying a probability

distribution over inputs and proving a lower bound on E[Alg]/E[Opt] that holds for
all deterministic algorithms Alg. By Yao's principle [8,60] this gives the desired lower

bound.

The probability distribution over inputs with n jobs has a constant parameter

0 < q < 1 and is de�ned as follows: Each job j has upper limit p̄j = 1/q > 1, and its

processing time pj is set to 0 with probability q and to 1/q with probability 1− q.

Estimating E[Opt]. Let Z denote the number of jobs with processing time 0. Note
that Z is a random variable with binomial distribution. The optimal schedule �rst tests

and executes the Z jobs with pj = 0 and then executes the n− Z jobs with pj = 1/q
untested. Hence, the objective value of Opt is:

Z(Z + 1)

2
+ Z(n− Z) +

(n− Z)(n− Z + 1)

2q
.

Using E[Z] = nq and E[Z2] = (nq)2 + nq(1− q), we obtain

E[Opt] =
n2

2

(
1

q
+ 3q − 2− q2

)
+O(n).

Estimating E[Alg]. First, observe that we only need to consider algorithms that sched-

ule a job j immediately if the job has been tested and pj = 0. Furthermore, we only

need to consider algorithms that never create idle time before all jobs are completed.

We claim that any such algorithm satis�es E[Alg] ≥ n2

2q for all n. We prove this by

induction on n. Let Alg(k) denote the objective value of the algorithm Alg executed

for a random instance with k jobs that is generated by our probability distribution for

An Adversarial Model for Scheduling with Testing 23

n = k (i.e., all k jobs have p̄j = 1/q and pj is set to 0 with probability q and to 1/q
otherwise).

Consider the base case n = 1. IfAlg executes job 1 without testing, thenAlg(1) =
1/q. If Alg tests the job and then necessarily executes it right away, since there are

no other jobs, then E[Alg(1)] = 1 + (q · 0 + (1 − q) · (1/q)) = 1/q. In both cases,

E[Alg(1)] = 1/q ≥ n2

2q .

Now assume the claim has been shown for n− 1, i.e., E[Alg(n− 1)] ≥ (n−1)2

2q =
n2

2q − n/q + 1
2q > n2

2q − n/q. Consider the execution of Alg on an instance with n

jobs, and make a case distinction on how the algorithm handles the �rst job it tests or

executes. Without loss of generality, assume that this job is job 1.

� Case 1: Alg executes job 1 without testing (completing at time C1 = 1/q), or it
tests jobs 1 and then executes it immediately independent of its processing time

(with expected completion time E[C1] = 1+(1−q)/q = 1/q). After the completion

of job 1, the algorithm schedules the remaining n − 1 jobs, which is a random

instance with n − 1 jobs. Hence, the objective value is E[C1] + E[C1](n − 1) +

E[Alg(n− 1)] = 1/q + (n− 1)/q + E[Alg(n− 1)] ≥ n/q + n2

2q − n/q = n2

2q .

� Case 2: Alg tests job 1 and then executes it immediately if its processing time is

0, but defers it if its processing time is 1/q. Assume �rst that if p1 = 1/q, then
Alg defers the execution of p1 to the very end of the schedule. We have

E[Alg(n)|p1 = 0] = 1 + (n− 1) + E[Alg(n− 1)]

and

E[Alg(n)|p1 = 1/q] = n+ E[Alg(n− 1)] + E[len(Alg(n− 1))] + 1/q,

where len(Alg(n − 1)) is the length of the schedule for n − 1 jobs. Note that

every job contributes 1/q to the expected schedule length no matter whether it

is tested (in which case it requires time 1 for testing and an additional expected

(1 − q)/q time for processing) or not (in which case its processing time is 1/q for

sure). Therefore, E[len(Alg(n− 1))] = (n− 1)/q. So we have:

E[Alg(n)] = q(n+ E[Alg(n− 1)]) + (1− q)(n+ n/q + E[Alg(n− 1)])

= qn+ n+ n/q − qn− n+ E[Alg(n− 1)]

= n/q + E[Alg(n− 1)]

≥ n2

2q
.

Finally, we need to consider the possibility that p1 = 1/q and Alg defers job 1,
but schedules it at some point during the schedule for the remaining n − 1 jobs

instead of at the very end of the schedule. Assume that Alg schedules job 1 in such

a way that k of the remaining n−1 jobs are executed after job 1. We compare this

schedule to the schedule where job 1 is executed at the very end of the schedule.

Let K be the set of k jobs that are executed after job 1 by Alg. Note that the jobs

in the set K can be jobs that are scheduled without testing (and thus executed

with processing time 1/q), jobs that are tested and executed after the execution

of job 1 (so that the expected time for testing and executing them is 1/q), or jobs
that are tested before the execution of job 1 but executed afterwards (in which case

24 C. Dürr, T. Erlebach, N. Megow and J. Meiÿner

their processing time must be 1/q, since jobs with processing time 0 are executed

immediately after they are tested). Hence, moving the execution of job 1 from

the very end of the schedule ahead of k job executions will change the expected

objective value as follows: The expected completion time of job 1 decreases by k/q,

and the completion time of each of the k jobs in K increases by 1/q. Therefore,
E[Alg(n)] is the same as when job 1 is executed at the end of the schedule, and

we get E[Alg(n)] ≥ n2

2q as before.

Theorem 11 No randomized algorithm can achieve a competitive ratio less than 1.6257
for scheduling with testing with the objective of minimizing the sum of completion times.

Proof Since we have E[Opt] = n2

2

(
1
q + 3q − 2− q2

)
+O(n) and E[Alg] ≥ n2

2q , Yao's

principle [8, 60] gives a lower bound that is arbitrarily close (for large enough n) to

1/q

1/q + 3q − 2− q2

for randomized algorithms against an oblivious adversary. The bound is maximized for

q = 1− 1/
√

3 ≈ 0.42265, giving a lower bound of 1.62575. ut

5 Deterministic Algorithms for Uniform Upper Limits

In this section we investigate the problem of scheduling with testing on instances in

which all jobs have a uniform upper limit p̄. In Subsection 5.1, we give a deterministic

algorithm that achieves a ratio strictly less than 2. In Subsection 5.2, we study an even

further restricted class of extreme uniform instances that consist of jobs with uniform

upper limit p̄ and processing times in {0, p̄}. We give an algorithm with improved com-

petitive ratio that is particularly interesting as it is near-optimal algorithm for the class

of worst-case instances for deterministic algorithm from Theorem 9 in Subsection 3.2.

5.1 An improved algorithm for uniform upper limits

We assume that all jobs have upper limit p̄. We design an algorithm with a competitive

ratio strictly less than 2 by combining Threshold, presented in Section 3.1, with a

new algorithm Beat. The new algorithm Beat performs well on instances with upper

limit roughly 2, but its performance becomes worse for larger upper limits. Therefore,

we employ in this case the algorithm Threshold.

To simplify the analysis, we consider the limit of Alg(I)/Opt(I) when the num-

ber n of jobs approaches in�nity. We say that an algorithm Alg is asymptotically

ρ∞-competitive or has asymptotic competitive ratio at most ρ∞ if

lim
n→∞

sup
I
Alg(I)/Opt(I) ≤ ρ∞.

Algorithm 3 (Beat) The algorithm Beat balances the time testing jobs and the

time executing jobs while there are untested jobs. A job is called short if its running

time is at most E = max{1, p̄−1}, and long otherwise. Let TotalTest denote the time

we spend testing long jobs and let TotalExec be the time long jobs are executed. We

iterate testing an arbitrary job and then execute the job with smallest processing time

An Adversarial Model for Scheduling with Testing 25

either, if it is a short job, or if TotalExec + pk is at most TotalTest. Once all jobs

have been tested, we execute the remaining jobs in order of non-decreasing processing

time. The pseudocode is shown in Pseudocode 1.

Pseudocode 1: Beat
Output: A schedule of tests and executions of all jobs.

1 TotalTest ← 0; //total time of executed tests of long jobs
2 TotalExec ← 0; //total time of executed long jobs
3 while there are untested jobs do
4 k ← tested, not executed job with minimum pk; //pk =∞ if no such job
5 if TotalExec + pk ≤ TotalTest then
6 execute k;
7 TotalExec ← TotalExec + pk;

8 else

9 j ← an arbitrary untested job ;
10 test j;
11 if pj ≤ E then

12 execute j;
13 else

14 TotalTest ← TotalTest + 1;

15 execute all remaining jobs in order of non-decreasing pj ;

We will analyze algorithm Beat in Section 5.1.1. In Lemma 13 we will make a struc-

tural observation about the algorithm schedule for a worst-case instance. In Lemma 15

we prove that the asymptotic competitive ratio of Beat for p̄ < 3 is at most

ρBEAT∞ =
1 + 2(−2 + p̄)p̄+

√
(1− 2p̄)2(−3 + 4p̄)

2(−1 + p̄)p̄
.

This function decreases, when p̄ increases. Alternatively, for small upper limit we can

execute each job without test. Then there is a worst-case instance where all jobs have

processing time pj = 0. The optimal schedule tests each job only if the upper limit p̄ is

larger than one and executes it immediately. For p̄ < 1 this means the competitive ratio

is 1 and otherwise it is p̄, which monotonically increases. Thus, we choose a threshold

T1 ≈ 1.9338 for p̄, where we start applying Beat: the �xpoint of the function ρBEAT∞ .

For upper limits p̄ > 3, the performance behavior of Beat changes and the asymp-

totic competitive ratio increases. Thus, we employ the algorithm Threshold for large

upper limits. Recall from Section 3.1 that for p̄ > 2 Threshold tests all jobs, exe-

cutes those with pj ≤ 2 immediately and defers the other jobs. In Subsection 5.1.2, we

argue that there is a worst-case instance with short jobs that have processing time 0
or 2 and long jobs with processing time p̄j = p̄ and that no long job is tested in an

optimal solution. This allows us to prove in Theorem 17 that the competitive ratio for

Threshold is at most

ρTHRESH∞ =

{
−3+p̄+

√
−15+p̄(18+p̄)

2(p̄−1) if p̄ ∈ (2, 3)√
3 ≈ 1.73 if p̄ ≥ 3.

The function for small p̄ is a monotone function decreasing from 2 to
√

3 in the limits for

p̄ ∈ (2, 3). We choose a threshold, where we change from applying Beat to employing

26 C. Dürr, T. Erlebach, N. Megow and J. Meiÿner

p̄

c
o
m
p
e
t
it
iv
e
r
a
t
io

ρ∞ = T1

1 1.93 2.29 3

No Tests Beat Threshold

Fig. 7 Competitive ratio depending on p̄.

Threshold at T2 ≈ 2.2948, the crossing point of the two functions describing the

competitive ratio of Beat and Threshold in (2, 3).

Algorithm 4 Execute all jobs without testing them, if the upper limit p̄ is less than T1

≈ 1.9338. Otherwise, if the upper limit p̄ is greater than T2 ≈ 2.2948, execute the algo-
rithm Threshold. For upper limits between T1 and T2, execute the Algorithm Beat.

The function describing the asymptotic competitive ratio depending on p̄ is displayed

in Figure 7. Its maximum is attained at T1, which is a �xpoint. Thus we obtain the

following result.

Theorem 12 For scheduling with testing with the objective of minimizing the sum of

completion times, the asymptotic competitive ratio of Algorithm 4 on instances with

uniform upper limits is ρ∞ = T1 ≈ 1.9338, which is the only real root of 2p̄3 − 4p̄2 +
4p̄− 1−

√
(1− 2p̄)2(4p̄− 3).

5.1.1 Analysis of Beat

We �rst make a structural observation about the algorithm schedule for a worst-case

instance.

Lemma 13 There are worst-case uniform instances for Beat in which the jobs are

tested in order of decreasing pj , at most one job has pj ∈ (E, p̄), and all other jobs

have pj ∈ {0, E, p̄}.

Proof Let an arbitrary worst-case instance be given. Recall that a job is called short

if its running time is at most E = max{1, p̄ − 1}, and long otherwise. We �rst argue

that the short jobs are tested last. If not, the test and execution of some short job

js is followed by the test of a long job jl. If jl is not executed immediately after its

test, moving the test of jl in front of the test of js increases the cost of the algorithm

by 1. If jl is executed immediately after its test, moving the test and execution of jl
in front of the test of js increases the cost of the algorithm by pjl − pjs > 0. Hence, in
a worst-case instance the short jobs are tested after all the tests of long jobs.

We call a long job an executed long job if it is executed by Beat in line 6 of

Pseudocode 1, and a delayed long job or delayed job if it is excuted in line 15. The long

An Adversarial Model for Scheduling with Testing 27

jobs have processing time larger than E ≥ p̄− 1, which means they are not tested by

Opt. Hence, increasing the processing time of a long job does not increase the optimal

cost. For the delayed jobs, increasing their processing time to p̄ increases the algorithm

cost, but does not change the schedule, so in a worst-case instance we can assume that

all delayed jobs have pj = p̄.

For the executed long jobs, note that no two jobs are executed without a test in

between, as their processing time is larger than one, the length of a test. We claim that

we can assume that each executed long job is tested immediately before its execution. If

not, consider an executed long job j that was tested earlier and is executed immediately

after the test of another long job j′. Note that pj′ ≥ pj and that all long jobs j′′

executed between the test of j and the execution of j satisfy pj′′ ≤ pj . Hence, we can
swap the tests of j and j′ without a�ecting the schedule.

(a) j j j′ j′

(b) j′ j′ j j

Fig. 8 (a) Long job j with pj < pj′ is exe-
cuted before j′; (b) the tests (and executions)
of j and j′ have been swapped.

(a) j j j′ j′

(b) j′ j′ j j

Fig. 9 (a) Long job j with pj < pj′ is exe-
cuted before j′; (b) the tests and executions
of j and j′ have been swapped, and the exe-
cution of j′ has moved after the test of a long
delayed job.

Next, we claim that we can assume that the executed long jobs are tested in order of

decreasing processing times. If not, there must be an executed long job j that precedes

an executed long job j′ (potentially with some tests of delayed long jobs in between)

such that pj < pj′ . Swap the tests of j and j′. If job j′ is still executed immediately

after its test in the new position (see Figure 8), the cost of the algorithm increases by

pj′ − pj . If job j′ is executed only after a further test of a delayed job (see Figure 9;

this happens if TotalExec + pj′ > TotalTest holds after testing j′), the cost of the

algorithm increases by 1+(pj′−pj). Note that the execution of j′ cannot move behind

two or more tests of delayed jobs because E < pj < pj′ ≤ p̄ implies pj′−pj < 1. As the
cost of the algorithm increases in both cases while the optimal cost remains unchanged,

the executed long jobs must indeed be tested in order of decreasing processing times

in a worst-case instance.

(a) jl jl jd

(b) jl jl jd

(c) jl jd jl

Fig. 10 (a) The execution of the last long executed job jl is followed by the test of a delayed
job jd; (b) increasing pjl increases the cost of the algorithm; (c) if the execution of jl moves
after the test of jd, the increase in cost is even larger.

28 C. Dürr, T. Erlebach, N. Megow and J. Meiÿner

(a) j′l j′l jl jl

(b) j′l j′l jl jl

(c) j′l j′l jl jl

Fig. 11 (a) The execution of the last long executed job jl is followed by the test of a short job;
(b) increasing pj′

l
and decreasing pjl increases the cost of the algorithm; (c) if the execution

of j′l moves after the test of a delayed long job, the increase in cost is even larger.

Now, we want to show that we can also assume that the processing times of all

the executed long jobs (with at most one exception) are equal to p̄. Consider the last

executed long job jl, and assume that pjl < p̄ (otherwise, all executed long jobs have

processing time p̄). Case 1: If jl is followed by the test of a delayed long job jd, we

increase pjl to p̄, an increase of less than 1. After this increase, jl will either still be
executed immediately after its test, or it will be executed after the test of jd (see

Figure 10). The cost of the algorithm has thus increased by at least p̄−pjl > 0. Case 2:
If the execution of the last executed long job is followed by the test of a short job and

there is at least one other executed long job with processing time strictly less than p̄,

we proceed as follows: We shift processing time from the last executed long job jl to

the one before, say j′l , until either pj′l = p̄ or pjl = E. This increases the completion

time of the �rst of the two jobs (the execution of that job may potentially also move

after the test of a delayed long job), but does not change the completion time of any

other job (see Figure 11). If pjl becomes equal to E, the job jl becomes a short job,

but the schedule of the algorithm does not change. Thus, in both cases the cost of the

algorithm can be increased while keeping the optimal cost unchanged, a contradiction

to the instance being a worst-case instance. Hence, neither Case 1 nor Case 2 can apply

in a worst-case instance, and therefore we have at most one executed long job with

processing time strictly less than p̄, and that job (if it exists) is tested last among all

long jobs.

Finally we observe that both the algorithm and the optimal schedule test all short

jobs with pj ∈ [0, p̄−1] independent of their actual processing time. Also the execution

order of the algorithm and the optimal schedule solely depend on the ordering of the

processing times. Therefore Lemma 3 implies that we can assume that the short jobs

have processing times either 0 or p̄ − 1. Next, observe that increasing the processing

times of all short jobs with processing times in [p̄ − 1, E] to E does not change the

optimal cost as Opt can execute these jobs untested (recall that a job with pj =
p̄− 1 takes time p̄ no matter whether it is tested and executed, or executed untested).

It increases the algorithm cost, however. Thus, we can assume that in a worst-case

instance all short jobs have pj ∈ {0, E}. It is also clear that in a worst-case instance

the short jobs are tested in order of decreasing processing times by the algorithm, and

hence all jobs are tested in order of decreasing processing times (�rst the long jobs

with processing time p̄, then possibly the one long job with processing time between

E and p̄, and �nally the short jobs). ut

Consequently, the schedule produced by Beat consists of the following parts (in this

order), see also Figure 12:

An Adversarial Model for Scheduling with Testing 29

λn long jobs tested
ηn long jobs executedBEAT:

OPT:

σn short jobs tested
and executed

Ψn delayed
 long jobs executed

(1-δ)σn short jobs tested
and executed

δσn short jobs and λn long jobs
executed untested

Fig. 12 Structure of schedules produced by Beat and Opt.

� The tests of the λ fraction of jobs, that are long jobs, interleaved with executions

of the η fraction of all jobs, that are also long jobs and that are executed during

the �while there are untested jobs� loop.

� The tests and immediate executions of the short jobs, which is a σ = 1−λ fraction

of all jobs. Let δ be the fraction of short jobs with pj = E.

� The executions of the ψ = λ− η fraction of jobs, that are delayed long jobs, in the

�execute all remaining jobs� statement.

Opt consists of the following parts (in this order), see also Figure 12:

� The tests and immediate executions of the (1− δ)σ fraction of jobs that are short

and have processing time 0.
� The untested executions of the δσ fraction of jobs which are short and have pj = E

and the λ fraction of jobs that are long.

We note that TotalTest has value λn when all long jobs are tested, so the total

execution time in Phase 1, which is at least p̄(nη−1)+E by Lemma 13, cannot exceed

λn. As long jobs have pj > E ≥ 1, there are always at least as many long jobs tested

as are executed. Thus, TotalExec never decreases below TotalTest − p̄, as then some

job can be executed. Hence, we have

p̄η ≤ λ+O(1/n) < p̄η +O(1/n). (13)

Furthermore, we have λ = η + ψ, which yields

ψ ≤ (1− 1/p̄)λ+O(1/n). (14)

We �rst consider the algorithm schedule.

Lemma 14 For a fraction δ ∈ [0, 1] of short jobs with processing time pj = E, we can

bound the algorithm cost by

Alg ≤n
2

2

[
λ2

(
p̄+ 2− 1

p̄

)
+ σ2((1 + E)(2δ − δ2) + (1− δ)2)

+2λσ

(
2 +

(
1− 1

p̄

)
(1 + Eδ)

)]
+O(n).

Proof There is an η fraction of jobs completed in the �rst part, each executed when

TotalExec+pj ≤ TotalTest in the algorithm. Thus, the completion time of the i-th

such job is at most 2ip̄ + 1. The sum of these completion times is p̄η2n2 + O(n). A
fraction of δσ jobs is short and has pj = E. They are executed before the other (1−δ)σ

30 C. Dürr, T. Erlebach, N. Megow and J. Meiÿner

fraction of jobs with pj = 0 is executed. This means the completion times of the short

jobs contribute

n2

2

[
(1 + E)δ2σ2 + (1− δ)2σ2 + 2(1 + E)δσ(1− δ)σ

]
+O(n)

=
n2

2

[
σ2((1 + E)(2δ − δ2) + (1− δ)2)

]
+O(n).

Additionally there is an ψ fraction of jobs, which are executed at the end of the schedule,

each with processing time p̄. Thus their contribution to the algorithm cost is p̄ψ2n2/2+
O(n). The execution of the fraction σ of short jobs starts latest at time nλ+ p̄nη, and

the execution of the fraction ψ of jobs is delayed by at most nλ+ p̄nη + (1 + Eδ)nσ.
Thus, the total objective value of Beat is at most:

Alg ≤ n2

2

[
2p̄η2 + σ2((1 + E)(2δ − δ2) + (1− δ)2) + p̄ψ2

+2(λ+ p̄η)σ + 2(λ+ p̄η + (1 + Eδ)σ)ψ] +O(n).

By (13) and (14), we know that η ≤ λ/p̄ + O(1/n) and ψ ≤ (1− 1/p̄)λ + O(1/n).
Together with η + ψ = λ, this yields the desired bound. ut

Lemma 15 For uniform upper limit p̄ ∈ [1.5, 3], the asymptotic competitive ratio of

Beat is at most
1 + 2(−2 + p̄)p̄+

√
(1− 2p̄)2(−3 + 4p̄)

2(−1 + p̄)p̄
.

Proof We bounded the algorithm cost in Lemma 14 and thus �rst consider the optimal

cost. In Opt, �rst a fraction (1 − δ)σ of the short jobs is tested and executed with

processing time 0. Then the remaining fraction δσ of short jobs is executed with pro-

cessing time p̄ without test. Thus their contribution to the sum of completion times

is

n2

2

[
σ2
(

(1− δ)2 + p̄δ2 + 2δ(1− δ)
)]

+O(n) =
n

2

[
σ2
(

(p̄− 1)δ2 + 1
)]

+O(n).

All long jobs are executed untested at the end of the schedule and take p̄ time units.

Their sum of completion times is p̄λ2n2/2+O(n) and they are each delayed by σn(1+
(p̄− 1)δ)), giving:

Opt =
n2

2

[
λ2p̄+ σ2((p̄− 1)δ2 + 1) + 2λσ(1 + (p̄− 1)δ)

]
+O(n).

Then the asymptotic competitive ratio ρ∞ for upper limit p̄ in [1.5, 3]

ρ∞ =
λ2
(
p̄+ 2− 1

p̄

)
+ σ2((1 + E)(2δ − δ2) + (1− δ)2) + 2λσ(2 +

(
1− 1

p̄

)
(1 + Eδ))

p̄λ2 + σ2((p̄− 1)δ2 + 1) + 2λσ(1 + (p̄− 1)δ)
.

For σ = 0 or λ = 0 this ful�lls the claim. For the other values we set σ = αλ so the

ratio becomes:

p̄+ 2− 1
p̄ + α2((1 + E)(2δ − δ2) + (1− δ)2) + 2α(2 +

(
1− 1

p̄

)
(1 + Eδ))

p̄+ α2((p̄− 1)δ2 + 1) + 2α(1 + (p̄− 1)δ)
.

An Adversarial Model for Scheduling with Testing 31

We take the term to Mathematica to �nd the best bounds for it. For the case 1.5 <
p̄ < 2 we show that the adversary chooses δ = 0 and α such that the �rst derivative in

α equals 0. Otherwise, in the case 2 ≤ p̄ ≤ 3, we show for δ = 0 that we get exactly the

same expression as for p̄ < 2. We prove the adversary chooses this case, which means

the competitive ratio is bounded by the following function

1 + 2(−2 + p̄)p̄+
√

(1− 2p̄)2(−3 + 4p̄)

2(−1 + p̄)p̄
.

ut

5.1.2 Analysis of Threshold for uniform p̄

In this section we analyze Algorithm Threshold (see Section 3.1) for instances with

uniform upper limit p̄ > 2 and derive a competitive ratio as a function of p̄.

Recall that for p̄ > 2, Threshold tests all jobs. It executes a job immediately if

pj ≤ 2, and defers it otherwise. We have proved in Lemma 4 that we may assume that

all jobs with pj ≤ 2 have execution times either 0 or 2. We also argued that in a worst

case, Threshold tests �rst all long jobs, i.e., jobs j with pj > 2, then follow the short

jobs with tests (�rst length-2 jobs and then length-0 jobs), and �nally Threshold

executes the deferred long jobs in increasing order of processing times.

An optimum solution tests a job j only if pj + 1 < p̄. We show next that such long

jobs to be tested in an optimal solution do not exist.

Lemma 16 There is a worst-case uniform instance with short jobs that have processing

times 0 or 2 and long jobs with processing time pj = p̄. Furthermore, none of the long

jobs is tested in an optimal solution.

Proof Consider an instance with short jobs that have processing times 0 or 2 (Lemma 4).

We may increase the processing time of untested long jobs to their upper limit p̄ with-

out changing the optimal schedule. This cannot decrease the worst-case ratio as the

algorithm's objective value can only increase.

It remains to consider the long jobs that are tested by an optimal solution. We show

that we may assume that those do not exist. This is trivially true if 2 < p̄ < 3. Then
testing a long job j costs 1 + pj > 3 which is greater than running the job untested at

p̄ < 3, and thus, an optimal solution would never test it.

Assume now that p̄ ≥ 3. Threshold schedules any long job after all short jobs;

�rst it runs long tested jobs with total execution time 1 + pj < p̄ in non-decreasing

order of pj and then the untested jobs with execution time p̄. As all untested jobs

have processing time pj = p̄, we may assume that the algorithm and the optimum

schedule long jobs in the same order. Reducing the processing times of all tested long

jobs to 2 + ε for in�nitesimally small ε > 0 does not change the schedule for any of

the two algorithms, and thus, by Proposition 2, the ratio of the objective values of the

algorithm and the optimum does not decrease.

Now, we argue that reducing the processing times of tested long jobs from 2+ε to 2
(thus making them short jobs) does not a�ect the optimal objective value, because ε

is in�nitesimally small, and can only increase the objective value of the algorithm.

Consider the �rst long job that is tested by the optimum and the algorithm, say job `.

Consider the worst-case schedule of our algorithm for the new instance in which ` is

turned into a short job with e�ectively the same processing time. The job ` is tested

32 C. Dürr, T. Erlebach, N. Megow and J. Meiÿner

and scheduled just before the short jobs with pj = 0 instead of after them. Let a be the

number of those short jobs. Then this change in p` to 2 improves the completion time

of job ` by a and increases the completion time of a jobs by 2, so the net change in

the objective value of the algorithm is 2a− a = a ≥ 0. The argument can be repeated

until no tested long jobs are left. ut

Theorem 17 For scheduling with testing jobs with uniform upper limit p̄ > 2 with the

objective of minimizing the sum of completion times, Algorithm Threshold has an

asymptotic competitive ratio at most

ρ∞ =

{
−3+p̄+

√
−15+p̄(18+p̄)

2(p̄−1) if p̄ ∈ (2, 3)√
3 ≈ 1.73 if p̄ ≥ 3.

The function for small p̄ is a monotone function decreasing from 2 to
√

3 in the limits

for p̄ ∈ (2, 3).

Proof Consider a worst-case instance according to Lemma 16. Let αn denote the num-

ber of short jobs of length 0, let βn be the number of short jobs of length 2, and let

γn be the number of long jobs with pj = p̄. There are no other jobs, so α+ β+ γ = 1.
Recall, that we may assume that Threshold's schedule is as follows: �rst γn tests,

βn tests and executions of length-2 jobs, then tests and executions of αn length-0 jobs,

followed by the execution of long jobs with pj = p̄. The objective value is

Alg = n2

(
γ(α+ β + γ) +

β2

2
· 3 + 3β(α+ γ) +

α2

2
+ αγ +

γ2

2
· p̄
)

+O(n). (15)

To estimate the objective value of an optimal solution, we distinguish two cases for

the upper limit p̄.

Case: p̄ > 3. In this case, an optimal solution would test all short jobs, �rst the

length-0 jobs and then the length-2 jobs. Then follow all long jobs without testing

them (Lemma 16). Using the above notation, we have an optimal objective value

Opt = n2

(
α2

2
+ α(β + γ) +

β2

2
· 3 + 3βγ +

γ2

2
· p̄
)

+O(n).

Using γ = 1−α−β, the asymptotic competitive ratio for any p̄ > 3 can be bounded

by

2− α2 − 2αβ + (4− 3β)β + p̄(−1 + α+ β)2

−α2 + α(2− 6β)− 3(−2 + β)β + p̄(−1 + α+ β)2
,

which has its maximum at
√

3 for α = (3−
√

3)/2 and β = (
√

3− 1)/2.

Case: p̄ ≤ 3. In this case, an optimal solution tests only short jobs with pj = 0 and

executes all other jobs untested, also short jobs with pj = 2. The value of an optimum

schedule is

Opt = n2
(
α2/2 + α(β + γ) + p̄ · β2/2 + p̄ · βγ + p̄ · γ2/2

)
+O(n).

An Adversarial Model for Scheduling with Testing 33

11

111 p p1 p

p111 p p 11 p 1 1 1 pp

β 1-β-γ γ 1-β-γ

1 1 p p p p p p

γ 1-γ

ALG
if p≤p* and γ≥1-β:

OPT:

11 p p1 p 1

1-γ γ

ALG
if p≤p* and γ≤1-β:

1-γ

ALG
if p≥p*

1 1 1 1

γ

p p p p p p

1-γ

1 1

Fig. 13 The schedule produced by UTE and the optimal schedule.

With the value of Threshold's solution given by Equation (15), the asymptotic com-

petitive ratio is

ρ∞ =
α2 + 3β2 + 8βγ + α(6β + 4γ) + γ2(2 + p̄)

α2 + 2α(β + γ) + (β + γ)2p̄
.

Using Mathematica we verify that this ratio has its maximum at the desired value

−3 + p̄+
√
−15 + p̄(18 + p̄)

2(p̄− 1)
.

ut

5.2 A nearly optimal deterministic algorithm for extreme uniform instances

We present a deterministic algorithm for the restricted class of extreme uniform in-

stances, that is almost tight for the instance that yields the deterministic lower bound.

An extreme uniform instance consists of jobs with uniform upper limit p̄ and processing

times in {0, p̄}. Our algorithm UTE requires a parameter ρ ≥ 1 and attains competi-

tive ratio ρ ≈ 1.8668 for this class of instances when setting the algorithm parameter

ρ accordingly.

Algorithm 5 (UTE) Let parameter ρ ≥ 1 be given. If the upper limit p̄ is at most ρ,

then all jobs are executed without test. Otherwise, all jobs are tested. The �rst max{0, β}
fraction of the jobs are executed immediately after their test. The remaining fraction

of the jobs are executed immediately after their test if they have processing time 0 and

are delayed otherwise, see Figure 13. The parameter β is de�ned as

β =
1− p̄+ p̄2 − ρ+ 2p̄ρ− p̄2ρ

1− p̄+ p̄2 − ρ+ p̄ρ
. (16)

The choice of β will become clear in the analysis of the algorithm.

34 C. Dürr, T. Erlebach, N. Megow and J. Meiÿner

Theorem 18 For scheduling with testing to minimize the sum of completion times, the

competitive ratio of UTE on extreme uniform instances is at most ρ = 1+
√

3+2
√

5
2 ≈

1.8668.

Proof If the upper limit p̄ is at most ρ, by Lemma 1 the algorithm has competitive

ratio p̄, which ful�lls the claim. Thus, we assume in the following p̄ ≥ ρ. An instance

is de�ned by the job number n, an upper limit p̄ and a fraction γ such that the �rst

1− γ fraction of the jobs tested by UTE have processing time p̄, while the jobs in the

remaining γ fraction have processing time 0. The algorithm chooses β so as to have

the smallest ratio ρ.

With the chosen �xed value of ρ, the value β from equation (16) is a decreasing

function in p̄ for p̄ ≥ ρ. Hence there is a threshold value p∗ such that β(p̄) ≤ 0 for all

p̄ ≥ p∗, which is

p∗ :=
2ρ+

√
4ρ− 3− 1

2(ρ− 1)
≈ 2.7961.

As in previous proofs, we start to analyze the ratio only for the n2 dependent part

of the costs of UTE and OPT. We distinguish three cases, depending on the ranges of

p̄ and γ.

Case ρ ≤ p̄ ≤ p∗ and γ ≤ 1 − β. Consider for now β and ρ as some undetermined

parameters which will be optimized in the analysis of this case. The optimal cost is

Opt = γ2/2 + p̄(γ − 1)2/2 + γ(1− γ)

while the cost of UTE is

Alg =(p̄+ 1)β2/2+

p̄(1− β − γ)2/2+

γ2/2+

(1− γ + p̄β)γ+

(1 + p̄β)(1− β − γ).

The algorithm is ρ-competitive in this case if g ≥ 0 for

g := 2(ρOpt−Alg) = −2−β2+β(2−2γp̄)+γ2(p̄−1)(ρ−1)+p̄(ρ−1)+2γ(p̄+ρ−p̄ρ).

The expression g is convex in γ as the second derivate is 4(ρ − 1)(p̄ − 1) > 0, hence
the adversary chooses the extreme point

γ =
−p̄+ βp̄− ρ+ p̄ρ

(ρ− 1)(p̄− 1)
.

The resulting g is concave in β as the second derivative is

−4− 4p̄2

(ρ− 1)(p̄− 1)
< 0.

Hence the algorithm would like to choose the extreme point

β =
1− p̄+ p̄2 − ρ+ 2p̄ρ− p̄2ρ

1− p̄+ p̄2 − ρ+ p̄ρ
,

An Adversarial Model for Scheduling with Testing 35

which is the claimed expression (16). Now g depends solely on ρ and p̄ and is increasing

in both variables. Hence the smallest ρ such that g ≥ 0 is the root of g in ρ namely

ρ =
−1− p̄+ 2p̄2 − p̄3 +

√
−3 + 6p̄− 3p̄2 − 6p̄3 + 10p̄4 − 4p̄5 + p̄6

2(p̄− 1)
, (17)

which we would clearly like to simplify. Considering the worst upper limit, namely

p̄ = ρ the ratio simpli�es to

ρ =
1 +

√
3 + 2

√
5

2
≈ 1.8668.

Case p̄ ≥ p∗. In this case β ≤ 0 and UTE �rst tests and postpones the �rst 1 − γ
fraction of jobs (all of length p̄) and then tests and executes the remaining γ fraction

(all of length 0). Thus the n2 dependent cost for the algorithm is

Alg = γ2/2 + p̄(1− γ)2/2 + (1− γ)γ + (1− γ),

while the optimal cost is as in the previous case.

The ratio is at most ρ if g ≥ 0 for

g := 2(ρOpt−Alg) = γ2(p̄− 1)(ρ− 1) + p̄(ρ− 1) + 2γ(p̄+ ρ− p̄ρ)− 1,

where we used the factor 2 to obtain a simpler expression. The expression g is increasing

in p̄ as its derivative is (1−γ)2(ρ−1) > 0. Therefore we can assume for the worst case

p̄ = p∗. Now we observe that g is convex in γ as the second derivative is 1+
√

4ρ− 3 > 0.
Hence the adversary chooses the extreme point for g in γ, namely

γ =
−1 +

√
4ρ− 3

1 +
√

4ρ− 3
.

With these choices of p̄ and γ the expression g has the form

g =
3− 2(2− ρ)ρ−

√
4ρ− 3

2(ρ− 1)
.

Evaluated at 1+
√

3+2
√

5
2 the goal is positive, proving the ratio in this case.

Case ρ ≤ p̄ ≤ p∗ and γ ≥ 1 − β. In this case the algorithm does not postpone the

execution of jobs. The jobs in the �rst 1 − γ fraction have processing time p̄ and the

last γ fraction jobs have processing time 0. Therefore the cost of UTE is

Alg = (p̄+ 1)(1− γ)2/2 + γ2/2 + (p̄+ 1)γ(1− γ).

In this case g is

g := 2(ρOpt−Alg) = −1− (1− γ2)p̄+ (p̄− (2− γ)γ(p̄− 1))ρ.

The value of β is maximized at p̄ = ρ, which is approximately β∗ := 0.2869. We

observe that the derivative of g in p̄ is negative in the range γ ∈ [1− β∗, 1], hence g is
minimized at p̄ = p∗. For this choice g has the approximate form

1.4235 + γ(−6.7057 + 6.1489γ)

which can never become negative, even in the range γ ∈ [0, 1]. Therefore we have shown
that the ratio is at most ρ also in this last case.

36 C. Dürr, T. Erlebach, N. Megow and J. Meiÿner

Analysis of the n dependent parts of the costs. Again we consider the same 3 cases as

before.

Case ρ ≤ p̄ ≤ p∗ and γ ≤ 1− β: Here the n dependent costs of UTE and Opt are

Alg = (p̄+ 1)β/2 + γ/2 + p̄(1− β − γ)/2

Opt = γ/2 + p̄(1− γ)/2.

The ratio is at most ρ if g ≥ 0 for

g := ρOpt−Alg ≈ 0.7309− 0.4232γ

which is positive for all γ ∈ [0, 1].
Case p̄ ≥ p∗: The n dependent cost of UTE is

Alg = γ/2 + (p̄+ 1)(1− γ)/2

leading to

ρOpt−Alg ≈ 0.7118− 0.2784γ

which again is always positive.

Case ρ ≤ p̄ ≤ p∗ and γ ≥ 1− β: This time we have

Alg = (p̄+ 1)(1− γ)/2 + γ/2

and

ρOpt−Alg ≈ 0.3508 + 0.0768γ

which completes the proof.

ut

The deterministic lower bound 1.8546 in Theorem 9 uses the upper limit p̄ ≈
1.9896. Plugging this choice of p̄ into the expression (17) shows that UTE has a near-

optimal competitive ratio.

Corollary 19 UTE has competitive ratio ρ ≈ 1.8552 for scheduling with testing to

minimize the sum of completion times for instances with upper limits p̄ ≈ 1.9896.

6 Optimal Testing for Minimizing the Makespan

We consider scheduling with testing with the objective of minimizing the makespan, i.e.,

the completion time of the last job that is completed. This objective function is special,

as the time each job spends on the machine has a linear contribution to the objective

function value. This yields that for any algorithm that treats each job independent of

the position where it occurs in the schedule, there is a worst-case instance containing

only a single job.

Lemma 20 If an algorithm that treats each job independent of the position where it

occurs in the schedule is ρ-competitive for one-job instances, it is ρ-competitive also for

general instances.

An Adversarial Model for Scheduling with Testing 37

Proof Let an instance I with n jobs j1, . . . , jn and an arbitrary algorithm as in the

statement of the lemma be given. Then the makespan ALG(I) equals the sum of the

makespans, if we split the instance into one-job instances. By assumption, the algorithm

is ρ-competitive for each one-job instance. Thus, we have

Alg(I) =
n∑
i=1

Alg({ji}) ≤
n∑
i=1

ρ ·Opt({ji}) = ρ ·Opt(I).

ut

Deterministic algorithms. We apply Lemma 20 to give a deterministic algorithm with

competitive ratio ρ = ϕ, the golden ratio, and show this is best-possible.

Theorem 21 Let ϕ ≈ 1.618 be the golden ratio. Testing each job j if and only if

p̄j > ϕ is an algorithm with competitive ratio ϕ for scheduling with testing to minimize

the makespan. This is best possible for deterministic algorithms.

Proof By Lemma 20 we just need to consider an instance consisting of a single job.

Let that job have upper limit p̄ and processing time p. If the algorithm does not test

the job, then p̄ ≤ ϕ. If p̄ ≤ 1, the optimal schedule also executes the job untested, and

the competitive ratio is 1. If p̄ > 1, the makespan of the algorithm is p̄ ≤ ϕ and the

optimal makespan is at least 1, because the optimal makespan is minimized if the job

is tested in the optimal schedule and reveals p = 0. Thus, the ratio is at most ϕ.

If the algorithm tests the job, then its makespan is 1+p, while the optimal makespan

is min{p̄, 1 + p}. In the worst case, the job has processing time p = p̄. Then the ratio

is (1 + p̄)/p̄, which decreases when the upper limit p̄ increases. Thus, it is at most

(1 + ϕ)/ϕ = ϕ.

To show this is best-possible, consider an instance with a single job with upper

limit ϕ. Any algorithm that does not test this job has competitive ratio at least ϕ, as

the optimal makespan is 1 if the job has processing time 0. Any other algorithm tests

the job. If the job has processing time ϕ, the competitive ratio is (1 + ϕ)/ϕ = ϕ. ut

This shows that there is an algorithm that approaches the optimal execution time up

to a factor ϕ. However, this does not lead to a ϕ-approximation for the problem of min-

imizing the sum of completion times where the additional di�culty lies in determining

the job order.

Randomized algorithms. For randomized algorithms, we �rst show that no randomized

(or deterministic) algorithm can have competitive ratio ρ < 4/3.

Theorem 22 No algorithm has competitive ratio ρ < 4/3 for minimizing the makespan

(resp. the sum of completion times) for scheduling with testing.

Proof We want to apply Yao's principle [60] and give a randomized instance for which

no deterministic algorithm is better than 4/3-competitive. Consider a one-job instance

with p̄ = 2. Let the job have p = 0 and p = 2 each with probability 0.5. The de-

terministic algorithm that does not test the job has expected makespan 2 and the

deterministic algorithm testing the job also has expected makespan 2. The expected

optimal makespan is 3/2. Thus, the instance yields the desired bound. ut

38 C. Dürr, T. Erlebach, N. Megow and J. Meiÿner

For minimizing the makespan the order in which jobs are treated is irrelevant by

Lemma 20. Thus, the only decision an algorithm has to take is whether to test a job.

Consider a job with upper limit p̄. We show that the algorithm that executes the

job untested if p̄ ≤ 1 and otherwise tests it with probability 1 − 1/(p̄2 − p̄ + 1) is

best-possible.

Theorem 23 Our randomized algorithm testing each job with p̄ > 1 with probability

1−1/(p̄2− p̄+ 1) has competitive ratio 4/3 for scheduling with testing to minimize the

makespan. This is best-possible.

Proof By Lemma 20 we just need to consider an instance consisting of a single job.

If its upper limit p̄ satis�es p̄ ≤ 1, the algorithm executes the job untested, which is

optimal. Therefore, assume for the rest of the proof that p̄ > 1.
Note that Proposition 2, which was stated in the context of minimizing the sum

of completion times, holds also for single-job instances where the objective is the

makespan, because for one job the two objectives are the same. If 0 < p < p̄ − 1,
we observe that the optimal makespan and the expected makespan of the algorithm

depend linearly on p, so by Proposition 2 we can set p to 0 or p̄−1 without decreasing

the competitive ratio. Now, if p̄ − 1 ≤ p < p̄, observe that increasing p to p̄ increases

the expected makespan of the algorithm but does not a�ect the optimum. Therefore,

we can assume that p ∈ {0, p̄} in a worst-case instance.

Let us �rst consider the case p = p̄. Then the optimal solution schedules this job

without test. Thus, the ratio of algorithm length over optimal length is

ρ =
E[Alg]

Opt
=

(
1− 1

p̄2 − p̄+ 1

)
p̄+ 1

p̄
+

1

p̄2 − p̄+ 1
=

p̄2

p̄2 − p̄+ 1
.

Otherwise, we have p = 0. Then we have

ρ =
E[Alg]

Opt
=

(
1− 1

p̄2 − p̄+ 1

)
+

1

p̄2 − p̄+ 1
p̄ =

p̄2

p̄2 − p̄+ 1
.

This function is maximized at p̄ = 2, which yields the competitive ratio 4/3. ut

7 Conclusion

In this paper we have introduced an adversarial model of scheduling with testing where

a test can shorten a job but the time for the test also prolongs the schedule, thus making

it di�cult for an algorithm to �nd the right balance between tests and executions. We

have presented upper and lower bounds on the competitive ratio of deterministic and

randomized algorithms for a single-machine scheduling problem with the objective of

minimizing the sum of completion times or the makespan. An immediate open question

is whether it is possible to achieve competitive ratio below 2 for minimizing the sum

of completion times with a deterministic algorithm for arbitrary instances. Further

interesting directions for future work include the consideration of job-dependent test

times or other scheduling problems such as parallel machine scheduling or �ow shop

problems. More generally, the study of problems with explorable uncertainty in settings

where the costs for querying uncertain data directly contribute to the objective value

is a promising direction for future work.

An Adversarial Model for Scheduling with Testing 39

Acknowledgements We would like to thank Markus Jablonka and Bruno Gaujal for helpful
discussions about the algorithm DelayAll, as well as an anonymous referee for pointing us
to related work on exploration versus exploitation in the multi-armed bandit framework.

References

1. M. Adamczyk, M. Sviridenko, and J. Ward. Submodular stochastic probing on matroids.
Mathematics of Operations Research, 41(3):1022�1038, 2016.

2. S. Alizamir, F. de Véricourt, and P. Sun. Diagnostic accuracy under congestion. Manage-
ment Science, 59(1):157�171, 2013.

3. S. Assadi, S. Khanna, and Y. Li. The stochastic matching problem with (very) few queries.
ACM Trans. Economics and Comput., 7(3):16:1�16:19, 2019.

4. N. Bansal, A. Gupta, J. Li, J. Mestre, V. Nagarajan, and A. Rudra. When LP is the
cure for your matching woes: Improved bounds for stochastic matchings. Algorithmica,
63(4):733�762, 2012.

5. N. Bansal and V. Nagarajan. On the adaptivity gap of stochastic orienteering. Math.
Program., 154(1-2):145�172, 2015.

6. S. Behnezhad, A. Farhadi, M. Hajiaghayi, and N. Reyhani. Stochastic matching with few
queries: new algorithms and tools. In Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 2855�2874. SIAM, 2019.

7. A. Blum, J. P. Dickerson, N. Haghtalab, A. D. Procaccia, T. Sandholm, and A. Sharma.
Ignorance is almost bliss: Near-optimal stochastic matching with few queries. Operations
Research, 68(1):16�34, 2020.

8. A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge
University Press, 1998.

9. S. Bubeck and N. Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-
armed bandit problems. Foundations and Trends in Machine Learning, 5(1):1�122, 2012.

10. J. M. P. Cardoso, J. G. de Figueiredo Coutinho, and P. C. Diniz. Embedded Computing
for High Performance: E�cient Mapping of Computations Using Customization, Code
Transformations and Compilation. Morgan Kaufmann, 2017.

11. N. Chen, N. Immorlica, A. R. Karlin, M. Mahdian, and A. Rudra. Approximating matches
made in heaven. In 36th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP), volume 5555 of Lecture Notes in Computer Science, pages 266�278.
Springer, 2009.

12. C.-F. M. Chou, M. Queyranne, and D. Simchi-Levi. The asymptotic performance ratio of
an on-line algorithm for uniform parallel machine scheduling with release dates. Mathe-
matical Programming, 106(1):137�157, 2006.

13. B. C. Dean, M. X. Goemans, and J. Vondrák. Approximating the stochastic knapsack
problem: The bene�t of adaptivity. Mathematics of Operations Research, 33(4):945�964,
2008.

14. E. Demeulemeester and W. Herroelen. Robust project scheduling. Foundations and Trends
in Technology, Information and Operations Management, 3(3-4):201�376, 2010.

15. I. Dumitriu, P. Tetali, and P. Winkler. On playing golf with two balls. SIAM J. Discret.
Math., 16(4):604�615, 2003.

16. C. Dürr, T. Erlebach, N. Megow, and J. Meiÿner. Scheduling with explorable uncertainty.
In A. R. Karlin, editor, 9th Innovations in Theoretical Computer Science Conference
(ITCS), volume 94 of LIPIcs, pages 30:1�30:14. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2018.

17. T. Erlebach, M. Ho�mann, D. Krizanc, M. Mihalák, and R. Raman. Computing minimum
spanning trees with uncertainty. In S. Albers and P. Weil, editors, 25th International
Symposium on Theoretical Aspects of Computer Science (STACS), volume 1 of LIPIcs,
pages 277�288. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany, 2008.

18. T. Feder, R. Motwani, L. O'Callaghan, C. Olston, and R. Panigrahy. Computing shortest
paths with uncertainty. Journal of Algorithms, 62(1):1�18, 2007.

19. T. Feder, R. Motwani, R. Panigrahy, C. Olston, and J. Widom. Computing the median
with uncertainty. SIAM Journal on Computing, 32(2):538�547, 2003.

20. A. Ferber, M. Krivelevich, B. Sudakov, and P. Vieira. Finding hamilton cycles in random
graphs with few queries. Random Struct. Algorithms, 49(4):635�668, 2016.

40 C. Dürr, T. Erlebach, N. Megow and J. Meiÿner

21. A. Ferber, M. Krivelevich, B. Sudakov, and P. Vieira. Finding paths in sparse random
graphs requires many queries. Random Struct. Algorithms, 50(1):71�85, 2017.

22. A. Fiat and G. J. Woeginger, editors. Online Algorithms: The State of the Art, volume
1442 of LNCS. Springer, 1998.

23. J. Focke, N. Megow, and J. Meiÿner. Minimum spanning tree under explorable uncertainty
in theory and experiments. In 16th International Symposium on Experimental Algorithms
(SEA), volume 75 of LIPIcs, pages 22:1�22:14. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2017.

24. J. Gittins, K. Glazebrook, and R. Weber. Multi-armed Bandit Allocation Indices. Wiley,
2nd edition, 2011.

25. J. C. Gittins. A dynamic allocation index for the sequential design of experiments. Progress
in statistics, pages 241�266, 1974.

26. M. Goerigk, M. Gupta, J. Ide, A. Schöbel, and S. Sen. The robust knapsack problem with
queries. Computers & OR, 55:12�22, 2015.

27. A. Gupta, H. Jiang, Z. Scully, and S. Singla. The Markovian price of information. In Inter-
national Conference on Integer Programming and Combinatorial Optimization (IPCO),
volume 11480 of Lecture Notes in Computer Science, pages 233�246. Springer, 2019.

28. A. Gupta, R. Krishnaswamy, V. Nagarajan, and R. Ravi. Running errands in time: Ap-
proximation algorithms for stochastic orienteering. Mathematics of Operations Research,
40(1):56�79, 2015.

29. A. Gupta and V. Nagarajan. A stochastic probing problem with applications. In nter-
national Conference on Integer Programming and Combinatorial Optimization (IPCO),
volume 7801 of Lecture Notes in Computer Science, pages 205�216. Springer, 2013.

30. A. Gupta, V. Nagarajan, and S. Singla. Algorithms and adaptivity gaps for stochas-
tic probing. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on
Discrete algorithms (SODA), pages 1731�1747. SIAM, 2016.

31. M. Gupta, Y. Sabharwal, and S. Sen. The update complexity of selection and related
problems. Theory of Computing Systems, 59(1):112�132, 2016.

32. S. Kahan. A model for data in motion. In 23rd Annual ACM Symposium on Theory of
Computing (STOC), pages 267�277, 1991.

33. A. Kasperski and P. Zieli«ski. Risk-averse single machine scheduling: complexity and
approximation. Journal of Scheduling, 22(5):567�580, 2019.

34. P. Kerschke, H. H. Hoos, F. Neumann, and H. Trautmann. Automated algorithm selection:
Survey and perspectives. Evolutionary Computation, 27(1):3�45, 2019.

35. S. Khanna and W.-C. Tan. On computing functions with uncertainty. In 20th Symposium
on Principles of Database Systems (PODS), pages 171�182, 2001.

36. R. D. Kleinberg, B. Waggoner, and E. G. Weyl. Descending price optimally coordinates
search. In Proceedings of the ACM Conference on Economics and Computation (EC),
pages 23�24. ACM, 2016.

37. P. Kouvelis and G. Yu. Robust Discrete Optimization and Its Applications. Springer,
1997.

38. J. Y.-T. Leung. Handbook of Scheduling: Algorithms, Models, and Performance Analysis.
Chapman & Hall/CRC, 2004.

39. R. Levi, T. L. Magnanti, and Y. Shaposhnik. Scheduling with testing. Management
Science, 65(2):776�793, 2019.

40. W. Ma. Improvements and generalizations of stochastic knapsack and markovian bandits
approximation algorithms. Mathematics of Operations Research, 43(3):789�812, 2018.

41. T. Maehara and Y. Yamaguchi. Stochastic packing integer programs with few queries.
Mathematical Programming, pages 1�34, 2019.

42. S. Marbán, C. Rutten, and T. Vredeveld. Learning in stochastic machine scheduling. In
9th International Workshop on Approximation and Online Algorithms (WAOA), volume
7164 of Lecture Notes in Computer Science, pages 21�34. Springer, 2011.

43. N. Megow, J. Meiÿner, and M. Skutella. Randomization helps computing a minimum
spanning tree under uncertainty. SIAM Journal on Computing, 46(4):1217�1240, 2017.

44. N. Megow, M. Uetz, and T. Vredeveld. Models and algorithms for stochastic online schedul-
ing. Mathematics of Operations Research, 31(3):513�525, 2006.

45. N. Megow and T. Vredeveld. A tight 2-approximation for preemptive stochastic scheduling.
Mathematics of Operations Research, 39(4):1297�1310, 2014.

46. A. F. Mills, N. T. Argon, and S. Ziya. Resource-based patient prioritization in mass-
casualty incidents. Manufacturing & Service Operations Management, 15(3):361�377,
2013.

An Adversarial Model for Scheduling with Testing 41

47. R. Möhring, F. Radermacher, and G. Weiss. Stochastic scheduling problems I: General
strategies. Zeitschrift für Operations Research, 28:193�260, 1984.

48. R. Möhring, A. Schulz, and M. Uetz. Approximation in stochastic scheduling: The power
of LP-based priority policies. Journal of the ACM, 46:924�942, 1999.

49. R. P. Nicolai and R. Dekker. Optimal Maintenance of Multi-component Systems: A Re-
view, pages 263�286. Springer London, 2008.

50. C. Olston and J. Widom. O�ering a precision-performance tradeo� for aggregation queries
over replicated data. In 26th International Conference on Very Large Data Bases (VLDB),
pages 144�155, 2000.

51. W. P. Pierskalla and J. A. Voelker. A survey of maintenance models: The control and
surveillance of deteriorating systems. Naval Research Logistics, 23(3):353��388, 1976.

52. M. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer Science+Business
Media, �fth edition, 2016.

53. K. Pruhs, J. Sgall, and E. Torng. Online scheduling. In J. Y.-T. Leung, editor, Handbook
of Scheduling: Algorithms, Models, and Performance Analysis, chapter 15. Chapman &
Hall/CRC, 2004.

54. J. A. Rothstein. Adaptive compression, July 30 2013. US Patent 8,499,100.
55. Y. Shaposhnik. Exploration vs. Exploitation: Reducing Uncertainty in Operational Prob-

lems. PhD thesis, Sloan School of Management, MIT, 2016.
56. S. Singla. The price of information in combinatorial optimization. In Proceedings of the

Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
2523�2532. SIAM, 2018.

57. W. R. Thompson. On the likelihood that one unknown probability exceeds another in
view of the evidence of two samples. Biometrika, 25(3/4):285�294, 1933.

58. M. Weitzman. Optimal search for the best alternative. Econometrica, 47(3):641�54, 1979.
59. Y. Wiseman, K. Schwan, and P. Widener. E�cient end to end data exchange using

con�gurable compression. ACM SIGOPS Operating Systems Review, 39(3):4�23, 2005.
60. A. C.-C. Yao. Probabilistic computations: Toward a uni�ed measure of complexity. In

18th Annual Symposium on Foundations of Computer Science (FOCS), pages 222�227.
IEEE, 1977.

	Introduction
	Preliminaries
	Deterministic Algorithms
	Randomized Algorithms
	Deterministic Algorithms for Uniform Upper Limits
	Optimal Testing for Minimizing the Makespan
	Conclusion

