
1 
 

COHmax: An algorithm to maximise coherence in estimates of dynamic 

cerebral autoregulation 

Ronney B Panerai
1,2

, Kannakorn Intharakham
1
, Jatinder S Minhas

1,2
, Osian Llwyd

1
, Angela S 

M Salinet 
3
, Emmanuel Katsogridakis

4
, Paola Maggio

5
, and Thompson G Robinson

1,2
  

1
 Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department 

of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom 

2
 NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research 

Centre, Glenfield Hospital, Leicester, UK 

3
 Neurology Department, Hospital das Clinicas, School of Medicine, University of Sao Paulo, Sao 

Paulo, Brazil 

4
 Department of Vascular Surgery, Wythenshawe Hospital, Manchester Foundation Trust, 

Manchester, UK 

5
 Neurology Department, ASST Bergamo EST(BG), Italy 

 

 

Corresponding author 

RB Panerai 

Department of Cardiovascular Sciences, University of Leicester 

Sir Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary 

Leicester LE2 7LX, UK 

E-mail: rp9@le.ac.uk 

Tel. +44(0)1162523130 

 

 

  

mailto:rp9@le.ac.uk


2 
 

Abstract 

Objective. The reliability of dynamic cerebral autoregulation (dCA) parameters, obtained with transfer 

function analysis (TFA) of spontaneous fluctuations in arterial blood pressure (BP), require 

statistically significant values of the coherence function.  A new algorithm (COHmax) is proposed to 

increase values of coherence by means of the automated, selective removal of sub-segments of data. 

Approach. Healthy subjects were studied at baseline (normocapnia) and during 5% breathing of CO2 

(hypercapnia). BP (Finapres), cerebral blood flow velocity (CBFV, transcranial Doppler), end-tidal 

CO2 (EtCO2, capnography) and heart rate (ECG) were recorded continuously during 5 min in each 

condition. TFA was performed with sub-segments of data of duration (SEGD) 100, 50 or 25 s and the 

autoregulation index (ARI) was obtained from the CBFV response to a step change in BP. The area-

under-the curve (AUC) was obtained from the receiver-operating characteristic (ROC) curve for the 

detection of changes in dCA resulting from hypercapnia. 

Main results.  In 120 healthy subjects (69 male, age range 20-77 years), CO2 breathing was effective 

in changing mean EtCO2 and CBFV (p<0.001). For SEGD=100 s, ARI changed from 5.8 ± 1.4 

(normocapnia) to 4.0 ± 1.7 (hypercapnia, p<0.0001), with similar differences for SEGD=50 or 25 s. 

Depending on the value of SEGD, in normocapnia, 15.8% to 18.3% of ARI estimates were rejected 

due to poor coherence, with corresponding rates of 8.3% to 13.3% in hypercapnia. With increasing 

coherence, 36.4% to 63.2% of these could be recovered in normocapnia (p<0.001) and 50.0% to 

83.0% in hypercapnia (p<0.005). For SEGD=100 s, ROC AUC was not influenced by the algorithm, 

but it was superior to corresponding values for SEGD = 50 or 25 s.  

Significance. COHmax has the potential to improve the yield of TFA estimates of dCA parameters, 

without introducing a bias or deterioration of their ability to detect impairment of autoregulation. 

Further studies are needed to assess the behaviour of the algorithm in patients with different 

cerebrovascular conditions. 
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1. Introduction 

The concept of dynamic cerebral autoregulation (dCA) is based on the tendency of cerebral blood 

flow (CBF) to return to its original value following a transient disturbance, provoked by a sudden 

change in arterial blood pressure (BP). Although dCA was initially assessed in studies where a 

rapid drop in BP was induced by the sudden deflation of pressurised thigh cuffs (Aaslid et al. 

1989), subsequently, a number of alternative approaches have been proposed, whose merits and 

limitations are still being debated (Simpson and Claassen 2018; Tzeng and Panerai 2018). Chiefly 

amongst these different possibilities, is the use of spontaneous fluctuations in BP as the stimulus 

to induce corresponding changes in CBF (Tzeng and Panerai 2018). Spontaneous changes in BP 

can be treated as isolated transients (Panerai et al. 2003; Panerai et al. 1995), or, more commonly, 

as the input function in transfer function analysis (TFA), where corresponding changes in CBF, or 

CBF velocity (CBFV) are regarded as the output function (Claassen et al. 2016; Giller 1990; 

Panerai et al. 1996; Zhang et al. 1998). On one hand, the use of TFA in combination with 

spontaneous fluctuations in BP is the ideal approach in clinical studies, since the necessary 

noninvasive physiological measurements can be performed in critically ill patients, something that 

is not feasible with other methods (e.g. changes in posture), and it also minimises disturbances to 

ongoing physiological processes. On the other hand though, its reliability has been questioned, 

mainly due to its poor reproducibility and susceptibility to nonstationarity (Panerai 2013; Sanders 

et al. 2018; Sanders et al. 2019; Simpson and Claassen 2018). 

Given its widespread utilization as a tool for clinical assessment of dCA, TFA of spontaneous 

fluctuations in BP deserves further attention to overcome its limitations. A recent White Paper 

from the International Cerebral Autoregulation Research Network (CARNet) is likely to lead to 

improvements resulting from greater standardisation (Claassen et al. 2016). Limited BP 

variability has also been suggested as the cause of poor reproducibility observed with the classical 

parameters extracted by TFA to characterise dCA, such as the gain, phase and the autoregulation 

index (ARI) (Liu et al. 2005; Panerai et al. 1998b; Simpson and Claassen 2018; Tiecks et al. 
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1995; Zhang et al. 1998). Recent work has demonstrated removal of recordings with low BP 

variability can lead to improvements in reproducibility (Elting et al. 2020). 

A further possibility for improving the reliability of TFA estimates of dCA, is by boosting the 

coherence of the BP-CBF transfer function. At each frequency, coherence represents the fraction 

of output power (i.e. CBF/CBFV) that is linearly explained by the input power (i.e. BP). 

Therefore, similar to a correlation coefficient, coherence ranges between zero and one, with 

values approaching one in the case of a linear, univariate relationship between BP and CBF, and 

measurements devoid of noise. Coherence will tend towards zero when the signal-to-noise ratio 

(SNR) is poor, there are multiple determinants of CBF, or if the relationship with BP is highly 

nonlinear (Bendat and Piersol 1986). Although initially proposed as a metric of dCA efficiency 

(Giller 1990), the main use of coherence in TFA studies of dCA has been as an indicator of the 

reliability of gain and phase estimates. At each frequency, estimates of gain and phase should 

only be accepted if the corresponding values of coherence are statistically significant; this 

criterion being usually based on the 95% confidence limit of coherence for the null hypothesis 

(Benignus 1969; Claassen et al. 2016; Panerai et al. 2018). In clinical studies, rejecting estimates 

of gain and phase at different frequencies, where coherence is below the 95% confidence limit 

threshold, is problematic as it would lead to incomplete sets of data with different subsets of 

harmonics represented in different patients. An important alternative to this approach is to use all 

the information contained in the gain and phase frequency responses, as reflected by the ARI 

(Tiecks et al. 1995). The ARI ranges from 0 (absence of autoregulation) to 9 (best dCA that can 

be observed) and can be derived from the CBF/CBFV step response to the BP input, calculated 

from the inverse fast Fourier response of the gain and phase (Panerai et al. 1998b). With this 

approach, coherence can still be used as a marker of reliability, with values below the 95% 

confidence limit leading to the rejection of estimates of ARI (Panerai et al. 2018; Panerai et al. 

2016). The challenges of performing measurements in a clinical environment usually lead to 

worse SNR and poorer values of coherence in patients when compared to healthy controls. To 

address this problem, we present a new algorithm for estimation of ARI, aimed at maximising 

values of coherence by automated, selective removal of sub-segments of data. In other words, we 
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tested the hypothesis that improvements in TFA coherence will lead to greater sensitivity and 

specificity for detection of dCA deterioration, as assessed with ARI. Although motivated by the 

need to improve the reliability of dCA metrics, this new algorithm would also be applicable to 

other areas of physiological measurement using TFA, such as estimates of baroreceptor sensitivity 

(Robbe et al. 1987) or heart rate variability (Saul et al. 1991). 

 

2. Methods 

2.1 Subjects and measurements 

Participants were healthy subjects, recruited in four previous studies where hypercapnia was 

induced by 5% CO2 breathing in air. All studies had local Ethical Committee approval and all 

participants provided written informed consent (Katsogridakis et al. 2013; Llwyd et al. 2017; 

Maggio et al. 2013; Minhas et al. 2018). Subjects were 18 years of age or older without any 

history or symptoms of cardiovascular, neurological or respiratory disease.  

Volunteers avoided caffeine, alcohol, and nicotine for ≥4 h before attending a research laboratory 

with controlled temperature (20-23°C) and free from visual or auditory stimulation. All 

recordings were performed with subjects in the supine position with the head elevated at 30. 

Following instrumentation and a 20 min rest, two 5 min recordings were performed in each 

subject. The first recording corresponded to baseline resting conditions with subjects breathing 

ambient air. In the second recording, after a 60 s period of breathing air, subjects were switched to 

breathing 5% CO2 in air, through a face mask that was tightly fitted to avoid leakage, as 

confirmed by visual inspection of the end-tidal CO2 waveform. After three min of CO2 breathing, 

subjects were returned to ambient air and a further 60 s was recorded during return to 

normocapnia. 

BP was recorded continuously using a Finapres/Finometer device (FMS, Finapres Measurement 

Systems, Arnhem, Netherlands), attached to the middle finger of the left hand. Systolic and 

diastolic BP were measured by classical brachial sphygmomanometry before each 5 min 

recording. Heart rate was derived from a 3-lead electrocardiogram (ECG). End-tidal CO2 (EtCO2) 
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was recorded continuously via nasal prongs (Salter Labs) by a capnograph (Capnocheck Plus). 

CBFV was measured in both middle cerebral arteries (MCAs) using transcranial Doppler 

ultrasound (TCD, Viasys Companion III; Viasys Healthcare) with 2 MHz probes secured in place 

using a head-frame. The servo-correcting mechanism of the Finapres/Finometer was switched on 

and then off prior to measurements.  

Data were simultaneously recorded onto a data acquisition system (PHYSIDAS, Department of 

Medical Physics, University Hospitals of Leicester) for subsequent off-line analysis using a 

sampling rate of 500 samples/s. 

2.3 Data analysis 

 All signals were visually inspected to identify artefacts; noise and narrow spikes (<100 ms) were 

removed by linear interpolation. CBFV channels were subjected to a median filter and all signals 

were low-pass filtered with a 8
th
 order Butterworth filter with cut-off frequency of 20 Hz. BP was 

calibrated at the start of each recording using systolic and diastolic values obtained with 

sphygmomanometry. The R–R interval was then automatically marked from the ECG and beat-to-

beat heart rate (HR) was plotted against time. Occasional missed marks caused spikes in the HR 

signal; these were manually removed by remarking the R–R intervals for the time points at which 

they occurred. Mean, systolic and diastolic BP and CBFV values were calculated for each cardiac 

cycle. The end of each expiratory phase was detected in the EtCO2 signal, linearly interpolated, 

and resampled with each cardiac cycle. Beat-to-beat data were spline interpolated and resampled 

at 5 samples/s to produce signals with a uniform time-base.  

In-house software, implemented in Fortran, was used to perform TFA of the BP-CBFV 

relationship using Welch’s method (Welch 1967) with different combinations of segment 

durations (SEGD) as described below. The mean values of BP and CBFV were removed from 

each segment and a cosine window was applied to minimise spectral leakage. The squared 

coherence function, amplitude (gain) and phase frequency responses were calculated from the 

smoothed auto- and cross-spectra using standard procedures (Claassen et al. 2016; Panerai et al. 

1998a). The CBFV impulse response to the BP input was estimated using the inverse fast Fourier 

transform of gain and phase (Bendat and Piersol 1986) and the corresponding step response was 



7 
 

obtained by numerical integration for positive values of time. Tiecks et al (Tiecks et al. 1995) 

proposed 10 template curves for the CBFV response to a step change in BP, each of these curves 

corresponding to a value of ARI, ranging from 0 to 9.  For each recording, the corresponding 

value of ARI was estimated by comparing the CBFV step response  with each of the template 

curves and choosing the best fit using the normalised minimum square error (NMSE). ARI values 

were only accepted if the mean squared coherence function for the 0.15-0.25 Hz frequency 

interval (see Discussion) was above its 95% confidence limit, adjusted for the corresponding 

degrees of freedom (Panerai et al. 2020), and the NMSE was  ≤ 0 .30 (Panerai et al. 2016). 

 

COHmax algorithm 

For each 5 min recording, increasing values of coherence were obtained according to the 

following procedure: 

i) A Reference Setting condition was initially adopted to estimate coherence using all 

segments available in the 5 min recording with SEGD settings of 102.4, 51.2 or 25.6 s 

(Claassen et al. 2016; Panerai et al. 2020). With a sampling rate of 5 samples/s, these 

durations corresponded to NW = 512, 256 or 128 samples, respectively. In what follows, 

values of SEGD will be referred to as 100, 50 and 25 s, respectively, for simplicity. With 

50% superposition of segments, the number of segments (NSEG) used to obtain estimates 

of the BP and CBFV auto- and cross-spectra were 5, 11 and 23, for SEGD values of 100, 

50 and 25 s, respectively. For each value of SEGD, a receiver-operating characteristic 

(ROC) curve analysis was performed for the detection of changes in ARI due to 

hypercapnia, in comparison with corresponding values of normocapnia. The area-under-

the-curve (AUC) was calculated for statistical testing of differences between ROC curves 

resulting from increases in coherence. 

ii) For each setting of SEGD, the corresponding NSEG segments were assigned at fixed 

positions along the 5 min recording, that is, in sequential fashion, also taking into 

consideration the 50% superposition of segments.  



8 
 

iii) At each step j=1, 2,...NSEG-2 data segments were removed one at a time and the coherence 

was recalculated for all combinations of the remaining NSEG-j segments. The segment 

corresponding to the combination with the lowest coherence was removed from the 

ensemble and the number of segments was reset to NSEG-j. The coherence, ARI index and 

AUC were re-calculated and their dependence on the number of segments was expressed 

as COH(NSEG) and ARI(NSEG), and AUC(NSEG), respectively.  

iv) Stage (iii) above was repeated until only two segments remained.  

In summary, for each setting of SEGD (100s, 50s, or 25s), a total of NSEG-1 estimates of 

coherence, ARI and AUC were obtained, corresponding to 4, 10 and 22 values in each setting, 

respectively, including the Reference Setting values obtained from (i) above. 

 

2.4 Statistical analysis 

  Data were treated as normally distributed after visual inspection of histograms and probability 

plots, taking into consideration the large size of the sample (n>100) studied. Differences between 

parameters were assessed using the Student’s t-test. Multiple parameter comparisons were 

performed with parametric repeated-measures ANOVA. Differences between values derived for 

the right and left hemispheres were averaged when no significant differences were found. 

Association between variables was tested with linear regression. For each value of NSEG, the 95% 

confidence limits for coherence were obtained as reported previously (Claassen et al. 2016; 

Panerai et al. 2020). The improvement in ROC detection, due to increased values of COH(NSEG) 

was assessed by testing the AUC(NSEG) with the method proposed by DeLong et al. (DeLong et al. 

1988). A p-value of < 0.05 was assumed to indicate statistical significance.    
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3. Results 

One hundred and twenty healthy subjects (66 male), aged 43.2 ± 15.1 years old (range 20-77 

years) provided a complete set of measurements for both baseline and hypercapnia. As shown in 

Table 1, highly significant differences were observed for EtCO2 and CBFV, as well as for BP and 

HR between normocapnia and hypercapnia.  No inter-hemispherical differences were found for 

any of the parameters studied, which were then averaged for the right and left MCA. 

According to its design, COHmax led to increases in coherence in all subjects, both during 

normocapnia and hypercapnia, but with different individual patterns, as illustrated in Fig. 1. For 

the population as a whole, increases in coherence were similar for normocapnia and hypercapnia 

(Figs. 2.A and B), with SEGD = 25 s providing the highest mean values at NSEG = 2, followed by 

SEGD = 50 s and 100 s, respectively. In each case, the starting value of NSEG was the Reference 

Setting, corresponding to 5, 11 and 23 segments, for SEGD values of 100, 50 and 25 s, 

respectively. Noticeably, as the number of segments was reduced, so was the inter-subject 

variability as expressed by the standard errors in Fig. 2. 

Despite marked increases in coherence resulting from COHmax, the mean ARI remained relatively 

stable (Figs 2.C and D), but showed highly significant differences due to hypercapnia and also 

due to SEGD, but only for the case of SEGD = 25 s (Table 2). The relative stability of ARI, as the 

number of segments was reduced with application of COHmax, can be expressed by the 

distributions of intra-subject standard deviations (SDARI
Iintra

, Table 2) as depicted in Fig. 3, 

showing modes of  ≤ 0.5 units in all cases. Correlation of SDARI
Iintra

 with the Reference Setting 

values of coherence were significant for SEGD = 50 s (p=0.0036) and SEGD = 25 s (p=0.008), but 

only for the hypercapnia condition. Assuming that coherence changed from 0.0 to 1.0, the 

corresponding expected improvement in SDARI
Iintra

 would be of approximately 50% in both cases. 

For SEGD = 100 s, there was no significant association between coherence for the Reference 

Setting and SDARI
Iintra 

for either the normocapnic or hypercapnic conditions. 

The number of values of ARI that were rejected due to the joint criteria, based on the 95% 

confidence limit for coherence and the NMSE, was relatively small (Table 3), but it still decreased 
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significantly with the use of COHmax, Both normocapnia (p<0.001) and hypercapnia (p<0.005)  

showed significant rates of improvement, but with a larger difference in hypercapnia as compared 

to normocapnia (p = 0.03).  

ROC analysis led to relatively stable values of AUC(NSEG) with gradual reductions in NSEG along 

with increases in coherence resulting from COHmax (Fig. 4). In other words, for each value of 

SEGD, coherence did not have an effect on AUC(NSEG), but AUC values for SEGD=100 s were 

significantly higher than corresponding values for SEGD=50 s or 25 s (Fig. 4). 

 

4. Discussion 

4.1 Main findings 

Despite the substantial increase in the computational effort required by the COHmax algorithm,  

there were no noticeable increases in execution time, in comparison with standard TFA analysis 

(Claassen et al. 2016), running on a 2.7 GHz personal computer in DOS mode. The feasibility of 

increasing coherence values, in the spectral region where a linear relationship between BP and 

CBFV would be expected (0.15-0.25 Hz), whilst still retaining enough BP and CBFV power to 

provide acceptable signal-to-noise ratio (Panerai et al. 2018), was well demonstrated by the steady 

increase in coherence shown in Fig. 2. Although the dataset analysed comprised high-quality 

recordings, with mean values of coherence well above its 95% confidence limit for the Reference 

Setting (Figs. 2A and B), a relatively small number of subjects showed coherence values below 

the 95% confidence limit (Fig. 1) that would lead to their rejection and impossibility of extracting 

corresponding values of ARI (Table 3). A significant number (15.8 % to 83.3%) of these 

recordings could be recovered with COHmax, showing its potential to contribute towards 

improving the use of dCA assessment in personalised patient care. Pertinent to the possibility of 

improving coherence by the selective, but automated removal of segments of data, the ARI index 

remained relatively stable (Figs 2A, 2B, 3) thus showing that the algorithm did not introduce any 

biases in its estimation, except at the lowest values of NSEG for SEGD = 25 s (Fig. 2C and D). On 

the other hand, our main hypothesis, that increases in coherence would lead to corresponding 
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improvements in the detection of worsening CA, as would be expected with hypercapnia (Aaslid 

et al. 1989; Minhas et al. 2018; Panerai et al. 1999), was rejected given that AUC remained 

relatively constant with increases in coherence (Fig. 4). Noteworthy, the AUC for SEGD = 100 s 

was significantly higher than that observed for SEGD = 50 s or 25 s (Fig. 4). 

Taken together, our findings suggest that COHmax could be a useful tool to rescue recordings with 

unacceptable values of coherence in the Reference Setting, but without the expectation that it 

would necessarily lead to improvements in diagnostic discrimination, given that ARI values and 

corresponding ROC curves were broadly not affected by the algorithm. 

 

4.2 Methodological considerations 

TFA based on the Fourier transform, requires calculation of the auto- and cross-spectra (Bendat 

and Piersol 1986). With a single, long segment of data, e.g. 5 min duration, spectral estimates will 

show considerable variability, following a chi-square distribution with two degrees of freedom 

(DF), and a coefficient of variation of 1.0 (Bendat and Piersol 1986). To reduce the variance of 

spectral estimates and, consequently, the reliability of estimates of gain and phase, Welch 

proposed smoothing the auto- and cross-spectral estimates by averaging multiple segments of data 

from the original long recording, thus increasing the number of DF (Welch 1967). One additional 

benefit of this approach is the possibility of calculating the coherence function, something that is 

not possible with a single segment of data (Benignus 1969). One interesting feature of the Welch 

method is that the data segments used for smoothing the auto- and cross-spectra do not need to be 

contiguous. When breaking down a long recording into NSEG segments with duration [SEGD,NW], 

these are often shifted across and superimposed by a certain amount, typically 50%  (Claassen et 

al. 2016), but in the final calculation of the smoothed spectra, it does not matter the order in which 

segments are selected. This property of the Welch method can be used to remove bad segments of 

data, or to focus on specific events in a longer recording (Panerai et al. 2005). In the present 

study, we benefitted from this property, to gradually remove automatically selected segments of 

data in order to increase the coherence of TFA for the dynamic BP-CBFV relationship. The vast 

majority of reports in the literature of dCA assessment by means of TFA include estimates of 
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coherence as a marker of the reliability of estimates of gain and phase, as well as the ARI index 

(Panerai et al. 2016). Although the threshold adopted for the minimum value of coherence that 

should be used for acceptance of TFA estimates has been fairly variable, ranging from 0.12 (for 

NSEG=15) (Claassen et al. 2016) to 0.50 (for any NSEG) (Zhang et al. 1998), the literature is 

unanimous that estimates of gain, phase and ARI (when obtained via TFA), should not be 

accepted below a pre-defined threshold of coherence. Ideally, this threshold should be based on 

the 95% confidence limit of the coherence distribution for the null hypothesis (or other value of 1- 

 ) (Benignus 1969). For 5 min recordings, using SEGD = 100 s and 50% superposition, the 

coherence threshold will be 0.34, for  = 0.05 (Claassen et al. 2016). Complete curves of the 95% 

confidence limit as a function of NSEG, have been reported for other values of SEGD (Panerai et al. 

2020).  

Another common observation in the literature is the suggestion that the higher the coherence, the 

more reliable the estimates of gain and phase will be (Claassen et al. 2009; Smirl et al. 2015). 

This assumption is understandable, given that poor coherence can be caused by low SNR, as well 

as by other factors, such as non-linearity and multiple influences on the output variable (i.e. 

CBFV). Accordingly, it should be expected that by increasing coherence, one would obtain 

improved estimates of gain and phase, and, by extension, of ARI calculated via TFA, leading to 

better diagnostic and/or prognostic accuracy. In this study, with values of coherence starting at 

~0.65 (Reference Setting) and increasing to around 0.9 (Fig. 2), a substantial increase in 

coherence did not confirm those expectations, as reflected by the stable values of AUC shown in 

Fig. 4 and the lack of association between SDARI
intra

 and the coherence of the Reference Setting 

(with the exception of SEGD = 50 s and 25 s in hypercapnia). This result can be explained on 

theoretical grounds. Both the relative error of gain, and the standard error of estimates of phase, 

are predicted to vary as [(1- 
2
)/2 

2
NSEG]

1/2
, where 

2
 is the squared coherence function as 

calculated in our study (Bendat and Piersol 1986). As coherence increases, the errors will tend to 

go down, but, in our case, this is achieved with a gradual reduction in NSEG (Fig. 2) and, as a 
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result, the estimation errors for gain and phase tend to remain approximately constant, which 

would explain similar behaviour for ARI. 

Further work is needed with other datasets to replicate our findings, ideally involving recordings 

where the mean coherence for the Reference Setting is much lower than what we obtained. 

Another potential use of COHmax would be in studies of the nonstationarity of dCA (Panerai 

2013). Recordings with high values of SDARI
intra

 might reflect the presence of nonstationarity of 

dCA parameters, that could be caused by recording artefacts, variable levels of sensorimotor or 

cognitive stimulation, changes in breathing patterns, or unknown physiological processes (Panerai 

2013). Nonstationarity of physiological origin is thought to be behind the poor reproducibility 

observed in most metrics of dCA (Elting et al. 2014; Sanders et al. 2019) and COHmax could be a 

useful tool to address this problem. 

 

4.3 Clinical implications 

The standard approach to assessment of the diagnostic or prognostic accuracy of a physiological 

measurement is the analysis of ROC curves as a global representation of its sensitivity and 

specificity for all possible thresholds to distinguish between two distinct groups of participants or 

different physiological conditions. ROC analysis has been applied in clinical studies of dCA, 

using several different metrics (Brady et al. 2008; Budohoski et al. 2012; Hu et al. 2008; Lam et 

al. 2019; Ono et al. 2012). For an index of dCA to discriminate between patient and control 

groups, there is an underlying assumption that all patients have impaired autoregulation, which is 

something that cannot be guaranteed, except in conditions where all patients are severely ill. To 

avoid the fallacies of this assumption, hypercapnia has been used as a surrogate for depressed 

dCA (Aaslid et al. 1989; Katsogridakis et al. 2013; Maggio et al. 2013; Minhas et al. 2018; 

Panerai et al. 1999), with the added benefit that each subject can act as their own control. In this 

study, hypercapnia led to significant depression of dCA (Figs 2C and D), as well as highly 

significant values of AUC, when compared to the null hypothesis of AUC=0.5 (Fig. 4). 

Nevertheless, the values of AUC we obtained were lower than corresponding values in the 
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literature, but those involved different physiological conditions (Katsogridakis et al. 2013), or 

more complex mathematical models (Chacon et al. 2018). 

The finding that COHmax can rescue recordings that would be rejected with the Reference Setting 

(Table 3), without degrading of the ARI’s ability to detect worsening of dCA, as reflected by the 

ROC AUC (Fig. 4), suggests it can be a useful tool to allow assessment of dCA in patients who 

otherwise would be denied this test. For patients who are sufficiently fit, improvements in 

coherence can be obtained with other protocols, such as the squat-stand manoeuvre (Claassen et 

al. 2009; Simpson and Claassen 2018; Smirl et al. 2014; Smirl et al. 2015), but for critically ill 

patients, or those who cannot tolerate changes in posture, or even mild exercise, assessment of 

dCA based on spontaneous fluctuations in BP is the main alternative (Tzeng and Panerai 2018), as 

demonstrated by the widespread use of this approach in stroke and severe head injury 

(Intharakham et al. 2019a; Rivera-Lara et al. 2017). In critically ill patients, or those with 

conditions such as Parkinson’s disease, good quality recordings are much more challenging than 

those performed in healthy volunteers under ideal conditions. As a result, the likelihood of 

recordings with poor coherence in the Reference Setting condition is much greater than that found 

in our healthy group, leading to a much greater fraction of data rejection with the TFA approach. 

It is in this context that COHmax might prove of utility, but further work is needed with different 

populations to assess the extent of the benefit that can be derived. 

The study also provided additional information that could benefit clinical applications of dCA 

assessment. The White Paper from CARNet (Claassen et al. 2016), has provided a number of 

recommendations for improving standardisation of TFA settings, aiming to improve 

comparability of studies and also as an essential requirement to expand multi-centre 

collaborations (Beishon et al. 2020). However, many of the recommendations of the White Paper 

were based more on preferences identified in the literature (Meel-van den Abeelen et al. 2014), 

than objective evidence (Claassen et al. 2016).  This is the case with the recommendation to 

standardise the duration of recordings to 5 min, with the use of SEGD = 100 s for TFA with 

Welch’s method (Claassen et al. 2016). As mentioned above, in clinical applications of dCA 

assessment, good quality recordings lasting 5 min might not always be feasible. This concern led 
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to studies exploring alternative settings, such as shortening the duration of recordings 

(Intharakham et al. 2019b), or the use of different values of SEGD (Panerai et al. 2020). As 

demonstrated in these studies, the possibility of using recordings with shorter durations, and also 

with different values of SEGD, has endorsed the choice of considering values of SEGD of 50 or 25 

s in the present study. The new relevant finding though, is that the SEGD = 100 s setting leads to 

significantly better values of AUC of ROC curves, in comparison with the other two alternatives 

(Fig. 4). Based on this result, it would be appropriate to strengthen the White Paper’s 

recommendation for use of SEGD  = 100 s as a standard, and its use combined with COHmax in 

cases of poor coherence with the Reference Setting. Furthermore, in future clinical applications, it 

would also be relevant to assess the use of only a few segments of data, such as NSEG=2 or 3, to 

confirm the feasibility of this option when no more segments of data are available with significant 

coherence (Fig. 2) 

 

4.4 Limitations of the study 

Hypercapnia has been shown to increase the diameter of the MCA, but at much higher levels of 

PaCO2 than observed in this study (Coverdale et al. 2014; Verbree et al. 2014). One advantage of 

ARI, as compared to TFA gain, is that this index is not affected by amplitude changes in CBFV 

between recordings, but it would certainly result in distortions if CBFV were affected by intra-

recording changes in MCA diameter. 

Application of TFA to dynamic CA relies on the assumption that the BP-CBFV relationship is 

linear. As mentioned above, this assumption is not acceptable for frequencies below 

approximately 0.15 Hz because an active CA implies that cerebrovascular resistance is changing 

over time, thus representing a departure from the premise of linearity (Bendat and Piersol 1986). 

Although non-linear models have been proposed to address this inherent limitation of TFA 

(Chacon et al. 2018), the jury is still out to determine the benefits of using these models in clinical 

applications, and the key differences that would result in comparison with classical TFA. 

The COHmax algorithm was tested in a large representative sample of healthy subjects, collected in 

previous studies with homogeneous protocols by investigators trained to the same standards. We 
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have opted to test the new algorithm on the effects of hypercapnia on dCA, instead of using 

clinical data, to allow a more rigorous evaluation based on intra-subject, with corresponding 

repeated-measures statistics, rather than inter-subject differences in dCA efficacy. For this reason, 

our results cannot be extended to other datasets, and future studies are needed to confirm our 

findings in different populations. 

As expected, the COHmax algorithm led to increasing values of coherence with the gradual 

removal of segments of data. However, we cannot guarantee that the resulting values were the 

absolute optimal. The main reason behind this limitation was the sequential assignment of 

segments, as described above (COHmax algorith step ii). Instead, if segments of data were 

removed with random starting and ending points along the recording, combined with the use of 

bootstrapping, there would be the possibility of achieving even higher values of coherence than 

we obtained. 

Unusual as this might seem, our data were of better quality than what would be desirable to 

provide a more stringent test of COHmax. In clinical applications, we have observed much higher 

rates of rejection of ARI estimates, due to poor coherence and high values of NMSE (Caldas et al. 

2017; Lam et al. 2019; Panerai et al. 2016), and it would have been informative if the dataset we 

analysed had a higher proportion of problematic recordings than was the case. 

Our results were dependent on the choice of the 95% confidence limit of coherence, as the 

threshold for acceptance of TFA parameters. The choice of a different threshold, for example the 

90% or 99% confidence limit (Claassen et al. 2016), would undoubtedly lead to different results. 

Although our confidence limits, and their dependence on the degrees of freedom, resulting from 

the TFA settings, were based on the use of broad band noise for input and output (Claassen et al. 

2016), we have shown previously that similar results are obtained when using surrogate pairs, 

based on the inter-subject swap of BP and CBFV signals (Panerai et al. 2018). 

Separate values of gain and phase were not presented. As mentioned in the Introduction, the ARI 

incorporates all the information provided by gain and phase, without the need to breakdown these 

estimates in averaged values for empirically selected frequency bands, usually termed, very-low 

and low frequency intervals (Claassen et al. 2016). Gain has not performed as reliably in detecting 
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alterations in dCA as phase and ARI have (Claassen et al. 2016; Intharakham et al. 2019a; Panerai 

2008), and the latter two are closely linked by the influence of phase in the temporal pattern of the 

CBFV step response, that ultimately defines the value of ARI (Panerai 2008). Although the results 

reported herein for ARI are likely to be applicable to phase as well, this needs to be demonstrated 

by future studies. 

 

5. Conclusions 

The coherence of TFA between BP and CBFV can be increased by the selective removal of sub-

segments of data, an approach that might be useful to rescue recordings that otherwise would be 

rejected due to values of coherence below the statistical threshold recommended for acceptance of 

estimates of gain, phase, or ARI index. Before COHmax, an algorithm that can remove sub-

segments of data in automated fashion,  could be recommended for routine calculation of TFA 

parameters, it is necessary to test its performance more widely, and also to shed light on the 

benefits of achieving values of coherence significantly higher than the 95% confidence level 

threshold usually adopted for acceptance of dynamic CA metrics derived by TFA. Further work is 

needed to test COHmax with different sets of data, mainly in recordings obtained in clinical studies 

where data quality can be jeopardised. 
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Tables 

 

Table 1 – Physiological characteristics at baseline (normocapnia) and hypercapnia (5% CO2 breathing  

                 in air) 

Variable Normocapnia Hypercapnia p-value 

CBFV (R)  (cm/s) 54.6 ± 12.8 60.5 ± 15.1 <0.001 

CBFV (L)  (cm/s) 53.0 ± 12.3 60.7 ± 14.8 <0.001 

Mean BP (mmHg) 90.3 ± 15.8 93.5 ± 17.8 <0.001 

Systolic BP (mmHg) 128.6 ± 24.2 134.7 ± 28.1 <0.001 

Diastolic BP (mmHg) 72.4 ± 10.7 76.8 ± 11.7 <0.005 

Heart rate (bpm) 66.9 ± 9.7 68.1 ± 9.7 <0.001 

End-tidal CO2 (mmHg) 39.54 ± 4.59 42.84 ± 3.91 <0.001 

CBFV: cerebral blood flow velocity; R,L: right, left MCA; BP: blood pressure; p-value from paired 

Student’s t-test. 

 

 

 

Table 2 – Two-way ANOVA of ARI changes with increasing coherence for normocapnia and 

hypercapnia. 

SEGD 
(s) 

Baseline Hypercapnia p-value 

ARI SDintra ARI SDintra 
CO2 

effect 
coherence 

effect 
interaction 

100 
5.79 ± 1.40 

(n=91) 
0.43 ± 0.38 

(n=91) 
4.01 ± 1.74 

(n=95) 
0.71 ± 0.45 

(n=95) 
<0.0001 0.18 0.25 

50 
5.84 ± 1.40 

(n=84) 
0.55 ± 0.40 

(n=84) 
4.40 ± 1.57 

(n=91) 
1.69 ± 0.44 

(n=91) 
<0.0001 0.18 0.99 

25 
5.66 ± 1.49 

(n=83) 
0.58 ± 0.37 

(n=83) 
4.39 ± 1.37 

(n=99) 
0.69 ± 0.39 

(n=99) 
<0.0001 <0.0001 0.94 

SEGD: Duration of segments; p-values from two-way repeated measures ANOVA for the effects of 

coherence and 5% CO2 breathing (hypercapnia) on ARI. (n) is the number of subjects with complete 

values of ARI for all segment durations. 
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Table 3 – Number (%) subjects with values of ARI rejected with standard settings and the number (%) 

that could be recovered with the COHmax algorithm. 

SEGD 
Normocapnia Hypercapnia 

Rejected$ Recovered# Rejected$ Recovered# 

100 (s) 22 (18.3 %) 8 (36.4 %) 16 (13.3 %) 11 (68.7 %) 

50 (s) 20 (16.7 %) 12 (60.0 %) 12 (10.0 %) 10 (83.3 %) 

25 (s) 19 (15.8 %) 12 (63.2 %) 10 (8.3 %)   5  (50.0 %) 

SEGD: segment duration; $ percent of total population; # percent of cases recovered by COHmax. 
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Figures 

 

 

 

Figure 1 – Illustrative trajectories of coherence for SEGD = 50 s when the number of segments is 

reduced from the standard value of NSEG = 11 down to NSEG = 2 following the COHmax algorithm in 

hypercapnia, for three different subjects. (1) rapid rise in coherence up to eight segments, followed by 

a more gradual rise. (2) initial value of coherence was below the 95% confidence limit (solid line), 

then reached the confidence limit for NSEG = 8 and continued to rise up to NSEG = 2. (3) despite some 

gradual improvement in coherence, values remained below the 95% confidence limit curve (solid 

line) for all values of NSEG. 
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Figure 2 – Population average trajectories of coherence and the Autoregulation Index (ARI) for 

values of SEGD of 25 s (squares, solid line), 50 s (triangles, dashed line) and 100 s (circles, dotted 

line) for normocapnia (A, C) and hypercapnia (B, D). Note the reduced scale for ARI values to 

facilitate visualization and its reduced values due to hypercapnia. Error bars are  ±1 SE. 
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Figure 3 – Population distribution of intra-subject standard deviations (SD) for the ARI for 

normocapnia (A,C,E) and hypercapnia (B,D,F). (A,B) SEGD=25 s, (C,D) SEGD=50 s, (E,F) 

SEGD=100 s. 
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Figure 4 – Area-under-the-curve (AUC) for receiver operating characteristic (ROC) curve for 

detecting differences in ARI between normocapnia and hypercapnia as a function of the number of 

segments for SEGD=25 s (squares, continuous line), 50 s (triangles, dashed line), and 100 s (circles, 

dotted line). 
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