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Abstract:

This paper presents a history of relative sea level (RSL) change for the last 15,000 years in the
Prince Rupert region on the northern coast of British Columbia, Canada. One hundred twenty-
three radiocarbon ages of organic material from isolation basin cores, sediment sequence
exposures, and archaeological sites having a recognized relation to past sea levels constrain
postglacial RSL. The large number of new measurements relating to past sea-level provides a
well constrained RSL curve that differs in significant ways from previously published results.
After deglaciation following the Last Glacial Maximum, the region experienced an isostatically-
induced rapid RSL drop from as much 50 m asl to as low as -6.3 m asl in as little as a few
centuries between 14,500 BP and 13,500 BP. After a lowstand below current sea level for about
2000 years during the terminal Pleistocene, RSL rose again to a highstand at least 6 m asl after
the end of the Younger Dryas. RSL slowly dropped through the Holocene to close to its current
position by 2000-1500 BP, with some potential fluctuations between 3500 and 1500 BP. This
study highlights variation in RSL histories across relatively short distances, which must be
accounted for by local RSL reconstructions such as this one. This RSL curve aided in the
identification of an 8000-9000 year old archaeological site on a 10-12 m asl terrace, currently the
earliest dated archaeological site in the area, and it provides guidance for searching for even
older archaeological remains. We highlight the utility and potential of this refined RSL history
for developing surveys for other archaeological sites associated with paleoshorelines.

Key words: relative sea level change, paleoshorelines, Northwest Coast, archaeology, Prince
Rupert, diatoms
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1. Introduction

Several decades ago, pioneering regional compilations of radiocarbon dated relative sea
level (RSL) data by Mathews et al. (1970) and Clague et al. (1982) demonstrated the variability
of RSL histories on the west coast of North America since the end of the Fraser Glaciation,
largely related to the location and thickness of ice sheets, the timing of their retreat, and the net
result of subsequent isostatic adjustments, eustatic sea level change, neotectonic movements, and
sedimentation processes. New compilations have highlighted and re-emphasized this variability
(Engelhart et al. 2015; Shugar et al. 2014). RSL histories are key components of
paleoenvironmental and landscape reconstructions, and are intimately tied to understanding
geomorphological and biological (both human and non-human) change on coastal landscapes
through the Holocene. Knowing how RSL changes transform coastal landscapes is a key
component for identifying and interpreting the archaeological record along coasts, particularly
for the terminal Pleistocene and early Holocene. To date, RSL studies on the northern Northwest
Coast mainland have been limited in scope compared to other parts of the region (see summaries
in Engelhart et al. 2015 and Shugar et al. 2014).

This paper presents new data refining our understanding of the postglacial RSL history of
the area around Prince Rupert, on the north coast of British Columbia, Canada (Figure 1). We
use diverse methods for studying RSL change to generate a robust RSL curve based on a large
dataset of limiting and index points. We discuss what this information tells us about postglacial
dynamics and coastline change through the Holocene, demonstrate its utility for locating
evidence for early human occupation in the study area, and outline the importance of this new

data for modelling of glacio-isostatic changes in northern British Columbia.
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1.1 Study Area

The study area (Figure 2) is on the northern margin of the Hecate Lowlands, a 15-60 km
wide area of low relief that extends about 600 km along the northern mainland coast between an
offshore coastal trough and the Coast Mountains, and includes many low islands close to the
mainland. The surficial geology of the study area is primarily organic (usually peat) veneers or
blankets over patches of glaciomarine sediments (clays, silts and dropstones) which in turn
overlie metamorphic bedrock (Clague 1984; Massey et al. 2005). In a few areas there are
massive deposits of glacial till. Shorelines are crenulated, particularly along the northern shore of
Prince Rupert Harbour and through Venn Pass, where there are many sheltered bays, small
inlets, and tidal channels. These shorelines often have sand and mud flats extending hundreds of
meters at low tides. The Prince Rupert Harbour itself is a deep waterway, one of many glacially
carved inlets and valleys in the wider region, the largest of which are Portland Inlet and the Nass
River valley to the north and the Skeena River valley to the south.

Today the two principal communities in the study area are the city of Prince Rupert and
the reserve town of Metlakatla, but prior to European contact the area included dozens of
contemporaneously occupied villages inhabited by the ancestors of the Tsimshian peoples
(MacDonald and Inglis 1981; Ames 2005). Archaeological remains of these villages dot the
shorelines along bays and passes. These ancient inhabitants had an intimate relation with the sea,
and understanding how shorelines have changed through time is important for locating and
interpreting past peoples’ material remains. The rich archaeological record indicates that Prince
Rupert Harbour was one of the most densely occupied areas of the Northwest Coast by around

3000 years ago (Ames and Martindale 2014). However, even with a century of archaeological
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research that includes intensive radiocarbon dating (e.g. Ames 2005; Archer 1992; 2001;
Coupland 1988, 2006; Coupland et al. 1993, 2001, 2003, 2009, 2010; Drucker 1943; MacDonald
1969; MacDonald and Cybulski 2001; MacDonald and Inglis 1981; Smith 1909), no
archaeological sites dating earlier than 6000 years BP had been identified prior to our research.
Elsewhere on the northern coast, terminal Pleistocene and early Holocene archaeological remains
are being found with increasing frequency on paleoshorelines in the wake of detailed RSL
reconstructions (Carlson and Baichtal 2015; Fedje and Christensen 1999; Fedje et al. 2005a,
2011; Josenhans et al. 1997; Mackie et al. 2011; McLaren et al. 2011). Our research objectives
are similar, and include using RSL data to survey for evidence of earlier occupation in this
archaeologically-important place. We also seek to refine the understanding of postglacial

landform dynamics in northern British Columbia, which we review next.

1.2 Regional Setting: Glacial History and RSL Change

1.2.1 General Patterns for Coastal British Columbia

Recent compilations of known RSL data for the west coast of North America (Engelhart
et al. 2015; Shugar et al. 2014) display a previously recognized (Clague et al. 1982) general
pattern for the British Columbia coast in which postglacial RSL histories are largely mirrored
between the offshore outer coast and the mainland coast, though these same compilations also
demonstrate a high degree of RSL variation through time and space. As with other glaciated
areas and their immediate peripheries (see Pirazzoli 1996), terminal Pleistocene RSL change on
the Northwest Coast was governed by the location and thickness of ice sheets during the Fraser
Glaciation (the most recent glacial period in western North America, ~30-12 kya, and the latter

part of what is more broadly termed the Wisconsin Glaciation in North America, ~110-12 kya)
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and subsequent isostatic adjustments during and following deglaciation. The general trend is that
mainland and inner coast areas were depressed downward tens to more than 200 meters by an ice
sheet hundreds to several thousand meters thick during the Last Glacial Maximum (LGM). At
the same time unglaciated areas of the outer coast were bulged upwards by asthenosphere
material displaced outwards by this depression (Clague and James 2002; Fedje et al. 2005b;
Hetherington and Barrie 2004). Additionally, during this time global sea level was as much as
125 m lower as a result of ocean water locked up in the ice sheets (Fairbanks 1989).

Deglaciation of the region began around 18,000 or 19,000 cal. BP ' (Blaise et al. 1990)
and the ice sheets retreated inland sequentially from the coast (Clague and James 2002; Clague
1984). At this time, RSL was much lower on the outer coast and much higher on the inner coast.
Meltwater caused a rise in global (eustatic) sea level, although this was quickly outpaced by
isostatic readjustments caused by the unloading of ice from the land. The uplifted area
collapsed, producing an overall rise in RSL on the outer coast, while the once-depressed inner
coast rebounded upward, causing rapid RSL fall there. These effects were most pronounced at
their outer and inner extremities, and recent work by McLaren and colleagues (2011; 2014) has
identified a ‘sea level hinge’ area between the elevated outer coast and the isostatically depressed
mainland where RSL position was generally stable through the Holocene.

1.2.2 Northern British Columbia

Figure 1 depicts RSL curves for northern British Columbian locations running west-east.
In this region the Cordilleran ice sheet reached its maximum extent sometime after 27,300 —
25,400 cal. BP (Blaise et al. 1990). Isostatic depression was greatest in the areas with the thickest
ice cover, and during this time ice sheets extended out across the northern Hecate Strait into

Dixon Entrance (Hetherington et al. 2004). Prince Rupert Harbour was fully glaciated. Offshore,

! All dates are discussed in Calendar Years Before Present (i.e. before 1950).
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the combined eustatic lowering of the sea level and uplift due to the forebulge resulted in RSL at
least 150 m lower at southern Haida Gwaii, and the shallow Dogfish Bank and Laskeek Bank in
western Hecate Strait were emerged as a wide coastal plain (Hetherington et al. 2003, 2004;
Fedje et al. 2005b; Josenhans et al. 1997).

During deglaciation, glaciers retreated inland and from higher elevations first; the last
glaciers to retreat were those that filled the deep inlets and river valleys (Clague and James
2002). This process was rapid, but not constant. There were temperature fluctuations that may
have paused glacial retreat periodically, such as the Younger Dryas period between 12,900 and
11,700 cal. BP (Fedje et al. 2011). In the Nass River Valley, McCuaig (2000; McCuaig and
Roberts 2006) found several pauses in RSL regression at various highstands that formed now-
relict deltas between 230 m asl and 130 m asl during glacial retreat in the area. Melting glaciers
caused eustatic sea level to rise until the mid-Holocene (Fairbanks 1989; Smith et al. 2011).

As opposed to the forebulged outer coast, shorelines closer to the depressed mainland and
up the valleys were submerged where isostatic depression was greater than the lowered eustatic
sea level. Marine mollusc shells dating to 15,000 cal. BP found around Prince Rupert and Port
Simpson on the north end of Tsimpsean Peninsula indicate that this part of the outer mainland
coast was deglaciated by this time and that RSL was at least 50 m higher (Clague 1984).
Radiocarbon dates on shells from Zymagotitz River, near Terrace, 110 km inland from Prince
Rupert, indicate that this region was not deglaciated until several thousand years later, around
11,500 cal. BP, but that RSL was 170 m higher at this time in the Kitsumkalum-Kitimat trough
(Clague 1984, 1985). The highstands in the Nass River Valley remain undated, though their
general elevation and distance from the coast are similar to those of the Kitsumkalum-Kitimat

trough (McCuaig 2000; McCuaig and Roberts 2006). This illustrates that the timing and pace of
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deglaciation also caused time-transgressive RSL change. There was considerable discrepancy in
deglaciation and RSL position between the outer coast and the heads of the inlets and valleys.
Each of these flooded areas experienced rapid RSL drops caused by isostatic uplift, though the
rates and timing varied.

The tilting of the crust surface from the uplifted forebulge to the heavily depressed
mainland meant that the Dundas Islands, located 40 km northwest of Prince Rupert and 60 km
northeast of the northeastern tip of Haida Gwaii, were near to the midway ‘hinge’ point on the
deformed continental plate, and maximally submerged by RSL 14.5 m above its current position
(Letham et al. 2015; McLaren 2008; McLaren et al. 2011). After 14,000 BP, isostatic uplift and
eustatic rise caused RSL to drop gradually from 14.5 m asl to its current position through the
Holocene, with a still stand at 7.5 m asl between 8900 cal. BP and 6000 cal. BP. Meanwhile, on
Haida Gwaii, isostatic collapse of the forebulge combined with the eustatic sea level rise caused
RSL to rise 15 or 16 m above current sea level around 10,000-9500 cal. BP and stabilize there
for about 4000 years before slowly dropping towards their current elevation, likely as a result of
tectonic uplift (Clague et al. 1982; Fedje et al. 2005b:25).

More recent RSL changes are less known and less well understood in the region, as they
were much more subtle in comparison to early rapid isostatic and eustatic changes. Late
Holocene RSL change is still occurring by way of low-amplitude isostatic, eustatic, steric, and
tectonic changes; as well as much more localized processes such as catastrophic tectonic events
(earthquakes), sedimentation, compaction, and erosion (Pirazzoli 1996). Late Holocene RSL
changes are likely to be more localized, but tracking these smaller scale shifts is relevant for
considering their impacts on the shorter timescales of human generations, as well as for

understanding the potential impacts of RSL change in the present day.
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1.3 Previous Sea-Level Work around Prince Rupert

Previous RSL research around Prince Rupert was conducted by John Clague for the
Geological Survey of Canada (Clague 1984, 1985; Clague et al. 1982), and briefly reassessed by
Millennia Research Ltd. (Eldridge and Parker 2007). Clague suggested that RSL dropped from
50 m asl sometime after 15,000 cal. BP and passed below its current elevation sometime after
10,000 cal. BP, before rising again to its current position at 5700 cal. BP (Figure 1D). The
hypothesis for an early-to-mid Holocene lowstand was based on negative evidence: extensive
radiocarbon dating of archaeological sites in the area during the 1970s did not yield any ages
older than 5700 cal. BP (Ames 2005; MacDonald and Inglis 1981), leading to the suggestion that
RSL had stabilized by this time and that older sites were submerged.

Millennia Research Ltd. tested this hypothesized early Holocene lowstand by examining
three core samples from intertidal contexts in the area, and concluded that “sea levels never fell
substantially lower than present’; though they allow that even in the absence of evidence, “sea
level may still have fallen by a metre or two below modern levels” (Eldridge and Parker
2007:17). Our refined RSL curve for Prince Rupert Harbour includes data from this previous

research but demonstrates a fairly different RSL history.

2. Data and Methods
From 2012 to 2015 we conducted field work to identify RSL index points and limiting
points. All RSL data points include location, elevation, age, and indicative meanings.

2.1 Limiting Points, Index Points, and Indicative Meanings
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Sea level index points are data directly indicating the position of RSL at a particular time
and space (Hijma et al. 2015; Shennan 2015); they are usually in situ macrofossils or sediments
with a known and restricted elevation range relative to the tidal range. For RSL reconstruction,
the possible elevation range over which an index point could have formed is calculated and then
the difference between that range and current position of the indicator is measured (Table 1). Sea
level limiting points are fossil or sedimentary indicators of either terrestrial (upper limiting) or
marine environments (lower limiting) and constrain but do not directly indicate the position of

RSL (Table 1). Most of our data are limiting points.

2.2 Measuring Elevation and RSL Change
The datum against which all elevations are measured relative to is geodetic mean sea
level measured by the Canadian Geodetic Vertical Datum of 1928 (CGVD28) benchmark at

Prince Rupert, which is 3.85 +/- 0.01 m above Chart Datum (http:/www.meds-sdmm.dfo-

mpo.gc.ca/isdm-gdsi/twl-mne/benchmarks-reperes/station-eng.asp?T1=9354&region=PAC).

Conveniently, this elevation nearly coincides with Mean Water Level (MWL, 3.849 m above
Chart Datum) at Prince Rupert, which is the average of all hourly water levels, and coincides
with Mean Tide Level (MTL), the average of High Water Mean Tide (HWMT) and Low Water
Mean Tide (LWMT) (Table 2; Canadian Hydrographic Survey, personal communication, 2015).
Because of this coincidence, geodetic mean sea level, MWL, and MTL are treated as equivalent,
and variations around this zero point are expressed as ‘m asl’.

The tidal range at Prince Rupert is 7.40 m, which is very large compared to other areas of
the British Columbia coast (Canadian Hydrographic Survey, personal communication, 2015).

This introduces uncertainty to measurements on indicators from marine or intertidal contexts that
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are not in situ, such as re-worked shells or diatoms, which can be pushed to the highest tidal
limits by waves or moved below the tidal range by currents or debris flows. In sifu indicators,
such as molluscs in growth position or salt marsh sediments provide more accurate estimates of
RSL position within this wide tidal range.

The elevations of all data were measured using a variety of instruments and methods,
including an RTK GPS unit and base station, a Leica Total Station, a clinometer and stadia rod,
and hand held GPS units. Elevations were often derived from or double checked against LIDAR
digital terrain models (DTMs) of the study area (Airborne Imaging 2013), and all field-derived
elevations cross-checked against this dataset showed very good consistency. All measured
elevations were converted to m asl on the CGVD28 datum. Vertical measurement errors are
applied to all data points in the final dataset and expressed as 95% confidence intervals (see
Hijma et al. 2015 for error types and equations).

2.3 Measuring Age

All RSL limiting and index points in this study have ages measured by radiocarbon
dating. All dates have been calibrated using OxCal 4.2 (Bronk Ramsey 2009, 2014), and are
presented as 95% (2 sigma) probability ranges in calibrated years before present (BP, i.e. the
year 1950). The marine reservoir effect was accounted for by applying a AR of 273 +/- 38, which
is a conservative estimate for at least the last 5000 years in the Prince Rupert area (Edinborough
et al. 2016). It has been demonstrated elsewhere that AR values can fluctuate through time (e.g.
Deo et al. 2004), and that marine organisms from immediate postglacial contexts may have
larger offsets than subsequent times as a result of increased deep-water mixing from isostatic
depression (Hutchinson et al. 2004b). However we lack any controlled baseline data from prior

to 5000 BP to assess these effects for the study area. We therefore consistently apply a AR=273
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+/- 38, acknowledging that this value could have been different in the past and some of our early
shell dates may be younger than presented. However, most of our calibrated very early shell
dates are in accord with early dates on terrestrial material.

Bulk samples of sediment or multiple fragments of macrofossil material were dated when
single samples of the appropriate size were not available. Following Tornqvist et al. (2015), in
these cases we applied an additional error of +/- 100 years before calibration. Bulk organic
sediment from immediate postglacial times likely contains carbon taken up from underlying
glacial sediments (Hutchinson et al. 2004b). Hutchinson et al. (2004b) find a difference of 625
+/-60 years between postglacial bulk sediments and macrofossils for the southern mainland
coast, though this effect varies locally based on the composition of local glacial substrates, and,

as with the early postglacial marine shell, no baseline study has been conducted in the study area.

2.4 Field and Lab Methods

Index and limiting points were derived from sediment cores from bodies of water that
contain transitions to or from marine conditions, relict marine sediments identified in geological
traverses, and the lowest (earliest) components of archaeological sites identified through
excavations or percussion coring.

2.4.1 Livingstone Sediment Cores

We collected 13 sediment cores from bogs, bays, and isolation basins ranging +49.7 to -
1.36 m asl using a hand-driven Livingstone piston corer (Wright 1967). Isolation basins are
water-filled basins with a measurable sill over which water drains. In instances of RSL change,
these basins are ‘isolated’ from marine conditions when highest high tide levels are below the

elevation of the sill, but will be brackish or marine environments during times when tides wash
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over the sill or the sill is submerged. The bottoms of these basins accumulate sediments
containing paleoenvironmental proxies (e.g. diatoms, pollen, foraminifera, ostracods, plant or
animal macrofossils) over time. The point at which sediments record a change from a marine to
fresh water depositional environment (or vice versa) approximates the time at which water
containing those proxies passed over the sill elevation. Dating these transitions is a means of
accurately measuring RSL position at certain times (Engelhart et al. 2015; Hafsten 1979, 1983a,
1983b; Hafsten and Tallantire 1978; Hutchinson et al. 2004a; James et al. 2009a; Kjemperud
1981; McLaren et al. 2011; Romundset et al. 2009; Rundgren et al. 1997).

In two instances we cored sphagnum bogs with standing water in which upward-growing
peat obscured any definite sill; the surface elevation of standing water is used as a best estimate
of elevation. For a tidal bay where a definite sill was not observable due to water depth we
selected a well-sheltered location that we anticipated to have good sediment sequence
preservation. For estimating the elevation of data points at this location we subtract the depth of
dated samples from the elevation of the beach surface at the core location.

We cored basins until we reached an impenetrable obstruction or glacial sediments,
which, in the study area, consist of either till or a distinctive blue-gray coloured glacio-marine
clay (Clague 1984). Environmental transitions were identified using a combination of
lithostratigraphic analyses (physical characteristics of the sediments), diatom microfossil
analyses, and sediment stable carbon and nitrogen isotope analyses. Samples were selected for
AMS radiocarbon dating from points in the cores that were indicative of transitions.

2.4.1.1 Diatom Analyses of Core Sediment

Preserved diatom microfossils from core sediment were used as a proxy for changing

water salinity and RSL transitions (Battarbee 1986; Zong and Sawai 2015). See Supplemental
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Text for a detailed description of sample selection and preparation. A minimum of 300
identifications were made for each sample; species were identified using multiple reference
guides (Campeau et al. 1999; Cumming et al. 1995; Fallu et al. 2000; Foged 1981; Hein 1990;
Krammer and Lange-Bertalot 19864, b, c, and d.; Laws 1988; Pienitz et al. 2003; Rao and Lewin
1976; Tynni 1986). Diatom species were placed in a five-part salinity classification scheme
based on the ‘halobian system’ (Hustedt 1953; Kolbe 1927, 1932) outlined by Zong and Sawai
(2015:234): 1 = halophobic (salt intolerant freshwater) species, 2 = oligohalobous indifferent
(freshwater) species, 3 = oligohalobous halophilic (freshwater but tolerant of salinity levels up to
2%o0) species, 4 = mesohalobous (brackish water with salinity levels ranging from 2%o to 30%o)
species, and 5 = polyhalobous (marine water with salinity > 30%o) species.

2.4.1.2 Stable Isotope Analyses of Core Sediment

For key strata where diatom evidence was lacking, we measured stable carbon (6"C) and
nitrogen (6'°N) isotope compositions and elemental carbon-to-nitrogen (C/N) ratios of the
organic fraction of sediments as a proxy for paleoenvironmental salinity (for review see Khan et
al. 2015; Lamb et al. 2006). Organic sediments derived from autochthonous inputs of Cs-
dominated terrestrial materials should have lower 0'°C values as well as higher and more
variable C/N ratios relative to sediments containing organics derived from marine algae and
plants (Khan et al. 2015). Intertidal and salt marsh areas have ¢'°C values and C/N ratios that are
transitional, reflecting contributions of organic matter from both terrestrial and marine
environments (Lamb et al. 2006; Mackie et al. 2005; Khan et al. 2015). Our results also suggest
that 0"°N values from organic sediments can be useful for discriminating between marine and

terrestrial/freshwater samples as the latter have consistently lower values.
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We measured 0'°C and J'°N values and elemental compositions of Holocene sediment
samples from select cores with known freshwater/terrestrial (n=8) contexts and marine/intertidal
contexts (n=12) as a comparative baseline for assessing paleosalinity of sediments that lack
diatom evidence. Stable isotope compositions were measured using an Elementar vario MICRO
cube elemental analyzer (EA) coupled to an Isoprime isotope ratio mass spectrometer in
continuous flow mode. Detailed sample contextual details, preparation methods, sample
calibration, and analytical uncertainty are discussed in the Supplemental Text. Known
freshwater sediment samples yielded lower average 0"3C and 6"°N values and exhibit a wider
range of Corg/N1oTAL ratios than known marine samples (Table 3 and Supplementary Table 1).

2.4.2 Relict paleomarine sediments in exposures and raised shoreline landforms

Six exposures of marine deposits with abundant marine mollusc shells located above their
current habitat range were identified through traverses up creeks or along shorelines and dated.
Previous studies in the area have identified an additional four such exposures that we include
(Archer 1998; Clague 1984, 1985; Fedje et al. 2005b).

In addition to identifying paleomarine sediments in exposures, LIDAR DTMs were used
to identify landforms that could represent relict raised shorelines. These included linear stretches
of steeper slope relative to adjacent higher and lower elevations that run parallel to the modern
shoreline, which could represent relict wave-cut backbeach berms. These locations were ground-
truthed and flat landforms immediately above them were tested for archaeological material.

2.4.3 Basal dates from archaeological sites

We collected Environmentalist Soil Probe (ESP) percussion core samples from large
shell-bearing archaeological sites and dated the lowest instances of cultural material in these

cores, operating on the assumption that the dated material represents human occupation on land
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and therefore above or near the contemporary higher high water mean tide (HHWMT) level
(2.32 m asl), which we select as the most meaningful of the highest tide averages on the scale of
human lifetimes (see Table 2). Several dates on the lowest cultural material from auger samples
and test excavations conducted on hypothesized raised paleoshorelines are also included. 62
dates from 28 sites are included as upper limiting constraints on RSL.

Earlier compilations of RSL data points for Prince Rupert (Clague 1984, 1985; Shugar et
al. 2014) include up to 40 dates from previously excavated archaeological sites, but provenience
information for these dates is not available to assign elevations with the level of accuracy that we
required (Dan Shugar, personal communication, 2015). We therefore do not include these dates
in our analysis; all archaeological data points were collected in this study and carefully

controlled for elevation.

3. Results

One-hundred and twenty-three index and limiting points constrain the inferred RSL curve
(Table 4, Figure 3). Five of these are from previous studies; the rest are new. All index points
and key limiting points are reported individually in this section. A summary of diatom analyses
is presented on the core log Figures and Table 5. An RSL curve is interpreted from the entire
collection of points, their association to one another, and judgement of their reliability in Section
4.
3.1 Livingstone Sediment Cores

3.1.1 Tsook Lake Core (TL#1, 49.7 m asl)

The highest elevation core is from Tsook Lake, north of Metlakatla on the Tsimpsean

Peninsula. The elevation of the basin’s sill is 49.7 m asl. Core TL#1 (Figure 4) contains a
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sequence of marine sand and silt transitioning to freshwater gyttja and fragmental herbaceous
peat and fragmental granular peat (following the terminology of Schnurrenberger et al. 2003:151,
and henceforth ‘peat’). An Arctostaphylos sp. seed (a shrub species known as an initial colonizer
of deglaciated landscapes [Mann and Streveler 2008:207]) from a brackish and marine-diatom
dominated context dates 15,090-14,365 cal. BP (D-AMS 009956). Seeds from a freshwater
diatom-dominated zone with minor brackish/marine influence located below the transition to
gyttja and peat date 14,782-13,714 cal. BP (D-AMS 009955), indicating that the Tsook Lake
basin was likely only being flooded by exceptionally high tides at this time. A relatively gradual
transition from marine/brackish to freshwater diatom assemblages over as much as 1,200 years
between these two dated samples may be indicative of a gradual RSL decline at this time. Twigs
and a small cone from just above the transition to dark brown decomposed peat/gyttja date
13,971-13,330 cal. BP (D-AMS 009954) and provide a latest possible date for the full isolation

of this basin from marine influence.

3.1.2 Rifle Range Lake 1 Core (RR1#2, 35 m asl)

Rifle Range Lake 1 is located on the east side of Kaien Island, the furthest east of any of
our core samples. It has an estimated sill elevation of 35 m asl. Core RR1#2 (Figure 5) contains a
sharp transition from brackish and marine diatom-dominated sand and silt to freshwater gyttja
and peat. Mixed but indistinguishable plant matter from a thin dark lens of bedded organics
about 15 cm below the transition dates to 14,090-13,458 cal. BP (D-AMS 008741). Several small
twig fragments from 11 cm above the transition date 14,055-13,345 cal. BP (D-AMS 008740).
The very tight chronological succession of these two dates, along with the abrupt transition to

fully freshwater conditions indicates that RSL passed very quickly over this elevation. However,
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the date in the brackish/marine sediment contradicts other dates in this study that suggest that
RSL had passed well below 35 m asl at or before this time. Possible reasons for this are
discussed in Section 4.2.1.
3.1.3 Cores from Bogs on northern Digby Island (DIB1#1, 17.2 m asl; and NDB#1,
17 m asl)

DIBI#1 (17.2 m asl) and NDB#1 (17 m asl) are sphagnum bogs with standing water on
northern Digby Island (Figure 2). Cores from each contain basal blue-gray clay resembling the
glacio-marine sediment observed in the study area overlain by sharp transitions to peat
(Supplemental Figures 1 and 2). However, no diatoms were observed in samples from near to
these transitions. A stick of wood lying diagonally in the lowest instance of peat in DIB1#1
yielded a relatively recent age of 8295-8028 cal. BP (D-AMS-005844), suggesting that it is
intrusive from above or indicating an erosional unconformity. Two dates on samples from higher
up in the peat in NDB#1 yielded ages of 8169-7626 cal. BP (D-AMS 009950) and 10,171-9521
cal. BP (D-AMS 009948). These three dates serve as upper limiting points for RSL during the

early Holocene.

3.1.4 Digby Island Lake 1 Core (DL1#1, 15.2 m asl)

Digby Island Lake 1 is one of several lakes in a larger basin at the center of Digby Island
that would have been isolated from the ocean by a long and narrow channel that runs to the south
end of the island with a maximum sill height of 15.2 m asl. Core DL1#1 (Figure 6) contains a
transition from marine and brackish diatom-dominated clayey sandy silt to brown silty mud with
a transitional sequence of mixed diatom assemblages to fully freshwater assemblages, overlain

by freshwater peat and gyttja. Organic macrofossils of sufficient size for radiocarbon dating were
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not found in the marine or brackish sediment. Several small twig fragments from just above the
transition to medium brown silty sand produced a date of 15,013-13,859 cal. BP (D-AMS

008745). Sediment from 2 cm above these twigs contains only 3.5 percent brackish and marine
diatoms, indicating that this date is a reasonable approximation of the time just before the basin

became isolated from marine incursions.

3.1.5 Bencke Lagoon Cores (BL#1 and BL#4, 2.4 m asl)

Bencke Lagoon is a shallow ‘L.’-shaped body of water located in a low-relief area at the
end of Scott Inlet, east of Metlakatla (Figure 7). The lagoon currently drains over a 2.4 m asl sill,
putting it within the upper tidal range for the Prince Rupert area (i.e. just above higher high water
mean tide [HHWMT], Table 2), and therefore flooded by several high tides each month. The
result is slightly brackish water within the lagoon.

Two cores taken several meters from each other (BL#1 and BL#4) contain a sequence
beginning with coarse clastic material that is likely glacial till overlain by laminated gray silty
sand transitioning to clay with marine mollusc shells that coarsens upwards to sand with marine
mollusc shells. Sand without marine mollusc shells but with reworked fragments of marine
diatoms overlies these layers. Subsequent to the deposition of the till, this sequence likely
indicates a low energy subtidal environment transitioning to intertidal, and eventually to high
intertidal. The upper section of core BL#1 (Figure 8) contains a sharp transition to gyttja with a
remarkably diverse freshwater diatom assemblage, indicating a transition to a pond or slow-
moving creek. The last few centimeters of sediment above this are light brown/tan silty mud
containing a freshwater diatom assemblage similar to the gyttja below with the addition of the

brackish-marine species Paralia sulcata and small Fallacia spp.. The inclusion of these
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brackish-marine species into an otherwise diverse freshwater species-dominated context suggests
that they are allochtonous, carried in by either very high tides or by storm surges. Stable isotope
and elemental composition measurements of this gyttja yielded values that are intermediate
between the average values for known marine and freshwater/terrestrial baseline samples (Table
3, Figure 9). This suggests that the organic matter at the top of the core is composed of a mixture
of both freshwater and marine-derived materials, and was deposited under conditions similar to
those of today.

A Balanus sp. shell from the lowest instance of shell in BL#4 dates 14,970-14,190 cal.
BP (D-AMS 008752), and a Mytilus sp. shell and a Balanus sp. shell from the highest instance of
shell in BL#1 date 15,284-14,675 cal. BP (D-AMS 008751) and 14,980-14,230 cal. BP (D-AMS
009953), respectively, though marine molluscs from early postglacial times may be slightly
younger than measured if they are affected by more deep water mixing from isostatic depression
(Section 2.3, Hutchinson et al. 2004b). A bulk sample of organic-rich sediment from the lowest
instance of freshwater gyttja dates 14,833-13,738 cal. BP (UBA-29065) suggesting that the
highest tides passed below 2.4 m asl (and therefore below their current position) by this time,
although again, there may be an element of immediate-postglacial old carbon effect affecting this
age (see Sections 2.3 and 4.1).

Seeds from just below the transition from freshwater gyttja to the silty mud with apparent
marine incursions date 13,722-13,160 cal. BP (D-AMS 009952), and a twig from directly above
this transition dates 13,255-13,065 cal. BP (D-AMS 009951). The proximity of these very old
sediments to the surface indicates that the Holocene sediment sequence has been truncated in this
location.

3.1.6 Optimism Bay Cores (OB#1 and OB#2, -1.36 m asl)



455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

19

A well-sheltered bay with an extensive intertidal mudflat located north of the entrance to
Scott Inlet, about 1 km northwest of Bencke Lagoon, was given an informal name of Optimism
Bay (Figure 7). Intertidal sediment obscures any sill that may exist at the mouth of the bay, so
data point elevations are subtracted from the elevation of the beach surface at the core location (-
1.36 m asl).

Cores OB#1 and OB#2 (Figure 10) are only a few meters apart. Both contain a dark
reddish brown organic-rich layer (-5 m asl to -4.86 m asl in OB#1 and -6.36 m asl to -6.0 m asl
in OB#2) beneath several meters of intertidal or nearshore marine sand with marine shell hash.
The buried organic-rich layer contains only a few poorly preserved oligohalobous indifferent and
oligohalobous halophilic diatoms that could be allochtonous in OB#1, and no preserved diatoms
in OB#2. Stable isotope analyses of two samples from the organic-rich layer in OB#1 and four
samples in OB#2 yielded 0"°C and 0"°N values within the range values for our known
freshwater/terrestrial sediments (Table 3, Figure 9 and Figure 10). Combined with the notable
scarcity of diatoms, these results suggest that this deposit was subaerially exposed near to the
shore but without direct tidal influence, and that the deposit is a paleosol or peat.

The sediment directly above this layer contains a diverse assemblage of primarily
brackish and marine diatom species, though samples also contain between 4 and 18% freshwater
diatom species. Stable isotope values of four samples from this zone all differ from those of the
peat/paleosol, though exhibit both "°C values and C/N ratios closer to freshwater/terrestrial
samples than the rest of the marine samples that we tested (Supplementary Table 1), suggesting
some degree of mixing of organic sediments. In both cores, the diatom assemblage and stable

isotope results indicate a marine transgression over a terrestrial peat or soil; the 3-4 m of shelly
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sands above these sequences indicate a full transition to intertidal or nearshore marine
environment. There is no indication of terrestrial conditions in either of the cores again.

Eight radiocarbon dates from both cores date the sequence. A bulk sample of organic
rich-sediment from the very lowest instance of terrestrial material in OB#2 dates 14,163-13,436
cal. BP (UBA-29067), though, as with the gyttja in Bencke Lagoon, this sample may also be up
to several centuries younger if a postglacial hard water reservoir effect has affected the
carbonates in the sediment. The degree of this effect is constrained, however, by the age of the
large piece of wood several centimeters above the bottom of the terrestrial layer: 13,772-13,572
cal. BP (D-AMS 008750). A bulk sample of organic-rich sediment from before the transition
from freshwater/terrestrial conditions to the brackish diatom-dominated sediment dates 12,700-
11,823 cal. BP (UBA-29066), providing an estimate for the last time this area was above tidal
influence. In the brackish/marine sediments above the transition in both cores, four dates on plant
macrofossils (D-AMS 008747, D-AMS 008749) and shell (D-AMS 008753, D-AMS 008754) all
have calibrated age ranges between about 11,230 cal. BP and 10,700 cal. BP.

Notable amongst the diatom assemblage of the marine transgressive sediment in OB#2
was a single specimen of Didymosphenia geminata (Supplemental Figure 3), a nuisance species
once considered invasive to the Northwest Coast, though argued by Bothwell and colleagues
(2014; Taylor and Bothwell 2014) to be native to North America. This specimen is in
stratigraphically secure context and well constrained by the radiocarbon dates to between 12,000
and 11,000 years old (Figure 10), making it the oldest identified specimen in North America and
having significant implications for our understanding of the origins of this species’ presence on

the continent (Max Bothwell, personal communication, 2016).
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3.1.7 Other isolation basin cores at or around current sea level (SL#1, 2.2 m asl;
PL#1, 0.75 m asl; RA#2, 0 m asl; GLP#1, 0 m asl)

We cored four other basins at or near current sea level: Salt Lake, Russell Arm, Philip’s
Lagoon, and an unnamed lagoon east of Auriol Point (Figure 2). Cores from the latter two
contained only marine and intertidal sediment sequences and provide only limited RSL lower
constraining information (Supplemental Figures 4 and 5). Core SL#1 (Supplemental Figure 6)
from Salt Lake, an isolated body of water with a 2.2 m asl sill and a minor tidal influence,
contained laminated blue-gray clay, silt, and fine sand directly overlain by coarse sand with
marine mollusc shells that date only 2660-2345 cal. BP (D-AMS 005839). Salt Lake is currently
too high above sea level to support marine shellfish, so this date indicates that RSL was at least
high enough for this area to be fully intertidal in the later Holocene. The lower laminated
sediments in the core appear marine and suggest higher RSL earlier than the dated shell, though
they resemble glacio-marine sediment observed in other cores. If this is the case then there is a
significant erosional unconformity at the contact between these sediments and the shelly sand
above, perhaps caused by Holocene RSL fluctuations.

Salt Lake drains into Russell Arm, which has an isolation basin with a bedrock sill that is
0 m asl. The ~4 m sediment sequence sitting on bedrock in core RA#2 contained only intertidal
and marine sediment from the last 3400 years; a shell-rich sandy layer at the bottom dates 3394-
3143 cal. BP (D-AMS 005843) and 3448-3343 cal. BP (D-AMS 005842), a massive bed of shell-
free well-sorted silt rich with marine diatoms above this dates 2148-1998 cal. BP (D-AMS
005841), and an overlying shell-rich layer at the top of the sequence dates 1147-924 cal. BP (D-
AMS 005840) (Supplemental Figure 7). While minimally indicating RSL at or above 0 m asl for

the last 3400 years, there is some evidence for a slight upwards fluctuation in this sequence.
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Low-tide and subtidal sediment in the immediate area is fine gray silt, while the higher intertidal
zone (i.e. the adjacent depositional environment) has sand and shell hash pushed up by wave
action. These facies provide a modern analogue for the facies in the core, and lateral migration of
these facies in response to RSL change is suggested by their vertical succession. Therefore, the
transition from sediment rich with intertidal molluscs to well-sorted silt with marine diatoms and
then back between 3400 BP and 1150 BP suggests a slight rise and then fall in RSL. This pattern

is also suggested by late Holocene archaeological data and discussed in Section 4.1.

3.2 Paleomarine deposits in geological exposures and relict paleoshoreline landforms

Two previously identified and two newly identified paleomarine sediment beds contain
raised terminal Pleistocene-aged deposits. Marine mollusc shells exposed in marine sediment
53.6 m asl near Port Simpson, 30 km north of Prince Rupert date 14,863-14,080 cal. BP (Beta-
14465) and 14,649-14,019 cal. BP (Beta-14464) (Archer 1998; Fedje et al. 2004; 2005b). Clague
(1984, 1985; Lowdon and Blake Jr. 1979) dated a Mya truncata shell exposed at 11 m asl on the
west side of Kaien Island that produced a calibrated age of 14,211-13,569 cal. BP (GSC-2290).
We identified a terminal Pleistocene paleomarine deposit in a terrestrial ESP core from a 16 m
asl terrace on the isthmus between Russell Arm and Philip’s Lagoon; two marine shell samples
from this core dated 15,187-14,574 cal. BP (D-AMS 005852) and 15,011-14,241 cal. BP (D-
AMS 004470). Another large bed of reworked marine mollusc shells was found exposed at 3.83
m asl in the bank of Swamp Creek on the west side of Tsimpsean Peninsula. A shell from this
exposure dated 14,510-14,000 cal. BP (D-AMS 007879).

Seventeen dated samples from seven exposed paleomarine sediment deposits ranging

from -0.6 m to 9 m asl have ages ranging from 11,700 cal. BP to 9000 cal. BP. These show a



545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

23

general trend of increasing elevation with time, tracking a marine transgression above the current
sea level position in the early Holocene. Several of these samples were located within the current
tidal range but were identified tens to hundreds of meters up creeks and buried under several
meters of alluvial sediment and forest soil, indicating that these areas had once been intertidal
under higher RSL conditions, and then that a subsequent drop in RSL caused a transition to
estuarine and then terrestrial conditions (Figure 11). Several other locations contained molluscs
dead in growth position (i.e. articulated valves sitting vertically in the sediment) within the
current tidal range but above their habitat range, indicating higher sea level.

In two cases, we dated in situ butter clam (Saxidomus gigantea) specimens that provide
RSL index points because of their known habitat range relative to the tidal range (Table 1;
Carlson and Baichtal 2015:125; Foster 1991). A specimen from a shell bed containing large
senile Protothaca staminea, Clinocardium nuttalli, Tresus capax, and Saxidomus gigantea in
growth position exposed by a creek that has incised the intertidal zone in an unnamed estuary
north of Optimism Bay dated 10,250-9952 cal. BP (D-AMS 007880, Figure 7). The mean
elevation of this shell bed is 0.058 m asl, though butter clams are known to prefer living between
0.46 m above and 0.91 m below Lower Low Water Mean Tide (LLMWT, -2.528 m asl at Prince
Rupert) (Carlson and Baichtal 2015:125%; Foster 1991), or -2.07 to -3.44 m asl around Prince
Rupert. This indicates that RSL was 3.5 to 2.1 m higher when the S. gigantea were alive. An in
situ S. gigantea shell from Tea Bay Creek that dates 10,196-9901 cal. BP (D-AMS 004468) was
recovered 2.4 m asl indicates that RSL was 5.8-4.5 m higher at that time (Figure 11). Assuming a
constant tidal range through time, these estimates place highest astronomical tide (3.66 m asl,

Table 2) as high as 9.46 m asl by ~10,000 years ago.

? Carlson and Baichtal use the range -0.91 and +0.46 m above MLLW (mean lower low water), which is a US
measurement based on observed data and generally equivalent to LLMWT, a Canadian measure based on
predicted tidal levels (Canadian Hydrographic Survey, personal communication, September 28, 2015).
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In addition to these paleomarine sediments, frequent 7-10 m asl steep-sloped linear ridges
that run parallel to the modern shoreline throughout the study area are visible in LiDAR bare
earth DTMs (Figure 12). These features resemble relict backbeach berms, and their prominence
in the regional topography suggests that RSL was once stable at these positions. Archaeological
deposits associated with these paleoshorelines indicate that these features were shorelines during
the early Holocene (Section 3.3), which is consistent with the 5.8-4.5 m higher RSL indicated by

the Tea Bay Creek S. gigantea.

3.3 Archaeological Sites

Sixty-two dates from 28 archaeological habitation sites constrain RSL position during the
Holocene. Preliminary archaeological survey of flat landforms immediately above the 7-10 m asl
paleoshoreline ridges resulted in the identification of three of the oldest archaeological sites yet
recorded in the Prince Rupert area. PO11-1, on a 10-12 m asl terrace (Figure 12), contains
evidence of concentrated and repeatedly-used campfires or hearths and stone tool making dating
9304-9028 cal. BP (D-AMS 011950) and 8348-8186 cal. BP (D-AMS 011949). Two more sites
on 8-9 m asl terraces, GbTo-82 and P009-1, have small cultural shell-bearing components that
date 6728-6463 cal. BP (D-AMS 011956) and 6635-6445 cal. BP (D-AMS 011948),
respectively. A paleosol directly below the cultural component at PO09-1 provides a further 7.95
m asl upper limiting RSL point at 7170-6960 cal. BP (D-AMS 011947).

The majority of archaeological data points (#=57) come from the basal components of
large shell-bearing sites and date between 5000 cal. BP and 1000 cal. BP. These data are spread
between 3.1 m asl and 10 m asl, and in general suggest RSL close to, but slightly higher than that

of today (Figure 3).
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Several archaeological sites dating 3500-1500 cal. BP were identified on paleoshorelines
associated with higher RSL. Three previously unrecorded large shell-bearing sites (T623-1,
T717-1, T722-1) were identified 60-130 m back from the modern shoreline in LIDAR DTMs.
GcTo-28 is a similar previously recorded village 30 m back from the shoreline. These sites are
all located on 5.5-6.5 m asl terraces fronted by low-lying 3.5-4.5 m slopes toward the modern
shoreline (e.g. Figure 12). Basal dates from these sites vary from about 3500 BP to 1700 BP, but
they all appear to have been abandoned between 2000 and 1500 BP. Sandy deposits with marine
shell that we interpret to be intertidal or storm surge deposits were identified beneath the cultural
layers at three of these sites. Shells from a natural deposit 2.38 m asl and 2.92 m asl beneath
T623-1, 130 m back from the current shoreline, date 2762-2495 cal. BP (OS-119874) and 2315-
2071 cal. BP (OS-119876), respectively, while a shell from 5.36 m asl beneath T722-1, 60 m
back from the current shoreline, dates 3201-2736 cal. BP (D-AMS 007890). Taken together, the
archaeological data from the last 5000 years suggests slightly higher RSL in the late Holocene,

with some potential fluctuations, discussed in Section 4.1.

4. Discussion
4.1 Prince Rupert RSL History and the Processes Driving RSL. Change

The age-altitude relations of our dated samples and an inferred RSL curve are shown in
Figure 13. The RSL curve is the most parsimonious interpretation of the data. The calibrated
ranges of radiocarbon dates add uncertainty to the timing of inflections and potentially more
subtle nuances within the curve, especially for the terminal Pleistocene.

RSL was at least 50 m higher than at present when the area was deglaciated. Marine

sediment in Tsook Lake (49.7 m asl) demonstrates that this occurred at by least 15,090-14,365
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cal. BP (D-AMS 009956). A gradual transition from marine to freshwater diatoms between
15,090-14,365 cal. BP (D-AMS 009956) and 14,782-13,714 cal. BP (D-AMS 009955) in Tsook
lake indicates a relatively slow RSL regression between these times, though a date of 14,163-
13,436 cal. BP (UBA-29067) on the first instance of paleosol/peat -6.3 m asl at Optimism Bay
indicates very rapid isostatic uplift of the deglaciated landscape after Tsook Lake was isolated
from marine influence. This rapid RSL drop is also indicated or constrained by dates from the
paleomarine deposit near Port Simpson (53.55 m asl) and on the isthmus between Russell Arm
and Philip’s lagoon (15.9 m asl), the transition from marine to freshwater conditions Digby
Island Lake 1 (15.2 m asl), the paleomarine exposures on west Kaien Island (11 m asl) and in
Swamp Creek (3.83 m asl), and the transition from marine to freshwater conditions in Bencke
Lagoon (2.4 m asl).

There is a large degree of overlap between the date on the freshwater bulk sediment
samples from Bencke Lagoon (14,833-13,738 cal. BP, UBA-29065) and Optimism Bay (14,163-
13,436 cal. BP, UBA-29067) and the transition from marine to freshwater conditions nearly 50
meters higher at Tsook Lake (14,782-13,714 cal. BP, D-AMS 009955), which was dated using
plant macrofossils. It is likely that the bulk sample ages have been influenced by an immediate
postglacial old carbon effect (Hutchinson et al. 2004b). Even if this effect pushes the dates ahead
several centuries, these data demonstrate that around Prince Rupert the immediate postglacial
RSL drop caused by isostatic rebound likely took less than 1000 years, and as little as a few
centuries. This rapid uplift rate is in line with those observed at other near-field/glaciated areas
on the west coast of North America, particularly on the southern British Columbia coast (e.g.

Clague et al. 1982; Hutchinson et al. 2004a; James et al. 2005, 2009a; Shugar et al. 2014).
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A RSL lowstand below -6.3 m asl following initial isostatic rebound lasted for about a
2000 year interval that encompassed the Younger Dryas period (12,900-11,700 BP). This
lowstand is indicated by the transition to fully freshwater conditions in Bencke Lagoon at
14,833-13,738 cal. BP (UBA-29065) and by the buried peat/paleosol in Optimism Bay, 6.3 m
below current sea level. The extent of this lowstand below sea level is not constrained by any
lower limiting points (Figure 13), though stable isotope values for the Optimism Bay
peat/paleosol suggest very minor mixing of marine-derived organic material, suggesting that the
lowstand did not extend much below -6.3 m asl (Section 3.1.6, Table 3, Figure 9). Evidence for
the terminal Pleistocene lowstand is not apparent in the other low elevation cores from Philip’s
Lagoon (PL#1, 0.75 m asl sill) and the lagoon east of Auriol Point (GLP#1, 0 m asl sill), likely
due to the erosion of sediment from this time during the subsequent RSL transgression; erosional
unconformities are often produced by slow RSL rise (Green et al. 2014). The preservation of
lowstand sediment at Optimism Bay and Bencke Lagoon is likely attributable to fortuitous
preservation contexts. The re-introduction of marine diatoms in Bencke Lagoon at 13,255-13,065
cal. BP (D-AMS 009951, Section 3.1.5), the middle of the lowstand, may be indicative of
fluctuations during this time that are not evident within the Optimism Bay cores, irregular storm
events or very high tides, mixing of lower freshwater sediments with younger sediment during
the RSL transgression, or a laboratory error. All other radiocarbon dates suggest that RSL did not
rise up to and above the lowstand peat/paleosol until after 12,700-11,823 cal. BP (UBA-29066),
when intertidal sediments are present in both Optimism Bay cores.

A marine transgression caused RSL to rise to 6-8 m asl between 11,700 and 9000 cal. BP.
Four dates on the brackish and marine diatom-rich sediments above the Optimism Bay

peat/paleosol and seventeen dates on seven relict paleomarine deposits indicate that Optimism
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Bay was again intertidal by 11,500 BP, that RSL passed over its current position just before
11,000 BP, and that it continued upward several meters in the early Holocene. Because the
elevations of these samples are not controlled by sill elevations, and because marine mollusc
shells can be moved anywhere within or below the tidal range by waves, tides, and currents,
these data have more elevation scatter (Figure 13). This may also partly be attributable to varying
marine reservoir effects (Hutchinson et al. 2004b). We lend the most weight to the growth
position S. giganteas from the estuary north of Optimism Bay (indicating an RSL 3.5-2.1 m asl)
and from Tea Bay Creek (indicating an RSL of 5.8-4.5 m asl) for the position of the inferred
RSL curve during this transgression. The similar dates on these samples, 10,250-9952 cal. BP
(D-AMS 007880) and 10,196-9901 cal. BP (D-AMS 004468), respectively, and the 2.4 m
elevation difference between the two suggest that the transgression was rapid. It occurred earlier
and more abruptly than post-lowstand transgressions recorded on the south coast of British
Columbia. The RSL rise is likely related to a well-recorded global increase in eustatic sea level
between 11,650 and 7000 cal. BP (Smith et al. 2011), which includes a particularly rapid
increase at the termination of the Younger Dryas associated with a meltwater pulse (Glacial
Meltwater Pulse 1B) caused by dramatic warming at this time (Green et al. 2014; Liu and
Milliman 2004; Smith et al. 2011). This eustatic sea level rise outpaced isostatic rebound, even
though the now-slower isostatic crustal response continued upward.

The early Holocene is characterized by a RSL highstand, primarily constrained by
abundant 7-10 m paleoshoreline berms and newly identified archaeological sites on terraces
associated with these berms, and loosely constrained by 17 m asl upper limiting dates from the
Digby Island bogs and 0 m asl lower limiting dates from Pillsbury Cove and the lagoon east of

Auriol point. The Tea Bay Creek S. giganteas indicate that RSL rose to at least 5.8-4.5 m above
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its current position by 10,196-9901 cal. BP (D-AMS 004468). Taking into account a high tide of
up to 3.66 m above this (Table 2), the 9000-8000 BP archaeological remains 10-12 m asl at
PO11-1 suggest that RSL may have continued rising another 1 or 2 meters by that time. Taking
into account the 6500 cal. BP archaeological remains from 8-9 m asl terraces at GbTo-82 and
P009-1, these data suggest that RSL reached 6-8 m asl by 9000 years ago and remained
relatively stable above its current position for the duration of the early Holocene, dropping only a
couple of meters by 6500 cal. BP. This contradicts earlier RSL reconstructions for the area that
inferred that RSL was below its current position between 10,000 and 5700 cal. BP (see Section
1.3; Clague 1984, 1985; Clague et al. 1982; Eldridge and Parker 2007).

RSL dropped to within a few meters of its current position after 6500 cal. BP and
continued dropping slowly, albeit with some potential fluctuations. This may have been driven
by continuing slower isostatic crustal response overtaking the slowing post-glacial eustatic sea
level rise, the latter of which completed around 6000 BP. The last 6000 years are primarily
constrained by basal dates on archaeological sites that display a wide degree of scatter. There are
no lower limiting data between 7525-7225 cal. BP (Beta-221626, Pillsbury Cove) and 3448-3343
cal. BP (D-AMS 005842, Russell Arm). There is only a single data point between just after 6500
BP and 5000 BP: a basal date of 6006-5733 cal. BP (OS-101646) from site G¢cTo-6 at 4.18 m asl
suggests that RSL continued to fall from the early Holocene highstand, perhaps at a slightly
increased rate. The data from 5000 cal. BP onward can be interpreted in several ways, depending
on the weight attributed to specific indicators. Figure 14 presents two options, a more
conservative general pattern of slow RSL regression that smooths out potential noise in the data,
and a second option that attempts to fit all the data so that the lowest basal archaeological dates

are close to or above a 2.32 m HHWMT and all lower limiting dates above RSL are at least
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704  within the relative tidal range. The latter is an exaggerated curve, but illustrates the maximum
705 inflections from known data. Between 5000 and 3200 cal. BP the majority of archaeological
706  basal dates are 5-6 m asl but show a subtle overall decrease in elevation until 3000 cal. BP, at
707  which time three different sites (GbTo-4, GbTo-24, GbTo-64) have dated basal samples at or
708  below modern HAT. This suggests a continued fall, but that RSL was still 1.5-2.5 m higher than
709 its current position during this period.

710 The period between 3200 cal. BP and 1600 cal. BP has the largest vertical spread of data
711 (Figure 14). An increase in the overall range of basal elevations during this time indicates that
712 people are initiating settlements on higher ground. There is a slight increase in elevations of the
713  lowest basal archaeological dates in the middle of this age range compared to those immediately
714  preceding and following. The four large shell-bearing sites identified on 5.5-6.5 m terraces 60-
715 130 m back from the modern shoreline (GcTo-28, T623-1, T717-1, T722-1) are all occupied
716  during this time and are all abandoned between 2000 and 1500 years ago. There are five lower
717  limiting data points that suggest higher RSL between 3000 and 2000 years ago from stranded
718  paleomarine deposits beneath archaeological sites GecTo-52, T623-1, and T722-1, and from the
719  Salt Lake Core. The facies sequence in the Russell Arm core also suggest a slight RSL rise

720  sometime between 3394-3143 cal. BP (D-AMS 005843) and 1147-924 cal. BP (D-AMS

721 005840).

722 Minimally, these data indicate that RSL continued to be several meters higher into the
723  late Holocene (Figure 14, dotted line), though, depending on how much weight is put on the

724  correlation between archaeological basal dates and RSL changes, they could be suggestive of a
725  modest RSL dip and then rise (~1-2 m) around 3200 cal. BP before ultimately falling to very

726  close to its current position between 2000 and 1500 years ago (Figure 14, dashed line). The
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overall trend of slow RSL fall from the early Holocene highstand is likely attributed to the final
influence of isostatic crustal rebound in the region. More data is required to test possible subtle
late Holocene RSL fluctuations and their driving mechanisms, though they may be associated
with climate fluctuations or neoglacial periods in the Coast Mountains (i.e. Clague and
Mathewes 1996; Desloges and Ryder 1990; Lamoureux and Cockburn 2005).

Most recently, historical tidal records from 1937-2000 indicate that RSL is rising in
Prince Rupert Harbour by a rate of 1.72+/-0.06 mm/yr, and that this is a result primarily of global
eustatic sea level rise and a very slight (possibly zero) local subsidence rate of 0.7+/-1.0 mm/yr
(Larsen et al. 2003; see also James et al. 2014 for similar calculations). The measured eustatic
sea level rise over the last century is likely partly attributable to anthropogenically accelerated
global warming. The effects of this recent RSL rise are visible on actively eroding archaeological

sites throughout the area.

4.2 Significance for Regional Studies

4.2.1 Regional Glacial and RSL Histories

This research highlights spatial variation in the timing of RSL changes not previously
anticipated in the study area, particularly immediately after deglaciation. A tightly dated
transition from marine conditions to freshwater conditions in the Rifle Range Lake 1 core RR1#2
suggests that RSL passed below 35 m asl between 14,090-13,458 cal. BP (D-AMS 008741) and
14,055-13,345 cal. BP (D-AMS 008740), but at the same time, samples from cores in Bencke
Lagoon and Optimism Bay indicate that RSL was below its current position in those locations.
One explanation for this discrepancy is a time-transgressive lag in isostatic rebound mediated by

the position of eastward-retreating ice sheets. Rifle Range Lake is 12 km east-southeast of
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Optimism Bay, in a glacially carved channel on the fringe of the transition from the Hecate
Lowlands to the Coast Mountain Range (Figure 2). Ice sheet cover may have been thicker at
Rifle Range Lake 1, and may have melted slightly later than the western edge of the study area,
causing a lag of several hundred years before this area experienced full isostatic uplift. This
implies at least 3.1 m/km of crustal tilt at this ice margin, a high value that suggests a thin
lithosphere in this area (see James et al. 2000 for a discussion of the relationship between crustal
tilt and lithosphere thickness at the northern Cascadia subduction zone).

The pattern holds for radiocarbon dated barnacle shells found in growth position 30 m asl
near the mouth of Khyex River entering the Skeena River, a further 30 km east of Rifle Range
Lake 1. Two samples from this location both date about 12,700-12,200 cal. BP (Blackwell et al.
2010), indicating that RSL was still well above its current position here during its lowstand
around Prince Rupert. Finally, another 80 km east of Khyex River, the Kitsumkalum-Kitimat
Trough south of Terrace was not deglaciated until at least 11,500 BP (Clague 1984, 1985), and
RSL dropped rapidly because of isostatic uplift there at the same time as the RSL transgression
was taking place at Prince Rupert.

Clearly, RSL position at single points in time can vary greatly with short distances
depending on glacial loading, particularly on axes perpendicular to continental margins. As a
result, RSL data may need to be gathered and compiled from relatively spatially limited areas,
particularly if it is being used for guiding archaeological surveys for terminal Pleistocene
material. Furthermore, compiling multiple RSL histories for more discrete spatial units has the
potential to contribute to more robust glacial-isostatic modelling of coastal British Columbia
(Hetherington et al. 2003, 2004; Hetherington and Barrie 2004), such as that conducted by James

and colleagues (2009b) for the northern Cascadia subduction zone.
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4.2.2 Implications for Early Human Occupation and Archaeological Survey
Understanding the history of RSL change in the Prince Rupert area is critical for
developing surveys for terminal Pleistocene and early Holocene archaeological sites in the area,

as well as for understanding the impact of RSL change on the archaeological record.
Furthermore, the archaeological potential of paleoshorelines away from the current shoreline has
important implications for heritage conservation in and around Prince Rupert Harbour, a major
port and hub of industrial development. Detailed archaeological impact assessments that include
potential paleoshoreline locations above and below current sea level that may be impacted by
future development will help to mitigate the potential destruction of early archaeological sites.
Support for a coastal migration route for the first peopling of the Americas is gaining
traction (Dixon 2013; Dixon and Monteleone 2014; Fedje and Mathewes 2005; Fedje et al. 2011;
Mackie et al. 2011; Mandryk et al. 2001), and there is now evidence for people having lived on
the BC coast as early as 13,500 cal. BP near Calvert Island, 350 km south of Prince Rupert
(McLaren et al. 2015). Elsewhere on the Northwest Coast, Late Pleistocene and early Holocene
sites are being identified with increasing frequency on paleoshorelines, though very few early
sites are recorded on or near the mainland, especially on the northern Northwest Coast (Mackie
et al. 2011). The paucity of very early sites on the inner coast may be related to a lag in
deglaciation time as well as more extreme isostatic adjustments, but our data indicates that the
Prince Rupert area was deglaciated and supporting edible marine molluscs by at least 15,090-
14,365 cal. BP (D-AMS 009956), was vegetated shortly after, and had completed its most
dramatic period of shoreline change by 14,000-13,500 years ago. We suggest that the study area

was amenable to human occupation by at least this time; the presence of humans 350 km south
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on Calvert Island by 13,500 BP means that it is reasonable to hypothesize contemporaneous
human occupation of the Prince Rupert area.

Our data suggest that archaeological evidence of habitation around Prince Rupert
immediately after deglaciation is likely to be thinly scattered between 50 m asl and current sea
level, and from between 13,500 and 11,000 years ago is likely to be below current sea level,
potentially buried beneath several meters of intertidal sediment. Furthermore, preservation in
well-sheltered areas like Optimism Bay is likely to be excellent, whereas other archaeological
material may have eroded away during the marine transgression after the Younger Dryas.

Early Holocene archaeological sites will be stranded on raised terraces above a high tide
line that was minimally 8 m asl. PO11-1 is the earliest currently recorded radiocarbon dated
archaeological site on the inner northern coast of British Columbia, though an abundance of
terraces associated with the 7-10 m paleoshoreline ridges visible in LIDAR DTM:s of the study
area suggests a high potential for more early Holocene sites. The refined RSL curve provides an
important tool for archaeologists working in the region, and will be necessary for exploring the
possibilities for early human dispersals through northern British Columbia, as well as developing
an understanding of early- and mid-Holocene occupation, which was until now unknown for the

Prince Rupert area.

5. Conclusion

This paper describes RSL history around Prince Rupert since deglaciation, constrained by
123 RSL index and limiting points gathered from Livingstone sediment cores, geological
surveys, and archaeological investigations. The area was deglaciated sometime before 15,090-

14,365 cal. BP (D-AMS 009956), after which there was a rapid RSL drop from at least 50 m asl
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to at least -6.3 m asl between 14,500 BP and 13,500 BP in as little as a few centuries. After a
lowstand below current sea level for about 2000 years during the terminal Pleistocene, RSL rose
again to at least 6 m asl - and as high as 8 m asl - after the Younger Dryas. RSL slowly dropped
towards its current position through the Holocene, though it appears to have remained 1-3 m
higher until between 2000 and 1500 years ago. There is equivocal evidence for slight
fluctuations on the order of several meters between 3200 and 1500 BP. By collecting a large
dataset over a relatively small geographical area we are able to distinguish variable RSL histories
across relatively short distances. This detailed dataset contributes to a refined understanding of
glacio-isostatic dynamics in the region. We identify what is currently the earliest dated
archaeological site on the inner northern BC coast, a small 8000-9000 year old campsite on a 10-
12 m asl terrace, though we suggest that the study area could have been inhabited by humans by
at least 14,500-13,500 years ago, when we have the first dated evidence for vegetation of the
landscape. The new inferred RSL curve for Prince Rupert indicates the probable elevations of
early human settlement in the region at different times and gives potential targets for future

research.
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Table 1 - Data Point Types

Indicator Sample Indicative Indicative Reference Explanation
Type Meaning Range for Water Level
Database for Database
Index Points
Transitional Basin sill is either HAT to MTL (HAT + MTL)/2 | Conservatively assumes
(mixed fresh and nearly below high that the dated sample
brackish/marine) tide influence represents the time at
diatom (dropping RSL) or which the sill of the basin
assemblage in just being was between mean tide
isolation basin inundated by high level and the highest
sediments tides (rising RSL) astronomical tide level and
was on the verge of being
isolated/inundated.
Growth position Sediment from LLWMT +46 ((LLWMT+46 Modification of a method
butter clam which the cm to LLWMT | cm) + used by Carlson and
(Saxidomus specimen was -91cm (LLWMT-91 Baichtal (2015) for
gigantea) shells taken was within cm))/2 estimating RSL based on

the habitat
elevation range of
S. gigantea when
the specimen was
alive

the known growth range of
S. gigantea (Foster 1991).
Calculates the elevation
range relative to tidal
position within which the
specimen could have lived.

Limiting Points

Indicative Meaning

Marine shells in
sediment, not in
growth position

Sediment with shell is from within or below the tidal range.

Only Sediment was deposited in coastal/marine setting, or, in the case of isolation basin
brackish/marine sediments, when the sill was below lowest tide level.

diatoms in

sediments

Only freshwater Sediment was deposited in fully freshwater setting, or, in the case of isolation
diatoms in basin sediments, when the sill was above highest tide level.

sediments

Terrestrial Sediment was formed/deposited above high tide.

peat/paleosol

Archaeological site
with remains of
habitation (shell
midden, charcoal
concentrations,
architectural
features)

Lowest instance of archaeological material was deposited above high tide.

Table 1. RSL data point types used in the present study and descriptions of indicative meanings.




Table 2 - Tidal Parameters

Tidal Parameter

Abbreviation

Definition

Measurement
above Chart
Datum (m CD)

Equivalent
elevation
relative to
geodetic mean
sea level (m asl;

used in this
study)
Highest Astronomical HAT Highest tide on an 7.514 3.664
Tide 18.6 year cycle.
Higher High Water Large | HHWLT The average of the 7.407 3.557
Tide highest high waters,
one from each of 19
years of predictions.
Higher High Water Mean | HHWMT The average fromall | 6.17 2.32
Tide the higher high
waters from 19 years
of predictions.
High Water Mean Tide HWMT The average of the 5.897 2.047
high water levels.
Mean Water Level MWL The average of all 3.849 0
hourly water levels
over the available
period of record.
Mean Tide Level MTL The average of 3.8485 0
HWMT and LWMT.
Low Water Mean Tide LWMT The average of the 1.8 -2.05
low water levels.
Lower Low Water Mean LLWMT The average of all 1.322 -2.528
Tide the lower low waters
from 19 years of
predictions.
Lower Low Water Large | LLWLT The average of the 0.006 -3.844
Tide lowest low waters,
one from each of 19
years of predictions.
Lowest Astronomical LAT Lowest tide on an -0.125 -3.975

Tide

18.6 year cycle.

Table 2. Tidal Parameters and their definitions for Canadian Hydrographic Survey Benchmark Station

9354, predicted over 19 years, start year 2010 (Canadian Hydrographic Survey, personal communication,

September 28, 2015). Note that MWL and MTL are essentially the same and are equal to 0 m asl. Note

that in Canada, tidal parameters are calculated based on predicted tides, whereas in the USA tidal

parameters are calculated based on observed data.
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Figure 7 Scott Inlet Area
Click here to download high resolution image

Creek Shell Exposure #1 (E)
Elevation 1 58 m asl

Otiism ay iOé)
Elevation: -1.36 m asl o

Bencke Lagoon (BL)
SI" Elevatmn 2 4 m asl
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Figure 9 Stable Isotope Plot
Click here to download high resolution image
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Table and Figure Captions

Table Captions:
Table 1: RSL data point types used in the present study and descriptions of indicative meanings.

Table 2: Tidal Parameters and their definitions for Canadian Hydrographic Survey Benchmark
Station 9354, predicted over 19 years, start year 2010 (Canadian Hydrographic Survey, personal
communication, September 28, 2015). Note that MWL and MTL are essentially the same and are
equal to 0 m asl. Note that in Canada, tidal parameters are calculated based on predicted tides,
whereas in the USA tidal parameters are calculated based on observed data.

Table 3. Stable carbon (4'°C) and nitrogen (9'°N) isotope compositions and elemental carbon-to-
nitrogen (C/N) ratios of known marine sediments and known freshwater sediments from the
study area. Bencke Lagoon sample and Optimism Bay samples were of unknown environmental
salinity origin and tested against the knowns. Bencke Lagoon is intermediate between fresh and
marine values (though closer to freshwater) and suggests a mixture of inputs. Optimism Bay
samples fall within the range of known freshwater samples.

Table 4: Radiocarbon dates for RSL Index and Limiting Points used to constrain the Prince
Rupert Harbour area RSL curve. Map ID letters and numbers refer to locations on Figure 2.

Table 5. Detailed list of most common or key diatoms observed in Livingstone Core Samples.
Salinity Class (1=halophobic, 2=oligohalobous indifferent, 3=oligohalobous halophilic,
4=mesohalobous, 5=polyhalobous) and percent of total sample assemblage given in parentheses
after each species name.

Figure Captions:

Figure 1: Northern coast of British Columbia with study area highlighted. RSL curves for
locations across a west-east transect are shown (modified from Shugar et al. 2014), including the
previously hypothesized curve for the Prince Rupert Harbour area. Modern communities are
indicated by black dots.

Figure 2: Study area and location of data points used to reconstruct the Prince Rupert Harbour
area RSL history. Letter and number codes correspond to data points in Table 4 and Figure 3.
For Livingstone Sediment Cores, TL=Tsook Lake, OB=Optimism Bay, BL=Bencke Lagoon,
NDB=North Digby Bog 1, DL=Digby Island Lake 1, DIB=Digby Island Bog 1, GLP=Auriol
Point Lagoon, PL=Philip’s Lagoon, SL=Salt Lake, RA=Russell Arm, RR=Rifle Range Lake 1.
For Geological Exposures, A=Swamp Creek, B=Tea Bay Creek, C=estuary north of Optimism
Bay, D=shell exposure in creek north of Bencke Lagoon #2, E=shell exposure in creek north of
Bencke Lagoon #1, F=Russell Arm/Philip’s Lagoon Isthmus, G=Melville Arm, H=McNichol
Creek, [=Northwest Digby Island near GbTo-82, J=Pillsbury Cove Lagoon, K=West Kaien
Island. For numbered archaeological sites, Borden Numbers or other identifying numbers are in
Table 4.



Figure 3: Age-Altitude Plot of all limiting and index points used in this study. Letter and number
labels correspond with data point site locations in Figure 2 and data point details in Table 4.
Time ranges for data points indicate 2-sigma calibrated ranges, the elevation of these ranges is
set at paleo-mean sea level for Index Points, and actual measured elevations for limiting points.
Vertical lines indicate 95% confidence ranges for vertical error, and they cross the age range at
the median age of each data point.

Figure 4: Tsook Lake Core TL#1 log, photo, and diatom analysis results. Diatom species
comprising 7% or greater of the total assemblage of any given sample are shown on the
expanded bar graph.

Figure 5: Rifle Range Lake core RR1#1 log, photo, and diatom analysis results. Diatom species
comprising 8% or greater of the total assemblage of any given sample are shown on the
expanded bar graph.

Figure 6: Digby Island Lake 1 core DL1#1 log, photo, and diatom analysis results. Diatom
species comprising 10% or greater of the total assemblage of any given sample are shown on the
expanded bar graph.

Figure 7: Orthophoto of a section of northern Venn Pass, showing Bencke Lagoon, Scott Inlet,
and Optimism Bay. Note the extensive sand and mudflats exposed at low tide. Livingstone core
locations are indicated by yellow circles, paleomarine sediment exposures indicated by yellow
squares. Letters in parentheses correspond with test locations in Figure 2.

Figure 8: Upper section of Bencke Lagoon core BL#1 log, photo, and diatom analysis results.
Diatom species comprising 5% or greater of the total assemblage of any given sample are shown
on the expanded bar graph.

Figure 9A: Plot of o%C vs Cora/NrotaL for known marine sediment samples (blue diamonds),
known terrestrial samples (green diamonds), a sample of organic-rich sediment from the upper
layer in core BL#1 (yellow triangle), and samples from the organic-rich layer at the bottom of
cores OB#1 and OB#2 (red triangles). 9B: Plot of 6"°C vs 6"°N values for the same samples.
There are slightly fewer marine samples represented because not all of these samples yielded
reliable "N values.

Figure 10: Optimism Bay Cores OB#1 and OB#2 logs, photos, and stable isotope analysis
sample locations (coloured squares).

Figure 11: Orthophoto of the location of Tea Bay Creek paleomarine exposure and photograph
the profile, showing sequence from marine conditions to high intertidal/salt marsh to
alluvial/estuarine conditions to the current forest soil buildup.



Figure 12: Left: LiDAR-derived slope-classified map of a portion of northwest Digby Island
showing inland linear ridges that like represent stranded paleoshorelines. GbTo-64 is an
archaeological site located on the modern shoreline. T717-1 is an archaeological site on a 5-7 m
asl terrace dating with dates from ~3500 cal. BP to ~2000 cal. BP, associated with slightly higher
RSL in the latter half of the Holocene. PO11-1 is an archaeological site on a 10-12 m asl terrace
from the early Holocene RSL high stand. Solid black line is the modern shoreline; light gray
shading indicates ‘flooding’ to 7 m asl for reference. Intensifying colours indicate increasing
slope. Right: LiDAR-derived hillshaded DEM of the same area.

Figure 13. Plot of all data points and the preferred RSL curve for the Prince Rupert Harbour
region. Time ranges for data points indicate 2-sigma calibrated ranges, the elevation of these
ranges is set at paleo-mean sea level for Index Points, and actual measured elevations for limiting
points. Vertical lines indicate 95% confidence ranges for vertical error, and they cross the age
range at the median age of each data point. Our preferred inferred RSL curve is indicated by the
solid (well constrained sections) and dashed (loosely constrained sections) line.

Figure 14: Plot of all data points from the last 5000 years, and two potential RSL interpretations.
The dotted line is a conservative general trend of regressing RSL that smooths out potential noise
in the data while keeping most of the lowest basal archaeological data points above HHWMT
(2.32 m above RSL). The dashed line attempts to fit all the data at 250 year intervals in a way
that the lowest basal archaeological dates are close to or above a 2.32 m HHWMT and all lower
limiting dates above RSL are at least within the relative tidal range. Time ranges for data points
indicate 2-sigma calibrated ranges. Vertical lines indicate 95% confidence ranges for vertical
error, and they cross the age range at the median age of each data point.



*Highlights (for review)

Highlights

123 data points constrain 15,000 year sea level history around Prince Rupert.
Sea level position varies from >50 m asl to <-6.3 m asl after deglaciation.
Variation in relative sea level change exists over relatively short distances.
Sea level history helps identify early Holocene archaeological sites.

The oldest archaeological site recorded in area (9000 cal. BP) is identified.
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