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ABSTRACT: 

Accuracy assessment of forest type maps is essential to evaluate the classification of forest ecosystems quantitatively. However, map 
users do not understand in which regions those forest types are well classified from conventional static accuracy measures. Hence, the 
objective of this study is to unveil spatial heterogeneities of accuracies of forest type classification in a map. Four forest types 
(deciduous broadleaf forest (DBF), deciduous needleleaf forest (DNF), evergreen broadleaf forest (EBF), and evergreen needleleaf 
forest (ENF)) found in the JAXA’s land use / cover map of Japan were assessed by a volunteered Site-based dataset for Assessment of 
Changing LAnd cover by JAXA (SACLAJ). A geographically weighted (GW) correspondence matrix was applied to them to calculate 
the degree of overall agreements of forest type classes (forest overall accuracy), and the degree of accuracy for each forest class (forest 
user’s and producer’s accuracies) in a spatially varying way. This study compared spatial surfaces of these measures with static ones 
of them. The results show that the forest overall accuracy of the forest map tends to be relatively more accurate in the central Japan, 
while less in the Kansai and Chubu regions and the northern edge of Hokkaido. Static forest user’s accuracy measures for DBF, DNF, 
and ENF are better than forest producer’s accuracy ones, while the GW approach tells us such characteristics vary spatially and some 
areas have opposite trends. This kind of spatial accuracy assessment provides a more informative description of the accuracy than the 
simple use of conventional accuracy measures.  
 
 

1. INTRODUCTION 

Land cover (LC) maps describe the Earth’s terrestrial surface, 
encompassing all attributes of the biosphere (International Panel 
on Climate Change, 2000). LC is a major part of the Earth system 
which physically interacts with climate, topography, human 
impacts, and their complex interactions. Remotely sensed (RS) 
imagery, is often used to produce thematic LC maps aiming to 
understand wide ranges of terrestrial environments from the 
properties of the land cover itself such as the forest / non-forest 
classification (Hansen et al., 2013; Shimada et al., 2014), the 
urban extent (Schneider et al., 2009), the cropland distribution 
(Xiong et al., 2017) to the application of biodiversity estimation 
(Tuanmu and Jetz, 2014), carbon stock estimation (Rodríguez-
Veiga et al., 2017), and potential ecosystem services assessment 
(Andrew et al., 2014). It is hence important to make an accurate 
LC classification map for high-quality quantification of these 
properties. 
 
The classification of plant functional types (PFTs) is one of the 
main and most challenging tasks toward accurate LC mapping. 
PFT mapping can be considered as a land cover classification in 
which plants are grouped with regard to their physiology and 
physiognomy (Moncrieff et al., 2016). In Japan, the forest type 
classification (i.e. deciduous broadleaf forest (DBF), deciduous 
needleleaf forest (DNF), evergreen needleleaf forest (ENF), and 

evergreen needleleaf forest (ENF)) is required for multiple 
purposes, as the tree cover rate is reported as approximately 
68.5% of the entire of the territory (The World Bank, 2018). 
However, the accurate classification in the four forest types from 
RS data has not yet been achieved. Due to the similarity of 
spectral characteristics captured by satellite sensors, even the 
separability between Evergreen and Broadleaf forest types is 
difficult (Sharma et al., 2016). 
 
Some LC products are available to classify PFT-based forest 
types in Japan. MODerate resolution Imaging Spectroradiometer 
(MODIS) Land Cover Type Products (MCD12Q1) (Friedl et al., 
2010) has a 500 m spatial resolution with the world standard 
international geosphere-biosphere programme (IGBP) LC class 
definition and the 12 PFT classification scheme. Climate Change 
Initiative (CCI) LC data set developed by the European Space 
Agency (ESA) describes LC by 22 thematic classes at 300 m 
spatial resolution at a global scale (Bontemps et al., 2013). The 
Ministry of Environment Japan investigates detailed PFTs in 
Japan by the combination of field survey and RS image analyses 
and publishes a 1 km resolution grid map (Biodiversity Center of 
Japan, 2018). These well-known products are coarse and may 
stem the mixed pixel problem: pixels will typically contain a mix 
of LC classes and the propensity for this is greater with medium 
and coarse spatial resolution data, as every pixel represents the 
dominant category and neglect the presence of others, resulting 
in the failure of accurate representations of LC due to the coarse 
pixel size (Fisher and Pathirana, 1990).  Recently, the Japan *  Corresponding author 
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Aerospace Exploration Agency (JAXA) has developed and 
published a High-Resolution Land Use and Land Cover 
(HRLULC) map (version 18.03) with 10 thematic classes at the 
spatial resolution of 30 m for the whole Japan territory (JAXA, 
2018) and is expected to overcome such issue. 
 
It is important for users to know how accurate the LC 
classification map is. Incorrect conclusions or decisions may be 
derived from the map if mis-classification in the map is neglected 
(Daly, 2006). The accuracy assessment provides a guide to the 
quality of the data and their reliability (Foody, 2002). The 
accuracy of the classification map is usually reported using a 
reference (ground-truthing) sample. A confusion matrix, which 
is a cross-tabulation of classification and reference sample 
categories, is built to report measures of overall, user’s, and 
producer’s accuracy (Congalton, 1991, Tsutsumida et al, 2016). 
Although these accuracy measures are utilized in order to report 
the degree of correspondence of the classification against a 
reference sample, they are averaged summaries of the 
correspondence, meaning that spatial variation of accuracy is not 
taken into account. Spatial heterogeneity of the accuracy may 
exist especially when the classification model does not consider 
spatial configuration of data. The knowledge of such spatial 
variations of accuracy is required to inspect the map not only for 
understandings of the spatial distribution of forest types 
accurately, but also for minimizing error propagation when we 
analyze this map for further applications. Previous studies have 
demonstrated a means to represent spatial heterogeneity of 
accuracy for categorical raster data (Comber et al., 2012, 2017; 
Comber, 2013; Congalton, 1988; Foody, 2005). They focused on 
spatial dependency and / or non-stationarity of accuracy 
measures which are often found in RS-based LC classification 
map. Specifically, Comber et al. (2017) proposed a 
geographically weighted (GW) correspondence matrix which is 
able to build a local correspondence matrix with a spatially 
weighted pairwise of classification and reference sample data. 
The GW uses a distance-decayed moving window or kernel over 
space to calculate any types of models and statistical measures 
(Gollini et al., 2015; Lu et al., 2014). 
 
Hence, the objective of this study is to unveil spatial 
heterogeneities of accuracies for four forest type classes in a LC 
classification map. We use the JAXA’s HRLULC map of Japan 
for the case study. In order to validate estimated classes in the 
map against the actual land cover situation, we used a ground 
truth reference data set, called site-based dataset for assessment 
of changing land cover by JAXA (SACLAJ). A GW 
correspondence matrix was applied to these data sets to analyze 
the degree of overall agreements of forest type classes and the 
degree of accuracy for each forest class in a spatially varying 
way. This allows to map spatial heterogeneities of such degrees 
over space, hidden in conventional accuracy measures. Results 
provide us insightful information for the usefulness of the 
JAXA’s HRLULC map with special attention to local accuracies 
of forest types against the actual land covers.  
 

2. MATERIALS 

2.1 JAXA’s High-Resolution Land Use and Land Cover map 
(HRLULC map) 

The JAXA’a HRLULC map version 18.03 at the 30 m spatial 
resolution is used shown in Figure 1 (JAXA, 2018). This data 
describes LC in the entire territory of Japan during the period 
2014-2016 with 10 thematic classes: water; urban; rice paddy; 
crop; grass; DBF; DNF; EBF; ENF; and bareland. This product 
uses multiple geospatial data sets for inputs such as Landsat 8, 

digital elevation model provided by Geospatial Information 
Authority of Japan, ALOS-2/PALSAR-2, Sumoi National Polar-
orbiting Partnership (NPP), road geospatial data in 
OpenStreetMap, and ground truth sampling data in SACLAJ 
(details below). A kernel density estimation in a Bayesian 
inference was applied to obtain the class posterior probability and 
produce the JAXA’a HRLULC map (Hashimoto et al., 2014). 

 
Figure 1. JAXA’s land use land cover map. 
 
2.2 SACLAJ 

3,014 reference sample points in SACLAJ are used for validation 
in this study. Such sample points are randomly distributed across 
the entire territory of Japan and are captured during the period 
2014-2016, which is the same as the target period of the JAXA 
HRLULC map. Approximately 300 data points are allocated in 
each class category of which definition is the same as the one in 
the JAXA’s HRLULC map. Scientists and engineers who visited 
field sites took geo-referenced pictures on the ground and 
interpreted them into one of the land cover categories (Nagai et 
al., accepted; Tadono et al., 2014). Such labels are also confirmed 
by very fine spatial resolution satellite images in geospatial 
visualization tools such as Google Earth. Since 2013, more than 
50,000 data points with information on date, LC category, 
location, and size of the LC, have been recorded across Japan and 
all over the world. 
 

3. METHODS 

3.1 Correspondence matrix 

For the purpose of the accuracy assessment of a classification 
map, it is common to build a correspondence matrix between the 
classified and reference values and to calculate some accuracy 
measures. At 𝑙th point in total 𝐿 sample points considered, a pair 
of the classified class (𝑐$) and the reference class (𝑟$) is obtained. 
A correspondence matrix (𝑀) is built so that rows represents 
classified data, and columns represent reference data, and the 
number of correspondence pairs between 𝑐$  and 𝑟$ 
corresponding to the class 𝑖 in the sample is stored at the 𝑖th row 
and 𝑖th column in the 𝑀. Similarly, the number of pairs between 
𝑐$ corresponding to the class 𝑖 and 𝑟$ corresponding to the class 𝑗 
in the sample is stored at the 𝑖th rows and the 𝑗th columns in the 
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𝑀. Thus, the element 𝑚*+  of the 𝑀 at the 𝑖th row and the 𝑗th 
column is: 
 

𝑚*+ = 𝛴$./0 𝑎*+($),

𝑎*+($) = 51  if	𝑐$ = 𝑖	and	𝑟$ = 𝑗,
0  otherwise     (1)

 

 
where 𝑎*+($)  is a binary response whether the pair of the 
classification class 𝑐$  and the reference data 𝑟$  at the 𝑙 th of 𝐿 
sample points are the class 𝑖 and the class 𝑗, respectively, or not. 
It is noted that a coordination (𝑢$, 𝑣$) at the 𝑙th sample point is 
not considered in the 𝑚*+. In this way, 𝑀 represents a summary 
of the degree of agreement and disagreement among classes. 
 
Generally, accuracy measures are calculated from the matrix 𝑀 
to assess classification maps and to tell data users how the degree 
the correspondence between classified and reference class at the 
sample points is accurate. The overall accuracy describes the 
proportion of the number of pairs having the same class in the 
classified and reference data for all classes in total. User’s and 
producer’s accuracies are also often reported to represent how the 
degree the classification is accurate at a class level. User’s 
accuracy describes the proportion of the number of classified 
class at sample points that actually corresponds to the reference 
class, whereas producer’s accuracy is the proportion of the 
number of reference class at sample points that correctly 
corresponds to the classified class. 
 
In this study, we would like to know how much correctly forest 
types are classified into four forest classes. We extend the 
concept of overall, user’s and producer’s accuracy measures to 
focus only on forest related classes. We define forest overall, 
forest user’s and forest producer’s accuracies as: 
 

𝐹𝑂 =
𝛴*.JK
JL 𝑚**

𝛴*.JK
JL 𝛴+.JK

JL 𝑚*+
       (2) 

 
𝐹𝑈* =

𝑚**

𝛴JK
JL𝑚*O

         (3) 

 
𝐹𝑃* =

𝑚**

𝛴JK
JL𝑚O*

         (4) 

 
where 𝐹𝑂 is forest overall accuracy, and 𝐹𝑈* and 𝐹𝑃* are forest 
user’s and producer’s accuracies of the class 𝑖 ∈ 𝑓/, . . . , 𝑓V , 
respectively. Here the 𝑓V is the 𝑛th forest class and in this study, 
𝑛 =  4. 𝛴JK

JL𝑚*O  denotes the marginal sum of 𝑚  for the 
classification class 𝑖 in 𝑛 forest classes, and 𝛴JK

JL𝑚O* denotes the 
marginal sum of 𝑚 for the reference class 𝑖 in 𝑛 forest classes. 
 
These measures are averaged values with different aspects of 
map accuracy. Although the result is represented by a ‘value’ 
which describes how much degrees the overall agreement rate 
between the classified and the reference class, the classified class 
corresponds to the one in the reference class, or the reference 
class corresponds to the one in the classified class, these 
measures do not consider any spatial configurations in the sample 
points. There have been argued that they only function when 
errors are assumed to be spatial homogeneous, while the error in 
the classification map often represents spatial heterogeneity 
(Comber et al., 2017; Comber, 2013; Foody, 2005; Tsutsumida 
and Comber, 2015; Tsutsumida et al., 2019). It is important to 
tackle with this issue. 

 
3.2 Geographically weighted correspondence matrix 

A GW correspondence matrix has been introduced by Brunsdon 
et al. (2016) and Comber et al. (2017). It builds locally weighted 
correspondence matrix at each location by a moving-window 
distance-decayed kernel. Again, we consider the equation (1) but 
deal with the spatial structure of the sample points by applying 
GW framework. Here at the location 𝑘 on a grid with the spatial 
resolution of 𝑟 covered in the study area and 𝜔Z is a bisquared 
kernel defined as: 

𝜔Z = [\1 − ^
𝑑Z
𝑏 a

b

c
b

 if	|𝑑Z| < 𝑏,

0  otherwise
   (5) 

 
where 𝑏 is the bandwidth size, which is arbitrary determined. 
Larger 𝑏 tends to describe more spatial homogeneity (stationary) 
closer to the global (conventional) measures of accuracy. The 
total number of grids 𝐾 is determined by the spatial resolution 𝑟 
in the study area. The weighted element 𝑚*+ of the local matrix 
𝑀Z at the location 𝑘 is now replaced by the 𝜌*+(Z): 
 

𝜌*+(Z) = 𝛴Z./i 𝜔Z𝑎*+(Z)         (6) 
 
Sample points found within the distance 𝑏 from the location 𝑘 
are only used for the calculation of the GW correspondence 
matrix. As this way, at location 𝑘 , the GW forest overall 
(𝐺𝑊𝐹𝑂(Z)), and GW forest user’s, and GW forest producer’s 
accuracy measures for the class 𝑖  (𝐺𝑊𝐹𝑈*(Z)  and 𝐺𝑊𝐹𝑃*(Z) , 
respectively) are:  
 

𝐺𝑊𝐹𝑂(Z) =
𝛴/
JL𝜌**

𝛴+.JK
JL 𝛴*.JK

JL 𝜌*+
       (7) 

 
𝐺𝑊𝐹𝑈*(Z) =

𝜌**
𝛴JK
JL𝜌*O

         (8) 

 
𝐺𝑊𝐹𝑃*(Z) =

𝜌**
𝛴JK
JL𝜌O*

         (9) 

 
where the class 𝑖, 𝑗 ∈ 𝑓/, . . . , 𝑓V. 𝛴JK

JL𝜌*O denotes the marginal sum 
of 𝜌 for the classification class 𝑖 in 𝑛 forest classes, and 𝛴JK

JL𝜌O* 
denotes the marginal sum of 𝜌 of the reference class 𝑖 in 𝑛 forest 
classes. In this study, 𝑏 and 𝑟 are defined as 200 km and 5 km, 
respectively, to show regional variations of accuracy measures 
well with relatively less calculation time. 
 

4. RESULTS 

In order to confirm the whole-map accuracy at first, the 
conventional correspondence matrix with JAXA’s HRLULC 
map and SACLAJ reference sample was built (Table 1). The 
conventional overall accuracy is 82.2% for 10 classes. This table 
suggests relatively better classifications for water (user’s 
accuracy: 95.3%, producer’s accuracy: 97.7%), while some mis-
classifications are also found such as between urban and 
bareland, and between crop and grass. When focusing on the 
classification between aggregated forest and non-forest classes, 
97.4% of the overall agreement rate is achieved, suggesting the 
high performance of the forest/non-forest distinction. From this 
result, our interests of accuracy in this map move forwards to the 
performance of the four forest types classification. 
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Table 2 represents a summary of FU and FP. All values in FU for 
four forest types except the ENF class are larger than those in FP, 
suggesting that these forest classes in the classification map tend 
to be identified at the reference points correctly well, compared 
to that in the reference against the classification map. The ENF 
class shows the opposite pattern. The FO is 82.2%. 
 

 
 
Table2. Forest user's and producer's accuracy for deciduous 
broadleaf forest (DBF), deciduous needleleaf forest (DNF), 
evergreen broadleaf forest (EBF), and evergreen needleleaf 
forest (ENF).  
 
As expected, such measures inform us the degree of 
correspondence of classes in the whole map, however it lacks 
spatial information on accuracy. Thus, GW correspondence 
matrix was applied to show spatial heterogeneities in accuracy 
measures. Figure 2 shows a result map of GWFO. It clearly 
shows spatial heterogeneity of the FO hidden in the conventional 
overall accuracy measure. The GWFO varies around the FO: 
82.2% and on the whole, but it tends to be more accurate in 
central Japan while less in the Kansai (western mainland) and the 
northern edge of the main island and Hokkaido (north island). 

 
Figure 2. Geographically weighted forest overall accuracy. 
 
Maps of both GWFU and GWFP shown in Figure 3 and 4 
demonstrate clear spatial variations of accuracy. The highest 
variation can be found in the EBF for both of the FU and the FP 
(the standard deviations are 25.3 and 30.5, respectively). 
Surfaces of accuracy in some areas in the Japanese territory lacks 
due to insufficient number of classification and reference sample 
points, implying that there is no distribution of the class found in 
such areas. Each map indicates potential spatial clusters of high / 
low accuracy. For example for the DNF, both FU and FP 
represent a cluster with high accuracy (over 90%) in the central 
mainland. It is reasonable to find highly accurate clusters in such 
regions as the DNF is distributed in cooler regions such as 
Hokkaido and high-elevated mountainous areas in Japan (mostly 
found in the central Japan) (Oshida et al., 2009). In the meantime, 
the DNF are relatively less found in other areas, meaning the 
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classification tends to fail (less accurate). Relatively lower FU 
and FP for the EBF are shown especially in the northern mainland 
and Hokkaido. This occurs because the actual distribution of the 
EBF can be found in warmer regions below around 37º north 
latitude (Oshida et al., 2009) and thus the EBF found in the 
northern Japan tends to be mis-classified.  While Table 2 
describes FU for DBF, DNF, and ENF are higher than FP, Figure 
3 and 4 tell us such characteristics depend on regions and some 
areas have the opposite trend. For example, FP is larger than FU 
in the central mainland and the northern edges of Hokkaido for 
the DBF, in the southern Hokkaido and the north mainland for 
the DNF, and in the western mainland for the EBF. In contrast, 
FP is larger than FU for the ENF according to Table 2, however, 
some areas with larger FU than FP can be found in the middle of 
Hokkaido and the north-western mainland. These spatial 
characteristics of accuracy are hidden in the global accuracy 
diagnostics. Such maps of spatial heterogeneities of accuracy 
enable data users to pay special attention to the regional 
difference of the quality of the JAXA’s HRLULC map and to 
areas which have opposite trends from global results. 
 

 
Figure 3. Geographically weighted forest user’s accuracy for 
DBF, DNF, EBF, and ENF. 
 

  
Figure 4. Geographically weighted forest producer’s accuracy for 
DBF, DNF, EBF, and ENF. 
 

5. DISCUSSIONS 

Accurate forest type classification is challenging. To understand 
the quality of a LC classification map, data users have to inspect 
the accuracy of the map in which regions are well described or 

not. It has been difficult to infer in which areas these forest types 
(a major part of PFT) are mis-classified (confused) although 
forest / non-forest classification has been clearly available. This 
is a limitation of understandings of the actual spatial distribution 
of the PFT. To support this, this study highlighted the spatial 
heterogeneities of accuracy for the forest type classification in 
the JAXA’s HRLULC map using a GW framework as a case 
study. This study generated a map of GWFO which tells spatial 
accuracy of the four forest types classification in the JAXA’s 
HRLULC map based on the SACLAJ reference sample. Maps of 
GWFU and GWFP also describe local accuracies but focus on 
individual classes. All forest types have spatially-varying 
surfaces of accuracy, indicating the spatial heterogeneity of 
accuracy. Such descriptions are informative for data users who 
are interested in accurate maps of forest types to confirm the 
quality of the classification over space. 
 
There are some technical discussions which help build bridges to 
further potential studies.  Firstly, the bandwidth size is arbitrary 
determined (in this study, 200 km). This was explored 
preliminarily and determined so that the kernel enables to cover 
sufficient reference sample points over space. For a conventional 
GW regression (GWR) and other types of GW regression models 
such as generalized GWR, some optimization approaches for the 
bandwidth size have been developed. One of the popular methods 
is a leave-one-out cross validation (LOOCV) (Gollini et al., 
2015; Lu et al., 2014). The LOOCV approach can also be 
applicable to GW summary statistics (Brunsdon et al., 2002; 
Fotheringham et al., 2002). However, there have not yet 
proposed such optimization approaches for the GW 
correspondence matrix. Even if the bandwidth can be optimized 
for the GW correspondence matrix, it does not produce optimized 
GW accuracy measures, because the LOOCV calculation 
requires a statistic which represents a nature of the matrix, and it 
is not optimal for accuracy measures. Furthermore, the LOOCV 
can be applicable to each of GW accuracy measures, however 
optimized bandwidth would not be consistent through measures, 
resulting in the failure of their comparisons.  The topic on 
bandwidth optimization is highly linked with the question which 
spatial scale level is appropriate to investigate local accuracy in 
the map. Hence new developments for the bandwidth 
optimization are expected. Similar discussion can be found in 
Tsutsumida et al. (2019). Secondly, the quality of the labelling in 
reference samples is not considered in this study. Ultimately, any 
results of accuracy assessments are relative to the reference 
sample. The SACLAJ reference data set is well organized 
collected from volunteers who visited field sites and / or from 
very fine spatial resolution satellite imageries. However, no 
reports on the quality are found. Previous studies have argued the 
impact of the use of imperfect reference sample to accuracy 
assessments (Foody, 2011; Foody et al., 2016; Zhao et al., 2017) 
and such findings would be helpful. Furthermore, potential 
studies can focus on the uncertainty between a classification map 
and imperfect reference sample when these reliabilities are 
available, by applying GW fuzzy differences (Comber et al., 
2012) and / or GW mean absolute error (Tsutsumida et al., 2019). 
Lastly, our approaches evaluated local accuracy but did not 
contribute to the improvement of the classification. Future 
studies will focus on the usefulness of such information on spatial 
accuracy to improve the classification. A spatial backpropagation 
approach based on the GW error measures would be worth to be 
investigated toward minimizing the spatial heterogeneity of 
accuracy. 
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6. CONCLUSION 

The forest type classification, a major part of the PFT, is essential 
to estimate aboveground biomass, carbon cycle, biodiversity, and 
many other environmental studies. Accurate forest type 
classification maps are required for these applications, however 
such map has not yet been achieved. This study demonstrated 
how to estimate the spatial accuracy of classification in four 
forest types in Japan to inform users the reliability of the 
classification map. Three types of accuracy measures tell 
different aspects of local accuracy: the degree of overviews of 
the correspondence of the classification to reference sample; the 
degree of how much reference sample points are correctly 
classified in the predicted map; and the degree of how much 
classified sample are found in the reference sample. Particularly, 
this study applied geographically weighted approaches to the 
forest type classification in the JAXA’s HRLULC map and 
highlighted spatial heterogeneities of these three types of 
accuracy measures.  The spatial accuracy provides a more 
informative description of accuracy than the simple use of some 
conventional accuracy measures. 
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