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Development of new computational methods for 

fragment-based drug discovery by NMR 
Luca Gavino Mureddu 

 

My project covers the three fundamental steps of fragment-based drug discovery 
by NMR, (NMR-FBDD): hit identification, binding site identification and hit 
optimisation. This division enabled me to cover the full NMR-FBDD approach 
while simultaneously to experience a broad spectrum of techniques as well as to 
foster collaborations with different labs and levels of expertise. 
I first focused on the development of a new software package, called CcpNmr 
AnalysisScreen, designed for the automated analysis of early stage 1D NMR 
screening data. AnalysisScreen integrates all the necessary algorithms and 
routines for supporting the analysis of these data. Furthermore, it provides a novel 
modular platform for combining tasks in bespoke workflows, and it includes a 
straightforward mechanism for adding new custom algorithms to the main 
program. Using a series of simulated spectral datasets with known answers, the 
performance of the software was assessed. Following this proof of principle, 
routines were tested using actual experimental data recorded by several 
collaborators. These analyses prompted the development of novel routines for 
scoring the outcomes to classify results accurately. 
Successively, I focused on the integration of tools for analysing and identifying 
ligand binding sites. These tools were tested using experimental data recorded 
by collaborators and successfully used in several postgraduate teaching classes, 
including national and international workshops. 
Lastly, I focused on the optimisation of ligand-binding properties of hits obtained 
from the initial virtual screening steps. During my internship at the Dana Farber 
Cancer Institute (Harvard Medical School, Boston, USA), I was involved in a study 
of the protein-protein complex eIF4G-Mnk. Starting from previous works, which 
identified transient binding pockets, I conducted a series of studies using a 
combination of computational tools to design a novel virtual FBDD workflow. This 
procedure prompted to the generation of potential drug candidates for the 
inhibition of the eIF4G-Mnk complex.  
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Aims 
 

1. Assessment and improvement of computational strategies for FBDD by NMR: 

1.1. Critical review of clinical drug candidates and FDA-approved drugs; 

evaluation of the impact of NMR throughout the discovery and chemical 

design of case studies, (chapter 1). 

1.2. Development of a new integrative software, CcpNmr AnalysisScreen, for 

aiding the data analysis through the process of drug discovery by NMR, 

(chapter 2). 

1.3. Development of a novel customisable tool designed to create bespoke 

workflows needed in the process of hit identification. Design of novel 

scoring functions for classifying hits, (chapter 3). 

1.4. Assessment of current algorithms for baseline correction. Development of 

a new versatile algorithm for NMR screening datasets, (chapter 4). 

1.5. Applications of AnalysisScreen. Comparison of automated and 

quantitative versus manual and qualitative hit identification results on 

multiple datasets, (chapter 5). 

1.6. Integration of tools for semi-automatic target-ligands binding site 

identification in CcpNmr, (chapter 6). 

2. Application of virtual FBDD strategies for generating new potential therapeutic 

molecules for a biological target associated with diseases; 

2.1. Design and application of a novel workflow aimed to disrupt the protein-

protein interaction complex eIF4G-Mnk, (chapter 7).  
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Accounts of fragments to drugs by NMR. 

Where are the successes and where can it 

be improved? 
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1.1. Abstract 
 

Over the last century, the definitions of pharmaceutical drug and drug discovery 

have changed considerably. Nowadays, drug discovery involves several distinct, 

yet sometimes interconnected, stages aimed to obtain suitable molecules able to 

interact with a biomolecular target triggering a biological response. For each 

stage, typically a large range of different techniques are used to drive the project 

forward into the next phase in the fastest possible way. 

High throughput screening (HTS) and fragment-based drug design (FBDD) are 

the two main approaches for the identification of drug-like candidates in the early 

stages of drug discovery. Nuclear magnetic resonance (NMR) spectroscopy has 

many applications in FBDD and is used extensively in industry as well as in 

academia. 

In this chapter I discuss the development of molecules in which NMR had a crucial 

role; their efficacy proved either to be successful or unsuccessful in a clinical 

setting. I specifically focus on the techniques used, describing strengths and 

weaknesses for each stage by examining several case studies. More precisely, I 

examine the development from the primary screening to the final lead 

optimisation of AZD-3839 and interactions to its target BACE-1, ABT-199 and 

interactions to BCL-2/xL, and lastly, S64315 and its interactions to MCL-1. From 

the analysis, I derive conclusions regarding their chemical development patterns 

and express personal suggestions on improvements that can be made to the 

FBDD by NMR.  
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1.2. Introduction 
 

Fragment Based Drug Discovery, FBDD, is nowadays a solid and common 

approach vastly adopted by a multitude of pharmaceutical companies and 

academic groups1. The rationale behind FBDD has been extensively reviewed 

and entire books have been written including some references to clinical 

candidates2,3. The general concept of FBDD is straightforward. It starts by the 

generation of libraries of small molecules called “fragments”. The size of these 

libraries vary from few hundreds to thousands of small molecules (for industrial 

cases)4, that usually follow the so-called “rule of three”, i.e. a molecular weight < 

300Da, LogP < 3, maximum hydrogen bond donors and acceptors < 35. 

Binding of the molecules comprising the libraries are evaluated against a target 

of interest, usually in so-called “mixtures” of 5 to 10 compounds6. The strategy of 

using small molecules instead of large entities allows for a more efficient 

exploration of chemical space, defined as the ensemble of all possible molecular 

conformations which present drug-like properties (~1060 molecules)7. The 

approach provides a greater chemical variety that also brings other benefits, such 

as cost and time reduction in the data analysis. 

 

The use of fragments at starting points in the early stages of drug discovery has 

been demonstrated to be a viable approach for producing compounds that are 

highly tailored to their targets8. This method also increases the novelty of 

standard drugs and provides for the possibility of monitoring the chemical path of 

optimisation, for example, restricting the lipophilicity issue observed in HTS-

derived drugs1,9. However, since the fragments are much smaller compared to 

traditional lead-like molecules, their binding affinity to a target of interest is nearly 

always low (μM to mM). Therefore, only a highly sensitive technique, such as 

NMR, can detect these weak interactions10,11. 
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A variety of NMR methods have been developed over the years to cover each 

step of drug development, which can be broadly divided in the primary hit 

detection, the binding site identification, the binding mode elucidation and 

fragment optimisation (Fig. 1.1). 

In this chapter I focus exclusively on the relevance and impact of NMR 

spectroscopy on the generation of new clinical drugs. Through the analysis of 

three case studies, I discuss the various techniques used and discuss at which 

stages of drug development these techniques were crucial to the various projects. 

 

To appreciate the influence on NMR in the current developments, a search on 

the PubMed database using the keywords “FBDD NMR” was performed. It 

revealed over 600 journal publications for the last five years (Fig. 1.2A). It is to be 

expected that not every breakthrough for the NMR technique will have been 

shared in the public domain; often the origin of new molecular entities remains 

obscure or difficult to trace. For example, there have been instances of journal 

articles that described new molecular discoveries without explicitly indicating the 

relevant molecular names in their titles. A further search through the FDA 

database revealed, over the same five-year time span, that only two approved 

drugs were unmistakably obtained from fragments (Fig. 1.2B)12,13. Whilst this may 

seem to be a very low number relative to the total number of FDA approvals, this 

is partially explained by the fact that more than 40% of the total number of FDA 

approvals pertains to antibodies (Fig. 1.2C). Not surprisingly, cancer-related 

diseases register a much larger number of small molecules when considered as 

a single area of treatment, followed by neural- and cardiac diseases (Fig. 1.2D). 

In addition, the FBDD pathway is more complex than the high-throughput 

screening14, as it requires several steps before achieving a final drug-like 

compound, as a result, so far it was necessary an average of 13 years of 

development after the first low affinity hits were detected (Fig. 1.3A). 

I performed an in-depth analysis of all FBDD-derived molecules that are or have 

been clinical candidates at any time in the past up to December 2019 and for 
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which relevant information was publicly accessible through journal articles tables 

or the Erlanson blog15. The analysis showed that NMR is predominantly used in 

the primary screening for the initial hit identification. For the subsequent FBDD 

stages of binding site identification and hit optimisation, NMR is increasingly less 

often used (Fig. 1.3B). This shift indubitably parallels the increased usage of 

alternative techniques, such as X-ray crystallography, that proves to be the most 

preferred method for the hit optimisation stage4 (Fig. 1.3C). 

NMR-derived compounds were identified mostly by ligand-detected 1D NMR 

techniques, such as Water-LOGSY, saturation transfer difference, STD, or T1ρ, 

whereas target-based 2D NMR techniques, such as the chemical shift 

perturbation (CSP) experiment, were used for the hit and/or binding site 

validation. Lastly, the so-called SAR by NMR method, which employs mostly 

NOE-related techniques and multi-dimensional NMR experiments, was mainly 

used for hit-growing and linking guidance during the optimisation stage of the 

FBDD process (Fig. 1.3D). 

The 1D ligand-detected techniques, such as STD and Water-LOGSY, are used 

as a gold standard in NMR screening as these do not require expensive protein 

labelling and therefore can be used for a broad range of molecular targets16. 

Furthermore, the various expression systems of the target, e.g. bacteria, insects 

or human-derived cells, and other common limitations, such as molecular 

weights, are not of critical importance for these 1D techniques17. In addition, they 

can also be used in difficult cases where expression and/or purification of the 

target macromolecule is a limiting factor and only nM concentrations can be 

attained. Most importantly, the richness of information acquired in a small amount 

of time (i.e. minutes per sample), allows to perform the analysis in a high-

throughput fashion18. However, 1D ligand-detect experiments are not suitable for 

detecting binding sites of interactions, and higher dimensionality NMR 

techniques, including CSP, are often required. The latter enables the monitoring 

of target residues that are most likely to be interacting to the fragments, providing 
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precious information for binding validation as well as guidance on the next stage 

of development19. 

Fragment optimisation is best achieved where a high-resolution 3D molecular 

structure of the target is available. There are several techniques capable of 

resolving molecular structures; however, the simplicity and the generally rapid 

throughput associated with X-ray crystallography, renders this method as the 

most preferred whenever possible20 (Fig. 1.3C). In reality, however, very often 

targets of interest cannot be assessed by X-ray crystallography. For example, 

complexes displaying a highly flexible mode of interaction can be truly inspected 

only by NMR21,22, as crystal packing forces preclude the required molecular 

adaptation for complex formation. Moreover, the crystal lattice also might not 

allow the ligand to permeate through to the binding pockets23. In contrast, the 

NMR technique can provide unambiguous information on the various orientations 

of the ligand with respect to the target, referred to as poses; these poses can be 

combined with computational methods for designing drug-like compounds with 

improved binding and pharmacological properties. 

In this chapter I present three case studies that employed a variety of NMR 

techniques and therefore can be considered models of FBDD by NMR. 

The first case revises the compound AZD-3839 development path. It was 

originated by fragments identified by a ligand-detected primary screening using 

the Water-LOGSY technique. The second case examines the history of an FDA-

approved drug which was derived by FBDD, ABT-199, commercially called 

Venotoclax. The development of this compound is linked to a variety of target-

detected NMR methods. Finally, the analyses of S64315 highlights a combination 

of ligand-detected and target-based NMR techniques in one of the latest clinical 

drugs derived by FBDD. 
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1.3. Materials and Methods 
 

 Materials 
 

FDA information for New Molecular Entities (NMEs) and original biologics were 

extracted from https://www.fda.gov/drugs/drug-approvals-and-databases/drug-

trials-snapshots. For each entry, a literature search was conducted to determine 

whether small molecules (only) were derived from an FBDD-approach. 

The list of molecules in various stages of clinical trials was reproduced from a 

number of web sources and published reviews1,4,24,25. Some web-based materials 

were extracted from a detailed analysis of the website Practical Fragments26, 

where blog articles dating up to 31st December 2019 and a table as listed in 2015 

and 2018 posts15,27 provided the starting point for this study. 

A literature review was conducted for each compound, filtering out only molecules 

in which NMR had been involved at some stage of the drug discovery process. 

Subsequently, the exact NMR technique used was noted wherever possible. 

 

 Methods 
 

Fragments molecular structures were reproduced using our in-house software 

ChemBuild28. Molecules were then exported in PDB or MOL2 formats, re-aligned 

and exported in PNG formats from PyMOL29. 

OpenBabel or iBabel 3.6 was used to convert PDB and MOL2 to SMILES 

format30,31. Smiles were created in the canonical (xc) format; hydrogens and pH 

were excluded from the calculations of the various molecular properties. 

Molecular weights, polar surface areas and other properties were calculated 

using the online tools available at http://www.cheminfo.org. 

A collection of scripts for analysing smiles and plotting molecular similarities were 

written in Python using the Pandas32, Numpy33, SciPy34, Matplotlib28 libraries. The 
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Pybel30 package was used for calculating the molecular fingerprints from SMILES 

and the Tanimoto coefficient35. 

PDB codes. AZD-3839 and BACE-1: 4B05; BCL and ligands: 6O0L, 4LVT, 2YXJ; 

MCL1 and ligands: 6QXJ, 6QYK, 6QYL, 6QZ5, 6QZ7, 6QZ6, 6QZB, 6QYN, 

6QZ8, 6QYP, 6QYO.  
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1.4. Case study 1: AZD-3839 and BACE-1 
 

β-Site Amyloid precursor protein Cleaving Enzyme-1 (BACE-1) was identified 

over twenty years ago as a key component in Alzheimer Disease (AD) 

pathogenesis36,37. BACE-1 is responsible for the initial cleavage of the amyloid 

precursor protein to its smaller amyloid β-peptides (Aβ), in which accumulation in 

the brain cells is believed to be one of the underlying causes of AD progression38. 

Not surprisingly, BACE-1 is a therapeutic target and a number of academic 

groups and pharmaceutical companies have placed considerable efforts into the 

research and development of new inhibitors in the hope of limiting or blocking the 

formation of Aβ39–42. 

BACE-1 is characterised by an internal groove created by two lobes (S1 and S2), 

modulated by a loop (“flap”) which reveals the aspartyl catalytic site. The flap is 

highly dynamic and upon the presence of inhibitor can determine the state of 

“open” or “close” of the macromolecule giving access to the catalytic pocket. The 

identification of two crucial aspartic acid residues, i.e. Asp32 and Asp228, has for 

many years driven the drug development process and optimisation of 

fragments39. An exhaustive list of early fragments and their respective primary 

screening technique is given by Erlanson and Jahnke39. 

A great example of the history of a complete development is provided by the 

compound AZD-3839, where the initial fragment was identified from 1D NMR 

studies. According to Geschwindner et al. the choice of NMR for this case 

provided a compromise between scalability of large fragments libraries and 

sufficient data-output, while simultaneously assuring a robust method for 

detecting very weak bindings at low ligand concentration. By eliminating non-

specific binders, this process would eventually have the advantage of reducing 

false positives from the analysis. The original screen using the Water-LOGSY 1D 

NMR technique was conducted on a 2000-compound library with four fragments 

per mixture, yielding a relative low hit rate of 0.5%. Compound-1 (Fig. 1.4A, 1) 
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was identified as a binding hit. An intensity “sign-flip” of signals relative to this 

compound was clearly distinguishable from the NMR spectra, suggesting a 

binding event to the macromolecular target43. 

Crucially, as a control the authors performed a competition experiment in 

presence of a stronger known binder, showing a noticeable intensity reduction 

(more negative) only for the singlet peak from the isocytosine aromatic H5 proton 

at around 5.65 ppm (Fig. 1.4A, 1, blue circle). This validation assay reduced 

potential false positives by identifying fragments that displayed weak binding 

Water-LOGSY responses but did not show any changes upon the addition of the 

competitor. Compound-1 was eventually selected for further optimisation steps. 

Meanwhile, through parallel crystallographic studies performed by Astex 

Therapeutics44 an optimised compound that preserved the original amidine motif 

was developed. The amidine motif was confirmed to be responsible for the strong 

interaction to the catalytic aspartates (Fig. 1.5A). Consequentially, through a 

series of scaffold hopping substitutions, the molecule was morphed into the 

isoindole present in the final compound. Furthermore, the introduction of fluoro 

atoms improved the permeability of the molecule and the brain exposure by 

“shielding” the reactive amidine. Lastly, an additional molecular growing, using 

aromatic cores, gained the extra surface needed for interacting to the adjacent 

S3 and the flap45 (Fig. 1.5A), concluding the hit optimisation for this compound. 

 

The various steps of the hit optimisation clearly show how the initial NMR-derived 

fragment hit has undergone a series of dramatic changes. The magnitude of 

these changes can be assessed from the similarities of the molecular fingerprints 

for each component as calculated by the Tanimoto coefficient scoring35. A 

prominent drop of the Tanimoto coefficient is observed from the first molecule to 

compound-2 and further for compound-3 (Fig. 1.5B). However, from compound-

4 to the final AZD-3839 molecule, a much less variable score is observed. A 

different trend was observed for the molecular weight (MW) of the successive 

compounds which showed a constant increment up to compound-4, followed by 
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only minor changes towards the final form AZD-3839. Interestingly, the final 

compound was characterised by a smaller molecular weight (MW) than its 

previous version, yet presented an increased polar surface area (PSA; Fig. 1.5B). 

AZD-3839 appeared to be a very promising drug candidate and underwent 

clinical phase-1 trial. Unfortunately, it was stopped from patient administration, 

probably due to its high affinity to the hERG ion channel and potentially related 

side-effects46. This case, nevertheless, demonstrated that NMR was crucial for 

determining the first fragment hit from the primary screening. NMR 

unambiguously established the identification of the initial amidine-fragment. This 

motif was revealed of a critical importance in forming interactions to BACE-1, and 

as a result it was preserved through the long path of chemical optimisations that 

resulted in the final AZD-3839 compound. 
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1.5. Case study 2: ABT-199 (Venetoclax) and BCL-2/xL 
 

The second case study is an analysis of the molecular background for the 

compound ABT-199, commercially referred as Venetoclax. The history of this 

drug was selected for two reasons: the large impact of NMR throughout its 

development pathway and the fact that the Abbott NMR group, where earliest 

studies began, has been pioneering the “SAR by NMR” method, which 

culminated in the FDA-approved Venetoclax drug in 201647,48. 

ABT-199 is an inhibitor of the anti-apoptotic proteins BCL-2, BCL-xL and BCL-

w49. These proteins play a pivotal role in the cell survival; not surprisingly, they 

are over-expressed in many cancers and they are directly linked to initiation, 

progression and therapy resistance occurrences50. The various BCL members 

are 𝛼-helical proteins. Two protein, i.e. BCL-2 and BCL-xL, share four domains, 

BH4 (𝛼1), BH3 (𝛼2), BH1 (partially 𝛼4) and BH2 (partially 𝛼6 and 𝛼7) plus the 

transmembrane, TM, motif. The disposition of two-central hydrophobic helices 

(𝛼5 and 𝛼6) together with the amphipathic 𝛼1-4 and 𝛼7 form an elongated 

hydrophobic groove in the BH1, BH2, BH3 region51, (Fig. 1.7A). The BH3 region, 

in particular, is responsible for the interaction with other proapoptotic proteins 

such as BAK and BAX, rendering it a druggable site of interest52. 

The early inhibitor-discovery process was started by screening a large library of 

small molecules using 2D target-detected approaches which led to the 

identification of several candidate molecules or “hits”, (Fig. 1.6, compounds 1 and 

2). The hypothetical binding mechanism was elucidated through 15N-HSQC 

chemical shift perturbations (CSP) experiments53. From the CSP results it was 

possible to derive that the fluoro-biaryl acid region of the selected compound-1 

interacted with the BCL-xL hydrophobic groove. In fact, a series of large shifts 

were observed for the peaks assigned to residues G94, G138 and G196, located 

in this groove53. However, the study of the complex of BCL-xL with its binding 

partner BAK suggested the existence of an additional binding interface. 
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Therefore, a second screening was carried-out in the presence of a large excess 

of the compound-1, with the aim of saturating the first site of interaction and 

screening for potential hits to the second interface53. Compound-2 (Fig. 1.6) was 

identified and eventually chosen to be used in a chemical linkage to the 

compound-153. To do so, multiple linkers and various compound-1 poses were 

explored in order to improve the overall potency of the resulting molecule. Finally, 

a ~200-fold improvement in binding affinity was established for compound-3 

when compared to the original biaryl-acid (Fig. 1.6). 

The first model of the complex of BCL-xL with compound-3 was then developed 

on the basis of nine intermolecular NOEs53. Although these NOEs were indicative 

of an interaction with both binding interfaces, it was concluded that compound-3 

did not adopt optimal or ideal conformations. Consequently, new linkers and a 

new set of chemical reactions were explored. 

Compound-4 was eventually synthesised and evaluated structurally by 

combining multiple protein-ligand NOEs extracted from 3D 13C-edited and 12C-

filtered NOESY spectra to dock the molecule in the BH3 mediated groove53. 

Compound-4 was further optimised in parts that were solvent-exposed. These 

parts of the molecule were replaced with polar substituents, including a 2-

dimethylaminoethyl group in the linker. In addition, the insertion of a new 

piperazine ring led to the compound ABT-737 (Fig. 1.6). 

ABT-737 displayed increased potency and exhibited activity in the presence of 

human serum. An in-vivo analysis suggested that a synergetic therapy was 

required for inhibiting the anti-apoptotic activity of the BCL family while promoting 

the pro-apoptotic proteins (BAX and BAK)54. Studies by the Abbot group 

proceeded towards the development of the ABT-263 molecule. After an initial 

positive assessment on multiple cellular lines, where ABT-263 reported stronger 

inhibitory actions, presumably by targeting both BCL-xL and BCL-2, advanced 

clinical studies unfortunately revealed major pitfalls such as thrombocytopenia55. 

Eventually, a crystal structure of BCL in complex with ABT-737, resolved at 2.2 Å, 

validated the original NMR-determined inhibitor binding pose56. The 
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crystallographic model showed that ABT-737 interacted with the two binding 

interfaces formed by the hydrophobic pockets, P4 and P2, of BCL-2 and BCL-XL; 

including two hydrogen bonds from the thiophenyl and the 1-chloro-4-(4,4-

dimethylcyclohex-1-enyl)benzene moieties to residues G138 and E96, 

respectively. 

Meanwhile, the project continued at the AbbVie group together with a number of 

collaborators who designed the final compound ABT-199 (Venetoclax) from ABT-

263 through a series of substitutions55. In addition, new 3D molecular structures 

of BCL-2 in complex with various ligands were made publicly available. The ABT-

199 molecule incorporated several crucial modifications compared to its 

predecessor. Through an intermediate compound in the series, a pivotal H-bond 

was identified to D103 (corresponding to G96 in BCL-xL), thus providing an 

increased affinity to both the BCL-2 and BCL-xL P4 hydrophobic pockets49 (Fig. 

1.7A). 

 

A molecular fingerprint analysis was performed for all available molecules in the 

development process. However, as the initial NMR-detected fragments 

underwent a linkage step, the molecular similarities were assessed with respect 

to compound-3. Similar to the AZD-3839 case study, a drastic drop in the 

Tanimoto coefficient was observed from compound-3 to the successive optimised 

forms (Fig. 1.7B). Interestingly, ABT-199 showed a reduced molecular weight and 

increased polar surface area compared with its predecessor compounds, yet 

keeping an overall structural similarity starting from the compound 4, although 

differed notably to the first NMR hits. (Figs. 1.6 and 1.7B). 

The ~20 years history of development for the ABT-199 compound revealed a 

multitude of challenges, including the impossibility of obtaining crystals of 

complexes with the first leads and some other in-vivo difficulties which were not 

predictable from a structural point of view. However, I am confident to state that 

the success of Venetoclax could not have been achieved without the crucial data 
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resulting from the usage of multiple NMR techniques during the early stages of 

the drug discovery process.  
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1.6. Case study 3: S64315/MIK665 and MCL-1 
 

The final case study presents an overview of the most crucial optimisation steps 

in the development of the molecule S64315, also known as MIK66557 (Fig. 1.8). 

S64315 is one of the latest inhibitors currently being tested in clinical trials for 

targeting the BCL anti-apoptotic family, MCL-158. A series of studies indicated 

MCL-1 is over-expressed in many cancer types (multiple myeloma, lymphomas, 

leukaemia); therefore, it is widely recognised as a druggable target59. MCL-1 

shares the highly conserved BH3 binding groove with other members of the family 

such as BCL-xL and BCL-2. This groove is essential for interacting and 

sequestering the pro-apoptotic proteins resulting in an increased cell survival. 

The development of specific inhibitors for MCL-1 targeting the BH3 groove has 

proven to be challenging60. The Vernalis group, together with collaborators, 

engaged in large efforts in their studies of this complex. The results of the studies 

allowed for maximising the potency of an initial hit obtained from a ligand-

detected NMR screening resulting in the most sophisticated MCL-1 inhibitor to 

date, S64315/MIK66557. However, several difficulties had to be overcome in the 

expression and purification of the macromolecule in human-derived cell. 

Consequently, this resulted in a lack of 3D atomic structures which hampered the 

FBDD studies57. Despite this, the protein availability was adequate for the initial 

NMR-based screening. 

The assessment of over 1000 fragments, pooled in groups of eight, using 1D 

STD, Water-LOGSY and CPMG NMR experiments revealed several potential 

binding hits. Due to low signal-to-noise ratio, hits were further validated using 2D 

NMR 15N-HSQC titrations. In addition, to overcome the absence of a detailed 3D 

molecular structure a new approach for determining ligand poses and guiding the 

optimisation process, referred to as NMR-guided model (NGM), was developed. 

The NGM approach employs 3D NMR methodology, i.e. X-filtered NOESY (13C-

edited, 13C, 15N-filtered NOESY), to identify crucial NOEs between ligands and 
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the target. The resulting information was combined with high-throughput 

computational docking studies, allowing for a more accurate classification of 

binding poses. From the NMR results, multiple compounds with various chemical 

functionalities were explored, of which a class of compounds comprising a 

thienopyrimidine group was believed to be the most promising. Particularly, 

compound-1a was used as the initial fragment towards the development of the 

S64315 drug (Fig. 1.8). Following a series of substitutions for the compound’s 

ethyl group, multiple variants were tested on BCL-2, BCL-xL and MCL-1. Some 

of the newly synthesised molecules showed comparable affinity toward all three 

targets57. Using the 15N-HSQC technique it was possible to estimate Kd values 

for most of these, which ultimately allowed to select compound-5d as the highest 

affinity binder towards MCL-1. 

The NOEs derived from the analysis of the compound-5d/MCL-1 complex 

indicated several potential contacts. In particular, contacts between the naphthyl 

ring (Fig. 1.8, 5d, green circle) to the side chains of A227, M231, V249, V253, 

T266 were observed as well as between a methyl group (Fig. 1.8, 5d, blue circles) 

to the side chains of M231, V249, V253, L267. To further investigate the BH3 

binding region's molecular flexibility, the authors assessed various possible 

docking poses using multiple structural ensembles. This approach allowed a 

better estimation of possible allowed geometries, yet consistent with the crucial 

experimental NOEs information. Ultimately, the preferred molecular orientation 

consisted of the carboxylic acid pointing toward the solvent region, and the 

naphthyl group toward the S2 pocket. Different conformational changes for the 

hydrophobic groove were also assessed. This was achieved by inserting various 

substituents to the original small molecule core and testing the different rotational 

property of the aryl ethers and anilines (Fig. 1.8, 8d-15, black circles). 

Lately, crystallographic structures of the MCL-1 complex and some variants 

became available (PDB codes listed in material and methods), allowing for 

alternative studies for several fragments and their binding modes. 
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Multiple optimisation steps were carried out, eventually leading to the final state-

of-the-art S64315. This final compound presented new crucial ortho-substituents, 

such as the fluorobenzene and methoxyphenyl-pyridine group, which were 

responsible for the increased selectivity for MCL-1 compared to its precursor (Fig. 

1.8, orange circles). A model of MCL-1 in complex with compound-18a was 

generated using the MCL-1 crystal structure (PDB code 6QYO) to manually dock 

the S64315 compound (Fig. 1.9A). The model shows the thienopyrimidine motif, 

already observed in the original compound-1a, deeply buried in the hydrophobic 

groove of the BH3 binding domain. 

 

As for the previous case-studies, the molecular fingerprint patterns using the 

Tanimoto score were inspected for all available compounds (Fig. 1.9B). In line 

with the observations for ABT-199 and AZD-3839, albeit somewhat less 

prominent, the results again show the characteristic initial decrease in the 

Tanimoto score from the first fragment to the following variants, indicating the 

significant changes during the initial steps of development. Interestingly, several 

compounds mid-way through the development (i.e. compounds 5d, 8d) showed 

a higher Tanimoto coefficient compared to the initial optimised fragments, 

suggesting a more careful optimisation process rather than a revolutionary 

approach to the first fragment hit. Starting from compound-10 only smaller 

changes occur together with increased PSA scores. Surprisingly, the final 

compound appeared to differ the most from its direct precursors. This compound 

also showed an increased MW and a reduced PSA score compared to its 

previous three variants. 

 

The search for an MCL-1 inhibitor started several years ago from the identification 

of a first hit obtained through primary screening by NMR. The process illustrates 

the huge amount of work required to bring an initial hit to a final lead drug 

candidate, which included the efforts of several academic and industrial 

laboratories. The failure of crystallisation trials during the early stages of the 
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project, plus the inherent flexibility of the MCL-1 BH3 binding groove, made NMR 

spectroscopy uniquely capable of driving the project forward. The S64315 

compound is currently under evaluation in the clinical phase-1 trials, which 

provide hope for patients affected by a variety of cancer-related diseases.  
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1.7. Discussion and Conclusions 
 

In this chapter, I explored the development histories of the AZD-3839, ABT-199 

and S64315 compounds, from the primary screening to the final lead 

optimisation, focusing on their target interactions and the rationale behind their 

optimisations. These cases highlighted the underlying role of NMR techniques 

during the drug discovery phases and their impact throughout each stage. 

 

With multiple compounds in clinical phases, NMR has demonstrated a key role in 

the process of fragment-based drug discovery4. In 2016, ABT-199, commonly 

known as Venetoclax, was the first confirmed FDA-approved drug derived near 

exclusively by NMR-FBDD26,49,61,62. The development of other fragment-derived 

drugs were driven by both X-ray crystallography, NMR spectroscopy and optional 

other techniques, e.g. Vemurafenib (approved in 2011)63 and Erdafitinib 

(released in 2019)13,64. 

Throughout the years, different methodologies have been explicitly developed for 

enhancing the success rate of drug discovery65. The great flexibility and 

adaptability of NMR provides for qualitative and quantitative insights at each point 

of the drug progression17,65. However, NMR also has a number of drawbacks66. 

Starting from the primary screening, the usage of only a single ligand-detected 

1D technique for identifying binding fragments may prove to give erroneous 

results. Hence, it is recommended the use of at least two parallel methods such 

as STD and Water-LOGSY66. 

In the case of STD experiments, false positives or false negatives can originate 

from wrongly irradiating directly the ligand, or by not completely saturating the 

target, respectively. Interpretation errors or ambiguities can also result from 

contributions arisen by bound and unbound states in the case of Water-LOGSY 

or from abnormal relaxation series for CPMG experiments66. Furthermore, an 

inevitable consequence of using fragments in primary screening is the so-called 
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“non-specific” binding event67. A simple strategy for alleviating this issue was 

employed in the development of AZD-3839. By recording competition 

experiments using a potent known ligand for the same target, non-specific binding 

molecules were identified and excluded from further development. It was not clear 

whether a similar approach was addressed for assessment of the initial hits in the 

S64315 discovery. 

An additional key step before expensive and laborious optimisation processes of 

candidate compounds begins is a minute hit chemical-assessment; for example, 

by employing Pan-Assay Interference Compounds (PAINS) protocols68. Applying 

these filters to hits or family of hits can help in identifying fallacious binders. 

PAINS-flagged molecules can exert photo-reactivity, redox-activity and other 

undesirable chemical phenomena which can lead to non-specific biological 

activities. Unfortunately, it is also wise not to rely solely on PAINS filters. A recent 

analysis showed that many PAINS-flagged molecules had been wrongly 

evaluated by the applied filters; the study included, in fact, numerous examples 

of false negatives and false positive69. 

Ayotte et al. proposed the use of CPMG series to detect potential aggregation of 

compounds in mixtures70, in order to remove the offending ones from mixtures. 

In addition, they also pointed out that aggregation can be solvent-dependent, and 

thus a minor adjustment of the sample composition might improve the outcomes 

of screening experiments70. However, this optimisation approach can be very 

laborious and time consuming, either in the practical preparation and data 

analysis stages. 

From the analysed case studies, it appeared that analytical power of 1D NMR 

spectroscopy often was not fully exploited. Instead, the NMR data appear to be 

used solely as a binary response, probably also due to a lack of proper 

computational and data analysis tools. The data obtained from Water-LOGSY 

and STD experiments have shown to offer further quantitative information71,72. 

The SAR by Water-LOGSY, for example, suggests a scoring factor as a mean to 

identify the most exposed portion of the molecule. Assessing all data that can be 
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derived from 1D NMR experiments can eventually provide insights of the ligand 

binding pose73. 

 

Upon validation of fragment hits, the next stage is usually the exploration of 

potential binding sites on the target. Chemical shift mapping (CSM) is so far the 

most popular technique used for this task. CSM has been widely used as a 

standard for molecules that progressed into clinical phases. Nevertheless, a CSM 

analysis might drive researchers in wrong directions, and final conclusions should 

not be based on this approach only. Common errors observed in practice include 

wrongly determining what is relevant based on subjective judgments or 

misinterpretation of crowded regions of the spectra. Furthermore, in some 

instances compounds have been shown to change the pH of the solution, 

resulting in false positive CSPs66. By performing appropriate control experiments 

errors such as these might hopefully be avoided. 

Despite clear benefits shown by NMR, it has often been associated with a 

requirement for daunting and time-consuming data analysis. There may be a 

multitude of other undescribed factors, but NMR's lack of modern, more practical, 

quicker, and unbiased methods, alongside with automated data analysis routines 

has comparatively slowed the entire NMR-FBDD process, prompting a need for 

improvements in all these aspects. These improvements are fundamental so that 

molecules are designed appropriately from the early stages onward. Ultimately, 

only in-vivo and clinical trials can determine if a drug candidate has to start an 

optimisation cycle again, as exemplified by ABT-263 which induced high 

thrombocytopenia or by the unexpected side-effects of AZD-3839 that potentially 

led to the premature end of its clinical trials74. 

 

From the analysis of the three cases discussed in this chapter, it appeared that 

molecular optimisations are still guided by multiple manual moiety substitutions 

following by their chemical synthesis and re-evaluation. Although this might 

generate potential leads, it can be argued that the usage of computational 
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approaches could have accelerated the process further. Molecular docking 

studies aided the final lead generation of the ABT-199 compound; however, 

combining NMR and molecular docking can still introduce many mistakes and 

docking alone cannot be trusted (see Yu-Chian Chen for a detailed discussion75). 

In addition, scoring functions in docking protocols present a highly variable issue 

and even the newest scoring functions implemented using artificial intelligence 

(AI) could present limitations76, which may arise from incomplete or erroneous 

classification of existing experimental data; information that will be necessary for 

providing accurate scoring of succeeding experiments77. 

I firmly believe that newer chemo-informatics and AI algorithms, together with 

improved high-performance computing facilities, will replace in large scale the 

optimisation stages for FBDD and SBDD. Several algorithms can already 

complement the experimental data validation and enhance initial binding hits78. 

Whereas most algorithms are included in commercial or proprietary packages, 

such as Schrodinger79 and MOE80, others are of difficult installation or require 

user-unfriendly command-line programs, for example GANDI81, and AutoGrow82. 

Furthermore, they clearly do not replace the role of a chemist and can only assist 

in the initial design phases. 

Ideally, computational approaches should also take the biological aspects into 

consideration simultaneously. For example, the robustness of ligand for potential 

drug resistance could be taken into consideration. By doing so, multiple fields of 

pharmacology can be integrated in a way that scientists alone could not have 

attained. 

 

One question has arisen from the analysis of these study cases: when 

optimisations should stop and what can define a viable drug? Perhaps, until 

clinical trials only computational intelligence can truly help in giving an answer to 

this query. 
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By performing a simple molecular fingerprint analysis, I have identified some 

correlations in the development patterns among the three models studied. 

Comparing the Tanimoto coefficients for the three final compounds (Figs 1.5B, 

7B, 9B) I could speculate that by expanding the molecule (via growing/linking 

methods) did not improve the binding affinity (not shown). This could suggest that 

just covering the conformational molecular interaction space does not necessarily 

lead to higher affinity drugs. Fig 1.10 displays the normalised Tanimoto scores 

for the three different fragment-to-drug evolutions with interpolated optimisation 

steps. Clearly, the development of AZD-3839 and ABT-199 display a highly 

similar pattern, which is more dissimilar from S64315. An obvious conclusion 

could be that they simply differ in their optimisation protocols, but equally it could 

suggest that S64315 is still in a middle of an active evolution and multiple changes 

will occur before “converging” to the final drug. 

 

In conclusion, although only a few drugs approved by FDA have a fragment-

based trackable history that is easily accessible from the public domain data, a 

publication count over the last 5 years shows an impressive number of journal 

articles reporting on new discoveries in the pre-clinical stages in which NMR had 

a crucial role. In all, this provides for hope that in the near future new potent and 

selective drugs will become available that will be developed on a much shorter 

time scale when compared to time taken for the currently FDA approved FB-

derived drugs. 
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1.8. Figures 
 

 
Figure 1.1 NMR-aided fragment-based drug discovery (FBDD). 
Ligand-detected hit identification (A), chemical-shift mapping (CSM) binding site 

identification (B), fragment orientation identification and optimisation (C-D) aided 

by several ligand-detected NMR techniques1, mainly Nuclear Overhauser Effects 

(NOE) experiments, Inter-ligand NOEs for Pharmacophore Mapping 

(INPHARMA), and Interlined Overhauser effect NMR (ILOE-NMR), but also using 

specific labelling schemes as in the Selective Labelling STD experiment (SOS-

STD). Note that all chemical shift scales are arbitrary. 

A Common ligand-detected hit identification NMR methods and their respective 

simplified spectral appearances as manifested by recording ligand spectra in 

absence (control) and presence of the macromolecular target. (Left) The 1H-

relaxation-edited control spectrum ligand signals characterised by narrow lines, 

which broaden and consequently reduce in intensity as a result of the increased 

relaxation rate due to binding the much larger target. (Middle) In the 

WaterLOGSY experiment saturation of the bulk water is transferred via chemical 
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and dipolar exchange to the ligand. The binding event is identified by an inversion 

of the ligand signals compared to the control. (Right) In the saturation-transfer 

difference (STD) experiment, saturation of target resonances is transferred via 

dipolar exchange to the ligand. In the STD spectrum, obtain after subtraction of 

the “off-resonance” from the “on-resonance” spectrum, only the signals of the 

bound ligand are observed. B Chemical shift mapping (CSM) for detection of the 

ligand binding pockets on the target. In the 15N-HSQC spectrum of a target 

protein, peaks are commonly used as a distinctive identifying characteristic of 

individual residues. Upon titration of a small molecule at increasing 

concentrations, a ligand binding event will result in a modification of the spectral 

peak patterns, which can be easily tracked in case of so-called fast exchange. By 

assignment of the affected peaks to their corresponding residues, and optionally 

mapping these changes to the protein’s three-dimensional structure, it is possible 

to perform an evaluation of most affected residues in the potential ligand binding 

pocket (right panel, Binding). C Schematic overview of a transferred-NOE 1H-1H 

NOESY spectrum for detection of a ligand pose. In case of binding, the ligand 

takes on the NOE properties of the target (rotational correlation time, τc), showing 

strong negative NOE, i.e. positive peaks (red) revealing its ligand-bound 

conformation. In principle, protein-ligand inter-molecular NOEs could be 

observed as well; however, as the protein concentration is usually much lower 

compared to the ligand, these NOE will be (much) weaker and difficult to interpret 

(not shown). D Theoretical 1H-1H NOESY spectrum for a sample in the presence 

of two ligands. Inter-molecular NOEs peaks between molecules are enhanced if 

they bind in close proximity on the target (red peaks). 
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Figure 1.2 Usage of FBDD methods in the development of new molecules. 

A total count of journal papers from Jan-2015 to Dec-2019 retrieved by querying 

“NMR” and applying a custom filter: “Fragment based” in the database PubMed. 

N.B. Not all articles have been fully accessed to verify the pertinence to the 

subject. B Total count of New Molecular Entities (NMEs), and original biologics 

for the same range of time approved by the FDA. In green, the NME of which 

Fragments origins were derived by NMR studies. In purple, the latest NME 

derived by FBDD but of undisclosed or not sufficient public data available 

regarding the methodologies used in early stages of development. C Schematic 

division of FDA approvals, for “various” are intended small molecules and 

everything else is not an anti-body (AB). D Areas of treatment for the various FDA 

approvals NMEs and original biologics. 
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Figure 1.3 Role of NMR-FBDD methods in drug discovery. 
A Years of development for three different drugs where FBDD techniques were 

reported throughout the development. For Venetoclax development were 

adopted mostly NMR studies12, while for Erdafitinib the development history and 

adopted techniques remain unclear or undisclosed64,83. 

B Normalised score (%) of the relative usage of NMR spectroscopy as a 

technique in the discovery and development of molecules which are or have been 

under clinical studies. C Normalised score (%) of the predominant methodologies 

used in FBDD. D Normalised score (%) for the total count of the various NMR 

techniques used throughout the drug discovery process. 
Statistics were derived from publicly available resources, including databases 

and web blogs, therefore, they could include errors, inaccuracies or be 

incomplete. 

  



 46 

 
Figure 1.4 Optimisation pathway: from NMR hits to AZD-3839. 
Compound 1 represents the initially identified hit from the Water-LOGSY NMR 

study. The blue circle highlights the isocytosine aromatic proton that was crucial 

in identifying the hit from the NMR spectrum. Compounds were optimised through 

a series of crystallographic-based methods to yield the final compound 8 (AZD-

3839)43,84, yet preserving the original amidine motif (red circle) already present in 

compound 1. 
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Figure 1.5 Molecular similarities and interactions for AZD-3839 

precursors. 

A Structure representation of BACE-1 (PDB code: 4B05) and the main interaction 

between the catalytic groove (Asp32 and Asp228) and the amidine group of AZD-

3839, firstly observed in the NMR-discovered hit (black rectangle). B Molecular 

similarity (SM, Blue) “Tanimoto”, scaled MW (orange) and PSA (green) scores 

for the eight compounds on the development path of AZD-3839 (cf. Fig 1.4). 
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Figure 1.6 Optimisation pathway: from NMR hits to ABT-199. 

Hits with aromatic cores (green and cyan circles) were originally identified as 

interacting with the S1 and S2 of BCL-XL. Compounds 1, 2, 3, 4 were identified 

and optimised through NMR methodologies, whereas the latest ABT compounds 

optimisations benefited by X-ray crystallography techniques49,53,85. 
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Figure 1.7 Molecular similarities and interactions for AZD-3839 

precursors. 

A Structure representation of BCL-2 in complex with Venetoclax (PDB code: 

6O0L). Green and cyan circles indicated the aromatic motifs originally identified 

through the NMR primary screening. B Molecular similarity (SM, blue) 

“Tanimoto”, scaled MW (orange) and PSA (green) scores for compounds 3-7 on 

the development path of ABT-199 (cf. Fig. 1.6). 
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Figure 1.8 Optimisation pathway: from NMR hits to S64315. 

All compound nomenclatures are identical to those used in the original 

manuscript57. 

Compound 1a represents the initially identified thienopyrimidine core by ligand-

detected 1D NMR techniques. The green and blue circles for compound 5d 

highlight the chemical groups that gave rise to crucial NOEs for suggesting initial 

molecule binding poses57. 

  



 51 

 
Figure 1.9 Molecular similarities and interactions for S64315 precursors. 

A 3D representation of a model of MCL-1 in complex with compound 18a (PDB 

code: 6qyo). The green ellipse highlights the original thienopyrimidine motif first 

identified by an 1D-NMR screening experiment57. B Molecular similarity (SM, 

Blue) “Tanimoto”, scaled MW (orange) and PSA (green) scores for the twelve 

compounds on the development path of S64315 AZD-3839 (cf. Fig 1.8). 

 

 
Figure 1.10 Molecular similarities comparison for three case-studies. 
A Normalised similarity scores for three different fragment-to-drug developments 

with interpolated optimisations steps. The orange curve represents the ABT-199 

pathway; the green curve represents the S64315 pathway; the blue curve 

represents the AZD-3839 pathway.  
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2.1. Abstract 
 

Fragment-based drug discovery or FBDD is one of the main methods used by 

industry and academia for identifying drug-like candidates in early stages of drug 

discovery. NMR has a significant impact at any stage of the drug discovery 

process, from primary identification of small molecules to the elucidation of 

binding modes for guiding optimisations. The essence of NMR as an analytical 

tool, however, requires the processing and analysis of relatively large amounts of 

single data items, e.g. spectra, which can be daunting when managed manually. 

One bottleneck in FBDD by NMR is a lack of adequate and well-integrated 

resources for NMR data analysis that are freely available to the community. Thus, 

scientists typically resort to manually inspecting large datasets and relying 

predominantly on subjective interpretations. In this chapter, I introduce CcpNmr 

AnalysisScreen, a software package that provides computational tools for 

automated analysis of FBDD data by NMR. I describe the initial steps and tools 

required for the hit identification analysis, starting from how data and metadata 

can be imported and loaded into the main program for the analysis. I then outline 

how the quality of collected reference spectra can be quickly evaluated using a 

new dedicated software module. Finally, I illustrate tools I implemented for 

reducing the amount of time required for the optimal design of NMR samples for 

screening purposes, which will facilitate the successive data analysis. 
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2.2. Introduction 
 

Over the years, the versatility of NMR as a non-destructive and adaptable 

analytical tool has encouraged the development of multiple fragment-based drug 

discovery (FBDD) approaches by NMR86. Nowadays, it is possible, albeit not 

frequently done, to conduct the entire drug discovery process by NMR (Fig. 1.1). 

However, as I have shown in chapter 1, the review of the latest FDA approvals 

and currently tested drugs in clinical studies indicates a substantial contribution 

of the various NMR-based techniques to the entire drug discovery process. 

Assuming the target of interest has been already identified, hit identification is the 

first step in the drug discovery process. This can be achieved by NMR using a 

number of common ligand-detected NMR methods86, namely 1H-relaxation-

edited (commonly called 1H), Saturation Transfer Difference (STD)87, Water-

LOGSY88 (Fig. 2.1A), and relaxation experiments (T1ρ, T2). In addition, a number 

of complementary techniques, i.e. Target Immobilised NMR Screening (TINS)89, 

Spin Labels analysis90, Paramagnetic Relaxation Enhancement (PRE)91 and 19F 

experiments92 have been successfully used in the primary hit identification 

process. In the next chapter, some of these experiments will be discussed in more 

detail. 

In spite of all the powerful NMR experiments used for NMR-based FBDD93, 

inefficient evaluation of the primary hit screening data can disrupt or postpone 

any of the later phases, such as binding site identification and hit optimisation. 

Primary screening is routinely performed manually by comparing spectral 

information derived from thousands of STD, WaterLOGSY and relaxation-edited 

experiments. Manual analysis of these data inevitable results in human errors or 

subjective inconsistencies, in addition to problems arising from commonly 

occurring experimental errors, such as improper alignment and scaling of spectra. 
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In this chapter I introduce the CcpNmr AnalysisScreen software programme, or 

AnalysisScreen for short, which is part of the Analysis version-3 software suite28 

(Fig. 2.1). 

Analysis version-3 is written in Python 3, a powerful object-oriented programming 

language. Among the major benefits of Analysis version-3 package is the ability 

to use numerous third-party software modules and scientific libraries that allow 

users to exploit complex data manipulation in addition to the already diverse 

capabilities of Analysis version-3, thus making it an excellent software and 

methodology development platform28. 

AnalysisScreen maintains the same organisational framework and working areas 

of CcpNmr AnalysisAssign, called modules. Modules are containers designed to 

visualise, inspect and perform actions on all varieties of data the project might 

have; they are discussed throughout the chapters. Furthermore, AnalysisScreen 

presents a dedicated version of the program suite, which presents an additional 

section with functionalities in the main menu bar. These functionalities allow for 

direct access to main screening tasks implemented in the software yet maintain 

the strategic functionalities of AnalysisAssign (Fig. 2.1B-D). 

In this section, I describe the first three fundamental steps and relative 

computational tools I designed and implemented for performing the ligand-

detected screening analysis. Firstly, I introduce a new data-loader mechanism, 

which allows to parse and a load large quantity of data and metadata that are 

normally required for screening commercial libraries. The creation of a generic 

data-loader was essential as each laboratory employs different data structures 

for storing or representing their spectral information and associated metadata. I 

then discuss the benefits of using the properties of the principal component 

analysis (PCA) for assessing spectral quality before carrying out more advanced 

data manipulation steps. The software also includes dedicated graphical tools for 

easy inspection, analysis and selection. Finally, I illustrate a strategy for reducing 

the expensive NMR acquisition time and further spectral deconvolution 
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requirements, by the implementation of a mixture generation tool. This tool aids 

the design of samples composed of multiple molecules, in a way that NMR 

minimises spectral peak overlap in order to avoid the appearance of false 

positives and false negatives in later stages of analyses. The core algorithm was 

originally described by the NmrMix authors94 and remained unaltered, but several 

limiting factors and crucial enhancements were included, such as alleviating the 

cumbersome reliance on external software packages for the creation of input data 

as well as a substantial optimisation of speed and extendibility. 

CcpNmr AnalysisScreen aims to be the ultimate NMR platform capable of 

handling multiple tasks and all routines currently available and be flexible enough 

to easily include any new and emerging methodologies needed for performing 

the fragment-based drug discovery analysis by NMR in a way that can tackle a 

variety of user’s workflows and requirements. 

 

Code Contributions 

The development of all modules which I designed, implemented and included in 

AnalysisScreen was made possible thanks to the previous work by the CCPN 

team, such as Dr Fogh, Dr Boucher, Dr Ragan and subsequentially by Dr 

Brooksbank. They have built the underpinning top core objects and frameworks 

(Fogh, Ragan, Brooksbank) of CcpNmr Analysis (Fig 2.4), including the generic 

modules such as the NMR spectra parsers (Boucher), the OpenGL module 

needed for the visualisation of spectra (Brooksbank) and the core algorithms for 

the PCA module (Ragan).  

From the 31st September 2016 until 31st May 2020, there have been more the 

5000 code commits on the CcpNmr Version Control repositories (BitBucket), 

where the top two committers were Edward Brooksbank and myself with 3120 

and 1424 commits, followed by G. Vuister (362), W. Boucher (300), R. Fogh (220) 
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and T.J. Ragan (65). 

My commits included all newly developed algorithms and graphical user interface 

contributions, either for AnalysisScreen and general development, for a total of 

67800 new Python lines, including at least 115 new Python files. 
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2.3. Materials and Methods 
 

 Materials 
 

Datasets 
 

Two kinds of datasets were used for testing the importer, decomposition and 

mixture module. The first type was composed by synthetically generated spectra 

and the second was kindly provided by an industrial collaborator, referred within 

the text as “experimental”. 

The simulated datasets were generated using in-house written scripts (macros) 

in Python, employing the AnalysisScreen Python environment. Using these 

macros, I was able to create an arbitrary number of 1D spectral peaks at random 

positions, heights, and linewidths. 

Spectra contained random peaks in the aromatic regions (6-8 ppm), water signal 

(4-5 ppm) and solvent/ aliphatic signals (4-0 ppm). Each spectrum was linked to 

a virtual substance or sample, containing random set properties; including 

SMILES, concentrations, pH, chemical names, etc. All simulated datasets and 

metadata generated for this work were used only for testing purposes and did not 

contain any biological significance. 

Other spectra, used for testing the decomposition module, were retrieved from 

the BMRB database95. 

 

The experimental dataset consisted of a library of 1760 small-molecule 

compounds, for which a processed one-dimensional reference spectrum was 

provided in Bruker format. From this library, 1548 fragments had been used to 

create 310 samples containing four to five, randomly selected small ligands at 

~200 μM each and an unnamed target at ~4 μM. A processed STD spectrum for 

each sample was provided. Although all the crucial data needed for the 
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assessment of the AnalysisScreen routines was available, the biological 

information and detailed experimental conditions were confidential and not 

shared with us. 

 

 Methods 
 

Computational Libraries 
 

AnalysisScreen is written in the Python 3 programming language. The large 

number of external packages and scientific libraries used within the software are 

described below by functionalities and usage. 

 

Importers and exporters 
 

Pandas has been used extensively for importing and exporting metadata32. 

Pandas is a Python package providing fast, flexible, and expressive data 

structures for tabular data. The library provides integrated, intuitive routines for 

performing common data manipulations and analysis on such datasets32. Files 

can be imported in AnalysisScreen in the format xls, whereas, they can be 

exported in several formats, including xlsx, xls, csv, tsv and json. 

 

Algorithms and data analysis 

 

Synthetic datasets, implemented algorithms, routines and macros, were written 

using open-source scientific libraries such as Numpy33, SciPy34 and Sci-kit 

Learn96 which are included or have been added in the main CcpNmr environment 

for the specific AnalysisScreen development. NumPy is the fundamental package 

for scientific computing with Python. It adds support for large, multi-dimensional 

arrays and matrices, along with a large collection of high-level mathematical 
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functions to operate on these arrays. Several critical routines have been speed-

optimised using the Numba functionalities97. Numba is a powerful tool that 

translates Python code at runtime using the LLVM compiler98, improving the 

execution time by several orders of magnitude. 

 

Graphical user Interface 
 

PyQt599, PyQtGraph100, Matplotlib101 and Seaborn102, have been employed for 

plotting and analysing results as well as for building custom widgets into the main 

programme. 

Widgets represent the building blocks for the final creation of complex modules 

and pop-ups that are described in this work. They were created mainly using 

PyQt5, which is a Python binding of the cross-platform GUI toolkit Qt. 

Matplotlib and Seaborn have been largely used for plotting one-dimensional 

spectra during the testing process. PyQtGraph100 has been used to create custom 

plots for the decomposition module. 

 

PCA 

 

Principal component analysis, PCA, is a linear conversion of multiple 

dimensionalities parameters into a lower dimensional space yet maintaining the 

maximum amount of information about the original input103. 

PCA tools implemented in AnalysisScreen are built using core routines previously 

developed in our laboratory as part of the development of CcpNmr Analysis 

Metabolomics. However, I have designed and developed a graphical user 

interface for facilitating the analysis of large datasets typical for screening. 

 

For analysing the experimental dataset, the entire spectral width was included (-

14 to +14 ppm) and the following parameters were used: “Descaling” was 
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enabled; the normalisation method was selected to “PQN”; the centring mode 

was set to “mean”; finally, the scaling method was set to “Pareto”. 

 

IDE 

 

The CcpNmr program is developed using the integrated development 

environment (IDE) called PyCharm104. The professional edition provided me 

several precious features and tools needed for the “every-day” code writing, code 

analysis, profiling, debugging and unit testing. Furthermore, it provides a 

seamless integration with the major version controls, such as GitHub, which 

allowed the group to share the code base efficiently and, to smoothly resolve 

coding conflicts when occasionally we worked simultaneously on common parts 

of the project (such as GUI widgets). 

One of the most useful and used tools of PyCharm in the development of Screen 

was the CProfile Snapshot. As initially the CcpNmr programme was built to work 

with a limited amount metadata at the time, e.g. less than 10-20 spectra, it failed 

to load and/or handle thousands of spectra and metadata associated with 

industrial screening trials, or to perform algorithms on those spectra in a 

reasonable amount of time. The statistics and Call Graphs within PyCharm 

allowed me to inspect and improve/optimise the major bottlenecks present in the 

code, for example by replacing/reducing nested “for/while loops” with vectorised 

operations. 

 

Spectral mixtures 

 

The generation of spectral mixtures was implemented using the simulated 

annealing (SA) algorithm described by Stark et al. in the NmrMix software94. 

Although the crucial simulated-annealing algorithm steps were unaltered as in the 

original package, it has been speed-optimised. It also includes the ability to 

preserve the best-scored mixtures and includes an option for their use as input 
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for subsequent generations, while retrieving them if ameliorated solutions could 

not be achieved. 

The simulated annealing is one of the most common heuristic methods for 

optimising model parameters. In general, the method is characterised by 

searching optimal solutions through several iterations, starting from an “Initial 

Temperature” to a “Final Temperature”. For each iteration, a solution is randomly 

generated, and in the case of the mixture generation implementation, spectra are 

randomly mixed in different pools and total scores are then calculated using the 

original NmrMix protocol94. Broadly speaking, new mixtures will be accepted if a 

better solution is obtained (a lower score is found) and rejected if a worse solution 

is encountered (a higher score is found). However, not favourable mixtures are 

still maintained in the initial phases, but stricter discarded while the process 

continues or in the algorithm terms: “while the Temperature cools down”. This 

mechanism allows to reduce the chances of being trapped in a local minimum. In 

AnalysisScreen, the probability of rejecting or accepting is fine-tuned by the 

“Temp Constant” parameter.  

The total score is given by the summation of single scores for each component94. 

The single component score is based on the proportion of peaks in the spectrum, 

so that overlaps in spectra containing large quantity of peaks are weighted more 

compared to spectra with smaller number of peaks. It is defined as: 

 

Sc = k!!
"!

 

Eq. 2-1 

Where Sc is the single score for each component, k is a scaling factor set to 1.0 

as default; Oc is the overlap count, two peaks are considered as overlapping if 

the difference in their chemical shifts are below a threshold value; Pc is the total 

peak count for the spectrum. 

Whereas, the total overlap count and total score is simply given by the sum of the 

single scores.
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Mixtures calculation parameters in the experimental dataset 

 

The total number of mixtures created was 309. The threshold value for 

considering two peaks overlapped was set to 0.01 ppm. The region of interest 

was set between 10.0 to 5.0 ppm. Other SA parameters were: Initial 

Temperature=1e6; Final Temperature=0.01; Max Steps=1e6; Temp 

Constant=50.0; Cooling Method=Linear; number of iterations=1e6. 

Ultimately, spectra were divided in 1, 4 and 10 groups and mixtures were re-

generated using the same settings as described above. 
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2.4. Results and Discussion 
 

 Parsing and importing NMR data and metadata 

 

Typically, an NMR based FBDD screening experiment requires the handling of a 

large volume of spectral data and metadata. To address this problem, I included 

in AnalysisScreen the option to use spreadsheets in an Excel format as a data-

loader mechanism, alongside an improved and faster manual loading of multiple 

spectra, compared to earlier testing versions. The programme can natively read, 

parse and load files with multiple sheets (Figs 2.1A-C), where column-based 

keywords define the relevant pieces of information. 

Upon parsing and importing into AnalysisScreen, commonly used parameters 

and information associated within a sample, e.g. different experimental 

conditions, are immediately available within the sidebar of the AnalysisScreen 

programme (Fig. 2.3A). All metadata is retained with the relevant CcpNmr object, 

such as experiment types of spectra or SMILES and other chemical properties of 

molecules, named Substances in the programme nomenclature. All objects used 

for screening analysis can also be graphically inspected, edited or deleted using 

dedicated pop-ups (Figs 2.3B-D). 

To further simplify the data analysis preparation, the data loader also includes an 

automatic path recognition ability so that specifying the absolute spectral data 

locations is no longer required (Fig. 2.1A). In addition, spectra can be 

automatically grouped into so-called SpectrumGroups; these are user-defined 

collections of spectra, designed in such a way that multiple routines can be 

applied uniformly to all their items (Fig. 2.3C). SpectrumGroups follow the same 

philosophy of single spectra when it comes to visualisation, and can, therefore, 

be displayed and manipulated as single entities. Samples, SampleComponents, 

Substances, SpectrumGroups and SpectrumHits objects are internally 
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connected, forming the underpinning core objects of the AnalysisScreen 

programme (Fig. 2.4). 

 

 Assessment of spectral quality by PCA decomposition 

 

Commonly, NMR primary screening studies rely on a collection of one-

dimensional spectra acquired for each compound in the screening library, called 

the reference spectra or reference library. The reference library is typically 

recorded in an automated fashion and its data are used throughout the analysis. 

Therefore, ensuring its suitability by filtering out any potentially compromised 

spectra is essential. Nonetheless, inspecting spectra individually for large 

libraries can be a time-consuming task. 

Principal Component Analysis, PCA105, can be used for the assessment of 

spectra, without pre-knowledge of spectral line shapes or other peculiarities. 

AnalysisScreen offers an integrated PCA decomposition module, capable of 

effortlessly performing a PCA on large libraries. 

I have initially tested the PCA routines using four regular spectra along with the 

same set but presenting post-processing errors, such as baseline distortions or 

offsets (Fig. 2.5A). As expected, the resulting first two principal components 

showed a large variance between the original unmodified spectra clustered in a 

region around -2 PC1 and -2 PC2, and their modified versions, which appeared 

as severe outliers with a PC1 distance up to 200 units (Fig. 2.5B). After applying 

a newly designed baseline correction algorithm, (discussed in chapter 4), spectra 

were re-assessed by a new PCA analysis (Figs. 2.5C-D). From the new plot, it 

was clearly visible a great improvement on the overall scoring as outliers 

vanished and components were clustered in a close proximity to each other (Fig. 

2.5D). The promising outputs suggested that the PCA analysis could be applied 

to experimental datasets as a quick evaluation of spectral artefacts and other 

post-processing distortions. 
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The decomposition module was then employed for inspecting the large 

collaborator dataset, prior to the screening analysis which will be discussed in the 

chapter 5. 

Figure 5 displays the result of a PCA analysis performed on a SpectrumGroup 

consisting of 1760 experimental reference spectra. The result of this study 

showed a high variance dispersion among the first two PCA components, 

enabling quick identification of any outliers. Intriguingly, I could identify several 

groups of spectra that displayed similar processing defects or other spectral 

imperfections (Fig. 2.5, sections b, c and d), such as phasing artefacts, 

inadequate solvent suppression or even the absence of signal data all together. 

Also, very high values of the Q-Score, a metric commonly used for evaluating 

variations outside of the PCA model103, easily identified most of the irregular 

spectra (Fig. 2.7A). The module also provide the T2-Scores outputs, a metric used 

for evaluating variations inside of the PCA model103 . However, this information 

was not of particular relevance for this analysis. By plotting the T2-Scores,  

outliers were not clearly located in a particular region, but scattered across the 

sigmoidal curve therefore, I couldn’t express a clear conclusion (Fig. 2.7B). 

 

I carefully designed the decomposition module graphical user interface in such a 

way that it includes multiple features, enabling users to perform a PCA analysis 

easily and in the shortest time possible (Fig. 2.8A). Either spectra or 

SpectrumGroups can be loaded via drag and drop from the sidebar; by doing so, 

results become immediately and automatically available in the tabbed area 

below. In the first tab is shown as a scatter plot the PCA output for the loaded 

SpectrumGroup. 

Each data-point in the PCA space is linked to its corresponding spectrum, so it 

can be easily accessed, inspected, removed from the project, or corrected using 

other tools such as pipes (discussed in the next chapter) present in the package. 

Successive tabs display principal component vectors, as a 1D plot (Fig. 2.8B) 

and the global variance, as a scatter plot (Fig. 2.8C). Furthermore, the module 
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allows the possibility of creating new simulated spectra from PC vectors or export 

the various scores in multiple formats for extended analysis (Fig. 2.8D). 

 

 Generation of spectral mixtures with minimal overlaps 
 

Following the quality assessment of the reference library, its reference spectra 

form the basis for generating mixtures on the basis of their peaks. In fact, to 

reducing the experimental resources required for NMR-based screening, i.e. 

samples, NMR time, etc., a common approach is to analyse several compounds 

simultaneously against a target in a so-called mixture, which should be carefully 

designed to minimise spectral overlap. Manually generating random mixtures can 

result in overcrowded spectra, which are difficult to interpret, error prone and 

time-consuming when it comes to deconvoluting single signal entities to identify 

possible binders. AnalysisScreen includes optimisation tools that allow the user 

to create and edit mixtures, thus minimising spectral overlaps. The core engine 

of the AnalysisScreen mixtures module uses the powerful NmrMix simulated 

annealing algorithm94. However, I significantly boosted the execution speed of 

the procedure by defining more “isolated” Python functions in simpler numeric 

terms and decoupling them from the generic module; this allowed me to employ 

the powerful toolkit provided by the Numba package. Numba, therefore, could 

convert “on-the-fly” the Python routines to an optimised machine code using the 

LLVM compiler library98,106.  

The mixture generation tool also guarantees that mixtures and scores are 

internally preserved during all iterations and eventually the best-scoring solutions 

are presented to the users. AnalysisScreen can create mixtures de-novo starting 

from reference spectra, but it can also be used to score existing mixtures, such 

as the one provided by our collaborators. The latter was generated randomly 

without any further optimisation. 
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I have initially tested the algorithm using a simulated dataset consisting of 1000 

spectra, with randomly generated peaks. Spectra were grouped in 100 random 

mixtures of 10 components each. Although the original mixtures were created 

randomly, some mixtures displayed very overcrowded regions (Fig. 2.9A). In 

contrast, using the mixture generation tool resulted in mixtures that displayed a 

substantial reduction of peak overlaps (Fig. 2.9B). A further analysis of the initial 

results showed that the first randomly generated mixtures presented scores in 

the range of 4 to 6, and outliers over 10 (Fig. 2.10A). Scores, defined as the 

summation of the total mixtures scores (see Methods and Eq. 2.1), were 

substantially improved from a total of 515.46 to 468.21 by using a setup that 

involved ten successive iterations (total score graph not shown). Fig. 2.10 

illustrates the optimisation progress, where both the median (“-” symbol) and 

mean (“x” symbol) were below the control experiment, 5.0 to 4.7 for median and 

5.2 to 4.7 for the mean. A further optimisation was also performed starting from 

the finalised mixtures. The total overlap score was improved to 451 (total overlap 

graph not shown), and more minimal overlapping mixtures were found, however, 

the scores distribution was slightly wider than the previous run. This might be 

caused by running the optimisation using different algorithm parameters, such as 

the probability of acceptance higher intermediate scores. 

As well as the score, AnalysisScreen also reports the total overlap score per 

mixture and component. The analysis of this dataset showed a reduction in the 

total overlap score from 899 computed for the control, to 846 for the first run and 

834 to the final optimised set (Fig. 2.10B). 

 

Following the validation of the algorithm using simulated spectra, the 

experimental library of compounds and the spectral reference data were used to 

generate new experimental mixtures, and these were compared to the previously 

manually composed ones. This library consisted mainly of aromatic compounds; 

therefore, the resulting NMR spectra were characterised by crowded downfield 

regions around 7 ppm. Furthermore, the PCA analysis of the reference spectra 
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of this library revealed a non-optimal solvent suppression in the upfield region 

(Fig. 2.6). Chemical shifts positions were therefore considered only in the 

aromatic regions, in line with the collaborator preferences. 

I assessed the mixture generation tool with an initial 1000-iterations calculation 

and calculated the total overlap score for each iteration (Fig. 2.11A). The 

evolution of the simulation shows the pattern of this stochastic algorithm, with the 

overlap score reaching several minima just above a value of 1250, which is 

notably better than value of 1381 obtained for the original randomly created 

mixtures. However, some iterations displayed considerably inferior values; those 

solutions were obviously discarded. To assess the influence of the size and the 

nature of the dataset, I divided our original input into either four or ten random 

SpectrumGroups and performed the calculations followed by joining the results 

in a single clustered output. This simple strategy showed a further progressive 

reduction in total overlaps and scores (Figs 2.11B-D, 2.12A-B). Although this 

result is somewhat counterintuitive, I speculate that by introducing four or ten 

random groups, I have increased the overall randomness of the sampling 

algorithm with respect to relevant spectral regions of interest. Nonetheless, the 

findings demonstrated the importance of running a large number of iterations to 

establish an optimal mixture, rather than relying on a few single individual 

optimisations. Using the automated approach, significantly optimised mixtures 

were generated when compared to the original randomly generated one. 

Importantly, I find both a shift to lower values in the distribution of the scores of 

each mixture as well as a reduction in the number and lowering of the most poorly 

scoring mixtures, i.e. those with the most problematic overlap. It is to be expected 

that the latter represent the most challenging mixtures in the analysis of the data 

(as discussed in chapter 5). 

 

From a visual inspection of different mixtures outputs was possible to notice a 

large degree of overlap for the manually (randomly) created mixtures (an example 

of such mixture is shown in Fig. 2.13A), whereas only medium (~2.5 score) or no 
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overlap was observed for other mixtures that were automatically generated and 

optimised (Figs 2.13B-C). 

 

In addition to the improvements to the core implementation of the algorithm, it is 

the newly designed graphical interface that affords for major benefits and usability 

thus truly enabling the power of the algorithm for the creation of quick results that 

can be immediately transferred to the wet lab. 

Starting with the setup, a full set of user-adjustable parameters is available in the 

Mixture Generation pop-up; this also includes direct access to a built-in peak 

picker algorithm. The dedicated section provides a list of pre-set solvent regions 

(in the 1H ppm scale) that can be used as a reference for defining custom regions 

of exclusions from the calculations (Figs 2.14A-B). After the process is 

completed, results can be easily inspected and edited within an interactive 

module, called Mixture Analysis (Fig. 2.14D). The driving element displayed in 

the module is the main scoring table. Each selection controls the right part of the 

window where a series of tabs display relative information regarding the mixtures, 

and which allow for a dynamic inspection of spectra within a mixture. 

A summary of the 2D molecular structures and other properties is also available 

as dedicated tabs (Figs 2.15A-B), which allows for a manual assessment of 

mixtures from the chemical point of view. Most importantly, the module allows the 

user to manually edit the final mixtures by simple drag-and-drop operations. This 

tab also indicates a single score for each component thus allowing the most 

overlapping item to be identified and the mixture to be modified accordingly. 

Obviously, this could potentially be counterproductive for a large dataset. For this 

reason, an extra optimisation module is present (Fig. 2.15D). The module allows 

to perform a new optimisation run starting from the current mixtures; the user can 

subsequently accept or reject the newly created mixtures.  
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2.5. Conclusions 
 

With numerous techniques developed over the years, NMR has been invaluable 

in all stages of FBDD leading to promising drug-like molecules107. 

 

The versatility of NMR spectroscopy has made it possible to tackle all aspects of 

drug discovery, with the 1D primary screening the most employed technique of 

all available possibilities (cf. chapter 1)86. However, NMR data analysis, 

especially when containing a large number of experimental spectra that need to 

be examined, can be daunting and time-consuming. The vast amount of data 

generated for each screening trial and the lack of freely available software 

capable of dealing with this data leaves scientists setting up and repeating 

tiresome operations that could inadvertently lead to human errors. Moreover, 

users might rely only on qualitative assessments, which can further increase the 

probability of misinterpreting the data. In this chapter, I introduced CcpNmr 

AnalysisScreen, a software developed specifically for analysing fragment-based 

drug discovery data derived by NMR spectroscopy. 

 

AnalysisScreen is able to cope with very large datasets, with a magnitude of tens 

of thousands of one-dimensional spectral entries and associated metadata, 

including projects with over 1 million peaks, providing fast and reproducible 

results. This was made possible by optimising the underpinning core 

functionalities of the main package CcpNmr Analysis, which was originally 

designed for dealing only with a limited number of spectra, typically necessary for 

macromolecules assignments28. The design and creation of a MS Excel reader 

has further enhanced the metadata handling capabilities of AnalysisScreen (Figs 

2.2-2.3). 

I have shown the utility of performing PCA analysis on large datasets and 

discussed the graphical tools I have designed and included in the software. 
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Indeed, by using the decomposition module as a quick quality control method, 

entire reference spectral libraries can be evaluated before performing the 

screening analysis, thus alleviating using potentially compromised spectral data 

(Figs 2.5-2.8). 

 

Following the acquisition of reference spectra for each compound in the library, it 

is a common practice to prepare samples containing a combination of 

components, usually in cocktails of 5-10 molecules6. Although this procedure 

might save NMR time as well as reducing the amounts of target protein required 

by generating and collecting data for fewer samples, often it results in an 

increased analysis time for data analysis. This increased data analysis time 

originates from the need of deconvolving single signal components from crowded 

spectra or worst, the necessity of re-performing the entire screening trial with 

fewer components per mixture, maybe to the point of a single compound at the 

time. 

In order to overcome this problem, I have included in the package a tool to create 

automatically spectral mixtures that allows to minimise the total overlap. The tool 

uses the simulated annealing algorithm as introduced in the NmrMix 

programme94. It enabled me to create mixtures directly from large simulated and 

experimental datasets, that presented a significant reduction in spectral overlaps 

compared to randomly manually created pools (Figs 2.9-2.13). Afterwards, I 

discussed graphical tools I designed and implemented for the generation and 

optimisation of mixtures within the AnalysisScreen package aided to increase the 

productivity compare to the original software NmrMix (Figs 2.14-2.15). 

From a programmatic point of view, both for the mixture generation as well as the 

decomposition module, it has been crucial to separate the development of the 

core algorithms from the GUI routines. Thus, new filters and scoring functions 

could be easily added to the original algorithms and together this setup ensures 

the future maintainability of the platform. 
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An example of a future enhancement for the mixture generation algorithm will be 

the introduction of scoring functions based on chemical properties of the 

compounds in the mixture, such as chemical structural diversity or pKa. The latter 

is essential in determining possible adverse reactions among the compounds 

which could lead, for instance, to molecular aggregation, or to a series of other 

issues that ultimately might give the rise to spectral artefacts or fallacious outputs 

in the subsequent data analyses. 

In the next chapter, I discuss the common NMR 1D screening methods and the 

software architecture which has been developed for assisting in the analyses of 

spectra derived by these techniques.  
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2.6. Figures 
 

 
Figure 2.1 CcpNmr Analysis Version 3.0. 

A Main window for AnalysisAssign 3.0, standard application for Analysis version-

3. B Main window for AnalysisScreen 3.0; an additional menu entry present in 

this application is highlighted by the red rectangle. C Main menu listing 

functionalities for AnalysisAssign. D List of extra functionalities available for 

AnalysisScreen. 
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Figure 2.2 Excel file loading examples. 
A Example of an excel file the program can read, parse and load. Files need to 

include the words “Sample” or “Substance” in the sheet names to activate 

AnalysisScreen reading capabilities. Spectra path are automatically recognised 

by only providing the spectrum name in the relative cell. B Substance, can contain 

metadata associated with small molecules, including the relative spectrum path 

for the processed spectrum used as references for a screening trial. The 

highlighted red column header indicates the mandatory field. C Sample Excel 

sheet; these sheets contain all metadata associated with particular samples and 

their components. For example, in a screening study the sample might contain 

multiple spectra recorded in different experimental conditions or experiment 

types. 
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Figure 2.3 CcpNmr AnalysisScreen sidebar and various pop-ups. 

A Screenshot of the sidebar state after parsing and loading an Excel file 

containing spectral metadata. Objects are automatically created and are listed on 

various branches. The regex-enabled search widget (blue rectangle) allows for 

quick scanning of project metadata through the tree, an essential feature when 

handling several hundred entries of a typical NMR screening dataset. B Small 

molecule metadata are stored into the CcpNmr software as Substances. 

Substances are a representation of chemical properties of the reference 

compound. They can be visualised and edited in the Substances pop-up. If 

SMILES are provided, molecular structures are also shown in this window. C The 

Samples properties pop-up enables users to insert and edit information regarding 

particular experimental conditions, such as concentration and pH or other sample 

identifiers. D The SpectrumGroup editor pop-up allows users to quickly and easily 

group spectra using drag-and-drop features. SpectrumGroups can be displayed 

as single entities in displays or be used as input data for several tools throughout 

the programme. 
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Figure 2.4 CcpNmr core objects used in AnalysisScreen. 
Core objects ensure data is accurately maintained across multiple invocations of 

the programme; furthermore, the linkage among various items creates a robust 

data-access strategy for implementation of the data analysis routines available in 

AnalysisScreen. 
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Figure 2.5 PCA on a testing BMRB dataset. 

A  1D spectra overlays for acetate (dark blue), alanine (blue), lactate (green), 

isoleucine (purple), downloaded from the BMRB database95 and showing a 

baseline offset. The standard and expected baseline is represented by the red 

dotted line. B First two principal components (PC1, PC2) of the PCA for the same 

spectra (shown in A) together with the original unmodified references used as 

controls (without any baseline distortion, spectra not shown in A). The blue 

square indicates the control spectra cluster, composed by the original spectra 

and presenting the same colours as the modified spectra (insertion box); 

whereas, the remaining components represent the modified spectra which 

appear in the PCA plot as outliers. C Spectra after applying a baseline correction 

algorithm. D First two principal components (PC1, PC2) of the PCA recalculated 

after applying the spectral correction together with controls. Values for PC1 and 

PC2 for all spectra are now clustered in close proximity, showing minor variance 

between before and after the correction. 
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Figure 2.6 Principal component analysis (PCA) of 1760 reference spectra. 

Most of spectra were uniformly grouped around PCA origins, (blue rectangle, 

panel a); for spectra in the region 3 < PC1 < 7 (purple rectangle, panel b) large 

phasing errors were observed; the spectra in the region PC1 > 8 (green rectangle, 

panel c) appeared highly distorted, probably due to inadequate solvent 

suppression. Finally, spectra presenting only noise were discovered in the region 

indicated by the red square (panel d). 

  



 80 

 
Figure 2.7 PCA Q-Scores and T2-Scores for experimental dataset. 

A PCA Q-Scores. Q-scores sorted in descending mode, showing the last 60 

values for the experimental dataset. The highest scores were associated with 

spectral issues, including solvent suppression distortions; highlighted in green 

and red, some examples showed in Fig. 2.6 (panel c and d). A T2-Scores for the 

dataset. Previously identified outliers were found across the curve and not in a 

specific range as in the case of the Q-Scores curve. 
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Figure 2.8 Decomposition module. 

A Main window for the PCA module, the left panel displays the available settings 

for performing the calculations; top area is the input data section where spectra 

or a SpectrumGroup can be dropped to start the machinery; the central area 

displays PCs scores. The pink box shows a selection command and, the adjacent 

context menu shows possible actions that can be performed on selected items. 

B Screenshot of the PC vector tab display; this section allows to navigate through 

all resulting data generated by the PCA analysis. The first principal component 

for the experimental dataset is displayed; the poor solvent suppression is clearly 

noticeable. C The PCA variance tab; first few components show the maximum 

variance for the dataset. D Extra functionalities available in the module for an in-

depth analysis of the datasets. 
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Figure 2.9 Mixtures generation on simulated datasets. 
A Randomly created mixture of 10 simulated spectra presenting several regions 

of overlapped peaks (red spectra and arrow-pointed). B An optimised mixture 

recreated after 10 run of simulated annealing calculation. Only one overlapped 

region was recorded for the ten spectral pool. 
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Figure 2.10 Mixtures analysis on simulated datasets. 

A Box plots of the score distributions for 100 mixtures, for the control (blue), after 

10 iterations for run 1 (red), and after an optimisation on the run 2 (green). The 

rectangular boxes represent the interquartile range (IQR); the “X” symbol inside 

the IQR represents the mean; long horizontal bar in the middle of the dataset 

represents the median (second quartile, Q2), the area below and above indicates 

the first (Q1) and the third quartile (Q3). Q1, Q2 and Q3 are also referred as 25th, 

50th, 75th percentile. Finally, circles indicate outliers in the distributions. The 

maximum is calculated as Q3 +1.5*IQR and minimum as Q1-1.5*IQR108. B 

Overlap count represented as a standardised distribution described as 

previously. 
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Figure 2.11 Mixtures analysis on experimental datasets. 

A Evolution of the total overlap score over 1000 simulated-annealing iterations of 

the mixtures generation algorithm using 1548 library reference spectra as input 

data. The red line represents the total overlap score derived from manual 

randomly created mixtures. B Total overlap scores and overlap counts for manual 

randomly created mixtures (orange), automatically generated and optimised 

using the whole dataset as input (yellow) or automatically generated on the basis 

of 4 (green) or 10 groups (brown). C Statistical scores for the various groups, 

indicating the “worst” as the mixture presenting the highest score; the standard 

deviation (std) and average (mean). D Overlaps statistical analysis described in 

the same terms as B. 
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Figure 2.12 Mixtures performance summary on experimental datasets. 

A The box plot summaries the score distributions for 310 mixtures manually 

created (dark red) and for 309 (+1 empty) mixtures after subdividing the dataset 

in 10 groups and performing a 1000 iterations (purple). B Total number of 

overlaps for the original randomly created mixtures and for the new optimised 

mixtures generated by the mixture generation module. Overlaps and other 

mixture scores were calculated as in NmrMix94. 
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Figure 2.13 Experimental mixtures examples. 

A Example of a highly overlapped mixture, manually randomly created, with a 

calculated overlap score of ~16. B Example of a medium overlapped mixture, 

automatically generated and optimised, with a calculated overlap score of ~2.5; 

C Example of an optimal mixture, automatically generated and optimised, with a 

calculated overlap score of 0. Arrows indicates regions of maximum overlaps. 
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Figure 2.14 Mixtures generation setup and graphical tools. 
A Graphical user interface for the main calculation pop-up window. B The current 

pop-up allows users for a fine adjustment of simulating-annealing algorithm 

parameters. The figure shows the parameters used for running the first 

calculation on the simulated dataset, 1000 steps of randomly created mixtures 

times 10 total iterations. C Mixture analysis module showing the newly generated 

mixtures. The selected tab, Components peaks shows a custom peak table, and 

the 2D structure for the molecule under examination. 
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Figure 2.15 Mixtures analysis graphical tools. 

A Analysis module showing the 2D structural representation of molecules in the 

currently analysed mixture. B Chemical property summary tab. C Mixture editor 

tab. Single component name and relative score facilitates the identification of 

crucial unfavourable elements in the mixtures; library manipulation is possible via 

drag-and-drop features. D Mixture optimisation module; the left-side panel shows 

various settings and the right-side panel shows the predicted new scores. 
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3.1. Abstract 
 

Fragment-based drug discovery, FBDD, is one of the key methods in the early 

phases of drug development for identifying drug-like candidates. NMR 

techniques, in particular 1-dimensional (1D) ligand-detected methods, have 

mostly been employed in the early stages of drug discovery. However, the data 

analysis can be often daunting, and limited freely available software packages for 

qualitative and quantitative spectral assessment is one of the current bottlenecks 

in FBDD. In this chapter I present the development of screening tools that were 

included in the CcpNmr AnalysisScreen. Here, I discuss the pipeline architecture, 

and validation of core algorithms, called pipes, aimed to create guided workflows 

for the hit identification in the early process of drug discovery by NMR.  
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3.2. Introduction 
 

The great advances in technology, including sample automation on the NMR 

spectrometers, have made it possible to probe the protein-ligand complex using 

multiple experimental NMR methodologies using the same sample in a single 

screening trial. Although not routinely done in every project, this strategy is 

believed to minimise the potential downfall of each technique depending on the 

system under examination and provide for a quantitative scoring. Based on the 

count of positive observations for each experiment, a molecule is defined as a 

level-1 hit if it appears as a binder in one experiment, a level-2 hit when two 

experiments confirm its interaction and so on. In common practice some NMR 

techniques, i.e. relaxation-edited , STD and WaterLOGSY, are more widely used 

than others109,110; for this reason in this chapter more attention has been 

dedicated to these techniques and on the development of the corresponding 

automated analysis tools present in CcpNmr AnalysisScreen. 

  



 93 

 Ligand-observed techniques 
 

Binding hit detection is facilitated by common methods such as relaxation-edited 
1H, Saturation Transfer Difference (STD), WaterLOGSY, and in some 

circumstances by Target Immobilized NMR Screening (TINS) and Spin 

labels88,90,111,112. 

A small-molecule ligand engaged in a fast-exchange complex with a 

macromolecule partially acquires the spectroscopic NMR properties, e.g. T1/T2 

relaxation and 1H-1H cross-relaxation rates, of the macromolecule. When there is 

a sufficiently large molar excess of the small molecule ligand, this typically results 

in the detection of chemical shifts of the ligand free-state, but with modified 

relaxation properties more reminiscent of the bound state17 (Fig. 3.1A left). For 

example, small molecules tumble fast in solution and hence their NMR resonance 

lines are characterised by long transversal relaxation times (T2) that result in 

narrow lines. In contrast, when bound to a slowly tumbling macromolecules the 

NMR lines of the small molecule are significantly broader. Therefore, in the case 

of fast exchange of the small molecule between the free and bound states, its 

NMR signals will become broadened (Fig. 3.1A, right). 

The saturation transfer difference (STD) experiment relies on the efficient spin-

diffusion of saturated proton magnetisation in the macromolecule through 

measurement of the so-called “on-resonance” and “off-resonance” experiments. 

In the “on-resonance” experiment, selected 1H resonances of the macromolecule 

that are non-overlapping with those of the ligand are saturated using a train of RF 

pulses. The saturation propagates rapidly through the macromolecule and to the 

bound ligand as a result of efficient intramolecular and intermolecular 1H-1H 

cross-relaxation, respectively113 (Fig. 3.1B, left). As the ligands are in rapid 

exchange between their bound and free states, they maintain their saturated state 

resulting in attenuated or even absent signals in the resulting “on-resonance” 

spectra. In the “off-resonance” control experiment, the macromolecular 
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resonances are not saturated resulting in signals with original intensities. 

Subtraction of the “off-resonance” spectrum from the “on-resonance” spectrum 

yields the STD spectrum, in which only saturated ligand resonances will be 

observable (Fig. 3.1B, right). The signals of the macromolecule will be minimal or 

absent, as a result of the much smaller concentration of the latter in comparison 

to the ligand, thus greatly simplifying spectral analysis. 

In an alternative approach, the so-called WaterLOGSY experiments88,114 (Fig. 

3.1C, left), the ligand and macromolecular target are saturated indirectly through 

the bulk water magnetisation. The saturation is transferred from the bulk water to 

the ligand through several mechanisms, in particular by direct 1H-1H 

intermolecular cross-relaxation between water molecules in close proximity to the 

binding pocket and the bound ligand. Alternative mechanisms include the direct 

exchange with macromolecular NH and OH protons within the binding site and 

the ligand, or indirectly, through a spin-diffusion mechanism. In both cases, NMR 

properties of the bulk water are transferred to the bound ligand, and the resulting 

spectrum displays inverted signals for bound ligands compared to the unbound 

ligands (Fig. 3.1C, right). The detection of ligands that bind to macro-molecules 

with a relatively low density of protons might benefit from the WaterLOGSY 

technique9. Furthermore, WaterLOGSY experiments have displayed higher 

sensitivity for detecting binding molecules compared to STD experiments when 

used to screen very large biomolecules at low concentrations115. Antanasijevic et 

al. believed that this is caused by the higher concurrent (direct and indirect) 

saturation of various sites in the binding complex115. 

A third approach exploits the altered T1/T2 relaxation properties of ligands that 

bind to a macromolecular target (vide supra). In the so-called 1H-relaxation-edited 

experiment, also referred to as the T1r experiment, a series of spectra are 

recorded in which the ligand signals are subjected to varying durations (typically 

in a range of 0 to 200 ms) of transverse relaxation, i.e. either as R2 or R1ρ. Bound 

ligands will exhibit faster R2 or R1ρ rates, i.e. shorter T2 or T1ρ relaxation times, 
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and their signals will be significantly attenuated in the spectra compared to 

ligands that do not bind to the macromolecular target (Fig. 3.1D). 

In spite of all the powerful NMR experiments used for NMR-based FBDD93, 

inefficient evaluation of the primary hit screening data can disrupt or postpone 

any of the later phases, such as binding site identification and hit optimisation. 

 

Primary screening is routinely performed manually by comparing spectral 

information derived from thousands of STD, WaterLOGSY and relaxation-edited 

experiments. Manual analysis of these data inevitable results in human errors or 

subjective inconsistencies, in addition to problems arising from commonly 

occurring experimental errors, such as improper alignment and scaling of spectra. 

The latter are detrimental to the accurate assessment of any datasets, whether 

manual or automated. Even when using computational routines, several inherent 

difficulties to the data analysis process still remain. The different nature of each 

NMR screening experiment translates into fundamentally different spectral 

patterns. Consequently, it requires robust algorithms, such as those employed 

for peak detection or peak matching, that ideally require no fine tuning of 

algorithms via adjustable parameters as this would slowdown, complicate and 

reduce the reproducibility of whole data analysis. Accurate peak detection is also 

fundamental for the generation of the most optimal mixtures on the basis of the 

library of spectra of the compounds, as subsequent deconvolution of their spectra 

is a key step in the identification of potentially binding compounds. 

Currently, only a limited number of tools that provide support for NMR screening 

exist, such as Bruker TopSpin116 or MestreLab MNova Screen117, both of which 

are often not affordable for occasional or academic users. Alternatively, 

NmrGlue118, a freely available collection of NMR library functions, could serve as 

the building blocks for creating stand-alone custom scrips for expert users, but to 

the best of my researches no such efforts have been documented. In this chapter 

I describe the tools I introduced in AnalysisScreen aimed to facilitate the hit 
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identification process, automation of common processing and analysis workflows. 

As a result, AnalysisScreen assists in both qualitative and quantitative inspection 

of NMR data, reducing false negatives (wrongly missed or rejected hits) and false 

positives (wrongly accepted hits). The AnalysisScreen core is implemented with 

the requirements of speed and customisation in mind, thus offering users a 

platform capable of easy adaptations, following any future NMR methods that 

might emerge. 
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3.3. Materials and Methods 
 

This chapter contains only simulated datasets and a technical description of 

computational routines. Algorithms, synthetic datasets and macros, were written 

using the CcpNmr Python environment, as described in chapter 2. In addition, the 

ABC Python library119 has been used for the creation of the underling architecture 

of the pipeline and pipes. Lastly, the Nmrglue118 package has been employed for 

the implementation of generic algorithms, such as the phase correction method. 

 

 Materials 
 

The 1H, STD, WaterLOGSY pipelines (described above in section 3.4.2) were 

tested using three types of simulated datasets. 

The first dataset was used for testing the screening routines in the pipelines. I 

created semi-automatically a dataset that included: 5 reference components, 30 

control samples and 30 samples miming the presence of an interacting target as 

singletons or as mixtures of 5 components. The adjustable parameters included: 

the selection of various chemical shifts, the degree of broadening and intensity 

changes for each signal in the relative spectrum, and the creation of non-

overlapping mixtures. This strategy ensured me a full control over the spectral 

quality and the most robust way of validating the results. Sixty-five different 

spectra and their metadata were simulated for each of the three common NMR 

screening methods using an internal Python script and the spectral data stored 

as CcpNmr HDF5 formatted files. 

Finally, the collection of data was loaded into the main programme using excel 

files. These files contained several sheets including substances and samples, as 

described in chapter 2, and they are now part of the tutorial present in the main 

software distribution. 
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The second dataset was essential for the testing of the hit analysis module and 

evaluate its speed handling capacity of the software. Thus, I generated a dataset 

of 8000 1D spectra, containing 34606 peaks at random positions, with random 

heights and linewidths. Out of the 8000 spectra, 3000 randomly selected spectra 

were flagged as SpectrumHits. 

For both datasets, each simulated spectrum was linked to a virtual substance or 

sample, containing randomly set properties; including SMILES, concentrations, 

pH, chemical names, etc. All simulated datasets and metadata generated for this 

work were used only for testing and validation, therefore were not associated with 

real biological experiments. 

 

Lastly, the third dataset was necessary for testing the STD hit detection routines 

on a dataset that presented a more realistic experimental pattern. To this 

purpose, I simulated a typical STD spectrum for 100 compounds and created it 

in 300 different randomly generated variants at various Signal-to-Noise (S/N) 

ratios. The peak picker routine was expected to find a total of 100 known true 

positive peaks and 100 true negative. Total true negatives were set arbitrarily to 

100 to avoid an unbalanced dataset. 

 

 Methods 
 

The initial implementation of the AnalysisScreen peak picker was based on the 

algorithm described by Boucher and Stevens120. The core routine uses the 

SciPy’s multi-dimensional image-processing function maximum_filter (MF) to 

detect local maxima points in a 1D data array. This function, and therefore the 

picking peak routine, requires several parameters for a correct behaviour, namely 

the size of the search box and “mode” of dealing with boundaries of the input 

array. The size determines the region to include when searching for maxima, 

which ultimately will include the number of nearest neighbours (either side of the 

maximum) considered as a peak. A smaller size value will increase the total 
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number of peaks found, whereas a larger value will exclude real signal peaks. A 

size of 10 was considered appropriate for most of the simulated dataset; however, 

for noisy simulated and experimental recorded datasets this value was impossible 

to determine correctly a priori. 

I have further extended the routine so that also regions with negative signals 

could be detected, e.g. as needed for analysing WaterLogsy spectra. I further 

added the ability to mask regions, (e.g. solvent signals), and to auto-detect 

positive and negative noise threshold values (see below) so that potential false 

positive could be limited when detecting real signals. 

However, after failing several attempts in automatically estimating all required 

parameters when dealing with large datasets, I decided to implement and explore 

a different algorithm based on the method described by Billauer121.The Billauer 

algorithm is based on the detection of two local minima to establish the maximum 

between them. My implementation consisted of the removal of the detection of 

local minima as the valley points between maxima, and by enabling the detection 

of true NMR negative signals. Furthermore, I optimised it for handling larger NMR 

dataset using Numba’s properties, reducing the processing speed from seconds 

to milliseconds per spectrum. Lastly, I inserted extra filters, such as masked 

regions (to be ignored from the analysis). 

Positive and negative noise thresholds are estimated automatically as following: 

 
NTh = 	ασN ∗ 	NMax 

Eq. 3-1 

Where N is a defined downfield region of the spectrum, default 10% of the total 

datapoint count; σ is its standard-deviation and 𝛼 is the adjustment factor. NMin, 

instead, is used for calculating the negative threshold. 

Negative and positive noise threshold values were also used for calculating the 

Signal-to-Noise ratio as 
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SNRatio = 	α ∗
S

NMax − NMin
 

Eq. 3-2 

Where S is the peak height; 𝛼 is the adjustment factor. NMax and NMin are the 

positive and negative noise threshold values. 

 

Matching and relative scores for the hit identification were calculated as 

 
SRel = |AMed| ∗ ATot 

Eq. 3-3 

Where AMed represents the median for the absolute observations (peak heights 

or Δppm positions for matching scores) and AT the total count. If only two values 

A are present in the array, then only the min value is taken: 

 
SRel* =	 |A$%&| ∗ A'() 

Eq. 3-4 

Hit Scores were normalised to values in a range 0-100 by: 

 

STot = 	100 ∗
S	 − 	SMin

SMax − SMin
 

Eq. 3-5 

Where S are the relative scores calculated using equations 3.3 and/or 3.4. 

 

STD efficiencies were calculated as described in the literature122: 

 

ESTD =
I! − ISat
IO

=	
ISTD
IO

 

Eq. 3-6 
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Where I, is the intensity for a give H signal in the Off-resonance (IO) and On-

resonance (ISat) spectra. 

 

Pipelines and running parameters 

 

In this work the 1H, STD, WaterLOGSY data analyses were simulated and 

implemented in their respective pipelines. 

The 1H line-broadening detection pipeline was composed of the following pipes: 

• Noise Threshold Pipe; values were set manually using the built-in GUI widgets 

to 0-57190.06 (a.u. for intensity). 

• Calculate Integrals; in which the minimal linewidth to yield a valid integral was 

set to a value of 0.01 ppm. Peaks were automatically detected. The ignored 

regions option for this pipe was at the time of testing still under 

implementation; hence, peaks below 6 ppm were manually deleted. 

• Peak Broadening Hit Finder; control and target spectrum group were selected 

according to the dataset; references spectra were calculated automatically 

from the SampleComponents linked to the samples; control and target peaks 

were matched to each other and references if their chemical shifts were within 

a range of 0.010 ppm. Finally, the minimal volume variation ratio was set to 

0.20 (20%). 

 

The STD data analysis comprised two pipelines: one to calculate the STD 

efficiency and one to identify the STD hits. 

The first pipeline was composed of: 

• STD Creator; which created the STD spectra by subtracting the On-resonance 

to the Off-resonance spectrum, creating a new SpectrumGroup containing the 

newly available STD spectra. 

• Exclude Regions; one large region was selected from 1.435 to 6.259 ppm. 

• Noise Threshold; values were graphically selected and included values from 
-19946.09 to 9973.05. 
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• Peak Picker pipe; it included negative peaks (although not necessary in this 

case), noise level factor, and filter size of 10. Filter mode was set to “wrap”. 

The subsequent STD hit analysis pipeline consisted of two pipes: 

• STD Efficiency; SpectrumGroup entries were selected as the dataset; peaks 

tolerance was set as 0.03 ppm; 

• STD hits; only the target was used for this experiment and references were 

retrieved from the SG:References; peaks were matched using a tolerance of 

0.03 ppm, finally the minimal efficiency was set to 1%. 

 

The WaterLOGSY data analysis consisted of the following pipes: 

• Exclude Regions; one graphically selected region from 0 to 6.460 ppm 

• Noise Threshold; values were graphically selected and included values from 

–82071.56 to 38390.76. 

• Peak Picker pipe; it included negative peaks; noise level factor was set to 
9.70; filter size was set to 10. Filter mode was set to “wrap”. 

• WaterLOGSY hits; the mode was set to “intensity changed”; SpectrumGroups 

were selected according to the dataset; matching tolerances were set to 0.10, 

finally, the minimal intensity change was set to 10.  
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3.4. Results and Discussion 
 

In order to facilitate the manual analysis of screening dataset, I firstly 

implemented a graphical interface that allowed users to compare the spectra 

derived from the different NMR screening experiments. The interface used the 

built-in spectrum displays and sidebar capabilities as underpinning elements. 

Spectra associated to each sample (previously loaded from excel files) recorded 

according to a particular experiment type, can be automatically displayed in a so-

called stacked mode together with their spectral references (Fig. 3.2A). This 

approach has the main advantage of comparing multiple experimental data at 

once and provides for easy access to all items by simply using the directional 

keys. This method is particularly beneficial from a quick and qualitative 

assessment of 1H, STD and WaterLogsy experiments; however, for time-series 

experiments, such as the one shown in Fig. 3.2B, this approach is less suitable. 

The nature of the time-series data required the development of a dedicated 

analysis window (Fig. 3.2C); spectral crowdedness can make the manual 

analysis nearly impossible. 1D time-series can also already be analysed manually 

using the Chemical-Shift-Mapping module tool I specifically developed for the 

target-based drug discovery methodologies (described in chapter 6). 

 

 Pipeline design 
 
In addition to the above simplified manual inspection of spectra, the true strength 

of AnalysisScreen, comes with quantitative and automated analysis routines for 

common 1D experiments. The heterogeneity of NMR techniques for 1D screening 

translates in the need of specific analysis workflows for each method. I addressed 

this by designing and implementing the AnalysisScreen pipeline module (Figs 

3.3A-B). It permits users to apply multiple tasks or algorithms, called pipes, to 

single spectra or all spectra contained in a SpectrumGroup. 



 104 

The pipeline architecture has been implemented with great consideration 

following the “Clean-Code” design principles, and rigidly following the “clean 

architecture” design123 for its framework (Fig. 3.4A). The clean architecture, 

originally introduced by R. Martin, focuses on the structure and relation across 

code components which should be independent to each other124. The general 

structure is best represented by concentric circles, where each circle is a different 

layer or code component. These are organised in a way the outer layers are lower 

code levels, e.g. user settings, general GUIs, which define mechanism; and the 

inner layers are higher code levels, e.g. abstract classes, which define policies125 

(Fig 3.4A). 

The clear separation between each layer of the underline machinery, allowed me 

to design the pipes as generic items, independent from the metadata and analysis 

required. Consequently, a collection of pipes creates a pipeline queue that 

effectively implements a user-defined workflow. Furthermore, new pipes and new 

algorithms can be added without altering the functionality of the software. This 

feature is called in object-orientated programming, the “open-closed” principle, 

which is another instance of the clean-code concept. 

An example of the implementation of a pipe and its associate GUI is shown in 

Figs 3.4B-C. 

The pipeline module itself is built in a such way that it can be run from the 

AnalysisScreen command-line interface, if so desired by an (expert) user; 

however, I also designed and developed a full graphical interface (Fig. 3.3B). The 

pipeline GUI module has three main sections: settings; pipe selection, and the 

main working area, that contains the selected pipes. AnalysisScreen features 

application-specific pipes, such as those for line broadening analysis, 

WaterLOGSY and STD hit detection, as well as a set of other more generic data 

manipulation pipes that are now shared across all version-3 programmes28 (Table 

3.1). 
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Table 3.1 Currently available pipes grouped by type and functionalities. 
Type Functionality Available Under 

Development 
Ccpn Spectra Performs actions on 

Ccpn spectra. 
In: Ccpn Spectra 
Out: Ccpn Spectra 

• Global Alignment 1D 

• Peak Picker: 1D, nD 

• Integration 1D 

• Referencing 1D 

• Auto Scaling 1D 

• Copy peaks: 1D, nD 

• Refit peaks: 1D, nD 

• Auto phasing 1D 

• Baseline Correction 1D 

• Duplicate spectra 

AnalysisScreen 1D 

• Hit detection by line-broadening 

• STD spectrum creator 

• STD Efficiency 

• Hit detection by STD 

• Hit detection by WaterLogsy 

• Peak Height, Linewidth, Volume % 

change 

• General peak matching 

 

• Global Alignment 

nD 

• Peak Filter nD 

 

 

 

Pandas 
Dataset 

Represents project or 
general data in tables 
like format 
In: Ccpn Spectra, 
Pandas Dataset 
Out: Pandas Dataset 

• Output results 

 
 

Generic 
 

Performs generic 
actions on project 
In: None, Same as Input 
Out: None, Same as 
Input 

• Exclude Solvent Regions 1D 

• Noise threshold 1D 
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Lastly, any pipeline can be saved as a JSON file for re-usage or exchange with 

other users of the CcpNmr Analysis suite. The architecture of a such file reflects 

the general pipeline GUI structure and includes all parameters which were last 

used. The loading and restoring mechanisms for pipes and widgets, was 

subsequently also adopted for saving and restoring the layouts of main CcpNmr 

version-3 programme. This feature is believed to save precious time when 

executing the same routines on different datasets and increases the automation 

capabilities of the software. 

 

 Testing pipelines 
 

Pipelines were initially tested on a series of small datasets, where for each 

sample, multiple spectral patterns were simulated according to the 1H, 

WaterLOGSY and STD typical lineshapes. The synthetic dataset did not 

necessitate the application of the common post-processing pipes, such as those 

for baseline correction, phasing or spectral alignment. 

 

The first pipeline was applied to a 1H dataset with the aim of detecting line-

broadening. The pipeline was built from the following pipes: Noise Threshold, 

Calculate integrals and Peak Broadening Hit Finder pipes (Fig. 3.5A). These 

pipes automatically detected and integrated signal regions from the control and 

target simulated spectra, finally only peaks that resulted in a line broadening were 

matched to their spectral references. 

After the pipeline was run, two out of two known SpectrumHits were correctly 

found: Component-1 at 7.74 ppm (Fig. 3.6), Component-3 at 8.198 (Fig. 3.7). 

 

The second pipeline was built to test the detection of intensity changes typical of 

WaterLOGSY experiments. The pipeline comprised the following pipes: Exclude 

Regions, Noise Threshold, Peak Picker and finally the WaterLOGSY specific pipe 

(Fig. 3.8). After the initial signal detection, the WaterLOGSY pipe evaluates 
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signals from the control and target spectra, and filters only peaks that undergo a 

significant change, followed by the matching of those peaks to their reference 

chemical shifts. The pipe successfully detected multiplets at ~7.74 and ~8.20 ppm 

relative to component-1 and component-3 (Figs 3.9-3.10). 

 

The STD analysis consisted of two separated pipelines. The first was needed to 

create the STD spectrum from the On- and Off-resonance spectra, followed by 

the peak detection for all input spectrum groups (Fig. 3.11). The successive pipe 

calculated the STD efficiency as defined by eq. 3.6 and finally detected the STD 

positive signal and matched this to the reference spectra. For this experiment as 

well, peaks from the mixture were matched correctly to the Component-1 and 

Component-3 at the expected positions ~7.74 and ~8.20 ppm respectively (Figs 

3.14-3.15). 

 

SpectrumHits results can be accessed and inspected graphically by the Hit 

Analysis module. This module allows for dynamic navigation through the spectra 

and peaks using the best-matched references and SpectrumHits. Furthermore, 

the main table of this module allows for a quick filtering of the best results by 

several scores and the module displays all associated hit metadata. For testing 

and validating the performance of the module, I simulated a larger dataset, 

containing 3000 SpectrumHits at various hit levels, e.g. level 3 if in a given 

component was marked as a SpectrumHit in three simultaneous experiments 

(Fig. 3.15). 

 

 Determining S/N ratio for STD hit identification 
 

After pipelines were tested on small datasets simulating ideal spectral patterns 

for STD, WaterLOGSY, and 1H experiments, I then created a larger dataset of 

simulated spectra, at various signal-to-noise ratios (S/N) to determine the 

sensitivity of the procedure for the S/N of the spectral data. I aimed to determine 
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the S/N regime for which observations could be accepted reliably as True Positive 

(TP) SpectrumHits (Fig. 3.16A). Using these simulated spectra, I also evaluated 

the peak picker algorithm for its accuracy and sensitivity for correctly 

distinguishing and locating the spectral signal from the noisy part of the spectrum. 

The results of the original peak picker algorithm (MF) (as described in section 

3.4.1) were not encouraging due to the need for manual optimization of its 

multiple adjustable parameters, required for to control the occurrence of false 

positive and false negative outcomes. This finding prevented the full automation 

of the data analysis pipeline. 

Consequently, I developed and used a new peak detector (PD) algorithm 

dependent on only one adjustable threshold parameter. Using the noise level 

threshold routine detection, the simplified algorithm was able to detect over 90% 

of true positive observations down to an estimated S/N of ~1.5 (Fig. 3.16B and 

Fig. 3.17A). Decreasing threshold parameter in an attempt of including more True 

Positive observations at lower S/N resulted in a decreased general accuracy and 

precision, which is, obviously, not favourable (Figs 3.16C-D and Figs 3.17A-D). 

The threshold value was also inspected using the receiver operating 

characteristic curve (ROC) curve which allows the capacity of a binary classifier 

followed to be determined by an adjustment in the threshold value126. The ROC 

curve (Fig. 3.17D) shows the default threshold value to be located in the most 

favourable region of the ROC curve, suggesting it can be used as a reliable 

threshold for the automatic peak picking routine.  
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3.5. Conclusions 
 

The nature of NMR high-throughput screening involves the analysis of a large 

quantity of data, which can be both intimidating and time-consuming. The lack of 

free and user-friendly software packages, capable of handling such a large NMR 

dataset, forces researchers to set up and repeat tiresome procedures manually, 

a process that might unintentionally lead to mistakes. Furthermore, the manual 

process also depends on qualitative judgments by the users, which increases the 

likelihood of misinterpretation of results. In this chapter, I described solutions 

which are now included in the CcpNmr AnalysisScreen programme. 

AnalysisScreen is able to cope efficiently with very large datasets; I successfully 

used tens of thousands one-dimensional spectral entries and their related 

metadata, including projects with over 1 million peaks yet providing fast and 

reproducible results. To achieve this, I designed and developed a pipeline 

module. The pipeline is rigorously designed in a modular way, such as that 

multiple tasks, called pipes, can be arranged depending on the user 

requirements. This results in a very flexible platform for custom implementations 

and bespoke workflows, such as the one needed for analysing different 

experiments in the ligand-detected NMR screening trials. I created several 

general post-processing pipes, such as spectral alignment, spectrum referencing, 

phase and baseline correction, and signal quantification pipes, such as two peak 

detection and integration. Finally, application specific pipes, such as line 

broadening, WaterLOGSY and STD hit detection that are needed to analyse 

spectral mixtures or single spectra in the presence and the absence of a target. I 

have then tested these workflows using simulated datasets for each experiment 

type. The STD, WaterLogsy and relaxation-edited 1H experiments retrieved the 

two expected SpectrumHits. The relative peaks that classified the spectrum as a 

SpectrumHit were correctly matched to their known reference spectra. Results 

were easily accessible using the graphical tools that I meticulously designed and 
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developed. Lastly, I have designed a model based on the spectral signal-to-noise 

ratio capable of estimating a threshold needed for filtering quantitatively 

SpectrumHits observed in STD spectra. 

AnalysisScreen is actively developed and publicly available within the Analysis 

Version 3.0 release. Future releases of AnalysisScreen will include pipes for 

automating the analysis of 1D relaxation experiments (with T1/T2 CPMG routines 

currently under testing as macros) and automatic analysis of STD amplification 

factor and Kd’s. In addition, a more exhaustive Hit Analysis module is envisioned, 

that integrates cheminformatic tools for classifying hits by functional groups and 

supports the Pan-Assay Interference Compounds (PAINS) filters68.  
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3.6. Figures 
 

 
Figure 3.1 Common NMR methods for detecting ligand binding. 

Common NMR methods for detecting ligand binding93 to a large macromolecular 

target (blue motif). The binding and non-binding compounds (small molecules) 

are displayed as a green hexagons and red squares, respectively A 1H 

Relaxation-edited experiment. The peaks of both compounds in the control 

spectrum are characterised by narrow resonance lines. In the presence of a 

target, a binding compound partially acquires the NMR properties of the 

macromolecule, resulting in a broadening of its resonance line (green peak). The 

effect does affect a non-binding compound. B In the on-resonance experiment of 

a saturated transfer difference (STD) experiment, a saturating RF field is applied 

to the target and saturation is transferred to the binding compound, resulting in a 

slightly lower intensity of its resonance line. In the off-resonance control 

experiment no such effect occurs; consequently, only the resonance of the 

binding compound will be visible in the STD spectrum. C In the WaterLOGSY 

experiment saturation is transferred to the target through saturation of the bulk 
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water molecules and passed on to the binding compound. Its resonance line in 

the spectrum in the presence of the target will have the opposite sign compared 

to the control spectrum. D In the T1ρ experiments a series of spectra are recorded 

with different relaxation durations. For the binding compound, spectral intensities 

will attenuate at a faster rate compared to the non-binding compound. 
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Figure 3.2 CcpNmr AnalysisScreen tools for manual visual inspection. 

A Spectrum display module showing a simulated SpectrumGroup comprised of a 

series of 1D 1H spectra with vertical and horizontal offsets to facilitate a quick 

inspection. B Example of usage of the Chemical Shift Mapping for assessing 1D 

spectra series. The figure shows a binding curve for the spectra displayed in A 

using peak heights as the input for calculations. C The sidebar of AnalysisScreen 

can be used for easy navigation through data items using up/down keys 

(indicated by the rectangular box). This option allows to display automatically 

stacked spectra recorded for the selected sample and their references for a quick 

and manual visual inspection. NB. this feature is currently enabled using a 

command line macro. 

  



 114 

 
Figure 3.3 CcpNmr AnalysisScreen Pipeline and Hit Analysis module. 
A Schematic representation of a pipeline. The pipeline is able to handle 

SpectrumGroups as well as single spectra as the input data. Each pipe performs 

a dedicated action on the spectra and returns a new set of spectra which are 

used as input for each successive pipe. Finally, a result or report pipe provides 

information on performed actions. B Current graphical user interface for 

assembling and executing a Pipeline. The left side shows the available settings 

affecting the execution of the pipeline. Pipelines are constructed by simply 

selecting pipes from the main pull-down; the grey area underneath displays the 

selected pipes. On the right side, a pop-up is shown highlighted in blue, which 

can be used to customise the main selection pull-down. Pipelines can also be 

saved and restored, including last used parameters, as a JSON file that can be 

shared with other AnalysisScreen users. 
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Figure 3.4 Pipeline architecture and code examples. 

A Representation of the pipeline “onion” architecture. The central circle (purple) 

corresponds to highest code levels, called “entities”; here are present classes 

which define generic rules and behaviours. Entity are for example the pipe 

abstract base-classes (ABC). The second layer (light blue), called “cases”, are 

the specific pipe implementations, these are the various screening pipe discussed 

in the chapter. These can be added or removed freely without altering the 

architecture. The following layer is the so called “controller”. The pipeline base-

class (BC) acts as a controller, it is responsible of queuing pipes and running the 

machinery. The last layer, red circle, corresponds to the user interface code, both 

for pipeline and pipes. It is a lower level, in the sense that it is the most likely to 

change during the software development. Changes in this layer will not affect any 

of the inner layers. B On the left box, (purple), a screenshot of the Python source 

code for the pipe abstract classes; on the inner box, (green), a screenshot of the 

pipeline base class; on the right box, (dotted black), a file containing the Python 

source code template for an auto-generated GUI pipe. The file contains the GUI 
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class (red box), and the specific pipe class (blue box). Pipes files containing the 

appropriate code elements become automatically usable in the pipeline module 

C A simple demo pipe with an auto-generated GUI outputted from the code 

showed in figure B (dotted box). 
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Figure 3.5 1H line-broadening detection pipeline. 
Simulated 1H relaxation-edited spectra in presence and absence of a target and 

display of automatically detected integrals (top spectrum display module), library 

reference spectra (lower spectrum display module), and peak-broadening 

detection pipeline used in the data analysis (right-hand side). 
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Figure 3.6 Hit analysis results for component 1. 

Hit analysis after running a 1H broadening detection pipeline. Top left spectrum 

display module shows a stack of reference spectra for the sample under 

examination. Top right spectrum display module shows the 1H spectra for the 

target experiment and its matched library reference, as calculated by integral 

value change. The hit analysis module (bottom) displays a summary of various 

scores for SpectrumHits and matched references properties in the analysis 

module. 
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Figure 3.7 Hit analysis results for component-3. 

Results after running a 1H line-broadening detection pipeline displaying 

component-3 in the Hit Analysis module. 
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Figure 3.8 WaterLOGSY hit detection pipeline. 

WaterLOGSY data analysis pipeline for detecting hits by comparing signal 

intensity changes and peak matching by chemical shifts. Interactive manipulation 

of the exclude regions or noise threshold is facilitated by dedicated buttons 

highlighted in purple and red in the corresponding pipes, respectively. Different 

calculation modes for the WaterLOGSY hit detection pipe are displayed in the 

inset box. 
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Figure 3.9 Hit analysis results for component-1 by WaterLOGSY. 

Hit analysis after running a WaterLOGSY hit detection pipeline. Top left spectrum 

display module shows the reference spectra for the sample under examination. 

Top right spectrum display shows the WaterLOGSY spectrum for the target 

experiment and its matched reference hit. The hit analysis module (bottom) 

displays a summary of various scores for SpectrumHits and matched references 

properties in the analysis module. 
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Figure 3.10 Hit analysis results for component-3 by WaterLOGSY. 

Results after running a WaterLogsy hit detection pipeline displaying component-

3 in the Hit Analysis module. 
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Figure 3.11 STD creation pipeline. 

Simulated On/Off resonance spectra and interactive items needed to drive the 

peak detection routine (top spectrum display module), library reference spectra 

(lower spectrum display module), and an STD creator pipeline used in the data 

analysis (right-hand side). 
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Figure 3.12 STD hit detection pipeline. 

Top left: a peak table displaying calculated STD efficiencies as peak “figure of 

merit”. Top right: a newly created STD spectrum. Bottom: an example of pipeline 

built for calculating the STD efficiency and hit detection. 
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Figure 3.13 Hit analysis results for component-1 by STD. 
Hit analysis after running an STD hit detection pipeline. Top left spectrum display 

module shows the reference spectra for the sample under examination. Top right 

spectrum display shows the STD spectrum for the target experiment and its 

matched reference hit. The hit analysis module (bottom) displays a summary of 

various scores for SpectrumHits and matched references properties in the 

analysis module. 
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Figure 3.14 Hit analysis results for component-3 by STD. 

Results displayed in the hit analysis module for the component-3 after running an 

STD hit detection pipeline. 

  



 127 

 
Figure 3.15 Hit analysis module on large dataset. 

Current Hit Analysis module graphical user interface containing a report of 1000 

simulated samples for three different experiment types. The Hit Analysis module 

allows interactive inspection and assessment of SpectrumHits showing spectra, 

scores and associated metadata. Furthermore, custom peak tables (bottom) 

allow quick navigation through the peak hits in the selected spectrum display. A 

summary for the sample and SpectrumHit properties is shown in the bottom right 

corner. 
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Figure 3.16 Peak and hit detection assessment using simulated spectra. 

A Simulated 1H spectra at different signal-to-noise ratios and estimated positive 

noise thresholds calculated using Eq. 3.1, with 𝛼 set to 1.5 (blue), relative 

adjustment NTh+10 = +10% NTh (green) and NTh-10 = -10% (red). The left panel 

shows typical spectral peaks with an S/N greater than 2.5. Peak intensities are 

well above threshold values and peaks are correctly identified. At around a S/N 

of 1.5, most of the peaks are still identified, although a larger number of artefacts 

can be mistakenly included as real peaks. At very low S/N it is generally difficult 

to distinguish genuine peak-shapes from the spectral noisy distortions. B Total 

count of correctly identified observations for 100 simple spectra simulated at over 

20000 different S/N variations. C Total accuracy for the peak picker on simulated 

spectra at different delta values. Accuracy (A) was defined as A = (TP+TN) / 

(TP+FN+FP+TN). D Total sensitivity for the peak picker on simulated spectra. 

Sensitivity (S) was calculated as S = TP / (TP+FN), with TP, TN, FP and FN 
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denoting true positive, true negative, false positive, and false negative values, 

respectively. 

 

 
Figure 3.17 Peak detection statistics. 

The correctness of the automatically determined peak detection noise threshold 

value was inspected using receiver operating characteristic (ROC) scoring. It 

allows to determine the capacity of a binary classifier followed by an adjustment 

in the threshold value127. In the ROC curve the Sensitivity is plotted against the 

False Positive Rate (FPR). Sensitivity, False Positive Rate, Specificity and 

Precision, are calculated from the true positive (TP), true negative (TN), false 

positive (FP), false negative (FN) values. A ROC plot for performance of the 

algorithm at different S/N ratios. Blue arrow indicates the score for a spectrum at 

~1.5 S/N. The Sensitivity is calculated as TP/(TP+FN); the False Positive Rate, 

FPR is calculated as 1- Specificity, where the Specificity is calculated as 

TN/(TN+FP); B Precision of the peak picker for spectra at different S/N ratios. 
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Precision was calculated as TP/(TP+FP). Notably, the precision is badly 

compromised when lowering the threshold value by 10% (blue data-points; -10%) 

at all S/N ratios. C Total count for true positives, true negatives, false positives 

and false negatives for each run of peak picking using different adjustments of 

the automatically determined noise threshold value. D ROC curve for the total 

sensitivity and false positive rate, as expected the automatically determined 

threshold value is located in the most optimal location of the ROC curve, 

suggesting it can be used reliably in the automatic peak picking routine without 

need for adjustment.  
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4.1. Abstract 
 

Flat baselines are an absolute requirement for any manual or automatic FBDD 

screening protocol. Several previously published algorithms failed to properly 

correct our collaborator’s experimental NMR screening datasets. In this chapter I 

present a new baseline correction algorithm which is capable of correcting NMR 

spectra that are highly distorted without the need of any user parameter input or 

adjustment, making it an ideal choice in any automated screening analysis 

workflow. The algorithm was tested on 36 experimental NMR spectra and 

corrections were compared qualitatively and quantitatively to results outputted by 

other several published algorithms. 
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4.2. Introduction 
 

One-dimensional (1D) fragment-based NMR screening studies are characterised 

by manual or automated comparison of reference or control spectra to those 

spectra that form the experimental observations to detect a potential ligand 

binding to a target. Prior to any analysis, it is fundamental to inspect and correct 

any experimental artefacts in the datasets in order to avoid false positives and 

negatives. Using the decomposition module (cf. chapter 2) it is possible to detect 

various spectral artefacts (Figs 2.5-2.6). These errors can slow down the whole 

process of drug discovery, or in severe cases they can void the entire trial. One 

of the most common spectral artefacts is an irregular baseline pattern. 

Theoretically, the experimental noise should follow a random Gaussian 

distribution with a zero mean, resulting in spectra where regions devoid of signal 

display randomly scattered points as a function of frequency centred around zero. 

This is commonly referred to as a straight or flat baseline. However, a series of 

phenomena, such as a hardware instability and the corruption of the initial data-

points in the free induction decay (FID) can cause underpinning baseline 

errors128. For the early time-domain points of signal acquisition, in fact, the 

electronics can still be recovering from the application of the RF pulse, and 

improper optimisation of the instrument parameters can result in errors in the 

Fourier-transformed spectrum. 

Automatic algorithms for signal correction can be divided therefore in two groups: 

time-domain correction and frequency domain correction128–130. Time-domain 

methods aim to correct the corrupted data-points of the FID, whereas frequency 

domain methods are based on the reconstruction of the baseline only and its 

subsequent use in correction of the original spectrum. 

Over the years, several algorithms and manual baseline correction tools have 

been described128–130 and included in commercial software packages such as 

MestreNova131. 
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In this chapter, I discuss the testing of several previously published automatic 

frequency-domain algorithms, including the Whittaker Smooth algorithm, the 

Asymmetric Least Squares Smoothing132 ALS, the adaptive iteratively reweighted 

Penalized Least Squares airPLS133, the asymmetrically reweighted Penalized 

Least Squares Smoothing arPLS134 and finally the Distribution-Based 

Classification DBC135. 

I applied these methods to our datasets and compared their outputs to the results 

obtained from a newly proposed approach referred to as Correlated Weighted 

baseline correction (CWBC; vide infra). Importantly, in contrast to the published 

methods the CWBC method does not require pre-knowledge of signal location 

and most importantly, does not require any user-adjustable parameters. From a 

qualitative and quantitative analysis, the CWBC method yielded superior results 

when tested on an experimental screening dataset. 
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4.3. Materials and Methods 
 

 Materials 
 

The experimental dataset used for testing the set of algorithms was composed of 

13 1H, 11 T1𝝆 and 12 WaterLOGSY one-dimensional spectra. In total, 5 

substances were reported (named: 314, 441, 467, 7372, 7373); for each 

substance a reference spectrum, plus spectra acquired in presence and absence 

of a protein target using three different experiment types was reported. Target 

and substances molecular structures were undisclosed and not required for any 

of validations performed in this work. Spectra files were provided as CSV files 

and they have been processed by the collaborators. 

For each algorithm tested, a new corrected spectrum was created using the 

CcpNmr Analysis core capabilities. 

 

 Methods 
 

Spectra and algorithms were analysed using CcpNmr Analysis Screen 3.0. 

Additional scripts encoding the various algorithms and for quantitative analysis of 

the outputs were written using the Signal, Stat and Spatial functions present in 

the SciPy included in the libraries of the CcpNmr Python environment. 

The tested algorithms, such as WhittakerSmooth, airPLS, arPLS and ALS were 

recreated from various sources found in the public domain and inserted in the 

main CcpNmr library. The core algorithm DBC was natively distributed in the 

package NMRGlue118. All algorithms tested are now available for users from the 

CcpNmr AnalysisScreen distribution. 

The parameters used for the comparison, were selected as suggested by the 

original authors, or optimised to achieve the best level of qualitative correction: 
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Table 4.1 Baseline correction algorithms parameters. 
Method Parameter 1 Parameter 2  Parameter 3 

als lambda =10 ** 2 p=0.001 nIter=1 

WhittakerSmooth lambda_=100 differences=1  

arPLS lambda=5.e5 ratio=1.e-6 nIter =50 

airPLS lambda=100 porder=1 nIter =15 

dbc wd=20   

 

Correlated Weighted baseline correction (CWBC) method 

 
The CWBC method avails mainly of the linear cross-correlation function136 to fit 

the original spectral data points, 𝑂*, and an array of “ones”, 1*, to estimate a 

baseline vector as an array 𝐸*: 

 

𝐸* 	= 	
𝑂* ⊗ 1*
𝑐  

Eq. 4-1 

 

Where ⊗ denotes the cross-correlation between two discrete arrays 𝑂* and 1*, c 
is a constant minimised to 0.0039. 

 

Scorings 

 

To quantify the differences from the corrected spectrum to its original, I used the 

Spearman rank-order correlation coefficient, rs. The Spearman correlation 

measures the monocity of the relationship between two curves137. This type of 

correlation differs from others, like the Pearson, as the two comparing curves do 

not need to be normally distributed, and the correlation score is given by the 

measurement of correspondence between ranking. It is calculated as following: 
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𝑟0 =	
𝑐𝑜𝑣(𝑟𝑔1 , 𝑟𝑔2)
𝛿𝑟𝑔1	𝛿𝑟𝑔2

 

Eq. 4-2 

Where rgx/y denote the rank values of the data points of curves X and Y, 

respectively, cov is the covariance and δ is the standard deviation138,139. 

 

To quantify the level of baseline correction in a region where signal is not 

expected, e.g. the first 1000 data points of the spectrum, I estimated a noisy 

region by creating a random normal Gaussian distribution centred around zero Y 

intensity, with same shape and length as the input experimental observations. I, 

then, computed the Euclidean distance between the two vectors. The distance 

was calculated as 

 

𝐸 = 	7(𝑌3 − 𝑌4)4 	= 	 |𝑌3 − 𝑌4| 

Eq. 4-3 

Where Y1 and Y2 are the two curves. 

 

The final score was normalised as following: 

 

𝐸𝑠 = 	 :
𝐸561
𝐸 : 

Eq. 4-4 

Where Emax is the max distance recorded for the various experiments. 

 

Two Spearman ranking scores were calculated to quantify the correlation 

between lineshapes, one for the whole Spectrum Sw, and one for a portion of the 

aromatic field, Sa, and the baseline score Es. The total score was calculated as: 
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𝑆 =
1
𝑛=>

𝑆𝑤 + 𝑆𝑎 + 𝐸𝑠
3 C

7

893

 

Eq. 4-5 

where n denotes the total number of available experiments. 

 

 New baseline correction algorithm steps 
 

The new method consists of several estimations of the baseline pattern while 

excluding the signal from the spectrum. The first baseline approximation is 

calculated through a cross correlation method. The subtraction of the estimated 

baseline curve from the original spectrum allows to distribute uniformly the noise 

and signal across the zero-y-axis coordinate. This permits to estimate the positive 

and negative noise threshold values, which are then used to establish where the 

signal might reside in the spectrum. Detected signal regions are weighted to a 

zero value. This information is then transferred to the original spectrum, where 

estimated signal regions are removed from the spectrum. The spectrum now 

consists only of noise and “gaps” which are filled with interpolated values; the 

interpolation is necessary to preserve the original signal intensity pattern. A 

further cross correlation of this spectrum ensures a smoother estimation of the 

baseline, removing other potential signal artefacts which might compromise the 

final result. Lastly, the subtraction of the latter estimation from the original data 

results in a baseline-corrected spectrum. 

 

The eight steps, describing the CWBC method, are summarised in Fig. 4.2: 

1. Initial baseline estimation: create an array containing a subset of the discrete 

linear cross-correlation, E1, between the Original data-points 𝑂*, and a 

simulated array of the same shape 1*, Fig. 4.3A. 

1.1. Correct the left and right edges on the E1 curve. E1L/R 50 pts. 
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1.2. Create a subset of arrays E1sL/R, by linear correlation for both E1L/R, Fig. 

4.3A-insert. 

1.3. Reshape E1sL/R by linear interpolation (20 pts), to the original input length 

(50 pts), Fig. 4.3B. 

2. Subtract Estimation from Original data, 𝑅*3 = 𝑂*−𝐸*3, Fig. 4.4A. 

3. Estimate the baseline noise thresholds (minimum and maximum) from R1, Fig. 

4.4A-insert. 

3.1.  Thresholds are obtained from subdividing R1 and calculating the mean of 

minimum and maximum values of bins where no signal is found. 

4. Assign (weight) a zero value for 𝑅*3 signal, 𝑆̅, above the threshold values and 

adjacent points. The new vector 𝐸*4, is an estimation of the noise without the 

signal:	𝐸*4 = 𝑅*3⊈𝑆̅, Fig. 4.4B. 
4.1. Adjust outliers among groups of zeros. Find if small groups of non-zeros 

are between two large groups of zeros, then set them to zero, Fig. 4.4B-

insert. 

5. Find the Zero values (corresponding to the signal) in E2 and transfer this 

information to E1. The new array E3 will present masked “gaps”. Fig. 4.5A. 

6. Correct gaps using a linear interpolation, E3i, of adjacent points so that the 

intensities are preserved in the following step, Fig. 4.5B. 

7. Final baseline Estimation E4. E4 created by cross correlating the latest E3i and 

a simulated array as in step 1, Fig. 4.6.A 

8. Final correction, the corrected 𝑅*4 is given by subtracting the latest cross 

correlated output E4 from the original 𝑂*, 𝑅*4 = 𝑂*−	𝐸*:, Fig. 4.6B.  
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4.4. Results and Discussion 
 

 Qualitative analysis of the various methods 
 

The qualitative analysis of the performance of the various baseline correction 

methods were carried out on the 1H, T1𝝆 and WaterLOGSY spectra of component-

314 in the absence (control) and in the presence (target) of a macromolecule. 

 

Figure 4.7 shows the results of the application of a set of 1st, 2nd and 3rd order 

polynomial fitting functions. These functions were used as a control before 

applying more complex algorithms and were not expected to apply any level of 

valid correction. In fact, the polynomial fitting resulted in heavily distorted 

baselines for all three experiment types, irrespective of the polynomial order of 

the fit. Where the 1st order polynomial fit resulted in the baseline below the zero 

intensity, albeit keeping the original spectral appearance intact, the higher 

polynomial orders introduced a “rolling” distortion across the whole spectrum. 

This phenomenon was even more pronounced in the 1H experiment, which 

already suffered from phasing errors. 

I next tested the Whittaker smooth algorithm (Fig. 4.8). This produced an almost 

perfect flat baseline across the whole spectrum for each of the three experiments. 

However, this method appeared to be a destructive approach with respect to data 

content as it resulted in a highly compromised data-points in the signal-containing 

regions of the spectra and the appearance of artefacts of opposite sign to the 

original signal. Therefore, the resulting spectra could not be used for any reliable 

screening interpretations. 

 

The following tested algorithm was the Asymmetric Least Squares Smoothing, 

ALS132. This algorithm is an implementation of the Whittaker smoother, which is 

used to estimate the baseline, followed by a numerical weighting of signals where 
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positive observations are weighted less than negative signals. It requires two 

parameters, one for the flexibility of the baseline and one for the position. These 

parameters cannot be automatically selected and authors claimed that human 

judgment is always required132. 

The ALS method (Fig. 4.9) appeared to be a more suitable algorithm as it was 

able to rectify the baseline for both experimental spectra. It correctly preserved 

the shapes for positive peaks; however, it did not appear to be optimised for 

dealing with negative peaks simultaneously. The algorithm produced a significant 

distortion on the negative peaks, making the algorithm unusable for experiments 

like WaterLOGSY, for which the distinction between intensity signs is 

fundamental for the hit analysis classification. Therefore, this type of error will 

result in the introduction of false positives upon the hit identification process. 

Furthermore, rolling artefacts appeared in all signal-free regions (cf. Fig. 4.9A). 

Lastly, the baseline noise was not correctly distributed around zero but instead 

appeared erroneously to be increased to positive values. 

 

In 2009 Zhang et al. proposed the adaptive iteratively reweighted Penalized Least 

Squares airPLS133. The algorithm uses a weighting system for the signal regions, 

and it works by iteratively adjusting weights of sum squares errors between the 

experimental curve and its fitted baseline. These weights are then derived by 

using the difference between the earlier fittings and the original regions of 

interests. The performance of this method is dependent on a crucial parameter 

for the smoothness, usually referred as lambda (λ), and the iteration count133. 

All the previous methods present a major issue in portions of spectra when no 

peaks are detected which can result in an underestimated correction134. Baek, 

S.J. et al (2014) proposed the partially balanced but asymmetric weights, arPLS 

algorithm134 algorithm as a solution. The algorithm is based on the assumption 

that in spectral regions without peaks the noise is distributed uniformly above and 

below a baseline and is given a weight, whereas is not given if signals are greater 

than the baseline. As the previous methods, arPLS requires a proper value of a 
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critical parameter lambda, which is used to tune the balance between fitness and 

smoothness of the baseline. In addition, the user-optimised ratio parameter 

determines the end to the iterations when the weights have reached a minimal 

value134. 

However, similar problems to the ASL were observed using both airPLS and its 

alternative implementation arPLS (Figs 4.10-4.11). Both these algorithms did not 

perform as expected in presence of positive and negative peaks in the same 

spectrum. The inadequate spectral solvent suppression further enhanced the 

weakness of these methods, resulting in severe spectral distortions across all 

experiments. Spectra with a confined positive signal, such as the 1H and T1𝝆 

aromatic fields, were corrected adequately and peak-shapes were preserved. 

However, since the variegate nature of NMR datasets, were spectral patterns can 

differ hugely among the trial, for example due to differences in signal to noise 

ratio, phasing or solvent suppression, these two methods cannot used on 

automated screening routines as they will require a continuous optimisation of 

parameters to obtain acceptable results; as a consequence they should be used 

by expert users only for the manual analysis of limited cases. 

 

A dedicated NMR approach aimed to correct the baselines of 1D 1H 

metabolomics data was described by Wang and et al.135. Their method estimates 

the baseline pattern by calculating a distribution of standard deviations describing 

the spectrum’s noise. The method, called Distribution-Based Classification 

(DBC), calculates the standard deviations of the spectral intensities across a 

sliding-window of the spectrum. Only a single user-defined window-size 

parameter is required for this algorithm, making it more promising for automation 

in screening by NMR. 

The method was the last tested algorithm. It performed adequately on the T1𝝆 

experiment (Fig. 4.12A) but showed various degrees of baseline rolling when 

applied to the 1H and WaterLOGSY spectra (Figs 4.14B-C). Furthermore, large 

artefacts appeared at the edge of the T1𝝆 and 1H spectra, similar to the so-called 
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spectral “smile” typically observed in the spectra originating from the NMR 

manufacturer Bruker. This artefact could be considered only to be an aesthetic 

aspect that does not compromise a manual inspection of spectra. However, it 

could introduce false positive signals in automated signal recognition routines. 

 

The CWBC method did not result in any of the previously described issues (Fig. 

4.13). For all three experiment types baselines were restored around zero 

intensity, smiles were not present, and spectral signals were correctly preserved. 

Only the large phase error in the 1H experiment prevented a full baseline 

correction around the water signal; however, the line-shapes of actual signal 

containing peaks were not distorted. 

Unarguably, phasing errors derive from fundamentally different spectroscopic 

phenomena, and therefore different algorithms should be used to correct this 

error, preferably prior to the application of any baseline correction methods. 

Using the T1𝝆 spectrum of component-314 the line-shapes of the original 

spectrum and the CWBC spectrum were compared (Fig. 4.14). The aromatic 

region between 8.8 and 6 ppm was perfectly devoid of any offset and the rolling 

artefact was completely eliminated (Fig. 4.14A). The negative signal in the region 

at around 5 ppm was maintained and adjacent positive peaks were correctly 

present without any distortions, proving the ability of the algorithm to correct 

accurately both positive and negative signals simultaneously (Fig. 4.14B). Finally, 

complex spectral patterns, both in the aliphatic region around 3.5 ppm and the 

aromatic region at 7.2 ppm (Figs 4.14C-D), were properly maintained in the 

corrected spectrum, thus confirming that the algorithm was able to reliably correct 

the baseline errors and preserve accurately the crucial signals needed for a 

qualitative and quantitative analysis as required in screening by NMR. 

 

 Quantitative analysis of the various methods 
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The level of correction for each algorithm has been assessed through three 

different approaches: similarities among the whole spectral intensities, referred 

as “whole value”, similarities for a confined downfield signal region, referred as 

“aromatic value” and, baseline distances in known noise regions between original 

and corrected spectra, referred as “baseline value”. The higher baseline distance 

value suggests a higher degree of transformation of the spectrum; the value is 

inversely proportional to the distance measured to the simulated Gaussian curve 

at the zero intensities axis. High values relative to the whole and aromatic indicate 

a closer pattern between the two observations. These scorings have been 

designed so that in a scale 0 to 1, the perfect correction should show all three 

values as high as possible. 

 

The first test has been carried out on spectra relative to the component-314 for 

the three experiment types in the presence of the target. The choice of using 

spectra derived by samples in presence of the target assured to have a higher 

amount of signal and therefore assessing more potential critical areas. Although, 

the receptor signal should have properly suppressed using appropriate filters for 

this type of ligand-based experiments, and control and target spectra should have 

shown (about) the same number of spectral peaks. 

The quantitative analysis confirmed the visual examination for the T1𝝆 experiment, 

Fig. 4.15A. The CWBC algorithm appeared to be consistently superior in all three 

aspects tested for this experiment, with over 70% of the total spectral and over 

90% of aromatic line shapes preserved, plus an excellent correction of the 

baseline. As expected, the three polynomials did not apply any valid correction. 

The airPLS was the second best in the terms of consistency of the three 

parameters but lacked in the line-shape accuracy and the general baseline re-

referencing. Similarly, for the arPLS where the baseline recorded a high value, 

but the spectral patterns were compromised by their inefficacy to handle positive 

and negative signals in the same spectrum. The DBC and ALS methods 

preserved in a similar manner the crucial aromatic regions, but the lower baseline 
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values suggested artefact or under-correcting the baseline. Lastly, the WS 

registered the highest value in the noisy region but lower values in the signal 

regions did not make this algorithm excel in the complex. 

A different scenario was shown by analysing outputs from the 1H spectrum. This 

spectrum was characterised by a very large degree of phasing error, especially 

in the solvent regions. The new baseline correction method didn’t preserve fully 

the whole spectral patterns compared to 1st order polynomial and DBC, but the 

almost null baseline correction for the two methods could not make them a 

superior method compared to the CWBC; this was especially true for the 

polynomial fit which, as previously seen, only shifted the whole spectrum along 

the intensity axis. However, for the CWBC algorithm the critical aromatic field was 

at ~63%, similar to the DBC and for the airPLS, but the significantly higher 

baseline value, suggested an overall favourable level of correction, Fig. 4.15B. 

A similar case to the T1𝝆 was observed for the analysis of WaterLogsy spectrum. 

Fig. 4.15C. This spectrum did not have noticeable post-processing errors and 

minimal baseline offsets with slight rolling distortions. Once more, the CWBC 

baseline method recorded the overall highest values for whole and aromatic 

patterns similarities, at 0.89 and 0.97, following by a perfectly flat baseline in the 

noise region as suggested by the 0.98 score in the baseline reports. Whereas, 

other methods such as the airPLS, arPLS and ALS, recorded low values in 

aromatic and whole regions, indicating a general alteration of the original signals. 

Notably, DBC performed relatively well on aromatic and whole spectrum, but 

under-performed on the noisy baseline level, Fig. 4.15C. 

Lastly, the average of all three observations was analysed for the three spectra, 

Fig. 4.15D. Not surprisingly the CWBC algorithm achieved the highest level of 

correction, at 0.81 units, followed by the arPLS, WS DBC with values of 0.67, 

0.63, 0.62 respectively. 

 

Subsequently, the full dataset was analysed as described above and the 

normalised values for whole, aromatic and baseline distances were reported for 
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each spectrum, Fig. 4.16A. As expected, the 1st order polynomial scored the 

highest coefficient of correlations when comparing the spectral patterns as a 

whole region, followed by the CWBC and the BDC, at ~0.92 and ~0.89 

respectively. The CWBC scored the highest value on the aromatic region, 

followed by the BDC method and polynomial, whereas, in the baseline distance 

values, the WS registered the highest score, followed by the New and airPLS, 

that showed fractionally lower values. 

The average of these three scoring methods were also inspected, Fig. 4.16B. In 

line with previous observations, the New baseline correction algorithm scored the 

top merit at 97%, followed by the arPLS and BDC at 74% and 68% reciprocally. 

 

Scorings were finally grouped by experiment types in a heat map, Fig. 4.16C. 

From the plot it is possible to appreciate how the CWBC has evenly performed 

well in all spectra relative to the 1H, T1𝝆 and WLOGSY, with scores constantly 

above 0.75 and only occasionally lower in the 1H type. In contrast, other methods 

tested showed intermittent high scores among the dataset. For example, the 

arPLS performed better on T1𝝆 compared to the BDC, but the latter was superior 

on WaterLOGSY spectra. The lowest score for the new algorithm was recorded 

for the spectrum 1H 467 at 0.45. However, a qualitative inspection, Fig. 4.17A, 

showed that the crucial aromatic and aliphatic signals were perfectly corrected, 

Figs 4.17B-C, and only fewer peaks around the solvent region were lost due to 

the high phasing errors, Fig. 4.17D. This spectrum in fact was the most distorted 

across the dataset. 

Lastly, the computing time of the tested algorithms were evaluated, Fig. 4.16D. 

Excluding the polynomials, which obviously were computationally less 

demanding; the CWBC algorithm was significantly faster than the top two 

methods, BDC and arPLS, by over 5 and 20 orders of magnitude and only a 

fraction of a second slower than the WS, with a total executing time of 0.60s for 

correcting 36 spectra. This value might sound insignificant for this dataset, but it 
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only consisted of a portion of the original dataset recorded by the collaborators, 

whereas, typical screening dataset can be up to 10 thousand spectral entities. 
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4.5. Conclusions 
 

NMR screening data analysis consists in the detection and interpretation of 

signals recorded for samples composed by small molecules and macromolecular 

target(s)86. Low affinity binders can result in difficult to assess spectral differences 

which can lead to false positive and negative observations. It is, therefore, 

necessary that control, and experimental spectral settings are cautiously 

optimised for screening trials before proceeding to automated acquisitions. This 

is in practice not always possible, and datasets might present a series of spectral 

errors that can make the entire dataset completely unusable and unreliable for 

extracting crucial screening information. One of the most common processing 

artefacts that prevents a trustworthy data analysis is an improper baseline 

distribution and the presence of any degree of offsets among spectra. Over the 

year several baseline correction strategies were described both for NMR and 

other spectroscopic techniques128–130. In this chapter I tested the most recent and 

promising algorithms found in the public domain. 

 

I have assessed outputs from a variegate collection of experimental spectra after 

applying a series of algorithms such as the Whittaker Smooth, ALS132, ArPLS134 

and AirPLS133 and BDC135. Furthermore, simple polynomial fittings were used as 

a control test. Each algorithm showed advantages and disadvantages, some of 

which performed particularly well in a determined experiment type but not in 

another for the same dataset, but most importantly, all relied on a fine and 

bespoke adjustment of internal parameters depending on the spectral input. 

These adjustments and selection of a correct algorithm for large screening 

dataset are simply prohibitive and might create unnecessary delays and 

reproducibly issues. 
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Most of the algorithms tested produced serious artefacts that compromised the 

integrity of the dataset depending on the nature of the experiment type. 

To solve the various issues encountered during the correction of the dataset, I 

implemented a new method capable of correcting complex baseline artefacts. 

The approach uses a double cross-correlation approach to estimate the baseline 

and a weighted model for estimating the signal regions. I therefore propose the 

term correlated weighted baseline correction (CWBC). 

 

The newly developed method was capable of correcting highly distorted spectra 

and preserving signal patterns without the need of any user-adjustable 

parameter. Furthermore, it required less computational timing compared to 

others, making it an ideal solution for large and multivariate dataset such as the 

ones required in screening by NMR. Previous published algorithms included 

mostly qualitative assessment of any previously developed method, whereas, for 

this new approach I quantitatively classified the performance, including a 

comparison among different experiment types. However, extra testing will be 

necessary for determining threshold limits up to the algorithm can successfully 

correct compromised spectra. Lastly, future plan will include extending its 

employability to higher dimensionalities experiment types and larger datasets, so 

that can be used as a robust and versatile tool for NMR post-processing routines. 
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4.6. Figures 

 
Figure 4.1 Experiment types spectra for the component-314. 
A A portion of the aromatic field of spectra used for testing the various baseline 

correction algorithms. In black the control T1𝝆 spectrum and in red the T1𝝆 

spectrum recorded in presence of the macromolecular target. B 1H spectra 

recorded as the control in black and in presence of the target in blue. C 

WaterLOGSY spectra with the control displayed in black and target in magenta. 

For each experiment type the intensity comparison was impossible to assess due 

to the large offset between the control and experimental observations. The dotted 

green line represents the expected 0 baseline line. 

 
 
Figure 4.2 CWBC algorithm workflow overview. 

Schematic representation of the new proposed algorithm, CWBC; each rectangle 

consists of a crucial operation required to correct the spectral baseline. 
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Figure 4.3 CWBC algorithm: step 1. 

A Step 1. Overlap of the original spectrum, in green, with the cross-correlated 

curve fit E1, in magenta. A-Insert Steps 1.1-1.3. “Smile” correction for the 

downfield region of the spectrum. In magenta, the artefact created in the E1 cross-

correlation using the engine mode “same”. In blue the new cross-correlation for 

only a small portion of the spectrum using engine mode “valid”, which produced 

a smaller curve of 20 points. In red, the interpolated curve for the fit consisting of 

the same length of the original region of the spectrum in examination, which is 

shown in green. B Overlap of the original spectrum, in green, with the corrected 

cross-correlated curve fit E1 in red. 
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Figure 4.4 CWBC algorithm: steps 2-4. 
A Step 2. R1 spectrum created by the subtraction of the corrected E1 from the 

original datapoints. B Step 3. Identification of noise threshold values on R1. C 
Step 4. Removal of signals above and below thresholds on R1; intensities in these 

regions are set to a value of 0, black arrows. C-insert Step 4.1. Amendment of 

“zero groups”, removal inliers and increment of outliers. 
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Figure 4.5 CWBC algorithm: steps 5-6. 
A Step 5, Transferral of zero points from R1 to E1. The resultant spectrum, E3, 

displays a fragmented pattern due to the masked signal. B Step6, interpolation 

of masked signal. Overlay of the original spectrum, green, and E3interpolated 

spectrum, red. B-insert, overlay of E3 (black), and the resulting spectrum after 

the linear interpolation of masked signals (red). 
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Figure 4.6 CWBC algorithm: steps 7-8. 
A Overlay of the first, E1 and final cross-correlated curve E4 (red and dark purple) 

together with the original spectrum (green). A-insert, a zoomed region of the 

spectrum denoting the fitting differences between the first, E1 and final cross-

correlated curve E4 (red and dark purple). B Overview of the final R2 spectrum, 

created by the subtraction of the original and the final baseline estimation. 
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Figure 4.7 Polynomial orders corrections for Pr-314. 

A The resulting T1𝝆 spectra after applying the polynomial routines. Every 

polynomial order over-corrected the baseline by offsetting it below the 0-threshold 

line (dotted green line). B The resulting 1H spectra after applying the first three 

polynomial orders to the 1H spectra. As previously observed, the polynomial over-

corrected or introduced large baseline rolling artefacts. In the top left box, 0 

corresponds to the original spectrum, 1, 2, 3 refer to the 1st, 2nd and 3rd polynomial 

order outcomes. C WaterLOGSY spectrum after the application of the 1st order 

polynomial fit. The spectrum was slightly corrected in the first data-points in the 

downfield region, but under corrected in the upper region, resulting in a 

compromised spectrum. 2nd and 3rd orders not displayed for clarity, results were 

in line with A and B, showing large rolling errors across the spectrum. 
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Figure 4.8 Whittaker smoother corrections for Pr-314. 

A The T1𝝆 spectrum after applying the Whittaker Smoother (WS) filter to the 

original data-points. Although a perfect baseline was achieved at the zero 

intensities axis (red dotted line), all spectral peak-shapes were compromised. B 

The resulting 1H spectrum after the application of the WS method. Top left panel 

shows the aromatic region for the original spectrum, blue, and the WS corrected, 

(green). The over-correction produced negative intensity peak which were 

artefacts. C WaterLOGSY spectrum after the application of the WS method. It 

showed negative artefacts and decreased intensity values as in the previous 

experiment types. 
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Figure 4.9 ALS corrections for Pr-314. 
A T1𝝆 spectrum after applying the Asymmetric Least Squares Smoothing, ALS, 

algorithm. The spectrum showed low and broad artefact signals across the 

baseline, black arrow; furthermore, negative peaks indicated an overcorrection 

resulting in distortions. B 1H spectrum outcome showed similar patterns to the 

T1𝝆 experiment. C The WaterLOGSY spectrum after the applied algorithm. It 

showed severe positive artefacts and negative overcorrection typical of the 

algorithm. 

Baselines appeared under-corrected and not normally distributed along the zero 

intensities axis (blue dotted line) for all three experiment types.  
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Figure 4.10 airPLS corrections for Pr-314. 
A T1𝝆 spectrum after applying the adaptive iteratively reweighted Penalized Least 

Squares, airPLS. The algorithm corrected relative well the positive signals but 

badly compromised the rest of the spectrum by over-fitting the negative solvent 

region. B 1H spectrum after the application of the airPLS method. It showed global 

spectral distortions due to solvent (negative) regions. C The WaterLOGSY 

spectrum after the applied algorithm. This spectrum too, showed a pattern warp 

around the water region at 5 ppm. 
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Figure 4.11 arPLS corrections for Pr-314. 
A T1𝝆 spectrum after applying the asymmetrically reweighted Penalized Least 

Squares Smoothing, arPLS134. The algorithm eliminated the baseline error in the 

aromatic region, but performed poorly in the water region, compromising a large 

portion of the spectrum between 6 to 4 ppm. B The 1H spectrum manifested 

severe issues in the solvent fields. On the top left square, it is possible to notice 

the result of an over-correction for some positive aromatic peaks (black arrows); 

intensities appeared wrongly decreased compared to the original blue spectrum, 

arising potential false positive screening hits. C The WaterLOGSY spectrum after 

the applied algorithm. The spectrum showed compromised negative peaks both 

in the aromatic and in the solvent regions. 
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Figure 4.12 BDC corrections for Pr-314. 

A T1𝝆 spectrum after applying the Distribution-Based Classification, DBS, 

baseline correction algorithm. The spectrum appeared correctly re-referenced to 

the zero intensities threshold line in most of the data-points. A large “smile” 

artefact was visible at both edges of the spectrum (black arrows) B The 1H 

spectrum showed the same “smile” errors (black arrows) and mild baseline rolling 

in the signal regions. C The WaterLOGSY spectrum after the applied algorithm. 

It was corrected relatively well except for the constant artefacts at both ends. 
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Figure 4.13 New baseline corrections (CWBC) for Pr-314. 

A T1𝝆 spectrum after applying the CWBC algorithm. Spectral patterns were 

correctly maintained across data-points. B The resulting 1H spectrum after 

running the new baseline correction method. The spectrum showed an accurate 

correction in aromatic and aliphatic regions; some difficulties were observed in 

the unphased water region at ~5 ppm. C The WaterLOGSY spectrum after 

applying the newly developed algorithm. It was meticulously corrected and did 

not show any induced artefacts. 
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Figure 4.14 Qualitative analysis for Pr-314 T1𝝆 after applying the CWBC. 
A Spectral overlay for the original spectrum, in green, and the corrected 

spectrum, in orange. The figure shows a high accuracy in preserving peak-

shapes in the aromatic region of the spectrum. B A zoomed portion of the spectra 

where negative and positive peaks are in close proximity. The corrected spectrum 

is shifted by ~0.15 ppm in the x-axis for clarity. C An example of a multiplet in the 

aromatic field. The corrected spectrum is offset by ~0.15 ppm in the x-axis. D An 

example of a complex multiplet pattern in the aliphatic region. The corrected 

spectrum is offset by ~0.15 ppm in the x-axis. 
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Figure 4.15 Analytic comparison of methods applied to Pr-314 spectra. 

Scoring in arbitrary units for whole (blue) and aromatic only lineshapes (orange), 

and baseline distance (grey), calculated as in Eq. 4.2. Values close to 1 for the 

whole and aromatic signify high similarities between original and corrected. 

Values close to 1 for the baseline bar represent closer distance between the 

corrected baseline and simulated spectrum, calculated as in Eq. 4.4. A Results 

for the T1𝝆 experiment type spectrum. B Results for the 1H spectrum. C Results 

for the WaterLogsy spectrum. D Average scoring calculated as in Eq. 4.5 for each 

method tested. 
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Figure 4.16 Analytic comparison of methods applied to the whole dataset. 

A Average scoring for the whole, aromatic and baseline applied to all 36 spectra 

in the dataset. Each colour represents the different method tested. B Average 

scoring calculated as in Eq. 4.5 for the total spectra. C Heat map plot for shows 

single average scores (whole, aromatic, baseline) for each spectrum. Spectra are 

sorted by experiment types; starting from the top: 1H, followed by T1𝝆 and finally 

WaterLOGSY. Higher scores are represented by lighter colours. D Executing 

timing for each algorithm tested for this dataset. 
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Figure 4.17 Qualitative analysis for 467-Ref 1H. 

A Spectral overlay for the original spectrum, in blue, and the corrected spectrum, 

in orange. The original spectrum was characterised by a large intensity offset and 

a severe phasing issue. B The figure shows a high accuracy in preserving the 

peak-shapes in the aromatic region of the spectrum. The corrected spectrum is 

offset by ~0.15 ppm in the x-axis. C Zoom-in in the aliphatic region of 467; the 

image suggests a high level of accuracy in preserving the peak-shapes. The 

corrected spectrum is offset by ~0.15 ppm in the x-axis. D Zoom-in in the solvent 

region around 4.3 ppm. The corrected spectrum is offset by ~0.02 ppm in the x-

axis.  
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5.1. Abstract 
 

In this chapter I discuss results obtained by analysing four experimental datasets 

using pipelines and tools available in CcpNmr AnalysisScreen (cf. chapters 2, 3). 

Our collaborators, both industrial and academic, who provided us the essential 

datasets for validating AnalysisScreen, have previously relied largely on a visual 

inspection of 1-dimensional spectra for assessing binding events of fragments to 

their targets. This strategy did highlight the major spectral differences between a 

control and a spectrum acquired in presence of a target and therefore classified 

molecules as binding hits; however, it lacked any quantitative evaluation. 

More generally, the visual inspection of spectra has several drawbacks, such as 

a difficulty in reproducing experimental results and inaccuracies in matching 

complex spectral signals across different datasets. In this chapter, I discuss 

pipelines and scorings obtained by performing automated and semi-automated 

analysis routines on a series of different datasets, including multiple experiment 

types, such as 1H Relaxation-edited, WaterLOGSY, STD, CPMG. I examine 

results from the automated routines by comparing these to the results obtained 

through visual inspection. 
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5.2. Introduction 
 

Apart from AnalysisScreen (cf. chapters 2, 3), currently only a few commercial 

software packages provide dedicated support for NMR screening116,140. In spite 

of the large premium for software like Bruker TopSpin116 and MestreLab MNova 

Screen140,141, which often cannot be justified for occasional users and students, 

these packages provide little or difficult customisation of workflows. For instance, 

TopSpin tools only provide for a qualitative analysis of hits using binary scores, 

such as ”binding” or “not binding” hits, whereas MestreLab reports an overall 

intensity percentage change above a certain user threshold. The aim on CcpNmr 

AnalysisScreen is to provide a full support, not only for an easy and quick 

qualitative inspection of NMR data but also to provide a reproducible and detailed 

scoring of each dataset. In line with computational docking, where several scoring 

functions and algorithms developed during the years allowed to score and filter 

results142–144, screening by NMR should be assessed quantitatively in the same 

manner. In fact, the various compounds to be tested can be expected to bind the 

target with different orders of magnitudes and it is essential to differentiate a 

weaker binder from a stronger binder using the primary screening145,146. This 

approach will guarantee a reduction in human mis-interpretation of data, facilitate 

the deconvolution of a large quantity of information and most importantly it will 

aid in the reproducibility of results. 

CcpNmr AnalysisScreen architecture and features have been described in 

chapters 2 and 3. In this chapter I report on four case studies which were 

analysed using the new package. Each case study contained experimental 

datasets that were recorded by industrial and academic collaborators as part of 

a genuine FBDD effort. The biological information of these studies was not 

revealed, as it was not required in the development and validation of the software 

at this stage. Furthermore, some of the spectra and associated metadata was 

proprietary and not shared with us. The datasets were mostly comprised of STD 
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experiments, but also 1H-Relaxation-edited, WaterLOGSY, T1ρ and CPMG at 

multiple relaxation times. Several thousand spectra were analysed, with the two 

largest libraries amounting to 1548 and 1632 reference components each. For 

each dataset, scores were given according to the experiment type under 

examination, e.g. intensity changes, shifts distribution, chemical shifts matching, 

signal-to-noise ratios versus efficiencies and in the case of CPMG analysis, 

detailed PDF files with extended analysis properties. 

Here, I will describe tools I used to tackle the peculiarities of each dataset, i.e. 

moderate-to-severe post-processing issues, phasing, scaling and referencing 

issues. The latter is a common problem present in NMR due to variations in 

experimental conditions when acquiring in multiple stage screening samples and 

their reference compound spectra, e.g. at different spectrometers, temperature, 

solvent compositions, etc. The pipeline implemented in CcpNmr AnalysisScreen 

therefore included re-referencing and global alignment pipes, that are capable of 

automatically detecting and applying shifts to each individual spectrum or, 

alternatively, setting a specific parameter simultaneously for all spectra. 

Although these projects were only used for a software validation purpose, the 

diversity of each case was fundamental for gaining invaluable information for 

developing tools needed for assessing multiple screening research approaches. 

All datasets were initially assessed only visually and qualitatively. Subsequently, 

by comparing these results with those obtained from automated or semi-

automated procedures, several discrepancies were observed, including the 

appearance of potential hits that were completely misjudged during the visual, 

non-automatic analysis.  
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5.3. Materials and Methods 
 

 Materials 
 

AnalysisScreen capabilities were assessed using four experimental datasets that 

were kindly supplied by four different laboratories. Three datasets consisted of 

one-dimensional spectra recorded with Bruker spectrometers, whereas one 

dataset was provided in a CSV file format. 

 

Dataset-1. The first dataset was composed of 27 spectra relative to three 

compounds, identified as 314, 467, 7373. The spectra recorded for these 

compounds displayed (according to the data-owner) the strongest binding 

properties, therefore, they should function as a good validation model. 

For each substance there was a reference spectrum plus three 1H, six T1ρ, six 

WaterLOGSY and three STD spectra, acquired in the presence and the absence 

of a protein target. Target and substance structures were undisclosed. Spectra 

files were provided as CSV files and they had been processed by the 

collaborators themselves. 

Each component was inspected independently (singleton), and only the aromatic 

region of the spectrum was considered for detecting hits. 

 

Dataset-2. The second dataset was composed of two subsets of spectra. The 

first subset included spectra relative to 35 undisclosed small compounds. For 

each compound a reference 1H spectrum was provided alongside with the control 

STD and the relative STD acquired in presence of the target. The second subset 

included eleven samples as mixtures of four compounds each. It was not clear if 

the mixtures included the same compounds previously recorded as singletons or 

a different library was used. All spectra had already been processed and 

biological properties were unknown. 
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Dataset-3. Part of this dataset was already introduced in chapter 2; it consisted 

of 1548 fragments used for creating 310 mixtures of approximately five 

components each. For each fragment a processed 1H reference spectrum was 

provided in addition to a total of 309 processed STDs recorded for each mixture 

in the presence of the target. Ligands were prepared at a concentration of ~200 

μM and the target at ~4 μM. 

 

Dataset-4. The dataset consisted of 1632 reference compounds divided in 168 

mixtures, with each mixture containing approximately 10 compounds. Data from 

three different NMR screening experiments were available: 1H, On and Off 

resonance, and a series of seven CPMGs at 0, 45, 50, 100, 300, 500, 800 ms 

decay time. 

Ligands were used at a concentration of approximately 300 μM, and the target at 

5-10 μM. 

Each sample was recorded as a control (compounds only), referred as SF, and 

for the 1H and CPMG experiments, recorded at 0, 45, 50, 100, 300, 500 and 800 

ms relaxation time, in the presence of the target, referred to as SP. The total 

number of spectra for this dataset was 4692, plus 168 STD spectra which were 

generated automatically as part of the analysis. 

 

 Methods 
 

The analyses have been carried out using the built-in pipelines and bespoke 

macros employing packages included in the AnalysisScreen Python 

environment. 

For detecting spectral signals, I have used the two peak picking algorithms 

described in chapter 3; the first implementation was based on the maximum_filter 

algorithm120, referred as MF, and the second method was implemented from the 

Peak Detector algorithm121, referred as PD throughout this chapter. 
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Dataset-1 was analysed semi-automatically; peaks were picked manually in all 

spectra and intensities were compared between control and spectra recorded in 

the presence of a target using a macro. 

 

Percentage changes in peak intensity heights were calculated as: 

 

𝐻𝑐 = 	
|𝐻3 − 𝐻4|
(𝐻3 + 𝐻4) 2⁄

 

Eq. 5-1 

Where H1 and H2 are the two peak heights being evaluated. Changes in peak 

heights were used to score the signals in the T1ρ and WaterLOGSY spectra. 

 

Dataset-2 was analysed using a combination of manual and automated pipes. 

The parameters used for the MF in the first subgroup (singletons) were: size = 

10; mode = wrap; noise level factor = 2. 

The PD had one adjustable parameter only, delta, which was set to: delta = 1.6; 

whereas, the ignored regions were: 4.8 to 4.6 ppm and 2.65 to 2.55 ppm. For 

both methods, negative peaks were excluded. 

Peaks were identified using the MF using the following parameters: 

Reference Spectra: noise level = 500.000, filter size = 10 

The ignored regions were: 4.9 to 4.65 ppm, 3.49 to 3.45 ppm and 2.7 to 2.650 

ppm. For the STD Spectra: noise level factor = 2, filter size = 10. 

To the same spectra was applied the PD with a delta value of 1.6. Whereas, the 

ignored regions were: 4.8 to 4.6 ppm, 2.78 to 2.50 ppm, 1.20 to 1.00 ppm. The 

STD hit detection pipe, used to match references to the STD spectra, had a 

tolerance of 0.03 ppm. 

 

Dataset-3 was analysed using a pipeline comprised of: exclude regions, noise 

threshold, peak picker, and SpectrumHit detection with matching references. 
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Automated peak detection on all spectra was achieved using the PD peak picker 

with a delta value of 1.5. For this dataset the aliphatic region of the spectrum, i.e. 

5 to 0 ppm, was excluded. Reference peaks were matched to the STD spectral 

peaks using a tolerance of 0.03 ppm for the first run and 0.01 for the final run. 

 

Dataset-4 was analysed using a combination of macros and GUI pipes. The 1H 

analysis macro consisted of the following steps: 

1. Peak detection on reference spectra, (delta: 1.5; excluded regions: 5.1 to 

-4 ppm with automatic noise threshold calculation); 

2. Re-reference references to experimental. The manually calculated shift 

was 0.079 ppm; 

3. Peak detection on control spectra (parameters as 1); 

4. Copy control peaks to spectra with the target, “refit” maxima within a 

tolerance of 0.0035 ppm on both peak edges; 

5. Calculate percentage changes as in Eq. 5.1; 

6. Match references to target spectra within a tolerance of 0.05 ppm; 

 

The STD macro was similar to that used for the analysis of the 1H data, except 

that the control and target spectra were replaced by the On-Off resonance 

spectra and efficiencies were calculated as in Eq. 3.6. Furthermore, STD spectra 

were created from the On-Off resonances and the signal-to-noise ratio was 

calculated accordingly. 

 

The CPMG macro consisted of the following steps: 

1. Peak detection on reference spectra, (delta: 1.5; excluded regions: 5.1 to 

-4 ppm with automatic noise threshold calculation); 

2. Re-reference references to experimental. The applied shift was 0.079 

ppm; 

3. Peak detection on control spectra at 0 ms (parameters as 1); 
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4. Propagate peaks to all spectra in the control and target series, “refit”; 

maxima within a tolerance of 0.0035 ppm; 

5. Calculate exponential fit for each peak in the series; 

6. Calculate changes in merit for the control and target fitted slopes by: 

 

𝑆 = 1 −
|𝑇|
|𝐶| 

Eq. 5-2 

 Where T is the target and C the control parameter obtained from the fitting 

routine; 

7. Match references to target spectra within a tolerance of 0.05 ppm. 

 

Excel sheets were used to load and parse the metadata for all datasets (cf. 

chapter 2). For the last dataset, however, Excel files with all relevant data were 

automatically generated from the experimental data structure using in-house 

written python scripts. These allowed to divide and organise the large dataset in 

three different files for an easier handling and include extra needed metadata. 
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5.4. Results and Discussion 
 

 Dataset-1 
 

The first dataset tested was relatively small as it contained only spectra 

corresponding to compounds that the collaborators considered to be binding to 

the target, subsequently referred to as SpectrumHits in the AnalysisScreen 

terminology. The availability of data for three different NMR screening 

experiments, i.e. T1ρ, WaterLogsy and STD, renders this set-in principle suitable 

to validate the corresponding automated detection pipelines. Moreover, the 

usage of multiple NMR screening experiments is deemed to improve on the 

reliability of the screening procedure and the concept of level-1, level-2 and level-

3 in the hit analysis procedure has previously been proposed147. As explained in 

chapter 3, based on the count of positive observations for each experiment, a 

molecule is defined as a level-1 hit if it appears as a binder in one experiment, a 

level-2 hit when two experiments confirm its interaction and so on. 

Upon a first visual inspection, I noticed that all spectra showed severe phasing 

issues, referencing mismatches, baseline errors, scaling and large peak shifts, 

likely due to referencing errors (data not shown). These problems made the use 

of a fully automated pipeline for classifying the SpectrumHits on the basis of the 

original data impossible. Consequently, using the relevant pipes in 

AnalysisScreen the spectra were phased, baseline corrected, and subsequently 

peaks were picked and carefully inspected for each experiment. The resulting 

spectra for three compounds, i.e. 314, 467 and 7373 are displayed in Figs 5.1-3. 

The first component, 314, showed a notable intensity reduction in the T1ρ 

spectrum recorded in the presence of the target compared to the control (Fig. 

5.1B). In particular, peaks at 7.58 ppm and 7.32 (control spectrum) showed the 

largest differences with 36% and 39% intensity changes, respectively. Changes 

for the same peaks were also observed in the WaterLOGSY spectra (Fig. 5.1C). 
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Peaks changed intensity sign upon binding to the target, and effects are clearly 

visible at 7.14 and 6.92, with a percentage change of 33% and 42%. Lastly, the 

STD spectrum (Fig. 5.1D,) showed easily distinguishable signals at 7.13, 6.89, 

6.93, 6.92, 6.90 which had an average signal-to-noise ratio of 2.97. This 

suggested a significant STD response. The presence of significant effects across 

all three experiment types indicate that this compound could be classified as a 

level-3 binding SpectrumHit. 

The second component, 467, showed a significant intensity reduction in the T1ρ 

Fig. 5.2B, with the largest percentage of 40% for the peak at 8.4 ppm, followed 

by 36% at 7.73 ppm. The WaterLOGSY spectra showed intensity changes for the 

same peaks, Fig. 5.2C. However, due to a large offset, ~0.87 ppm between the 

control spectrum and the target spectrum, and poor target signal suppression, 

results should be examined cautiously. Similarly, the STD spectrum Fig. 5.2D, 

showed a low average signal-to-noise ratio of ~1.41 and peaks were barely 

recognisable at 7.79, 7.25 and 6.96 ppm, suggesting a very weak STD response. 

Last group of spectra available for this dataset was relative to the component 

7373 Fig. 5.3A. The T1ρ spectra showed very large percentage of changes for the 

peak at 8.01 and 6.35 ppm but most importantly, a significant shift among all 

peaks. 

The next experiment type, WaterLOGSY Fig. 5.3C, showed sharp positive peaks 

in the spectrum for the sample recorded with the target, but unfortunately the 

control spectrum did not show any signal, apart for solvent, so a full comparison 

was not possible. Lastly, the STD spectrum, Fig. 5.3D, showed the highest 

average signal-to-noise ratio of 4.34. The clear singlet at 7.87 and two doublets 

at 7.5 and 7.2 ppm suggested this component to be an STD SpectrumHit. 

The spectra for compounds 467 and 7373 were analysed in a similar fashion. A 

summary of the observed effects for the three components and each experiment 

type is shown in Fig. 5.4A. In the T1ρ experiment, all three components showed 

a high average intensity change for peaks in the aromatic region, with compound 

467 recording the highest score of 0.30. This component, however, revealed the 
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lowest scores for the WaterLOGSY and STD experiments with values of 0.14 and 

0.03, respectively. The previous manual assessment classified this compound as 

a level-3 SpectrumHit; however, the very weak STD score, with a S/N < 1.5, 

should be carefully included as a binding spectrumHit. 

Compound 7373, had its WaterLOGSY score arbitrarily set to 0.35 as it showed 

the sharpest positive peaks in the target spectrum; together with the highest STD 

score of 0.17 this compound could be considered the most prominent 

SpectrumHit of the dataset. Surprisingly, and in contrast to the automated result, 

the previous manual assessment classified this compound as a level-2 

SpectrumHit. 

The spectra of all compounds also displayed large shifts of the peaks (cf. Fig. 

5.1). It is unclear if these shifts were due to different experimental conditions 

among the samples, e.g. control and in presence of the target, or that these shifts 

were genuine and the result of the interactions of the compound with the target. 

In conclusion, the quality of the dataset was such that additional experiments 

would be necessary to confirm any of three components as binding to the target. 

 

 Dataset-2 
 

The second dataset used to test AnalysisScreen comprised a group of 35 

singleton STD spectra and a small group of eleven mixtures of 4 compounds 

each. Dataset-2 did not present any of the issues as previously described for 

dataset-1, and automatic routines could be tested using built-in pipelines. I 

specifically used this dataset to examine the effect of two automated peak picking 

algorithms, referred to as the maximum_filter algorithm120 (MF) the Peak Detector 

algorithm121 (PD). 

Peaks were firstly picked in all reference spectra using the MF peak picker and 

inspected manually to ensure that peaks originating from the noise were not 

included. Secondly, peaks were identified manually, as well as using the MF and 

PD algorithms, in the STD control spectrum and STD spectrum in the presence 
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of the target (Fig. 5.5A). There were no major differences between the two 

algorithms, although the MF algorithm required several trials before finding the 

optimal parameters. In fact, non-optimal parameters resulted in a large number 

of false positive or false negative peaks (not shown). A total of 29 SpectrumHits 

were found after running the newer PD algorithm, and only 27 when using the MF 

algorithm. Using manually picked peaks 28 SpectrumHits were observed (Fig. 

5.5B). 

This dataset also included eleven mixtures which were analysed using the same 

workflow as discussed previously. The total number of SpectrumHits resulting 

from this analysis is shown in Fig. 5.6. In particular, four spectra were flagged as 

SpectrumHit by the collaborator upon a visual inspection (VI col), whereas my 

personal visual inspection classified 14 SpectrumHits (VI). The latter result was 

taken as a reference point for comparing the various algorithms. The MF 

algorithm for the peak picking resulted in only four SpectrumHits to be identified, 

whereas the PD peak picker identified fourteen SpectrumHits. Peaks were also 

determined manually and using this information fifteen SpectrumHits were 

counted. I speculate that the collaborator flagged fewer SpectrumHits as a result 

of cross validating the data with other techniques. A successive analysis 

compared similarities between SpectrumHits found automatically or semi-

automatically and those derived from my visual inspection (Fig. 5.7). Notably, all 

four SpectrumHits identified by the MF algorithm can be considered true 

positives; the PD algorithm performed significantly better, with a total of 13 

correctly matched SpectrumHits. However, peaks identified manually, and those 

identified with the PD peak picker showed an additional SpectrumHit not identified 

through the visual inspection, which was considered being a false positive (Fig. 

5.7B). Importantly, by missing ten of the known SpectrumHits the MF algorithm 

displayed a very high false negative rate when compared with the PD peak picker 

(Fig. 5.7A). A further statistical analysis between these two methods showed a 

slightly higher precision count for the MF peak picker, but a significant reduction 

of sensitivity, accuracy and specificity compared to the PD peak picker (Fig. 5.8). 
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These results confirmed that the PD peak picker was a better alternative to the 

originally developed MF peak picker and therefore used as preferred automated 

algorithm for the analysis of other available datasets. 

 

 Dataset-3 
 

I next tested the performance of the automated STD analysis implemented in 

AnalysisScreen using dataset-3 containing 310 experimental STD spectra, 

acquired for samples in the presence of a biological target and mixture 

compositions of up to five components. Firstly, spectral peaks were manually 

picked for all available spectra. Using simplified tools also available in 

AnalysisScreen (as described in chapter 3), each STD spectrum was visually 

inspected by comparing it to its single spectral reference. A total of 18 compounds 

displaying STD effects were considered being true positive SpectrumHits (Fig. 

5.9A). The same number of SpectrumHits were found by using an automated 

matching routine. However, from the analysis reported on by the AnalysisScreen 

Hit Analysis module (cf. chapter 3), I noticed that most of STD spectra were 

uniformly misaligned to their corresponding reference spectra (Figs 5.10A-B), 

suggesting a referencing issue. For the dataset under examination, a total shift 

of 0.0075 ppm was determined (Fig. 5.10B) and applied to the STD spectra. 

Finally, they were re-matched to the reference data and re-evaluated. 

Ultimately, a complete pipeline, consisting of automatic peak picking, re-

referencing, and hit detection pipes was applied to the dataset. A total of 29 

SpectrumHits were found (Fig. 5.9A). Using the Hit Analysis module, the 

previously not identified SpectrumHits were inspected and confirmed as true 

positive SpectrumHits, albeit some had very low scores (Fig. 5.11). However, four 

compounds previously flagged as SpectrumHits were now no-longer founds (Figs 

5.9B, 5.11), usually as a result of being below some pre-set threshold values, e.g. 

the spectral Signal-to-Noise Ratio, S/N. Some spectra, in fact, appeared to be 

very noisy and difficult to interpret. In line with the simulated datasets (cf. chapter 
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3), for the experimental STD data SpectrumHits for peaks with a S/N lower than 

1.5 were barely recognisable from the overall noise, and therefore were excluded 

as true positives. Lastly, a graphical summary of the scores versus S/N is shown 

in Fig. 5.9C. 

 

 Dataset-4 
 

Dataset-4 differed considerably compared to datasets 1-3 described above. 

Dataset-4 contained multiple processed spectra for each compound, in addition 

to spectra recorded for three different experiment types, i.e. STD, 1H and a CPMG 

relations series. The latter prompted the inclusion of its relevant parameters in 

the excel reader (discussed in chapter 2), as well as additional changes in the 

AnalysisScreen core data structure in order to accommodate the additional 

information. Furthermore, since the workflow was novel, some steps necessary 

for the analysis were not (yet) available in the GUI pipeline and were therefore 

performed using the built-in command-line interface of AnalysisScreen. 

Starting from the STD analysis, peaks were initially identified in the Off-resonance 

spectra and transferred to the On-resonance spectra followed by a peak refitting 

to establish the new local maximum. STD spectra were obtained by the common 

subtraction of On- and Off-resonance spectra and peak efficiencies were 

calculated as in Eq. 3.6. To identify any potential SpectrumHits, it would be 

required that the signal-to-noise would be sufficient, while simultaneously the 

STD effect should be significant. Hence, for each STD spectrum the S/N was 

calculated and plotted against the total STD efficiency (defined as in eq. 3.6), Fig. 

5.12A. A small cluster of reference spectra that display a S/N value >1.5, in 

accordance with the simulated data of chapter 3, and > 0.5 total efficiency score. 

This region is expected to contain the potential SpectrumHits, which can be 

further analysed in the subsequent drug discovery steps, for example using 

parallel NMR experiments, such as the Chemical Shift Mapping analysis 

discussed in the following chapter. 
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In order to identify any potential similarities between the SpectrumHits, a Kernel 

Density Estimation (KDE) between the single peak efficiency and the peak 

chemical shift was calculated (Fig. 5.12B). The KDE plot shows that the highest 

scoring region is around 7.25 to 7.5 ppm. It shows a central efficiency score of 

~10% and outliers up to 30%. Example of STD spectra are shown in Fig. 5.13; a 

visual inspection of the spectral appearances suggests that the proposed 

categorisation (cf. Fig. 5.12A) adequately classifies the STD spectra. 

Next, the spectra acquired using the CPMG technique were inspected. For each 

mixture, peaks were initially identified in the control spectra recorded at 0 ms 

relaxation time and the peaks were then transferred to all other six spectra in the 

series, for both control and target spectra. From assessing the decay of the peak 

heights as a function of relaxation time, T1ρ spectrumHits were determined from 

Eq. 5.3 (Fig. 5.14A). Only the top 50 scoring spectra were used for further 

investigation, which corresponded to compounds with scores above 3 units. 

Again, a KDE plot correlating the chemical shift position and the score was also 

calculated (Fig. 5.14B). As also observed for the STD result (cf. Fig. 5.12B), the 

highest probability of identifying SpectrumHits is centred between ~7.3 and 7.5 

ppm. To establish the optimal sensitivity of the CPMG method, a KDE was also 

calculated for the decay time and the ppm positions (data not shown). This 

analysis showed the highest density in a time region between 400 and 200 ms 

with a normally distributed ppm positions and a maximum at around 7.4 ppm. 

From the results it was possible to differentiate between non-hits and potential 

SpectrumHits (Fig. 5.15). Putative SpectrumHits were characterised by an 

estimated T1ρ time between 250 and 400 ms, with a median of ~330 and an 

average of ~376 ms, whereas, non-binding fragments showed a T1ρ time between 

400 and 880 ms, with an estimated median of ~510 and an average of ~1819 ms. 

Fig. 5.16 displays typical examples of both the spectra and the resulting decays 

curves. 

Lastly, the plain 1H SpectrumGroup was assessed by comparing changes in 

intensities between control and target spectral signals. Scorings were calculated 
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as previously discussed from Eq. 5.1. The scores distribution was similar to the 

CPMG, with a maximum peak at 1.5 total score, also in this case, only the top 50 

compounds were arbitrarily advanced for further inspection, Fig. 5.17A. Finally, 

the single score and ppm position for each peak corresponding to the top 

SpectrumHits were calculated in a KDE. 

For this experiment type, scores were localised at a value of ~0.7 for peak 

SpectrumHits recorded in a region between 7.4-7.5, which was consistent with 

previously reported CPMG and STD SpectrumHits-range.  

I believe that the KDE report, when performed with the spectral peak 

assignments, might help in elucidating the binding orientations of a specific 

cluster of compounds, therefore providing an initial structure activity relationship 

(SAR) from the primary hit identification. 

Finally, for the top 50 SpectrumHits the confidence level was determined using 

all experiment types. Only one compound was classified as level-3 SpectrumHit, 

common to all experiments. Seven compounds showed a level-2, common in at 

least two experiments and 133 compounds were classified as level-1.  
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5.5. Conclusions 
 

The variety of datasets, and experiment types, personal working preferences, and 

other user customisation of datasets as demonstrated by the four examples in 

this chapter, renders a one-off solution for data analysis nearly impossible. 

Instead, specific workflows need to be created for each case. The flexibility of 

CcpNmr AnalysisScreen allows for a straightforward adaptation to specific user’s 

needs with bespoke pipelines or simple macros, that can be written and run within 

the program. 

In this chapter I described the analysis of four different datasets, which were 

provided by different collaborators. Each dataset presented a completely different 

data-structure, including the mapping of nomenclature and associated metadata. 

However, the presence of an Excel file-parser made it possible to parse and load 

within the programme all datasets with ease. 

Every dataset presented some peculiarity, that made the initial analysis more 

challenging than expected, especially if it was compared to the analysis of a 

simulated dataset as discussed in chapter 3. 

The dataset-1 was characterised by severe phasing issues, severe referencing 

misalignment across the different spectral types. Furthermore, weak ligand 

signals, improper protein and solvent signal suppression, together with a portion 

of the reference dataset missing, made the design and execution of a fully 

automate analysis very challenging. Instead, spectra were re-phased using a 

single pipeline and peaks were picked manually with the built-in manual selection 

of AnalysisScreen. Finally, intensities signals were compared using a custom 

macro and scores were reported (Fig. 5.4). In contrast to the collaborator’s 

qualitative definition of SpectrumHits, AnalysisScreen yielded a much more 

exhaustive scoring classification. 

The dataset-2 was composed of singleton STDs, mixtures and their spectral 

references. The collaborator shared its own qualitative judgment on the singleton 
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analysis but could not fully identify SpectrumHits from the mixtures due to 

overcrowded regions and difficulties in spectral deconvolution. 

This dataset was primarily used for testing the performance of two peak picker 

algorithms, denoted as MF and PD. The PD peak picker algorithm proved to be 

more reliable with higher sensitivity and accuracy scores (Figs 5.8 B-C). 

Compared to the MF algorithm, the PD algorithm is also easier to optimise for 

performing an automated screening analysis as it only requires one user 

adjustable parameter. By optimising the speed of the algorithm from seconds to 

milliseconds in execution time per spectrum, it now presents a superior practical 

choice. 

Dataset-3 was used for testing the performance of the automated STD analysis. 

SpectrumHits were grouped by a scoring function based on signal intensity and 

estimated signal-to-noise ratio, validating the model built using the simulated 

dataset as previously discussed in chapter 3. Notably, the hit analysis indicated 

referencing issues between the spectral references and experimental STD (Fig. 

5.10B), resulting in a global re-alignment. The fully automated hit-detection 

pipeline identified more genuine SpectrumHits (Fig. 5.11) compared to previous 

manual visual inspections by both our collaborator and myself. 

 

Dataset-4 was used to evaluate both 1H, STD and CPMG series. This dataset 

also presented some troubling features, including very high STD efficiencies in 

solvent regions, 1H target spectral intensities that were higher than their control, 

and CPMG series with scattered intensity outliers that prevented an optimal 

performance of fitting routines. However, this dataset was fundamental for 

developing the AnalysisScreen routines and assisted in further validating the 

various scoring functions, identifying potential SpectrumHits (Fig. 5.13). 

 

In this chapter, I have shown how automated computational tools can drastically 

reduce both the time and bias to determine the output of screening by NMR 

compared with manual analysis, including reducing false positive and false 
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negative observations. The inherent flexibility of AnalysisScreen allows for its 

continuous development. The collaborations with both academic and industrial 

partners will ensure the completion of a robust package capable of dealing with 

a variety of NMR datasets. 
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5.6. Figures 

 
Figure 5.1 Dataset-1, multiple experiments for component-314. 
A 1H reference spectrum for the substance 314. B T1ρ control spectrum in red, 

and in presence of a target, light green. Spectra have an offset of ~0.0013 pm to 

each other. C WaterLOGSY control spectrum, purple, and after the addition of 

the target, blue. Positive peaks relative to the compound-314 appeared in several 

positions. Spectra are shifted by 0.010 ppm to each other. D STD spectrum. The 

dotted lines highlight the aligned areas where major spectral changes occurred. 

For all spectra: proper uniform referencing was likely severely compromised (see 

text for details).  
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Figure 5.2 Dataset-1, multiple experiments for component-467. 

A 1H reference spectrum for the substance 467. B T1ρ control spectrum, red, and 

in presence of a target, light green. Spectra have an offset of ~0.005 pm to each 

other. C WaterLOGSY control spectrum, purple, and after the addition of the 

target, blue. Positive peaks relative to the compound-467 appeared in several 

positions, although an unexpected negative peak of the doublet at 7.1 ppm 

occurred (blue arrow). Spectra are shifted by 0.870 ppm. D The weak STD 

spectrum relative for this component. 
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Figure 5.3 Dataset-1, multiple experiments for component-7373. 
A 1H reference spectrum for the substance 7373. B T1ρ control spectrum, red, 

and in presence of a target, light green. Spectra have an offset of ~0.480 pm to 

each other and aligned to the singlet at 8.01 ppm, large peak shifts were observed 

for these spectra (black arrows). C WaterLOGSY control spectrum, blue, and 

after the addition of the target, purple. Note the control spectrum was 

characterised by the total absence of the ligand signals due to improper solvent 

suppression. D STD spectrum relative for this component. 
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Figure 5.4 Dataset-1, scorings summary. 
A Scores for T1ρ (blue), WaterLOGSY (orange), STD (grey) for the three analysed 

components. B Recorded peak shifts for T1ρ (blue), WaterLOGSY (orange), STD 

(grey) for the three analysed fragments. 
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Figure 5.5 Dataset-2. Singleton scorings summary. 
A Total peak count for the target and control spectra using three different 

methods: Manual (grey), MF peak picker (blue) and PD peak picker (orange). 

After several trials in optimising running parameters for the MF algorithm for this 

dataset, it found most of the spectral signals, including lower S/N ratio peaks 

(blue). On the contrary, the PD algorithm found a slighter higher number of 

signals without manual adjustment of parameters (orange). B Total SpectrumHits 

count using peaks determined by the manual picking, (grey), the MF peak picker 

(blue) and the PD peak picker (orange). The latter identified all the manually 

detected SpectrumHits plus a lower S/N observation, which was missed by the 

manual inspection (grey) and the MF algorithm (blue). 

 

 
Figure 5.6 Dataset-2. Mixtures scorings summary. 
Total SpectrumHit counts using peaks determined by the MF peak picker (red), 

the PD peak picker (green), a manual picking, (blue), my personal visual 

inspection (VI), (black) and the collaborator visual inspection, VI Col. (pink). 
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Figure 5.7 Dataset-2. SpectrumHits statistics. 
A True positive SpectrumHit count compared to the personal visual inspection. B 

False positive SpectrumHit count. C True negative SpectrumHits count. D False 

negative SpectrumHit count. For this experiment, my manual inspection was used 

as true reference count, as I speculated the collaborators were biased by 

additional results observed using parallel hit identification techniques, such as X-

ray crystallography. 



 194 

 
Figure 5.8 Dataset-2. Peak detection statistic scores. 
A Precision, B Sensitivity, C Accuracy D Specificity in scale 0 to 1 units for the 

two automatic peak picker algorithms. 
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Figure 5.9 Dataset-3. Automated versus manual SpectrumHit detection. 

A Total number of SpectrumHits obtained by a visual inspection using manually 

picked peaks (light green bar); SpectrumHits obtained by the SpectrumHit 

detection pipeline before and after re-referencing, using the same previously 

manually picked peaks (blue and yellow bars) and SpectrumHits obtained after 

re-referencing and automatic peak detection using default parameters (dark 

green). B Newly detected and lost SpectrumHits counts between the four 

methods. Notably, the automatic approach showed 15 new potential 

SpectrumHits which were missed upon manual analysis. C Global STD scores 

versus S/N. Red dots represent compounds that are unlikely to be SpectrumHits, 

orange dots, dubious SpectrumHits, whereas green dots denoted confirmed 

SpectrumHits. 
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Figure 5.10 Dataset-3. Re-referencing of spectra datasets. 

A and C show an example of an STD SpectrumHit and its best-matched 

reference before and after applying a re-referencing pipe. B and D illustrate peak 

shift distributions of experimental STD spectra to their reference spectra before 

and after a re-referencing pipe was applied. The maximum of the distribution, 

~0.0075 ppm (extracted from B), was used to calculate the total adjustment 

needed to re-reference the STD spectra to their references. D New distribution 

after the adjustment was applied, with a maximum centred around ~0.000 ppm 
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Figure 5.11 Dataset-3. Examples of automatically detected SpectrumHits. 
Example experimental STD spectra (black) and five relevant reference spectra 

are shown. A Example of an STD spectrum which was discarded as a true 

positive on the basis of a low S/N. B Example of an STD spectrum with a peak at 

8.149 ppm which did not match any of the reference spectra and therefore was 

excluded as a true positive SpectrumHit. Examples of STD spectra (C and D) 

with very weak matching signals previously not identified during manual 

inspection. 
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Figure 5.12 Dataset-4. STD scores. 

A Total STD efficiency score versus Signal-to-noise (S/N) ratios per reference 

spectrum. Green dots denote expected SpectrumHits, above a threshold S/N of 

1.5 and total efficiency of 0.5; orange dots denote compounds which showed STD 

spectra showed a S/N over 1.5 but lower than 0.5 total efficiency; in red, 

compounds below the threshold limits. The arrows indicate an example of spectra 

for each group and are displayed in the next figure (Fig. 5.13). B Kernel Density 

Estimate plot of STD single efficiencies and ppm positions for each peak 

determined in the top SpectrumHits. 
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Figure 5.13 Dataset-4. STD spectra examples. 

A STD and matched reference for the top-scoring SpectrumHit, (high S/N and 

high efficiency score). B STD and matched reference spectrum for a typical 

SpectrumHit, (medium S/N and medium efficiency score). c STD and matched 

reference for a random compound in the red cluster of Fig. 5.12A, (low S/N and 

low efficiency score). D STD and matched reference for a random compound in 

the orange cluster of Fig. 5.12A, (high S/N and low efficiency score). 
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Figure 5.14 Dataset-4. CPMG scores. 

A Total CPMG score distribution, values above the red vertical line corresponds 

to the threshold value up to where consider spectra as SpectrumHits. B KDE plot 

of CPMG single efficiencies and ppm positions for each peak determined in 

SpectrumHits above the threshold value. 
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Figure 5.15 Dataset-4. CPMG results. 

Representation of the CPMG results as a box plot. Red box the potential 

SpectrumHits, blue, spectra unlikely to be SpectrumHits. Vertical line within the 

box indicates the median, whereas the “X” indicates the average value. 
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Figure 5.16 Dataset-4. Example of CPMG SpectrumHits. 

A top panel, references for the mixture-63 re-referenced to the last spectrum of 

CPMG series. Middle panel, control spectra, prefix “SF”. Spectra are coloured in 

a blue gradient; darker colours correspond to shorter times. Lower panel, spectra 

recorded in presence of the target, prefix “SP”. Spectra are coloured in a 

red/yellow gradient, dark red colours correspond to shorter times. B Example of 

fitting plots were the higher pattern changes were indicated. Relaxation plots are 

automatically generated for each peak in the dataset and exported as a pdf file 

from further inspections. A systematically significantly lower intensity was 

observed in spectra recorded at 45 ms relaxation time, especially for the control 

series. 
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Figure 5.17 Dataset-4. 1H scores. 

A Total 1H score distribution, red vertical line corresponds to the threshold value 

up to where consider spectra as SpectrumHits. B KDE plot of 1H single 

efficiencies and ppm positions for peak hits.  
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6.1. Abstract 
 

Nuclear Magnetic Resonance (NMR) is one of the major techniques for 

investigating the structure, dynamics and interactions between biomolecules. 

However, non-experts often experience NMR experimentation and data analysis 

as intimidating. I discuss a simple yet powerful NMR technique, the so-called 

chemical shift perturbation (CSP) analysis, as a tool to elucidate macromolecular 

interactions in small- and medium-sized complexes, including protein-protein, 

protein-drug, and protein-DNA/RNA interactions. I discuss current software 

packages for NMR data analysis and present a new interactive graphical tool 

implemented in CcpNmr Analysis version-3, which can drastically reduce the time 

required for the CSP analysis. Lastly, I illustrate the usefulness of a protein 3D 

structure for interpretation of the CSP data. 
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6.2. Introduction 
 

It is the ultimate aim of the molecular biologist to understand cellular functioning 

in its molecular context. As such, it is imperative to know at which time and place 

specific biomolecules are active to exert their function. At the root of our 

understanding, however, is the realisation that the interactions between individual 

molecules, that together form active complexes of sometimes intricate 

complexity, constitute the underpinning basis of all the biological processes. 

Structural biology is the field of science which aims to describe such interactions 

between biologically relevant molecules at an atomic level. It is based on the 

notion that the interactions are facilitated by the specific molecular shapes and, 

as has nowadays become evident, also their dynamical changes. Together these 

are crucial in determining the affinities that drive the assembly of the 

macromolecular complexes148. 

Nuclear Magnetic Resonance (NMR) is one of the three major techniques that 

provides structural, dynamical and also interaction data149. In this work I will 

illustrate how a simple yet powerful experimental NMR technique, the so-called 

chemical shift perturbation (CSP) analysis, can be used to investigate interactions 

between biomolecules or biomolecules and small drug-like compounds. Since it 

was first proposed, the CSP analysis has become well-established, as illustrated 

by the increasing number of papers referring to the technique (Fig. 6.1A), with 

currently ~80 references annually. In this chapter, I also discuss how current NMR 

software packages can facilitate the CSP data analysis. Particular focus will be 

given to the CcpNmr AnalysisAssign version-3, which provides several user-

friendly tools for retrieving the relevant data thus, providing for invaluable 

biological information.  
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6.3. Chemical shift and exchange 
 

NMR is a spectroscopic technique that employs an inherent property of many 

nuclei called “spin” to yield spectra of various nuclei of biological interest, e.g. 1H, 
13C, 15N and 31P. NMR’s exquisite (bio-)chemical usefulness originates from its 

ability to discriminate the different nuclei in a biomolecule. The electronic 

environment of each nucleus slightly modifies its exact resonance frequency 

through a process called chemical shielding and consequently the positions of 

various peaks in the NMR spectrum are specific for each nucleus in the molecule. 

The position of a peak in an NMR spectrum is commonly referred to as the 

“chemical shift” and denoted by the symbol δ. The chemical shift constitutes one 

of the most important parameters and in NMR provides a powerful tool for a 

biochemist; as it not only allows us to discriminate one nucleus from another, but 

also provides information about their conformation and nearby chemical 

environment. For example, an analysis using recorded chemical shifts from the 

Biological Magnetic Resonance Data Bank (BMRB) reveals distributions with 

median values of ~8.24, ~4.32 ppm and ~1.39 ppm for the Alanine HN, H⍺ and 

Hβ, respectively (Fig. 6.1B). The spread of each of the three distributions reflects 

the different conformations, i.e. the chemical environments, and dynamics, i.e. 

the change in these environments, of each of the nuclei in the various Alanine 

residues in their respective proteins. 

In practice, the analysis of one-dimensional biomolecular spectra is prohibitive 

because of spectral overlap. To overcome this problem, it is possible to correlate 

one nucleus with another, generating two-dimensional (2D) or even higher-

dimensional (3D, 4D, nD) NMR spectra. For proteins in particular, a simple and 

very informative example is the 2D heteronuclear 15N-HSQC150 (or alternatively 

for larger proteins the 15N-TROSY-HSQC151) experiment. The resulting 2D 15N-

HSQC spectrum affords greater resolution and valuable information as peaks can 

be used as a “fingerprint” of a protein. In practice, nearly each peak represents a 
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backbone amide group of an individual residue, with the exception of peaks 

originating from the HN containing side chains of amino acids Asn, Gln, His, Trp, 

Lys and Arg. However, except for His, the signals from the sidechain moieties are 

easily recognisable. Furthermore, proline residues are absent in 2D 

heteronuclear 15N-HSQC spectra due to the lack of an amide group. The chemical 

shift values of the various nuclei can be extremely useful when used as a proxy 

to monitor protein-ligand interactions, a process called chemical shift mapping or 

chemical shift perturbation (CSP). 

When a protein is titrated with a ligand, e.g. with a drug or another biomolecule, 

the chemical shift of the nitrogen and proton nuclei of the residues that are in 

close proximity to the binding site will be most affected. Thus, the binding of the 

ligand results in changes in the chemical shifts of these nuclei, causing the 

resulting peaks to alter their position in the NMR spectrum. By recording a series 

of NMR experiments at varying stoichiometries of protein and ligand, the resulting 

series of spectra conveys information regarding the affinity of the ligand, as well 

as identifying the important residues involved in the interaction. 

To briefly explain the theoretical aspect of this phenomenon, consider for 

simplicity a peak for a nucleus i in a protein P at 7.0 δ ppm in a one-dimensional 

NMR spectrum (Fig. 6.1C). For a simple two-state binding process with ligand L: 

 

P + L 

	

kon
⇌
koff

 PL 

Eq. 6-1 

the [P]:[L] = 1:0 equivalent condition (Fig. 6.1C, 1:0 eq) represents the left side of 

equation 1, where the protein is in its unbound state. Upon addition of a high-

affinity ligand, under the condition that the koff is small, the equilibrium lies fully 

towards the bound state. Consequently, addition of the ligand causes the i peak 

in the unbound state to decrease in intensity, whereas a new peak at a different 

position appears; this new peak represents the bound state of the same protein 

nucleus i. At a [P]:[L] = 1:0.5 stochiometry (Fig. 6.1C, 1:0.5 eq) peaks for both the 



 210 

unbound and bound states will be present with equal intensities (neglecting 

dynamic effects). The difference between the bound- and unbound peak position 

is called ∆δi. At a [P]:[L] = 1:1 stochiometry, only the peak of the bound state will 

be present, as the peak for the unbound state will have disappeared (Fig. 6.1C, 

1:1 eq). 

In NMR, the above situation when the koff is much smaller than ∆δi is called the 

“slow exchange” regime. In contrast, in a “fast exchange” regime, when koff is 

much greater than ∆δi, in each of the spectra recorded at different [P]:[L] 

stochiometries the peak position for nucleus i represents the population weighted 

average of its free and bound positions. Consequently, the peak appears to be 

“moving” from its original position (Fig. 6.1D 1:0 eq) towards its bound position as 

the ligand concentration increases (Fig. 6.1D, 1:0.5 eq to 1:2 eq). In cases where 

koff ≈ ∆δi, the peak typically disappears due to line broadening effects and this 

situation is called “intermediate-exchange” (not shown). 

The real power of the CSP method lies in the identification of protein residues 

most affected by the ligand, i.e. those residues with nuclei that display large ∆δi 

values. In case of multi-dimensional spectra, such as the 15N-HSQC spectrum 

(Fig. 6.2A), the total chemical shift change involving all dimensions is usually 

taken (vide infra, equation 2) and used as a proxy for the importance of the 

specific residue in the interaction. Furthermore, for the fast exchange regime Kd 

can be determined from the observed ∆δi values as a function of ligand 

concentration19. 
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 Chemical shift perturbation in practice 
 

The first step in a CSP procedure is the assignment of individual peaks to a 

specific residue in the protein. Different software packages and algorithms have 

been developed to establish the assignments of the backbone nuclei, i.e. HN, N, 

Cα, C’, either by manual or automated approaches152. According to Lee and 

Markley, based on BMRB statistics in 2014 Sparky was still the most widely used 

NMR data analysis tool for backbone assignment153. A much more recent 

programme, not included in their list, is CcpNmr AnalysisAssign version-328, 

which provides tools for simple and semi-automated backbone assignments and 

a dedicated interactive CSP analysis module, from here on referred to as the CSP 

module (Fig. 6.2C). An ab-initio protein backbone assignment can be a time-

limiting factor, as it requires some effort in terms of sample preparation, NMR 

spectra recording and data analysis. However, assignments can potentially be 

retrieved from databases, such as the BMRB, and serve as the starting point, 

adjusting them as required by the user’s experimental conditions. 

Table 1 displays an overview of functionalities from the various NMR data 

analysis programmes that are relevant for a CSP analysis. After the initial setup, 

either Sparky153, CcpNmr Analysis Version 2154, NmrView155 and CARA156 can 

automatically calculate the ∆δ from chemical shifts. However, only 

AnalysisAssign version-3 has capabilities for interactive inspection of the ∆δ data 

in relation to the underpinning spectra, interactive thresholding and easy 

adaptation of various relevant parameters. Moreover, apart from AnalysisAssign 

version-3 users will have to manually plot and/or export to other software 

packages for further analysis. This typically will involve multiple manual steps 

before retrieving the biological relevance from their initial NMR dataset. In 

addition, parameter adjustments will necessitate repeating these various steps, 

thus increasing the time required for the whole analysis and inevitably increasing 

the risk of introducing human errors. The AnalysisAssign version-3 CSP module, 

contains all required functionalities for a full CSP analysis, including automatically 
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generated bar charts of CSP values as a function of residue number which are 

linked to the underpinning spectra, peak tables and a binding plot. Additionally, if 

the protein molecular structure information is available, the annotations and 

selections can be mirrored to a graphical molecular visualisation, such as 

PyMOL29. 

I tested the AnalysisAssign CSP module by exploring the binding of Clip2 RNA, 

AAAUAA, to the Tstar-KH domain157,158. I imported both the assignments of the 

free Tstar-KH domain in addition to a series of five 15N-HSQC spectra of uniformly 
15N-labelled Tstar-KH at 0.0, 0.5, 1.0, 1.5, and 2.0 equivalent of Clip2 ligand, 

directly from the original Sparky data using the inherent data conversion routines 

of AnalysisAssign. The assignments of the KH domain were propagated from the 

spectrum at 0.0 equivalent of ligand to all other spectra using the simple drag-

and-drop feature of AnalysisAssign for copying peak lists. As expected, some of 

the peaks had changed their positions upon titration with the ligand. Using the 

interactive tables and spectrum displays it was possible to easily identify shifted 

peaks and correct their position in the target spectra, either individually, or as a 

group of peaks across multiple spectra, or automatically. Fig. 6.2B shows the 

overlay of the five spectra, with trajectories of shifted peaks indicated for selected 

residues. 

Fig. 6.2C shows the overlay of the five 15N-HSQC spectra at the position of G78. 

The gradual change in peak position upon increasing ligand concentration is 

evident. Importantly, to ensure a valid analysis all spectra should be properly 

referenced as changes in peak positions could otherwise be misinterpreted. 

Fortunately, AnalysisAssign has routines to establish, and where needed report, 

on the spectral alignment that functions even in the case of non-fully identical 

spectra28. Using an automated analysis, in which all the peaks were accurately 

matched to their extrema, CSPi values are calculated for each Tstar-KH residue 

i using Eq. 6.2 and displayed automatically as a bar plot in the CSP module 

interface. 
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CSPi = "(𝛥𝛿"𝑖)# + 𝛼(𝛥𝛿$𝑖)# 
Eq. 6-2 

Where α denotes the relative weighting of chemical shift changes of the 15N nuclei 

relative to the 1H nuclei, by convention set to 0.14159, and ∆δHi and ∆δNi denote 

the observed changes of the proton and nitrogen chemical shifts for residue i, 

respectively. Crucially, the threshold below which the CSPi values are deemed 

not significant needs to be established. A value of 1σ derived from the distribution 

of all CSP values is set by default as the first estimate without a need of other 

filters19. Rapid manual inspection of the affected residues establishes if this 

threshold needs upward or downward adjustment. In the case of G78, the peak 

follows a consistent trajectory upon ligand titration with well-defined changes in 

peak positions, rendering its CSP an appropriate threshold value. In contrast, 

another residue with a similar CSP value, A138, is located in a crowded region of 

the spectrum (cf. Fig. 6.2B) and thus its peak movements in such areas are 

potentially compromised by mis-assignment of the peaks. Such residues should 

be flagged, barring further NMR data confirming their proper assignment, they 

should be excluded from the analysis. It is wise to reduce any possible false 

positives, until the moment that their inclusion appears warranted, e.g. after 

careful inspection of the structure (vide infra) or on the basis of other data that 

confirms that they can be considered relevant for the binding event. Depending 

on koff and the residue-specific ∆δi, peaks can disappear in any of the spectra 

with ligand concentrations > 0. Such situation still conveys useful information 

about the involvement of the specific residue, albeit that the exact magnitude of 

its CSPi value cannot be established. In general, the disappearance of a peak for 

a specific residue is assumed to imply a ∆δi (CSPi) value resulting in exchange 

broadening due to an intermediate exchange regime and hence signifies 

importance. Consequently, these residues are automatically flagged by the CSP 

analysis module, e.g. residue I97 in Tstar-KH. 
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The true power of the CSP analysis is revealed when mapping the CSP results 

onto a molecular structure. The CSP module can automatically map the 

annotations and residue selections onto a molecular structure of the biomolecule 

under investigation using an external molecular visualisation programme, such 

as PyMOL29. The CSP analysis of the interaction of Clip2 RNA with the Tstar-KH 

domain identified residues F72, V73, G74, K75, L77, G78, G81, S83 T93, I97, 

R104, K106, K108, E110, R113, Y120 and L130 with significant CSP values (Fig. 

6.2C). When mapped onto the structure of Tstar-KH, a clustering of several 

affected residues is observed across an interface formed by one α-helix, two ß-

strands and two loops, corresponding to the KH hydrophobic groove (Fig. 6.2D). 

In fact, according to Feracci et al.157 residues G78 and I97, (the latter flagged as 

“missing” by the CSP analysis), belong to a set of crucial residues in the groove 

that stabilise the interaction with the Clip2 RNA. 

In cases where no 3D structure is available, often the structures of homologous 

proteins can be used as a reference. Protein structure is more highly conserved 

than primary sequence; therefore, small changes in protein composition usually 

do not significantly alter the structure of the macromolecule. Alternatively, in many 

cases protein structures can be fairly accurately obtained using homology 

modelling, where an existing structure of a homologous protein is used as a 

template to generate the structure of the protein of interest. Such models can be 

reliably used for mapping of protein-ligand interactions, assuming the binding 

interface has not been affected by the mutations. A description of contemporary 

available homology modelling software packages and servers are discussed in 

the review by Vyas et al160. 

Currently freely available NMR software suites, such as Sparky153, allow 

retrieving CSP values from their tables, but users are required to manually export 

to third party software to carry on the analysis or are limited to single and static 

plotting, like in the case of CcpNmr Analysis Version 2. The possibility to 

graphically and interactively inspect the NMR data that identify the residues 

involved in a protein-ligand interaction, makes the new AnalysisAssign CSP 
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module extremely useful for non-experts and drastically reduces the time required 

for a CSP analysis. The CSP module is also not limited to 1H-15N as it can 

accommodate any combination of nuclei, e.g. 1H-13C in case of methyl residues. 

AnalysisAssign is implemented in a flexible fashion that will facilitate easy 

adaptation to insert specific calculation modes for ∆δi values, automatic pre- and 

user-defined Kd fittings as well as direct links to external auto-docking software 

such as HADDOCK161. For more advanced users, it is also possible to use the 

AnalysisAssign libraries to create specific, but simple macros to extrapolate 

further information from the dataset (Table 1). For example, a macro can be used 

to plot the minimal shift changes resulting from the mutation of a specific residue 

in a protein, including in this calculation only residues in which the CSP is above 

the defined threshold value (see Appendix 6.6). Several settings and data 

exporters based on the NMR-exchange format (NEF)162 or tabular .xls format 

have been implemented, thus providing tools to easily export information to other 

programs for further analysis if so required. 

A series of other programmes have also been developed to address specific 

tasks using peaks in NMR spectra and NMR assignments, such as the 

programme Farseer, which performs analyses on large and multivariable 

datasets, including CSP163. Other programmes include auto-FACE, which 

facilitates the identification of binding mechanisms from CSP data164 and TITAN, 

which uses peak perturbations trajectories to help the identification of interaction 

mechanisms165. 
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Features CcpNmr V3 CcpNmr V2 Sparky NmrView/CARA 

Peak 
Automation1 

Simultaneous peak 

selections, copying 

and re-fitting 

Simultaneous peak 

selections, copying 

and re-fitting 

Simultaneous peak 

selections, copying 

and re-fitting 

Single peak re-fitting 

Interactivity2 
Selectable plot items 

and tables with live 

updates 

None or static plots None None 

Settings3 

Multiple 

dimensionality 

Multiple Atoms 

Multiple ∆δ 

calculation modes 

Several GUI 

parameters 

Limited 

dimensionality 

 

Limited 

dimensionality 

 

Limited 

dimensionality 

 

Extras4 

Link to Molecular 

Visualisation 

IPython Console 

Macro editor 

None User’s macros User’s macros 

Exports5 

Images: Various 

formats 

Texts: Various 

formats 

Software readible: 

Json 

Text: Various 

formats 

Text: Various 

formats 

Text: Various 

formats 

Table 6.1 NMR software packages. 

Comparison of common freely available NMR software packages with built-in 

backbone assignment (as shown on the BMRB statistics in 2014153) and CSP 

analysis capabilities. 1Graphical peak selection, copying assignments between 

spectra, peak adjustment and refitting, provisions to follow peaks across titration 

series. 2Live updates of results, interactive adjustment of parameters. 3Adaptable 

to different experiment types, ability to handle different dimensionalities, ability to 

handle different peak parameters. 4Interaction graphical visualisation tools, ability 

to link to other software packages. 5Exports to external formats  
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6.4. Conclusions 
 

Chemical shift perturbation is very useful as a simple tool to elucidate 

macromolecular interactions in small and medium-sized complexes, including 

protein-protein, protein-drugs, and protein-DNA/RNA interactions19, either in 

solution, or in solid state NMR166. The CSP method works best when recording 

heteronuclear NMR spectra on samples in which the biomolecule, e.g. the 

protein, is isotopically labelled as to allow for selective detection. Fortunately, 

protein overexpression and isotope labelling, e.g. by 15N or 13C, has now become 

routine in E.coli and Pichia Pastoris, with new and promising developments for 

expression in higher eukaryotic systems, which guarantees the presence of a 

more complex folding machinery and post-translational modifications167. 

Together with new developments in NMR technology, e.g. direct 15N-

observation168, the CSP method will find even more widespread application. 

In comparing the various programmes for CSP data analysis, the CSP module of 

AnalysisAssign version-3 provides for a simple and interactive graphical tool that 

allows users to significantly reduce the time required for a CSP analysis. 
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6.5. Figures 
 

 
Figure 6.1 Chemical shift and exchange. 

A Number of CSP publications as function of year of publication. The plot shows 

the number of journal articles in the PubMed database by querying for “chemical 

shift (perturbation or mapping)”. B Distribution of deposited chemical shifts for the 

HN, H⍺ and Hβ nuclei of Alanine as derived from the Biological Magnetic 

Resonance Data Bank (BMRB). For historical reasons, the scale in NMR is 

expressed in relative terms, the so-called ppm scale, which runs from high 

positive values on the left to low, or negative values, on the right of the scale. C 

Simulated 1D 1H NMR spectra under the slow chemical exchange regime. 

Spectra are shown at 0.0 (red), 0.5 (orange), 1.0 (green) and 2.0 (blue) equivalent 

(eq) of (NMR-invisible) ligand. ∆δ was assumed to be -1 ppm. D Simulated 1D 
1H NMR spectra under the fast chemical exchange regime. Spectra are coloured 

as previously. Peak positions were calculated using equation 6 in reference19, 

using ∆δ = -1 ppm, [protein] = 100 μM, Kd = 200 μM. Note the gradual shift of the 

peak as function of ligand concentration. The exchange-induced broadening of 
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peaks at 0.5 equivalent and 1 equivalent are slightly exaggerated for illustrative 

purposes. 

 

 

Figure 6.2 Chemical shift perturbation analysis (CSP) of the binding of 

Clip2 RNA (AAAUAA) to the Tstar-KH domain. 
A 15N-HSQC spectrum of 200 μM uniformly 15N-labelled Tstar KH domain157; 

selected assignments are indicated. B Five overlaid spectra of Tstar-KH 15N-

HSQC domain. Spectra are shown at 0.0 (red), 0.5 (orange), 1.0 (green), 1.5 

(purple) and 2.0 (dark blue) equivalent of Clip2 ligand. The black square box 

indicates the crowded region. Arrows indicate different peak perturbation 

trajectories. The I97 peak (red box) is present only at 0.0 equivalent but 
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disappears upon addition of Clip2. C The CSP analysis module in AnalysisAssign 

version-3. Clicking any bar in the bar chart (middle; included residues in green, 

excluded residues in red) or residue in the residue table (top) will navigate to the 

peaks of the corresponding residue in the spectra (bottom). The binding curve 

can be automatically displayed on the right side of the table. Multiple selection 

overlays related binding curves. All adjustments of parameters and settings of the 

CSP analysis module, such as setting the threshold line (i.e. horizontal line in 

middle panel) or excluding a residue from the analysis (check-boxes in the 

residue table), will result in a real-time update of all plots without the need for any 

tedious or error-prone manual actions. D Ribbon representation of the Tsar-KH 

domain (PDB code 5EL3) with residues coloured according to their CSP values 

resulting from interaction of Clip2 RNA. Residues flagged with missing peaks in 

the spectra containing ligand, e.g. I97, are highlighted in dark blue. The black 

circle highlights the KH domain clip2 binding groove. Unassigned residues or 

residues removed from the analysis are indicated in light grey. 
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6.6. Appendix 
 

 Case study: Minimal shift analysis 

 
Binding site identification tools built in Analysis Screen can be applied to several 

other NMR studies. A practical example is a minimal shift analysis I have 

performed using the chemical shift mapping module. A collaborator who carried 

out eight mutations to a wild-type macromolecule (undisclosed), recorded a 

series of NMR experiments to each individual mutated variant. The collaborator 

shared with us several 15N-HSQC spectra recorded on a wild type form and after 

each single residual mutation. However, spectral backbone assignments were 

not available for this dataset. Luckily a similar complex was deposited in the 

BMRB database95. Therefore, I wrote a custom macro to retrieve the crucial 

information and transfer backbone atom assignments to the dataset under 

analysis. After having re-fitted all peaks to their extrema positions using semi-

automated routines present in the software, I performed a global alignment of the 

wild-type spectral signals to all other variants using an in-house alignment 

algorithm28. This allowed for a correction of referencing points among the entire 

dataset, therefore, reducing the recording of potential false positive shifts. The 

CSP analysis was performed as a 1:1 between the wild-type and each mutant 

form, Fig. 6.3. Eventually, delta shifts above one standard deviation threshold 

were used to calculate the minimal shift analysis summary (Fig. 6.4). 

 

From the analysis reported from the CSM module and the 3D structure 

representation of the model (Fig. 6.5), our collaborator could confirm previous in-

vitro assay experiments. 

The availability of the chemical shift mapping module allowed for a quick 

validation of a collaborator biological problem, further demonstrating the power 

of the CSM as a tool in molecular biology.   
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6.7. Appendix Figures 
 

 

 

Figure 6.3 Mutation analysis using the Chemical Shift Mapping module. 

A series of screenshots of the CSM bar plot for each of the eight single mutations 

analysis. Green bars represent residues with highest chemical shifts 

perturbations and above 1σ threshold value (blue horizontal line).  
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Figure 6.4 Minimal shift analysis using CcpNmr version-3. 
The graph summaries the most crucial mutations based on the chemical shift 

analysis. 

 
Figure 6.5 3D Ribbon representation of collaborator’s macromolecule. 
In the figure are represented the regions affected by the mutation D75Y. In green 

are shown the residues marked by CcpNmr as relevant which correspond to the 

highest spectral peak perturbations; in dark blue are the residues in which 

spectral peaks have disappeared after the mutation; in white are excluded 

residues or unavailable NMR assignments, (PDB code undisclosed).  
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7.1. Abstract 
 

The interaction between eIF4G-Mnk is a key mechanism which leads to elevated 

eIF4E levels. High concentrations of eIF4E have been observed in many types 

of cancers, including lymphoma and leukaemia. Previous work at Arthanary’s lab 

identified potential residues that form the protein-protein interaction surface in the 

eIF4G–MNK complex169. Furthermore, molecular dynamics simulations of this 

complex have shown the presence of binding pockets otherwise not visible in 

static crystallographic structures, pointing at a possible strategy through a 

fragment-based drug discovery FBDD approach. FBDD is one of the main 

methods for the identification of drug-like candidates in the early stages of drug 

discovery. Once fragment hits have been identified, the next step entails 

increasing potencies by optimising their binding properties. However, a 

bottleneck of this technique is a lack of computational automated workflows 

needed to link, merge and optimise binding fragments in order to generate 

potential leads. This process is very often performed by manually designing and 

synthesising new molecular variants and subsequently testing their binding 

properties, which obviously results in a laborious and time-consuming process. 

In this chapter I present a novel in-silico workflow which employs a series of 

computational tools available in the public domain for generating tailored drug-

like compounds aimed at disrupting the interaction between eIF4G-Mnk.  
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7.2. Introduction 
 

Translation regulation controls protein synthesis and translation of specific 

mRNAs, a process essential to life. Aberrant functioning of these processes can 

lead directly and indirectly to various forms of tumour activity, such as cell 

survival, angiogenesis, transformation, invasion and metastases170,171. Cap-

dependent and IRES-dependent are the two pathways for the initiation of the 

translation machinery which allows the ribosomal 40S subunit to anchor the 

mRNA through the eIF1-5 family172 and code for new protein173. 

The cap-dependent process initiates with the recruitment of eIF proteins 4G, 4E, 

4A to the m7GpppN cap at the 3’ end of the mRNA. In particular eIF4E has a 

crucial role starting the machinery by binding directly the RNA170. However, eIF4E 

has to be activated first through the phosphorylation of its Ser209 by the Mnk 

kinase174; furthermore, this kinase can interact with eIF4E only if scaffolded to 

eIF4G170. 

Not surprisingly, high concentration of eIF4E has been observed in many types 

of cancers, including lymphoma, leukaemia and many others175 and has been 

targeted by several pharmaceutical companies with small molecules176,177. It was 

only in 2014, when Papadopoulos et al. at Wagner’s laba elucidated the allosteric 

mechanism of dissociation of the eIF4E/eIF4G complex through crystallographic 

studies169. Nonetheless, an alternative inhibition pathway is under evaluation at 

the Arthanari laba, which involves the inhibition of the protein-protein interaction 

between eIF4G and Mnk through small molecule inhibitors (Fig. 7.1A). This 

strategy is believed to minimise side effects and decrease the probability of 

developing future drug resistance. 

A detailed crystal structure of eIF4G that shows the crucial C-terminal region was 

recently solved (Papadopoulos et al., personal communication). The highly 

charged C-terminus is believed to play a key role in the interaction with Mnk. An 

X-ray crystallography structure for a short sequence of Mnk is also available, and 



 228 

this information was used by Dr Gorgullaa and co-workers to carry out 

computational studies on the complex. Long runs of molecular dynamics (MD) 

simulations (up to 10 µs) were performed with the aim of elucidating any structural 

changes which could help in understanding potential inhibition mechanisms of 

the complex and could assist in the design of inhibitors. A qualitative analysis of 

the MD trajectories indicated the sporadic appearance of transient smaller 

binding pockets in the proximity of C-terminal region, otherwise not visible in the 

initial static crystallographic structure (Fig. 7.1B). This region was believed to be 

an anchor point for the Mnk kinase. 

 

Previous NMR chemical shift perturbation studies (CSP, see also chapter 6) 

(Arthanari et al., unpublished), identified several crucial residues involved in the 

eIF4G/Mnk interaction. In particular, the CSP’s of Glu1553, Asp1554, Lys1557, 

Glu1558, Tyr1562, Trp1589, Arg1591, Glu1592, Glu1595, Glu1596 indicated 

these residues as the most relevant in the binding activity. Conversely, recent 

CSP studies carried out by Dr. Viennata included the assessments of the Mnk 

peptide properties upon binding to the eIF4G. The analysis showed relevant 

effects for residues Lys7, Arg8, Arg9, Lys10, Lys11, Lys12 suggesting the 

relevance of these residues for complex formation (Figs 7.1C-D). 

 

The absence of a well-established binding pocket for eIF4G resulted in a 

challenging search for possible inhibitors. Although the MD simulations yielded 

identification of potential transient binding pockets, a traditional in-silico high-

throughput screening cannot guarantee the detection of suitable molecules. 

Instead, a more beneficial approach would be the usage of a fragment-based 

drug design protocol that accommodates these transient pockets. 

Thus, I designed an in-silico workflow to tackle this issue, outlined in Fig. 7.2A. 

The protocol starts with the validation of binding sites between Mnk and eIF4G 

using the HADDOCK178 and DeepSite179 algorithms. Subsequently, two parallel 

sets of docking approaches are performed to principal pockets using small 
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fragment libraries. Top scored compounds by the docking algorithms are then 

filtered with custom-designed filters based on interaction types. In the following 

steps, fragments are linked using virtual click-chemistry algorithms. This 

procedure will create a new library of small molecules that can be re-docked in-

silico, covering a larger interaction surface of the protein target. Finally, the 

scored compounds by the latter algorithms and filters, will be further optimised 

and validated using MD simulations to achieve a higher affinity binder (Figs 7.2A-

B). 

Compared to the classical in-silico approaches, the workflow as outlined above 

has the advantage of automatically creating highly tailored drug-like compounds 

starting from readily available fragments, using the advantage of combinatorial 

multiplication. The workflow will generate and evaluate thousands of compounds 

and effectively filter out unsuitable molecules. Eventually, only a limited number 

of molecules will be validated using more advanced and time-consuming 

computational methodologies, such as MD simulations. Finally, knowledge 

derived from well-validated candidates, including suggested chemical reactions 

needed for compound synthesis, can be transferred to the wet-lab for further 

binding assays, therefore drastically reducing the time and resources associated 

with a traditional fragment-based drug design pathway.  
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7.3. Materials and Methods 
 

 Materials 
 

Macromolecules 
 

The 3D structure coordinates of eIF4G was obtained by extracting a MD 

simulation frame from a previous study carried out by Dr. C. Gorgullaa. The frame 

was extracted from the system following an accurate visual inspection of all 

frames and simulation behaviour. The 3D structures of eIF4G and Mnk were 

previously solved by Arthanari and co-workers using X-ray crystallography; a 

PDB code was not available at the time of this work. 

FASTA sequence for eIF4G protein is defined as following: 

 
1440PSEELNRQLEKLLKEGSSNQRVFDWIEANLSEQQIVSNTLV

RALMTAVCYSAIIFETPLRVDVAVLKARAKLLQKYLCDEQKELQ

ALYALQALVVTLEQPPNLLRMFFDALYDEDVVKEDAFYSWESS

KDPAEQQGKGVALKSVTAFFKWLREAEEESD1596 

 

FASTA sequence for Mnk peptide is defined as following: 

 
2KRRKKKRKTRAT13 

 

Small molecules 

 

Several libraries of small molecules were used throughout this work. The first set 

included a library of approximately 9000 molecules with a molecular weight (MW) 

up to 250 and was used for the primary screening on site-1 and site-2; an 

additional library of molecules with an MW up to 150 was used as linkers. Both 
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libraries were available in the release of the AutoGrow package82. It was 

composed by a variety of molecules presenting the following functional groups: 

acid anhydrides, acyl halides, alcohols, thiols, alkenes, alkynes, amines, azides, 

carbonochloridates, carboxylates, epoxides, esters, halides, isocyanates, 

isothiocyanates, sulfonylazides, thio-acids. 

A further library was downloaded from the database Zinc15180 as PDBQT files 

using a specifically written Python script. This library comprised of approximately 

600000 compounds at an MW up to 200, LogP (logarithm of the partition 

coefficient) in a range of 0-1. The purpose of this library was to cover higher 

chemical spaces in the process of the fragment optimisations. 

 

 Methods 
 

Protein-Protein interactions 

 

HADDOCK 2.2 webserver161,178 “expert mode” was used to predict the potential 

binding poses of Mnk to the eIF4G structure and validate the residues of interest 

that were previously established by NMR experiments. In particular, the active 

residues selected were Glu1553, Asp1554, Lys1557, Glu1558, whereas the 

passive residues were not indicated. Haddock itself estimated passive residues 

within a radius of 6.5Å from the active residues. The Mnk active residues were: 

Lys2, Arg3, Arg4, Lys5, Lys6, Lys7 in the PDB nomenclature (residue Lys7, Arg8, 

Arg9, Lys10, Lys11, Lys12 in previous NMR CSP analysis enumeration). 

Furthermore, the C-termini of both Mnk (the remaining of the chain was manually 

removed from the PDB file) and eIF4G (Tyr1562, Trp1589, Arg1591, Glu1592, 

Glu1594, Glu1595, Glu1596) were excluded. Ten runs with a cluster size of four 

were performed using the clustering method Fraction of Common Contacts 

(FCC). The RMSD cut-off for clustering was 0.60 Å. The remaining parameters 

were retained at the default values. 
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Haddock scoring 

 

The HADDOCK scoring function161 is the sum of several energies and buried 

surface areas. The score is calculated as following: 

 

HADDOCKscore = EvdW + 0.2EElec + 0.1EAIR + EDesolv 

Eq. 7-1 

Where EvdW is the van der Waals intermolecular energy; EElec is electrostatic 

intermolecular energy; EAIR is the distance restraints energy (only unambiguous 

and AIR (ambig) restraints); EDesolv is the desolvation energy161. 

 

DeepSite 

 
DeepSite is a protein-binding site predictor which uses a 3D-convolutional neural 

networks approach. According to Jiménez et at., it is powered by a training of 

7622 protein studies179 therefore capable of detecting binding pockets with a high 

accuracy. 

 

Docking preparation 

 

Docking ROI cubic grid coordinates were calculated using the AutoDockTools 

1.5.6142 software. This information was then used to create Json files as input 

data for running the AutoGrow routines. ROI grids are represented with the labels 

“size x, y, z and center x, y, z” in the json file attached below. Ligand and receptor 

were prepared with the available Python scripts included in the package. 

 

Coordinates and other parameters for site-1, site-2 and linked site-1 + site-2 are 

listed below in the same json formatting style: 
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Site-1: 
 { 

 "size_x"                                 : 12, 

 "size_y"                                  : 13, 

 "size_z"                                  : 14, 

 "center_x"                                : 21, 

 "center_y"                                : -10.639, 

 "center_z"                                : -24.639, 

 "num_processors"                          : 8, 

 "exhaustiveness"                          : 10, 

 "directory_of_fragments"                  : "~/fragments/MW_150/", 

 "filename_of_receptor"                    : "~/site-1/4G_clean.pdb", 

 "use_strict_lipinski_filter"              : true, 

 "max_MW"                     : 700, 

 "maintain_core"                           : true, 

 "additional_autoclickchem_parameters"     : "", 

 "minimum_core_atoms_required"             : 0, 

 "num_generations"                         : 2, 

 "scoring_function"                        : "VINA", 

 "allow_modification_without_frag_addition": true, 

 "use_lipinski_filter"                     : true, 

 "score_by_ligand_efficiency"              : true, 

 "top_ones_to_advance_to_next_generation"  : 1000, 

 "number_of_crossovers_first_generation"   : 0, 

 "number_of_crossovers"                    : 0, 

 "max_seconds_per_generation"              : 100000000, 

 "number_of_mutants_first_generation"      : 0, 

 "number_of_mutants"                       : 0, 

      "use_ghose_filter"                        : true  

...} 

 

Site-2. 

The only difference compared to site-1 parameters was a smaller grid space and 

a translated centre of the grid. 
{ "size_x"                                  : 12, 

 "size_y"                                  : 12, 
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 "size_z"                                  : 10, 

 "center_x"                                : 24.917, 

 "center_y"                                : -15.306, 

 "center_z"                                : -23.167, 

…} 

 

Dockings were carried out using the python core routine present in AutoGrow. 

The docking engines were VINA181, and NeuralNetwork143 (NN2). 

Linked fragments site: 
{ "size_x"                                  : 14, 

 "size_y"                                  : 16, 

 "size_z"                                  : 16, 

 "center_x"                                : 21.583, 

 "center_y"                                : -12.611, 

 "center_z"                                : -22.667, 

 "num_processors"                          : 8, 

 "exhaustiveness"                          : 20, 

 "directory_of_fragments"                  : 

 "use_strict_lipinski_filter"              : false, 

 "max_MW"                  : 700, 

 "maintain_core"                           : true, 

 "additional_autoclickchem_parameters"     : "", 

 "minimum_core_atoms_required"             : 4, 

 "num_generations"                         : 4, 

 "scoring_function"                        : "VINA", 

 "allow_modification_without_frag_addition": false, 

 "use_lipinski_filter"                     : true, 

 "score_by_ligand_efficiency"              : true, 

 "top_ones_to_advance_to_next_generation"  : 100, 

 "number_of_crossovers_first_generation"   : 0, 

 "number_of_crossovers"                    : 0, 

 "max_seconds_per_generation"              : 100000000, 

 "number_of_mutants_first_generation"      : 4000, 

 "number_of_mutants"                       : 4000, 

 "use_ghose_filter"                        : false 

} 



 235 

 

File conversions 

 

The program Babel30,31 was primarily used for file conversions. Numerous 

conversions were required among PDB, PDBQT, MOL2 and SMILES files and 

several custom Python scripts were written for each workflow stages as needed. 

 

Interactions 
 

Interactions between eIF4G and ligands were automatically calculated using a 

command line programme called H-Bind182 driven by custom Python scripts. H-

Bind was compiled on an older OSX platform (10.12) and then copied over to a 

newer, and more powerful computer running OSX 10.14, as several compiling 

issues could not be solved for the latter platform. 

 

Custom AutoGrow 

 

AutoGrow is a command line application able to perform click-chemistry reactions 

starting from two separate libraries of compounds82,183. A genetic algorithm 

enables to perform several generations of so-called mutations and crossovers. A 

mutation consists of a modification of the core compound by adding or replacing 

an active group. Whereas, a crossover involves the creation of a new molecule 

by mixing two initial structures. By selecting the number of generations, the 

algorithm keeps randomly increasing initial molecular structures and eventually 

performs virtual dockings; top scored molecules and molecules that passed the 

druglikeness filter, will then progress to an extra generation82. 

This strategy has two major drawbacks, the first is the impossibility of controlling 

input fragments during the generations and the second, a very high probability in 

generating infinite large final compounds, with MW exceeded 1000 Da which 

would present unrealistic drug candidate molecules. 
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However, by inspecting the open-source core code, I could apply several crucial 

modifications that allowed me to customise a specific workflow for my needs. 

The modifications included the creation of a Json file reader for inputting the 

required parameters in a more robust and practical way, such that additional input 

parameters, such as a maximum MW filter, could be included. Thus, I could direct 

the program to cap the molecular growth at a determined threshold. 

The program was also split into multiple core routines, so that single actions could 

be performed at a particular time, e.g. only an optimisation step or a re-docking 

calculation using a different engine. Furthermore, new additional required 

features were added, for example, limiting the algorithm to create only variants of 

input molecules without adding additional fragments. Lastly, several limiting 

programmatic errors were identified, which were promptly resolved. 

 

Other Scripts 

 

Compounds filters and file-parsing routines were written in Python 2.7 using 

libraries in a custom Anaconda environment, which included Pandas32, Bio-

Pandas184 and Babel30. 

 

Docking Scoring 
 

Two scoring methods have been used for docking the ligands to eIF4G. The first 

scoring method, VINA181, uses a combination of knowledge-based and empirical 

measurements. The second scoring method is the so-called NNScore 2.0143; it is 

calculated using a combination of VINA parameters and a novel algorithm from 

Durrant et al., called BINANA185. This algorithm also provides estimated Kd values 

for each docked compound. However, these were not used to assess results as 

they varied widely across similar ∆Gbinding, and therefore they were deemed 

meaningless for these studies. Both the VINA and NNscore methods were 

accessible from the original AutoGrow distribution. 
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Graphical analysis 

 

The PyMOL package29 was used to visualise and inspect docking results. A 

custom macro was written to facilitate the inspection of the large quantities of 

molecules. CcpNmr Chembuild28 was used to draw small molecules for the final 

figures. IUPAC names were derived from SMILES using the software package 

ChemDraw 19.0186. 

 

MD simulations 
 

A molecular dynamics simulation of the to target eIF4G and ligand 423437 

(SMILES: NC(=O)NC(=O)/C=C/C(=O)OCc1cn(nn1)C(=O)c2c(F)c(F)ccc2F) 

complex was performed at the LISCB computational facilitiesb, using 1 GPUs 

(GeForce GTX 1080 Ti) and 1 CPUs. The MD trajectory of 20 ns was calculated 

using the Desmond Multisim engine available in the Schrodinger Maestro 2019 

free package and results were analysed using the GUI available within the same 

software suite79. 

The ligand and target were contained in a buffer with a counter Ion/Salt of 8 Na+ 

with a total charge of +8 and a concentration of 16.23 mM. Water was then used 

as solvent and included in a cubic-shaped box of size 10 Å (TIP3P) for a total 

volume of 309354 Å3. The system containing 29491 atoms was then minimised 

using the default protocol available in the Maestro suite before the simulation. 

The full configuration is described in tables 7.1 and 7.2, (appendix, section 7.7). 

Finally the forcefield used was the OPLS_2005187. The full log with an exhaustive 

description of configuration parameters used in the simulation is displayed in the 

table 7.3, (appendix, section 7.7).  
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MD Scoring 

 

The Root Mean Square Deviation (RMSD) is commonly referred to establish the 

average changes in atom coordinates between simulation frames relative to the 

reference for a given target. RMSDs were calculated as following: 

 

RMSD1 = Q	
1
𝑁	=

(𝑟8;(𝑡1) − 𝑟8(𝑡<=>))4
?

893

 

Eq. 7-2 

 

where N is the number of atoms; t is the time, tref is the time at the first frame; r' 

correspond to the atom coordinates under evaluation for the frame x after 

superimposing to the reference79. 

 

The Ligand Root Mean Square Fluctuation (L-RMSF) is used for describing 

variations in atom coordinates. RMSFs for the ligand were calculated as: 

RMSF8 = Q	
1
𝑇	=

(𝑟8;(𝑡) − 𝑟8(𝑡<=>))4
@

A93

 

Eq. 7-3 

 

Where T is the time, Tref is the ref time corresponding to the first frame, r is the 

position of the ligand atom for a given frame79. 
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7.4. Results and Discussion 
 

 4G-Mnk interactions 
 

In order to validate the potential binding sites of Mnk to eIF4G, a series of 

HADDOCK calculations were performed using the HADDOCK webserver178. Ten 

clusters were evaluated and scored using the HADDOCK score (Eq. 7.1), the 

electrostatic energy, Van der Waals interactions and plotted against the i-RMSD 

(Figs 7.3A-C). From the analysis, the clusters 2,3,4,6 appeared to have the best 

scoring in all three representations. From the calculated poses of Mnk, it was 

possible to speculate about the relevance of two binding pockets on the eIF4G 

surface, which are subsequently denoted as site-1 and site-2 (Figs 7.4A-B). 

Binding pockets were also established using the DeepSite algorithm188 (Fig. 

7.4C). Obviously, the algorithm suggested more than two pockets, but importantly 

site-1 and site-2 previously identified on the basis of the NMR studies and MD 

simulations were also confirmed by DeepSite. 

 

 Dockings 
 

Site-1 and site-2 were targeted with two identical libraries of 9000 fragments, 

selected to cover a variety of chemical moieties. Dockings were performed using 

the VINA142 and NN2143 scoring algorithms (Fig. 7.4D). The two methods were 

performed in parallel for each algorithm to minimise possible false positives and 

false negatives. In fact, each method's top-ranked 1000 compounds showed only 

partial similarity, with some of VINA's top-scoring compounds presenting a much 

lower score for NN2 and vice versa. Ultimately, the unique, highest scoring 

compounds per-site were filtered using a python script for both methods. 

Interestingly, compounds for site-1 were scored with higher values for both 

methods compared to site-2, with an average ΔG of -4.5 for the VINA score and 
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~4.4 for the NN2 score, suggesting a better defined hydrophobic groove for the 

site-1 compared to site-2 (Figs 7.5A-B). 

Hydrogen interactions and salt-bridges between docked compounds and the 

target were then analysed using the H-Bind method for each pocket. The results 

for both the VINA and NN2 selected compounds showed that residues Gln1513, 

Glu1522, Lys1557 were most crucial for site-1 and residues Tyr1551, Asp1554, 

Glu1558 for site-2. In contrast, residue Asp1559 for site-2 showed varying results 

for compounds selected by the two algorithms (Figs 7.5C-D). 

Following a visual inspection, the two most buried residues for each pocket were 

selected as a reference point for a further filtering of the compounds, in particular 

Asp1554, Lys1557 for site-1 and Tyr1551, Asp1554, for site-2 (Fig 7.6). Only 

ligands that showed at least two interactions to the buried residues were selected 

and prepared for the linking step (Figs 7.7A-B). 

Next, a new series of scripts were used for classifying and tagging fragment 

atoms involved in contacts to the target (Figs 7 C-D). The tag was crucial for the 

following linkage of fragments. In practice, the tag instructed AutoGrow in 

performing any click-chemistry reactions using any atoms as input, except for 

flagged entities. 

This approach had the benefit of maintaining the fragment core structure intact 

after the reaction was performed. By measuring the distance between some 

docked compounds, it was obvious that any of the two randomly selected 

fragments most-often could not be linked directly while preserving crucial target 

contacts (Fig. 7.8A). Therefore, the usage of linkers was deemed necessary. 

Two sets of linker libraries were considered, one consisting of “shards” with MW 

up to 150 Dalton and one of fragments with MW up to 200 Dalton (Fig. 7.8B). By 

manually posing representative examples within the gap between site-1 and site-

2, I eventually decided to use the library of 200 Dalton, although it might seem 

slightly bulkier than the available space. Using a larger linker allowed for 

minimisation of the inevitable atom-loss per fragment, therefore preserving the 

necessary molecule length needed for reaching the two binding sites. The first 
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reaction joined linkers to site-1 fragments; newly formed molecules were 

connected to site-2 fragments by a following set of click-chemistry reactions. 

The new library was successfully created using a random selection of available 

reactions and compounds from the site-1 and site-2 core fragments. The 3793 

compounds were re-docked as done previously using either the VINA or NN2 

scoring functions, but this time, a much larger target area was explored in the 

docking simulations. 

Surprisingly, at this stage the two algorithms diverged significantly in scoring the 

ligand poses. The VINA-derived ∆G values for the newly linked compound 

improved considerably compared to the previous, single docked compounds. For 

the linked fragments, the average and median values were in a range of -5.20 

kcal/mol and outliers up to -7 kcal/mol (Fig. 9A). In contrast, scorings reported by 

the NN2 algorithm were similar to the single docked fragments (Fig. 9B). These 

NN2 results appeared very dubious; in fact, a visual inspection of the newly 

generated poses revealed that nearly all top scored compounds presented 

unrealistic docking poses, almost as if they were simulating a single smaller 

compound docking pose. I speculate this could be explained by the training set 

of the Neural Network, which most likely consisted of only small molecules with 

MW up to 300 Dalton, and thus failed to score correctly larger molecules. 

Consequently, the NN2 scoring function was not used for following stages. 

Examples of docked compounds using VINA and NN2 are shown in Figs 7.9C-

D. 

After a careful manual inspection of the first 1000 VINA top-ranked compounds, 

32 were selected based on their general poses. In fact, these compounds 

presented fragment-derived cores with similar orientations as previously 

observed when the original compounds were docked to their respective sites, 

therefore maintaining the initial best promising poses. I started subsequent 

analyses from compound 423437 (Fig. 7.10A), which was then prepared for 

further optimisation phases and molecular dynamics simulations. 
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From the first inspection, this compound passed all the drug-like properties, 

including the Lipinski rule of five, which were included in the original AutoGrow 

framework (Fig. 7.10B). 

The compound was initially derived by the halide ZINC04290163, initially scored 

with a ∆G of -4.3 kcal/mol (Fig. 7.10C 1), followed by the conversion to the azide 

415441 (Fig. 7.10C 2). The new compound was afterwards linked to the site-2 

fragment, ZINC01686679, initially scored with a ∆G of -4.3 kcal/mol (Fig. 7.10C 

1b). Following an alkyne to azide reaction, the two fragments generated the final 

triazole compound 423437, with a final ∆G of -6.3 kcal/mol (Fig. 7.10C 3). 

I used this compound as a starting point for further improving the binding 

energies. Thus, I modified the AutoGrow algorithms in a way to alter the 

compound without linking further fragments to the main core. By only consenting 

click-chemistry reactions to modify existing ligand moieties, it was possible to 

generate a new library of variants, which were subsequently re-docked using the 

VINA scorings. An example of improved compound is 3018740 (Fig. 7.10C 4); 

the conversion of the amine to an azide allowed to increase the binding affinity to 

a ∆G of 6.6 kcal/mol. 

Unfortunately, the optimization did not generate a large library of variants for 

further analysis; even using a much larger Zinc15-derived library, the algorithm 

kept re-creating the same compounds, which were flagged as duplicates and 

promptly deleted by the algorithm. This could have been caused for several 

reasons, such as a limited number of atoms available for performing reactions, a 

limited amount of reactions included in the original algorithm, a programmatic 

error, for example, in randomly selecting the same reactions and compounds, or 

most probably, by a combination of both. 

To further explore possible chemical conformations for the compound 423437, I 

performed a run of crossovers among the first run of optimisations. The 

crossovers enabled to overlay variants previously generated and exchange 

moieties across the two molecules, maintaining the common core structure. 

Surprisingly, all the new generated compounds revealed a much lower energy 
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binding than the original non optimised 423437. The compound 34108840 is an 

example with a ∆G of -5 kcal/mol (Fig. 7.10C 5). 

 

Eventually, all compounds generated from the two methods, were ranked by 

fingerprint similarities and compared to the fragment prior optimisation using the 

Tanimoto coefficient and the binding energy ∆G (Fig. 7.11). The 3018740 was 

among the highest in terms of similarities and yet presented an improved binding 

energy compared to 423437. Whereas compounds derived from crossovers were 

clustered in the lowest region of binding energies and showed the lowest 

Tanimoto coefficient. Surprisingly, the average ∆G decreased proportionally to 

the amount of diversities recorded to the original molecule, suggesting that a 

large degree of modification to the molecule could impact negatively the binding 

activity to a point in which the use of original fragments was irrelevant for the final 

lead-like drug, as seen in the three case studies reported in chapter 1. 

 

By inspecting the docking poses for the three compounds 423437, 3018740 and 

34108840, they all presented similar spatial conformation, with the trifluoro 

benzoyl ring nicely interacting with the site-1 groove and the amine/azide group 

pointing at the site-2. As expected, the reaction preserved the crucial atoms 

identified as interacting with the target, maintaining intact original cores as 

needed for hitting the respective sites. Although, the optimised versions 3018740 

and 34108840 amide groups presented a slight torsion angle. This conformation 

adopted by the molecule, opens a new hypothesis on the presence of a potential 

binding site in the proximity of Glu1558. This site could be called site-3 (Fig. 

7.12C-D) and it might be further explored in future studies. 
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 Molecular Dynamic simulations 
 

In order to validate the binding energies and establish the interaction mechanisms 

for the compound 423437, I performed a 20 ns molecular dynamic simulation. 

Firstly, the RMSD of both for the ligand and the protein was assessed over the 

trajectory (Fig. 7.13A). Analysing the evolution of the ligand in the complex is 

fundamental for detecting the stability of the ligand within its binding pockets. The 

analysis shows that ligand RMSD values were in a range between 0.5 Å and 3 Å, 

well below the protein RMSD values, suggesting that the ligand was stable with 

respect to the protein’s binding site during at least the first third of the simulation 

. From the protein-side, a steady increment of RMSD values was observed in the 

final quarter of the simulation. The protein RMSD values appeared not fully 

converged in a such a short simulation, I speculate due to potential structural 

changes that might start to occur only after 15 ns; however, although these were 

not of interest in the current project, they could have affected negatively the 

general binding properties to the ligand. 

More importantly, an in-dept analysis of the residues involved and the frequency 

of their contacts showed Tyr1551 and Asp1554 to be most often interacting with 

the ligand. These residues belong to the site-2 and site-1. Notably, during the 

simulation, the ligand failed to interact with the Tyr1551, indicating a temporary 

detachment of the ligand from the binding site. Interesting, the results suggested 

that compound 423437 potentially could reach a third site, site-3, in proximity of 

Glu1558. The latter was flagged as the third most interacting residue (Fig. 7.13B). 

This finding also is consistent with the NMR CSP results and the results from the 

INDEEP pocket analysis (cf. Fig. 4.C). The analysis revealed that Tyr1551 formed 

H-bonds, hydrophobic and water bridges with compound 423437, whereas 

Asp1554 mainly formed H-bonds, with some ionic character. Val1556 in site-2 

revealed just H-bonds, whereas Glu1558 and Asp1559 were indirectly interacting 

with compound 423437 through water bridges (Fig. 7.13C). 
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The time-dependent analysis of the complex revealed that compound 423437 

displayed constant contacts to both the site-1 and site-2 binding pockets, 

suggesting it was a good candidate for inhibiting the eIF4G-Mnk interaction. 

However, the inherent flexibility of the protein resulted in only sporadic binding of 

the trifluoro benzoyl ring to site-1. This could happen due to the nature of the site-

1 pocket, being relatively small in size compounded by a conformational change 

of the protein which could result in its partial closure (Fig. 7.14). Also, the analysis 

of single atoms through the Ligand Root Mean Square Fluctuation (L-RMSF) 

confirmed the atoms 20 to 28 (in the Desmond enumeration), corresponding to 

the benzene core, were the most unstable, followed by 6 and 7 (Fig. 7.13D). 

I next explored the conformational freedom of compound 423437 resulting from 

crucial multiple rotational bonds (Fig 7.15). This analysis suggested only a few 

highly flexible sections of the ligand. In particular, the bonds between the ester 

and the triazole ring proved highly flexible during the entire simulation. This 

information is of a crucial relevance and might give insight for fully automated 

molecular optimisation phases. 

Finally, the Solvent Accessible Surface Area (SASA) was analysed for the full 

simulation (Fig. 7.16d). The SASA values indicated low accessibility during the 

first 2.5 ns of the simulation, corresponding to a tight association of the ligand 

involving all sites. This was followed by a steady increase of the SASA values 

indicating a progressive detachment of the benzoyl core from the pockets to a 

steady detached state with only sporadic final contacts, indicating an unbinding 

event in the process. 
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7.5. Conclusions 
 

In this work, I explored the generation of inhibitors to disrupt the formation of the 

scaffolding complex between Mnk and eIF4G, a strategy to target its involvement 

in oncogenesis. Previous studies at the Arthanari and Wagner labsa 

characterised the eIF4G-Mnk binding mode. Several crucial residues were 

identified by NMR studies using the 15N-HSQC chemical shift mapping technique 

(Figs 7.1C-D). Furthermore, a 3D crystallographic structure for eIF4G and a short 

peptide for Mnk were determined, which allowed for computationally assessing 

the dynamic of interaction between Mnk and eIF4G (Fig. 7.7.1B). A qualitative 

analysis of an eIF4G molecular dynamics trajectory revealed the formation of 

several potential pockets in proximity of the known Mnk binding region. These 

pockets served as a starting point for designing a virtual FBDD workflow aimed 

to identify ligands needed for suppressing the formation of the complex (Fig. 7.2). 

 

Simulations using the HADDOCK178 server and the results of the DeepSite179 

binding site pocket predictor validated two small potential binding pockets, called 

site-1 and site-2 (Figs 7.4A-C). Using a library of small compounds with MW up 

to 250 Dalton, comprising of a large diversity of chemical groups, a customised 

version of the programme AutoGrow82 was used in two independent virtual 

docking to these two sites, using two different scoring methods, VINA and NN2. 

The VINA scoring presents a well validated and robust algorithm, whereas the 

NN2 method guaranteed faster outputs. Furthermore, I believe this dual strategy 

could reduce false negatives otherwise resulting from using one single algorithm 

only. From the initial 9000 compounds, the top 1000 entities obtained from each 

algorithm were maintained and proceed to the next filter. 

An analysis of hydrogen interactions and salt-bridges between the docked 

compounds and the most buried residues for each pocket, identified Gln1513, 

Glu1522, Lys1557 for site-1 and residues Tyr1551, Asp1554, Glu1558 for site-2 
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as crucial interacting residues (Figs 7.5C-D). Using an in-silico linkage molecule 

library, customised routines present in the AutoGrow package82 were used to 

create new molecules by linking fragments from site-1 and site-2. The newly 

generated linked compounds that passed the druglikeness filters were re-docked 

to eIF4G. As expected, the binding scores for this new library of compounds were 

much improved compared to the single fragment energies (Fig. 7.10C) Of this 

library, compound 423437 was selected as an example for further assessments 

and optimisations. 

Using a larger library of fragments fetched from the Zinc15 database180, I 

performed several growing and crossover modifications of compound 423437 

using the click-chemistry routines present in the AutoGrow package. However, 

further modifications on the initial structure did not result in a significant 

improvement in the binding affinity. Interestingly, more diverse variants resulted 

in molecules displaying weaker binding (Figs 7.10-7.11). 

Finally, to explore the dynamic aspects of the complex between compound 

423437 and eIF4G, I performed a 20 ns MD simulation. The MD trajectory 

showed that the ligand maintained an overall close contact to the macromolecule 

in the first third of the simulation. However, at least one highly rotatable bond of 

compound 423437 resulted in a partial binding of the molecule throughout the 20 

ns trajectory. In particular, the amide portion of compound 423437 strongly 

interacted to residues Asp1554 and Tyr1551 of site-1, in line with the previous 

docking results. However, the aromatic trifluoro benzoyl ring interacted with the 

site-2 pocket only during the first part of the simulation before floating freely 

around the solvent space. 

 

In conclusion, albeit compound 423437 was scored by VINA as one of the best 

interacting to the eIF4G protein, the analysis of its 20 ns MD trajectory indicated 

that the compound is subject to a large rotational conformational freedom. 

Consequently, it does not fully bind the protein for the whole simulation and 
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therefore, it cannot be considered being the final compound at this stage but 

rather a candidate for further optimisation. 

Ideally, any future workflows would also be further automated in order to reduce 

manual intervention, thus decreasing potential human errors and bias, as well as 

reducing overall analysis and development time. 
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7.6. Figures 

 
Figure 7.1 eIF4G-Mnk interaction background. 

A eIF4e is phosphorylated by Mnk at the S209 activating the translation for 

proteins. Mnk needs to anchor eIF4G to exert its action, providing for a possible 

route towards active interference with small molecules of relevance for 

tumourigenesis. B 3D representation of the complex Mnk (red-pink) and eIF4G 

(dark grey). Both of structures were obtained by X-ray crystallographic studies; 

colours reflex the NMR chemical shift perturbation analysis. C 15N-HSQC spectra 

of the Mnk peptide in its free form (red) and bound to eIF4G (blue). D CSP 

analysis of the Free-Bound complex using the CcpNmr AnalysisScreen module 

shows in light orange the residue of Mnk mostly interacting with eIF4G (Arg8, 

Arg9, Lys10, Lys11, Lys12, Thr18). 
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Figure 7.2 Project development workflow. 

Proposed stages for the development of inhibitors for the complex eIF4G-Mnk. 

Each colour represents advancement sections according with different 

computational methodologies employed. B Dockings steps and fragment linkage 

summary. 
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Figure 7.3 HADDOCK scorings. 

A interface-RMSD (regarding residues backbone atoms in the interface) vs 

HADDOCK scores showed the best clusters to be 2, 3, 4, 6 (light blue, pink, 

yellow, dark blue respectively); most negative HADDOCK scores represent more 

favourable interaction. B Clusters grouped by electrostatic values vs i-RMSD 

confirmed 2, 3, 4, 6 groups being the most preferable. C Van der Waals 

interactions vs i-RMSD also suggested cluster 2 as the top model, followed by a 

closer grouping of clusters 3, 4, 6. Although the Haddock clusters do not define 

good or bad binding models, the presence of a well-defined cluster, such as the 

2, is an indication of a potential binding pose. D 3D representations of the aligned 

four best scored clusters. eIF4G in dark grey, light green correspond to the NMR 

obtained restraints. It is noticeable how Mnk peptide for cluster 2, 4, 6 orientates 

toward the C-term of eIF4G (light pink), however a large part of interactions is 

between the helixes 2 and 3 (site-2). 
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Figure 7.4 eIF4G docking sites representations and docking libraries. 

A 3D structure illustration of eIF4G and its site-1 binding pocket (blue). B Site-2 

binding pocket (green). C DeepSite-1 output shows potential binding pockets as 

an orange surface representation. Site-1 and Site-2 are indicated by the blue and 

green rectangles. C Fragments library description (light green rectangle), and 

fragment output count per docking algorithms pathway. 
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Figure 7.5 Single docking results for Site-1 and Site-2. 

A Energy binding ∆G in kcal/mol for site-1 (blue) and for site-2 (green) using 

AutoDock VINA scoring function. Most negative values represent more 

favourable interactions. B NN2 scores in arbitrary units for site-1 (blue) and for 

site-2 (green) using a 20-Neural Networks scoring function. Most positive values 

denote strongest binding. C-D Interactions count calculated for each binding pose 

outputted by the two docking engines in respect to residues of the eIF4G site-1 

(C) and site-2 (D). 
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Figure 7.6 Site-1 and Site-2 most buried residues. 

A Surface map representation of site-1. B Hydrophobic groove of site-1 in PyMOL 

stick representation, with Asp1554 and Lys1557 being the most buried residue 

for this pocket (blue circle). C Surface map representation of site-2. B Site-2 

binding pocket in PyMOL stick representation. Asp1554 and Tyr1551 constitute 

the most buried residues (green circles). 
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Figure 7.7 Atom interactions and fragments linkage preparation. 

A Count of ligand atoms for the top docked fragments interacting to the most 

buried residues identified for site-1 and site-2. C Example of a 3D lines 

representation of a fragment with a “!” tag for each crucial atom. D New PDB files 

with amended atoms nomenclatures. 
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Figure 7.8 Fragment linkers. 

A eIF4G and two small fragments docked in site-1 and site-2. Distance 

measurement has been used to select the appropriate linker. B 3D examples of 

linkers that were randomly selected from libraries of 150 MW and 200 MW 

fragments. 
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Figure 7.9 Multiple-site docking results. 

A VINA energy binding ∆G for site-1 (blue), for site-2 (green) previously 

calculated, and the newly linked compounds library (orange). 

B NN2 scores in arbitrary units for site-1 (blue), site-2 (green) and the linked 

fragments (orange). C Surface representation of one of the top VINA scored 

compounds. In black circles are highlighted the previously flagged atoms 

interacting with the respectively binding pockets. D Surface representation of one 

of the top NN2 scored compounds. 
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Figure 7.10 Ligand 423437 and development history. 
A 2D illustration of the ligand selected for proceeding with further optimisations. 

B Druglikeness property for the compound 423437. C Virtual click-chemistry 

reactions from original fragments to optimised versions. 

Compound-1: 2,3,6-trifluorobenzoyl chloride. 

Compound-1b: prop-2-yn-1-yl(E)-4-oxo-4-ureidobut-2-enoate. 

Compound-2: N-(1λ4-diazenylidene)-2,3,6-trifluorobenzamide. 

Compound-3: 1-(2,3,6-trifluorobenzoyl)-1H-1,2,3-triazol-4-yl)methyl (E)-4-oxo-4-

ureidobut-2-enoate. 

Compound-4: 1-(2,3,6-trifluorobenzoyl)-1H-1,2,3-triazol-4-yl)methyl (E)-4-(3-

(1λ4-diazenylidene)ureido)-4-oxobut-2-enoate. 

Compound-5: (S)-N1-((1λ4-diazenylidene)carbamoyl)-N4-(2-methyl-1-(4-

(methylthio)phenyl)propyl)fumaramide. 
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Figure 7.11 Variants similarities for the ligand 423437. 
A Tanimoto coefficient versus the binding energies for optimised libraries in 

respect to the original fragment 423437. Highlighted 3018740 (purple) derived 

from the fragment grow engine and 34108840 (green), derived from the crossover 

engine present in AutoGrow82. 

 

 
Figure 7.12 Surface representations for optimised ligands. 

A 423437 B 3018740 C 34108840 surface map, ligands interact similarly to 

eIF4G binding pockets; however, optimised versions 3018740 and 34108840 

appear to extend the interaction to a third site (orange rectangle). 
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Figure 7.13 MD simulations for 423437. 
A RMSD evolution for the protein c𝛼 (blue) and ligand (red) calculated 

independently in a simulation of 20ns. B Heat-map with contacts count for each 

eIF4G residues during the simulation. Dark red correspond to the most 

occurrences (>4), whereas white gaps signify no interactions between protein 

and ligand. Top graph, summaries the total count in a 1D curve in respect of time. 

C Protein-ligand interactions divided by groups. Hydrogen bonds, hydrophobic, 

ionic and water bridges, stacked bar charts represent a normalised value count; 

a value over 1.0 suggests that the residue might undertake multiple simultaneous 

contacts with the ligand. D Ligand Root Mean Square Fluctuation (L-RMSF) 

shows changes in the ligand atom positions through the simulation time. 
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Figure 7.14 423437 interactions during simulation. 
Simulation snapshots at 1.00, 1.52, 2.00, 10.00, 15.00, 20.00 nsec (A-F) and the 

multiple ligand-target interaction types for each timeframe. 
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Figure 7.15 423437 angle torsions analysis. 

A 2D ligand structure and coloured rotatable bond, each torsion is described in 

the following B figure by a dial and bar plot of the same colour. B Conformational 

adjustments in degrees for each rotatable bond in the ligand throughout the 

simulation trajectory. The centre of the dial plot represents the initial frames and 

expands radially outwards describing the simulation evolution. The adjacent bar 

plots outline the probability density of the torsion reported in the dials. 
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Figure 7.16 423437 surface area analysis. 
Summary of the various ligand properties through the 0-20ns simulation. a Radius 

of gyration, rGyr, which is related to its main moment of inertia and compute the 

“extendedness” of a ligand through the time; b indicates the intramolecular 

Hydrogen Bonds, IntraHB, were not detected for 423437. c Molecular Surface 

Area (MolSA), which corresponds to a van der Waals surface area, d Solvent 

Accessible Surface Area (SASA). f Polar Surface Area (PSA), equivalent to the 

solvent accessible surface area in a molecule for which only oxygen and nitrogen 

atoms are considered.  
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7.7. Appendix 
 

Prior to the simulation a series of minimisations were performed using the built-

in protocols of Schrodinger Maestro79. The stages were run using the default 

parameters and steps are summarised in table 7.1, whereas the full script 

parameters are summarised in table 7.2. Lastly the full molecular dynamics 

simulation parameters are displayed in table 7.3. 

 

Table 7.1 Relaxation steps summary. 
Steps 1 2 3 4 5 6 

Simulation 
type 
ensemble 

NVT NVT NPT solvatation NPT NPT 

thermostat(t) 
/ barostat(b)  

 
Berendsen Berendsen 

 
Berendsen  Berendsen  

Temperature 10K 10K 10K 
 

300K 300K 

Pressure 
 

n.d. 1atm 
 

1atm 1atm 

Time 
 

12ps 12ps 
 

12ps 24ps 

Velocity 
resampling  

 
1ps 1ps 

 
1ps 

 

Temperature 
relaxation 

 
fast fast 

 
fast fast 

Pressure 
relaxation 
const.  

 
slow 

 
slow normal 

Soluted 
atoms 
restrained 

non-
hydrogen 

non-
hydrogen 

non-
hydrogen 

 
non-
hydrogen 

non-
hydrogen 

 

Table 7.2 Relaxation steps configuration parameters. 
 
task  
task  desmond:auto 
set_family  
desmond  
checkpt.write_last_step  

 
 

 

simulate1 

title 
Brownian Dynamics NVT, T : 10 K, 
small timesteps, and restraints on 
solute heavy atoms, 100ps 

annealing off 
time 100 
timestep 
0.001 
0.001 
0.003 

 

temperature  10 

ensemble  
class  NVT 
method  Brownie 
brownie  
delta_max  

 
 

restrain  
atom  
force_constant  

 
 

simulate2 

effect_if [[==, -gpu, @*.*.jlaunch_opt[-1]], 
ensemble.method : Langevin] 

title 
NVT, T : 10 K, small timesteps, 
and restraints on solute heavy 
atoms, 12ps 

annealing off 
time 12 
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timestep 
0.001 
0.001 
0.003 

 

temperature  10 
restrain 
atom 
force_constant 

 

ensemble 
class  
method  
thermostat.tau 

 

randomize_velocity.i
nterval 1 

eneseq.interval 0.3 
trajectory.center 
 

 

simulate3 

title NPT, T : 10 K, and restraints on 
solute heavy atoms, 12ps 

effect_if [[==, -gpu, @*.*.jlaunch_opt[-1]], 
ensemble.method: Langevin] 

annealing off 
time 12 
temperature  10 
restrain retain 
ensemble 
class  
method  
thermostat.tau 
barostat.tau 

 

randomize_velocity.int
erval 1 

eneseq.interval 0.3 
trajectory.center 
 

 

solvate_pocket 
should_skip  
ligand_file  

 

simulate4 

title NPT and restraints on 
solute heavy atoms, 12ps 

effect_if 

[[@*.*.annealing], annealing 
= off, temperature = 
@*.*.temperature[0][0], 
ensemble.method : 
Langevin] 

time 12 
restrain retain 
ensemble 
class  
method  
thermostat.tau 
barostat.tau 

 

randomize_velocity.interv
al 1 

eneseq.interval 0.3 
trajectory.center 
 

 

simulate5 
title NPT and no restraints, 24ps 

effect_if 
[[@*.*.annealing], annealing =off, 
temperature : @*.*.temperature[0][0], 
ensemble.method : Langevin] 

time 24 
ensemble 
class  
method  
thermostat.tau 
barostat.tau 

 

eneseq.inte
rval 0.3 

trajectory.c
enter solute 

 

simulate6 
cfg_file  423437_md.cfg 
jobname  $MASTERJOBNAME 
dir . 
compress   

 

 

 

Table 7.3 MD simulation configuration parameters. 
ORIG_CFG 
annealing false 
backend 
app mdsim 
boot 
file 423437_md-in.cms 
type mae 

 

 

bigger_rclone false 
checkpt 
first 
interval 
name 
write_last_step 

 

coulomb_method useries 

cpu 1 
cutoff_radius 9.0 
elapsed_time 0.0 
energy_group false 
eneseq 
first 0.0 
interval 1.2 
name $JOBNAME$[_replica$REPLICA$].ene 

 

ensemble 
barostat 
tau 

 

class NPT 
method MTK 
thermostat 
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tau 1.0 
 

 

glue solute 
maeff_output 
first 0.0 
interval 120.0 
name $JOBNAME$[_replica$REPLICA$]-out.cms 
periodicfix true 
trjdir $JOBNAME$[_replica$REPLICA$]_trj 

 

meta false 
meta_file  
model_file 423437_md-in.cms 
pressure 
1.01325 
isotropic 

 

randomize_velocity 
first 0.0 
interval inf 
seed 2007 
temperature @*.temperature 

 

restrain none 
simbox 
first 0.0 
interval 1.2 
name $JOBNAME$[_replica$REPLICA$]_simbox.dat 

 

surface_tension 0.0 
taper false 
temperature 
300.0 
0 

 

 

time 20000.0 
timestep 
0.002 
0.002 
0.006 

 

trajectory 
center 
 

first 0.0 
format dtr 
frames_per_file 250 
interval 40.0 
name $JOBNAME$[_replica$REPLICA$]_trj 
periodicfix true 
write_velocity false 

 
 

app mdsim 
argv 
/home/tjr22/luca/schrodinger2019-3/internal/bin/gdesmond 
--include 
423437_md-out.cfg 

 

boot 
file 423437_md-in.cms 
type mae 

 

config 
ORIG_CFG 
annealing false 
backend 
app mdsim 
boot 

file 423437_md-in.cms 
type mae 

 
 

bigger_rclone false 
checkpt 
first 
interval 
name 
write_last_step 

 

coulomb_method useries 
cpu 1 
cutoff_radius 9.0 
elapsed_time 0.0 
energy_group false 
eneseq 
first 0.0 
interval 1.2 
name $JOBNAME$[_replica$REPLICA$].ene 

 

ensemble 
barostat 
tau 

 

class NPT 
method MTK 
thermostat 
tau 

 
 

glue solute 
maeff_output 
first 0.0 
interval 120.0 
name $JOBNAME$[_replica$REPLICA$]-out.cms 
periodicfix true 
trjdir $JOBNAME$[_replica$REPLICA$]_trj 

 

meta false 
meta_file  
model_file 423437_md-in.cms 
pressure 
1.01325 
isotropic 

 

randomize_velocity 
first 0.0 
interval inf 
seed 2007 
temperature @*.temperature 

 

restrain none 
simbox 
first 0.0 
interval 1.2 
name $JOBNAME$[_replica$REPLICA$]_simbox.dat 

 

surface_tension 0.0 
taper false 
temperature 
300.0 
0 

 

 

time 20000.0 
timestep 
0.002 
0.002 
0.006 

 

trajectory 



 267 

center 
 

first 0.0 
format dtr 
frames_per_file 250 
interval 40.0 
name $JOBNAME$[_replica$REPLICA$]_trj 
periodicfix true 
write_velocity false 

 

 

app mdsim 
boot 
file 423437_md-in.cms 
type mae 

 

config ? 
force 
bonded 
exclude 
 

include 
 

 

constraint 
maxit 
tol 

 

ignore_com_dofs true 
nonbonded 
accuracy_level 0 
far 
Nterms 32 
kappa 
0.333333 
0.333333 
0.333333 

 

n_k 
45 
45 
45 

 

order 
4 
4 
4 

 

r_spread 4.0 
sigma_s 0.85 
spreading_style scatter_gather 
type QuadS 

 

n_zone 1024 
near 
correct_average_dispersion 
r_tap 
taper 
type 

 

r_cut 9.0 
r_lazy 10.113508356103871 
sigma 2.048076502869348 
type useries 

 

term 
gibbs 
alpha_vdw 0.5 
output 
first 
interval 

name fep.dE 
 

type none 
weights 
bondA 
 

bondB 
 

es 
 

qA 
 

qB 
 

qC 
 

vdw 
 

vdwA 
 

vdwB 
 

 

window -1 
 

list 
 

 

virtual 
exclude 
 

include 
 

 
 

global_cell 
clone_policy rounded 
margin 1.1135063561038707 
n_replica 1 
partition 
1 
1 
1 

 

r_clone 5.056754178051936 
reference_time 0.0 
topology periodic 

 

gui 
ewald_tol 

 

integrator 
Multigrator 
barostat 
Langevin 
tau 0.020833333 
thermostat 
seed 2012 
tau 0.016129 
type Langevin 

 

 

MTK 
tau 0.041666666666666664 
thermostat 
NoseHoover 
mts 2 
tau 
0.020833333333333332 
0.020833333333333332 
0.020833333333333332 

 

 

type NoseHoover 
 

 

timesteps 48 
type MTK 

 

nve 
type Verlet 

 

thermostat 
DPD 
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seed 2012 
 

Langevin 
seed 2012 
tau 0.016129 

 

NoseHoover 
mts 2 
tau 
0.08333333333333333 
0.08333333333333333 
0.08333333333333333 

 
 

timesteps 12 
type NoseHoover 

 
 

brownie 
barostat 
delta_max 0.1 
tau 1.0 
thermostat 
seed 

 
 

delta_max 0.1 
thermostat 
seed 

 
 

brownie_NPT 
barostat 
T_ref 300.0 
tau 0.016129 
thermostat 
seed 

 
 

delta_max 0.1 
thermostat 
seed 

 

 

brownie_NVT 
delta_max 0.1 
thermostat 
seed 

 
 

dt 0.002 
posre_scaling 1.0 
pressure 
P_ref 
isotropy 
max_margin_contraction 
tension_ref 

 

respa 
far_timesteps 
migrate_timesteps 
near_timesteps 
outer_timesteps 

 

temperature 
T_ref 

 

type Multigrator 
 

mdsim 
checkpt 
first 
interval 
name 
wall_interval 
write_first_step 
write_last_step 

 

last_time 20000.0 
plugin 

anneal 
first 0.0 
interval 1.2 
schedule 
time 
0.0 
30.0 
60.0 
90.0 
600.0 

 

value 
0.0 
300.0 
600.0 
900.0 
300.0 

 
 

type anneal 
 

energy_groups 
first 0.0 
interval 1.2 
name  
options 
corr_energy 

 

type energy_groups 
write_report true 

 

eneseq 
first 
flush_interval 
interval 
name 
type 

 

gcmc 
batch_size 1600 
eneseq 
name system_gcmc.ene 

 

first 0.0 
grid 
exclusion_radius 
region_buffer 
spacing 
track_voids 
whole_box_frequency 

 

interval 3.0 
mu_excess -6.18 
name system.gcmc 
nsteps 5000 
quiet true 
restore_engrps false 
seed 2007 
solvent_density 0.03262 
temperature 300.0 
type gcmc 

 

list 
status 
eneseq 
trajectory 
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randomize_velocities 
remove_com_motion 

 

maeff_output 
bootfile 423437_md-in.cms 
first 0.0 
full_system_only false 
glue 
1872 
2581 

 

 

interval 120.0 
name 423437_md-out.cms 
periodicfix true 
precision 8 
trjdir 423437_md_trj 
type maeff_output 
write_last_step true 

 

maeff_snapshot 
first 0.0 
interval 1.2 
name  
type maeff_snapshot 

 

randomize_velocities 
first 0.0 
interval inf 
seed 2007 
temperature 300.0 
type randomize_velocities 

 

remove_com_motion 
first 0.0 
interval inf 
type remove_com_motion 

 

simbox_output 
first 0.0 
interval 1.2 
name  
type simbox_output 

 

status 
first 
interval 
type 

 

trajectory 
center 
 

first 0.0 
format dtr 
frames_per_file 250 
glue 
1872 
2581 

 

 

interval 40.0 
mode noclobber 
name 423437_md_trj 
periodicfix true 
type trajectory 
write_first_step true 
write_last_step true 
write_velocity false 

 
 

title Desmond MD simulation 
 

migration 

first 0.0 
interval 0.018000000000000002 

 

spatial_order auto 
 

force 
bonded 
exclude 
 

include 
 

 

constraint 
maxit 
tol 

 

ignore_com_dofs true 
nonbonded 
accuracy_level 0 
far 
Nterms 32 
kappa 
0.333333 
0.333333 
0.333333 

 

n_k 
45 
45 
45 

 

order 
4 
4 
4 

 

r_spread 4.0 
sigma_s 0.85 
spreading_style scatter_gather 
type QuadS 

 

n_zone 1024 
near 
correct_average_dispersion 
r_tap 
taper 
type 

 

r_cut 9.0 
r_lazy 10.113508356103871 
sigma 2.048076502869348 
type useries 

 

term 
gibbs 
alpha_vdw 0.5 
output 
first 
interval 
name 

 

type none 
weights 
bondA 
 

bondB 
 

es 
 

qA 
 

qB 
 

qC 
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vdw 
 

vdwA 
 

vdwB 
 

 

window -1 
 

list 
 

 

virtual 
exclude 
 

include 
 

 

 

global_cell 
clone_policy rounded 
margin 1.1135063561038707 
n_replica 1 
partition 
1 
1 
1 

 

r_clone 5.056754178051936 
reference_time 0.0 
topology periodic 

 

gui 
ewald_tol 

 

integrator 
Multigrator 
barostat 
Langevin 
tau 0.020833333 
thermostat 
seed 2012 
tau 0.016129 
type Langevin 

 
 

MTK 
tau 0.041666666666666664 
thermostat 
NoseHoover 
mts 2 
tau 
0.020833333333333332 
0.020833333333333332 
0.020833333333333332 

 
 

type NoseHoover 
 

 

timesteps 48 
type MTK 

 

nve 
type Verlet 

 

thermostat 
DPD 
seed 

 

Langevin 
seed 2012 
tau 0.016129 

 

NoseHoover 
mts 2 
tau 
0.08333333333333333 
0.08333333333333333 
0.08333333333333333 

 
 

timesteps 12 
type NoseHoover 

 
 

brownie 
barostat 
delta_max 0.1 
tau 1.0 
thermostat 
seed 

 
 

delta_max 0.1 
thermostat 
seed 

 
 

brownie_NPT 
barostat 
T_ref 300.0 
tau 0.016129 
thermostat 
seed 

 
 

delta_max 0.1 
thermostat 
seed 

 
 

brownie_NVT 
delta_max 0.1 
thermostat 
seed 

 
 

dt 0.002 
posre_scaling 1.0 
pressure 
P_ref 
isotropy 
max_margin_contraction 
tension_ref 

 

respa 
far_timesteps 
migrate_timesteps 
near_timesteps 
outer_timesteps 

 

temperature 
T_ref 

 

type Multigrator 
 

mdsim 
checkpt 
first 
interval 
name 
wall_interval 
write_first_step 
write_last_step 

 

last_time 20000.0 
plugin 
anneal 
first 0.0 
interval 1.2 
schedule 
time 
0.0 
30.0 
60.0 
90.0 
600.0 
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value 
0.0 
300.0 
600.0 
900.0 
300.0 

 
 

type anneal 
 

energy_groups 
first 0.0 
interval 1.2 
name  
options 
corr_energy 

 

type energy_groups 
write_report true 

 

eneseq 
first 
flush_interval 
interval 
name 
type 

 

gcmc 
batch_size 1600 
eneseq 
name system_gcmc.ene 

 

first 0.0 
grid 
exclusion_radius 
region_buffer 
spacing 
track_voids 
whole_box_frequency 

 

interval 3.0 
mu_excess -6.18 
name system.gcmc 
nsteps 5000 
quiet true 
restore_engrps false 
seed 2007 
solvent_density 0.03262 
temperature 300.0 
type gcmc 

 

list 
status 
eneseq 
trajectory 
randomize_velocities 
remove_com_motion 

 

maeff_output 
bootfile 423437_md-in.cms 
first 0.0 
full_system_only false 
glue 

1872 
2581 

 

 

interval 120.0 
name 423437_md-out.cms 
periodicfix true 
precision 8 
trjdir 423437_md_trj 
type maeff_output 
write_last_step true 

 

maeff_snapshot 
first 0.0 
interval 1.2 
name  
type maeff_snapshot 

 

randomize_velocities 
first 0.0 
interval inf 
seed 2007 
temperature 300.0 
type randomize_velocities 

 

remove_com_motion 
first 0.0 
interval inf 
type remove_com_motion 

 

simbox_output 
first 0.0 
interval 1.2 
name  
type simbox_output 

 

status 
first 
interval 
type 

 

trajectory 
center 
 

first 0.0 
format dtr 
frames_per_file 250 
glue 
1872 
2581 

 

 

interval 40.0 
mode noclobber 
name 423437_md_trj 
periodicfix true 
type trajectory 
write_first_step true 
write_last_step true 
write_velocity false 

 
 

title Desmond MD simulation 
 

migration 
first 0.0 
interval 0.018000000000000002 

 

spatial_order auto 
threader_size 0 
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8.1. What have I learnt about FBDD by NMR and how 
CcpNmr AnalysisScreen can aid future discoveries? 

 
By directly assessing the development history of three commercial drugs from the 

primary screening to the final lead optimisation, I could understand the rationale 

behind the selection of each technique needed for tackling each individual 

progression step and the overall challenges associated with these laborious 

projects. The study cases discussed in chapter 1 highlighted the underpinning 

role and impact of NMR techniques throughout the drug discovery phases. More 

broadly, the inspection of multiple compounds in clinical phases has described 

how the NMR spectroscopy plays a central role in the fragmental drug discovery 

process, FBDD4. Above all, this spectroscopic technique is the most preferred 

choice when it comes to the identification of weak binders in the primary 

screening. In the initial stages of drug discovery, hundreds to thousands of 

fragments are tested against a macromolecule using a variety of one-dimensional 

ligand-detected methodologies. As a result, an enormous amount of data is 

generated in a relatively short time. Although acquisition and processing of NMR 

spectral information can be performed in an automated fashion, analysis is often 

attained through rigorous qualitative visual inspections. 

Pharmaceutical companies might avail of commercial analysis software, such as 

ACD-lab140, MestreNova141, Top-Spin116 plugins or build their own custom scripts 

for assessing their own outputs. However, the high premium requested by these 

platforms cannot be justified by academic groups or occasional users, thus, 

scientists typically resort in cumbersome operations and ultimately, they might 

draw conclusions based upon subjective interpretations. 

During these years, I have focused extensively on the design and development 

of a unique application dedicated for assessing data derived by NMR-FBDD. It is 

called CcpNmr AnalysisScreen, or AnalysisScreen for short, and it is a part of the 

main Analysis version-3 software suite28 (chapter 2). 
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AnalysisScreen is built using robust software architectures which enabled the 

inclusion of current NMR analysis routines, new algorithms, and most importantly, 

it will enable following developers in adding methodologies that might be needed 

in the future (chapter 3). 

The strength and novelty in the software reside in a comprehensive metadata 

parser, the ability of creating custom workflows, the presence of fast algorithms 

with automated detection of optimal parameters, multiple scoring functions, and 

the reproducibility of results (chapters 4-5). Additionally, a modern graphical user 

interface facilitates the analysis and experience of users, therefore, increasing 

their productivity. 

By working with several academic and industrial groups, I designed 

AnalysisScreen aiming to be the ultimate NMR software package needed to cover 

all aspects of fragment-based drug discovery data analysis; as such, it includes 

an exhaustive tool required for inspecting macromolecular binding sites 

information, the so-called chemical shift mapping module189(chapter 6). Chemical 

shift perturbation analysis is a powerful tool to elucidate macromolecular 

interactions and has been used extensively in most clinical NMR-derived drugs. 

It was in my greatest interests in providing the community an intuitive and 

interactive graphical tool which allows users to drastically reduce the time 

required for this crucial operation. 

From the literature has emerged that NMR played a pivotal role in elucidating 

small molecules binding poses through the analysis of high dimensionalities 

spectral observations. Currently AnalysisScreen does not support yet this area. 

However, future collaborations with industrial partners might originate in concise 

development plans. 

New industrial partnerships are constantly being established within the group and 

they will be paramount in consolidating the AnalysisScreen capabilities so it is 

beneficial to the entire NMR community and ultimately it will aid in the 

development of drugs in a faster timescale. 
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8.2. How can the development of new drugs from 
fragments can be shortened? 
 

In 2016, ABT-199, commonly known as Venetoclax, has been the first confirmed 

FDA-approved drug derived by NMR-FBDD26,49,61,62. Its development took nearly 

20 years. 

It appears that the majority of efforts are put into molecular optimisations, that are 

mostly guided through multiple molecular adjustments followed by their new 

chemical synthesis and cyclical experimental re-evaluations. Although this will 

eventually culminate in efficient drugs, some considerations arise whether the 

usage of computational approaches could have made the whole process more 

efficient. 

High-performance computers are constantly increasing in computational power 

and availability to researchers, furthermore, large number of algorithms can aid 

the drug discovery in unprecedented ways79,82,183. 

Using freely available tools, I have demonstrated how they can be assembled in 

custom workflows to guide the creation of highly tailored candidates in a limited 

amount of time (chapter 7). 

By experiencing in first person challenges associated with drug-optimisations and 

the impossibility of using a stand-alone protocol or tool, I firmly believe that 

fragment-based and structure-based drug design can be aided by developing 

new platforms and workflows that merge together seamlessly in-silico tools such 

as de-novo library creation, dockings, molecular dynamics simulations and 

experimental knowledge. 

Ideally computational methods would take in parallel the biological aspects into 

consideration. Some of these may be, for example, by enhancing ligand's 

robustness for possible drug resistance. In doing so, it is possible to combine 

several pharmacology fields in a way that the scientists alone could not have 

achieved. 
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The current pandemic (Covid-19) is sadly showing us that we are not ready in the 

discovery and development of drugs in a state of global emergency, but I firmly 

believe that in a near future, potent and selective drugs will be available for 

patients in a much shorter time scale, especially when compared to the currently 

FDA approved fragment-derived drugs. 
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