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Histological assessment of glands is one of the major concerns in colon cancer grading. Considering that poorly differentiated
colorectal glands cannot be accurately segmented, we propose an approach for segmentation of glands in colon cancer images,
based on the characteristics of lumens and rough gland boundaries. First, we use a U-net for stain separation to obtain H-stain,
E-stain, and background stain intensity maps. Subsequently, epithelial nucleus is identified on the histopathology images, and the
lumen segmentation is performed on the background intensity map.-en, we use the axis of least inertia-based similar triangles as
the spatial characteristics of lumens and epithelial nucleus, and a triangle membership is used to select glandular contour
candidates from epithelial nucleus. By connecting lumens and epithelial nucleus, more accurate gland segmentation is performed
based on the rough gland boundary. -e proposed stain separation approach is unsupervised, and the stain separation makes the
category information contained in the H&E image easy to identify and deal with the uneven stain intensity and the inconspicuous
stain difference. In this project, we use deep learning to achieve stain separation by predicting the stain coefficient. Under the deep
learning framework, we design a stain coefficient interval model to improve the stain generalization performance. Another
innovation is that we propose the combination of the internal lumen contour of adenoma and the outer contour of epithelial cells
to obtain a precise gland contour. We compare the performance of the proposed algorithm against that of several state-of-the-art
technologies on publicly available datasets. -e results show that the segmentation approach combining the characteristics of
lumens and rough gland boundary has better segmentation accuracy.

1. Introduction

Colon cancer may be caused by epithelium (lumens of blood
vessels, organs, and surface tissues), also called adenocar-
cinoma (malignant tumor formed by gland structures in
epithelial tissues) [1]. It affects the distribution of cells and
also changes the structure of glands. Pathologists are able to
accurately detect small abnormalities in a biopsy [2–4].

With the increasing popularity of histopathology images,
digital pathology provides a viable solution to the detection
problem. Histopathology image analysis can help us to

extract quantitative morphological features and can be used
for computer-assisted cancer grading [5]. Histopathology is
the fixation of thin sections of potentially disease tissues on a
glass slide and stain to show specific structural or functional
details [6, 7]. By scanning the entire slide with a scanner,
digitized images of those slides can be obtained, making
histopathology suitable for image analysis [8, 9].

Colon histopathology image analysis is the basis of the
primary detection of colon lesions [10]. -e gland structure
is shown in Figure 1(a). A typical colon gland histopathology
image contains four tissue components: lumen, cytoplasm,
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epithelial cells, and stroma (connective tissues, blood vessels,
nerve tissue, etc.). -e lumen area is surrounded by an oval
structure called epithelial cells [11, 12]. -e whole structure
is bounded by a thick line, called the epithelial cell nucleus.

In clinical practice, pathologists use glands as the ob-
jects of interests, including their structural morphology
and gland formation [13, 14]. Particularly, when per-
forming automated gland segmentation in H&E images,
pathologists can extract important morphological features
to determine prognosis and plan treatments for individual
patients [15]. Digital histopathology images contain noise
and homogenous regions that hinder gland detection and
segmentation. For example, Zoltan et al. [16] developed two
diagnostic modules, one for gland detection and the other
for nuclei detection. In gland detection, HSV and LAB
color spaces are used for color segmentation, and glands
can be identified using the connected component. Due to
large differences between the tissue preparation protocols,
stain programs, and scanning characteristics, stain nor-
malization of histopathology images provides a tool to
ensure the efficiency and stability of the system. Daniel et al.
[17] used a normalization technique to associate the mean
and standard deviation of each channel of the target tissue
image with those of the template image through a set of
linear transformations in the LAB color space. In order to
segment a large number of color images into meaningful
structures, Banwari et al. [18] proposed a thresholding
approach based on image intensity. -ese approaches are
based on different tissue structures and color differences
and are not suitable for segmenting adherent glands or
glands that are mixed with stroma which require complex
correction algorithms to obtain accurate results. -e active
contour segmentation approach proposed by Cohen [19]
relies on the characteristics of the gland structures. -e
thickness of the tissue slice and the fading of the stain will
lead to the change of the color distribution of the tissue
image, and the gland model is not suitable for the glands
with incomplete gland boundaries. -e above conventional
approaches mainly used glands’ appearance characteristics
and features. -e appearance characteristics are composed
of the nucleus, cytoplasm, and epithelial cells. Sir-
inukunwattana et al. [20], Jacobs et al. [21], and others used
low-level features such as color, texture, and edges, to
identify glands. -e contour features are based on a gland
structure surrounded by epithelial cells. Sirinukunwattana
et al. [22] and Fu et al. [23] proposed that the spatial

random field model well segmented the benign gland
contour, but it was not suitable for segmenting malignant
and diseased glands.

With the recent development of deep learning in the
field, it has become possible to apply deep learning to
histopathology images. Roth et al. [24] proposed a multilevel
deep convolutional neural network for automated pancre-
atic segmentation. Ronneberger et al. [25] and others pro-
posed using U-net for histopathology image segmentation.
-e deep contour sense network proposed by Chen et al. [26]
illustrates that contours play an important role in gland
segmentation. -e double parallel branch deep neural
network proposed by Wang et al. [27] combined contours
and other features to accurately segment glands. In addition,
Xu et al. [28] proposed a fusion of complex multichannel
regions and boundary modes for segmentation of gland
instances by side supervision. -is work was extended in the
study of Xu et al. [29], which included additional infor-
mation to enhance performance. Raza et al. [30] proposed a
multi-input multi-output network (MIMO-Net) for gland
segmentation and achieved state-of-the-art performance. All
of the above approaches require a large number of manual
annotations, but it was very difficult to label a large number
of histopathology images. Zhang et al. [31] used a deep
confrontation network for unannotated images, achieving
consistently good segmentation performance.

Although the previous approaches have achieved certain
promising results in gland segmentation, automated seg-
mentation of glands is still a challenging task due to the
complexity of histopathology images and the diversity of
gland morphology, especially the gland lesions shown in
Figure 1(b). For normal glands, epithelial cells can be clearly
distinguished from the surrounding environment [32]. For
malignant glands, epithelial cells are usually intermingled in
the stroma, and the epithelial nucleus are not easily dis-
tinguished from stromal nucleus [33], and even glands are
attached to each other. In this situation, we consider that the
lumen is a defined structure of the gland. -is structure can
help decision-making because its presence and morphology
indicate the grade of cancers [34]. It is observed that the
lumen of the gland and the gland boundary have certain
similarities in shapes, and the lumen can be accurately
segmented compared to other structures of the gland. Af-
terward, a gland segmentation approach based on the
correlation between the lumen and the gland boundary was
proposed.

(a) (b)

Nuclei

Epithelial cell
Lumen

Stroma

Figure 1: Illustration of colon images. (a) A typical benign colon gland histopathology image and its composition. (b) A malignant colon
gland image.
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Our proposed approach first uses a U-net for stain
separation to obtain H-, E-, and background stain intensity
maps. Subsequently, epithelial nucleus is identified on the
histopathology image. Taking into account that the lumen is
similar to the background, shown in Figure 2, the histo-
pathology image is then used as the input of the framework
proposed in [35] to obtain the rough gland boundary and
epithelial nucleus, and the lumen is segmented based on the
improved SPF approach reported in [36]. Finally, based on
the correlation between the lumen and the gland boundary,
we select the best gland contour from the candidate contours
so as to achieve the segmentation of glands attached to each
other.-e innovation in ourmethod is that we are the first to
use deep learning to achieve stain separation. Deep learning
is used to predict the stain coefficients. In the deep learning
framework, we design a stain coefficient interval model using
Gaussian distribution. We can get an interval of the coef-
ficient instead of a certain stain coefficient to improve the
stain generalization performance. Another innovation is that
we use multiple morphological constraints to find the op-
timal tumor contour based on the internal (lumen) and
external (epithelium) contours. -e proposed approach is
evaluated on the 2015 MICCAI GlaS Challenge dataset and
colon adenocarcinoma dataset, resulting in satisfactory
segmentation outcomes.

2. Materials and Methods

2.1. Histopathology Image Stain Separation-Based Deep
Learning Framework. -e proposed stain separation
framework is shown in Figure 3. Gaussian U-net Stain
Separation (GUSS) makes the information contained in H&E
images easy to identify, thus overcoming the influence of
uneven staining intensity or large differences in H&E images.
Traditional stain separation methods require manual settings
for a standard stain matrix and cannot separate multiple
stains at the same time. We here use deep learning to achieve
this function. First, the histopathology image is used as the
input of themodel, and the U-shaped encoder-decoder model
is constructed for stain separation. -e network is supported
by three parts: contracting, bridge, and expanding paths to
complete the stain separation of H (hematoxylin), E (eosin),
and B (background) channels. -e contracting path is used to
reduce the spatial dimension of the feature map, while in-
creasing the number of the feature maps layer by layer
[37–40], extracting the input image as a compact feature. -e
bridge connects the contracting and expanding paths. -is
U-shaped encoder-decoder model is improved to be a
multiple tasks model; besides the output of the U-net, we also
use the most compact features to predict the stain color
matrixes, which is combined with mean and variance of stain
color values of hematoxylin, eosin, and background paths.
-e expanding path is used to gradually recover the details of
the target and the corresponding spatial dimensions, and the
output is used for the prediction of the pixelwise intensity
map. -e network is divided into ten residual branches. Prior
to each residual branch of the expanding path, there is a
cascade for the upsampling from the lower level feature maps
and the feature maps from the corresponding contracting

path. -e existence of the residual unit effectively avoids the
problem of gradient disappearance during the back-
propagation [41]. In addition, each residual branch included
Convolution, Max Pooling, BN (Batch Normalization), and
ReLU (Rectified Linear Unit), which effectively accelerate the
convergence speed [42].

-e model is trained by minimizing the reconstruction
loss between the input image and each reconstructed out-
come; the original image goes into a 10-branch called F1-F10
network for stain separation. -e contracting path is
composed of the first 1–4-branch network, and the fifth
branch is the bridge connecting the contracting and
expanding paths, implementing the stain color matrix
prediction function. -e expanding path consists of the 6th-
9th branch network, and the tenth branch output is used for
stain intensity matrix prediction. In the stain color matrix
prediction, the F5 features are first flattened into a vector,
and two fully connected layers are deployed, with an in-
termediate node of 500 and an output node of 9, repre-
senting the R, G, and B distributions of the three stain
channels. During the training, the proposed predicts the
stain concentrations for each pixel as well as the parameters
(mean and variance) of a series of Gaussian distributions
sampled to form an estimate of the stain matrix.

Figure 4 shows an example of this process.
For each of the stains contained in the image, the

proposed method predicts 3 distributions, one for each of
the RGB color channels. -e kth probability distribution
Pk � N(μk, σk) may represent the red value of the hema-
toxylin stain. We use a value hR∽Pk to form an estimate of
the red value of hematoxylin. -is process is repeated for
each of the distributions which are combined to form the
estimated stain matrix S. -e mean of each distribution μk

represents the value around which our model has assigned
the most probability, while the standard deviation σk de-
scribes how certain the model where a value is sampled from
will result in a low reconstruction error.

Taking the example above, we again assume that Pk �

N(μk, σk) is the distribution representing the red value of
hematoxylin; if μk � 0.5 and the standard deviation is low,
then the value we sample from Pk has a high chance of being
close to 0.5. If the true red value of hematoxylin is close to
0.5, then the sampled value results in a reduced recon-
struction loss; consequently, if the true red value is far from
0.5, then the sampled value will result in a very high re-
construction loss. If the model predicts a large standard
deviation, the sampled value will vary greatly and produce a
large reconstruction loss even if the mean value is correct. To
find the optimal values for S, each of the mean values μk is
close to the true values and the standard deviations σk are
low.

For the stain separation task, in order to test the sepa-
ration effect, the following loss function is defined:

loss �
1

MN
􏽘

M

m�1
􏽘

N

n�1
xn,m − xn,m

′􏼐 􏼑
2
. (1)

In the formula, xn,m represents the nth pixel of the mth
image, and xn,m

′ represents the predicted image pixel.
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Features are extracted from the histopathology image by
the network described above and then passed to a number of
subbranches that predict the intensity of the stain of each
pixel and the parameters (mean and variance) of a series of
Gaussian distributions. For each pixel in the image, R, G, and
B of the three channels (hematoxylin, eosin, and back-
ground) are predicted.

2.2. Segmentation of Lumens from the Background Channel
Basedon theSPF-Level SetMethod. Considering that lumens
are one of the key components to distinguish glands, we
segment lumens from the background channel after the
stain separation. -e SPF (Symbol Pressure Function) is
constructed by using the statistical information of the
image, so that the SPF has the function of maintaining or
even enhancing the prominent foreground target. Similar
to the classical C-V model [43], the contour C allows us to
divide the image I into two parts, inner and outer, re-
spectively, and uses the global intensity distribution of the
image to construct the SPF function. -e stain intensity
distribution functions of regionsΩ1 andΩ2 are represented
by P1 and P2:

P1 I, u1, σ1( 􏼁 �
1

���
2π

√
σ1

e
− I− u1( )

2/2σ21 ,

P2 I, u2, σ2( 􏼁 �
1

���
2π

√
σ2

e
− I− u2( )

2/2σ22 ,

(2)

where u and σ are the mean and standard deviation of the
Gaussian distribution of the stain intensity, respectively. In
the level set approach, the level set function ϕ is embedded,
assuming Ω1 � ϕ> 0􏼈 􏼉 and Ω2 � ϕ< 0􏼈 􏼉, and the corre-
sponding contour C can be represented by the zero level set

ϕ � 0􏼈 􏼉. We can use the above stain intensity distribution
function to construct the following new SPF function:

spf(I(x)) �
lnp1 − lnp2

max lnp1 − lnp2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑
. (3)

-e level set equation is
zφ
zt

� spf(I(x)) · α|∇φ|. (4)

Algorithm implementation is as follows:

(i) Step 1. Initialize the level set function ϕ, and set the
parameter α

(ii) Step 2. Calculate u1, σ1, u2, and σ2
(iii) Step 3. Estimate the evolution curve through (4)
(iv) Step 4. ϕ � ϕ∗Gσ , apply Gaussian filtering to smooth

the curve
(v) Step 5. Examine whether or not the level set function

curve converges; otherwise returns to Step 2

-e lumen segmentation process is shown in Figure 5.
-e lumen contour C is obtained from the background
channel by the above algorithm.

We use the spatially constrained CNN (SC-CNN) for
nuclear detection and the softmax CNN for nuclear sorting
[35]. We use the H-stain intensity map obtained from the
stain separation as the input of SC-CNN to locate the nu-
cleus. Since the detected nucleus includes epithelial and
stromal nucleus, nuclear sorting is used. In classification, the
morphology (shape, size, color, and texture) of the nucleus is
employed. -erefore, the original RGB histopathology im-
age is selected as the input of the softmax CNN, and the pixel
set V represents the epithelial cell nucleus. We select the
epithelial nucleus closest to the stromal nucleus as the rough

Stain intensity 
matrix C

Stain colour 
matrix S

SPF-level setGUSS SC-CNN ALI

H-stain 
distribution

H-stain Background 

CNN encoder CNN decoder

Features 
vector

Nuclear 
detection

Nuclear 
classification

Stain separation Lumen segmentation Coarse segmentation Precise segmentation

Similar 
triangles

Figure 2: -e architecture of the proposed approach.
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Figure 3: -e stain intensity map of hematoxylin, eosin, and background channels is obtained from the histopathology image by the
proposed stain separation framework.
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gland boundary pixels so as to obtain the rough gland
boundary L.

2.3. Lumen and Rough Gland Boundary Feature Represen-
tation Based on the ALI (Axis of Least Inertia). -e axis of
least inertia is a line that minimizes the value after the in-
tegration of the square of the distance to all the points on the
image boundary. Its physical meaning is that the rotational
inertia of the graph around this axis is the smallest. It is the
only reference line for representing the shape of the target. It
can be known that, from the physical definition of the axis of
least inertia, it must pass through the centroid O of the
graph. -e mathematical expression was as follows: let the
line x + By + C � 0; then, the axis of least inertia is

min 􏽘
xi,yi∈ϕ

xi + Byi + C( 􏼁
2

1 + B2 , (5)

where ϕ is the set of edge points. -en, we use the condition
that the axis of least inertia passes the centroid O(x0, y0):
x0 + By0 + C � 0; then, B and C can be obtained. In order to
describe the outline of the shape, the structure-based shape
descriptor commonly used in the boundary description
method is mainly a chain: this is a widely used descriptor,
and its role is to use the outline of the shape with directions.
-e chain representation of the graph: the chain represents
the target by a sequence of straight lines in a given di-
rection. If the chain is used for matching, it depends on the
choice of the first boundary pixel in this sequence. From the
start point of a selection, a chain sequence is generated by
using the x-direction (x � 12, based on our experience)
chain.

As shown in Figure 6(a), the axis of least inertia is used as
the reference axis, and the coordinate system is established
by its perpendicular line. -e lumen centroid is the origin O

of the coordinate system, and then according to the direction
chain, the four regions of the coordinate system are equally
divided into three regions with three directions so as to

generate a chain sequence with 12 directions. -e direction
is perpendicular to the axis of least inertia and the direction
of the closest point to the lumen is 0-direction, and the
counterclockwise rotation is 30°, respectively, in the 0- to 11-
direction. -en, the 12 straight lines with the O point as the
vertex will be compared with the lumen contourC toC0,C1, ...,
C11. 12 points constitute the chain code representing the
lumen contour, and similarly the intersection points of these
straight lines and the epithelial cell core set V represent
candidate contour chain codes. In Figure 6(b), C0 and C1 are
the intersection of the 0- and the 1-direction and contour C,
respectively, and the triangle formed by the three points C0,
C1, and O is the characteristic triangle of the lumen (the
point of the lumen outline in each direction is unique). V0,j

and V1,j are the intersections of the 0- and 1-direction and
the epithelial nucleus set V, respectively, and the triangles
formed by these points represent the gland’s candidate re-
gion. -ere are multiple epithelial nuclei in each direction.
-e similarity measure is performed using a trigonometric
membership function. For each feature triangle, let θ1, θ2,
and θ3 be the inner angles of the triangles, respectively, for
which they have the following relationship:

μ θ1, θ2, θ3( 􏼁 � 1 −
1
180

θ1 − θ3( 􏼁. (6)

-en, the triangular membership function is as follows:

θ1 � cos−1 d2
2 + d2

3 − d2
1

2d2d3
􏼠 􏼡,

θ3 � cos−1 d2
1 + d2

2 − d2
3

2d1d2
􏼠 􏼡,

θ2 � 30∘.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

where d is the Euclidean distance between the vertices of the
feature triangle. Looking at themembership value of the n-th
feature triangle of the lumen and the membership value of

(a) (b) (c)

Figure 5: Extraction of lumens from the background channel. (a) -e background stain intensity map. (b) -e segmentation image using
SPF, which contains small background areas. (c) -e lumen outline after removing the small target.
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the n-th feature triangle of the gland candidate region, the
similarity between them is

Sim(c, v) �
μn

μn
′ . (8)

-e similarity of all the eigenvalues is

Total Sim(c, v) �
1
n

􏽘

n

i�1
Sim μi, μi

′( 􏼁. (9)

If total Sim(c, v)∼1, it indicates that the two contours are
similar, and n represents the number of the characteristic
triangles.

-e proposed approach is to find an accurate gland
outline based on the two constraints.

-e target contour S based on the epithelial nucleus set V

is similar to the lumen contour C and rough gland boundary
L, thus constructing a feature similarity constraint:

α≤Total Sim(l, v)≤ 1,

β≤Total Sim(c, v)≤ 1.
(10)

-e target contour S is close to the rough gland boundary
L; thus, we have a distance constraint:

sj � argmin
sj∈v

􏽘

11

i�0
li − vi,j

�����

�����2
, (11)

where i � 0, 1, ..., 11 represents the sequence of the direc-
tions, j � 0, 1, ..., J represents the number of the epithelial
nucleus in the i-direction, li represents the intersection of the
i-direction and the rough gland boundary L, and Vi,j rep-
resents epithelial nucleus in the i-direction. Taking the 0-
direction as the start direction, the similarity of the feature
triangles in each direction is retrieved counterclockwise.
Taking Figure 6(b) as an example, first, the features
Δv0,0v1,0o,Δv0,0v1,1o,Δv0,0v1,2o and the lumen feature Δc0c1o
are compared with the outer contour L. -e candidate
contour point in direction 1 is determined by constraint
condition equations (11) and (14). Similarly, candidate

contour points in direction 1 are used as reference starting
points to determine candidate contour points in direction 2.
After sequentially determining candidate contour points in
12 directions, this forms a candidate contour chain. As-
suming that there are J candidate points in the starting
reference direction 0, J candidate contours are formed
according to the above method. In Figure 6(c), the brownish
yellow is the lumen contour, the orange color is the lumen
contour feature triangle, and the red is one of the candidate
contours obtained.-e optimal gland contour is determined
from the candidate contour according to constraint equation
(15), and finally, the gland contour is smoothed by cubic
spline interpolation.

2.4. Experiment Results and Discussion

2.4.1. Data. -e image dataset is the Gland Segmentation
(GlaS) Challenge dataset organized for MICCAI 2015 in
addition to our own dataset. Our own dataset includes 100
calibrated pathological images of benign and malignant
colon adenocarcinoma. -ey were taken from 34 H&E
stained pathological sections of colon adenocarcinoma with
cancer stage T3 or T4. Slices belong to different patients, and
they are processed in different laboratory environments. -e
dataset has a very diverse diversity in a staining distribution
and an organizational structure. -e pathological slices are
scanned through the whole slice to obtain a digital picture
with a pixel precision of 0.465 microns.-e full-frame image
is readjusted to a pixel precision of 0.620 microns (equiv-
alent to a 20x magnification). -en, we crop them randomly
to a size of 128×128 and augment them to 22000 pieces for
training and verification of the models. -e nucleus is
manually annotated by an experienced pathologist. -is
study needs to identify epithelial nucleus, so the nuclear
annotation is divided into epithelial nucleus and others.

2.4.2. Stain Separation. -e dataset consists of 22,000 his-
topathology patches with the size of 128×128 each. -is

o

0
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1

(a)

v(0,0)

o

01
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(b)

0

1
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(c)

Figure 6: Feature representation approach based on the axis of least inertia. (a) -e axis of least inertia is used as the reference axis. (b)
Characteristic triangle. (c) -e brownish yellow color is the lumen contour, the orange color is the lumen contour feature triangle, and the
red color is one of the candidate contours obtained based on the constraint.
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(a) (b) (c) (d) (e) (f) (g)

Figure 7: Stain separation result.-e first column is the original image, the second column is the stain separation result of hematoxylin and the
stain intensity map, and the third and fourth columns are the eosin and background stain separation results and stain intensity map. (a)
Original. (b) H-stain separation. (c) H-stain intensity. (d) E-stain separation. (e) E-stain intensity. (f) B-stain separation. (g) B-stain intensity.

(a) (b) (c)

Figure 8: H&E-staining and separation results of different datasets: (a) original pathological image, (b) H-staining image, and (c) E-staining
image.
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work employs the ADAM optimizer, and the initial learning
rate of 1-e3 is gradually reduced at the end of each epoch. To
emphasize this further, Figure 7 shows the H&E image stain
separation result. -e results indicate that the background
and H- and E-stain of histopathology images can be suc-
cessfully separated, while the structure of the tissue is
retained.

-e pathological image containing the complete glan-
dular structure is cropped without any interval to a size of
128×128, and the insufficient area was filled with zero
operation. Figure 8 shows the separation results of H- and
E-staining of the pathological images from two different

datasets. -e results show that, for pathological images with
different sources and large differences in staining, the deep
learning staining separation method can successfully sepa-
rate H- and E-stains, and the separation staining result is
consistent while maintaining the tissue structure.

After stain separation, H- and E-stains can be distin-
guished. We do not have ground truth to qualitatively
evaluate the separation effect, but we can visualize the blue-
violet characteristics. -e H-staining maps are obtained by
the two traditional staining separation methods mentioned
in [44, 45], and the deep learning-based staining separation
method is further investigated, and on the basis of staining

(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

(j) (k) (l)

Figure 9: Nucleus segmentation of H-stain images based on three stain separation methods: (a–c) H-stain images based on different
methods, (d–f) grayscale image, (g–i) binary image, and (j–l) segmentation mask overlaid on the original pathological image.
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(a) (b) (c) (d)

Figure 11: Segmentation of lumens based on the improved SPF approach. (a) Background stain intensity map. (b) Traditional SPF approach
segmentation result, and it can be seen that the lumen cannot be accurately segmented. (c) Improved SPF approach segmentation result. (d)
-e small target has been removed.

(a) (b) (c)

Figure 12: Segmentation of lumens using various contour models. -e first row shows the results of the DRLSE model, the LBF model
results are shown in the second row, the third row shows the results of the LGDF model, the fourth row shows the results of the LIF model,
and the results of the proposed method are shown in the fifth row. Column (a) shows the position of the initial contour. Column (b) shows
the output obtained after several iterations. Column (c) shows the results of gland cavity segmentation.
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separation, the cell nucleus is used to evaluate the effect of
stain separation. Figure 9 shows the process of segmenting
nucleus on the H-stained images. First, the H-stained image
is converted into a grayscale image and then converted into a
binary image as a nuclear segmentation mask, and finally,
the segmentation mask is overlaid on the original patho-
logical image for us to analyze the effect of the nuclear
segmentation.

A singular value decomposition method based on optical
density and an independent component analysis method in
the wavelet domain, two traditional methods [44], and the
deep learning method proposed here are used to separate the
same pathological tissue image, and the H-stain image is
used for nucleus segmentation processing. Figures 9(a–c) are
the H-stained images obtained by the three stain separation
methods, Figures 9(d–f) are their corresponding grayscale
images, Figures 9(g–i) are their corresponding binary im-
ages, and Figures 9(j–l) are the outcome after we overlay the
binary segmentation mask on the original image. Com-
paring the results in Figures 9(j–l), it can be found that
Figures 9(a-b), which have poor stain separation effects, lead
to oversegmentation or undersegmentation of the nucleus.

Figure 10 shows the comparison results of different
methods. -e Mikto method is used for cell division, so it
can only be used to isolate H-staining. Color deconvolution
(CD) is a classic method of stain separation, but manual
intervention is required to calculate the optimal stain matrix.
Using the CD method can preserve the structure but cannot
well separate the background color. SDSA is the latest
method to separate staining using statistical analysis of
multiresolution staining data. It can be seen that SDSA

successfully segments H-staining, but when there are more
than two stains in the image, the separation outcome is poor.

2.4.3. Lumen Segmentation. -e segmentation of glands
depends on the interaction between the rough gland
boundary and the lumen, so it is necessary to accurately
segment the lumen. In the experiment, the segmentation

Table 1: Comparing results of different competition algorithms on the public GlaS dataset.

Method
F1 score Object Dice Object Hausdorff

Test A Test B Test A Test B Test A Test B
Proposed-N+L 0.901 0.851 0.893 0.842 44.125 94.528
Proposed-N 0.886 0.816 0.886 0.823 45.236 103.686
CUMedVision1 0.868 0.769 0.867 0.800 74.596 153.646
CUMedVision2 0.912 0.716 0.897 0.781 45.418 160.347
ExB1 0.891 0.703 0.882 0.786 57.413 145.575
ExB2 0.892 0.686 0.884 0.754 54.785 187.442
ExB3 0.896 0.719 0.886 0.765 57.350 159.873
Freiburg1 0.834 0.605 0.875 0.783 57.194 146.607
Freiburg2 0.870 0.695 0.876 0.786 57.093 148.463
CVML 0.652 0.541 0.644 0.654 155.433 176.244
LIB 0.777 0.306 0.781 0.617 112.706 190.447
Vision4GlaS 0.635 0.527 0.737 0.610 107.491 210.105

Table 2: Comparing results with the state-of-the-art algorithms.

Accuracy (%)
(TP + TN)/(TP + TN + FP + FN)

Dice 2TP/(2TP + FN + FP)

Median Mean Std Median Mean Std
Bassem et al. [17] 78.56 77.32 9.12 0.763 0.750 0.120
Sirinukunwattana et al. [22] 80.51 79.14 8.36 0.780 0.770 0.098
Linbo et al. [27] 81.11 80.48 6.52 0.801 0.795 0.089
Kainz et al. [46] 82.53 81.08 6.13 0.825 0.815 0.076
Guannan et al. [47] 85.32 83.60 5.32 0.841 0.832 0.062
Proposed 88.34 86.91 3.72 0.874 0.869 0.047

[46]
[27]

Proposed
[47]

[22]
[17]

ROC curve
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Figure 13: -e ROC curves of different algorithms.
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results of the SPF approach and the improved SPF approach
on the lumens are compared. In the level set approach, for
binary selection and Gaussian filter regularization, the SPF
can result in satisfactory segmentation.

Since the improved SPF approach is based on statistical
information, the background channel obtained from the
stain separation process, in which the lumen and the
background probability tend to be consistent, causes some
small background blocks in the image to be segmented. -e

small target is removed from the segmented image, and the
final segmentation result is shown in Figure 11(d).

Multiple segmentation techniques (e.g., DRLSE, LBF,
LGDF, and LIF) are used to segment the glandular cavity. As
shown in Figure 12, the DRLSE model produces incomplete
subdivisions; the LGDF model can segment the cavity from
other areas. -e LIF and LBF models are not suitable for the
segmentation of the gland cavity. -ese models encounter
challenges such as longer response time and more iterations.
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Figure 14: -e segmentation outcomes for multiple instances on the independent dataset, where green is the manually annotated contour
and yellow is the segmentation contour by different methods.
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By using the new SPF-level set segmentation method, these
shortcomings are overcome. -e comparison results show
that the proposed model is easy to implement, and its
calculation time is only 21 s compared with other active
contour models.

2.4.4. Gland Segmentation. -is work is evaluated on the
public GlaS dataset and compared with other methods in the
GlaS competition. We use 100 images for system training
and 65 for system testing, where 45 test images belong to test
set A and the remaining 20 belong to test set B. For
quantitative analysis, we use F1 score, object Dice, and object
Hausdorff. Regarding Hausdorff distance, lower values are
better; and for other measures, higher values are better.
Table 1 shows the quantitative results, whereas the proposed
method produces competitive results, compared with those
algorithms presented in the competition. -e proposed-N
approach is only based on rough gland boundary obtained
from the epithelial nucleus, and the proposed-N+L ap-
proach is based on rough gland boundary N and the lumen
contour L. -e algorithm first uses deep learning methods to
perform staining separation. For different target segmen-
tations, such as lumens, epithelial cells, and nucleus, one can
accurately segment targets on the basis of staining separa-
tion. In test set A, the proposed algorithm performed poorly
on F1 and the object Dice but performs better on test set B.
In terms of measuring the shape similarity via object
Hausdorff, a lower score indicates that, in malignant cases,
the method takes into account the effect of the morpho-
logical features of lumens, so the results have a higher shape
similarity to the ground truth.

We compare the proposed approach with the state-of-
the-art algorithms [17, 22, 27, 46, 47] on our independent
dataset. -e relevant measurement indicators are shown in
Table 2. It can be seen from Table 2 that the proposed
approach produces the best segmentation results. Figure 13
shows the ROC curves of the different algorithms.

As can be seen from Table 2, the proposed segmentation
approach based on lumen and rough gland boundary im-
proves the average pixel precision by at least 3%, and the Dice
similarity coefficient has the improvement of 0.033. At the
same time, the standard deviation of the pixel precision and
Dice is at a low level, indicating that the segmentation ap-
proach is relatively stable and can effectively handle the
problem of abnormal gland segmentation. Figure 14 shows the
segmentation effect for multiple instances in our independent
dataset, where green is the manually annotated contour and
yellow is the segmentation contour by different methods.

It can be seen from Figure 14 that the gland segmen-
tation method based only on epithelial cell nucleus, such as
the one proposed in [17] and our proposed-N, relies too
much on the accuracy of nuclear recognition. Inaccurate
nuclear recognition directly leads to inaccurate gland seg-
mentation. However, the method of polygonal approxi-
mation, such as the one proposed in [12], cannot detect the
external contour of the gland. -e double parallel structure
method [27] combining the inside of the gland and the
contour can segment the gland contour more accurately, but

sometimes it cannot segment adhering glands. In summary,
for the malignant and complex tumor images, our proposed
method produces better segmentation results.

3. Conclusions

Histological assessment of glands is one of the challenges in
colon cancer grading. Analysis of histological slides stained
with hematoxylin and eosin is considered to be the “gold
standard” in histological diagnosis. However, relying on
artificial visual analysis is time-consuming and laborious, as
pathologists need to thoroughly examine each case to ensure
accurate diagnosis. In order to improve the diagnostic ability
of automated approaches, we here proposed an approach for
accurately segmenting glands in colon histopathology im-
ages based on the characteristics of lumens and gland
boundaries. First, this work constructed a U-net for sepa-
ration of H&E images to obtain H-, E-, and background stain
intensity maps. Subsequently, the epithelial nucleus is
identified on the histopathology images, and the segmen-
tation of lumen is performed on the background intensity
map. -en, the axis of the least inertia and chain is used to
represent the lumen and gland boundary features. Based on
the detection of lumens and epithelial nucleus, more ac-
curately gland segmentation has been performed based on
the rough gland boundary.

-e main contribution of the approach includes three
points. Firstly, a new unsupervised stain separation ap-
proach was proposed, which made the information con-
tained in the H&E image easy to identify and deal with the
uneven stain intensity and the inconspicuous stain differ-
ence. -e superiority of the proposed stain separation ap-
proach was proved. Second, this work developed and
combined a new set of features for segmentation of glands. It
considered the morphological characteristics of the internal
lumen of the gland structure. During the process of carci-
nogenesis, the lumen of the gland usually undergoes obvious
distortion, which makes the surrounding epithelial cells
irregularly arranged, but most were still distributed around
the lumen. -erefore, the approach of combining the axis of
least inertia was proposed to represent the characteristics of
lumens and gland boundaries. Since lumens are more in-
dependent and easier to segment than the epithelial cells, the
segmentation approach based on lumens can be used to
achieve the segmentation of glands attached to each other.
-e results showed that the proposed approach had im-
proved the segmentation accuracy. Finally, this work showed
a feature representation of lumens and gland boundaries,
and we will continue to study the application of this ap-
proach for benign and malignant feature extraction of
tumors.
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