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Abstract

Predicting pregnancy outcomes using longitudinal
biomarkers: analysis of urinary human chorionic

gonadotrophin levels in normal and failing pregnancies

Nuzhat Ashra

Early miscarriage affects approximately 25% of confirmed pregnancies and can
adversely impact a woman’s body and mind. Human chorionic gonadotrophin
(hCG) is used to confirm pregnancy and as a triaging tool in cases of suspected
pregnancy loss. Thought its current use may be limited, the potential of hCG
in the context of miscarriage is greater than is currently acknowledged. Profiles
of hCG for healthy and failing pregnancies have consistently been shown to be
distinct, providing motivation for quantifying the association between repeatedly
observed hCG and miscarriage.

Naive approaches model this association via techniques typically reserved for
modelling each outcome separately. Such methods fail to consider the continu-
ous nature of the biomarker, measurement error and appropriate estimation of
uncertainty. The joint longitudinal-survival model provides a framework to simul-
taneously model a longitudinally observed biomarker and time-to-event outcome.
In its most common incarnation, the joint model consists of a linear mixed-effects
model and a proportional hazards survival submodel. The dependency between
the biomarker response and survival outcome is underpinned by shared random
effects, laying the groundwork for subject-specific survival predictions.

The aim was to use advanced statistical models to estimate the association be-
tween miscarriage and hCG, and to extend this to predict individual outcomes.
These methods were applied to data collected by SPD Development Company
Ltd. The study prospectively followed women as they tried to conceive. Volun-
teers collected daily urine samples from the start of their cycle to up to day 60 if
they conceived. The application of cutting-edge methods to this unique dataset
allowed the association to be estimated using complete longitudinal profiles of
hCG. Analysis extended to diary data, to establish whether timing of intercourse
can alter the rate of miscarriage. A key modelling assumption of the joint models
fitted in this thesis were also assessed via a simulation study.
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Chapter 1

Introduction

1.1 Miscarriage

Up to 25% of confirmed pregnancies end in loss, with approximately three-

quarters of these losses occurring in the first trimester [5; 6]. The event of a

miscarriage is a trying time, and the frequency with which the average woman

experiences such an outcome can make it easy for it to be brushed aside without

further thought. The trauma of a loss is far-reaching, in many cases requiring not

only physical intervention but prolonged psychological support for both prospec-

tive mother and partner [7; 8]. Even a single loss can be devastating and though

the majority of women go on to experience a healthy pregnancy, a select number

of women (1 to 3%) will suffer recurrent losses, defined as three or more con-

secutive miscarriages [9]. It is for these women, who possibly exist in a greater

state of anxiety than a woman who has not experienced a loss, that pregnancy

monitoring may prove a boon.

1.2 Human chorionic gonadotrophin

This is where human chorionic gonadotrophin (hCG), colloquially known as the

pregnancy hormone, may be useful. As a pregnancy-specific hormone, the be-

haviour of hCG, particularly in the first trimester, has been extensively studied.

The hormone is first produced when the fertilised ovum successfully implants
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into the vaginal wall. It then increases reliably and rapidly in early pregnancy,

doubling every 24-48 hours until a plateau is reached at around week ten of preg-

nancy [10]. Though other markers are acknowledged for their association with

pregnancy, hCG continues to predominately be used in practice [11; 12]. In the

first instance, hCG is primarily used to confirm pregnancy. However due to its

reliably consistent nature in early pregnancy, it has also been used as a means

of triage in conjunction with ultrasound technology in cases of suspected miscar-

riage, particularly where a woman presents with signs such as bleeding or pain

[13]. Moreover, hCG profiles of miscarried pregnancies have been shown to be

distinct from viable pregnancies, with a generally slower rate of increase and a

lower peak of hCG [14; 15]. However, apart from in assisted pregnancy settings,

where hCG is tracked to monitor progression in the early stages, the information

hCG can provide in the context of early loss has yet to be fully exploited [12; 16].

In clinical practice where a miscarriage is suspected the loss is commonly allowed

to naturally resolve on its own [17]. Depending on how advanced a pregnancy

is, the woman may be advised to take a test to establish pregnancy (hCG >

25 mIU/ml), or alternatively hCG observations may be taken 48 hours apart to

establish the level of hCG activity [17]. Both of these give a short-sighted view

of the situation compared with the depth of information which could be gained

through serial collection of hCG in early pregnancy [12; 18].

1.3 Recurrent loss

Ostensibly, miscarriage cannot be prevented, however it can be managed in a

way that gives some autonomy to the woman. Where a loss is suspected, early

identification through monitoring could not only prevent complications requiring
2



surgical intervention, but also avoid protracted emotional distress [19]. Anecdo-

tal evidence suggests that women who have experienced previous losses become

‘hyper-vigilant.’ One manifestation of this is taking multiple pregnancy tests for

reassurance that the pregnancy is progressing [20]. The idea of tracking hCG dur-

ing early pregnancy builds on this, with a more concrete output of hCG. This is in

a similar vein to having more frequent ultrasound scans, yet less time-consuming

and expensive. Established and emerging treatments focus on bringing a subse-

quent pregnancy to term for those women who have experienced recurrent losses

[21; 22; 23]. Serial hCG tracking could be implemented in conjunction with such

treatments, much like in the in vitro fertilisation (IVF) pregnancy setting. Sce-

narios in which tracking hCG in relation to early pregnancy outcomes could prove

beneficial certainly warrant further investigation.

1.4 Urinary observations

Up to now however, there has been a severe lack of suitable data, which would

allow the association between serial hCG and early miscarriage to be appropri-

ately modelled. In a natural pregnancy setting conception is unknown so tracking

must begin prior to ovulation to capture the point at which implantation occurs

and hCG begins to be produced. This, however, assumes that conception is cer-

tain to occur, when in reality the probability of conception in the first month

is approximately 30% [24]. The cumulative probability of conception only in-

creases to 75% at six months, meaning collection over several cycles would be

required for relevant data [24]. Repeatedly observing a biomarker over time is

costly, particularly where the norm is a serum observation. A lesser utilised but

more cost-effective alternative to serum is the urinary hCG observation, which is

the backbone of home pregnancy testing. It has been shown that urinary hCG
3



reliably follows the same pattern of rise as serum observations [25]. Advances

in testing also mean that even home pregnancy tests can detect hCG values as

low as 6 mIU/ml [26]. So for a reference 28-day cycle, the test claims to give

results just two days post implantation [27]. Urinary hCG observations could

then prove an attractive alternative to serum where early pregnancy monitoring

is concerned. However, several questions remain. With established evidence of

an association between hCG and early miscarriage, how can the association be

appropriately quantified? And if pregnancy monitoring is a goal, how can an

imminent loss be predicted based on the most current hCG profile? One answer

is the joint longitudinal-survival modelling framework, which will be the focus of

developments in this thesis.

1.5 Jointly modelling longitudinal and survival data

This thesis aims to make inferences about a time-to-event outcome, early miscar-

riage, by treating a longitudinally observed biomarker, here hCG, as a surrogate

for the survival outcome. Prognostic survival models have traditionally ignored

serial observations in favour of a simpler baseline value approach. Where attempt

has been made to include time-varying biomarker observations, standard survival

techniques have not been able to capture uncertainty or marker measurement

error (sections 5.3.2 and 5.3.3) [28]. Hence, analysis of the two types of data

requires the amalgamation of techniques for serial observations and time-to-event

data, in a way that appropriately links the expected biomarker value to survival.

The simultaneous analysis of the two types of data can be achieved by fitting a

joint longitudinal-survival model.

The classical shared parameter joint model is made up of longitudinal and sur-

vival component submodels, with a dependency structure underpinned by shared
4



random effects [29]. This requires the specification of a trajectory function for the

biomarker, which can then be included within the equation for the survival model

complete with its own association parameter [30]. Joint models first evolved in

the context of acquired immunodeficiency syndrome (AIDS) where the association

between longitudinal cluster of differentiation 4 (CD4) counts and progression to

AIDS was modelled [31; 32]. Since then the framework has been extended to

different settings and different types and numbers of outcomes [33; 34; 35]. The

work in this thesis, however, harks back to those early foundations, focussing for

the most part on a single, continuous longitudinally observed biomarker.

1.5.1 Modelling a repeatedly observed bioamrker

A key characteristic of a biomarker such as hCG is that it is intrinsically linked

with the time-to-event outcome. For hCG to be produced the pregnancy must

continue to progress and if the pregnancy is interrupted, the level of hCG will

also be impacted. The thesis will be dealing with these so-called endogenous

biomarkers [36; 37]. Several accommodations must be made when modelling con-

tinuous repeated measures data. For one a continuous biomarker is often subject

to the phenomenon of measurement error, where an observation is rounded or

observed incorrectly due to human or instrumental error [38]. Moreover, lon-

gitudinal studies are often plagued with missing data, where observations for

individuals are observed intermittently, not necessarily observed the same num-

ber of times and/or at the same follow-up times. The linear mixed-effects model

(LMM) is perfectly placed to deal with these issues and so forms the basis of the

longitudinal component model. Most important of all, the LMM framework al-

lows for intra- and inter-subject variation, ultimately supporting the prediction of

individual biomarker trajectories, and within the joint model setting, prediction

of subject-specific conditional survival probabilities.
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1.5.2 Linking the biomarker to survival

Survival analysis describes the analysis of data where individuals are followed up

over time until they experience an event (very often death), or are censored at

the last point they were seen and known to be event-free. Unique to the survival

context is the incorporation of the time taken for the event to occur, so that

risk is estimated as a hazard rate [39]. The proportional hazards model, which

can be estimated parametrically or semi-parametrically, forms the foundation of

the survival component of the joint model. The former relies on a distributional

assumption for the baseline hazard, most commonly the Weibull distribution or

explicit modelling of the hazard using restricted cubic splines [40; 41]. The semi-

parametric approach avoids modelling the baseline hazard completely giving the

Cox proportional hazards model [42]. For the joint model context it is important

for prediction purposes that the baseline hazard is modelled, hence parametric

estimation will be favoured. The main driver for applying these models to early

pregnancy outcomes is to output real-time subject-specific conditional survival

probabilities for individual pregnancies [43]. This supports dynamic monitoring,

where predictions of risk can be updated based on the hCG profile to date and

maternal characteristics. From a clinical perspective this feeds into the move to-

wards personalised medicine, where predictions can prompt intervention tailored

to the individual. In addition, an individualised schedule for observations can be

built, depending on the hCG observations and risk predictions to date [28]. The

joint model framework and its extensions have great clinical potential.
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1.6 Application to data

The data analysed in this thesis offers a unique insight into early miscarriage,

which usually goes unobserved in clinical practice. Collected by SPD Develop-

ment Company Ltd - the industrial collaborator for this thesis - the focus for each

of the two datasets was to prospectively follow up women aged 18-45 years who

were intending to conceive. For each dataset, described in detail in Chapters 6

and 7, daily urinary hCG was observed from first detection, allowing the analysis

of complete hCG profiles. Women who conceived collected up to day 60 of the

cycle, or for up to a week after the event if they miscarried. The initial dataset

is an abbreviated (n=129 vs n=367) version of the larger general cycle collec-

tion (GCC) dataset and has previously been analysed using a simple two-stage

joint modelling approach [44]. The GCC study represents an expanded collec-

tion to additional biomarkers, more detailed maternal history and self-reported

diary data. Enhanced prospectively collected biomarker data such as this is vir-

tually unheard of for natural pregnancies, particularly where extensive laboratory

testing has been used to pinpoint key cyclical milestones such as ovulation and

the hormone surges leading up to it. To this author’s knowledge there are only

a handful of research studies which utilise serial hCG observations as a means

for predicting pregnancy loss, though there have been numerous studies which

attempt to characterise hCG curves for viable, miscarried or ectopic pregnan-

cies [14; 45; 46; 47]. Where serial observations have been utilised, data for each

individual is sparse, limited to two or three observations [45; 46; 48]. As a re-

sult, analysis in these cases follow simpler established methods, such as direct

estimation of sensitivity and specificity based on whether a hCG ratio over a

certain threshold can predict early loss [48]. Where more complex methods have
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been proposed, notably (Bayesian) semi-parametric mixed-effects models, the aim

has been to classify miscarried/healthy pregnancies [45; 46]. Access to this data

presents a rare opportunity to more accurately estimate the association between

longitudinally observed hCG and early pregnancy loss.

1.7 Evolving methodology

Extensions to the joint modelling framework are continually being developed, with

multiple markers, competing risks and non-continuous markers all covered in the

literature [34; 49; 50; 51]. However, basic modelling considerations, such as non-

linear covariate effects in standard survival models, has been ignored in the joint

model setting. A cornerstone of prognostic survival model building is to evaluate

how the hazard changes with different values of a given covariate. This should

also be the case for a biomarker which is modelled via a longitudinal trajectory

function, as is the case for the joint model. If the true association between the

survival outcome and longitudinal submodel is non-linear then misspecification

could lead to model predictions which are biased. The standard joint model

parameterisations - current value or first derivative association structures - are

the most frequently discussed and implemented. Yet each association is based

on linear changes in current value or slope. It is unlikely that assuming linearity

will reflect the true nature of the association, hence it is necessary to evaluate

the effect of such misspecification on model output.

Simulation studies are an important tool used to evaluate and compare new

and existing methods or hypotheses, with data generated under a pre-specified

truth. Misspecification of the submodels of the joint longitudinal-survival model

have been addressed in the literature [52; 53; 54]. However, to date no study has
8



addressed misspecification of a non-linear association structure. A novel simula-

tion study will be presented in this thesis exploring the effect of assuming a linear

association on survival predictions when a quadratic association is simulated as

the truth.

1.8 Aims of the thesis

The overarching aim of this thesis is to apply both established and cutting-edge

joint modelling techniques to novel pregnancy datasets, in order to answer sev-

eral hypotheses related to the early pregnancy setting. I also aim to investigate

the consequences of a key modelling assumption made when fitting the joint

longitudinal-survival model via a simulation study, namely that the association

between the biomarker trajectory function and survival is linear, when it may not

truly be the case.

The analyses undertaken in this thesis will add to the evidence base by first

further examining the relationship between hCG and early miscarriage, with ex-

pansion to serial hCG observations. This aim is many-faceted, for one the focus

of this thesis will be on repeated urinary observations of hCG, as opposed to the

serum observations that are commonly encountered in the literature.

Secondly the association between longitudinal hCG and time-to-miscarriage

will be quantified utilising the joint longitudinal-survival model. The development

of a prediction model, will in turn lead to the output of subject-specific conditional

survival probabilities. Producing up-to-date estimates of risk based on individual

characteristics and hCG profiles will ultimately allow for dynamic monitoring.

These predictions present a unique aspect of the joint modelling framework, which

have yet to be applied to the early pregnancy context.
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Miscarriage is much studied, yet continues to pose a mystery to clinicians.

As such, many questions surrounding the whys and wherefores of a loss remain

suppositions rather than evidence-based claims. One such conjecture concerns

how the timing of intercourse can affect (yet to be) established pregnancy [55].

The third aim is then to analyse self-reported intercourse diary data using Cox

proportional hazards models in order to establish evidence for or against several

hypotheses on timing of intercourse and the rate of miscarriage. Briefly these are,

(1) Does intercourse in the luteal phase or peri-implantation window increase

the rate of miscarriage?

(2) Are pregnancies conceived of acts of intercourse in advance of ovulation

more likely to end in miscarriage due to ageing sperm?

(3) Do more acts in the fertile window reduce the rate of miscarriage by

increasing sperm quality?

Finally, a simulation study will be carried out, aiming to evaluate an aspect of

the association structure of the joint model which has been ignored until now. It

is common for an association between a covariate and outcome to be non-linear

in nature. Age and BMI, are examples of such variables which are commonly

modelled quadratically, to describe how the risk at lower and higher values is

greater than for moderate ages. However, this is a little considered scenario in

the joint model setting, where the commonly described association structures be-

tween the biomarker and time-to-event outcome assume linearity. This simulation

study will evaluate the effect of misspecifying a quadratic association structure

on predicted survival probabilities across two scenarios and six models.
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1.9 Layout of the thesis

The thesis will adhere to the following format. Chapter 2 will give some back-

ground on early miscarriage and hCG. This includes the biological foundations

of pregnancy, the role of hCG and its behaviour during early pregnancy. I also

touch upon the current diagnosis and care pathway of early loss and where hCG

tracking, particularly of the urinary variety could fit into current clinical practice.

Chapters 3 and 4 are precursors to Chapter 5 and detail the building blocks

of repeated measures and time-to-event analysis, forming the basis of the joint

longitudinal-survival model. The characteristics of longitudinally observed data

will be discussed in Chapter 3. Several techniques for modelling such data will

be presented though the emphasis will be on the linear mixed-effects model.

Particular attention will be given to the estimation of subject-specific predictions

from the fitted LMM, via specification of random effects. The unique aspects of

survival data will be described in Chapter 4. Non-, semi- and fully parametric

approaches to analysing time-to-event data will be presented with key associated

formulae. The information from these chapters will be consolidated in Chapter

5, in which the joint modelling framework will be introduced. Naive methods to

simultaneously model survival and longitudinal data will be presented initially,

before expanding further to how the joint longitudinal-survival model improves

upon these techniques. Methods for the estimation of subject-specific conditional

survival predictions, utilising the best linear unbiased predictions (BLUPs) for

the random effects as discussed in Chapter 3 will be presented. Further model

assessment techniques will be covered with particular focus on discrimination and

calibration measures specific to the joint model setting.
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Methods presented in the previous chapters will be applied to two novel

datasets in Chapters 6, 7 and 8. Chapter 6 presents a re-analysis of a dataset

of 129 women using a joint longitudinal-survival model. It has previously been

analysed using a simpler two-stage model approach [44]. The focus here will be to

establish the association between hCG and early pregnancy loss within the joint

model framework. Further work on how the longitudinal trajectory for hCG, and

the baseline hazard for the survival submodel should be modelled will be detailed.

The knowledge gained from this analysis will be taken forward into the analysis

of the larger and more detailed GCC dataset in Chapter 7. The collection of this

data is a scaled up version of the smaller dataset, with more detailed collection

of maternal history, additional biomarker information as well as self-reported in-

tercourse, bleeding and morning sickness diary information. The analysis of this

dataset follows a prognostic model building approach, utilising a combination of

model selection techniques and expert opinion. The corresponding conditional

survival probabilities dependent on longitudinal observations to date will be pre-

sented graphically. Consideration will also be given to how well the fitted model

predicts event probabilities and whether false positives and false negatives are

minimised. The final applied project will make use of the diary data collected

as part of the GCC study and will be presented in Chapter 8. Various hypothe-

ses around the timing of intercourse and subsequent pregnancy outcome will be

explored utilising Cox models.

The research projects will be rounded off with a simulation study which ad-

dresses an aspect of the joint model specification that has been ignored up to

now. The focus will be on the consequences of misspecifying a non-linear as-

sociation structure for a joint model. More specifically data will be simulated

from a joint model with a quadratic association structure. Two scenarios will be
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described, where an increase in biomarker conveys an increase in risk and vice

versa. For each scenario, three models will be fitted, assuming an increasingly

greater quadratic effect. The data generating mechanisms for simulating data will

be described. The true parameter estimates will be based on an example joint

modelling dataset. For each non-linear association type the effect of assuming a

linear association between the longitudinal trajectory function and the survival

outcome will be evaluated by predicting survival probabilities for discrete time-

points for each treatment group. These probabilities will be compared to the

predictions from the true model via bias, empirical standard error and average

model standard error estimates.

Finally, in Chapter 10 the discussion will consider where the work conducted

in this thesis fits in the current evidence base. The strengths and limitations of

the analyses presented in the thesis will be discussed, as well as future directions

of research.
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Chapter 2

Pregnancy loss and human chorionic

gonadotrophin

2.1 Chapter overview

Miscarriage is a common consequence of pregnancy, particularly in the first

trimester. In this chapter the biological processes which lead to pregnancy will

be presented, with reference to key points in the menstrual cycle. The factors

known to be associated with sporadic and recurrent miscarriage, as well as the

current diagnostic pathway will be discussed. The role of the pregnancy hormone,

human chorionic gonadotrophin, will be highlighted, as well as its potential to be

used serially as a diagnostic marker for early pregnancy loss.

2.2 Menstrual cycle and conception

A number of biological processes must take place for a woman to conceive suc-

cessfully, and these rely heavily on specific aspects of the menstrual cycle. The

average menstrual cycle spans 28 days, however this can vary widely between

women. Studies looking at cycle lengths have reported durations as short as 15

days to as long as 45 days; however a cycle of 21 to 40 days is thought to be within

normal range [56; 57; 58]. Variation in cycle length is thought to be connected to

maternal age, with greater variation reported amongst women under 25 years of
14



age, and over the age of 40 [59]. The cycle is split into four phases, comprising

of menstruation, the follicular phase, ovulation and the luteal phase. Day one of

the cycle coincides with the first day of menstruation, colloquially known as the

period. It is usual for a period to last anywhere from two to seven days, and is

the process by which the uterine wall sheds its lining after fertilisation does not

occur. The days after menstruation are known as the follicular phase, which is

characterised by an elevation in key hormone levels in preparation for ovulation.

Follicle stimulating hormone (FSH3) is responsible for stimulating the growth of

the immature egg cell or oocyte into a mature secondary follicle [60]. Post men-

struation, oestrogen levels begin to rise from their constant low levels, peaking the

day prior to the luteinising hormone (LH) surge [61]. Oestrogen enables the mat-

uration of the most dominant follicle, namely the one that will release an ovum

for fertilisation [60]. Luteinising hormone regulates the function of the ovaries

and a surge in LH triggers the release of the ovum, which is known as ovulation

[62]. This usually occurs about halfway through a cycle, so day 14 or 15 for an

average 28 day cycle. If sexual intercourse takes place close to ovulation, ideally

in the fertile window (the five days preceding and day of ovulation), the ovum

may be fertilised [63]. The luteal phase follows ovulation and spans the second

half of the cycle. It is at this stage that progesterone (P3G), secreted by the cor-

peus luteum, rises to prepare the womb for implantation of the fertilised ovum.

The corpeus luteum is comprised of the remnants of the collapsed dominant fol-

licle that housed the released egg [64]. P3G is essential for implantation and the

maintenance of pregnancy. If conception is successful the fertilised ovum embeds

into the uterine wall. This implantation is the initial trigger for the production of

hCG, levels of which are used to determine pregnancy by home pregnancy tests

[65]. If fertilisation is not successful then the lining of the uterine wall, which
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has been readied for implantation will break down resulting in a period and the

start of the next cycle. Figure 2.1 illustrates the key hormone fluctuations for a

woman with a 28 day cycle.

Follicular phase Luteal phase 

1 28 14  7 21 

Ovulation Period 

Follicle stimulating hormone Oestrogen Luteinising hormone Progesterone 

Figure 2.1. Hormone fluctuations for a typical 28 day cycle,
adapted from ‘The menstrual cycle: more than just your period’
[1]

2.3 Miscarriage

Miscarriage is a frequent complication of pregnancy and in the United Kingdom

(UK) is defined as the spontaneous termination of a pregnancy before week 24,

with early pregnancy loss defined as loss up to and including week 12 [66]. The

incidence of early loss has been reported variably from 10 to 24% of all clini-

cally confirmed pregnancies [5; 6; 67]. The uncertainty around these figures is

compounded by the fact that the majority of losses tend to resolve themselves
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without medical intervention, and so go undetected and/or unreported. A Nor-

wegian study looking at all registered pregnancies over a four year period found

11.9% of pregnancies ended in loss before 12 weeks [68]. However, as even these

estimates are based on confirmed pregnancies, the true figure is suspected to be

higher when including losses which occur prior to the day of the missed period.

An estimated 70 to 80% of all losses occur in the first trimester, with half of

all early losses attributed to foetal chromosomal abnormalities [6; 69]. Increas-

ing maternal age is a strong prognostic factor for miscarriage from the age of 35

years onwards, with a 75% increase in odds of miscarriage for women aged be-

tween 35-39, and a five times increase in odds for women aged 40 and over, when

compared to the 25-29 year age group [70]. Furthermore, women with a BMI

greater than 30kg/m2 have a 20% higher odds of miscarriage and 3.5 times odds

of recurrent early loss when compared to healthy weight controls [71]. Smoking

during pregnancy is another common factor known to adversely affect outcomes,

with a 1% increase in pooled relative risk for every cigarette smoked per day [72].

Based on landmark studies utilising hCG to identify preclinical pregnancies, it

has been postulated that 22 to 30% of ovum are lost after implantation but before

the day of the missed period (biochemical or occult pregnancy) [73; 74; 75; 76].

However, it has also been suggested that 15 to 30% of ovum never successfully

implant and so are lost even before hCG can be detected to identify them [75; 76].

The discrepancies in figures makes it difficult to pinpoint the true incidence of

early pregnancy loss, yet it is unfortunately clear that it is a common outcome of

conception. What is more, experiencing one miscarriage increases the probability

of another loss [67; 77].
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2.3.1 Recurrent miscarriage

Recurrent miscarriage, which in the UK refers to three consecutive losses, af-

fects 1 to 3% of women [9]. Once a woman experiences this arbitrary number

of miscarriages, further investigations can take place to identify the reason for

these continual losses. A probable cause, however, can only be identified in 50%

of cases [9; 69]. In those instances where a contra-indicator for bringing a preg-

nancy to term can be identified, treatment offered aims to prevent a further loss.

Chromosomal abnormalities are usually the most common unpreventable culprit,

and the probability of subsequent losses increases with the age of the mother

(over 35) and father (over 40) [69; 78].

A treatable cause of recurrent loss is antiphospholipid syndrome (APS), which

is an illness which makes blood more likely to clot. In the first trimester this can

interfere with implantation and consequently the initial establishment of the preg-

nancy. The clotting also affects the adequacy of blood flow through the placenta

[78]. Treatment for APS constitutes a low dose of aspirin and heparin at preg-

nancy onset [79]. Thrombophilias, the catch-all term for a set of blood clotting

problems, have also been associated with recurrent loss, although later in preg-

nancy [78]. Conditions such as polycystic ovary syndrome (PCOS), uncontrolled

diabetes and thyroidism; infections such as toxoplasmosis, rubella, listeria and

genital infection; as well as elevated levels of uterine NK (uNK) cells have all

been linked to an increased risk of recurrent miscarriage, although the evidence

base remains sparse [78].

Hormone levels during pregnancy and the link to recurrent loss has received

much attention in the literature, specifically levels of progesterone. P3G is essen-

tial for the maintenance of pregnancy, therefore depleted levels could be a cause of

some recurrent losses. Both the PROMISE and PRISM trials evaluated the effect
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of progesterone therapy for women who experienced recurrent loss and those who

presented with bleeding in early pregnancy [21; 80]. No statistically significant

difference in live birth rates was found between the recurrent loss and placebo

groups in the former trial [80]. Treatment with progesterone corresponded to a

3% greater birth rate for women who experienced bleeding in early pregnancy.

Though this was not a statistically significant finding, there were no adverse ef-

fects observed related to the therapy. In addition a greater proportion of live

births were seen amongst the subgroup of women who had previously suffered

three or more losses when compared to the placebo group [22]. Research suggests

there may be clinical value in progesterone therapy for some groups of women.

A relatively recent discovery has pointed towards a scarcity of stem-like pro-

genitor cells in the endometrium lining as the cause of recurrent loss for some

women [81]. These cells are more specific than stem cells in that they already

have a target cell for differentiation [82]. A small feasibility study found that

sitagliptin, a drug usually used to treat insulin resistance, successfully increased

the stem-like cell counts in women who experienced three or more previous losses

[23]. Although promising, a full-scale randomised controlled trial is required to

fully evaluate the efficacy of this treatment regimen.

In some cases recurrent loss can be attributed to the quality of the sperm,

with poorer sperm motility identified amongst those couples who experience re-

current miscarriages [83]. Sperm DNA fragmentation is also increasingly being

linked to recurrent loss, particularly where no other explanation has been found

[84]. The sperm DNA damage is thought to affect embryo development and the

success of implantation [85]. It is clear that the reasons behind loss are complex

with interplaying factors involved, some of which can be addressed whilst others

19



cannot. In either case the effects of loss on couples can be far-reaching both

mentally and physically.

2.3.2 Consequences of miscarriage

Due to the relatively high occurrence of miscarriage the associated healthcare

costs are also substantial [5]. Treatment strategies vary depending on whether

products of conception are retained in the womb or passed naturally. Ranging

from the least to most invasive, care can follow an expectant, medical or surgical

management approach. The former allows the tissue to pass with no interven-

tion, whereas the latter two utilise medication or surgical intervention to remove

any retention. In addition to medical intervention, those losses which are not

self-resolving may also require diagnostic testing to decide on the correct treat-

ment pathway and follow-up care [5]. The aftermath of a miscarriage can leave

behind signs of trauma in the womb, with one in five women left with intrauter-

ine adhesions (IUA) post-loss. A meta-analysis of ten studies found women who

experienced three miscarriages had two times greater pooled odds of IUAs than

women who suffered one loss [86]. Where surgical intervention is required the

severity of such adhesions may be exacerbated and can impact the time taken to

conceive again [7].

In the majority of cases, no physical intervention is required, however the

abrupt halt to impending motherhood inevitably has ramifications for mental

health. Pregnancy loss is understandably associated with emotional distress [87].

Women who suffer from a miscarriage are likely to report symptoms associated

with depression and anxiety, with the number of affected women ranging from

20% to 55% [88]. It is common for women to blame themselves, and recurrent

losses can leave women feeling disconnected from a subsequent pregnancy as they
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anticipate another loss [89; 90]. Women who are pregnant for longer before mis-

carrying, experience a prolonged period of grief, having established a more secure

bond [91]. The residual effects of a loss persist years later, and the birth of a

healthy baby does not necessarily alleviate grief [92]. Evidence suggests that the

number of previous miscarriages is associated with signs of depression in a sub-

sequent pregnancy [93]. Feelings of grief are not confined to women, but also

affect prospective fathers, which has the potential to affect relationships [89].

The psychosocial effects of a loss are long standing, which suggests that women

will require access to adequate support during and long after the loss occurs.

Early identification of a miscarriage could potentially mitigate the sense of loss

somewhat. It may also reduce further physical and psychological deterioration,

precluding the need for already scarce counselling or therapy resources over a pro-

tracted period of time. Miscarriage however can only be pre-emptively identified

if diagnosis can be adjusted to allow so.

2.3.3 Current diagnosis of miscarriage

Women who are suspected to be miscarrying usually present with vaginal bleeding

and pain in the lower abdomen. Heavy bleeding rather than spotting is usually

more indicative of an impending loss [94]. Additional symptoms can include a

discharge of fluid or tissue and the absence of pregnancy symptoms [95].

Currently diagnosis of very early miscarriage (< six weeks) falls under an

‘expectant management’ framework. Where miscarriage is suspected because of

vaginal bleeding, but there is no pain, it is advised that the woman should take

a pregnancy test 7-10 days later [17]. If pregnancy is confirmed or symptoms

worsen then further action can be taken, but otherwise it is more common for a

miscarriage to naturally resolve itself at this early stage. As a result women who
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experience loss at this point are left, in a sense, to fend for themselves, as no level

of medical intervention can induce a positive pregnancy outcome.

For pregnancies beyond the sixth week, if a woman presents with serious com-

plications, such as abdominal or pelvic pain, then hospital admission is deemed

necessary. If there is no pain, and the pregnancy has progressed beyond the sixth

week, then referral is advised to an early pregnancy assessment unit (EPAU) for

further investigation [17]. This can involve blood tests 48 hours apart to observe

changes in hCG levels. However, it is more usual for transvaginal or external

ultrasounds to be performed in conjunction with the blood tests [13]. This is

in spite of the fact that before the fifth week of pregnancy ultrasounds cannot

reliably detect the gestational sac to confirm viability, whereas hCG is readily

present at this point [96].

Women who experience pregnancy loss prior to the six-week ‘cut-off’ point are

currently only directed to a pregnancy test to track possible miscarriage. This

could feel inadequate from the patient’s perspective, and exacerbate feelings of

helplessness. The current management framework, advocating a ‘wait and see’

approach can result in greater distress for some women even after six weeks.

Some women prefer intervention in the case of loss to avoid waiting for a natural

resolution, whilst others prefer to undergo a natural miscarriage. What is most

apparent from the literature is that women would like greater choice in their care

when it comes to pregnancy loss [97].

Some women experience no recognisable signs of loss. These cases are referred

to as missed or delayed miscarriages and are only identified at routine appoint-

ments where a heartbeat can no longer be detected [95]. As the body fails to

expel the pregnancy tissue of its own accord, this can be a particularly trau-

matic loss. Not only is the woman blind-sided, but she faces intervention to pass
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the deceased foetus. This is another scenario in which early detection would be

beneficial, to prevent prolonged suffering.

Miscarriages vary in their presentation, which makes misdiagnosis a concern.

To avoid this, final diagnosis is usually based on ultrasound scans. Current guide-

lines define pregnancy loss based on size of gestational sac and foetal measure-

ments (crown rump length) and a detectable heartbeat [98]. Once miscarriage is

strongly suspected, it is essential that healthcare professionals correctly distin-

guish between incomplete and complete miscarriages [5]. This means sometimes

several ultrasounds are necessary to confirm that all foetal tissue has been ex-

pelled [99]. In cases where a complete miscarriage is incorrectly diagnosed, women

can experience abnormal bleeding, abdominal pain and/or fever due to retention

of foetal tissue. If left untreated this can result in internal bleeding, infection and

in some cases even infertility [7]. Confirming miscarriage must then tread the line

between haste to prevent further deterioration of the patient and thoroughness

to avoid a miscalculated diagnosis.

2.4 Human Chorionic Gonadotrophin

Human chorionic gonadotrophin is a hormone typically produced in early preg-

nancy. It is produced first by the embryo and then the placenta takes over

thereafter. The role of hCG is to encourage the body to continue producing

P3G, preventing the onset of the next cycle via menstruation. This ensures the

corpeus luteum and lining of the womb continues to support the pregnancy [100].

Most importantly of all hCG stimulates the maternal thyroid gland to encourage

successful implantation [101].

The hormone can be detected in maternal blood (serum) once implantation

has occurred, as early as six days after conception, and in maternal urine a few
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days later [102]. Currently urinary hCG is almost exclusively used for detection of

pregnancy in home pregnancy tests. A level of 25 mIU/ml indicates a confirmed

pregnancy. In healthy pregnancies serum hCG concentrations are reliably known

to rise at a rate of approximately 50% per day, before decreasing and plateauing

to a stable concentration after week 10. However, the range of ‘normal’ values

can vary greatly across pregnancies (See Figure 2.2) [14]. This pattern is similarly

replicated in maternal urine [25].

Figure 2.2. Range of hCG levels during pregnancy

Although ultrasounds are the main mode of diagnosis in pregnancy loss, hCG

can be measured as a first port of call. As isolated measurements their only use

is to confirm pregnancy, and cannot be used to confirm viability. Yet in clinical

practice, hCG measurements are currently used to gain a snapshot understanding

of the rate of increase in cases of suspected pregnancy loss [103]. In contrast to

current practice, monitoring hCG as a series of collected measurements has been

advocated. This would allow the trajectory of measurements to be compared to

expected growth patterns for a viable pregnancy, and hence allow a failing preg-

nancy to be distinguished from a healthy pregnancy [18]. The evidence base for
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hCG suggests that trajectories of hCG in failing early pregnancies are markedly

different from viable pregnancies. This emphasises the potential to extend its use

in a diagnostic capacity and suggests an association between hCG and miscarriage

[104].

The Prior et al. [105] publication of the priorities for research within miscar-

riage ranked the identification of effective interventions to prevent (threatened)

miscarriage highest. This research area encompasses the plausibility of using

biomarkers, such as hCG, to track pregnancy progression through to viability

or miscarriage. A meta-analysis looking at the predictive capabilities of vari-

ous hormones found, across eight studies which measured intact or β - hCG in

serum, that overall hCG had good sensitivity for detecting miscarriage at the

eighth week of pregnancy, when compared with another biomarker. Yet, once a

foetal heartbeat was detectable (∼ six weeks), diagnostic accuracy for hCG was

lower than other biomarkers [11]. In the case of biochemical pregnancies there is

agreement of the benefits of hCG monitoring. A study conducted by Wilcox et al.

[73] in the 1980s followed 221 women who were attempting to conceive. Of these

women 32% experienced pregnancy loss and two thirds of these losses, which oc-

curred around the expected time of implantation, would have been unidentifiable

without measuring hCG.

In recent years, monitoring of hCG measurements in pregnancy has become

common in women who undergo IVF [106]. Where hCG has been tracked for

spontaneous conceptions the evidence is largely based on serum hCG observa-

tions. Yet a more cost-effective approach could be found in tracking mater-

nal urine hCG measurements. Similar patterns of hCG have been noted across

serum and urinary measurements, and current technology allows for detection of

extremely low hCG values even in urine [44]. This could then be an opportunity
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for a greater number of measurements to be taken at a lower cost to form a larger

picture of how hCG trajectories differ between viable and failing pregnancies.

2.4.1 Modelling serial hCG

Ample evidence of the distinguishing features of viable and miscarried hCG tra-

jectories is emerging. What is more uncertain is how these trajectories can be

utilised in practice and which statistical techniques can best link hCG with the

outcome of the pregnancy. Measurements of hCG are only sparsely observed in

practice, and so statistical techniques classifying these unbalanced trajectories

into abnormal and normal pregnancy groups have been investigated. De la Cruz

et al. [46] proposed fitting semi-parametric non-linear mixed effects models, with

penalized splines modelling the non-parametric component, to each pregnancy

class. The superiority of modelling individual deviation via the parametric com-

ponent using random effects versus directly estimating the correlation structure

of the errors was assessed. The latter was found to more accurately classify

trajectories [46]. An alternative approach advocated using a single Bayesian

non-parametric classification model for the joint outcome of pregnancy outcome

and longitudinal hCG, avoiding the requirement of separate discriminant mod-

els for each pregnancy outcome [45]. A further analysis extended classification

with respect to multiple hormones, utilising a multivariate non-linear mixed ef-

fects model with random effects [107]. All of these methods were applied to a

dataset of 173 pregnant Chilean women contributing serum hCG measurements

over urinary measurements. Ninety-eight percent of women had three or fewer

measurements, with 28% of women contributing only one measurement. This is

common amongst serial hCG studies, where serial is usually a misnomer for just

the two measurements where a ratio of observations is analysed [48]. In practice

this is likely probably all that would be observed.
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A study, which prospectively followed women who contributed daily urinary

hCG samples through conception and early pregnancy outcome, provides a unique

insight into the benefits of urinary hCG and continuous follow-up and provides the

foundation for this thesis [44]. Two-stage models, discussed in section 5.3.3, were

implemented to directly estimate the risk of miscarriage using survival models

(see section 4.6), based on subject-specific predictions from an LMM (see section

3.5) used to model hCG profiles. This analysis found a delay in the time from LH

surge to hCG reaching 25 mIU/mL increased the risk of miscarriage, though pre-

diction of pregnancy outcomes was not considered. The data used for the analysis

performed by Marriott et al. [44] will be described further and re-analysed using

the more sophisticated joint longitudinal-survival model, described in Chapter 6.

This analysis will be further extended utilising a larger collection of longitudinal

hCG and early pregnancy outcome data in Chapter 7 with a view to predict

early pregnancy outcomes. This type of monitoring is currently exclusive to IVF

settings. Transferability of such tracking to a natural pregnancy setting has the

potential to help women who have suffered recurrent losses [15]. The combination

of cheaper to collect urinary samples and sampling more often may be the key to

identifying losses as early as possible, and serve to reassure prospective mothers.

2.5 Discussion

Miscarriage is relatively common and with it comes substantial healthcare costs

and emotional trauma. Currently diagnosis of miscarriage can vary depending

on presentation, but almost always in cases after the sixth week of pregnancy

involve diagnostic tests such as ultrasounds. Serial hCG monitoring as a potential

predictor of miscarriage has not been embraced in clinical practice. With such

varying aetiological mechanisms behind early loss, the common thread amongst
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all pregnancies is that hCG profiles may reliably reflect viability. With urinary

measurements simpler and cheaper to collect, the way forward may be to observe

greater numbers of cost-effective measurements to track a pregnancy in high risk

women. The IVF model has shown tracking to be beneficial, which means women

who have experienced loss and are actively attempting to conceive may benefit

from prospectively testing their hCG levels. This can reassure women and in

the event of loss provide impending warning of a miscarriage, even when clear

symptoms do not manifest themselves.
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Chapter 3

Longitudinal models

3.1 Chapter Overview

This chapter will introduce conventional methods used to analyse a continuous

repeatedly measured biomarker. Simple methods will first be introduced, typi-

cally revolving around summary variables and related analysis methods, including

linear regression. The multilevel model framework will be discussed in detailed,

with particular focus on the estimation of subject-specific effects. Alternative

modelling frameworks will be presented briefly, including generalised estimating

equations.

3.2 Introduction

Longitudinally observed data - also known as panel and serial data - is frequently

encountered in clinical trial and observational study contexts. Collecting re-

peated observations for individuals can have many advantages, particularly when

the objective is to study change in an outcome over time [108]. When an indi-

vidual is known to suffer from a condition, it is commonplace to observe serial

measurements to monitor deterioration or improvement. Medical scenarios where

serial measurements are encountered, include blood pressure measurements in re-

lation to cardiovascular disease and glucose measurements in diabetic patients

[33; 109; 110]. Growth studies, particularly in child development, often look at
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markers at varying ages. An example is the Avon Longitudinal Study of Par-

ents and Children (ALSPAC), first established in 1991, which investigated the

interplay of social and environmental influences and genetics on child develop-

ment [111]. Though collecting repeatedly has higher cost implications, there are

many reasons why these observations might aid in answering varied and more

nuanced research questions. For example, interest may lie in making inferences

about the overall mean response, such as for a given therapy. Alternatively, with

multiple observations available it would be feasible to more completely estimate

the variation between individuals. Or if individual differences are of importance,

the dependency between measurements for a given person could be estimated,

ultimately allowing prediction of individual response profiles [108]. Serial obser-

vations are clearly characterised by different levels of variation. Observations for

a given individual are correlated and measurements from the same individual

vary (within-subject variation). Longitudinal trajectories also vary between in-

dividuals, leading to between-subject variation [108]. The subsequent method of

analysis must appropriately model the different levels of variation which are in-

trinsic to longitudinally observed data and ultimately decide whether population

level or subject-specific inferences are to be made.

3.3 Measuring longitudinal continuous biomarkers

Though methods discussed in this chapter can be adapted to binary or categorical

data, the focus of this thesis is on continuous biomarkers, as this type of data will

be modelled in later chapters. Measuring a continuous biomarker is challenging.

It is rarely possible for a measurement on a continuous scale to be observed 100%

accurately. Inherently, instruments used to observe biomarker measurements can

only do so to a pre-specified degree of accuracy. Furthermore, a biomarker may be
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measured and then rounded further for manageability. Where a measuring device

is incorrectly calibrated, or incorrectly used further disparities may arise. This

means when modelling the possibility of measurement error must be accounted

for [52]. Typically, biomarkers will be observed at discrete time-points, so to

infer how the biomarker changes between measurements it is necessary to build

a trajectory of biomarker measurements accounting for systemic measurement

error. To do this one must consider that observations for a given individual will

be correlated and so methods that assume independence, such as simple regression

models, are invalid [30].

3.3.1 Missing data

Modelling data repeatedly over a length of time may result in incomplete or inter-

mittently observed data. For instance, an individual may contribute a biomarker

observation, before missing the next follow-up, but then attend and contribute

measurements for the remainder of the study. Missing observations arising in this

way is commonly encountered in longitudinal studies and results in unbalanced

data [108]. The series of observations can also frequently be cut short due to an

individual dropping out before the end of follow-up [112]. In each case, if the

underlying missing mechanism is related to the longitudinal response then bias

can be introduced during estimation. Missing data is classified into three types,

missing completely at random (MCAR), missing at random (MAR) and missing

not at random (MNAR) [113]. These are defined as follows,

• MCAR: the probability of the observation being missing is independent

of the longitudinal response

• MAR: the probability of an observation being missing is related to the

observed longitudinal data only
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• MNAR: the probability of an observation being missing is dependent on

unobserved values of the longitudinal response

Examples of MCAR could be missing a follow-up visit due to work commit-

ments or leaving the study due to a move. Neither of these events are linked

to the biomarker, so standard analysis methods could be undertaken, effectively

ignoring the missing data. The MAR assumption does presume an association be-

tween the longitudinal observations and the state of being missing. This scenario

may arise if a healthcare professional advises leaving a study due to measure-

ments observed up to that point. Typically longitudinal data which are MAR

can be modelled using random effect models, which are designed to accommodate

unbalanced data. The inclusion of the random effects provide an implicit pre-

diction of unobserved data [108]. The linear mixed-effects model (LMM) which

will be discussed in detail in section 3.5 is one such modelling framework. The

final definition, MNAR, is the most problematic in terms of the analysis as the

underlying missing mechanism depends on both observed and unobserved values

of the longitudinal response. This definition of missing data could occur as a

consequence of an adverse event or death. These examples are also instances of

informative drop-out where a patient leaves the study due to worsening outcomes,

which links the reason for the ‘missingness’ to both the observed measurements

and what would have been observed had the patient not dropped out. This ne-

cessitates the modelling of the longitudinal and missing mechanisms via a joint

distribution [112]. The joint longitudinal-survival model, which will be intro-

duced in Chapter 5, can address the issue of informative drop-out described in

this final scenario by jointly modelling the missing mechanism and time-to-event

outcome [30][114].
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3.4 Approaches to longitudinal modelling

Where the number of measurements exceeds two, which will be the case for data

analysed in this thesis, a variety of analyses can be undertaken. These broadly

fall into three categories. Summary measure approaches are the most simplistic

and rely on paring the data down to one or two summary statistics. These ap-

proaches will be discussed further in sections 3.4.1 and 3.4.2. More commonly

random effect models, specifically linear mixed effect models are utilised, which

allow inclusion of all of the longitudinal data whilst also accounting for confound-

ing variables. The variation within and between individuals is explicitly estimated

through inclusion of random effects. These models will be implemented in the

joint modelling context in later chapters and detailed in section 3.5. Generalised

estimating equations (GEEs) are an alternative modelling approach for longitudi-

nal data which produce only population-average effects. These will be discussed

briefly in section 3.6.

3.4.1 Summary measures

A naive approach to analysing longitudinal data is to compute summary mea-

sures, which reduce individual responses down to a single or pair of observations

[115]. These are used to assess differences between groups, eliminating within-

subject observations from consideration [116]. The choice of method is usually

driven by the type of data being collected. These are either peaked (characterised

by a rise before reaching a maximum and then decreasing), or growth data which

increases over time [117]. Illustrations of both types of data are shown in Figure

3.1.

A common method of analysis for longitudinal data, where group differences

are of interest, is to estimate the mean response for individuals in a given category
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(b) Longitudinal growth data

Figure 3.1. Examples of types of longitudinal data

at each time-point, with corresponding precision estimates, usually one standard

deviation. A t-test is then used to compare groups at each time-point [117].

There are a number of issues with this approach. Carrying out several t-tests is

akin to making multiple comparisons and if the significance level is not adjusted

for multiple testing then spurious significant results are likely. Though individual

variation is eliminated, even mean responses at successive time-points are likely

to be correlated, meaning the t-tests cannot be considered independent [117].

Furthermore, comparing mean responses at two time-points does not consider the

possibility that the same (numbers of) individuals may not be being compared

between time-points [117]. Most concerning of all is that summarising in this way

eliminates the original information and prevents the study of individual variation.

Other simple analysis measures have been proposed [117]. When looking at

peaked pre and post-prandial glucose response curves it is usual to estimate the

area under the curve (AUC) between groups [118]. If the maximum or minimum

response is important then the mean maximum (minimum) could be compared

between groups or even mean time to maximum (minimum) response. With

growth data, hypotheses related to the rate of change can utilise standard linear
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regression models, which can incorporate a grouping variable for comparisons

between groups at a single time-point [119]. Simple analyses have their place,

particularly as they can be implemented with ease. However, cross-sectional

analyses provide only a snapshot of the true scenario, preventing any inferences

of changes over time [120].

3.4.2 Analysis of variance

A way of incorporating all measurements into an analysis is to use the analysis of

variance (ANOVA) method. This technique is usually applicable to what is called

balanced data, where a measurement is observed at every fixed time-point for ev-

ery individual, i.e. no missing data, which as discussed in section 3.3.1 is rarely

true of longitudinally measured observations. The repeated measures ANOVA

considers time to be an independent factor with n levels or related groups. At

each level the same subjects provide observations of the response variable [121].

A one-way repeated measures ANOVA extends the standard one-way ANOVA by

contrasting within-level and between-level variation. It is assumed that residuals

of the response are normally distributed and that the variance of the difference

between any possible combination of levels (time) are equal. The two-way re-

peated measures ANOVA extends this to also include a factor variable. This can

allow inferences about a grouping variable of interest and its interaction with

time, with the null hypothesis assuming there is no difference in mean response

between groups over time. These are simple analysis methods which can give an

indication of whether there is a difference in response over time or not, however

several provisos need to be satisfied to avoid inappropriate conclusions. ANOVA

methods treat time as a discrete variable, requires complete, balanced data and

do not allow for several levels of clustering or investigation of covariates which

change over time [108]. Extensions to non-balanced data have been proposed
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however, if sample sizes and variances are both unequal then statistical power is

reduced greatly [122]. With ANOVA more focussed on hypothesis testing than

estimation, when interest lies in quantifying an association a linear mixed-effects

model would be preferable to the limited output of an ANOVA.

3.5 Linear mixed effects models

Linear mixed effects models are able to model unbalanced data. In the case

of longitudinal studies, measurements can be sporadically observed, measured at

unequal time-points and with varying frequency for a given individual, with miss-

ing data common [123]. Each set of repeated measurements are nested within

an individual, creating a hierarchical structure [124]. An illustration of unbal-

anced longitudinal blood pressure data is shown in Figure 3.2. The shaded boxes

indicate missing observations.

Figure 3.2. Example of unbalanced longitudinal data

Typically different observations from the same individual are correlated. The

within-subject variance can be appropriately modelled, through the formulation

of the variance components within the multilevel model framework, the first in-

carnation of which was proposed by Laird and Ware [125]. As discussed in sec-

tion 3.3, measurement error is an enduring issue when observing a continuous

biomarker, which can also be accommodated in the mixed model context. Vari-

ance components account for both variation between measurements for a given
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individual as well as between individuals, through the inclusion of random effects

[126].

The general formulation of an LMM for a biomarker response variable Yij

observed for individual i at time j is given by Equation 3.1 [108].

yij(t) = Xi(tij)β + Zi(tij)ui + eij

ui ∼MVN(0,G) eij ∼ N(0, σ2
e) (3.1)

Here Xi represents the design matrix of fixed effects for patient i. This con-

sists of all covariates that need to be be incorporated into the analysis, but don’t

need to necessarily vary over time, with β the associated fixed effects parame-

ters. The fixed effects represent the population-average effects. Conversely Zi

is the design matrix for the random effects and ui the associated random effects

parameters. The random effects parameters are assumed to be multivariate nor-

mally distributed with mean zero and matrix of variance components G. For

a two-level model G is comprised of the between-subject variances, σ2
u. The

overall between-subject variance is partitioned appropriately depending on the

number and structure of the specified random effects (see section 3.5.1) [124].

The residual error term eij takes into account the measurement error associated

with continuous biomarkers and is normally distributed with mean zero and level-

one or within-subject variance σ2
e . All elements of the variance-covariance matrix

G and residual error eij are assumed to be independent. Residuals at each level

are assumed to be independent. The covariance between biomarker responses for

the same individual is assumed to be positive. More formally these assumptions

are written as,
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cov(ui, ei) = 0 cov(ui, u′j) = 0 cov(yi1 , yi2 | xi) ≥ 0 (3.2)

The LMM is a variance components model and the within- and between-

subject variances can be partitioned to describe the variation for different compo-

nents of the model. The intra-correlation coefficient describes the correlation be-

tween observations on the same subject and is estimated as ICC = σ2
u0/(σ

2
u0 +σ2

e).

Figure 3.3, adapted from Merlo et al. [2], illustrates the levels of variation for

two-level longitudinal data. The fixed effects give the population-average mean

of the biomarker. The subject-level deviations or residuals are represented by

the solid black lines which indicate higher or lower mean biomarker values for

individuals. The between-subject variance describes how individuals vary from

the overall mean. This can be described using random effects. Within-subject

variance is an estimate of how biomarker measurements for a given individual

vary from observation to observation.

Figure 3.3. Illustration of the levels of variation for a two-level
longitudinal data adapted from Merlo et al. [2]

The between-subject variance can be decomposed by including a random in-

tercept. Figure 3.4 presents a visualisation of a random-intercept LMM.
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Figure 3.4. Schematic plot of random intercept model

An example of a two-level random intercept model is given in Equation 3.3.

yij = β0 + β1tij + u0i + eij

ui ∼ N(0, σ2
u0) eij ∼ N(0, σ2

e) (3.3)

In this scenario tij represents the time at which the biomarker response was

observed, j, for individual i. Inclusion of a random intercept, u0i allows in-

dividual biomarker values at t = 0 to vary from the mean given by the fixed

intercept β0. This means an individual’s baseline biomarker value is allowed to

be higher or lower than another’s. The random intercept u0i term represents the

subject-specific baseline biomarker deviation from the average. The deviations
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are assumed to follow a normal distribution with mean zero and between-subject

variance σ2
u0 .

This model can be extended with the addition of a random slope, which allows

the gradient of individual biomarker trajectories to vary. A visual representation

of this is shown in Figure 3.5.
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Figure 3.5. Schematic plot of random intercept and slope model

The formulation of a two-level random intercept and slope model is given in

Equation 3.4. This assumes a linear slope for tij, with unstructured variance-

covariance matrix, which will be discussed further in section 3.5.1.

yij = (β0 + u0i) + (β1 + u1i)tij + eij
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ui ∼ N(0,G) G =

 σ2
u0 σu0,u1

σu0,u1 σ2
u1

 eij ∼ N(0, σ2
e) (3.4)

The addition of the random slope u1i represents the subject-specific deviation

from the population-average estimate of the gradient, represented by β1. In addi-

tion to the between-subject intercept variance term, σ2
u0 , a second variance term

is estimated, σ2
u1 , which represents the between-subject slope variance. An ad-

ditional covariance term, σu0,u1 , describing the correlation between the intercept

and slope, is estimated when assuming an unstructured matrix structure for G.

When fitting either the random intercept or combined random intercept and

slope model the individual deviations from the mean are not estimated, rather

the between-subject variances are. These models are only the simplest examples

of linear mixed effects models. If it is sensible to do so, further random effects

can be included, perhaps to describe a non-linear slope, and additional clustering

would imply more levels are appropriate. If the slope is non-linear additional

(fractional) polynomial or spline terms could be included to achieve a better

fit. Polynomial terms and restricted cubic splines (see section 4.6.8) will be

implemented in Chapters 6 and 7 respectively.

3.5.1 Variance-covariance structure

As noted in section 3.5 the random effects are not directly estimated, but rather

they are assumed to be normally distributed with mean zero and variance-covariance

matrix G. The covariance structure of matrix G must be pre-specified for esti-

mation of the LMM. The diagonal of the matrix contains the variances for the

random parameters, whilst the covariances are the off-diagonal entries. Those

most commonly implemented are the independent, exchangeable, autoregressive
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and the unstructured covariance structures [127]. Each of these specifications will

be presented for a two-level random intercept and slope model.

The independent structure, presented in Equation 3.5, sets the covariance to

0, estimating one common variance term σ2.

Gindep = V ar(ui) =

σ2 0

0 σ2

 (3.5)

The exchangeable structure assumes a single variance for all random effects,

and consequently a single covariance parameter. This implies a constant variance

and constant covariance, with only two parameters estimated, σ2 and σ1. This is

shown in Equation 3.6.

Gexch = V ar(ui) =

σ2 σ1

σ1 σ2

 (3.6)

The unstructured covariance structure, shown in Equation 3.7, allows for

unique variances to be estimated for each specified random effect. Covariance

is estimated for each pair of random effects. For a two-level random intercept

and slope model this results in three estimable covariance parameters, σ2
u0 , σu0,u1 ,

and σ2
u1 .

Gunst = V ar(ui) =

 σ2
u0 σu0,u1

σu0,u1 σ2
u1

 (3.7)

Finally the autoregressive structure is shown in Equation 3.8. This assumes

homogeneous variances for all random effects, however the covariance between

each additional pair of random effects tends becomes smaller still than the pre-

vious pair. Two parameters are estimated, the variance σ2 and correlation ρ. If
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an additional random effect was included the covariance would be ρ2σ2 and so on

for each addition.

Gar = V ar(ui) =

 σ2 ρσ2

ρσ2 σ2

 (3.8)

For applications in this thesis, the unstructured covariance structure will be

assumed, as this allows unique variances to be estimated for all random effects.

For the level-1 errors eij, an independent structure is usually assumed, with a

common variance σ2
e and covariance set to 0.

3.5.2 Model assumptions

The linear mixed effects model framework is based on several assumptions which

must be satisfied for the resulting estimates to be valid. These assumptions build

on those for the linear regression model, but take into account the addition of the

random effects [128]. The most important requirement when fitting an LMM or

indeed any class of model is to correctly specify the covariates in the model and

to have an adequate sample size for inferences to be made from the fitted model

[128]. Further assumptions of the LMM include [129],

• a linear relationship between the response and explanatory variables

• residuals at each level are independent

• residuals at each level are normally distributed

• the residuals have constant variance or are homoscedastic

Though a linear relationship between the response and covariates is assumed,

it is possible to relax this requirement by including higher order terms to capture

non-linear associations between the response and predictor variables [130]. Fur-

ther assumptions are based around the residuals of the fitted model, rather than

the response variable. Visual examination of residuals at each level of the fitted
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LMM can usually confirm whether these assumptions have been met or not. If

patterns are noted then there may be indication of a lack of independence or ex-

istence of heteroscedastic errors [131]. Assumptions of normality can be assessed

through normal probability plots by plotting standardised residuals for each level

against the expected normal probability score [132].

Several studies have looked at the effect of the violation of these assump-

tions on model estimates. McCulloch and Neuhaus [133] and Jacqmin-Gadda

et al. [132] investigated the effect of misspecifying the shape of the random-

effects error distribution, i.e. violating the normality assumption. Fixed effect

parameter estimates were found to be unbiased for both random intercept and

random intercept-slope models, even when the error was highly skewed [132].

Furthermore, estimates of random effect variances were robust to deviations from

normality [133]. According to Maas and Hox [134] if level-two residuals are not

normally distributed this is most likely to impact only the standard error esti-

mates, which can be remedied by calculating robust standard errors. The esti-

mate of the intercept, however, can be biased if the normality assumption for the

level-one residuals or random intercept is not satisfied [133; 135]. Fixed effect

estimates have been shown to be robust in the presence of heteroscedastic errors,

except when there is a dependency between the error variance and a covariate-

time interaction term in the model [132]. In general, provided that the sample

size is large enough, the LMM is robust to deviations from the assumptions made

[136]. However, if normality and homoscedasticity assumptions are violated, then

an alternative specification for the residuals can be assumed [129].

3.5.3 Estimation

Estimation of these models is usually by maximum likelihood (ML) or restricted

maximum likelihood (REML). The former includes both the fixed effects and
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variance components in the likelihood estimation. REML is a two step proce-

dure, which omits the dependency on the fixed effects including only the variance

components in the initial likelihood function before estimating the fixed effects

in a second step [131]. The expectation and variance of the biomarker response

Yi are given by,

E(Yi) = Xiβ (3.9)

Vi = var(Yi) = ZiGZT
i + σ2

eIN (3.10)

Xi is the design matrix of fixed effects with associated parameter estimates β.

The design matrix of random effects is denoted by Zi and ZT
i is the transpose of

Zi. G is the variance-covariance matrix for the random effects, σ2
eIN the identity

matrix for the within-subject variance.

Let θ collectively denote the covariance parameters for G and σ2
eIN . The full

likelihood is written as the product,

L(β,θ) =
p∏
i=1

(2π)−n2 |Vi|−
1
2 exp

{1
2(yi −Xiβ)TV−1

i (yi −Xiβ)
}

(3.11)

The resulting log likelihood is expressed in Equation 3.12

lnL(β,θ) = −n2 ln 2π − 1
2

p∑
i=1

ln |Vi| −
1
2

p∑
i=1

(yi −Xiβ)TV−1
i (yi −Xiβ) (3.12)
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Parameter estimates for β can be obtained by assuming the covariance param-

eters θ are known. Using a generalised least squares approach the best linear unbi-

ased estimator (BLUE) of β is shown in Equation 3.13 [137][138]. This estimator

minimises the sampling variance (best), and is unbiased such that E(β̂) = β.

β̂ = (XT
i V−1

i Xi)−1XT
i V−1

i yi (3.13)

In order to obtain estimates for the covariance parameters θ the BLUE of

β (β̂) are substituted into the log likelihood in place of β, to form a profile log

likelihood.

lnLML(θ) = −n2 ln 2π − 1
2

p∑
i=1

ln |Vi| −
1
2

p∑
i=1

(rTi V−1
i ri) (3.14)

where ri = yi−Xiβ̂. There is no closed form solution to this profile likelihood

and so numerical approximation methods are utilised. One approach is to use a

combination of the Expectation-Maximisation (EM) algorithm and the Newton-

Raphson method[125; 139]. The former is an iterative process which assumes

that the random effects are unobserved data. The EM algorithm first calculates

values θw for the unknown vector θ and uses this to obtain the expectation of the

log likelihood for the subsequent value of θ conditional on the distribution β | y.

The expectation is then maximised with respect to θ to obtain the next value of

the iteration θw+1. The Newton-Raphson algorithm, discussed in section 4.6.4, is

an optimisation procedure which minimises/maximises the score function, or first

derivative of the profile likelihood at the current estimate of θw to obtain the next

estimate. The matrix of second derivatives or Hessian in conjunction with the

score function provide are used to calculate a direction vector. A new estimate

is derived from this information. This is repeated until convergence criterion are
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met, which means that the root has been found to a pre-specified acceptable level

of tolerance [140].

3.5.4 Restricted maximum likelihood estimation

A criticism of utilising ML estimation for linear mixed effects models is that when

estimating the variance components via ML, the degrees of freedom lost from es-

timating the fixed effect parameters are not taken into account [139]. This can

lead to biased parameter estimates. An alternative proposition is estimation by

restricted maximum likelihood (REML) [141]. This method was first introduced

in 1962 and is based on forming linear combinations for Y which do not depend

on the fixed effects [142]. These ‘linear contrasts’ are equivalent to the residuals

which can be estimated from fitting only the fixed effects model. The correspond-

ing log likelihood function is written as,

lnLREML(θ) = −n−m2 ln 2π−1
2

p∑
i=1

ln |Vi|−
1
2

p∑
i=1

(rTi V−1
i ri)−

1
2

p∑
i=1

ln |XT
i V−1

i Xi|

(3.15)

where ri = y − Xβ̂. Analyses in Chapter 6 and 7 will rely on maximum

likelihood estimation for obtaining parameter estimates, on the assumption that

the sample size is large enough that ML and REML estimates will be similar.

When comparing models it is preferred that ML estimation be used to allow

comparison using likelihood-based methods such as the AIC, BIC or likelihood

ratio tests for nested models [143].

3.5.5 Subject-specific predictions

The greatest motivation for utilising mixed effects models is to estimate subject-

specific effects. These models allow inferences on the population level but also on
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the individual level with some further estimation. Individualised predictions can

be obtained by ‘estimating’ individual deviations, via the empirical Bayes estima-

tion of the best linear unbiased predictor (BLUP) of the random effects ui [144].

Predictions are obtained by melding Bayesian and frequentist principles. The

method assumes the model parameters, the fixed effect estimates and variance-

components are known and equivalent to the ML estimates which are denoted by

θ̂ [145] [146]. Due to this assumption the posterior distribution is known as ‘em-

pirical.’ The prior distribution, φ(ui; G), for the ui is taken to be the multivariate

normal distribution with covariance matrix G previously expressed in Equation

3.1. The likelihood is obtained by fitting the relevant LMM. The posterior den-

sity of ui conditional on observing Yi = yi, is obtained via Bayes’ Theorem [145].

The posterior distribution of ui conditional on the data is given by,

w(ui | yi,Xi,Zi; θ̂) = φ(ui; G)f(yi | ui,Xi,Zi; θ̂f )
g(yi | Xi,Zi; θ̂)

(3.16)

The vector of parameters appearing in the conditional response distribution

is denoted by θ̂f . The denominator is the likelihood contribution for the ith indi-

vidual. The optimal empirical Bayes estimate of the BLUPs is given by the mean

of the empirical posterior distribution shown in Equation 3.17. Alternatively, the

empirical posterior distribution mode can be used instead of the mean. This can

be obtained by finding the mode which minimises the posterior expectation of

the loss function in Equation 3.18. For linear models the integral in Equation

3.17 can be solved analytically, otherwise estimation is achieved via numerical in-

tegration such as adaptive quadrature or simulation methods (e.g. Monte Carlo

Markov chain (MCMC)) [145] [147].

ûi = E(ui | yi,Xi,Zi; θ̂) =
∫

uiw
(
ui | yi,Xi,Zi; θ̂

)
dui (3.17)
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L(ui, ûi) =


0 if |ui − ûi| ≤ ε

1 if |ui − ûi| > ε

(3.18)

Estimates of subject-specific residuals are also known as shrinkage estimates

[131]. The BLUPs are shrunk towards the overall mean, depending on how reli-

ably they are estimated [131]. If there are fewer observations for a given individual

they will be shrunk more [145]. Similarly a BLUP which is far away from the

population mean will be deemed less reliable and will shrink more again [131].

This shrinkage introduces bias, which is a criticism levelled at the empirical Bayes

method of estimating the BLUPs [131]. The effect of substituting the estimates

of parameters in the empirical Bayes predictor to obtain the BLUPs however is

small when the sample size is large [145].

An advantage of using this framework is the ease with which standard errors

for the realized values of ui can be obtained [145]. The corresponding posterior

covariance matrix of random effects is written as,

covy(ûEBi −ui | Xi,Zi; θ̂) =
∫

(ûEBi −ui)(ûEBi −ui)′w(ui | yi,Xi,Zi; θ̂)dui (3.19)

When θ are assumed known, the variances (V (ui |, yi,Xi;θ)) are akin to the

conditional mean-squared error of prediction. Assuming normality of the pos-

terior distribution, corresponding credible intervals can be computed using the

posterior mean and standard deviation [145]. The integral is calculated numeri-

cally using, for example, adaptive quadrature.
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3.5.6 Modelling

Several considerations must be made when modelling continuous data. Although

the response does not necessarily have to be normally distributed (see section

3.5.2), to allow for models to converge, transforming skewed biomarker data can

be beneficial. Standardising or centering (around the mean) explanatory variables

to allow for meaningful interpretation is also recommended [131]. Selecting the

most appropriate variables for inclusion and a suitable functional form can be

difficult. Stepwise model selection procedures are the most commonly used to

select covariates for inclusion when modelling. For longitudinal data, Snijders

and Bosker [129] advise fitting a random effects ANOVA, ignoring explanatory

variables, to establish within- and between-group variances. From there it is

sensible to build the model from level one, first explaining within-group variation

before tackling between-group variation [124]. For models fitted by maximum

likelihood estimation, likelihood ratio tests can be used to compare nested models

including either or both fixed and random effects. Differences in only the random

effects can be compared for models estimated using the REML, but only if they

contain the same fixed effects [129] [131]. Establishing the correct fixed and

random effects is essential. In fact, failure to include a necessary random slope

can lead unrealistically small standard error estimates [135].

3.5.7 Interpreting model estimates

Consider a random intercept and slope model for the biomarker log billirubin.

The Stata output for the fitted LMM is given below. The mean response is

estimated at time t. At t = 0, the average log billirubin for the population

is 0.496, given by the fixed intercept term. The overall fixed effect at time

t is estimated via 0.496 + 0.177 × t, so that at t = 5 the mean response is
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0.496+0.177×5 = 1.381. The variation is captured by the random-effect param-

eters. For the unstructured variance-covariance matrix a variance parameter is es-

timated for each random effect included in the model, the intercept (var(_cons))

and slope (var(time)), as well as a covariance parameter (cov(time, _cons)).

This describes the between-subject variation. The confidence intervals for the

random intercept and slope variances indicate there is evidence of variation in

log billirubin intercepts and slopes between individuals. This justifies the inclu-

sion of each of the random effects. The measurement error or within-subject

variation is estimated by var(Residual).
. *Fit LMM

. mixed logb time || id: time, cov(unstr)

logb Coefficient Std. err. z P>|z| [95% conf. interval]

time .17742 .0123806 14.33 0.000 .1531544 .2016855

_cons .4957678 .0579801 8.55 0.000 .3821288 .6094067

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Unstructured

var(time) .029277 .0040436 .0223338 .0383786

var(_cons) .9946514 .0847627 .8416524 1.175463

cov(time,_cons) .0715485 .0151061 .041941 .101156

var(Residual) .1218071 .004719 .1129004 .1314164

LR test vs. linear model: chi2(3) = 2870.97 Prob > chi2 = 0.0000

The mean response can be estimated at different timepoints by summing over

the fixed effects, as shown. By obtaining BLUPs for the random effects, subject-

specific intercepts and slopes can be calculated. Combining the fixed effects with

the predictions of the random effects, subject-specific log billirubin predictions

for time t.
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. *Calculate fixed effects at t=0 and t=5

. dis _b[_cons] + _b[time]*0

.49576775

.

. dis _b[_cons] + _b[time]*5

1.3828676

.

. * Predict subject-specific deviations for the slope and intercept

. predict b1 b0, reffects

. gen fitted = (_b[_cons] + b0) + (_b[time] + b1)*time

.

. list id time logb fixed fitted if id ==2

id time logb fixed fitted

3. 2 0 .0953102 .4957677 .0073679

4. 2 .498302 -.2231435 .5841765 .0991779

5. 2 .999343 0 .6730711 .1914925

6. 2 2.10273 .6418539 .8688335 .3947862

7. 2 4.90089 .9555114 1.365283 .9103352

8. 2 5.88928 1.280934 1.540643 1.092442

9. 2 6.88588 1.435084 1.717461 1.276062

10. 2 7.8907 1.280934 1.895736 1.461196

11. 2 8.83255 1.526056 2.062838 1.634727

.

3.6 Generalised estimating equations

Though LMMs for continuous responses will form the basis of longitudinal mod-

elling in this thesis, the following method for clustered or longitudinal data is

presented here for completeness.

Generalised estimating equations (GEEs) are also commonly used to model

longitudinally observed data, particularly when interest lies solely in estimating

the marginal effects, i.e. a mean response for groups of individuals who share

a covariate pattern[148]. GEEs are an extension of the generalised linear model

(GLM), but make no distributional assumptions [149]. Firstly GEEs build on the
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GLM by allowing the within-subject correlation to be estimated, and secondly

they allow cluster robust standard errors to be estimated for the regression co-

efficients. The set of GEEs for a vector of responses yi for the ith individual is

shown in Equation 3.20 [148]. µi represents the expectation or mean of yi.

N∑
i=1

(
dµi

dβ

)
V−1
i (yi − µi) = 0 (3.20)

The correlation is incorporated by specifying a working correlation matrix

Ri(α) to describe the general correlation structure. These can have similar

specifications to the variance-covariance matrix for LMMs discussed in section

3.5. Popular definitions include the exchangeable, independent, autoregressive,

or unstructured.[150] Using this correlation a covariance matrix, Vi, can be esti-

mated for yi.

Vi = A1/2
i Ri(α)A1/2

i

φ
(3.21)

Here Ai is a ni x ni diagonal matrix with some function of the mean, g(µi),

as the ith diagonal element. A quasi-likelihood approach is used to solve the set

of GEEs. The iterative procedure first fits a standard GLM to estimate an initial

value for β assuming independence. The β estimates are then used to obtain

estimates for α and φ, given the correlation structure assumed for the matrix R

standardised residuals. A subsequent estimate for the variance Vi is computed

and the estimate for β is updated. These steps are repeated until convergence is

reached [148].

GEEs are relatively simple to fit compared to models relying on ML estima-

tion, particularly as they make no underlying distributional assumptions. As a

result they can also model non-continuous response variables. Furthermore, even
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if the working correlation matrix is misspecified estimates are consistent and ro-

bust standard errors can be estimated [150]. However, as noted previously these

are population-average models and so for the purposes of predicting individual

effects they are unsuitable. To compound matters model selection cannot be

carried out using usual likelihood methods as GEEs are estimated using a quasi-

likelihood approach. As subject-specific longitudinal trajectories of hCG are an

integral aspect of the application to pregnancy outcomes, these models will not

be considered further in this thesis.

3.7 Discussion

Foundational methods used to analyse longitudinally measured data have been

presented in this chapter. The linear mixed effects model will feature as the

now standard longitudinal submodel of the joint model which will be introduced

in Chapter 5. For each analysis conducted in Chapters 6 and 7 a longitudinal

submodel will be built, giving consideration to how the biomarker should be

modelled over time and how it varies between individuals. Ultimately random

effects and corresponding subject-specific predictions, obtainable from the mixed

model framework, allow for individualised predictions of survival probabilities

when linked with a survival outcome in a joint model framework.

54



Chapter 4

Survival analysis

4.1 Chapter overview

In this chapter the key concepts of survival analysis will be introduced. The

hazard and survival functions will be defined and the non-parametric Kaplan-

Meier estimation procedure will be presented. The focus will be on the Cox

proportional hazards (PH) model and the Weibull and flexible parametric models,

which are all implemented in this thesis, both in isolation and as the survival

component model of the joint longitudinal-survival model.

4.2 Introduction

Survival analysis is known by various aliases including time-to-event or failure

time analysis. All of these names refer to analysis of data where individuals are

observed from a pre-defined origin, up to the time at which the event of interest

occurs, or the individual is lost to follow-up [151]. Often the event of interest is

mortality however other common endpoints are tumour or disease progression,

relapse and recurrence of symptoms or adverse events [152; 153]. When modelling

a time to an event, interest lies in the rate at which an event occurs as a function

of time, as opposed to a cross-sectional probability of event occurrence, as with

logistic regression. Survival data is usually skewed, so methods relying on the

normality assumption can lead to inappropriate inferences [154]. Typically when
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observing specific disease populations for a pre-determined period of time, not

all individuals will experience an event by the end of follow-up [155]. This key

characteristic of survival data is known as censoring and must be accounted for

in the analysis.

4.3 Censoring

During the course of follow-up not everyone will experience the event of interest.

In a clinical study, a person may (i) not experience an event before the end of

follow-up, (ii) may be lost to follow-up or (iii) may withdraw from the study

[156]. Where this occurs, and the reasons behind each are unrelated to survival,

the only information available is the time at which the individual was last event-

free. As the true survival time is unknown, the individual is said to be censored

at their last observation time and is withdrawn from the risk set [155]. Typically

this is referred to as right censoring as the event, if it does occur, happens to

the right of the last point at which the individual was known to be event-free

[151; 154]. Hypothetical survival data is shown in Figure 4.1. The survival time

for those who experienced an event is denoted by a filled red circle, whilst the

corresponding survival times for those patients who were censored are denoted

by an open green circle.
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Figure 4.1. Hypothetical dataset of survival times

4.3.1 Assumptions

A key assumption made when censoring individuals is that the true survival time

t is independent of the underlying censoring process [156]. A censored individual,

subject to the same covariate pattern, is assumed to be representative (have the

same survival probability) of all other individuals who remain in the risk set at the

time of censoring. This concept is called non-informative censoring. If the reason

for the censoring is related to the status of the individual then the censoring is

instead informative and the assumption is no longer valid [155].

To illustrate this, let us consider a 50 year old female patient who has joined

a study which follows up individuals until failure (death). Under the assumption

of non-informative censoring, if she withdrew at time t because she moved away,

then we assume that her risk of experiencing an event at the time of censoring

is the same as a 50 year old female who continues in the study. If, on the other

hand, she withdrew due to poor health which in turn makes her more likely to

experience an event than another 50 year old women censored at time t, then this
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indicates informative censoring [156]. As informative censoring indicates an alter-

native failure/risk profile for certain individuals this has added implications for

analysis, leading to biased estimates if not addressed [157; 158]. For the analyses

in Chapters 6, 7 and 8 it will be assumed that censoring is non-informative.

4.3.2 Left and interval censoring

Other types of censoring, which will not be considered further here, include left

and interval censoring [151; 155; 159]. Left censoring is the antithesis to right

censoring, where the event is known to occur before or to the left of the survival

time [159]. For example consider the scenario of pregnancy loss. If at the first

contact with a healthcare professional there is no detectable heartbeat, it is clear

that the loss has occurred at a time prior to this initial appointment. Interval

censoring is as described, when an event is known to have occurred between

two time points [155]. In the pregnancy loss scenario this could mean that the

pregnancy was progressing at the initial scan appointment, yet at the second

detailed scan appointment there are no signs of viability. The event is known

to have occurred in the interval between the two scan appointments, and so is

interval censored.

4.3.3 Delayed entry

Typically a patient enters a study if they meet the inclusion criteria, which in

the case of a time-to-event outcome, means they must be at risk of the event of

interest. There may be occasions where a patient does not become at risk of the

event until after the specified time origin, so entry is at a time t > 0. This is

referred to as delayed entry and results in left-truncated data. A common example

of this is when age is used as the timescale, as an alternative way for adjusting for

age [160]. Consider an epidemiological study following an elderly population of 65
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years or over. Utilising age as a timescale, as opposed to time under observation

gives a meaningful counterpoint to study ageing [161]. As individuals enter if

they are over the specified age, data pre-65 years is left-truncated. For accurate

survival times to be calculated this must be incorporated into the analysis [162].

Left truncation will feature prominently in analyses of pregnancy data detailed

in Chapters 6, 7 and 8. This is due to the selection of a timeline for which women

do not meet the conditions to be at risk at t = 0. Namely pregnancy cannot

be confirmed until a time after conception, and so women cannot be at risk of

miscarriage until this point.

4.4 Hazard and survival functions

Survival data is usually described in terms of the hazard and survival functions.

These quantify a patient’s potential of experiencing an event and the probability

of surviving an event, respectively. Let T be a continuous non-negative random

variable signifying the survival times and t a specific time of interest. Then the

cumulative probability density function, denoted by F (t), is the probability that

the survival time for an individual is less than t. F (t) is defined in Equation

4.1, where f(t) denotes the probability density function of T [156]. Substituting

in t = 5 (years) into Equation 4.1 would give the probability that an individual

experiences an event within 5 years, or in other words that their survival time T

is less than 5 years.

F (t) = P (T < t) =
∫ t

0
f(u)du (4.1)

The survival function S(t) indicates the probability that a patient does not

experience the event up to time t, or the probability that their survival time T is

greater than or equal to t [151]. It is written in terms of the cumulative density
59



function F (t), as shown in Equation 4.2. Here, for t = 5, S(t) would be the

probability that the patient survives for 5 or more years.

S(t) = P (T ≥ t) = 1− F (t) (4.2)

The hazard function is a ‘conditional failure rate’ and is given by Equation

4.3 [156]. The probability of an individual experiencing an event within a time

interval t and t+ δt, given they have already survived up to time t is first calcu-

lated. This quantity is then divided by the length of the time interval, denoted by

δt. As this interval tends to zero the hazard function h(t) gives the instantaneous

failure rate at time t, given that an individual has survived up to time t [151].

h(t) = lim
δt→0

{
P (t ≤ T < t+ δt|T ≥ t)

δt

}
(4.3)

Integrating the hazard function up to time t gives the cumulative hazard

function H(t) shown in Equation 4.4. This describes the cumulative event rate

up to time t [156].

H(t) =
∫ t

0
h(u)du = − log (S(t)) (4.4)

The hazard function is intrinsically linked to the survival function and each

can be written solely in terms of the other. Equation 4.5 represents the hazard

function written in terms of the survival function and Equation 4.6 denotes the

survival functions parameterised in terms of the hazard function.

h(t) = −S
′(t)

S(t) = − d

dt
logS(t) (4.5)

S(t) = exp
[
−
∫ t

0
h(u)du

]
(4.6)
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The survival and hazard functions are fundamental to survival analysis, as

these are predominately used to communicate risk and the event rate. These

functions will be discussed further in the context of survival models in later

sections.

4.5 Kaplan-Meier Estimator

Statistical methods for survival analysis broadly fall into three categories - non-

parametric, semi-parametric and parametric. The Kaplan-Meier estimator is the

classic method for non-parametric estimation of the survival function, namely

without assuming an underlying distributional form [163]. This is a product-

limit estimator of the survival function S(t) and is shown in Equation 4.7 [164].

The number of individuals (nj) still in the risk set just before each event time tj

is calculated, along with the number of deaths (dj) at each tj. The proportion

who are still event-free at each time tj is computed giving a survival probability

estimate. Survival probabilities are then updated at each event time tj by taking

the product of the current survival probability and all preceding probabilities

[151]. The survival function is only updated when an event occurs and remains

constant otherwise, resulting in a step function [151; 165].

Ŝ(tj) =
k∏
j=1

(
nj − dj
nj

)
=

k∏
j=1

(
1− dj

nj

)
(4.7)

Several assumptions are made when estimating the Kaplan-Meier estimate.

Censored observations are assumed to be independent of the event times and

non-informative, resulting in censored observations which only contribute to the

denominator presented in Equation 4.7 and never the numerator [165; 166]. At

times where an event and censored observation are recorded it is assumed that the
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event occurs just before the censored observation [151]. Furthermore, individuals

who experience events are assumed to be independent of each other [151].

The corresponding standard error for Ŝ(t) is approximated using the delta

method via Greenwood’s formula [151]. This is given in Equation 4.8.

se
{
Ŝ(t)

}
≈ Ŝ(t)


k∑
j=1

dj
nj(nj − dj)


1
2

(4.8)

Obtaining confidence intervals for Ŝ(t) at time t requires a normal approxi-

mation, with mean Ŝ(t) and variance
[
se
{
Ŝ(t)

}]2
[151; 166]. However, this poses

a problem when Ŝ(t) is close to 0 or 1, as the upper and lower limits of the con-

fidence interval may exceed the allowed range of [0, 1] [151; 166]. To overcome

this, the normal distribution is applied to a transformation of Ŝ(t). The suggested

transformation is v̂(t) = ln
[
−lnŜ(t)

]
[166]. The corresponding standard error

for v̂(t) is given in Equation 4.9.

se [v̂(t)] ≈ 1
ln Ŝ(t)


k∑
j=1

dj
nj(nj − dj)


1
2

(4.9)

The 95% confidence intervals for Ŝ(t) are obtained by back-transforming to

Equation 4.10 [151].

Ŝ(t)exp[±1.96se{v̂(t)}] (4.10)

To demonstrate the calculation of the Kaplan-Meier estimate of the survival

function consider the following set of survival times representing 20 patients

shown in Table 4.1. The symbol + represents an individual who was right- cen-

sored at the year indicated. Conversely those without the symbol experienced an

event. Corresponding Kaplan-Meier survival estimates are shown in Table 4.2.
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Table 4.1. Hypothetical survival times for 20 patients

1 2 3 3+ 4 5 5+ 5 6 6+

7 8+ 8 9 9+ 10+ 11+ 11 13+ 15+

+ individual was censored

Table 4.2. Kaplan-Meier estimates for hypothetical survival data
for 20 patients

t nj dj
nj−dj
nj

Ŝ(t) Confidence Interval
0 20 0 1.0000 1.0000 1.0000, 1.0000
1 20 1 0.9500 0.9500 0.6947, 0.9928
2 19 1 0.9474 0.9000 0.6560, 0.9740
3 18 1 0.9444 0.8500 0.6038, 0.9490
4 16 1 0.9375 0.7969 0.5448, 0.9186
5 15 2 0.8667 0.6906 0.4361, 0.8478
6 12 1 0.9167 0.6331 0.3789, 0.8062
7 10 1 0.9000 0.5698 0.3172, 0.7591
8 9 1 0.8889 0.5065 0.2609, 0.7086
9 7 1 0.8571 0.4341 0.1981, 0.6505
10 5 0 1.0000 0.4341 0.1981, 0.6505
11 4 1 0.7500 0.3256 0.1032, 0.5744
13 2 0 1.0000 0.3256 0.1032, 0.5744
15 1 0 1.0000 0.3256 0.1032, 0.5744
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Figure 4.2 shows the plotted step function for the Kaplan-Meier survival func-

tion for the hypothetical data, and associated 95% confidence interval.
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Figure 4.2. Plot of Kaplan-Meier survival estimates computed
from hypothetical survival data from 20 individuals

4.6 Modelling survival data

The Kaplan-Meier estimate is useful for giving an overall estimate of survival in

a specified group, or to compare survival between groups. However, in clinical

studies it is usual to collect data on patient characteristics such as age and sex

and also assess their impact on survival [151]. To accomplish this a statistical

model, including patient characteristic variables, must be fitted to the survival

data. Survival models fit into two broad categories; models which are fitted

parametrically or semi-parametrically [167]. Semi-parametric models do not make
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underlying distributional assumptions for the survival times T , whilst parametric

models do [167]. In this section several models will be introduced, including

the Cox proportional hazards model (see section 4.6.1), which will be applied in

Chapter 8; the Weibull (section 4.6.3) and flexible parametric models (section

4.6.8), which will feature in Chapters 6 and 7.

4.6.1 Cox model

The Cox model is most frequently implemented with the aim to model survival

data whilst accounting for and establishing the effect of predictive factors on the

outcome of interest [39; 42]. The Cox model specification of the hazard function,

hi(t | x), for the ith individual is presented in Equation 4.11 [168]. This is made

up of the product of the baseline hazard function h0(t) and the linear predictor

consisting of the vector of explanatory variables xi and the corresponding vector

of coefficients β. The baseline hazard represents the underlying common hazard

rate when all covariates xi are set to 0, and remains unspecified [39].

hi(t | x) = h0(t) exp (βxi) (4.11)

The coefficients, β, for the explanatory variables are estimated on the log

scale and exponentiated to produce hazard (rate) ratios. These exponentiated

estimates of β represent the ratio of the hazard rate for a chosen value of the

covariate and the corresponding hazard rate for the baseline value of the covariate

[39]. For example, for a categorical variable sex, if male is coded as the reference

value 0 then the hazard ratio for sex expresses how much larger (or smaller) the

event rate is for females when compared to males. This is shown in Equation

4.12.
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HRij = hi(t)
hj(t)

= h0(t)eβ1Female

h0(t)eβ1Male
= eβ1 (4.12)

4.6.2 Proportional hazards

A key assumption of the Cox model is one of proportional hazards. This explicitly

requires that the ratio of hazard rates for two individuals, with fixed covariate

patterns, to be constant over time [165; 168]. The assumption can be formally

written as in Equation 4.13 [168]. The ratio of the hazard function for individual

i and individual j can be reduced to a ratio of the linear predictor of covariates

for each individual, resulting in a constant which is independent of time [165].

hi(t)
hj(t)

= h0(t)eβxi
h0(t)eβxj = eβxi

eβxj
(4.13)

The Cox model falls into the semi-parametric class of model. The parametric

portion of the model is given by the explanatory variables and the associated

β coefficients, whilst no functional form is assumed for the underlying baseline

hazard [167]. Estimation of log hazard ratios β is independent of the baseline

hazard function, via maximising the partial likelihood, which is introduced in

Equation 4.14 [165; 169]. Let i represent those participants at risk of event j,

with t(j) denoting failure times and x(j) the covariate vector for the individual

experiencing an event at t(j). R(t(j)) represents those still at risk up to the event

time t(j).

PL(β) =
d∏
j=1

exp(βx(j))∑
i∈R(t(j)) exp(βxi)

(4.14)

The estimation of model coefficients assumes there are no ties, in that no two

individuals experience an event at the same time. In the event of ties, Breslow’s

estimator is commonly utilised to approximate the partial likelihood [170].
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4.6.3 Weibull Model

Unlike the semi-parametric Cox model, parametric survival models assume a

functional form for the baseline hazard by allowing the survival times to follow a

particular distribution. The advantage of modelling wholly parametrically lies in

the relative ease with which predictions can be obtained through direct estimation

of the baseline hazard function and without resorting to an approximation, such

as the Breslow estimator [171]. This feature of parametric survival models will

inform the choice of model in Chapters 6 and 7.

The most commonly assumed distribution for the survival times is the Weibull

distribution as shown in Equation 4.15. This consists of scale and shape parame-

ters as denoted by λ and γ respectively. Figure 4.3 illustrates the baseline hazard

function for different values of γ. More formally the Weibull baseline hazard

function can be written as in Equation 4.16 [151]. Note that when γ = 1, the

baseline hazard is constant and reduces to the exponential functional form [165].

Otherwise the function is monotonic, which increases over time when γ > 1 and

decreases over time when γ < 1. This in itself is a disadvantage of assuming a

Weibull distribution for the survival times, as it is more likely that the hazard

will change more fluidly over time [41]. Flexible parametric models, which will

be introduced in 4.6.8, allow for turning points in the baseline hazard modelled

using restricted cubic splines (RCS).

S(t) = exp {−λtγ} (4.15)

h0(t) = λγtγ−1 (4.16)
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Figure 4.3. Examples of a Weibull baseline hazard function for
0.5 ≤ γ ≤ 3

The Weibull hazard function for the ith individual is expressed in Equation

4.17. The λ term is incorporated into the constant term of the linear predictor,

so that β0 = ln(λ).

hi(t) = λγtγ−1 exp (β1x1i + · · ·+ βpxpi)

= γtγ−1 exp (β0 + β1x1i + · · ·+ βpxpi)
(4.17)

4.6.4 Parametric model estimation

The estimation of a general parametric PH model is via maximum likelihood

with respect to the unknown scale, shape and regression parameters; λ, γ and β

[151]. Estimation in this case must account for those who are censored. As it is
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not known when these individuals experience an event, the probability that they

have an event after their censoring time is used to evaluate the likelihood. This

is equivalent to the survival function calculated at the censoring time [151].

Equation 4.18 shows the likelihood contribution for the ith individual, which is

expressed in terms of the hazard and survival functions [151]. The event indicator

is denoted by the term di, taking 1 in the case of an event at time ti and 0

otherwise.

L(β, γ, λ) =
n∏
i=1

[hi(ti)]di S(ti) (4.18)

The corresponding log likelihood is presented in Equation 4.19 [151].

lnL =
n∑
i=1

[di ln h(ti) + lnS(ti)]

=
n∑
i=1

[di {βxi + ln λγ + γ ln ti} − λ exp(βxi)tγi ]
(4.19)

The log-likelihood is maximised by implementing the Newton-Raphson algo-

rithm. This method approximates the score vector (vector of first derivatives)

using a linear function of each parameter[172]. The linear function consists of

a first-order Taylor series approximation which is set equal to zero and solved

for an estimate of the parameter. This is updated iteratively until the change in

the log likelihood between iterations becomes small according to an acceptable

tolerance level [172].

4.6.5 Delayed entry

Equation 4.18 assumes that individuals are at risk of the event from t = 0. Anal-

yses in Chapters 6, 7 and 8, however, will assume delayed entry. The likelihood

function is then adjusted as in Equation 4.20 to incorporate S(t0i), the survival
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function at the entry time t0i for the ith participant [173]. The corresponding log

likelihood contribution is expressed in Equation 4.21.

L(β, γ, λ) =
n∏
i=1

[hi(ti)]di S(ti)
S(t0i)

(4.20)

lnL =
n∑
i=1

[di ln h(ti) + lnS(ti)− lnS(t0i)]

=
n∑
i=1

[di {βxi + ln λγ + γ ln ti} − λ exp(βxi)tγi + λ exp(βxi)tγ0i]
(4.21)

4.6.6 Model comparison

Models can be compared using Akaike’s Information Criterion (AIC) or the

Bayesian Information Criterion (BIC). Modelling decisions in later chapters, par-

ticularly when considering the functional form of the baseline hazard function,

will be based on the AIC. The AIC and BIC estimate how far the model deviates

from the data, whilst including a penalty term for increasing model complexity

[174; 175]. The BIC implements a more severe penalty when compared to the

AIC. The estimation of each criterion is given in Equations 4.22 and 4.23 [176].

In each case, L refers to the likelihood, N to the number of observations or the

number of events in a survival context and k the number of parameters estimated

in the model.

AIC = −2 ln(L) + 2k (4.22)

BIC = −2 ln(L) + 2 ln(N)k (4.23)
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4.6.7 Time-dependent effects

The PH assumption (see section 4.6.2) may not always be satisfied for a given

variable. In these cases the assumption can be relaxed through the inclusion of a

covariate interaction with time [177]. This then allows the corresponding hazard

ratio for the time-dependent covariate to vary over time [39]. An example of a

model with a time-dependent effect for covariate x is given by Equation 4.24. The

linear predictor of the hazard function is now a function of time g(t). The most

commonly chosen interaction with time is g(t) = ln t, particularly where very

large survival times may influence the parameter estimate for the interaction

[177].

hi(t | xi) = h0(t) exp ([β1 + ηg(t)]xi) (4.24)

Resulting (log) hazard ratios for time-dependent effects can be plotted against

time as shown in Figure 4.4. Inclusion of time-dependent effects increases com-

putational burden as it requires the estimation of the linear predictor for all indi-

viduals at risk, at all event times [151]. Furthermore, inclusion of time-dependent

effects necessitates appropriate modelling of the baseline hazard function [178].
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Figure 4.4. Plot of the log-hazard ratio for a time-dependent covariate

4.6.8 Flexible parametric models

Flexible parametric models (FPMs), first introduced by Royston and Parmar

[179], are fitted parametrically with a fully specified baseline hazard [179]. Re-

stricted cubic splines are used to model the baseline log cumulative hazard func-

tion, lnH0(t), which allows complex non-linear hazards to be modelled [179; 180].

RCS functions are made up of piecewise polynomials, which are connected at

points called knots. To ensure they are smooth, the function and its first and

second derivatives are constrained to be continuous at the join points [181]. In

addition they are forced to be linear before the first and after the last knot, to

provide stability and sensible extrapolations [182]. Formally an RCS function,

s(x), for knots k1, · · · , kK is presented in Equation 4.25 [178].
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s(x) = γ0 +
K−1∑
i=1

γiBi(x) (4.25)

γi represents the parameter values. For K number of knots there are K − 1

corresponding basis functions Bi(x) estimates, which are defined as in Equation

4.26, where (x − k1)3
+ is 0 if the value is not positive. Furthermore, λi = kK−ki

kK−k1

[178].

Bi(x) =


x, if i = 1

(x− ki)3
+ − λi(x− k1)3

+ − (1− λi)(x− kK)3
+. if i = 2, · · · , K − 1

(4.26)
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Figure 4.5. Example of a restricted cubic spline function with 4
degrees of freedom
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An example of an RCS function with three internal knots at x = 7, 11, 15 and

2 boundary knots at x = 4, 18 is shown in Figure 4.5. The Weibull model is used

as the basis for the FPM. The ln(t) term of the Weibull log cumulative hazard

function, however, is instead expanded out into a cubic spline basis function [182].

Assuming proportional cumulative hazards, which follows on from assuming PH

(see section 4.6.2), the FPM can be represented by Equation 4.27. This is the

sum of the RCS function s {ln (t) | γ,k0}, with knots k0 and the explanatory

variables xi and associated parameter estimates β [182].

ln {H(t | xi)} = ln [H0(t)] + xiβ = s {ln (t) | γ,k0}+ xiβ (4.27)

A sufficient number of knots should be specified to capture the log baseline

cumulative hazard, though consideration should be given to the location. Sensi-

tivity analyses have shown that the number of knots chosen is of more importance

than the location. In particular the hazard and survival functions are insensitive

to the location of the knots [178]. By default software packages (e.g. stpm2) place

knots at the boundaries of the uncensored log survival times, whilst internal knots

are spaced evenly at the relevant number of centiles of the uncensored log survival

times [41]. So for a model with three degrees of freedom two internal knots will

be placed at the 33rd and 66th centiles. A comparison of baseline hazard and

survival functions for the Weibull model and various FPMs of differing degrees

of freedom are shown in Figure 4.6. As these are parametric models, survival

predictions can be obtained in a straightforward manner by transforming to the

survival function using Equation 4.28.

S(t | xi) = exp [−{H(t | xi)}] (4.28)

74



.07

.08

.09

.1

.11

.12

Ba
se

lin
e 

ha
za

rd

0 3 6 9 12 15
Time, years

Weibull
df=2
df=3
df=4
df=5

.2

.4

.6

.8

1

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0 3 6 9 12 15
Time, years

Weibull
df=2
df=3
df=4
df=5

Figure 4.6. Baseline hazard and survival functions for the
Weibull model and flexible parametric models of differing degrees
of freedom

Though proportional (cumulative) hazards are assumed this can be relaxed in

the FPM framework. Equation 4.29 shows the model formulation with the inclu-

sion of time-dependent effects. These take the form of covariate (xij) interactions

with spline modelled time functions s(ln t | δj,kj).

ln {Hi(t | xi)} = s {ln (t) | γ,k0}+
D∑
j=1

s {ln (t) | δj,kj}xij + xiβ (4.29)

The FPM framework presented will be used to allow for non-linear specifica-

tion of the log cumulative baseline hazard within the survival submodel of the

joint longitudinal-survival model in Chapters 6 and 7.
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4.7 Discussion

Methods to analyse survival data have been introduced in detail, in order to

provide a grounding for applied analysis in future chapters. The Kaplan-Meier

estimator will feature across Chapters 6 and 7. Parametric models, both the

Weibull and the extension to the FPM will be used as the basis of the survival

submodel of the joint-longitudinal survival models for time to miscarriage and

longitudinal hCG. The prediction of survival probabilities is of utmost importance

for these models and hence the specification of the baseline hazard plays a crucial

role. The interplay between longitudinal and survival submodels and estimation

of individualised predictions will be elaborated on further in Chapter 5, which

will introduce joint longitudinal-survival models. Where the analysis is interested

in only the effect of a specific covariate, the Cox model will be favoured over

parametric models. This will be the case in Chapter 8, in which the timing of

intercourse and its effect on the hazard of miscarriage will be investigated.
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Chapter 5

Joint longitudinal-survival models

5.1 Chapter overview

In this chapter methods detailed in Chapters 3 and 4 will be consolidated to

introduce techniques which allow the joint modelling of time-to-event and longi-

tudinally observed data. Naive methods which have been used as a prelude to

the development of the joint longitudinal-survival model will be discussed. The

traditional frequentist joint longitudinal-survival model and its estimation will

be explained in detail, as well as the important extensions these models con-

tribute to the landscape of individualised predictions. Methods for joint model

assessment, which extend current methods to incorporate dynamically changing

observations and censoring, will be presented. Finally, alternatives to the shared

random effects joint model framework for simultaneously modelling longitudinal

and survival data will be introduced.

5.2 Introduction

The repeated collection of biomarker measurements alongside a survival outcome

is common place in clinical practice, particularly in the case of long term con-

ditions which require careful monitoring. Such scenarios may include glucose

measurements and a diabetic event such as hypo- or hyperglycaemia or perhaps

blood pressure and a cardiovascular event [33; 110]. This repeated collection has
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led to the compilation of information-rich electronic databases which can provide

detailed pictures of disease progression [183]. Even so many prognostic modelling

techniques continue to use snapshot baseline information to assign risk. Where

longitudinal information is used to its full extent, the important statistical task

revolves around appropriately modelling the association between the longitudi-

nal biomarker and the time-to-event outcome, hence the development of the joint

longitudinal-survival model.

5.2.1 Personalised medicine

Disease characteristics and presentation vary by patient, so much so, that a

person-centred approach towards treatment has long been advocated. Tailor-

ing treatments and interventions to an individual, based on their particular set

of risk factors and predicted prognosis, represents an about turn on traditional

‘one-size fits all’ approaches to patient care, which require corresponding statisti-

cal techniques [184; 185]. Biomarker profiles can provide a personalised medium

through which to establish disease progression, by acting as surrogate markers for

the outcome of interest [186]. Surrogate markers prove advantageous in a clinical

trial setting, resulting in comparatively shorter trials with an easier and cheaper

to measure endpoint [187]. For outcomes such as cancer survival it is already

standard practice to look at alternative measures closely associated to disease

progression to tailor treatment to the patient. For example, in prostate cancer

patients it is usual to monitor prostate-specific antigen (PSA)[188; 189; 190]. In

order to make inferences about the survival endpoint by way of the biomarker

observations, it is necessary for the two outcomes to be linked statistically. Fur-

thermore, individual monitoring can only be achieved if the fitted model allows

for subject-level inferences to be made. The joint-longitudinal-survival model

links longitudinal and survival models through shared random effects, allowing
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for variation to be modelled between individuals [29]. This ultimately allows the

prediction of subject-specific effects, and monitoring at the patient level.

5.2.2 Informative drop-out

Studies in which biomarkers are observed repeatedly over time frequently expe-

rience a level of patient drop-out. This can affect the timing and number of

observations collected per individuals. Where it is suspected that the drop-out is

associated with the underlying biomarker response then it is classified as missing

not at random, as discussed in Chapter 3 section 3.3.1. This can affect infer-

ences if the analysis is conducted on a complete case basis. The joint modelling

framework has been proposed to model the association between the biomarker

and drop-out mechanisms to investigate the underlying dependency [191]. In a

similar fashion where a biomarker is strongly associated with a a time-to-event

outcome, the joint model can be said to be modelling an informative drop-out

process. It is likely sicker patients will have more extreme biomarker observa-

tions, and in turn will probably drop-out sooner than a healthier patient. An

example of this is quality of life (QOL) and survival in cancer studies, where a

poorer QOL score may indicate a greater risk of death and therefore drop-out

[29; 114]. Information presented in this chapter will be based on the biomarker

as a surrogate for a time-to-event outcome, with focus on the subject-specific

estimates which are integral to dynamic monitoring.

5.3 Simple approaches to joint modelling

The joint longitudinal-survival model first emerged in the late 1990s and early

2000s, motivated by the desire to simultaneously model an intermittently ob-

served longitudinal biomarker, subject to measurement error, and a time-to-event

outcome in the context of human immunodeficiency virus (HIV) progression
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[32; 192]. Prior to this simplistic approaches were used, such as the survival

model with inclusion of a time-varying biomarker covariate, which will be dis-

cussed briefly in section 5.3.2. Improving upon this, the two-stage model has

implemented both the LMM and survival model (see Chapters 3 and 4) in a two

step procedure and will be presented in section 5.3.3. First it is important to

note that biomarkers broadly fall into two categories, endogenous and exogenous,

which will be defined in the next section.

5.3.1 Endogenous and exogenous covariates

Time-dependent covariates come in different forms with distinguishing features

and modes of treatment as a result. Endogenous or internal covariates and exoge-

nous or external covariates will be defined here [36; 37]. Let Ti be the observed

survival time for individual i. Following the exposition by Rizopoulos [37], let

yi(t) represent the covariate vector at time t for individual i, with the complete

covariate history denoted by Yi(t) = {yi(s), 0 ≤ s < t}. Then formally an ex-

ogenous covariate satisfies Equation 5.1 for all s, t such that 0 < s ≤ t and

ds→ 0.

Pr{s ≤ Ti < s+ ds | Ti ≥ s, Yi(s)} = Pr{s ≤ Ti < s+ ds | Ti ≥ s, Yi(t)} (5.1)

This suggests that yi(.) is associated with the event over time. Yet, an event at

time s remains independent of the future profile of yi(.) at time t > s. Examples

of such external covariates are time of day or seasons of the year, which would

not directly impact the occurrence of an event.

Longitudinally observed biomarker observations, such as hCG, fall under the

endogenous covariate category. These are internal because their existence relies
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on the survival of the patient. This means that the biomarker history informs the

timing of the event if it occurs, as the biomarker can only be observed if the patient

remains event-free. For example hCG can only be observed if the pregnancy

progresses and is not miscarried. This relationship is defined in Equation 5.2, so

that a person must be alive to contribute for the biomarker to be measurable.

Si(t | Yi(t)) = Pr(Ti > t | Yi(t)) = 1 (5.2)

Endogenous covariates, often biomarkers repeatedly observed for an individ-

ual, are intrinsically linked to the survival outcome, particularly when that event

is death. Furthermore, the nature of an endogenous biomarker means it is mea-

sured with error and often observed intermittently. The dependency between the

two outcomes requires appropriate modelling, so that the association is estab-

lished whilst accounting for the features of endogenous biomarkers. This has led

to the development of statistical methods which can simultaneously model both

outcomes.

5.3.2 Survival model with time-varying covariate

It is standard practice to include baseline-measured covariates in a survival model.

In the case of biomarker observations it is common, in the context of prognos-

tic models, to include only the initially observed biomarker measurement in the

model. However, this approach ignores valuable time sensitive information which

could be gleaned from the repeated observations. From an economic point of view

however, collecting panel data when there is no intention of utilising it wastes

valuable resources [193]. The most basic way of estimating the dependency be-

tween a longitudinal observed biomarker and survival outcome is to fit a standard
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proportional hazards model (see Equation 4.11) and include the biomarker as a

time-varying covariate [30]. The model then becomes,

hi(t,xi, Yi(t)) = h0(t) exp [xiβ + αyi(t)] (5.3)

A reminder that h0(t) represents the baseline hazard which can be modelled

via a chosen distribution or be left unmodelled as discussed in sections 4.6.3 and

4.6.1. Baseline covariates, i.e. not time-varying, are represented by the vector

xi with corresponding vector of log hazard ratios β. The repeated biomarker

observations yi(t) have associated parameter estimate alpha which is the log

hazard ratio for a unit increase in the biomarker.

For a continuous biomarker, however, this does not provide the most appropri-

ate method of analysis, namely due to issues surrounding the intermittently mea-

sured biomarker. First of all a continuous measurement, due to reasons discussed

in section 3.3, is often measured with error [38]. However the disparity arises,

this measurement error cannot be accounted for using a survival model and so

estimates can be unrealistically precise with a small standard error [28]. Secondly,

inclusion of the time-varying covariate assumes that the sporadically measured

biomarker measurements remain constant between observed values. Figure 5.1

illustrates this phenomena. The resulting model will then likely underestimate

the size of the association [194]. A standard survival model with a time-varying

covariate uses a last observation carried forward (LOCF) approach, where the

hazard at time t is based on the last observed biomarker value [33]. As more

time elapses between measurements, a greater level of measurement error will be

introduced and the strength of the association will be further diluted. Addition-

ally observations taken for the same individual are likely to be correlated and a

time-varying covariate does not account for this within-person variation. It is not
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expected that a continuous biomarker will remain constant between measurement

times, or that a series of measurements for a given individual are independent. As

a result, a survival model including a time-varying continuous biomarker cannot

appropriately model the relationship between repeated measurements and time

to event.
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Figure 5.1. Observed longitudinal biomarker values as modelled
in a survival model with time-varying covariate

5.3.3 Two-stage model

Two-stage models, are by definition models fitted in two stages. They aim to

go some way in addressing concerns surrounding measurement error and inter-

mittently observed biomarkers, by first modelling the longitudinal profile using a

linear mixed effects model. The subject-specific values from this model are then
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included in a survival model as a time-varying covariate, so that it is possible to

estimate the association between the repeatedly measured biomarker and time to

event. This was developed to model AIDS progression and CD4 counts [195]. This

is an improvement on the standard survival model with time-varying covariate as

the longitudinal biomarker information is being appropriately modelled.

As discussed in section 3.5, the advantage of modelling panel data using linear

mixed effects models are that they can give us subject-specific estimates in addi-

tion to the standard population-average estimates. The general formulation of the

LMM for a biomarker response variable Y (t) for the ith individual is presented

once more in Equation 5.4.

yij(t) = Xi(tij)β + Zi(tij)ui + eij

ui ∼MVN(0,G) eij ∼ N(0, σ2
e) (5.4)

Xi denotes the design matrix of fixed effects for patient i, with associated fixed

effects parameters β. Zi is the design matrix for the random effects and ui the as-

sociated random effect parameters. The random effects parameters are assumed

to be multivariate normally distributed with mean 0 and matrix of variance com-

ponents G. The residual error term eij takes into account the measurement error

associated with continuous biomarkers and is normally distributed with mean 0

and level one or within-subject variance σ2
e .

Modelling longitudinally measured biomarkers in this way allows measure-

ment error to be accounted for and also builds a complete profile by implicitly

estimating the true unobserved biomarker values, essentially filling in the gaps

between the intermittent observations. This model allows inferences at the indi-

vidual level. The LMM can be crudely linked to the time-to-event outcome by

defining a survival model which also includes the output of the longitudinal model,
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effectively combining the two. Firstly, the fitted values for the linear predictor

are obtained as a combination of the fixed effects and subject-specific deviation

from the mean response. The subject-specific deviations are the BLUPs for the

random effects based on the specification of the fitted longitudinal model. The

corresponding survival model includes the individualised predictions, m̂i(t), as a

time-varying covariate and is shown in Equation 5.5. This allows estimation of

the association, α, between the change in biomarker and time-to-event outcome.

The log hazard ratio for a unit increase in the fitted subject-specific predictions

of the biomarker is represented by α. The model is similar to the time-varying

covariate case (Equation 5.3), with the biomarker observations now appropriately

modelled.

hi(t,xi,mi) = h0(t) exp [xiβ + αm̂i(t)] (5.5)

This method is computationally attractive as it is simple to fit in statistical

software. Although the method reduces bias when compared to the time varying

covariate approach, the uncertainty in estimates from the longitudinal stage are

not carried through to the survival stage. This means that the estimates are too

precise, with unrealistically small standard errors [28; 196]. In addition as there is

no dependency structure between the two models informative drop-out is not con-

sidered [28]. Though true unobserved biomarker values have been estimated, pre-

dictions are still based on the discrete times at which the biomarker was observed.

As a result the survival model estimates are again based on the assumption that

values do not change between measurements. Despite being an improvement on

previous methods, the two-stage approach continues to have drawbacks. How-

ever, the two stage model is a reasonable option when computational efficiency
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is a concern, as can be the case when fitting joint longitudinal-survival models

particularly in small sample settings.

5.4 Joint longitudinal-survival models

Up to now, conventional methods for simultaneously modelling longitudinal and

time-to-event data have been discussed. The shortcomings of standard techniques

suggest a model developed specifically for the joint modelling of the two types of

outcome is required.

5.4.1 Development of the joint model

Joint longitudinal-survival models, briefly joint models, first arose in the field of

AIDS in the late 1990s, and purported to address two aspects of the analysis

of longitudinal and survival data. Through use of a Markov chain Monte Carlo

(MCMC) technique, the authors modelled repeated measurements of CD4 counts

as a function of time whilst also relating the effect of the biomarker on time to

diagnosis of AIDS [197]. Since this initial analysis, further inroads have been made

in joint modelling, both within a frequentist and Bayesian framework [30; 198].

Wulfsohn and Tsiatis [192] first proposed joint maximization of the likelihood from

both the longitudinal process and survival data, also in the area of HIV/AIDS.

In particular the necessity of incorporating the longitudinal data into the time-

to-event process was emphasized, to minimize previously identified biases due

to measurement error and intermittently measured biomarkers [192; 194]. A

combination of a mixed effects model to build a longitudinal trajectory for the

biomarker and a survival model to describe the associated risk of event have

been advocated for their efficiency [32]. Further developments have been seen

in cancer, particularly in modelling the association between repeated PSA and

prostate cancer recurrence [188]. Since their inception, joint longitudinal-survival
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models have been extended to settings with alternative time-to-event submodels,

competing risks and incorporation of multiple longitudinal biomarkers [34; 50;

199]. Advances have also been made in the availability of statistical software,

which can now fit these types of models with relative speed and efficiency [38;

200; 201; 202].

5.4.2 Joint model formulation

The classical (frequentist) joint model, which will be the focus here, can be

thought of in terms of two component models. Joint models were first developed

in the context of continuous biomarkers, so the longitudinal part has traditionally

consisted of a linear mixed effects model, described in Equation 3.1. The sur-

vival submodel is a proportional hazards model. As with the two-stage approach

measurement error is accounted for via the mixed effects model. In the context

of the joint model, it is now reparameterised in terms of the trajectory function

mi(t) (see Equation 5.6). This estimates the true unobserved, subject-specific

values of the biomarker mi(t) for the ith patient at time t, effectively removing

measurement error and addressing concerns around the intermittent observations

[203].

yi(t) = mi(t) + ei(t) ei(t) ∼ N(0, σ2
e)

mi(t) = Xi(t)β + Zi(t)ui ui ∼MVN(0,G) (5.6)

The trajectory function is made up of a combination of fixed and random effect

design matrices, Xi and Zi respectively with corresponding parameter estimates

β and ui. The error terms ei(t) are normally distributed with variance σ2
e , and is
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independent of the random effects and that residual errors are independent (see

Equation 3.2).

A proportional hazards survival submodel is assumed (see section 4.6.2). Bor-

rowing notation from Rizopoulos [30], let us define Mi(t) = {mi(s), 0 ≤ s ≤ t} to

be the true unobserved longitudinal profile up to time t. The survival submodel

is then given by,

h(t|Mi(t),xi) = h0(t) exp [xiβ + αmi(t)] (5.7)

Here, h0(t) again represents the baseline hazard function and xi gives a set of

baseline time-independent covariates with associated vector of log hazard ratios

β. The term αmi(t) is the current value parameterisation. The association

parameter α is the log hazard ratio for a unit change in the absolute current value

of the biomarker trajectory. Alternative association structures will be discussed

in section 5.5. This model is underpinned by shared random effects ui as the

entire trajectory function is incorporated into the survival submodel. This shared

random effects (SREM) joint model will be the default model discussed in this

chapter, unless otherwise indicated. Incorporating the longitudinal submodel

into the survival submodel effectively links the expected value of the longitudinal

response to the survival time, where typically a response would not have been

observed [52]. Figure 5.2 illustrates how the biomarker observations are modelled

by a joint longitudinal-survival model.
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Figure 5.2. Observed longitudinal biomarker values as modelled
in a joint longitudinal-survival model

The corresponding survival function is described in Equation 5.8.

S(t |Mi(t),xi) = exp
(
−
∫ t

0
h0(u) exp {xiβ + αmi(u)} du

)
(5.8)

The survival function is directly dependent on the trajectory function mi(t).

With the inclusion of random effects and consequently subject-specific biomarker

profiles, the framework naturally lends itself to individualised prediction. This

will be discussed further in section 5.11.2. The integral in the survival function

is analytically intractable and requires numerical integration to evaluate. This

is due to the time-dependency of the longitudinal profile, and as a result makes

estimation of the joint model complex. Numerical integration methods will be

presented in section 5.6.
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5.4.3 Baseline hazard

Several choices of baseline hazard have been proposed. The original development

of the joint model utilised the semi-parametric Cox model [31]. As discussed in

section 4.6.1, the Cox model does not assume a functional form for the base-

line hazard and therefore avoids possibly incorrect distributional assumptions.

Conversely, avoiding estimation of the baseline hazard means absolute risk pre-

dictions, a great driver for using joint models, cannot be obtained in a straight-

forward manner [42; 171]. Furthermore, leaving the baseline hazard unspecified

results in the underestimation of standard errors [204]. Bootstrapping as a means

of obtaining the standard errors adds an additional computational component to

an already complex estimation procedure (see section 5.6)[54].

A parametric framework is preferred for the prediction of conditional survival,

with the Weibull distribution a popular choice. Splines provide a flexible alter-

native, as they can be tailored in their number and placement over the follow-up

time. Restricted cubic splines will be explored to model the baseline hazard of

early pregnancy loss in Chapters 6 and 7 [182]. Alternative spline functions which

have been proposed include (penalized) b- and p-splines [205]. The former will

be implemented in the Bayesian joint model application in Chapter 7.

5.5 Association structures

The current value association structure is the standard parameterisation for joint

models, where α is the log hazard ratio for a unit increase in the absolute value of

the biomarker at time t. It may not always be realistic to assume that changes in

survival are related to an increase in absolute changes in the biomarker trajectory.

In this section alternative association structures, which may be more clinically

meaningful will be explored.
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5.5.1 Random effects association

The original proposal for the joint model was motivated by the use of the random

effects association structure to model informative dropout [206]. This includes

only the random effects of the longitudinal submodel in the linear predictor of

the survival submodel, shown in Equation 5.9 [207].

hi(t) = h0(t) exp
[
xiβ + αTui

]
(5.9)

This parameterisation allows for a vector αT of association parameters, which

correspond to the random effects included in the longitudinal submodel. So for

a random intercept and random slope model the survival submodel under the

random effects parameterisation is presented in Equation 5.10.

hi(t) = h0(t) exp [xiβ + α1ui0 + α2ui1] (5.10)

The association parameters α1 and α2 give the log hazard ratio for one unit

increase in the subject-specific deviation from the population-average intercept

and slope respectively. For a biomarker where higher values equal greater risk, α1

describes the increase in hazard for individuals who have a higher than average

biomarker value at baseline. Whilst α2 describes the increase in hazard for those

individuals who have a steeper than average slope. When only the subject-specific

deviations are included in this way, the association structure is time-independent,

which leads to a closed-form solution for the integral of the survival function [207].

The addition of further random effects to model the slope non-linearly can lead to

difficulty in interpreting the resulting α parameters. For example, for a trajectory

modelled using a linear and quadratic time term, it would be difficult to separate

the effects of each of the corresponding association parameters [207].

91



5.5.2 First derivative association

An important structure which will be applied to the pregnancy outcome context

is the first derivative or rate of change parameterisation [207].

h(t|Mi(t),xi) = h0(t) exp [xiβ + α1mi(t) + α2m
′
i(t)] (5.11)

where

m′i = d

dt
mi(t) = d

dt
{Xi(t)β + Zi(t)ui}

Here α2 represents the log hazard ratio for a unit increase in the change in

slope of the longitudinal trajectory function mi(t) at time t. As in the case of

hCG and early pregnancy loss, absolute increases in a biomarker may not ex-

plain the entire association with the survival outcome (see Chapter 7). Rather,

a change in the rate of increase of the biomarker could be an indicator of pro-

gression. It has been shown that the rate of change association is sensitive to

misspecification of the longitudinal trajectory, particularly if a simple linear tra-

jectory is assumed when the relationship is more complex [52]. Subsequently, all

possible attempts to appropriately model the longitudinal trajectory should be

made before fitting a rate of change association. It is common for the rate of

change to be modelled alongside the current value association, and introducing

an additional parameter for estimation also increases computational complexity.

This association structure models a change in linear slope, which is illustrated in

Figure 5.3.
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Figure 5.3. Conceptual representation of the first derivative as-
sociation structure

5.5.3 Cumulative effects association

The current value association assumes that the risk of an event at time t depends

only on the biomarker response at that same time-point. There may be a case

for advocating an association structure which incorporates the cumulative effect

of the longitudinal outcome up to time t. Scenarios where the cumulation of

an effect may be of interest include exposures to a drug over time or possibly

the long term history of smoking [207]. Including the integral up to time t of the

trajectory function in the survival submodel allows the entire longitudinal history

up to t to be associated with the log hazard ratio α. The survival submodel with

cumulative effects association structure is presented in Equation 5.12.
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hi(t) = h0(t) exp
{

xiβ + α
∫ t

0
mi(s)ds

}
(5.12)

The integral estimates the area under the curve (AUC) of the longitudinal

trajectory with log hazard ratio α interpreted as the log hazard ratio for a unit

increase in the AUC. A weight function w̄(.) that varies across time can be in-

troduced to place greater emphasis on certain observations. This is shown in

Equation 5.13.

hi(t) = h0(t) exp
{
xiβ + α

∫ t

0
w̄(t− s)mi(s)ds

}
(5.13)

It would be sensible to place greater weight on more recent observations as

opposed to those observed further back in time. Weight functions which achieve

this end, include the normal, logistic and Student’s T distributions [207]. The

integrals for the weighted cumulative effect do not have closed form solutions,

requiring numerical integration techniques discussed in section 5.6.

5.5.4 Non-linear association structures

The association structures discussed all estimate the association parameter for a

linear change of the chosen structure. There has been little research into mod-

elling non-linear association structures. For example, it may be more meaning-

ful to look at the effect of an increase in the quadratic or cubic value of the

biomarker trajectory on the time-to-event outcome. Blood pressure is one exam-

ple of a biomarker which does not have a linear risk profile. Extreme values, both

very low and very high, are expected to carry greater risk of an event, result-

ing in a U or J shaped hazard. This indicates a quadratic association between

the biomarker trajectory and hazard and could lead to biased effect estimates

if modelled assuming linearity. The simulation study conducted in Chapter 9
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proposes to investigate the effect of misspecification of a non-linear association

on predicted survival estimates.

5.6 Likelihood Estimation

Estimation of the joint model is a complex task, which is why simpler methods

continue to be implemented (see sections 5.3.2 and 5.3.3). Much of the literature

on joint models is based on the frequentist framework, although Bayesian esti-

mation is receiving increasing attention as it bypasses the necessary numerical

integration required for estimating the random effects in the likelihood method

[198]. The classical shared random effects joint model will be the focus here,

although the Bayesian estimation using Markov Chain Monte Carlo (MCMC)

methods will be discussed in section 5.8.

The SREM is estimated through a full maximum likelihood approach. The

log-likelihood is defined for the joint distribution of {Ti, di, yi}, which refer to

the observed survival time, event indicator and longitudinal response for the ith

individual where i = 1, · · · , n. The observed survival time is the minimum of the

true survival time Si and the censoring time Ci, so that Ti = min(Si, Ci). The

event indicator, di is 1 if Si < Ci and 0 otherwise [52]. Furthermore, ui represents

the vector of time-independent random effects which underpin the longitudinal

and survival outcomes. Following the approach of Rizopoulos [208] first a pa-

rameter vector θ = (θt,θy,θu) with θt,θy and θu referring to the parameters for

the time-to-event outcome, longitudinal outcome and the random-effects covari-

ance matrix respectively. The key assumption here is that the longitudinal and

survival processes depend jointly on the underlying vector of time-independent

random effects ui [196]. The random effects describe the correlation between
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repeated longitudinal observations and the purported association between longi-

tudinal and time-to-event outcomes [208]. To estimate the parameters the joint

distribution function is written as follows,

p(yi | ui;θ) =
ni∏
j=1

p {yi(tij) | ui;θ} (5.14)

p(Ti, di,yi | ui;θ) = p(Ti, di | ui;θ)p(yi | ui;θ) (5.15)

Here j refers to the specific longitudinal observation of individual i. Indepen-

dent censoring is assumed, whilst the timing of observations is considered to be

non-informative. The joint likelihood is made up of the probability density func-

tions for the conditional longitudinal submodel, random effects and conditional

survival submodel. Thus the log-likelihood contribution for the ith individual is

given by,

lnLi = ln p(Ti, di,yi;θ) = ln
∫
p(Ti, di,yi,ui;θ)dui

= ln
∫
p(Ti, di | uiθt)

 ni∏
j=1

p{yi(tij) | ui;θy}
 p(ui,θu)dui (5.16)

The conditional survival and longitudinal submodel, and random-effect den-

sity functions are given in Equations 5.17, 5.18 and 5.19 respectively.

p(Ti, di | ui;θt) = h(Ti |Mi(Ti);θt)di × S(Ti |Mi(Ti);θt)

= [h0(Ti) exp {xiβ + αmi(Ti)}]di × exp
(
−
∫ Ti

0
h0(s) exp {xiβ + αmi(s)} ds

)
(5.17)
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p {yi(tij) | ui,θy} = (2πσ2)−1/2 exp
{
− [yi(tij)−mi(tij)]2

2σ2

}
(5.18)

p(ui;θu) = (2π)−qu/2|G|−1/2 exp
(
−uTi G−1ui

2

)
(5.19)

The random effects are assumed to be multivariate normally distributed with

variance-covariance matrix G, and qu is the dimension of the random effects.

The overall log-likelihood lnL can be maximized using either or a combi-

nation of the Newton-Raphson and Expectation-Maximisation (EM) algorithms

discussed in sections 4.6.4 and 3.5.3.

The Newton-Raphson algorithm is the default method implemented in Stata

for joint modelling commands stjm and merlin (see section 5.9) [38; 140; 200].

When maximising a likelihood function to estimate a vector of parameters θ,

given the observed data X, the first derivative is computed with respect to the

parameter vector θ and solved by setting it to 0. This root-finding exercise

can be performed iteratively by updating a chosen set of initial values until the

convergence criterion are met. The steps for the Newton-Raphson algorithm, as

described by Gould et al. [140] are as follows,

(1) Start with an initial guess for θi

(2) Calculate a new guess θi+1 = θi + {−H(θi)}−1 g(θi), where g(θi) is the

gradient or first derivative vector and −H(θi) is the positive definite

matrix of second derivatives, known as the Hessian

(3) Repeat until convergence criterion are met (in Stata this is when g(θi)

H(θi)−1 g(θi)′ < ε1 where ε1 = 1× 10−05)

The Expectation-Maximisation algorithm maximises the conditional expecta-

tion of the complete likelihood function, rather than the observed data likelihood
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function[209]. In the instance of joint models the latent variables or random effect

estimates are treated as unobserved data or missing in the expectation step [208].

Once the expectation of the log-likelihood is computed for a set of initial val-

ues, a new estimate of the parameters is determined through maximisation. The

maximisation can be carried out using step 2 of the Newton-Raphson algorithm

[208]. This is repeated until the chosen convergence criterion are met. The steps

of the Expectation-Maximisation algorithm are presented as follows [209; 210],

(1) Start with an initial guess for the parameters θi

(2) Expectation step: compute Q(θ | θn) = E [lnL(θW) | X,θn]

(3) Maximisation step: obtain the new estimate θi+1 by maximising Q(θ |

θn)

(4) Repeat steps 2 and 3 until convergence is achieved

More specifically, the complete data likelihood for W = (XXm) depending

on parameters θ is given by L(θW), where X is the observed data and Xm

the unobserved data (random effects) [210]. Q(θ | θn) is the expectation of the

complete log likelihood, conditional on the current parameter estimates θn.

When utilising these algorithms, the score and Hessian must be calculated.

However, the integrals with respect to the random effects in the joint log likelihood

or the expectation of the joint log likelihood function integrals with respect to

the random effects are intractable (see Equation 5.16)[208]. Numerical integration

techniques, such as Gaussian quadrature, are implemented to approximate these

integrals for maximisation [208].
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5.7 Numerical approximation

Simple Gauss-Hermite quadrature was first used to evaluate the log likelihood

when joint models were in their infancy. The method has been used exten-

sively in the generalised linear mixed model (GLMM) framework [211]. With

time and advances in computation adaptive and pseudo-adaptive methods are

now preferred for their increased accuracy and efficiency. Simple Gauss-Hermite

quadrature will be discussed briefly before extending to adaptive quadrature.

5.7.1 Gauss-Hermite quadrature

Simple Gauss-Hermite quadrature can evaluate intractable integrals which take

the form shown in Equation 5.20 [212].

∫ ∞
−∞

e−x
2
f(x)dx ≈

m∑
q=1

wqf(xq) (5.20)

xq and wq are the corresponding quadrature nodes and weights. The weight

function is specified in Equation 5.21, with xq the qth root of the Hermite poly-

nomial Hm(x). The theory states that for ideally spaced and weighted nodes the

approximation will be exact if the polynomial is of degree 2m− 1[213].

wq = 2m−1m
√
π

m2[Hm−1(xq)]2
(5.21)

As shown by Naylor and Smith [212], if the weight function e−x2 is taken to

be the normal density, g(.) with mean and variance µ and σ2 respectively, we can

write an approximation of the quadrature based on the normal kernel[212]. For

a single random effect Equation 5.20 can be rewritten as,
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∫ ∞
−∞

f(x)g(x | µ, σ2)dx = 1√
2πσ

∫ ∞
−∞

f(x) exp
[
−(x− µ)2

2σ2

]
dx (5.22)

Writing this in terms of r, where r = (x−µ)√
2σ , the integral can be manipulated

to take the appropriate form of Equation 5.20.

∫ ∞
−∞

f(x)g(x | µ, σ2)dx =
√

2σ√
2πσ

∫ ∞
−∞

f(µ+σ
√

2r) exp−r2
dr ≈

m∑
q=1

f(µ+σ
√

2r) wq√
π

(5.23)

This last formulation is the quadrature approximation with nodes µ+ σ
√

2xq

and weights wq√
π
. Equivalent nodes and weights for a standard normally dis-

tributed kernel i.e. N(0, 1), are
√

2xq and wq√
π
respectively.

The number of random effects included in the corresponding joint model usu-

ally exceeds one, particularly as it is common to include a random intercept and

slope. This would then lead to the use of a multivariate normal kernel of dimen-

sion Q [213]. The vector of nodes, dq1,··· ,qQ = (dq1 , · · · , dqQ) for the multivariate

normal is multiplied by the Cholesky decomposition of the variance-covariance

matrix of the random effects G1/2. This ensures a positive definite covariance

matrix. The weighted log-likelihood is then computed at each node location for

each level of the random effect before the sum is taken across the total number of

random effects. The log-likelihood can be written in quadrature form as shown

in Equation 5.24. The approximation depends on the number of chosen nodes

m, and whether it is a polynomial of degree 2m − 1 or less [213]. It is usual to

increase the number of quadrature points/nodes until the difference between the
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approximations at m and m− 1 nodes is minimal. However increasing the num-

ber of quadrature points in turn increases computational burden, whilst every

additional random effect increases the load exponentially [208].

log p(Ti, di, yi;θ) = log
∫
p(Ti, di | ui;θt)

 ni∏
j=1

p(yi(tij) | ui;θy)
 p(ui;θu)dui

≈ log
m∑

u1=1
· · ·

m∑
uQ=1

p(Ti, di | G1/2du1,··· ,uQ ;θt)
 ni∏
j=1

p(yi(tij) | G1/2du1,··· ,uQ ;θy)


× vu1 · · · vuQ
(5.24)

In instances where the location or spread of the integrand is vastly different

from that of the weight function, even increasing the number of nodes will not

improve approximation[213]. Essential to note is that for each individual the log-

likelihood is evaluated at the same set of nodes centred at zero and pre-multiplied

by the Cholesky factor. It is unlikely that the choice of common quadrature points

will result in a good approximation for every individual, particularly where there

is greater variance between individuals [214].

5.7.2 Adaptive Gauss-Hermite quadrature

To combat these issues adaptive Gauss-Hermite quadrature developed by Pinheiro

and Bates [215], has now become a mainstay in estimation of the joint likelihood.

Rather than having fixed nodes centred at zero, adaptive quadrature allows the

nodes for a given individual to be shifted by ûi. This represents the amount an

individual differs from the mean. The nodes are then scaled by the standard

deviation estimate of the random effect σ̂. Equation 5.25 shows the likelihood in

terms of the normal kernal distribution centred at the random effect estimates
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and variance-covariance matrix of the random effects; φ(ui | ûi, Ĝi) [52]. The

subsequent Gauss-Hermite quadrature approximation is then given in Equation

5.26 using the transformation ri = ûi + Ĝ1/2
i du1,··· ,uQ [52].

log p(Ti, di, yi;θ) = log
∫
p(Ti, di | ui;θt

 ni∏
j=1

p(yi(tij) | ui;θy)
 p(ui;θu)dui

= log
∫ p(Ti, di | ui;θt)[

∏ni
j=1 p(yi(tij) | ui;θy)]p(ui;θu)
φ(ui | ûi, Ĝi)

φ(ui | ûi, Ĝi)dui

(5.25)

log p(Ti, di, yi;θ) ≈ (2π)Q/2|Ĝi|1/2
m∑

u1=1
· · ·

m∑
uQ=1

p(Ti, di | ri;θi)
 ni∏
j=1

p(yi(tij) | ri;θy)


× φ(ri | 0,G) exp(1
2dTu1,··· ,uQdu1,··· ,uQ)

Q∏
q=1

vuq

(5.26)

Where between-subject variation is high, this approach allows the nodes for

individuals to be located more appropriately. This is beneficial as estimates can

usually be obtained using fewer nodes overall resulting in reduced computational

burden when compared with the simple quadrature approach. For selected models

in later Chapters, estimation of the likelihood will be via adaptive Gauss-Hermite

quadrature which is implemented in Stata packages stjm and merlin. Figure 5.4

illustrates the adaptive Gaussian quadrature concept with an example.
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ui ∼ MVN(0, G)

-8 -6 -4 -2 0 2 4 6 8
ui

(a) 5-point quadrature for fixed intercept

u1

u2

ui ∼ MVN(0, G)

-8 -6 -4 -2 0 2 4 6 8
ui

(b) Individual deviations from mean

ui ∼ MVN(0, G)

-8 -6 -4 -2 0 2 4 6 8
ui

(c) Centre nodes using initial estimate of
û1

ui ∼ MVN(0, G)

-8 -6 -4 -2 0 2 4 6 8
ui

(d) Re-scale centred nodes using se(û1)

Figure 5.4. Illustration of adaptive Gaussian quadrature for es-
timating a subject-specific deviation from the mean intercept.
Adapted from Crowther [3]

5.7.3 Pseudo-adaptive quadrature

Pseudo-adaptive quadrature aims to further increase computational efficiency.

This methods relies on extracting node and scale information of the posterior

distribution of the empirical Bayes estimates of the random effects, by first fitting

a linear mixed effects for the biomarker [208]. The adaptive quadrature approach

requires the location of the mode of the random effect estimate and calculation

of the Hessian matrix for each individual at each iteration. However the pseudo-

adaptive approach proposes using only the output of the longitudinal model to
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re-center and re-scale the integrands of the log-likelihood and score vector of the

joint model [216]. This is possible by assuming that the posterior distribution of

the random effects is proportional to the specification of the log likelihood [208].

This approach negates the need for a standard transformation of variable as in

the adaptive Gauss-Hermite quadrature implementation. This pseudo-adaptive

approach can be selected as an option for evaluation of the log-likelihood in the

R package JM [201].

5.8 Bayesian estimation

Joint models can also be estimated via the Bayesian framework, with the im-

plementation of Markov Chain Monte Carlo (MCMC) algorithms. Similarly to

merlin, the R package JMbayes, which will be used to fit joint models in Chapter

7, employs the generalised linear mixed-effects model framework for the longitu-

dinal part of the model [202]. In contrast to the usual distributional assumptions,

the package makes use of B-splines, which are based on an alternative parame-

terisation of the cubic spline, to model the baseline hazard [217].

As with the frequentist approach we make the assumptions that the lon-

gitudinal and survival mechanisms are independent conditional on the random

effects and that longitudinal responses of each subject are independent of an-

other. MCMC draws from the posterior distribution of the parameters described

in Equation 5.27. Here θ refers to the full parameter vector to be estimated.

p(θ,u) ∝
n∏
i=1

ni∏
l=1

p(yil | ui,θ)p(Ti, di | ui,θ)p(ui | θ)p(θ) (5.27)

where the following holds,

p(yil | ui,θ) = exp
{

[yilψil(ui)− c{ψil(ui)}]
a(φ)− d(yil, φ)

}
(5.28)
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Here c(.), a(.) and d(.) are specified functions of a distribution from the ex-

ponential family for the GLMM, with ψil(ui) and φ respectively the natural and

dispersion parameters. The corresponding survival part is described in Equation

5.29.

p(Ti, di | ui,θ) = hi(Ti | Hi(Ti))di exp{−
∫ Ti

0
hi(s | Hi(s))ds} (5.29)

where hi(t | Hi(t),wi(t)) = h0(t) exp[γTwi(t) + f{Hi(t),ui,α}], with Hi(t)

denoting the longitudinal history up to time t, h0(t) the baseline hazard and

wi(t) are the vector of covariates which may vary over time. As with the frequen-

tist approach the integral in the survival function must be approximated. The

technique proposed is the Gauss-Kronrad quadrature. The rule takes a slightly

different form to Gauss-Hermite quadrature detailed in Equation 5.20. For an

integral f(x) the 2n+ 1 point Gauss-Kronrad approximation takes the form,

K2n+1f =
2n+1∑
i=1

wif(xi) (5.30)

The rule can approximate the integral when f is a polynomial of degree 3n+1

or less [218]. As this is an extension of the Gaussian quadrature a requirement is

that n of the nodes of K2n+1 coincide with those of the n-point Gaussian quadra-

ture [219]. Independent univariate normal diffuse priors are standard issue for the

vector of fixed effects for the longitudinal biomarker, the regression coefficients of

the survival model and the vector of spline coefficients used to model the baseline

hazard and the association parameter. An inverse Wishart prior distribution is

assumed for the covariance of the random effects and an inverse-Gamma prior for

the variance of the residual error terms [198; 202].
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5.9 Software developments

In recent years the software development for joint longitudinal-survival model

has caught up with methodological advances. Both Stata and R have their own

established packages for fitting a joint model with a continuous longitudinal out-

come. For Stata these are stjm and more recently merlin, the latter of which

utilises the generalised linear mixed-effects model framework. Both also imple-

ment adaptive Gauss-Hermite quadrature to approximate the likelihood as dis-

cussed in 5.7.2. The flexibility of the merlin architecture allows extensions to

competing risks and multiple longitudinal markers. In R the most commonly cited

software package is JM, which again estimates joint models using a frequentist

approach, implementing pseudo-adaptive quadrature as an option (see section

5.7.3) [201]. Though the JM packages offers extensions to multiple markers, the

R packages joineR and joineRML are specifically designed for this [204; 220]. On

the Bayesian front, JMBayes allows more flexible estimation, paralleling the es-

timation of the conditional survival probabilities described in section 5.11.2[202].

An updated version, JMBayes2, has recently been released at the time of writing

this, which now also models competing risks and multi-state processes [221]. A

SAS macro equivalent to R’s JM has become available relatively recently [222].

Finally JMFit, implemented in SAS, is the only fully-fledged command for joint

model selection, and is discussed in detail in section 5.10.1 [223]. A review of

joint modelling reporting conducted in 2016 found an increase in application of

joint model methodology after 2012, which very much coincides with accelerated

software output [224].
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5.10 Model selection

Model selection for joint models is a work in progress. As with any model building,

it is a sound idea to first refer to clinical experts for input when deciding on

commonly associated variables for inclusion. This is the route which was taken

for analysis of the pregnancy outcomes dataset in Chapter 7. However, comparing

the significance of adding or removing a variable when deciding on the functional

form of the biomarker profile or baseline hazard is useful. Joint models do not

necessarily need to include the same variables within each submodel. This is

because a covariate which affects the time-to-event outcome may not necessarily

directly impact the biomarker response. It has become common in the literature

to build each submodel separately, looking at measures such as the submodel

AIC or BIC for comparison [52]. Sensitivity analyses after the model has been

chosen can be used to confirm functional forms of covariates and identify outlying

observations. Approaches to simultaneously submodel selection are still emerging

and are presented in the following sections.

5.10.1 AIC and BIC decomposition

Zhang et al. [225] propose a decomposition of the full joint model AIC (or BIC) to

compare the fit of each submodel in the context of the whole model. The complete

joint model AIC (and BIC) is split into the AIC for the longitudinal submodel

and that of the conditional (on the longitudinal data) survival submodel, so that

AIC = AIClong + AICsurv|long (5.31)

This is currently only implementable in the SAS statistical software via the

command JMFit, and is based on a polynomial longitudinal submodel [223]. The
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biomarker trajectory is modelled using polynomials of degree q, with random

effects associated with each polynomial term. The survival submodel includes

a piecewise constant baseline hazard. This entails the construction of a finite

partition of the time-axis, resulting in K intervals. Within each interval the

baseline hazard is assumed to be constant. The formulation of the Zhang et

al. [223] joint model means it requires updating for it to be applicable to the

traditional joint model definition, as implemented in Stata (e.g. stjm or merlin).

5.10.2 Penalized likelihood

As an alternative to AIC (BIC) decomposition, a penalized likelihood approach

has been suggested [226]. To simultaneously select fixed and random effects adap-

tive least absolute shrinkage and selection operator (ALASSO) penalty functions

are employed. This relies on a reparameterisation of the random effects using

the Cholesky decomposition. The LASSO is a commonly used regression tool in

machine learning, which implements regularisation and variable selection [227].

Its aim is to shrink parameter estimates, some to zero, with the resulting non-zero

terms included in the model. The adaptive LASSO does further by assigning dif-

ferent weights to coefficients [228]. The random effect selection is based on group

penalties, ensuring that the mth and lth row vectors of the Cholesky decomposi-

tions of the covariances matrices are either all zero, or at least one is non-zero

[226]. The penalised likelihood is then approximated via Gaussian quadrature

and maximised via the EM algorithm . Estimation bias is however introduced

when evaluating the penalized likelihood which requires a two-stage model ap-

proach to address this. The method also increases computational complexity, as

the E-step in the EM algorithm encounters analytically intractable integrals.

Modelling outcomes such as miscarriage requires clinical input in conjunction

with some form of model selection. For practical reasons, model selection was
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confined to selecting functional forms of biomarker trajectories and baseline haz-

ards, as well as the addition of random effects. This was carried out separately

for each submodel for analyses in Chapters 6 and 7.

5.11 Predictions

The greatest advantage of joint longitudinal-survival models is the range of pre-

dictions which can obtained from the fitted model. The inclusion of fixed and

random effects allow population-average predictions as well as subject-specific

predictions. The latter especially have clinical relevance as medical care becomes

increasingly tailored to the individual. Fixed effect predictions for covariate pat-

terns can be obtained by holding the random effect estimates ui fixed at zero,

whilst subject-specific predictions require estimation of the ui.

5.11.1 Random effects

The posterior means for the random effects are obtained via the empirical Bayes

framework as discussed in section 3.5.5 [30]. As a brief reminder the prior

for the random effects is assumed to follow a multivariate normal distribution,

which along with the likelihood, conditional on the random effect parameters,

are utilised to estimate the posterior density of the random effects using Bayes

Theorem (Equation 5.32) [128].

p(ui | Ti, di,yi;θ) = ψ(ui;θ)p(Ti, di | ui;θ)p(yi | ui;θ)
p(Ti, di,yi;θ)

∝ ψ(ui;θ)p(Ti, di | ui;θ)p(yi | ui;θ)
(5.32)

The prior distribution for the random effects is given by ψ(ui;θ), with the

conditional data likelihood given by p(Ti, di | ui;θ). The BLUPs ûi are equivalent
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to the mean (or mode) of the posterior distribution with corresponding variance

of ui utilised to obtain standard error estimates (see Equation 3.17).

5.11.2 Conditional survival predictions

The appeal of implementing the joint model comes from the risk prediction frame-

work that naturally evolves from modelling changes of a biomarker over time in

relation to the impact on survival [43; 229]. This will be exploited in analyses

carried out in Chapters 6 and 7. The shared random effect dependency between

outcomes within the joint model setting, allow for the prediction of individual

survival probabilities, conditional on the longitudinal observations to date and

subject-specific covariate patterns. In a clinical setting, where a patient’s con-

dition is being monitored it would be useful to predict the risk of an event at a

given time-point in order to provide intervention if necessary. Alternatively the

pattern of longitudinal measurements for a given patient, can inform the timing of

the next observation [230]. If predictions forsee a deterioration then observations

need to become more frequent, whilst patient improvements would justify less

stringent monitoring. An example of a plotted conditional survival probability

curve is shown in Figure 5.5.
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Figure 5.5. An example of a conditional survival probability pre-
diction curve based on longitudinal biomarker observations

In predicting the survival probability for a future time t + ∆t for individual

i, we condition on the patient having survived up to time t. In addition, the

individual must provide longitudinal observations Yi(t) = {y(s); 0 ≤ s < t} up to

time t, with corresponding vector of baseline covariates Xi.

Based on the sample Dn = {Ti, di, yi; i = 1, · · · , n} on which the joint model

was fitted and for joint model parameters θ∗ the conditional survival probability

is then given by,

πi(t+ ∆t | t) = P (Ti ≥ t+ ∆t | Ti > t, Yi(t), Xi, Dn; θ∗), t > 0 (5.33)
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This definition of the conditional survival probability is dynamic in nature and

can be updated as new longitudinal measurements are observed. This results in

predictions that are always current. Using the shared random effects framework

underpinning both the longitudinal and survival processes, Equation 5.33 can be

written as,

P (T≥i t+ ∆t | Ti > t, Yi(t);θ)

=
∫
P (Ti ≥ t+ ∆t | Ti > t, Yi(t),ui;θ)p(ui | Ti > t, Yi(t);θ)dui

=
∫
p(Ti ≥ t+ ∆t | Ti > t,ui;θ)p(ui | Ti > t, Yi(t);θ)

=
∫ S{t+ ∆t |Mi(t+ ∆t,ui,θ);θ}

S{t |Mi(t,ui,θ);θ} p(ui | Ti > t, Yi(t);θ)dui

(5.34)

Here, Si(.) refers to the relevant survival function and Mi is the unobserved

longitudinal trajectory as estimated by the linear mixed effects model. Using the

aforementioned empirical Bayes estimate for ui (see section 3.5.5), a first order

estimator for πi(t+ ∆t | t) is shown in Equation 5.35.

πi(t+ ∆t | t) = Si{t+ ∆t |Mi(t+ ∆t, ûi(t), θ̂); θ̂}
Si{t |Mi(t, û(t)

i , θ̂); θ̂}
+O(n−1

i ) (5.35)

As before θ̂ are the maximum likelihood estimates of the joint model, and

û
(t)
i is the mode of the conditional distribution of log p(ui | Ti > t, Yi(t); θ̂), and

finally ni(t) denotes the number of longitudinal observations. To calculate cor-

responding standard errors a Monte Carlo simulation scheme has been proposed

by Rizopoulos [43] which uses the following sampling scheme,

For l = 1, · · · , L repetitions

(1) Draw θ(l) ∼ N(θ̂, ˆvar(θ̂))
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(2) Draw u(l)
i ∼ {ui | Ti > t, Yi(t),θ(l)}

(3) Calculate πli(u | t) = Si{t+∆t|Mi(t+∆t,u(l),θ(l));θ(l)}
Si{t|Mi(t,u(l),θ(l));θ(l)}

By calculating the first-order estimates using the Monte Carlo estimates of θ

and ui from each repetition, this produces an overall standard deviation estimate,

accounting for the combined uncertainty of the likelihood and empirical Bayes es-

timates. In the context of early pregnancy outcomes, particularly for women who

experience recurrent loss, these subject-specific conditional survival predictions

provide an adjunct to established clinical practice. For example in women who

do not exhibit adequately increasing hCG levels, monitoring could become more

frequent to prepare for a loss sooner.

5.12 Model assessment

Building a prediction model requires careful testing for us to understand how well

it will perform in practice. It is usual to investigate how well a model is calibrated,

i.e. how it performs in predicting event rates. Additionally it is important for a

prognostic model to be able to correctly discriminate between individuals who are

likely and unlikely to experience the event of interest. Calibration is estimated

utilising an extension of the Brier score. Whilst discrimination is estimated by

extending the receiver operating characteristic (ROC) curve framework to the

joint model setting.

5.12.1 Discrimination

Model discrimination is a measure of how well a model distinguishes or ‘dis-

criminates’ between individuals who are likely to experience an event or not in

the time-frame of interest. This usually involves estimation of the sensitivity

and specificity for an optimal threshold value, which estimate the true positives
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and true negatives respectively. In other words whether the model can correctly

identify an individual who experiences an event and one who does not.

5.12.1.1 Sensitivity and specificity

Based on propositions by Rizopoulos [30] and Pencina et al. [231], an estimate of

the sensitivity, utilising the predicted probability of an event is shown in Equation

5.36. Here, if the survival probability for an interval t+∆t, conditional on having

survived up to time t, for a subject j falls below a threshold value c ∈ 0, 1 then

the model predicts an event.

SN∆t
t (c) = Pr{πl(t,∆t) ≤ c | Tl ∈ (t, t+ ∆t]} (5.36)

The corresponding estimate for specificity follows naturally. The definition

assumes that a predicted survival probability over a threshold c indicates that an

individual did not experience an event.

SP∆t
t (c) = Pr{πl(t,∆t) > c | Tl > t+ ∆t] (5.37)

To account for censoring, weights are included in the formulation of the sen-

sitivity, specificity and the ROC AUC estimates. The two main approaches are

through inclusion of model based weights, or inverse probability of censoring

weighting (IPCW). The latter involves using non-parametric estimators, usually

Kaplan-Meier in the survival context. IPCW provides unbiased estimates even

when the model is misspecified, however a requirement is that the model used

to specify the weights is correct. This can be difficult to achieve, particularly as

the dependency between the mode of censoring and biomarker can be complex.

Model based weights, on the other hand, allow for the dependency between the
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longitudinal observations and censoring, however the model must be well cal-

ibrated to begin with. In the literature, particularly for implementation in R

via the JM(bayes) packages, model based weights are proposed due to censoring

necessarily depending on the longitudinal biomarker [201; 202]. The proposed

weighted estimate for the sensitivity is shown in Equation 5.38.

ŜN
∆t
t (c) =

∑
i:Ti≥t I{π̂i(t+ ∆t | t) ≤ c} × Ωi∑

i:Ti≥t Ωi

(5.38)

with

Ωi =


1, if Ti ≤ t+ ∆t and di = 1

1− π̂i(t+ ∆t | Ti), if Ti ≤ t+ ∆t and di = 0

The corresponding estimate for the specificity is,

ŜP
∆t
t (c) =

∑
i:Ti≥t I{π̂i(t+ ∆t | t) > c} × Φi∑

i:Ti≥t Φi

(5.39)

with

Φi =


1, if Ti > t+ ∆t

π̂i(t+ ∆t | Ti), if Ti ≤ t+ ∆t and di = 0

5.12.1.2 ROC AUC

The ROC AUC follows on from measures of sensitivity and specificity to discrim-

inate between those who will experience an event and those who will not. So for

a pair of randomly chosen individuals (l1, l2) the AUC is given by,

AUC(t,∆t) = Pr[πl1(t,∆t) < πl2(t,∆t) | {Tl1 ∈ (t, t+ ∆t]} ∩ {Tl2 > t+ ∆t}]

(5.40)
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For a time-frame of interest (t, t+∆t], if individual l1 experiences an event and

l2 does not, then we expect a higher predicted conditional survival probability for

l2 when compared with l1. To also incorporate censoring, the AUC is decomposed

in Equation 5.41.

ÂUC(t,∆t) =
4∑

w=1
ÂUCw(t,∆t) (5.41)

The decomposition involves the following pairs of patients, where Ω(1)
l1l2 are

those comparable individuals, whilst ∑4
w=2 ÂUCw(t,∆t) are not comparable due

to one or both individuals being censored (Ω(w)
l1l2 , w = 2, 3, 4).

Ω(1)
l1l2(t) = [{Tl1 ∈ (t, t+ ∆t]} ∩ {dl1 = 1]} ∩ {Tl2 > t+ ∆t}]

Ω(2)
l1l2(t) = [{Tl1 ∈ (t, t+ ∆t]} ∩ {dl1 = 0]} ∩ {Tl2 > t+ ∆t}]

Ω(3)
l1l2(t) = [{Tl1 ∈ (t, t+ ∆t]} ∩ {dl1 = 1}] ∩ [{Tl1 < Tl2 ≤ t+ ∆t} ∩ {dl2 = 0}]

Ω(4)
l1l2(t) = [{Tl1 ∈ (t, t+ ∆t]} ∩ {dl1 = 0}] ∩ [{Tl1 < Tl2 ≤ t+ ∆t} ∩ {dl2 = 0}]

The AUC (Equation 5.42), where I(.) is the indicator function, estimates

the proportion of individuals of those comparable at time t who are deemed

"concordant" [205]. This essentially means that for a randomly selected pair of

individuals if the one with a greater survival probability does not experience the

event and the one with a lower probability does, they are said to be concordant.

When w = 1 then K̂1 = 1, as this represents a comparable pair. For the other
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three pairs, the AUC estimate is weighted by the extent of the comparability of

the pair. The indicated weights are K̂2 = 1 − π̂l1(t,∆, t), K̂3 = π̂l2(t,∆t) and

K̂4 = {1− π̂l1(t,∆t)} × π̂l2(t,∆t).

ÂUCw(t,∆t) =
∑n
l1=1

∑n
l2=1;l2 6=l1 I{π̂l1(t,∆t) < π̂l2(t,∆t)} × I{Ω(w)

l1l2(t)} × K̂w∑n
l1=1

∑n
l2=1;l2 6=l1 I{Ω

(w)
l1l2(t)} × K̂w

(5.42)

ÂUC(t,∆t) =
4∑

w=1

ˆAUCw(t,∆t) (5.43)

5.12.2 Calibration

The most common measure used to assess model calibration in survival contexts

is the Brier score. This compares the predicted survival probability for a given in-

dividual with whether an event was observed or not, using a suitable loss function

[232]. The sum across individuals then tells us how well the model is predicting

event rates. In the joint model context, the dynamic nature of the longitudinal

marker is also incorporated through estimation of subject-specific survival pre-

dictions. This essentially means the model can be assessed for how well it is

calibrated at various time time-points for a given individual. The following is the

expected error of prediction for an individual, utilising a quadratic loss function.

BS(t+ ∆t | t) = E{Ni(t+ ∆t)− πi(t+ ∆t | t)}2 (5.44)

Here Ni(t) = I(T ∗i > t) is the observed event status at time t, with πi(t+∆ | t)

is the conditional probability of survival at time t + ∆ having survived up to t.

This estimate however, does not account for censoring. Henderson et al. [233]

instead have proposed an estimate which incorporates both right censoring and
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takes into account the longitudinal marker information up to t. Following the

notation used by Andrinopoulou et al. [205] the prediction error estimate is

shown in Equation 5.45.

P̂E(t+ ∆t | t) = {R(t)}−1 ∑
i:Ti≥t

{
I(Ti > t+ ∆t){1− π̂i(t+ ∆t | t)}2

+ diI(Ti < t+ ∆t){0− π̂i(t+ ∆t | t)}2

+ (1− di)I(Ti < t+ ∆t)
[
π̂i(t+ ∆t | Ti){1− π̂i(t+ ∆t | t)}2

+ {1− π̂i(t+ ∆t | Ti)}{0− π̂i(t+ ∆t | t)}2
]}

(5.45)

The number of individuals at risk at time t is denoted by R(t). The term di

indicates whether an individual was censored (di = 0) or experienced an event

(di = 1). I(Ti > u){1 − π̂i(t + ∆t | t)}2 refers to the contribution of those

individuals who remain event-free after the time of interest t + ∆t. Those who

experience an event before t+∆t are represented by diI(Ti < t+∆t){0−π̂i(t+∆t |

t)}2. The final terms indicate those individuals who are censored in the interval

[t, t + ∆t]. This has been adopted as a measure of model calibration for the

analysis in Chapter 7.

5.13 The joint latent class model

An alternative approach to the SREM joint model is the joint latent class model

(JLCM) which favours a latent class structure. The latent classes are assumed

to describe all of the correlation between the biomarker profiles and the risk of

the event [234]. The resulting assumption is that subgroups, or latent classes,

of individuals have similar longitudinal marker trajectories and a similar risk of

experiencing an event [188; 235]. The JLCM can provide a less computationally
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expensive alternative to predict, or investigate the association between the longi-

tudinal and time-to-event outcomes without making specific assumptions about

the dependency structure [234].

A latent class probability, πig is first defined, estimating the probability of an

individual i belonging to a particular class g. This probability is conventionally

modelled via a multinomial logistic regression model with explanatory variables.

Each latent class has a corresponding class-specific trajectory function and risk

of event. As with the SREM, a linear mixed model as described in 3.5 is utilised

to model the repeated biomarker observations for each class.

Yi(tij)|ci=g = Xli(tij)Tβg + Zi(tij)Tuig + ηi(tij) (5.46)

The vector of random effects are normally distributed with ui ∼
∑G
g=1 πigN(µg,Bg),

with variance-covariance matrix Bg. This can be the same over all classes or

specific to a class. The vector of measurement errors are similarly normally dis-

tributed, where ηi = (ηi(ti1), · · · , ηi(tini))T ∼ N(0,Σi), with a diagonal variance-

covariance matrix Σi of homoscedastic independent errors.

The class-specific proportional hazards survival submodel is shown below.

The baseline hazard can either be stratified by the class structure or baseline

hazards across classes are assumed proportional.

hi(t | ci = g; ζg,φg) = h0g(t; ζg) exp{Vei(t)Tφg} (5.47)

Estimation of the JLCM is via maximum likelihood, using the Marquardt

algorithm and does not require numerical integration as in the SREM context

[196; 236]. However to select the number of classes and to ensure convergence

the estimation of the JLCM must be performed several times. For the SREM

a single random-effects structure is implemented to explain the within-subject
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biomarker correlation and the underlying dependency between between the lon-

gitudinal and survival outcomes. In the JLCM definition, however, the random

effects only describe the correlation between repeated measurements whilst the

latent class structure models the dependency between the two outcomes [236].

The association between the outcomes in the SREM is predetermined by the

chosen association structure (see section 5.5). The chosen structure should be

correct to produce appropriate predictions. The JLCM makes less stringent as-

sumptions about the dependency between longitudinal and survival outcomes.

Though stratification over latent classes allows the baseline hazard to vary with

the marker, this can also lead to a substantial increase in the number of pa-

rameters estimated. Using a greater number of latent classes can lead to fewer

individuals per class, which can also affect validity of predictions [236].

Though many aspects of the JLCM could be applied to the early pregnancy

outcomes data introduced in Chapters 6 and 7, the focus for this thesis is the

SREM. This is not only for prediction purposes but also to appropriately quan-

tify the association between longitudinal hCG and time-to-miscarriage. With

relatively small sample sizes splitting the data further into classes seems inadvis-

able and so the JLCM will not be considered further here, though classification

of trajectories has received attention in the literature [45].

5.14 Landmark models

Up to now we have discussed joint models with varying underlying dependency

structures, centring around the LMM and a proportional hazards survival model.

Another arguably simpler approach is landmarking.

Landmark models are useful when the focus of the analysis is to predict the

future risk of an event. The initial step is to select a landmark reference time at
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which predictions will be made - for landmark-age models, this might be an age

of 50 years for example [109]. In the basic landmarking framework a series of Cox

models (see section 4.6.1) are fitted for various prediction times so that only the

sample of subjects still at risk at the landmark reference time are considered, along

with a summary of the longitudinal biomarker up to that point [33; 229]. The

naive landmark model utilises the most recent observation prior to the landmark

time, or last observation carried forward (LOCF) within the Cox model [237]. A

slightly more complex approach, designed to also incorporate measurement error

of the observed biomarker, includes predicted values from a linear mixed effects

model in the landmark Cox model, paralleling the two-stage model approach

discussed in section 5.3.3 [229]. Even with this improvement however there is

the issue of the age of the biomarker value when compared with the prediction

time[237]. Survival predictions provide an approximation of risk for a fixed future

period or horizon time thor. Administrative censoring is applied at this point to

encourage robust estimates even when the proportional hazards assumption is not

met [237]. The basic landmarking approach estimates several of these landmark

models for varying landmark reference points s [238]. It is this repeated model

estimation which makes landmarking an inefficient method when compared with

joint models [229].

A super landmark models fits a lone stratified Cox survival model to stacked

landmark datasets which are created for each landmark time[239]. A continu-

ous model is specified for the regression parameters, allowing them to vary with

the landmark times smoothly [238; 240]. Linear models, polynomials and linear

mixed effects models have been suggested as the continuous model [109; 237; 238].

The stratified Cox model on landmark times s is then estimated via a pseudo

partial-likelihood, which is equivalent to the sum of the partial likelihoods of the
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Cox models at each single landmark time-point [238]. A variation of the super

landmark model also allows landmark specific baseline hazards [239].

Proponents of landmarking over joint models prefer the relative simplicity of

its implementation, which avoids the computationally taxing numerical integra-

tion over the the random effects. However, landmark models remain inefficient

when compared with the joint model due to the repeated estimation of models

at different landmark times. The greatest issue concerns the acknowledged ‘stal-

eness’ of the biomarker observation as more time elapses between the landmark

time and the last observed measurement, as this results in inaccurate conditional

survival predictions [237]. When the joint model is correctly specified, which

admittedly can be difficult to achieve, then it outperforms the landmark model.

However, as the level of misspecification increases the landmark model perfor-

mance outranks that of the joint model [237].

5.15 Discussion

When it is hypothesized that a particular biomarker is associated with a time-to-

event endpoint there is an incentive to estimate both the longitudinal profile of

the biomarker and the risk of event occurrence. Although established methods

can be used to model the association between the two types of outcomes, they

come with their disadvantages. Neither the survival model with time-varying

covariate, nor the two-stage model can avoid the pitfalls of measurement error

and/or intermittently measured biomarkers. It is clear then that a joint model

should be considered for their ability to appropriately describe the association

between a longitudinally measured biomarker and time-to-event outcome with

efficiency. Joint models are an attractive proposition when the ultimate aim is
122



for prediction, particularly to enable dynamic monitoring of subjects via up-to-

date event risk estimates based on individual longitudinal profiles and data. The

shared parameter model has an intuitive dependency structure and though more

computationally burdensome than alternatives, such as the latent class structure

or landmarking, a well defined model can give good association estimates in tan-

dem with predictions. In fact, software developments within joint models across

platforms now allow the fitting of increasingly complex models with relative ease.

Methods for model assessment can also now be used to evaluate the developed

joint model, which brings them one step closer to being used in clinical practice.

This naturally brings us to application of these models to the pregnancy setting,

the results (and challenges) of which will be detailed in Chapters 6 and 7.
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Chapter 6

Application of joint modelling methods

to early pregnancy outcomes

6.1 Chapter overview

In this chapter I apply the joint longitudinal-survival model introduced in Chap-

ter 5 to a dataset of 129 pregnant women. The dataset was collected by SPD

Development Company Ltd, with the view to prospectively follow up women

attempting to conceive, from conception through to pregnancy outcome at the

close of the study. The data has been analysed previously utilising the simpler

two-stage model approach (section 5.3.3) [44]. The aim here is to replicate this

analysis and formally extend to the shared parameter framework of the joint

model. Ultimately this will give an estimate of the association between hCG and

early miscarriage, which accounts for measurement error and gives more realistic

uncertainty estimates [28; 38]. Comparisons between association parameters from

naive methods and the joint model will be made. Focus will be on appropriately

modelling the longitudinal trajectory for hCG utilising the LMM (section 3.5)

and addressing the non-linear slope. The baseline hazard function of the sur-

vival submodel will be modelled using various distributional assumptions as well

as restricted cubic splines to establish best fit (see Chapter 4). Model selection

procedures will be carried out to identify variables associated with miscarriage
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that will subsequently be included in the survival component model. Through es-

timation of conditional survival probabilities from the joint longitudinal-survival

model, the potential of dynamic monitoring in early pregnancy will be assessed.

This analysis has been published in Nature Scientific Reports (see Appendix

A) [241].

6.2 Introduction

It has been established in Chapter 2 that human chorionic gonadotrophin, col-

loquially the ‘pregnancy hormone’, is not routinely collected during pregnancy.

Once pregnancy has been confirmed by means of a hCG observation above 25

mIU/ml, there is usually little call for any further use of it, unless an imminent

early miscarriage is suspected. In such cases, changes in hCG can serve as a

first port of call to establish whether the pregnancy is ongoing (see section 2.4)

[17]. However, this involves a short term, usually two-day, ratio of hCG values

to confirm the level of rise or decrease. There is potential, however, for hCG to

be utilised to a much fuller extent in the early pregnancy outcome setting. With

more frequent observation of hCG, a longitudinal profile of pregnancy progres-

sion can be obtained. Certainly the literature has shown that profiles of failing

and viable pregnancies are distinct (see section 2.4)[18; 242]. The question lies

in whether hCG can aid prospective monitoring in early pregnancy to predict an

eventual outcome. Research into whether biomarkers can be monitored over an

extended period of time with a view to predicting miscarriage remain in their

infancy [15]. Where this has been explored, the data analysed has been from an

assisted pregnancy setting, with focus on serum hCG and fewer observations per

individual [11; 45; 46]. Furthermore, the focus of these analyses was to classify

similar abnormal and normal hCG trajectories utilising the Bayesian framework,
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rather than prediction. For this thesis, comprehensive hCG data for women

who were prospectively followed up from the beginning of their menstrual cycle,

through conception and to early pregnancy outcome, are available for analysis.

This dataset is unique in its focus on prospective collection of urinary hCG ob-

servations, which are arguably cheaper and less invasive to collect. The singular

nature of the data on which the methods will be applied allow the investigation

of whether urinary observations can be used for meaningful monitoring in early

pregnancy on an individual level. If hCG can be exploited in this way, tracking

could lead to earlier identification of a miscarriage, with the potential to save

women from unnecessary intervention (see section 2.3.2).

The repeated collection of a continuous biomarker, such as hCG, over time

gives rise to intermittently observed longitudinal data which are subject to mea-

surement error as discussed in section 3.5. Separate analyses of the two types of

data utilise linear mixed effects models, with time-to-event outcomes analysed us-

ing survival models (see sections 3.5 and 4.6.3 respectively). However, when inter-

est lies in quantifying the association between the repeatedly measured biomarker

and time-to-event outcome, separate analyses ignore the dependency between

the longitudinal and time-to-event processes [38]. The dependency can be ad-

dressed through the shared parameter structure of the joint longitudinal-survival

model introduced in Chapter 5. This allows the association to be appropriately

modelled, whilst taking into account the intermittent nature of observations and

measurement error. The model allows for the prediction of subject-specific con-

ditional survival probabilities (see section 5.11.2), which can aid monitoring and

be used to plan the schedule of observations [28].

126



6.3 Methods

To quantify the association between urinary hCG and time-to-miscarriage a joint

longitudinal-survival model was fitted to early pregnancy outcome data, combin-

ing the LMM and a PH survival submodel (see section 5.4.2). Subject specific

predictions, discussed in section 5.11.2, were obtained from the fitted model to

establish the predictive capabilities of the fitted model.

6.3.1 Data source

The data for this analysis were collected by SPD Development Company Ltd

as part of a study which recruited women who were attempting to conceive.

Participants were asked to collect daily early morning urine samples for their

entire menstrual cycle and up to 28 days after the day of their missed period if

they successfully conceived. Women recruited were aged between 18-45 years and

actively trying to conceive and were allowed to remain in the study for a maximum

of three cycles. Women were not excluded on the basis of challenged fertility,

although no women recruited to the study were undergoing fertility treatment. All

women in the study were offered complimentary use of Clearblue ovulation strips

in order to time intercourse to maximise conception. Not all urine samples from

women who conceived underwent laboratory testing. All women who miscarried

as part of the study and a random sample of healthy pregnancies (double the

number of losses) were selected for testing and subsequently analysed.

Other maternal data collected included age in years, ethnicity, level of ed-

ucation, occupation, previous number of pregnancies, previous number of live

births, number of months trying to conceive, binary previous miscarriage variable,

whether they were on any infertility treatment and shortest, usual and longest
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menstrual cycle length in days. Pregnancy status was further categorised into

three groups, biochemical miscarriage, early miscarriage and healthy pregnancy.

6.3.2 Time variables

Several time variables were associated with the day hCG was observed. These

were,

• day in current cycle, where day one is the first day of the period

• day relative to expected period, where day zero is the beginning of the

next cycle

• day relative to conception, where day zero is the estimated day of ovu-

lation

Each was assessed for its suitability for analysis. It was essential that the

variable was common amongst the women and so the analysis was conducted

on the time since conception scale. Although this is not a realistic anchor in

the natural pregnancy setting, it serves a purpose for this analysis. For one it

allows the full scope of hCG measurements to be included in the survival model

by maintaining a time variable of positive integers, something which would be

impossible if day relative to the missed period was utilised. Secondly, the day

of ovulation can be estimated reasonably well as the day after the LH surge, or

approximately two weeks prior to the day of the expected period [243; 244; 245].

This would be tracked in an assisted pregnancy setting, which may be a route to

conception for women who have experienced multiple miscarriages. This provides

motivation for modelling on the time since conception scale. Figure 6.1 below

illustrates how these timelines relate to each other.
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Figure 6.1. Time variables used for analysis

6.3.3 Modelling longitudinally observed hCG

When hCG observations are observed for the entirety of a pregnancy they approx-

imately follow a normal distribution (see Figure 2.2). However, as samples were

collected for only part of each pregnancy the hCG observations were negatively

skewed. As a result hCG was modelled on the natural log scale.

A longitudinal hCG trajectory was built by fitting an LMM, discussed in

Chapter 3, to the log hCG response variable. This was utilised as the basis

of the longitudinal component submodel when fitting the two-stage model (see

section 5.3.3) and joint longitudinal-survival model (see section 5.4.2). A linear

and quadratic time term were chosen to model log hCG over time, consistent

with the Marriott et al. [44] analysis. A random intercept and linear slope were

included to allow for varying baseline log hCG values and slopes. Where possible

a random quadratic slope term was also included. The unstructured random

effects covariance structure was chosen (see section 3.5.1) to allow estimation of

unique variances for each random effect. After each addition of fixed or random

effect, models were compared using likelihood ratio tests and the AIC and BIC

(see section 4.6.6). Consistent with the analysis conducted by Marriott et al. [44]

no further covariates were included in the longitudinal submodel.
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6.3.4 Building the survival submodel

The association between miscarriage and longitudinal hCG was modelled using a

PH survival model. In order to capture the lag between theoretical conception at

ovulation and the first measurable log hCG observation, a delayed-entry model

was fitted to model time-to-miscarriage. Various distributional assumptions for

the baseline hazard function were explored, including an exponential, Weibull

distribution and the use of RCS functions via an FPM (see Chapter 4). Ideally,

all models would have captured the shape of the baseline hazard using RCS

functions, however due to increasing model complexity at the joint model stage

Weibull joint models were fitted where the flexible parametric joint model did not

converge. Joint models were fitted with both current value and the first derivative

association structures (see section 5.5). Estimates from the joint longitudinal-

survival model were compared to estimates from the time-varying covariate and

two-stage model approaches introduced in sections 5.3.2 and 5.3.3.

The original analysis by Marriott et al. [44] included continuous age, longest

cycle length, and time taken for hCG to reach 25 mIU/ml in the survival sub-

model. For the re-analysis a forward stepwise procedure for model selection was

carried out at the 5% significance level. Models were compared using the AIC

and BIC. The final survival model included covariates age and usual cycle length,

as well as the longitudinal log hCG observations. Non-linear effects of age and

log hCG were considered. Interactions between log hCG and age as well as age

and cycle length were investigated. The PH assumption was tested by including

an interaction for age and usual cycle length with log time in the model and

comparing to the main model using a likelihood ratio test. Martingale residuals,

estimated for the null and full model were plotted against age, usual cycle length
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and log hCG in turn to establish non-linear effects of each variable. Deviance

residuals were examined for outlying observations.

6.3.5 Subject-specific conditional survival probabilities

Conditional subject-specific survival probabilities for pregnancy viability were

obtained from the fitted current value association model for selected pairs of

biochemical losses, early losses and healthy pregnancies. For each pregnancy,

conditional survival was predicted for two or three-day intervals from the last

observed follow-up time. These were illustrated graphically.

6.4 Results

A total of 1505 eligible US women were recruited to the study. Of these women,

250 became pregnant during the course of the study. The majority (n=178, 71%)

of these pregnancies were viable singleton pregnancies with a single (0.04%) mul-

tiple pregnancy. A total of 44 (17.6%) women suffered miscarriages. During the

study 14 women withdrew prior to completion and 13 women were subsequently

lost to follow-up. The dataset used for analysis consists of 85 randomly selected

viable singleton pregnancies and 44 miscarried pregnancies.

6.4.1 Data exploration

Baseline demographics are presented in Table 6.1 as mean(SD) and n(%) for

continuous and categorical variables respectively, unless otherwise stated.
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On average, women who miscarried were slightly older (mean(SD): 32.3(4.6)

years) than women who went on to have viable pregnancies (mean(SD): 30.0(4.2)

years). For both pregnancy groups the majority of women were from a white eth-

nic background (88.2% and 77.3% for healthy and miscarried pregnancies respec-

tively). The majority of women in both groups achieved a graduate or postgradu-

ate level of education, (95.3% in the healthy and 95.5% in the miscarried group).

However this was distributed differently across the groups with more women who

experienced healthier pregnancies gaining graduate degrees (81.2%) than women

who miscarried (63.6%). A similar percentage of women classed their occupations

as professional across the healthy (70.6%) and miscarriage (70.5%) groups. The

average usual cycle was slightly longer at 29.9 days (SD: 2.95) for women who had

healthy pregnancies than the 28.7 days (SD: 3.21) for pregnancies which ended in

loss. The mean number of previous pregnancies was approximately 1 (mean(SD):

1.00(1.05), 1.11(1.15) for healthy and miscarried pregnancies respectively) in both

groups. The median time to conception was 3 months (IQR: 4.5) for both groups.

A slightly higher percentage of women who had viable pregnancies experienced a

previous miscarriage than those who miscarried (12.9% versus 9.8%).

Of the women who miscarried 18 (14.2%) suffered biochemical losses, a loss

after implantation but before the day of the missed period, and 24 (57.1%) women

suffered early miscarriages, after the day of the missed period. Two women who

miscarried did not complete the urine collection and were not included in the

joint modelling analysis.

6.4.2 hCG Trajectories

The remaining 127 women contributed repeated hCG measurements. The me-

dian number of hCG observations for women who miscarried was 19.5 (Q1, Q3:
133



9.25, 26.0) and higher at 25 (Q1, Q3: 22.0, 26.5) for women who experienced vi-

able pregnancies. Individual hCG trajectories plotted by pregnancy status are

shown in Figure 6.2.
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Figure 6.2. Log hCG trajectories for women who experienced
healthy pregnancies or miscarriage

Generally the profile of log hCG measurements for viable pregnancies were

distinguishable from those who miscarried. The hCG measurements for viable

pregnancies tended to follow the same general trajectory; an initial rise after con-

ception which continued through the first three weeks of pregnancy before slowing

in rise. There was greater variation in hCG profiles for women who miscarried.

Women who miscarried presented with an initial rise after conception, however

some women experienced a sharp drop in hCG, others simply experienced a more

gradual rise in hCG in comparison with women who had healthy pregnancies.
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Figure 6.3 shows the log hCG profiles for women who experienced biochemical

pregnancies and early losses. The trajectories for biochemical pregnancies show

a drop in hCG before the miscarriage occurs, and though this is also the case

for some early miscarriages, the majority of trajectories follow a slower rate of

increase.
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Figure 6.3. Log hCG trajectories for women whose pregnancies
resulted in a biochemical or early miscarriage)

6.4.3 Survival modelling with a time-varying covariate

Overall Kaplan-Meier survival estimates are shown in Figure 6.4. The first

hCG observation (and therefore confirmed pregnancy) was observed at day four,

prompting the first participant to enter the study. A further ten days elapsed
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before the first event occurred at day 15 relative to conception. The last observed

exit was at day 33.
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Figure 6.4. Kaplan-Meier Curve showing Survival Probability
across all Women

Figure 6.5 shows the predicted conditional survival curves for several baseline

hazard functions, which account for delayed entry. A three-RCS function was

most effective in modelling the underlying baseline hazard. This is confirmed by

the model fit statistics presented in Table 6.2. The AIC was very similar for the

Weibull and two-RCS models (AIC of 141.723 and 141.510 respectively), whereas

the AIC for the three-RCS model was lower at 119.17. Ideally, all models would

have captured the shape of the baseline hazard using RCS functions, however due

to convergence issues at the joint model stage Weibull joint models were fitted

where models with a flexible baseline hazard did not converge.
136



0.60

0.70

0.80

0.90

1.00

Su
rv

iv
al

 P
ro

ba
bi

lit
y

0 10 20 30 40
Days since conception

Kaplan-Meier Exponential
Weibull

0.60

0.70

0.80

0.90

1.00

Su
rv

iv
al

 P
ro

ba
bi

lit
y

0 10 20 30 40
Days since conception

Kaplan-Meier RCS 2df
RCS 3df

Conditional Survival Curves

Figure 6.5. Survival probability curves for various distributions
and restricted cubic spline modelled baseline hazards

Table 6.2. Model fit estimates for the exponential, Weibull, and
flexible parametric baseline hazard survival models

Baseline hazard Log likelihood df AIC BIC
Exponential -84.423 1 170.846 173.682
Weibull -68.862 2 141.723 147.396
Two RCS* -67.755 3 141.510 150.019
Three RCS∼ -55.585 4 119.170 130.515
*1 internal and 2 boundary knots
∼2 internal and 2 boundary knots
df: degrees of freedom
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6.4.3.1 Model covariates

Age and usual cycle length were significantly associated with miscarriage at the

5% significance level and were included in the survival model. No further covari-

ates were found to be statistically significant at the 5% level. Model fit statistics

for each addition to the Weibull and FPM are given in Table 6.3.

Table 6.3. Model fit estimates for addition of age and usual cycle
length

Weibull model Log likelihood df AIC BIC
Null model -68.579 2 141.158 153.012
Log hCG model -24.633 3 55.266 72.890
Add age, years -22.036 4 52.073 75.572
Add cycle length, days -19.290 5 48.580 77.954
Flexible parametric model* Log likelihood df AIC BIC
Null model -52.431 4 112.862 136.570
Log hCG model -6.181 5 22.363 51.736
Add age, years -3.234 6 18.467 53.716
Add cycle length, days 0.991 7 12.018 53.141
*2 internal and 2 boundary knots
df: degreees of freedom

Additions of interactions between cycle length and age as well as log hCG

and age did not improve the fit of the model when compared to the basic model,

based on likelihood ratio tests applied to nested models. Model fit statistics for

each interaction addition are shown in Table 6.4.
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Table 6.4. Model fit estimates for the addition of interaction terms

Weibull model Log likelihood df AIC BIC
No interactions -19.290 5 48.580 77.954
Age x cycle length -18.940 6 49.880 85.128
Age x log hCG -18.940 6 49.880 85.128
Flexible parametric model* Log likelihood df AIC BIC
No interactions 0.991 7 12.018 53.141
Age x cycle length 1.391 8 13.218 60.216
Age x log hCG 1.005 8 13.990 60.988
*2 internal and 2 boundary knots
df: degress of freedom

Non-linear effects of age and log hCG were also investigated. Model fit sta-

tistics are shown in Table 6.5. A quadratic age term did not appreciably improve

fit, however addition of the quadratic log hCG term suggests that the relationship

between miscarriage and log hCG is not linear. Even so log hCG was modelled

linearly at this stage, to allow for comparisons at the joint model stage, where

the software used (stjm) did not allow for non-linear associations for a biomarker

to be incorporated.

Table 6.5. Model fit estimates for the addition of non-linear ef-
fects of age and log hCG

Weibull model Log likelihood df AIC BIC
Linear age -19.290 5 48.580 77.954
Quadratic age -19.152 6 50.304 85.553
Quadratic log hCG -13.210 6 38.421 73.669
Restricted cubic splines* Log likelihood df AIC BIC
Linear log hCG 0.991 7 12.018 53.141
Quadratic age 1.056 8 13.887 60.885
Quadratic log hCG 7.694 8 0.612 47.609
*2 internal and 2 boundary knots
df: degrees of freedom

Estimates from the fitted Weibull model and FPM are presented in Table 6.6.
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Table 6.6. Model estimates from Weibull and flexible paramet-
ric* models modelling time to miscarriage using a time-varying log
hCG covariate

Weibull model Hazard Ratio 95% CI
Age, years 1.082 1.008, 1.163
Usual cycle length, days 0.880 0.769, 1.008
Time varying log hCG 0.419 0.357, 0.491
Flexible parametric model* Hazard Ratio 95% CI
Age, years 1.091 1.014, 1.175
Usual cycle length, days 0.828 0.713, 0.961
Time varying log hCG 0.392 0.334, 0.460
*2 internal and 2 boundary and knots
CI: Confidence Interval

Age and log hCG were significantly associated with time-to-miscarriage at the

5% level across both models, with cycle length also statistically significant when

modelled using the FPM. Estimates were similar across the two models. A one-

year increase in maternal age at conception inferred a 8.3% increase (HR: 1.083

95% CI: 1.008, 1.163) in the rate of miscarriage for the Weibull model and a 9.1%

increase (HR: 1.091 95% CI: 1.014, 1.175) in rate of miscarriage for the FPM. A

one-day increase in a woman’s usual cycle length was associated with a 12.0% de-

crease (HR: 0.880 95% CI: 0.769, 1.008) in the rate of miscarriage for the Weibull

model and a corresponding 17.2% decrease (HR: 0.828 95% CI: 0.713, 0.961) in

the rate of miscarriage for the FPM. Increases in log hCG produced the greatest

change in the rate of pregnancy loss. A one-unit increase in log hCG resulted

in a corresponding 58.1 % (HR: 0.419 95% CI: 0.357, 0.491) and 60.8% reduction

(HR: 0.392 95% CI: 0.334, 0.460) in the rate of miscarriage for the Weibull and

flexible parametric models respectively. This shows strong evidence of the associ-

ation between hCG and time-to-miscarriage, whilst using the maximum available

amount of hCG biomarker information.
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6.4.3.2 Model checks
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Figure 6.6. Time-dependent log hazard ratio plots for log hCG
and age for the Weibull model

The PH assumption was checked by including a time-dependent effect for

each covariate in the model and carrying out a likelihood ratio test against the

main-effects model. There was no evidence of a time-dependent effect of age

(p=0.7186) or cycle length (p=0.4827) for the Weibull model. A corresponding

time-dependent FPM could not be fitted. Plots of the time-dependent log hazard

ratios for age and cycle length from Weibull models are shown in Figure 6.6.
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Figure 6.7. Observation level Martingale residuals from the full
Weibull and flexible parametric models against age, cycle length
and log hCG

Martingale residuals estimated from the fitted Weibull and flexible parametric

models were plotted against age, cycle length and log hCG and are shown in

Figure 6.7. Despite evidence of a decrease in AIC associated with the addition

of a quadratic log hCG term shown in Table 6.5, this is not reflected in the

Martingale residual plot. This is probably due to residuals being predicted for

each observation for each individual. Martingale residuals predicted for each

individual show curvature, suggesting a non-linear relationship for log hCG (see

Figure 6.8).
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Figure 6.8. Individual level Martingale residuals from the full
model plotted against log hCG

Deviance residuals were predicted and plotted against time as shown in Fig-

ure 6.9. All residuals above 1.96 were losses, ranging from 15 to 32 days post

conception. Five women were under 30 years of age and one woman was 40 years

of age. Cycle lengths for these women ranged from 20 to 37 days. Women who

miscarried before day 16 had had log hCG values of less than 4, women who

miscarried later reached log hCG values of close to 10.
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Figure 6.9. Deviance residuals from the full model plotted
against time

As previously discussed in section 5.3.3 of Chapter 5, these estimates do not

take into account measurement error for the hCG observations, resulting in overly

precise estimates. In addition, the model is estimated on the assumption that

observed hCG values do not change between measurements. We can improve

estimates by using a two-stage model to begin to address the issue of measurement

error.

6.4.4 Two-stage model

A two-stage model was fitted to the data (section 5.3.3), first modelling log hCG

via an LMM and then incorporating the subject-specific predictions into both

Weibull model and FPM.
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6.4.4.1 Modelling the longitudinal profile
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Figure 6.10. Log hCG over time with quadratic line of best fit

Log hCG was modelled using the LMM discussed in detail in section 3.5. A

scatter plot of log hCG over time with fitted quadratic curve of best fit is given

in Figure 6.10. A quadratic time term was included to more effectively model

the change of log hCG over time, when modelling hCG as a response variable.

The reasons for this are twofold. Biologically a complete hCG profile from the

start to end of pregnancy is shaped like an inverted U, suggesting a quadratic

may be a good fit. Assuming a quadratic curve does however, assume a dip in log

hCG towards the end of follow-up, which may be unrealistic. This is especially

so, as hCG for a normal pregnancy would not plateau and decrease until the

end of the first trimester. Even so, compared with the linear slope the quadratic
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demonstrated a reduction in AIC from 11022.39 for the linear slope to 9446.586

as shown in Table 6.7.

Table 6.7. Model fit estimates for fixed linear and quadratic slopes

Variable Log likelihood df AIC BIC
Linear slope -5508.193 3 11022.39 11040.01
Quadratic slope -4719.293 4 9446.586 9470.085
df: degrees of freedom

Results from an initial fitted LMM, including a grouping variable for preg-

nancy outcome, confirmed that mean log hCG was -1.66 (95% CI -2.14, -1.18)

lower in the biochemical pregnancy group and -1.13 (95% CI -1.48, -0.78) lower

in the early miscarriage group, when compared with the healthy pregnancies.

Results are presented in Table 6.8.

Table 6.8. Model estimates from a linear mixed effects model for
log hCG mIu/ml

Variable Mean 95% CI
Time since conception, days 1.431 1.396, 1.466
Quadratic time since conception, days -0.025 -0.026, -0.024
Healthy Reference
Biochemical Loss -1.656 -2.135, -1.176
Early Loss -1.132 -1.484, -0.781
CI: Confidence Interval

The hormone hCG is not detectable in the urine until around eight days after

conception. This means that at the assumed day of conception (t = 0), hCG

is zero and correspondingly log hCG is undefined. If modelling untransformed

hCG then there would be no variation in hCG intercepts across woman and so

a random intercept would be biologically implausible. However on the log scale

the intercept can be retained, as a negative parameter estimate for the intercept

would give a log hCG value asymptotically close to zero. Additionally retention of

the intercept provides the flexibility for increasingly complex models to converge,
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hence both fixed and random intercepts were retained for the longitudinal part

of the model. The predicted fixed effect log hCG profiles from the fitted model

retaining both intercepts is shown in Figure 6.11.

-5

0

5

10

Pr
ed

ic
te

d 
lo

g 
hC

G
, m

Iu
/m

l

0 10 20 30 40
Time since conception, days

Viable Biochemical
Early Loss

Fixed effect profiles for log hCG

Figure 6.11. Predicted fixed log hCG profiles for model including
both fixed and random intercept

The hCG slopes vary across women and so a random linear slope is important

to include in the model. A fixed quadratic term for time was incorporated into the

model, as well as a random quadratic slope. Table 6.9 shows the AIC estimates

for each random effect addition. From this we see that the addition of the random

quadratic slope reduces the AIC from 8334.067 to 8288.999, with likelihood ratio

test giving p<0.001.
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Table 6.9. Model fit estimates for the addition of random effects
to the longitudinal submodel

Model Log likelihood df AIC BIC
Random intercept -43144.233 5, 8638.466 8667.84
Random linear slope -4160.033 7 8334.067 8375.19
Random quadratic slope -4134.499 10 8288.999 8347.746
df: degrees of freedom

Table 6.10. Model estimates from a linear mixed effects model
for log hCG with random quadratic time term

Fixed-effect parameters Hazard Ratio 95% CI
Time since conception, days 1.464 1.416, 1.512
Quadratic time since conception, days -0.026 -0.027, -0.025
Intercept -11.687 -12.232, -11.142
Random-effect parameters Estimate 95% CI
σ2
u1 0.044 -0.028, 0.068
σ2
u2 0.000021 0.00001, 0.00004
σ2
u0 7.126 5.036, 10.084
cov(u1, u2) -0.001 -0.001, -0.0005
cov(u1, u0) -0.524 -0.736, -0.313
cov(u2, u0) 0.010 0.005, 0.015
σ2
e 1.047 0.987, 1.111
σ2
u1 , σ

2
u2 : slope variances

σ2
u0 : intercept variance

cov(,): covariances between pairs of variances
σ2
e : measurement error variance

CI: Confidence Interval

Table 6.10 shows model estimates for the random quadratic slope model,

which indicates a very small but statistically significant variance for the random

quadratic slope term. The random quadratic effect was ultimately not included

in the model to allow for comparability to the later joint model, which could not

be fitted with a random quadratic time effect.
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Final longitudinal model estimates are given in Table 6.11. Baseline mean log

hCG was -11.612 (95%: -12.012, -11.21), corresponding to a hCG very close to

zero. For a unit increase in time there was an overall 1.426 increase in mean log

hCG. The variance terms also justify the inclusion of the random effects terms.

Table 6.11. Model estimates from a linear mixed effects model
for log hCG

Fixed-effect parameters Hazard Ratio 95% CI
Time since conception, days 1.451 1.418, 1.485
Quadratic time since conception, days -0.025 -0.026, -0.025
Intercept -11.612 -12.012, -11.213
Random-effect parameters Estimate 95% CI
σ2
u1 0.005 0.004, 0.007
σ2
u0 2.619 1.949, 10.084
cov(u1, u0) -0.095 -0.127, -0.062
σ2
e 1.113 1.051, 1.179
σ2
u1 : slope variance
σ2
u0 : intercept variance
cov(u1, u0): covariance of u1 and u0
σ2
e : measurement error variance

CI: Confidence Interval

Fitted values from the longitudinal model were incorporated into a Weibull

survival model and FPM. Estimates are shown in Table 6.12. A one-unit increase

in log hCG inferred a 65.1% reduction (HR: 0.349 95% CI: 0.277, 0.439) in the

rate of pregnancy loss at time t for the Weibull model and a larger 69.0% (HR:

0.310 95% CI: 0.240, 0.399) reduction in the rate of pregnancy loss for the FPM.

Measurement error for the log hCG observations has been accounted for as the

fitted model creates a log hCG response at any time t. As noted in section 5.3.3,

inputting predictions into the survival model assumes that values of log hCG do

not change between observations, as we have predictions for each time point as

opposed to a complete continuous trajectory of observations. Estimates are also

still too precise as the uncertainty in estimates from the mixed model stage are
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not carried through to the survival model stage, and may be characterised by

bias and poor coverage [28].

Table 6.12. Survival model estimates from a two-stage model,
modelling time to miscarriage with the inclusion of log hCG pre-
dictions

Weibull Model Hazard Ratio 95% CI
Age, years 1.075 1.010, 1.145
Usual cycle length, days 0.862 0.762, 0.976
Predicted log hCG 0.349 0.277, 0.439
Flexible Parametric Model*
Age, years 1.067 0.999, 1.140
Usual cycle length, days 0.869 0.762, 0.990
Predicted log hCG 0.310 0.240, 0.399
*2 boundary and 2 internal knots
CI: Confidence Interval

6.4.5 Fitting a joint longitudinal-survival model

In order to now account for both measurement error and the intermittently mea-

sured hCG measurements a joint longitudinal-survival model was fitted to the

dataset (see section 5.4.2). To link the expected value of the log hCG to the

event time, a trajectory of log hCG measurements was built via the longitudinal

part of the joint model. Figure 6.12 reiterates that steeper trajectories of log

hCG are consistent with viables pregnancies.
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Figure 6.12. Log hCG trajectories prior to censoring or miscarriage

The longitudinal submodel mirrored the model built in section 6.4.4.1 and

in this instance contained no further covariates, which is consistent with the

Marriott et al. [44] analysis. Joint model estimates including random intercept

and random linear slope term, and Weibull baseline hazard are given in Table

6.13.

A strong association between log hCG and miscarriage was observed, through

linking the expected log hCG response to the event time. A one-unit increase

in expected current value of log hCG resulted in a 66.1% decrease (HR: 0.339

95% CI: 0.257, 0.447) in the rate of miscarriage. Maternal age at conception was

no longer significantly associated with miscarriage, although usual cycle length

remained statistically significant. A one-day increase in a woman’s usual cycle

length represented a 15.6% decrease (HR: 0.844 95% CI: 0.739, 0.965) in the rate

of miscarriage. It was not possible to fit a joint model incorporating an FPM,
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or a quadratic random effect for the slope in the longitudinal submodel. This is

most likely due to the limitations of the sample size.

Table 6.13. Model estimates from a joint longitudinal-survival
model with current value association structure

Survival submodel Hazard Ratio 95% CI
Age, years 1.076 0.998, 1.159
Usual cycle length, days 0.844 0.739, 0.965
Expected current value of log hCG 0.339 0.257, 0.447
Scale and shape parameters Estimate 95% CI
log λ -26.716 -33.299, -20.132
log γ 2.371 2.178, 2.563
Longitudinal submodel Mean 95% CI
Time 1.431 1.396, 1.466
Quadratic time -0.025 -0.026, -0.024
Intercept -10.171 -10.540, -9.801
Random-effect parameters Estimate 95% CI
σu1 0.072 0.061, 0.084
σu0 1.538 1.327, 1.782
ρ(u1, u0) -0.781 -0.851, -0.683
σe 1.054 1.024, 1.084
σu1 , σu0 : slope and intercept SD
ρ(u1, u0): correlation between u1 and u0
σe: measurement error SD
CI: Confidence Interval

6.4.6 Comparing estimates across models

The association between log hCG and time-to-miscarriage was evident across all

models. Association parameter estimates for each of the methods are shown in Ta-

ble 6.14. To allow for comparison, the two-stage and joint model approaches were

both fitted with longitudinal models that included a random linear slope only.

The largest association was estimated by the joint model, with the two-stage

model following closely behind. The survival model with time-varying covariate

gave the smallest association. Standard errors were much smaller at 0.034 and

0.041 for the time-varying covariate and two-stage models respectively, compared
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to 0.142 for the joint model. This emphasises that joint models when appropri-

ately utilised can better gauge uncertainty than their simpler counterparts [28].

Table 6.14. Model estimates for log hCG from each applied
method of analysis

Model Hazard Ratio 95% CI Standard Error
Time-varying covariate 0.419 0.357, 0.491 0.034
Two-stage model 0.349 0.277, 0.439 0.041
Joint Model 0.339 0.257, 0.447 0.142
CI: Confidence Interval

6.4.7 Alternative survival submodels and association structures

Restricted cubic splines with three internal knots (see Figure 6.5) more aptly de-

scribed the baseline hazard function for the survival submodel, compared to the

Weibull distribution. However, despite altering the number of integration points

and quadrature nodes, as well as using a variety of initial values, it was not pos-

sible for model convergence to be achieved using RCS functions to describe the

baseline hazard. Subsequent joint models were fitted using a Weibull baseline

hazard. The exploratory plots suggest that the rate of change of log hCG may

be an important factor affecting progression in early pregnancy. This was inves-

tigated through inclusion of both the current and slope association structures in

the model.

Results in Table 6.15 show that together the current value and slope of the

log hCG trajectory are strongly associated with early pregnancy loss.
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Table 6.15. Model estimates from a joint longitudinal-survival
model with current and first derivative association structures

Survival submodel Log Hazard Ratio 95% CI
Age, years 0.084 0.005, 0.163
Usual cycle length, days -0.187 -0.328, -0.045
Expected current value of log hCG -1.574 -2.036, -1.113
Expected rate of change of log hCG 9.377 2.810, 15.944
log λ -66.874 -96.884, -36.864
log γ 3.173 2.758, 3.587
Longitudinal submodel Mean change 95% CI
Time 1.431 1.396, 1.466
Quadratic time -0.025 -0.026, -0.024
Intercept -10.179 -10.548, -9.809
Random effect paramters Estimate 95% CI
σu1 0.072 0.061, 0.085
σu0 1.542 1.332, 1.787
ρ(u1, u0) -0.790 -0.857, -0.696
σe 1.054 1.024, 1.084
σu1 : slope SD
σu0 : intercept SD
ρ(u1, u0): correlation between u1 and u0
σe: measurement error SD
CI: Confidence Interval

For women who had the same value of expected log hCG the log hazard ratio

for a unit increase in the slope of the log hCG trajectory was 9.923 (95% CI:3.264,

16.582). This suggests that an increase in log hCG has a detrimental effect on

pregnancy, compared to a woman who experiences a decrease in their log hCG

slope, provided that their current log hCG value is the same. This was paired

with a consistently positive association between a unit increase in the expected

current value of log hCG at time t and the rate of miscarriage at the same time.

A unit increase in expected log hCG at time t inferred a corresponding 78.9%

decrease (HR: 0.211 95% CI: 0.331, 0.724) in the rate of miscarriage at time

t. This effect was larger than was seen in the current value joint model. The

results for the slope association do not reflect what we would expect of hCG
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trajectories and so requires further investigation. This may be a symptom of

using a quadratic to model log hCG which dips driving down the trajectories for

healthy pregnancies. Inclusion of a random quadratic slope would have allowed

greater variation, preventing this.

6.4.8 Subject-specific conditional survival predictions

Subject-specific predictions from the current value model are illustrated below.

Figure 6.13 presents longitudinal response data as well as conditional survival

probabilities for two participants who experienced biochemical losses.

0.0

0.2

0.4

0.6

0.8

1.0

Survival probability

-5

0

5

Lo
g 

hu
m

an
 c

ho
rio

ni
c 

go
na

do
tro

ph
in

, m
IU

/m
l

0 5 10 15 20
Days since conception

Panel 2630

0.0

0.2

0.4

0.6

0.8

1.0

Survival probability

-5

0

5

Lo
g 

hu
m

an
 c

ho
rio

ni
c 

go
na

do
tro

ph
in

, m
IU

/m
l

0 5 10 15 20 25
Days since conception

Panel 2333

Biochemical losses

Figure 6.13. Conditional survival probability curves for partici-
pants who experienced biochemical losses
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For panel 2630, five log hCG measurements were observed. Prediction of

pregnancy survival at day 17, two days after the final longitudinal observation,

gave a pregnancy survival probability of approximately 95%. This is because the

observed data did not indicate a decrease in log hCG. Panel 2333 included 12 log

hCG measurements and indicated a pregnancy survival of slightly less than 95%

at day 23, despite the decrease in log hCG. The uncertainty was also greater for

the second panel with wider confidence intervals.
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Figure 6.14. Conditional survival probability curves for partici-
pants who experienced biochemical losses

Subject-specific conditional survival probabilities for two early losses are shown

in Figure 6.14. Panel 1618 included seventeen log hCG observations. The trajec-

tory began to plateau and drop from day 22 onwards. The corresponding two-day

conditional survival prediction at day 34 was approximately 5%, confirming a loss.
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Panel 2810 contributed 23 biomarker observations. The longitudinal profile did

not increase as steeply as panel 1618, but indicated a more consistent rise. The

conditional survival probability at day 32 was just over 30%.

Figure 6.15 shows conditional survival probabilities for two healthy pregnan-

cies. Panel 1186 consisted of 21 log hCG observations. The longitudinal trajectory

showed variability in hCG over follow-up time, rather than consistent increases.

The resulting two-day subject-specific survival prediction at day 35 was close to

70%. Panel 1303, on the other hand, showed a more consistent and steeper rise

in log hCG over 18 observations. Observed values were clustered close together,

resulting in a predicted pregnancy survival of over 95%.
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Figure 6.15. Conditional survival probability curves for partici-
pants who experienced biochemical losses
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6.5 Discussion

In this analysis the association between longitudinal log hCG and time-to-miscarriage

was appropriately modelled utilising the more advanced joint longitudinal-survival

model framework. This allowed the association between the two outcomes to be

modelled whilst accounting for measurement error and the intermittent nature of

observations. A unit increase in the current value of log hCG was associated with

a 66.1% decrease in the rate of miscarriage. This is a slighter larger effect than

observed in the two-stage model estimates (HR: 0.349), but much greater than

the 4% decrease in rate observed in the two-stage model analysis conducted by

Marriott et al. [44]. The latter model assumed day zero was the estimated day of

the missed period, thereby excluding hCG observations prior to this day. At this

point hCG would likely be above 25 mIU/ml, which is the threshold for standard

pregnancy tests. The model fitted in this chapter included lower values of hCG

from implantation (based on day zero at conception), and subsequently resulted

in a much larger association between log hCG and time-to-miscarriage. This per-

haps indicates that absolute increases in hCG around implantation are important

in determining the viability of a pregnancy. Another key difference between mod-

els was the use of the Weibull PH model here and the Cox PH model by Marriott

et al.. Given sufficient sample size, a fully parametric modelling approach can

yield more efficient estimates than the Cox model. However, assuming a Weibull

baseline hazard function opens up the possibility of misspecification, which the

Cox model avoids [246]. It is important to note, that association estimates for

log hCG and time-to-miscarriage across the two-stage and joint models fitted in

this chapter were consistent.
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The survival submodel included cycle length and age in the model. Advanced

maternal age at conception is a known risk factor associated with miscarriage

[247; 248]. Furthermore evidence suggests that a shorter cycle length may repre-

sent a surrogate marker for advanced reproductive age, particularly as the initial

transition to peri-menopause can be characterised by a shortening of cycle length

[249; 250]. Further known risk factors are number of previous miscarriages as well

as lifestyle related aspects such as an increased alcohol consumption, smoking and

maternal obesity to name a few, however not all of these were recorded as part

of this study [251]. In this sample of women, whether a woman had experienced

a previous miscarriage was not significantly associated with pregnancy loss. This

may be because the variable included was binary and did not allow quantification

of the number of previous miscarriages. Unlike the Marriott et al. [44] study, this

analysis did not include the time taken to reach a hCG value of 25 mIU/ml from

LH surge in the model. Though this was not a statistically significant addition

at the survival modelling stage for this analysis, Marriott et al. [44] reported a

30% increase in the rate of miscarriage for every additional day it took for hCG

to reach 25 mIU/ml from the day of the LH surge. From a clinical perspective

this may have been an important omission as there is evidence to suggest that

slow rising hCG is indicative of miscarriage or ectopic pregnancy [252; 253]. For

this data the day of surge was measured, however in natural pregnancy settings,

perceived slow rises in hCG may be an artefact of a misdated pregnancy [254].

The rate of miscarriage in this dataset was 34.1%, which is significantly greater

than the 14-24% recorded in the literature [5]. This is a consequence of randomly

sampling double the number of healthy pregnancies compared with miscarriages,

and may have introduced sampling bias, impacting subsequent model estimates.
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Unique to this analysis were the prediction of subject-specific survival proba-

bilities. Prediction window intervals were kept narrow to minimise uncertainty

around survival probability estimates. For individuals who contributed consistent

and greater number of hCG observations, there was less uncertainty around risk

predictions and they were more likely to match the recorded outcome. More often

these women experienced healthy pregnancies and so by design contributed more

measurements. Predictions for biochemical pregnancies were the poorest, because

observations were fewer and trajectories were not characterised by a decrease in

hCG as they were with the early losses.

6.5.1 Current research

Here, the potential of prospectively monitoring pregnancy from first detection of

urinary hCG was investigated. It is more likely that tracking hCG at this early

stage would present as an adjunct to diagnosis by ultrasound later on in the preg-

nancy. This echoes research suggesting declines in hCG can be noted even prior

to other symptoms presenting [255]. There is also potential for this monitoring

to occur prior to conception, with a recent study finding that a lag between the

luteal phase and hCG production can be indicative of a biochemical pregnancy,

possibly due to early or delayed implantation [15]. Tracking of hCG by pregnant

women is also practicable, as demonstrated by Foo et al. [15] who employed a

fertility monitor that also provided semi-quantitative analysis of hCG levels on

pregnancy tests that were used daily in women who conceived. Retrospective

analysis of the semi-quantitative data indicated that non-viable pregnancies had

different hCG profiles to viable pregnancies.

Serial tracking has the potential to cause stress, although women using tests

to track ovulation for fertility purposes do not appear to have higher stress levels

than those not employing tests [256; 257]. Even so, it is likely that tracking would
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initially be of benefit in high risk pregnancies, where anxiety levels are already

high and there would be a willingness and reason to track.

Monitoring from first detection has the potential to be useful in cases of

recurrent miscarriage, particularly as research into treatment gains traction. A

recently published feasibility study assessing the effectiveness of the diabetes drug

sitagliptin as a treatment for recurrent miscarriage, presented promising findings

[23]. This trial builds on previous research, which found that in some cases of

recurrent miscarriage, it is the deterioration of stem-like cells in the uterus, which

contribute to pregnancy loss. When adjusted for age and baseline colony forming

unit (CFU) counts, the CFU count was higher (RR: 1.52, 95% CI: 1.32, 1.75)

in the sitagliptin group compared to placebo, pointing to successful regeneration

of cells. These findings could revolutionise treatment for unexplained recurrent

miscarriage, with tracking serving as a complement.

Not all miscarriage is likely to be predictable due to the diverse aetiology of

the condition. Some causes can be directly related to reduced hCG levels, e.g.

conditions that affect rate of embryonic development such as chromosomal abnor-

malities, or an inadequate placenta. Other causes, for example, where infectious

agents or trauma are involved, may have no forewarning.

6.5.2 Strengths and limitations

The joint model improved upon the two-stage approach carried out by Mar-

riott et al [44]. Fitting the current and slope association structures exemplified

the strength of the association between the hCG trajectory slope and time-to-

miscarriage, which is a sensible result. This also represented the first application

of these advanced modelling techniques to early pregnancy outcomes , which

utilised a frequentist framework. Recent papers have both utilised Bayesian ap-

proaches to classify each type of pregnancy based on longitudinal profiles [45; 46].
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The final joint model could not be fitted using the more flexible restricted

cubic splines, falling back instead on the Weibull baseline hazard. Model selection

was carried out using forwards stepwise selection, which is known to introduce

bias [258]. Alternative selection methods should be considered in future, specific

to the joint modelling context. Selection based on the log likelihood contribution

for the longitudinal part and conditional survival model have been proposed, but

are currently only implemented in the SAS statistical software[223]. The example

dataset was relatively small, and so fitting a model as complex as the joint model

was challenging. Results must therefore be interpreted with caution.

Sacrifices were made when modelling the baseline hazard for the survival sub-

model, as well as for the choice of random components in the longitudinal sub-

model, in order to achieve convergence. Despite changes to integration points,

quadrature nodes and initial values, an arguably better fitting model could not

be obtained. The choice to model log hCG quadratically resulted in healthy tra-

jectories being driven down at the boundaries of the data, most likely explaining

why the slope association structure produced conflicting results to the current

value model. Using RCS functions to model the trajectory function may be a

solution, which will be explored further in Chapter 7. Overall, the complexity

of the joint model and the limited observed data prevented exploration of more

advanced association structures. This speaks to how advanced these models re-

ally are and the subsequent computational complexity. Of interest is the possible

non-linear association between log hCG and time-to-miscarriage which was ulti-

mately modelled linearly. If indeed the association between the two is quadratic

then misspecification may produce biased estimates. This will be investigated in

a simulation study in Chapter 9.
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As previously noted the data had a higher prevalence of women who miscar-

ried due to the way samples were chosen for testing. Another source of selection

bias may come from insights into the type of women who would have been inter-

ested in taking part in a study with such an intense collection protocol. Though

any underlying medical information affecting fertility was not recorded, it is not

inconceivable that women recruited to the study may have been experiencing

difficulty in conceiving. Furthermore, subfertility has also been shown to be as-

sociated with a greater incidence of miscarriage [259]. Certainly, miscarriage is

more prevalent amongst women with polycystic ovary syndrome (PCOS), with

30% to 50% of PCOS sufferers experiencing early pregnancy loss [260].

As this was a retrospective analysis of data with limited follow-up measure-

ments, it was not possible to update predictions as measurements were observed.

Uncertainty was therefore greater for predictions for wider time periods. Predic-

tions were also based on current value models, ignoring changes in hCG slopes,

which may be important in modelling the association between hCG and mis-

carriage. If models are incorrectly calibrated then resulting predictions will be

affected. For prediction windows which are chosen arbitrarily and without con-

tinued follow-up, it is natural that increasingly lower survival probabilities will

be predicted as the time between the last observation and prediction time elapses

further. Though feasible to produce, these predictions require further scrutiny to

be meaningful in practice.

Attempting to utilise data for diagnostic or monitoring purposes also requires

careful consideration of the potential for false positives. This analysis did not take

into account the sensitivity and specificity of the fitted model, however this is an

important component of the analysis in Chapter 7, in line with developments in
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joint model methodology [43; 261]. With the small sample size, it was also not

viable to split the dataset for development and validation of the model.

A large enough sample size is required to achieve convergence when fitting a

joint model. However employing two separate modelling techniques for longitudi-

nal and survival data requires even larger sample sizes. The increased efficiency

of simultaneously modelling the two outcomes has the advantage of maintaining

desired power at a lower sample size [29]. This makes designing clinical trials

around a joint model framework an attractive prospect.

6.5.3 Conclusions

The analysis of this dataset required careful consideration of the biological aspects

of timing and level of hCG production, and how this related to the statistical

aspect of modelling. This resulted in a number of compromises being made

whilst modelling to allow the software to fit these models. Despite challenges,

this analysis demonstrated that an association exists between hCG and early

pregnancy outcome, and there is a need to model these outcomes simultaneously.

The novel extension to this analysis concerns the output of subject-specific

pregnancy survival predictions. Without prospective follow-up data, updating

predictions was not possible. Though the effectiveness of possible treatments,

particularly for recurrent miscarriage, remain uncertain, the joint model is well

placed for dynamic monitoring. However long term follow-up observations are

required, along with access to a larger dataset for a model to be developed and

subsequently validated. Further analyses should also consider the sensitivity and

specificity of the fitted predictive model, to minimise the likelihood of false diag-

noses of miscarriage. Issues of model calibration and discrimination as it pertains

to joint models (see section 5.12) will be considered in the analysis of a larger

dataset of longitudinal hCG and pregnancy outcomes presented in Chapter 7.
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Chapter 7

The General Cycle Collection study

7.1 Chapter overview

This chapter presents a detailed analysis of the general cycle collection study

data. The analysis builds on the previous application of the joint longitudinal-

survival model to the early pregnancy setting in Chapter 6, with the availability of

a larger dataset and extended follow-up. A carefully considered prediction model

was built, for which individualised predictions were obtained. A key extension

was the assessment of the discriminative capabilities of the fitted joint models,

as well as the calibration. In conducting this analysis the aim was to judge the

feasibility of fitting such models in practice against the constraints of estimation.

7.2 Introduction

The analysis performed in Chapter 6 demonstrated that a joint longitudinal-

survival model more appropriately models the association between longitudinal

hCG and time-to-miscarriage. The inclusion of the biomarker in the survival

model as a continuous trajectory function addresses measurement error, the in-

termittent nature of observations, uncertainty and links the two outcomes through

a shared parameter framework. The resulting association indicated that a unit

increase in log hCG corresponded to a 66.1% decrease in the rate of miscarriage.

These results however should be interpreted cautiously, as several barriers were
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encountered in the modelling process, concerning size of the available data and

its distribution of viable and miscarried pregnancies. The limitations of the data

introduced in Chapter 6, and the computational complexity of fitting joint mod-

els impacted the ability to build a well-calibrated model. In this chapter, the

joint model building for longitudinal hCG and time-to-miscarriage will be ap-

proached again with a larger dataset, including additional maternal demographic

data and extended follow-up. Computational hurdles encountered previously will

be overcome by utilising alternative software, which has since been developed (see

section 5.9).

7.3 Data

The general cycle collection study (clinical trial number: NCT01577147) was

carried out by SPD Development Company Ltd with the view to collect and

maintain a bank of urine samples for product development and validation. The

study followed fertile, non-pregnant women from the beginning of their cycles, to

establish levels of key hormones; FSH3, LH, P3G and hCG, for women who con-

ceived (see section 2.2). The probability of conception within one cycle, however,

is estimated to be between 30 to 40% with an approximate cumulative 90% prob-

ability of conception only achieved after twelve complete cycles [262]. To evaluate

pregnancy-related products women were followed up over multiple cycles, with

intercourse timed to maximise chance of conception and reduce the length and

expense of collection.

Recruitment began in January 2012, with the final observations collected in

September 2017. Volunteers were recruited through online advertising, targeting

women who were actively attempting to conceive. Women included in the study

were aged between 18 to 45 years, experienced menstrual bleeding and could
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provide written, informed consent. Those women diagnosed with a condition

recognised as a significant barrier to successful conception were excluded. Women

were excluded if they were currently undergoing fertility treatment, as fertility

drugs often trigger abnormally elevated levels of the very same hormones intended

to be studied. Treatments can involve drugs which stimulate the production of

reproductive hormones known collectively as gonadotrophins, of which hCG is

one example [263]. As a result, any hCG observations from these women would

not follow the typical path of a natural pregnancy.

Participation in the study was incentivised through provision of Clearblue

ovulation prediction products. Natural family planning (NFP) methods rely on

recording basal body temperatures and/or monitoring cervical secretions. A very

small increase in temperature is usually observed in the three days post ovula-

tion. However, this temperature postdates optimal fertility, which would hinder

conception. Changes in the quantity and viscosity of cervical mucus can help to

pinpoint the days leading up to ovulation. Yet, these NFP methods all require

consistent observation over several cycles to succeed in identifying personalised

fertile windows. Similarly many cycle apps utilise the calendar method to pin-

point the fertile window. This is usually unilaterally based on a fixed average 28

day cycle, and even when allowances are made for an alternative cycle length, the

maximal probability of calendar apps correctly predicting the day of ovulation

is still only 21% [264]. The prediction products offered to volunteers are more

sophisticated in that they measure hormones in early morning urine to identify

the optimal window for intercourse, specifically LH and oestrogen.

Women remained in the study for up to three cycles. It was originally esti-

mated that 600 women would need to be recruited to achieve 100 pregnancies.

This was a conservative estimate as evidence has suggested that by the end of
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three cycles, the cumulative probability of conception is 68% [262], though this

did not consider fertility aids. Recruitment was expanded to recruit 4000 volun-

teers in total. The final number of women recruited was 4025.

Volunteers collected early morning urine samples from the first day of their

cycle (first day of bleed) to up to seven days of the next cycle if they did not

become pregnant, or up until day 60 if they did become pregnant. Continued

collection for women who self-reported that they did not conceive allowed the

capture of possible biochemical pregnancies. The day of LH surge, an indicator

of ovulation, was identified via sample testing. This was utilised to calculate the

estimated date of conception, assumed to be the day after the LH surge [265].

In addition to observing daily urinary hCG measurements, FSH3 and P3G

were also measured. LH and FSH3 are intertwined in that they both play a

role in triggering ovulation[266]. P3G encourages successful implantation of the

fertilised ovum into the endometrial wall and low levels of this have been linked to

recurrent miscarriage [21]. The roles of hormones during the cycle are discussed

in more detail in Chapter 2.

7.4 Methods

Joint longitudinal-survival models were fitted to longitudinal log hCG and time-

to-miscarriage. The hCG measurements were modelled on the natural log scale

due to the skewed nature of the data. As hCG rises exponentially, raw obser-

vations can become large very quickly. A natural log transformation allows the

observations to be scaled for better comparison, and brings the data closer to

being normally distributed.
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Previously all hCG observations were included in the linear mixed effects

model. For this analysis observations which fell below the 2 mlU/ml detection

limit of the assay were excluded.

Modelling approaches were discussed with colleagues at SPD Development

Company Ltd. This included biological and statistical input from experts who

have been working in the early pregnancy field for a number of years. The lon-

gitudinal trajectory was built using a combination of model selection procedures

and consideration of biological plausibility. When deciding on the general shape

of the profiles, the addition of non-linear terms and the inclusion of random ef-

fect terms, the Akaike’s Information Criterion (AIC) was utilised as a means for

aiding model selection. Model covariates were chosen based on evidence of an

association between the covariate and hCG or miscarriage.

7.4.1 Time scale and time zero

To allow for a common timeline amongst women, it was necessary to anchor day

zero to a particular day in the cycle that would be meaningful to the analysis.

As with the analysis performed in Chapter 6 miscarriage was modelled from the

estimated date of conception. This was based on the assumption that ovulation

takes place approximately 24 hours after the LH surge [265]. The lag between

conception and implantation when hCG begins to be observed and pregnancy

can be confirmed, resulted in delayed entry.

7.4.2 Modelling longitudinal hCG

In Chapter 6 log hCG was modelled non-linearly using a quadratic time term.

The quadratic failed to capture the hCG plateau, instead causing a dip much

earlier than would usually be observed. To address this, restricted cubic splines

were fitted to model the log hCG trajectory. Varying numbers of splines and knot
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positions were considered, based on the centiles of the time variable. Random

effects were chosen based on likelihood ratio tests for each addition to the model

following the approach discussed in section 3.5.6. A random intercept and random

linear slope were included in the final model allowing for variation in individual

baseline log hCG and slope. Inclusion of additional non-linear random effect

terms were also considered.

The longitudinal model developed in Chapter 6 did not include any additional

variables. With input from collaborators at SPD, maternal body mass index

(BMI) and average cycle length were included. Higher BMI values correspond to

lower hCG values. A study investigating reference ranges and the determinants

of total serum hCG values during pregnancy found that women with a BMI of

between 34 to 46 kg/m2 exhibited on average 9369 IU/L lower (SD: 729) lower

hCG than women in the lowest BMI range of 15 to 25 kg/m2 [267]. The length

of the cycle determines when the LH surge occurs and subsequently when con-

ception and implantation take place[10]. Ethnicity was considered for inclusion,

but was excluded due to the lack of ethnic variation in the data. BMI and cycle

length were centred at 25 kg/m2 and 28 days respectively to allow for meaningful

interpretation.

7.4.3 Survival modelling for time-to-miscarriage

A Weibull distribution was utilised to model the baseline hazard, though re-

stricted cubic splines provided a better fit. This was owing to the restrictions

presented by the software in Stata, which did not allow estimation of individ-

ualised survival predictions for models including spline terms. For similar rea-

soning the survival submodel again included a Weibull baseline hazard. Delayed

entry models were fitted. As with the longitudinal trajectory model, BMI was
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included, as a known confounder, along with smoking status, maternal age, num-

ber of previous miscarriages, and P3G and FSH3 hormone levels on the day of

implantation. Smoking status was formed of two categories; never smokers and

a combined current and previous smokers category, due to the low numbers in

the current smokers category. This is unsurprising in a trying to conceive pop-

ulation, who are advised of cessation beforehand. Smoking has been shown to

be associated with miscarriage, with passive smoke inhalation also a risk factor

for miscarriage [72]. Age is an established risk factor for miscarriage with women

aged 25 to 29 conferring the lowest risk and women aged 45 and over the highest

[68]. Following inspection of the age distribution across participants a quadratic

age term was included in the model. Women who have experienced a miscarriage

previously are also at higher risk of incurring another loss than women who have

not previously experienced a loss [67]. BMI was centred at 25 kg/m2 and age was

centred at 30 years.

Higher levels of P3G tend to signal a positive pregnancy outcome, as it is

vital to establish and maintain the pregnancy. Looking at P3G on the day of

implantation may allow evaluation of the ‘health’ of the corpus luteum [268].

Elevated levels of FSH3 have been linked to a shortening of cycle length and is

thought to act as a surrogate for reproductive ageing [269].

Non-linear effects of continuous variables were considered and interactions be-

tween covariates were tested for inclusion in the model. The proportional hazards

assumption was assessed by plotting log analysis time against the negative log of

the negative logarithm of the survival probability for categorical variables. For

continuous variables a time-dependent effect for the covariate was included in the

model and tested for significance using a likelihood ratio test. Deviance resid-

uals were estimated to identify outlying observations. Sensitivity analyses were
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conducted by removing observations and refitting models to assess the effect on

model estimates.

Entry into the study was dependent on pregnancy confirmation by detection of

hCG greater than 2 mlU/ml. Women who did not have hCG observations above

this threshold were excluded from the analysis. For women who experienced an

event or were censored on the same day as entry, a day was added to their survival

time to allow for inclusion in the analysis.

7.4.4 Joint longitudinal-survival model

Both frequentist and Bayesian joint longitudinal-survival models were fitted to

the data, using Stata and R (see section 5.4.2). Subject-specific predictions could

only be obtained utilising Bayesian estimation via the R package JMBayes [202].

The baseline hazard was modelled using cubic b-splines by default, with knots

placed at equally spaced percentiles of the observed event times. Independent uni-

variate normal diffuse priors were assumed for the vector of fixed effects for the

longitudinal biomarker, the regression coefficients of the survival model and the

vector of spline coefficients used to model the baseline hazard and the association

parameter. An inverse Wishart prior distribution was assumed for the covariance

of the random effects and an inverse-Gamma prior for the variance of the residual

error terms. Proposal distributions (taken from separately fitted LMM and Cox

PH models) were tuned for 3,000 iterations. The burn-in length was 3,000 itera-

tions, and the number of repetitions was a default of 20,000. Chains were thinned

to 2,000 iterations. More details on the estimation can be found in section 5.8.

Models with current value and first derivative association structures were

fitted to the data. This allowed investigation of the change in absolute value and

rate of change of log hCG.
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7.4.5 Subject-specific survival predictions

Subject-specific survival probabilities were predicted for a selection of biochemi-

cal losses, early losses and healthy pregnancies. Estimation of these conditional

survival probabilities is described in detail in section 5.11.2.

7.4.6 Discrimination and calibration

The predictive capabilities of the model were assessed using extensions to calibra-

tion and discrimination measures tailored to joint longitudinal-survival models.

Methods for estimating these measures are described in section 5.12. Model sensi-

tivity and specificity were calculated and ROC curves were plotted. Correspond-

ing ROC AUCs were estimated for specified prediction windows from plotted

ROC curves. Cut-points were identified utilising both the F score and Youden’s

index. Model calibration was assessed by estimating the prediction error in the

predicted event rates using both a square and absolute loss function [205].

7.4.7 Multivariate joint model

A multivariate joint longitudinal-survival model was fitted including log P3G as

the second longitudinal biomarker along with log hCG. Log P3G was modelled

utilising three restricted cubic splines, a random intercept and a two-spline ran-

dom slope. The P3G trajectory model included BMI, as obesity is known to be

associated with low P3G levels in early pregnancy [270]. The K longitudinal

outcomes were modelled using a GLMM, shown in Equation 7.1 [271]. Here, yki

is the vector of longitudinal responses for the kth outcome for individual i. The

conditional distribution of yki given the vector of random effects uki follows a

distribution from the exponential family. The link function is denoted by gk(.)

The linear predictor νki is made up the design vectors xki(t) and zki(t) of the
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fixed and random effects βk uki respectively. This reduces to the LMM for a

continuous longitudinal response.

gk [E {yki(t) | uki}] = νki(t) = xki(t)βk + zki(t)uki (7.1)

The longitudinal outcomes are linked by assuming all of the random effects ui

across the two outcomes are normally distributed with mean zero and variance-

covariance matrix D. The corresponding survival submodel is shown in Equation

7.2.

hi(t | Hi(t),wi(t)) = h0(t) exp
[
γwi(t) +

K∑
k=1

∑
l = 1Lkfkl {Hki(t),wi(t),uki,αkl}

]
(7.2)

The model is conditional on the longitudinal history up to time t such that

Hki(t) = {νki(s), 0 ≤ s < t}. The vector of covariates is given by wi(t) with as-

sociated parameters γ. The association structures for each longitudinal outcome

is determined by the functions fkl(.) which are parameterised by the vector αkl.

For the longitudinal outcomes, independent normal prior distributions were

assumed for the fixed effects, and inverse gamma prior distributions for the scale

parameters. For the survival submodel independent normal prior distributions

were assumed for the covariate and association parameter vectors. The variance-

covariance matrix for the random effects was parameterised in terms of a corre-

lation matrix and vector of standard deviations. A Lewandowski-Kurowicka-Joe

correlation prior distribution was assumed for the correlation matrix and a half-

Student’s t prior distribution for each standard deviation.

All models were fitted using merlin in Stata IC version 15.1 and/or JMBayes

in R version 4.01 [200; 202].
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7.5 Results

A total of 4,025 participants were recruited into the study. Of these, 3,869 women

met the initial eligibility criteria and were consented. A total of 1,829 individuals

were excluded before beginning the trial. On testing 572 women conceived pre-

trial onset, a further two participants were peri-menopausal and no longer eligible.

A number of individuals withdrew consent (n=253). The most prevalent reason

was a change in personal circumstances which meant they were no longer trying to

conceive (n=87) or a lack of interest (n=88). Only 27 women withdrew due to the

stress or concerns related to the study itself (n=27). The number of participants

withdrawn by the trial team totalled 325. The majority of these women did not

complete or comply with collections (n=125). Sixty-seven participants did not

receive required study materials. A further 677 participants were lost to follow-up

after consent was given but before study onset.

The 2,040 participants who began the study completed 3,904 cycles. Of these

2,040 individuals, 376 women conceived. One ectopic pregnancy was excluded

from analysis as evidence suggests that hCG profiles for ectopic pregnancies are

not always discernible from viable intrauterine or miscarried pregnancies [272].

Data on hCG was not available for five participants. Two withdrew consent, one

was withdrawn by the study team due to non-compliance, another was lost to

follow-up and finally one volunteer was diagnosed with polycystic ovary syndrome

(PCOS). A full breakdown of participant retention and flow is presented in Figure

7.1.
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Figure 7.1. Flowchart for patient retention and flow
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Three of the 370 pregnancies were twin pregnancies, and were excluded from

analysis. This is because hCG levels tend to peak at a higher level for twin

pregnancies in comparison to single pregnancies, pointing towards an alternative

hCG trajectory [273]. The final data consisted of 285 (77.7%) viable and 82

(22.3%) miscarried pregnancies. Of the miscarried pregnancies, 65 (79.3%) were

classified as early losses (≤ 6 weeks) and 17 (20.7%) as clinical losses (> 6 weeks).

Baseline characteristics are presented in Table 7.1. Maternal characteristics

were similar across healthy and miscarriage groups. Women who experienced

viable pregnancies were slightly younger on average than those who miscarried,

30.23 (SD: 4.66) and 31.37 (SD: 5.84) respectively. Mean BMI was higher at

26.87 (SD: 5.97) for women who had viable pregnancies than the mean of 26.37

(SD: 5.30) for those who experienced losses. The average cycle length was similar

across both groups at approximately 29 days ( 29.26 (SD: 3.20) and 29.32 (SD:

3.68) for viable and miscarriage groups respectively). Women who experienced

healthy pregnancies had been trying for slightly longer on average at 8.16 months

(SD: 9.61) than women who miscarried at 6.33 months (SD: 7.91). This tended to

vary greatly amongst the women within each group, with a median of 5.0 months

(Q1, Q3: 3.0, 10.0) for those who experienced viable pregnancies and 4.0 months

(Q1, Q3: 2.0, 7.0) for women who suffered a loss. Sixty-one percent (n=174) of

individuals who had a healthy pregnancy had experienced a previous live birth

compared with a slightly higher 69.5% (n=57) of women who miscarried. For both

groups a higher proportion of women described themselves as non-smokers, 174

(61.1%) and 51 (62.2%) for viable and miscarried pregnancy groups, respectively.

Almost 95% of individuals across both groups were of a White-European ethnicity,

268 (94.0%) for viable and 76 (92.7%) for miscarried groups.
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Most women who experienced healthy pregnancies had completed higher ed-

ucation (n(%): 138(48.6%)), with degree level education the most prevalent re-

sponse (n(%): 34(12.0%)). Higher education overall was the most popular re-

sponse for women who miscarried (n(%): 33(40.3%)), again with degree the

most common response (n(%): 12(22.0%)). A quarter of women in the viable

pregnancy group were educated to A-Level standard (n(%): 75 (26.4%)), and a

slightly higher number of women who miscarried were similarly educated (n(%):

28 (34.1%)). A similar proportion of participants had experienced a miscarriage

previously in both groups, 124(43.5%) and 37(45.1%) for the viable and mis-

carried pregnancy groups respectively. The mean number of prior miscarriages

for women who experienced healthy pregnancies was slightly higher at 0.77 (SD:

1.22) than the 0.65 (SD: 0.92) for those who suffered losses. The median number

of previous losses was 0 (Q1, Q3 : 0, 1) in both groups. The average FSH3 level

on the day of implantation was lower in the viable pregnancy group at 1.85 (SD:

1.83) than 3.37 (SD: 3.10) in the miscarriage group. In contrast the average level

of P3G on the day of implantation was higher for viable pregnancies (23.85, SD:

16.62) than for miscarried pregnancies (17.27, SD: 13.21).

7.5.1 hCG trajectories

Absolute values of hCG and log transformed by pregnancy viability group are

shown in Figure 7.2. There were 531 hCG observations which fell below the

detection limit of 2 mIU/ml. Seven women had no recorded hCG observations

above this limit. After exclusion of these observations and the log transformation

the data was closer to normally distributed.
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Figure 7.2. Raw and log transformed hCG observations

Women who miscarried contributed a median of 15 (Q1, Q3: 8, 25) hCG

observations, whilst women who experienced viable pregnancies contributed 32

(Q1, Q3: 30, 34) observations on average. For early loss pregnancies the median

number of observations was 10 (Q1, Q3: 6, 15) and for clinical losses the median

number was 25 (Q1, Q3: 16.5, 33).

Plots of individual log hCG trajectories by pregnancy outcome are displayed

in Figure 7.3. There was a marked difference in profiles of log hCG for viable and

failing pregnancies. In general, there was a consistent rise in hCG for healthy

pregnancies. The initial rate of increase of hCG was steep through the first three

weeks after conception, before slowing in rise. Women who miscarried, presented

with an initial rise after conception. Due to the length of follow-up, it was

possible to observe complete profiles for the majority of women who miscarried,

with hCG levels declining. This is a contrast to the partial miscarried trajectories

from Chapter 6 (see Figure 6.2 for comparison). The point at which a drop in

hCG was observed spanned as early as 2 weeks post conception to as late as 6

weeks.
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Figure 7.3. Log hCG trajectories for viable pregnancies and mis-
carried pregnancies
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Figure 7.4. Log hCG trajectories for women who miscarried
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Figure 7.4 show trajectory plots for the early and clinical losses. Trajectories

for early losses follow the same shape as the clinical losses, however, they differ

in the height of the log hCG peak.

7.5.2 Data exploration

Variables of interest and potential associations between pairs of variables were

explored. This was to determine the possibility of interactions to be included at

the modelling stage. Histograms and boxplots for age, BMI, cycle length and

previous number of miscarriages are shown in Figure 7.5.
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Figure 7.5. Histograms and box plots for age, BMI, cycle length
and previous number of miscarriages by pregnancy viability group

Age was fairly normally distributed, although there was slightly more variation

amongst women who miscarried. A larger inter-quartile range of 33− 27 = 6 was
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observed for those who miscarried than the 33− 28 = 5 for those who had viable

pregnancies. The range was similar across both groups with a minimum age of

18 and 19 years for the viable and loss groups respectively and an upper limit of

44 years of age across both groups.

There were several abnormally high and low BMI values amongst participants.

Overall there was less variability in BMI amongst women who miscarried with

an inter-quartile range of 5.9kg/m2 compared to 8.0kg/m2 for viable pregnancies.

Six women who experienced healthy pregnancies had a BMI above 42.4kg/m2,

more than 1.5 times the interquartile range, placing them in the extremely obese

category. One woman who miscarried had a BMI greater than 36.8, more than

1.5 times the interquartile range. A single participant was classed as extremely

underweight with a BMI of 14.5 kg/m2 in the viable pregnancy group.

Overall cycle length for both viability groups were fairly normally distributed.

The inter-quartile range for viable and non-viable pregnancies spanned 28 to 31

and 30 days respectively. Select women in both groups experienced unusually

long and short cycle lengths. A cycle length greater than 40 days was observed

for three participants who experienced healthy pregnancies, with a maximum

observed cycle length of 49 days. One woman reported an average cycle length

of 48 days amongst women who eventually miscarried. Only one women had

an average cycle length of less than 21 days (20 days), and was in the viable

pregnancy group.

The number of previous miscarriages were positively skewed, with the median

of no previous losses in both groups. The maximum number of losses in the

viable pregnancy group was higher at 8 than the 5 in the failing pregnancy group.

Twelve women who experienced healthy pregnancies, reported having more than

3 previous losses compared with two women in the failing pregnancy group. More
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than three losses is defined as recurrent loss. A three-group categorisation was

considered, no previous loss, ≤ 3 losses and > 3 losses, however with small

numbers in the final category, the variable was modelled continuously.

7.5.2.1 Variable associations

Associations between pairs of variables were investigated where there was evi-

dence of one in the literature. Scatter plots of pairs of continuous variables are

presented in Figure 7.6.
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Figure 7.6. Scatter plots for associations between average cycle
length against BMI and age and number of previous miscarriages
against age and BMI, by pregnancy viability group

Being underweight or overweight can contribute to irregular menstrual cycles

[274]. The majority of women in the dataset were classed as overweight or obese

according to BMI. However, despite their high BMIs, most women had an average
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cycle length within the normal range. Two participants who exceeded the 40 day

cycle length were within the healthy BMI range, whilst the single participant for

whom a cycle length of 20 days was observed was clinically overweight according

to BMI. One individual who was very underweight with a BMI kg/m2 of 14.53

had an average cycle length of 28 days. There was no evidence to suggest that

cycle length was associated with BMI.

Cycle length has been suggested as a surrogate for reproductive age [275].

Women who are peri-menopausal experience a shortening of cycle length due to

a shortening of the follicular phase; the time preceding ovulation. This means

ovulation occurs more often. The majority of women in the dataset regardless of

age had a cycle length approximately between 23 and 36 days. Women with a

cycle length greater than 36 days were mostly aged between 25 to 35 years, with

the individuals with the longest cycle lengths of 48 and 49 days both aged 26

years. Again there was no evidence in this case that cycle length and age were

associated.

The odds of a subsequent miscarriage increases 2-fold for women who have

experienced one previous loss and almost four-fold for those who have experienced

three previous losses [68]. The majority of women in the data had not experienced

a previous loss and this spanned the entire age range of the dataset. Multiple

previous losses were also spread out across women of all ages. Four of the five

women who had experienced five or more miscarriages previously were 35 years

or over. Women who had previously experienced eight losses were heavier.

7.5.3 Longitudinal Modelling

A quadratic time since conception term was utilised to describe the longitudinal

trajectory in Chapter 6. This was problematic as the quadratic did not adequately
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model the longitudinal trajectory. In addition, covariates with standing associa-

tions with hCG were not considered for inclusion in the longitudinal trajectory

model.

Figure 7.7 shows the various functional forms of time since conception which

were evaluated for modelling log hCG. The quadratic trajectory dips at the tail

end of follow-up, however hCG observations for a viable pregnancy would plateau

at this point.
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Figure 7.7. Modelling longitudinal log hCG with polynomials
and restricted cubic splines

To improve upon this specification restricted cubic splines (RCS) were used

to capture the shape of the log hCG profile. Initially two RCS were utilised,
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with knots placed at day 1, 24 and 54 post conception. This was compared to a

three-RCS model, with knots placed at 1, 19, 30, and 54 days post conception.

The overall fit of the RCS models was similar up until the end of follow-up. The

two-spline model implied a plateau, perhaps even a marginal dip at the day 54

mark, the three-spline model suggested a continued rise in hCG.

Model fit statistics for these models are presented in Table 7.2. The quadratic

and two-spline models were an improvement on the basic linear model with re-

ductions of AIC from 31761.99 (BIC: 31783.3) to 29066.47 (BIC: 29094.89) and

29014 (BIC: 29042.59) respectively. The three-spline model did not noticeably

improve upon the two-spline model. For this reason the two-spline model was

selected.
Table 7.2. Model fit statistics for the functional form of the lon-
gitudinal trajectory

Model Log likelihood df AIC BIC
Basic Model -15877.99 3 31761.99 31783.3
Quadratic model -14529.24 4 29066.47 29094.89
Two-RCS model* -14503.08 4 29014.17 29042.59
Three-RCS model -14498.83 5 29007.66 29043.19
df: degrees of freedom
*Final functional form

The addition of random effects was based on comparison of the log likelihood

and the AIC. As models were fitted using ML estimation, nested models could be

compared using likelihood ratio tests (see section 3.5.6). Details of fit estimates

are given in Table 7.3. Addition of a random intercept to allow for individual

variation at baseline, resulted in a reduction in AIC from 29014.17 to 20909.89.

Addition of the random linear slope further reduced the AIC to 15805.29. For

both random effect additions the likelihood ratio test gave a p-value of less than

0.0001. The addition of the random non-linear slope was statistically significant

(p<0.0001). This was ultimately rejected, however, due to firstly the added
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complexity of computation at the joint model stage and secondly the improvement

in fit did not compensate for the addition of computing an extra three parameters.

Table 7.3. Model fit statistics for the addition of random effects
to the longitudinal trajectory model

Model Log likelihood df AIC BIC
Fixed effects model -14503.08 4 29014.17 29042.59
Random intercept model -10449.94 5 20909.89 20945.41
Random linear slope -7895.647 7 15805.29 15855.03
Random non-linear slope -7355.079 10 14730.16 14801.21
df: degrees of freedom

An LMM fitted to the longitudinal log hCG data, including a viability group

variable showed profiles were significantly different (Table 7.4). Women who

suffered a biochemical miscarriage had a 2.703 lower (95%: -2.914, -2.493) log

hCG level on average than women who went on to have healthy pregnancies.

Women who miscarried after six weeks had a 1.025 lower (95% CI: -1.362, -0.688)

mean log hCG level than women who had viable pregnancies.

Table 7.4. Longitudinal model with pregnancy viability grouping
variable

Longitudinal model Mean change 95% CI
RCS 1 time, days 0.508 0.495, 0.521
RCS 2 time, days 0.0003 0.0003, 0.0003
Group
Healthy Reference
Biochemical loss -2.703 -2.914, -2.493
Early loss -1.025 -1.362, -0.688
Constant -2.148 -2.370, -1.927
CI: Confidence Interval

The results for the longitudinal model including the centred covariates BMI

and average cycle length are given in Table 7.5. A one kg/m2 increase in BMI from

25kg/m2, the upper limit of the normal range of BMI, resulted in a statistically

significant 0.034 decrease (95% CI: -0.049, -0.019) in log hCG. A minimal 0.004
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increase (95%: -0.022, 0.031) in log hCG was observed for each one-day increase

on a 28-day cycle. This was not statistically significant at the 5% level. The

overall variance at baseline was 1.816 (95% CI: 1.506, 2.189). The slope variance

was 0.016 (95% CI: 0.013, 0.020).

Table 7.5. Longitudinal model estimates

Longitudinal model Mean change 95% CI
RCS time 1, days 0.500 0.485, 0.514
RCS time 2, days 0.0003 0.0003, 0.0003
Centred BMI at 25kg/m2 -0.034 -0.049, -0.019
Centred cycle length at 28 days 0.004 -0.022, 0.031
Constant -2.453 -2.619, -2.288
Random effect parameter Estimate 95% Confidence Interval
σ2
u1 0.016 0.013 0.020
σ2
u0 1.816 1.506 2.189
cov(time, intercept) -0.139 -0.170 -0.108
σ2
e 0.243 0.236 0.251
σ2
u1 : slope variance
σ2
u0 : intercept variance
cov(time, intercept): covariance between slope and intercept
σ2
e : measurement error variance

CI: Confidence interval

7.5.4 Survival modelling

The Kaplan-Meier survival probability for time-to-miscarriage is shown in Figure

7.8. Overall survival probability for the pregnancies at the end of follow-up was

approximately 70%. There is a lag in events up to day 10 due to the use of time

since conception as the timeline.
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Figure 7.8. Kaplan-Meier Survival Estimates

The shape of the baseline hazard was explored. Figure 7.9 demonstrates that

the most appropriate way to model the underlying baseline hazard was two or

three spline terms. These functional forms of the baseline hazard were compared

to the exponential, Weibull and Gompertz distributions. Estimates of fit can be

found in Table 7.6.

190



0.60

0.70

0.80

0.90

1.00

Su
rv

iv
al

 P
ro

ba
bi

lit
y

0 20 40 60
Days since conception

Survivor function Exponential
Weibull Gompertz

0.60

0.70

0.80

0.90

1.00

Su
rv

iv
al

 P
ro

ba
bi

lit
y

0 20 40 60
Days since conception

Survivor function 2 RCS
3 RCS

Figure 7.9. Survival probability curves for Exponential, Weibull,
Gompertz and 2 and 3 restricted cubic spline baseline hazard mod-
els

Table 7.6. Model fit estimates for various functional forms of the
baseline hazard

Model Log likelihood df AIC BIC
Exponential -229.27 1 460.5401 464.4262
Weibull -219.3006 2 442.6012 450.3734
Gompertz -224.9454 2 453.8908 461.663
Two RCS -208.0396 3 422.0792 433.7375
Three RCS -205.2554 4 418.5109 434.0553
df: degrees of freedom

The flexible parametric models fit best, with little difference in AIC between

the two-RCS and three-RCS models. Of the distributions the Weibull model

gave the most appropriate fit. Though modelling the baseline hazard flexibly was
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attempted, the Weibull was ultimately chosen as it is the most stable when fitting

a joint model. This was seen in the analysis presented in Chapter 6. Considering

the number of variables intended to be included in the survival submodel, the

simpler Weibull distribution was preferred over a more flexible baseline hazard.

Estimates for a Weibull survival model including the time-varying covariate

for log hCG are shown in Table 7.7. Using the most naive method (see section

5.3.2) a unit increase in log hCG suggested a 52.5% decrease (HR: 0.475, 95%

CI: 0.307, 0.734) in the rate of miscarriage.

Table 7.7. Weibull survival model for time-varying log hCG

Variable Hazard Ratio 95% CI
Log hCG 0.475 0.307, 0.734
CI: Confidence Interval

The additional variables suggested for inclusion in the model for their recog-

nised association with early miscarriage were maternal age, BMI, smoking status,

number of previous miscarriages, along with P3G and/or FSH3. Non-linear ef-

fects for age and BMI were explored and the AIC and BIC estimates for each

addition to the model are shown in Tables 7.8 and 7.9. The addition of quadratic

centred age was significant at the 5% level (p=0.002) and was included in the

model. No non-linear BMI terms were included in the model.

Table 7.8. Survival model fit estimates for different functional
forms of centred age

Model Log Likelihood df AIC BIC
Linear age -183.800 9 385.600 420.550
Quadratic age -179.043 10 378.087 416.920
RCS 2df -179.405 10 378.811 417.644
RCS 3df -177.864 11 377.728 420.445
df: degrees of freedom
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Table 7.9. Survival model fit estimates for different functional
forms of centred BMI

Model Log likelihood df AIC BIC
Linear BMI -183.800 9 385.600 420.550
Quadratic BMI -182.905 10 385.810 424.644
Two RCS -182.959 10 385.919 424.752
df: degrees of freedom

The levels of P3G and FSH3 on the day of implantation were included in the

model as a single observation per individual. Table 7.10 shows that the level

of P3G on the day of implantation was significantly associated with time-to-

miscarriage. A one µg/ml increase in P3G on the day of implantation reduced

the rate of miscarriage by 2.4% (HR: 0.976, 95% CI: 0.956, 0.996).

Table 7.10. Weibull survival model including P3G on the day of
implantation

Variable Hazard Ratio 95% CI
Log hCG 0.566 0.357, 0.897
Centred age, years 1.013 0.973, 1.055
Quadratic centred age, years 1.009 1.004, 1.014
Centred BMI, kg/m2 0.971 0.930, 1.014
Smoking status
Never Reference
Previous/current 0.795 0.487, 1.297
Previous number of miscarriages 0.972 0.774, 1.221
P3G on day of implantation, µg/ml 0.976 0.956, 0.996
CI: Confidence Interval

When FSH3 on the day of implantation was included independently of P3G,

there was a significant association with miscarriage. The results of this model

are shown in Table 7.11. A one mIU/ml increase in the level of FSH3 on the day

of implantation resulted in a 14.2% increase (HR: 1.237, 95% CI: 1.142, 1.339) in

the rate of miscarriage.
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Table 7.11. Weibull survival model including FSH3 on the day
of implantation

Variable Hazard Ratio 95% CI
Log hCG 0.520 0.335, 0.805
Centered age, years 1.009 0.969, 1.051
Quadratic centred age, years 1.008 1.003, 1.014
Centred BMI, kg/m2 0.994 0.953, 1.037
Smoking status
Never Reference
Previous/current 0.884 0.542, 1.440
Previous number of miscarriages 0.976 0.780, 1.225
FSH3 on day of implantation, mIU/ml 1.237 1.142, 1.339
CI: Confidence interval

FSH3 was a statistically significant addition to the model when compared

using a likelihood ratio test to the P3G only model (p<0.0001). The final survival

submodel included both P3G and FSH3 levels on the day of implantation. Results

are shown in Table 7.12.

Table 7.12. Survival submodel estimates with both P3G and
FSH3 on the day of implantation

Variable Hazard Ratio 95% CI
Log hCG 0.574 0.366, 0.900
Centered age, years 1.003 0.963, 1.044
Quadratic centred age, years 1.009 1.004, 1.014
Centred BMI, kg/m2 0.982 0.941, 1.026
Smoking status
Never Reference
Previous/current 0.864 0.527, 1.415
Previous number of miscarriages 0.996 0.791, 1.255
P3G on day of implantation, µg/ml 0.970 0.950, 0.991
FSH3 on day of implantation, mIU/ml 1.250 1.157, 1.350
Parameter Estimate 95% CI
ln(λ) -4.184 -6.525, -1.844
γ 1.017 0.605, 1.709
CI: Confidence Interval
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The overall hazard ratio for centred age suggests that for women aged 31 and

over there was an increase in the rate of miscarriage, whilst for women below

30 years of age there was a decrease in the rate of miscarriage, when keeping all

other covariates constant. There were small decreases in the rate of miscarriage

for a 1kg/m2 increase in BMI from a BMI of 25kg/m2 (HR: 0.982, 95% CI: 0.941,

1.026). Previous or current smokers had a 2.9% (HR: 0.864, 95%: 0.527, 1.415)

lower rate of miscarriage than women who had never smoked. A unit increase in

the number of previous miscarriages suggested a 0.04% (HR:0.996, 95% CI: 0.791,

1.255) decrease in the rate of miscarriage. None of these effects were statistically

significant at the 5% level. A one µg/ml increase in the level of P3G on the day

of implantation indicated a statistically significant 3.0% (HR:0.970, 95%: 0.950,

0.991) decrease in the rate of miscarriage. Whilst a one mIU/ml increase in the

level of FSH3 on the day of implantation corresponded to a 25.0% (HR: 1.250;

95% CI: 1.157, 1.350) increase in the rate of miscarriage. A one-unit increase in

log hCG, here modelled as a time-varying covariate, suggested a 42.6% decrease

in the rate of miscarriage.

As FSH3 can be an indicator of reproductive age, interactions with maternal

age were investigated. The model fit estimates for the added interactions are

given in Table 7.13. The interactions with age did not significantly improve the

fit of the model and were consequently not included.

Table 7.13. Model fit estimates for survival submodel FSH3 in-
teractions with age

Model Log likelihood df AIC BIC
P3G only model -190.448 9 366.547 433.846
FSH3 only model -183.488 9 345.004 419.925
P3G and FSH3 model -179.043 10 336.878 416.920
FSH3 interaction with linear age -179.043 11 378.087 422.576
df: degrees of freedom
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Further interactions investigated included an interaction between centred age

and centred BMI (p=0.6841), centred age and the number of previous mis-

carriages (p=0.7415), centred BMI and the number of previous miscarriages

(p=0.2562), smoking status and the number of previous miscarriages (p=0.8875),

log hCG and centred age (p=0.3909) and log hCG and centred BMI (p=0.8873).

There was no evidence of an interaction between each of these pairs of variables.

Predicted Martingale residuals plotted against linear and quadratic centred

age are shown in Figure 7.10a. The addition of the quadratic term improved the

modelling of age, and confirms non-linearity. The martingale residual plots for

BMI are shown in Figure 7.10b. There is indication that modelling BMI linearly is

not sufficient. Despite evidence to the contrary at the modelling stage (see Table

7.9), inclusion of a quadratic centred BMI term addressed the non-linearity.
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Figure 7.10. Martingale residual plots

Plots for all other variables are shown in Figure 7.11. Linear terms were

sufficient for the number of previous miscarriages, P3G on the day of implantation

and log hCG. There was some curvature for FSH3 on the day of implantation

towards the end of follow-up, most likely due to fewer observations.
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Figure 7.11. Martingale residual plots for previous miscarriages,
P3G and FSH3 on the day of implantation and log hCG

The proportional hazards assumption was assessed for categorical variables by

plotting the natural log analysis time against the -log[-log(survival probability)].

Other than at the beginning and end of follow-up Figure 7.12 shows fairly parallel

lines for the never smoker and previous/current smoker groups.

Figure 7.13 shows the time-dependent log hazard ratios for each continuous

variable included in the model. Non-proportional hazards, i.e. interactions with

time, were not considered for log hCG, though it will be modelled as a time-

varying covariate via the joint model due to the repeated observations. There

was no evidence of a violation of the proportional hazard assumption for age,

BMI, P3G or FSH3. The time-dependent log hazard ratio for previous number
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of miscarriages showed some decrease over time, however there was no evidence

that the addition of the time-dependent variable improved fit (p=0.413).
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Deviance residuals for the fitted model are shown in Figure 7.14. The major-

ity of women with a deviance residual greater than two experienced miscarriages

early on during follow-up. Sensitivity analyses were conducted by removing dif-

ferent subsets of these women in turn - eight women whose BMI was greater

than 30kg/m2, six women who were over the age of 35, three women who re-

ported experiencing two previous losses and ten women who were previous or

current smokers. Model estimates did not alter significantly after the removal

of women who were older or had previously experienced two losses. However,

when women with BMIs over 30kg/m2 and women who were current or previous

smokers were removed the effect of an increase in BMI (from 25 kg/m2) or being

a previous/current smoker had a protective effect which was significant at the 5%

level.
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Figure 7.14. Deviance residuals for the fitted survival submodel
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7.5.5 Joint longitudinal-survival model

The estimates from the joint longitudinal-survival model with current value as-

sociation structure are presented in Table 7.14. As the intention was to obtain

subject-specific predictions, the joint models were fitted in R. This capability

is not yet available in Stata for longitudinal trajectories modelled using spline

terms. The parallel command to stjm and merlin in R is JMfit, which was not

able to fit the models successfully. Instead the Bayesian equivalent JMBayes was

utilised.

Table 7.14. Model estimates for the fitted joint longitudinal-
survival model with current value association structure

Survival submodel Hazard Ratio 95% CrI
Current value of log hCG, mIU/ml 0.469 0.407, 0.532
Centered Age, years 1.005 0.953, 1.051
Quadratic centred age, years 1.003 0.999, 1.010
Centered BMI, kg/m2 0.986 0.934, 1.038
Smoking status
Never Reference
Previous/current 1.518 0.828, 2.726
Number of previous miscarriages 1.116 0.866, 1.409
P3G on day of implantation, µg/ml 1.002 0.980, 1.023
FSH3 on day of implantation, mIU/ml 1.222 1.121, 1.315
Longitudinal submodel Mean change 95% CrI
Restricted cubic spline time term 1 19.749 19.368, 20.177
Restricted cubic spline time term 2 5.319 4.926, 5.621
Centered BMI, kg/m2 -0.051 -0.059, -0.042
Centered cycle length, days -0.0094 -0.019, 0.013
Intercept -2.106 -2.193, -2.018
Random effect parameter Estimate 95% CrI
σ2
u1 1.061 0.922 1.232
σ2
u0 1.348 1.113, 1.615
cov(time, intercept) -0.032 -0.153, 0.097
σ2
e 0.4811 0.474, 0.488
σ2
u1 slope variance
σ2
u0 intercept variance
cov(time, intercept) covariance between the slope and intercept
σ2
e residual measurement error variance

CrI: Credible Interval

After accounting for possible confounding variables a strong association be-

tween log hCG and miscarriage was observed. Specifically a one-unit increase in
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the current absolute value of log hCG resulted in a 53.1% (HR:0.469, 95% CrI:

0.407, 0.532) decrease in the rate of miscarriage at time t. An increase in P3G

on the day of the day of implantation no longer provided a protective effect. An

increase in FSH3 on the day of implantation continued to infer a significantly

greater rate of miscarriage. A one mIU/ml increase in FSH3 indicated a 22.2%

increase (HR:1.222, 95% CrI: 1.121, 1.315) in the rate of miscarriage.

Table 7.15. Model estimates for the fitted joint longitudinal-
survival model with first derivative association structure

Survival submodel Hazard Ratio 95% CrI
Current value of log hCG 0.605 0.505, 0.712
Slope value of log hCG 0.007 0.0004, 0.138
Centered Age, years 1.006 0.958, 1.061
Quadratic centered age, years 1.003 0.997, 1.008
Centered BMI, kg/m2 0.987 0.934, 1.042
Smoking status
Never Reference
Previous/current 1.692 954, 3.110
Number of previous miscarriages 1.136 0.859, 1.445
P3G on day of implantation, µg/ml 0.998 0.978, 1.019
FSH3 on day of implantation, mIU/ml 1.202 1.111, 1.300
Longitudinal submodel Mean change 95% CrI
Restricted cubic spline time term 1 20.146 19.703, 20.703
Restricted cubic spline time term 2 5.595 5.282, 6.037
Centered BMI, kg/m2 -0.040 -0.049, -0.028
Centered cycle length, days 0.031 0.012, 0.057
Intercept -2.182 -2.268, -2.097
Random effect parameters Estimate 95% CrI
σ2
u1 1.062 0.912, 1.231
σ2
u0 1.376 1.135, 1.652

cov(time, intercept) -0.034 -0.169, 0.107
σ2
e 0.481 0.474, 0.489
σ2
u1 slope variance
σ2
u0 intercept variance

cov(time, intercept) covariance between the slope and intercept
σ2
e residual measurement error variance

CrI: Credible Interval

The results for the first derivative association structure are given in Table

7.15. The hazard ratio for a unit increase in the current linear slope of log hCG

was 0.007 95% CrI(0.0004, 0.138). This suggests an increase in the log hCG
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gradient results in a large reduction in the rate of miscarriage at time t. Such a

large effect must be interpreted with caution due to the limited sample size.

Examination of trace plots showed no evidence of non-convergence. Plots

demonstrated high autocorrelation for a number of successive lags before reducing

to acceptable levels, across a number of parameters. A longer chain length and

greater thinning were used to address this issue. The density plots indicated

normality.

7.5.6 Subject-specific survival predictions
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Figure 7.15. Dynamically updated conditional event-free (sur-
vival) probability predictions for a healthy pregnancy
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Individualised predictions were obtained from the final first derivative asso-

ciation model. To illustrate the intended use of these survival predictions, they

were plotted for three participants who experienced a viable pregnancy, early

and later loss. Figure 7.15 presents dynamically updated conditional survival

curves as longitudinal measurements are observed. Participant 58 was experienc-

ing an ongoing viable pregnancy when censored at the end of follow up. They

contributed a total of 18 measurements and were a non-smoker, aged 24 with an

average cycle length of 26 days. The participant had experienced one miscarriage

previously and was categorised as obese with a BMI of 30.17kg/m2.

Table 7.16. Subject-specific survival probabilities for a viable
pregnancy

log hCG observations up to 2-day 5-day 10-day
Probability (95% CrI) Probability (95% CrI) Probability (95% CrI)

Day 13 0.999 (0.995, 0.9998) 0.997 (0.987, 0.9995) 0.995 (0.975, 0.999)
Day 17 0.9998 (0.999, 0.9999) 0.9995 (0.998, 0.9999) 0.9993 (0.997, 0.9999)
Day 21 0.998 (0.995, 0.9993) 0.995 (0.987, 0.998) 0.987 (0.957, 0.996)
Day 26 0.997 (0.992, 0.999) 0.992 (0.977, 0.997) 0.989 (0.963, 0.995)

The survival predictions, updated after consecutive sets of ‘new’ observations,

are presented for two, five and ten-day prediction intervals in Table 7.16. After

the initial four log hCG observations up to day 13, a strong survival probability

was indicated for the pregnancy even up to day 47 of 99.0% (0.990; 95% CrI:

0.908, 0.999). As time elapsed with no further measurements there was greater

uncertainty indicated by the wider credible intervals beyond day 30. Updating the

predictions by adding observations, both decreased the uncertainty in the survival

probability curve, and also maintained the high survival probability owing to the

large increases in the current value and slope of log hCG. Predictions updated

again with observations up to day 22 and then again at day 27 reflect the less

stable increase in log hCG. However, the survival probability again did not drop
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below 90% in the 10 or 20 day prediction interval after the final measurement

(0.986; 95% CrI: 0.964, 0.995 and 0.971; 95% CrI: 0.914, 0.991 respectively).

Predictions for an early loss pregnancy are given in Figure 7.16. Participant

262 was a 24 year old previous/current smoker with a BMI of 26.29kg/m2, a

cycle length of 29 days and having experienced one previous miscarriage. Over-

all log hCG values stayed consistently low for this pregnancy in comparison to

participant 58’s healthy pregnancy.
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Figure 7.16. Dynamically updated conditional event-free (sur-
vival) probability predictions for an early loss (≤ 6 weeks

Subject-specific conditional survival probabilities are presented in Table 7.17.

With the contribution of the initial three log hCG measurements up to day 13,

the survival probability was 84.5% (0.845; 95% CrI: 0.420, 0.970) at 18 days since

conception, reducing to 66.3% (0.663; 95% CrI: 0.079, 0.950) by day 23. The
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addition of several new measurements up to day 16 caused the survival predic-

tion to decrease to 71.3% (0.713; 95% CrI: 0.244, 0.943) for a 10 day prediction

interval. When all longitudinal observations up to day 22 were included, the

five-day survival prediction was 44.9% (0.449; 95% CrI: 0.136, 0.796). Credible

intervals were wide as the prediction window widened. This is in line with the

decreasing log hCG observations, which eventually plateaued and decreased to

below baseline levels.

Table 7.17. Subject-specific survival probabilities for an early loss

Log hCG observations up to 2-day 5-day 10-day
Probability (95% CrI) Probability (95% CrI) Probability (95% CrI)

Day 13 0.946 (0.784, 0.989) 0.845 (0.420, 0.970) 0.663 (0.079, 0.950)
Day 16 0.952 (0.854, 0.987) 0.871 (0.608, 0.969) 0.713 (0.244, 0.943)
Day 19 0.913 (0.791, 0.973) 0.820 (0.587, 0.945) 0.582 (0.189, 0.876)
Day 22 0.838 (0.621, 0.941) 0.499 (0.136, 0.796) 0.119 (0.002, 0.537)
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Figure 7.17. Dynamically updated conditional event-free (sur-
vival) probability predictions for a late loss (> 6 weeks)

As with the early loss, the log hCG observations did not increase as steeply

or as rapidly for the later loss presented in Figure 7.17, when compared to the

healthy pregnancy. Participant 1 was a 31 year old previous smoker with a BMI

of 25.74 kg/m2 and average cycle length of 29 days. They had also experienced

one previous miscarriage. The individual contributed 17 log hCG observations in

total.

Conditional survival predictions are shown in Table 7.18. The survival pre-

diction accounting for measurements up to day 16 indicated a 89.7% (0.897; 95%

CrI: 0.723, 0.977) survival probability 5 days after the last observed log hCG

measurement and 81.2% (0.812; 95% CrI: 0.478, 0.963) for a 10 day prediction
207



window. Updating the predictions at day 20 post conception, the survival predic-

tions improve due to the increases in log hCG. For a five-day prediction window

the survival probability for the pregnancy was 95.6% (0.956; 95%: 0.894, 0.988),

which decreased to 91.1% (0.911; 95% CrI: 0.760, 0.978) at 10 days post observed

log hCG. However after updating at day 24 and day 29, log hCG plateaued and

began to decrease. Pregnancy survival dependent on log hCG observations up to

24 days was 89.5% (0.895; 95% CrI: 0.757, 0.962) for a 5-day window, and 80.8%

(0.808; 95% CrI: 0.586, 0.929) for a ten-day prediction window. Once survival

predictions were updated with the final log hCG observations up to day 29, sur-

vival for a five and ten-day prediction window was 78.4% (0.784; 95% CrI: 0.571,

0.904) and 54.7% (0.547; 95% CrI: 0.258, 0.803).

Table 7.18. Subject-specific survival probabilities for a later loss

Log hCG observations up to 2-day 5-day 10-day
Probability (95% CrI) Probability (95% CrI) Probability (95% CrI)

Day 16 0.961 (0.905, 0.990) 0.897 (0.723, 0.977) 0.812 (0.478, 0.963)
Day 20 0.976 (0.946, 0.993) 0.956 (0.894, 0.988) 0.911 (0.760, 0.978)
Day 24 0.963 (0.917, 0.987) 0.895 (0.757, 0.962) 0.808 (0.586, 0.929)
Day 29 0.884 (0.758, 0.949) 0.784 (0.571, 0.904) 0.547 (0.258, 0.803)

7.5.6.1 Prediction intervals

Subject-specific survival probabilities were predicted after arbitrary time inter-

vals. However, there may be an optimal prediction interval particularly in the

early stages of pregnancy when drastic changes in log hCG can occur quite sud-

denly.

Probabilities for a later loss were updated daily, every two, three, four and five

days. The daily updated probabilities are shown in Figure 7.18. They exemplify

the fact that the greatest changes in risk are observed early during the first

five measurements. Once the trajectory is established as increasing, changes in

survival probability are less pronounced and every added observation serves to
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Figure 7.18. Subject-specific survival probabilities for a partici-
pant who experienced a later loss, updated daily

shore up estimates of uncertainty. However the reduction in log hCG at day

23 brings the survival curve down again. This is even with just a single added

measurement.

Figure 7.19 shows probabilities which were updated every two days. Updating

trajectories every two days seems to capture changes in pregnancy survival much

more succinctly than the daily updates. Each update describes a significant

change in survival probability, particularly at days 14 and 16, and also captures

the decrease with the lower log hCG observation at day 22.

Figure 7.20 shows subject-specific conditional survival probabilities updated

every three, four and five days. Predicting for an interval of 3 days continues to
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Figure 7.19. Subject-specific survival probabilities for a partici-
pant who experienced a later loss, updated every two days

capture key changes in survival probability, however when the interval is widened

to four days the survival probability remained constant at close to 0.7. Further

widening the window to five days gave similar results, with less fluctuation in

survival probability for this individual pregnancy.

7.5.7 Longitudinal predictions

Longitudinal predictions, updated after each observation, were calculated and

plotted for participants who experienced healthy pregnancies, early and later

losses.

Figure 7.21 illustrates daily updated longitudinal predictions for a later loss.

As the trajectory was updated, the uncertainty decreased. The final prediction

of the log hCG trajectory from day 29 up to day 50 indicated projected decrease

in log hCG to below detection limit levels.

Predictions for the healthy pregnancy are shown in Figure 7.22. Predictions

across all follow-up points tended to plateau before decreasing as predictions were

extrapolated further.
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(a) Updated every three days
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(c) Updated every five days

Figure 7.20. Subject-specific survival probabilities for a partici-
pant who experienced a later loss

Figure 7.23 shows the longitudinal predictions by follow-up point for a par-

ticipant who experienced an early loss. Log hCG trajectories decreased over time

as they were updated, similar to the later loss. However, over time trajectories

decreased much further than the later loss and at a steeper rate.
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Figure 7.21. Daily longitudinal predictions for participant who
experienced a later loss
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Figure 7.22. Daily longitudinal predictions for participant who
experienced a healthy pregnancy
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Figure 7.23. Daily longitudinal predictions for participant who
experienced an early loss

7.5.8 Discrimination

The sensitivity and specificity of the fitted first derivative association model was

assessed at different time-points during follow-up. Discrimination statistics for

five and ten-day prediction windows are presented in Table 7.19.

ROC curves were plotted for various prediction windows and are presented in

Figure 7.24. Twenty-nine women experienced a miscarriage within the prediction

window between 10 and 20 days post conception. The optimal threshold was

selected based on both the F score and Youden index. The optimal threshold

based on the F Score was a subject-specific survival probability of 0.79, which

corresponded to a sensitivity of 0.488 and a specificity of 0.970. When selecting

the threshold based on Youden’s index the optimal cut-off was a subject-specific

survival probability of 0.95, which gave a sensitivity of 0.990 and a specificity
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of 0.637. The overall ROC AUC was 0.895, so that the probability of a ran-

domly selected person who experienced a miscarriage between 10 and 20 days

since conception, had a lower survival probability than a participant who did not

experience an event in the time period was 89.5%.

The ROC curve for the prediction window of 20 to 30 days post conception

is presented in Figure 7.24b. The number of individuals at risk 20 days after

conception was 252, with 27 events during this window. The overall ROC AUC

was 0.983. The optimal threshold for the subject-specific survival probability, as

indicated by the F score, was 0.76. The proportion of correctly identified mis-

carriages was 0.706 and the proportion of correctly specified ongoing pregnancies

in this time window was 0.996. The Youden index, gave the optimal threshold

of 0.96. The sensitivity for this cut-off was 0.957 and specificity was 0.938, an

improvement from the previous ten-day window.

At day 30 there were 257 individuals still at risk with seven miscarriages

observed between day 30 and 40. The ROC curve for this window can be viewed

in Figure 7.24c. The optimal cut-off for the subject-specific survival probability

as estimated by the F score and Youden index was lower for this prediction

window at 0.79. The sensitivity for this cut-off was 0.731 and the specificity 0.992.

Unfortunately the AUC could not be calculated for this prediction window due

to a software error. However the figure shows a ROC AUC of very close to one.

In the ten-day prediction window beginning at 40 days post conception, there

were 198 individuals still at risk. Six individuals experienced an event during

this period. The ROC curve for this window can be viewed in Figure 7.24d.

The optimal threshold for the subject-specific survival probability corresponding

to the maximum F score increased to 0.95 from the last ten-day window. The

sensitivity for this cut-off was 0.754 and the specificity 1.000. The optimal cut-off
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Figure 7.24. Receiver operating characteristic (ROC) curves for
various prediction windows

maximising Youden’s index was 0.97, with a sensitivity of 0.916 and specificity

of 0.985. Again the AUC could not be calculated for this prediction window.

Overall sensitivity estimates were more variable than specificity. The F score

tended to signal a lower threshold for survival probability and as a result indicated

a lower sensitivity, whereas the Youden index gave higher thresholds for a larger

sensitivity. The sensitivity was generally lower for the larger ten-day windows

than the five-days predictions windows.
216



7.5.9 Calibration

Estimates for the prediction error both for a square and absolute loss function

are given in Table 7.20. The difference in the observed and expected rates in the

data were all below 0.07. The highest estimates for the error were given for 5

and 10 ten day windows from day 10 to day 30. The lowest error was for the 35

to 40 day interval with a prediction error of 0.0073 for the square and 0.0141 for

the absolute loss function estimates. The low scores across the board indicated

accurate predictions of event rates.
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Table 7.20. Prediction error estimates

Start of prediction window, days End of prediction window, days Prediction error
Square Absolute

10 20 0.0205 0.0603
15 20 0.0287 0.0499
20 25 0.0353 0.0531
20 30 0.0345 0.0596
25 30 0.0130 0.0257
30 35 0.0095 0.0178
30 40 0.0147 0.0260
35 40 0.0073 0.0141
40 45 0.0188 0.0229
40 50 0.0186 0.0265

7.5.10 Multivariate joint longitudinal-survival model

Progesterone has also been named as a biomarker of interest for the prediction

of pregnancy outcomes [276]. Including just one observation per individual, as

the P3G level on the day of the implantation variable did, wasted valuable in-

formation. The viability of utilising log P3G as an additional biomarker in a

multivariate model was investigated. When added to a survival model as a time-

varying covariate, a unit increase in log P3G resulted in a 42% decrease (HR:

0.581, 95% CI: 0.426, 0.794) in the rate of miscarriage. This indicated evidence

of an association between time-to-miscarriage and log P3G. Even when included

alongside log hCG in the time-varying covariate model, a unit increase in log P3G

still indicated a 35% decrease (HR: 0.652, 95% CI: 0.471, 0.903) in the rate of

miscarriage.

As progesterone is detectable prior to conception, using the time since con-

ception timeline caused the loss of observations prior to conception. Women who

had viable pregnancies contributed 18.1 (SD: 3.25) log P3G measurements on

average, whilst for those who miscarried a mean of 16.4 (SD: 3.50) measurements
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were observed. Moving to the time since conception timeline resulted in the loss

of 222 P3G observations overall. As interest lies in observations during preg-

nancy this does not pose a problem. After exclusion, on average women in the

viable pregnancy group had 17.4 (SD: 3.17) P3G records and women in the failing

pregnancy group had 15.8 (SD: 3.27).

7.5.10.1 Longitudinal model
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Figure 7.25. Log progesterone trajectories by pregnancy viability
group

Log P3G trajectories by viability group can be seen in Figure 7.25. There was

a general increasing trend across trajectories for women who experienced viable

pregnancies. For women who miscarried there was an initial increase at much

the same rate as the viable pregnancies. However, most women did not reach the
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height of log P3G experienced by the women with healthy pregnancies, before

reducing down close to levels at time zero.

The shape of log P3G was modelled using both polynomials and restricted

cubic splines. Model fit statistics for each model are given in Table 7.21. The

best fitting model with an AIC of 14019.54 utilised three splines with internal

knots at 0, 6, 12 and 30 days post conception.

Table 7.21. Model fit estimates for the fixed longitudinal log P3G
trajectory

Model Log Likelihood df AIC BIC
Linear model -7263.107 3 14532.21 14552.28
Quadratic model -7642.616 3 15291.23 15311.3
Cubic model -7930.389 3 15866.78 15886.85
2 RCS model -7087.392 4 14182.78 14209.54
3 RCS model -7004.77 5 14019.54 14052.99
df: degrees of freedom

The modelled trajectory can be seen in Figure 7.26. The final model included

both a random intercept and a non linear random slope modelled with two splines.

This provided the best fit according to the AIC. All random effects explored are

shown in Table 7.22.
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Figure 7.26. Log progesterone trajectory modelled using three
restricted cubic splines

Table 7.22. Model fit statistics for the random effects of the lon-
gitudinal P3G trajectory

Model Log likelihood df AIC BIC
Random intercept -5040.658 6 10093.32 10133.45
Random linear slope -4489.088 8 8994.175 9047.688
Random two RCS slope -4438.216 8 8892.433 8945.946
Random three RCS slope -4459.224 8 8934.447 8987.96
df: degrees of freedom

The final model also included a BMI term as evidence in the literature has

linked low P3G levels in pregnancy to obesity [277]. An LMM with an added

grouping variable demonstrated an association between viability and log P3G

(see Table 7.23). On average a woman who experienced an early loss before 6
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weeks had a -0.247 (95% CI: -0.401, -0.094) lower log P3G level than a woman

who experienced a viable pregnancy. On the other hand, for women experiencing

a later loss an increase of log P3G of 0.093 (95% CI: -0.187, 0.373) was observed on

average, when compared with the viable pregnancies. This was not statistically

significant.

Table 7.23. Linear mixed effect model estimates for log P3G

Variable Mean Change 95% CI
RCS 1 time, days 0.274 0.260, 0.289
RCS 2 time, days 0.002 0.002, 0.003
RCS 3 time, days -0.001 -0.001, -0.001
Centred BMI, kg/m2 -0.015 -0.025, -0.005
Viability group
Viable Reference
Early loss (<= 6 weeks) -0.247 -0.401, -0.094
Later loss (>6 weeks) 0.093 -0.187, 0.373
Intercept 1.463134 1.376, 1.551
CI: Confidence Interval

The estimates for the longitudinal trajectory model for log P3G (without

grouping variable) are given in Table 7.24. An association between BMI and

P3G was observed. A one kg/m2 increase in BMI from 25kg/m2 resulted in a

statistically significant corresponding -0.016 (95% CI: -0.026, -0.006) decrease in

log progesterone.
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Table 7.24. Linear mixed effects model estimates for log P3G

Variable Mean change 95% CI
RCS 1 time, days 0.274 0.260, 0.288
RCS 2 time, days 0.002 0.002, 0.003
RC3 3 time, days -0.001 -0.001, -0.001
Centred BMI, kg/m2 -0.016 -0.026, -0.006
Intercept 1.426 1.344, 1.507
Random effect parameters Estimate 95% CI
σ2
u2 0.0000002 0.0000002 0.0000003
σ2
u1 0.006 0.004 0.008
σ2
u0 0.410 0.338 0.497

cov(linear time, non-linear time) 0.00003 0.00002 0.00003
cov(linear time, intercept) -0.024 -0.033 -0.014
cov(non-linear time, intercept) -0.0001 -0.0001 -0.00003
σ2
e 0.171 0.165 0.178
σ2
u1 σ

2
u2 : slope variances

σ2
u0 : intercept variance

cov( , ): covariances between pairs of variances
σ2
e : measurement error variance

CI: Confidence Interval

The survival submodel remained the same, apart from the omission of the

singular P3G variable which was previously included in the log hCG survival

submodel.

7.5.10.2 P3G joint longitudinal-survival model

A joint longitudinal-survival model was fitted for log P3G with both a current

value and first derivative association structure. The results for each model are

presented in Tables 7.25 and 7.26. A unit increase in the absolute value of log

P3G corresponded to a 56.9% (HR: 0.431; 95% CrI:0.326, 0.569) decrease in the

rate of miscarriage at time t. A unit increase in FSH3 on the day of implantation

resulted in a 23.8% (HR: 1.238 95% CrI: 1.145, 1.336) increase in the rate of

miscarriage at time t. The log P3G slope was not significantly associated with

time to miscarriage with a hazard ratio of 0.092 (95% CrI: 0.006, 1.073). The
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expected current value of the slope continued to be associated with miscarriage. A

unit increase in the absolute value of log P3G corresponded to a 51.6% (HR: 0.484;

95% CrI: 0.347, 0.642) reduction in miscarriage rate, indicating the absolute

increases in log P3G are more important than increases in the slope in reducing

the rate of miscarriage.

Table 7.25. Joint longitudinal-survival model estimates for log
P3G with current value association structure

Survival submodel Hazard ratio 95% CrI
Current value of log P3G 0.431 0.326, 0.569
Centered age, years 1.013 0.946, 1.062
Quadratic centered age, years 1.007 1.001, 1.013
Centered BMI, kg/m2 0.987 0.936, 1.040
Smoking
Never Reference
Current/previous 0.710 0.635, 2.125
Number of previous miscarriages 1.090 0.838, 1.408
FSH3 on day of implantation, mIU/ml 1.238 1.145, 1.336
Longitudinal submodel Mean Change 95% CrI
RCS 1 time, days 1.552 1.370, 1.717
RCS 2 time, days 3.757 2.530 5.185
RCS 3 time, days 0.199 -1.473, 2.063
Centred BMI, kg/m2 -0.018 -0.031, -0.008
Intercept 1.1098 0.722, 1.475
Random effect parameters Estimate 95% CrI
σ2
u2 36.652 25.816, 49.856
σ2
u1 7.297 5.446, 9.415
σ2
u0 1.036 0.609, 1.490

cov(linear time, intercept) -0.165 -0.887, 0.544
cov(non-linear time, intercept) 3.209 1.447, 5.229
cov(non-linear time, linear time) 11.258 7.924, 15.332
σe 0.372 0.362, 0.384
σ2
u1 σ

2
u2 : slope variances

σ2
u0 : intercept variance

cov( , ): covariance between pairs of variance components
σe: measurement error SD
CrI: Credible Interval
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Table 7.26. Joint longitudinal-survival model estimates for log
P3G with first derivative slope association structure

Survival submodel Log hazard ratio 95% CrI
Current value of log P3G value 0.484 0.347, 0.642
Slope of log P3G slope 0.092 0.006, 1.073
Centred age, years 0.937 0.942, 1.057
Quadratic centred age, years 1.007 1.001, 1.014
Centred BMI, kg/m2 0.919 0.934, 1.042
Smoking status
Never Reference
Previous/current 0.922 0.690, 2.548
Number of previous miscarriages 1.027 0.882, 1.459
FSH3 on day of implantation, mIU/ml 1.228 1.125, 1.336
Longitudinal submodel Mean Change 95% CrI
RCS 1 time, days 1.6160 1.3866, 1.8440
RCS 2 time, days 3.9403 2.6177, 5.5342
RCS 3 time, days 0.558 -1.1384, 2.4309
Centered BMI, kg/m2 -0.019 -0.031, -0.006
Intercept 1.134 0.581, 1.577
Random effect parameters Estimate 95% CrI
σ2
u2 33.314 17.856, 46.581
σ2
u1 7.884 5.594, 10.688
σ2
u0 0.861 0.408, 1.321

cov(linear time, intercept) -0.188 -1.246, 0.746
cov(non-linear time, intercept) 2.200 -0.740, 4.393
cov(non-linear time, linear time) 12.312 9.202, 16.128
σe 0.374 0.363, 0.386
σ2
u1 σ

2
u2 : slope variances

σ2
u0 : intercept variances

cov( , ): covariance between pairs of variance components
σe: measurement error SD
CrI: Credible Interval

7.5.10.3 Multivariate joint longitudinal-survival model

The multivariate joint longitudinal-survival model was fitted with a longitudinal

submodel each for log hCG and log P3G. Due to the restrictions of the package,

the multivariate model could only be fitted for time points at which both hCG

and P3G were observed. As hCG was measured for longer than P3G, this resulted

in the loss of longer-term hCG follow-up data. Additionally as hCG is detectable

only once implantation has occurred, P3G data was lost during the time at which

hCG was still under 2mIu/ml. The dataset as a result after conclusions contained

258 viable and 52 miscarried pregnancies. Women across both groups had on
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average similar numbers of hCG and P3G observations (8.97 ± 2.26 and 7.08 ±

2.06 for viable and failing groups respectively). Figure 7.27 shows the overlaid

hCG and P3G curves by viability group.
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Figure 7.27. Log P3G and log hCG observations pregnancy via-
bility group

The final model estimates for the multivariate joint model are presented in

Table 7.27. When included as an additional longitudinal submodel, the associa-

tion between change in the current value of log P3G and the rate of miscarriage

changed direction, with increases suggesting a harmful effect. In particular a unit

increase in the absolute value of log P3G resulted in a 2.24 times (HR: 2.236; 95%

CrI: 1.445, 3.610) increase in the rate of miscarriage at time t. However a unit

increase in the absolute value of log hCG resulted in a statistically significant

reduction in the rate of miscarriage of 67.4% (HR: 0.326, 95% CrI: 0.232, 0.444).
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Increases in FSH3 levels on the day of implantation continued to be significantly

associated with miscarriage. A one mIU/ml increase resulted in a 25.9% (HR:

1.259; 95% CrI: 1.159, 1.365) increase in the rate of miscarriage.

Table 7.27. Multivariate joint longitudinal-survival model esti-
mates for the current value association of log hCG and log P3G

Survival submodel Hazard Ratio 95% CrIl
Current value of log hCG 0.326 0.232, 0.444
Current value of log P3G 2.236 1.445, 3.610
Centred age, years 0.989 0.938, 1.044
Quadratic centred age, years 1.005 0.998, 1.011
Centred BMI, kg/m2 0.961 0.908, 1.014
Smoking status
Never Reference
Previous/current 0.970 0.520, 1.739
Number of previous miscarriages 1.167 0.896, 1.484
FSH3 on day of implantation, mIU/ml 1.259 1.159, 1.365
Longitudinal submodel for log hCG Mean change 95% CrI
RCS 1 time, days 19.925 19.240, 20.629
RCS 2 time. days 7.965 7.015, 8.892
Centred cycle length, days -0.008 -0.032, 0.016
Centred BMI, kg/m2 -0.020 -0.036, -0.004
Intercept -3.951 -4.237, -3.674
Longitudinal submodel for log P3G Mean change 95% CrI
RCS 1 time, days 1.640 1.448, 1.849
RCS 2 time, days 4.061 2.813, 5.188
RCS 3 time, days 0.705 -0.729, 2.175
Centred BMI, kg/m2 -0.011 -0.023, -0.001
Intercept 1.091 0.704, 1.494
CrI: Credible Interval

7.6 Discussion

This analysis builds on the previous application of the joint longitudinal-survival

model to the pregnancy setting in Chapter 6, with the availability of a larger

dataset and extended follow-up. Both the change in current value and slope of

log hCG were important in relation to the rate of miscarriage. Subject-specific
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survival probabilities were shown to be sensitive to the change in slope of log hCG

and demonstrated the importance of updating predictions with current biomarker

observations. Furthermore, discrimination and calibration measures emphasized

the model’s capability of differentiating between viable and non-viable pregnan-

cies.

7.6.1 Main findings

The joint modelling analysis reiterated that changes in the current value of longi-

tudinal hCG are highly associated with time-to-miscarriage. Specifically, a unit

increase in log hCG was shown to reduce the rate of miscarriage by 53%. Addition

of the slope association demonstrated the slope of log hCG is just as important in

predicting the rate of miscarriage as the absolute log hCG value. The hazard ra-

tio for the slope association was very close to zero, suggesting that when holding

the current value constant, a unit increase in the linear slope of log hCG reduced

the rate of miscarriage by almost 100%. This is a huge effect and so must be

interpreted with caution, particularly with the relatively small sample of data.

In real terms this suggests that for two women with the same current value of log

hCG, an increase in hCG accompanied by an increase in the slope of log hCG

for one woman will increase the probability of pregnancy survival, compared to

a woman who experiences an increase in log hCG, but no corresponding increase

or even a decrease in slope. This finding was generally reflected in visualisations

of log hCG trajectories. Miscarried profiles were characterised by increases in log

hCG, at a slower rate and a failure to achieve the height of the log hCG trajectory

of a viable pregnancy as shown in 7.3. This is reflected in the literature.[14; 278]

P3G was no longer significantly associated with miscarriage at the 5% level

when included in the joint model, however the detrimental effect of rising FSH3

was maintained in the joint model setting. This corresponds with the uncertainty
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around progesterone as a predictor for miscarriage. P3G varies between women

and is influenced by maternal factors such as age and BMI [277]. Utilising a single

observation of P3G in the model does not reflect progesterone changes through-

out early pregnancy, and the choice of implantation as the time of inclusion may

be too early to witness significant changes in P3G. A meta-analysis investigating

progesterone as a diagnostic marker for early pregnancy loss found that a single

serum progesterone value was able to distinguish between a viable and non-viable

pregnancy for women presenting with pain or bleeding and an inconclusive ultra-

sound result. [279] Crucially, the omission of an ultrasound scan result reduced

the marker’s ability to delineate between failing and healthy pregnancies.

FSH3 is the hormone which triggers ovulation and is the highest just prior

to ovulation. If conception is successful, FSH3 should reduce to close to a zero

level. It has been hypothesised that elevated levels of FSH3 could be linked to

reproductive ageing, and certainly an indication of menopause is an abnormal

increase in FSH3 levels. The average age of women in the data was 30 years old

and only 53 (14.4%) of women were aged over 35 years. Interactions between age

and FSH3 were not found to be statistically significant. An alternative hypothesis

is that an elevation in FSH3 may represent an early indication of impending

loss, hence the body readying itself for the next cycle and the next egg release.

Research into FSH3 focuses on fertility treatment rather than its role in early

miscarriage. Indeed, the early losses exhibited the highest levels of FSH3 on the

day of implantation with a mean of 3.96 (SD: 3.49), however later losses presented

with similar FSH3 values to the viable pregnancies (1.85 ± 1.83 and 2.27 ± 1.36

mIU/ml respectively). Again, only a single value of FSH3 was utilised in the

model at a specific time-point, although it must be noted that inclusion of FSH3

on the day of the missed period garnered similar results, as with P3G. This would
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indicate that elevated FSH3 throughout the first week after implantation may be

indicative of an impending loss.

Prediction of subject-specific survival probabilities exemplified the potential

uses of the joint longitudinal-survival model in the pregnancy setting. Trajec-

tories and probabilities between the viable, early and later loss were distinct

particularly at the 5-day prediction window. Rates of miscarriage were predicted

well as evidenced by the low prediction error across time intervals. However, the

prediction of the true positives (sensitivity) was more variable, though the model

tended to stably minimise the number of false positives.

The focus of this analysis was log hCG trajectories and their association with

the time-to-miscarriage. However, longitudinal P3G was collected as part of the

study although for variable lengths of time and for the most part for a shorter

time than hCG. As a secondary analysis a joint model was fitted to log P3G and

time-to-miscarriage. The longitudinal submodel included BMI as a predictor of

log P3G, and as with log hCG higher values of BMI were associated with a reduc-

tion in log P3G. The results of the joint model demonstrated the importance of

the increase in absolute values of log P3G to reduce the rate of miscarriage. A unit

increase of log P3G indicated a 57% decrease in the rate of miscarriage at time t,

however addition of the slope suggested that the slope of P3G was less important

in relation to miscarriage. Progesterone analysis has mostly focused on single ob-

servations [48; 279]. Although increasingly random effects modelling of repeated

measurements of P3G are finding that non-viable pregnancies are associated with

decreases in progesterone as indicated by the joint model analysis[278].

Current guidelines do not advocate the use of progesterone observations with

log hCG in a diagnostic capacity for early miscarriage, particular in the case of
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ectopic pregnancies [17]. However, there has been increasing interest in utilis-

ing pregnancy markers together, and suggestions that there is value in utilising

progesterone and hCG in combination [47; 276; 280]. The results from the mul-

tivariate joint model including log hCG and log P3G as longitudinally measured

biomarkers, emphasized the association between changes in absolute values of

log hCG and miscarriage. A unit increase in log hCG resulted in a 67% reduc-

tion in the rate of miscarriage. Whilst increases in P3G indicated a 2.2 times

increase in miscarriage rate. This may be a symptom of fitting the multivariate

joint model to a truncated dataset in order to allow complete data for all women.

Certainly examination of slopes of log P3G at times where log hCG was also

observed showed muted increases for P3G in comparison to hCG. The accepted

variability of P3G between women may also be a factor in why changes indicated

an increase in the miscarriage rate [281]. The modelling results suggest that P3G

does not add any value compared with using hCG alone. A study comparing

the ratio of hCG measurements 48 hours apart and a progesterone observation

demonstrated the superiority of hCG in detecting a loss (sensitivity 75.6% for an

11% increase in hCG vs. 20.0% for a P3G level of 6.2ng/ml) [48]. This has also

been seen in studies looking at the benefits of progesterone therapy for women

who experience recurrent miscarriage. Although the therapy did do harm, there

was not conclusive evidence of a benefit for all women, rather a select few women

[22].

7.6.2 Strengths and limitations

The extensive collection of longitudinal hCG observations in this data allowed

the exploration of the relationship of log hCG with early pregnancy loss up to

the 9th week of pregnancy. Commonly, focus of such studies hinges on the pre-

dictive power of serum biomarker measurements, in the majority of cases hCG
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and progesterone [11]. This data is unique in both the serial nature of obser-

vations of hCG and the collection of a urinary biomarker as opposed to serum.

Although hCG is not detectable post conception in urine as soon as in serum,

evidence shows patterns of hCG, particularly intact hCG, are similar across both

mediums[25; 282]. The urinary hCG biomarker then lends itself well to cost-

effective predictive modelling of early miscarriage.

This data however was not without its idiosyncrasies. Inevitably women re-

cruited could have been more likely to join a study with such an intensive sample

collection protocol if indeed they had been trying to conceive unsuccessfully for

a time. As recruitment was managed through online advertising, women would

have had to be actively looking for an aid to conception. Obviously this was pro-

vided via Clearblue ovulation and fertility monitoring products. This suggests a

possibly biased sample of women with suspected fertility problems. However, on

examining the reason for withdrawal for women who did not continue on with

the study, only 113 women in total cited irregular cycle, contravention of eligi-

bility criteria (possible fertility issues) or intention to pursue fertility treatment

as a reason. Furthermore though the prospect of daily sample collection may be

considered daunting, only 27 women cited study stress or related concerns for

their desire to stop taking part. Indeed, it has been shown that utilising digital

ovulation tests as in this study, do not significantly increase stress levels when

compared to women who did not use the aid to time intercourse. Rather testing

increased women’s awareness of their cycle and provided reassurance that inter-

course timing would increase the likelihood of conception [256]. Most surprisingly

of all the majority of women who were excluded (n=575) was a consequence of

a pre-trial pregnancy, which negates concerns of a population struggling to con-

ceive.
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Joint longitudinal-survival models theoretically provide a natural framework

for such modelling, however software capabilities particularly where the aim is

to predict individual can prove to be barriers. It is due to limitations of com-

mands in Stata, which can not yet provide predictions for complex non-linear

longitudinal trajectories, that the analysis was moved to R. And it was due to

the insurmountable obstacles encountered in fitting a joint model utilising maxi-

mum likelihood estimation, that ultimately the more flexible Bayesian approach

was embraced. Although joint modelling tutorials have increasingly adopted the

use of non-linear longitudinal trajectories for demonstrative purposes, delayed

entry has been largely ignored. The complexities of a second layer of integration

due to the addition of left truncation increases the possibility that the model will

not converge, and when this is extended to the inclusion of multiple confounding

variables and more complex association structures, adaptive quadrature can fail

in the maximum likelihood approach [52]. Bayesian joint models therefore lend

themselves to these situations of computational complexity. However, they need

to be used carefully with appropriate assessment for evidence of non-convergence

and sensitivity to model specification and estimation.

The appropriate specification of the shape of the longitudinal log hCG trajec-

tory was a key element for this analysis. The submodel was carefully curated to

best describe how log hCG behaves over time, and it is clear from the prediction

of the fitted values in Figure 7.7 that the spline terms and the linear slope are a

marked improvement on the quadratic trajectory model utilised in Chapter6 (see

Figure 6.10). For this analysis variables related to hCG were also included in the

longitudinal submodel. Increases in BMI were associated with a small but statis-

tically significant reduction in log hCG. This is in line with evidence which has

233



found hCG is negatively associated with BMI [283]. This was especially relevant

for this sample of women who collectively had a mean BMI just shy of 27kg/m2.

Proportional hazards were assumed for the biomarker, which maintains that

the hazard ratio for the biomarker effect is constant across follow-up time. As-

sessing whether this assumption holds in relation to the biomarker effect has not

been addressed in the literature, likely due to the lack of software availability

until now. The Stata program merlin can allow for time-biomarker interactions

for non-proportional hazards. In the case of hCG, there may be points in time,

such as around the time of implantation, that the hazard of miscarriage is much

higher than once the pregnancy is established. The potential for non-proportional

hazards should be considered in future analyses, particularly as assuming propor-

tionality can lead to incorrect inferences of the data.

Markers were not standardised to allow a uniform interpretation across the

board. This is something to consider to allow meaningful interpretation at

perhaps the standard deviation change level rather than (relatively small) unit

changes in P3G, FSH3 and hCG. In the case of hCG and similar reproductive

markers the word standardisation is usually invoked when discussing the various

assays which are utilised to measure the marker [284]. However, where hCG has

been standardised, it is in relation to gestational age and expressed as a multiple

of the median rather than the mean, i.e. how much an individual diagnostic test

result deviates from the median [285; 286; 287].

The timing of observations was not investigated in this analysis. Log hCG

observations were collected daily and so updates of the survival probability could

be obtained after each daily observation. Of interest, however, would be whether

measurements could be obtained less frequently, particularly if the survival prob-

ability indicated a low risk of imminent miscarriage. This extension would need
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to pinpoint the acceptable cut-off for an increased lag between measurements and

conversely when observations should once again be taken more frequently.

Sensitivity and specificity estimates were obtained without corresponding

credible or confidence intervals. Two means of obtaining a measure of uncer-

tainty involve bootstrapping and MCMC. Each gives a different interpretation of

uncertainty and one is perhaps more relevant here than the other. Bootstrapping

involves sampling from the data with replacement many hundreds or thousands

of times to obtain n estimates of the parameter, here sensitivity and specificity.

No underlying probability distribution is assumed. The standard error can be

obtained by considering the distribution of the bootstrap estimates. This would

give the uncertainty around the sampling of the data, i.e. how much does the

observed data reflect the true population from which it was sampled [288]. The

MCMC approach simulates draws from a joint posterior distribution of all pa-

rameters. The posterior probabilities are estimated based on defining the prior

uncertainty around the parameters and updating this using the likelihood of the

data, conditional on the hypothesis under investigation being true. The uncer-

tainty of the parameter estimates is drawn from the simulations [289]. In this

context it would be sensible to follow the MCMC simulation scheme approach

detailed by Rizopoulos, which was also used to obtain standard error estimates

for the subject-specific predictions [30]. The proposed scheme simulates param-

eter estimates assuming the sample is large enough to be approximated by the

normal distribution, accounting for variability in the maximum likelihood esti-

mates. Then plausible longitudinal histories up to time t are drawn. The final

step simulates random effect estimates conditional on the longitudinal history.

This allows quantification of parameter uncertainty which is more immediately

relevant in ascertaining confidence in sensitivity and specificity estimates. Sample
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uncertainty can be addressed at the validation stage. Bootstrapping however can

be much simpler to implement and has been utilised by Kolamunnage-Dona and

Kamarudin [290] in their package offering discrimination measures for joint mod-

els, particularly dynamic ROC curves. This package is currently only available

on request, however.

The choice of cut-off was based on two different indices, the F score and the

Youden index. The F score is calculated as double the product of precision and

recall over the sum of precision and recall. Precision is equivalent to the sensi-

tivity. Whilst the recall is the positive predictive value. This measure focuses

on the sensitivity, almost ignoring specificity altogether [291]. In the case of mis-

carriage, it is important to correctly classify true viable pregnancies, as well as

true failing pregnancies, which precludes the use of the F score. The Youden

index opts for the cut-off which maximises the difference between the sensitiv-

ity and 1-specificity [292]. This is an intuitive index which aims to select the

cut-point which gives the highest sensitivity and lowest 1-specificity. This is uni-

versally accepted as the best measure for cut-point selection, as it accounts for

misclassification[293]. Another procedure is to take the maximum of the product

of the sensitivity and specificity. This gives the probability of a randomly chosen

viable pregnancy being below a cut-point and a failing pregnancy being above a

cut-point, again accounting for misclassification [294].

The major limitation of this analysis is that the predictions for individuals

were obtained from a model based on the very same data. This means predictions

are not necessarily generalisable to another dataset. Validation of the joint model

predictions is required by testing on a different dataset. In the absence of an

external dataset suggested internal validation techniques include bootstrapping

or cross-validation. Cross validation involves randomly splitting the dataset into

236



k number of smaller datasets. In turn one of the k datasets is held as a test

dataset on which to evaluate the model on and the other k − 1 groups of data

are used to fit the chosen model. Generally k = 10 is the default number of data

groups, therefore utilising 90% of the data for ‘training’ [295]. However the joint

model was developed on a small sample of 346 women with complete data and

this included only 64 miscarriages. Given the number of confounding variables

included in the survival model, attempting to evenly distribute characteristics

across ten groups may be problematic. Instead a five-fold cross validation may

be more appropriate, utilising 80% of the data for model fitting. The joint model

is then fitted to the training dataset and the predictive error and AUC calculated

for each test dataset. The average of the estimates can be compared to the AUC

and predictive error estimates fitted to the original dataset [202]. An alternative

is to create a bootstrap sample and compare this with estimates of the AUC

and predictive error from the original sample [296]. These methods have been

implemented in tandem to validate a prediction model for pregnancy viability at

the end of the first trimester utilising ultrasound results [297]. This particular

study utilised two-thirds of the data for training leaving a third for testing.

The association between urinary log P3G and time-to-miscarriage was mod-

elled utilising the joint model framework. Though increases in the marker sug-

gested a decrease in miscarriage rate, data was inconsistently observed across indi-

viduals. This was emphasized when attempts were made to model the biomarker

alongside log hCG, and increases in P3G indicated a detrimental effect on preg-

nancy outcome. This may be a result of the quality of the assay used to measure

P3G which is more variable that that for hCG. Further investigation is required

to understand whether these biomarkers can be monitored in in parallel, with

fuller observation of the progesterone profiles as well as the hCG profiles.
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7.6.3 Conclusion

This analysis provides a good grounding for jointly modelling a longitudinal

biomarker and time-to-event outcome in the early pregnancy setting. Improve-

ments were made in modelling both the longitudinal and survival submodel,

thinking carefully about the shape of log hCG and potential confounders. Es-

timation of subject-specific predictions demonstrated the potential for dynamic

monitoring in early pregnancy although more refining is required when thinking

about the ideal timing of observations, as well as defining appropriate cut-offs for

identifying failing and viable pregnancies.

The analysis confirmed hypotheses that the dependency between log hCG and

miscarriage is defined by the slope of hCG. Yet, several new questions were raised

in the undertaking of this analysis, one of which concerns FSH3 and its role in

early pregnancy. The variable nature of P3G associations with miscarriage was

also an interesting result. These findings provide potential avenues for future

research, and serve as a primer for fitting joint models to real life pregnancy

data.
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Chapter 8

The timing of intercourse and

miscarriage

8.1 Chapter overview

In this chapter intercourse diaries collected as part of the General Cycle Collection

study will be analysed to assess the association between miscarriage and timing

of intercourse. Several time-windows will be defined and analysed (i) to quantify

the effect of intercourse on pregnancy outcome in key phases of the menstrual

cycle and (ii) to assess whether utilising acts of intercourse in the fertile window

as a proxy for sperm quality can be linked to pregnancy loss. In each case Cox

proportional hazard models will be fitted, including the intercourse covariate and

those variables associated with miscarriage as identified in Chapter 7. Model

assumptions and fit were assessed and sensitivity analyses were conducted.

8.2 Introduction

Conception takes place if intercourse is timed within the fertile window. This is

widely agreed to span the day of ovulation and the five days preceding, however

wider windows up to seven days before and two days after ovulation have also

been suggested [63; 298; 299; 300]. Various studies have attempted to quantify the

probability of conceiving dependent on intercourse occurring on a day relative to
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ovulation. Figure 8.1 presents single-day probabilities of conception for a selection

of key studies [63; 299; 300; 301; 301; 302; 303; 304].
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Figure 8.1. Single-day conception probabilities by study based
on probabilities reported by [4] (Table 1)[4]

The greatest probability of conception has been attributed to the day prior

to ovulation ranging from probabilities of 0.21 to 0.37 when based on basal body

temperature, and 0.16 to 0.18 based on cervical secretions [4]. Slightly lower

probabilities have been reported for the second and third day preceding ovulation

[4]. More recently the advent of fertility aids, which allow monitoring of hormone

levels to pinpoint the best time for intercourse, have allowed couples to target

intercourse more effectively [305; 306]. Research emphasis remains on establishing

the ideal window for conception, particularly as couples seek the most up to date

information to maximise their chances of pregnancy. However, less has been
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said about the consequences of intercourse during each phase of the cycle prior

and during the period in which the pregnancy is established; and whether the

timing of intercourse can affect the viability of a pregnancy, assuming conception

is successful.

8.2.1 The luteal phase, peri-implantation and intercourse

The implantation window sits within the luteal phase. This spans the second

half of the cycle from post-ovulation up to the day before the next cycle or bleed.

During the luteal phase progesterone surges and the lining of the womb matures

ready for implantation of the fertilised ovum [307]. This is the point in the cycle

when pregnancy is established, so it is natural that women may be uncertain

about having intercourse during this time. Current guidelines, however, do not

advise against intercourse during pregnancy or implantation. This is due to

lack of evidence of a detrimental relationship between timing of intercourse and

miscarriage [308].

Steiner et al. [55] has suggested that intercourse during the peri-implantation

phase (five to nine days post ovulation) reduces the chances of conception. It

is suggested that implantation may be disrupted by contractions induced by in-

tercourse and exacerbated by female orgasm [309]. A further supposition is that

seminal fluid can illicit an inflammatory response from the female reproductive

system, again interfering with implantation [310]. However, this raises the ques-

tion of whether these are incidences of failed conception or rather early losses. If

intercourse during implantation can prevent conception, can it also interrupt or

interfere with implantation to the extent that a successful conception can end in

miscarriage? The findings of the study have not been replicated since, with one

study going as far as to refute claims that intercourse during the peri-implantation
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window reduces the probability of conception [311]. It must be noted that the

couples in the latter study, however were not all trying to conceive.

Guilt and emptiness have been shown to characterise a woman’s emotions

post-miscarriage [312]. Feelings of guilt and self-blame are usually borne from

the idea that the loss could have been prevented, however unrealistic that belief

may be [89]. It is conceivable that a woman may attribute a miscarriage to

a seemingly ill-timed act of intercourse. Investigating the association between

miscarriage and timing of intercourse during the peri-implantation window is an

important analysis to shed light on whether intercourse should be avoided when

the pregnancy is being established.

8.2.2 Age and quality of sperm

The timing of intercourse may provide information on the age and quality of the

sperm. It is suggested that pregnancies resulting from sperm which has survived

inside the female reproductive tract for longer before conception are more likely

to lead to miscarriage [313]. Pregnancies resulting from intercourse two or more

days prior to or post ovulation have been shown to be more likely to end in

loss than those pregnancies arising from intercourse occurring the day before

or after ovulation [313]. Sperm can live for up to three days inside the female

reproductive tract, but delay in fertilisation is thought to result in sperm damage

leading to the greater likelihood of a conceptus which will miscarry [314]. A

further study however, which assumed the most recent act in the fertile window

led to conception, found no association between the age of sperm and pregnancy

viability[315]. This theory has received little attention in the research community,

with more emphasis placed on sperm DNA fragmentation for ageing or sub-

fertile males and its relation to recurrent miscarriage [316; 317]. Intercourse

data may be used to investigate the association between the quality of sperm
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and pregnancy viability. In particular the number of acts of intercourse may

represent a conduit for the quality of the sperm. A higher number of acts in

the fertile window operates as a natural method of sperm selection, whereby the

‘best’ sperm succeeds in fertilisation. Conversely fewer acts could provide fewer

quality sperm for possible conception, and these pregnancies may be more likely

to end in a loss.

8.2.3 Aims

This analysis aims to answer three specific questions about the association be-

tween intercourse and miscarriage, utilising the diary data collected as part of

the General Cycle Collection study.

• Does intercourse in the luteal phase or peri-implantation window increase

the rate of miscarriage?

• Are pregnancies conceived of acts of intercourse in advance of ovulation

more likely to end in miscarriage due to ageing sperm?

• Do more acts in the fertile window reduce the rate of miscarriage by

increasing sperm quality?

It is not expected that an association will be found, however the analysis will

not only remedy the dearth of information in this area, but a null finding may

provide reassurance and assuage guilt for mothers who experience losses.

8.3 Methods

8.4 Data and timelines

The data collected as part of the General Cycle Collection study introduced in

section 7.3 of Chapter 7 will be used for this analysis. A reminder that this

study followed up women, aged 18-45, who were attempting to conceive. Women
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collected daily early morning urine samples from day one of their cycle (first day

of period) to seven days of the next cycle if they did not conceive and up to day

60 of the current cycle if they did. In addition to contributing urine samples and

maternal history data, volunteers also self-reported the frequency of intercourse

on each day of the cycle in a daily diary.

The data consists of 288 viable pregnancies and 82 losses. Of the 82 losses,

65 were classified as losses before 6 weeks and 17 as after 6 weeks. Three twin

pregnancies were excluded from analysis to leave 285 viable singleton pregnancies.

The baseline variables by pregnancy group can be viewed in Table 7.1.

Figure 8.2. Key phases for a 28-day menstrual cycle

Figure 8.2 shows the key phases of the menstrual cycle which determine the

timeline for the analysis, assuming a 28-day cycle. Miscarriage was modelled from

the time of conception as women must first conceive to be at risk of loss. Con-

ception was assumed to occur on the day of ovulation. Women entered the study

at first detection of an hCG value of at least 2 mIU/ml, indicating successful im-

plantation and confirming pregnancy at the sensitivity of the assay. Implantation
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occurs approximately a week after conception, resulting in delayed entry into the

study.

8.4.1 Statistical methods

For each aim the analysis followed a similar pattern. Where the aim was to deter-

mine whether an act in a time-window was associated with miscarriage, a binary

intercourse variable was defined, assuming that one act carried the same risk as

multiple acts on a given day. For questions around sperm age and quality contin-

uous variables were defined to quantify the number of; (i) days before ovulation

the last act in the fertile window took place and (ii) acts in the fertile window.

Women only entered into the study if they contributed an hCG observation above

2mIU/ml. For women who had only one hCG observation above the detection

limit, survival times were imputed by adding one day to the entry time. Delayed

entry Cox proportional-hazards models were fitted to model time-to-miscarriage.

No assumptions about the baseline hazard were made. Univariable and multi-

variable models were fitted. The multivariable model also included the covariates

known to be associated with miscarriage, as identified in the analysis conducted

in 7, with the exception of P3G and FSH3 on the day of implantation. This in-

cluded the covariates maternal age centred at 30 years, BMI centred at 25kg/m2,

smoking status and the previous number of miscarriages. P3G and FSH3 were not

measured on the day of implantation for all individuals in the study, resulting in

a significant reduction in sample size when included in the model. An additional

quadratic term for age was included in the model. The appropriateness of the

functional form of continuous variables, BMI, age and previous number of miscar-

riages was assessed by plotting Martingale residuals against each covariate. The

proportional hazards assumption was assessed by plotting Schoenfeld residuals

against time. Outliers and influential observations were identified using deviance
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residuals and delta-beta estimates. Where appropriate sensitivity analyses were

conducted excluding any identified outlying observations.

8.5 Results

For seven women hCG levels above 2mIU/ml were not observed. Subsequently

an entry time into the study and censoring time could not be confirmed. These

women were excluded from the analysis. After exclusion of hCG values less than

2mIU/ml an additional three individuals experienced an event on the same day

they entered the study. To allow these individuals to be included in the analysis

survival times were imputed by adding one day to the entry time. All subsequent

models were fitted to a maximum of 285 viable and 75 failing pregnancies.

8.5.1 Acts during the luteal phase

For the purposes of this analysis, the luteal phase was defined as two to ten days

post-ovulation. A binary variable of whether an act occurred in this time-window

or not was defined.

Acts in the luteal phase are summarised in Table 8.1 with the percentage of

acts presented graphically in Figure 8.3. A slightly higher percentage of women

in the failing pregnancy group reported having intercourse in the luteal phase

than women who experienced a viable pregnancy. However in both groups the

majority of women did have intercourse post ovulation, 73.3% of women who

experienced viable pregnancies and 79.3% of women who experienced losses. The

median number of acts for both groups was 2, with an interquartile range of 3

for the viable pregnancy group and 2 for the failing pregnancy group.
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Table 8.1. Intercourse in the luteal phase (two to ten days post
ovulation) by viability group

Act Viable (n=285) Miscarriage(n=82)
No 76 (26.7) 17(20.7)
Yes 209 (73.3) 65 (79.3)
All values are n (%)
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Figure 8.3. Number of acts in luteal phase by viability group

The univariable model estimates are given in Table 8.2. There was an in-

creased rate of miscarriage of 42% (HR: 1.422; 95% CI: 0.807, 2.506) if an act

occurred in the two to ten days post ovulation. This was not statistically sig-

nificant. There was no evidence of a time-dependent effect for acts in the luteal
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phase, when an interaction with log time was included in the model. The result-

ing likelihood ratio test gave a p-value of 0.938. Figure 8.4 shows the plotted

time-dependent log hazard ratio for luteal acts.

Table 8.2. Univariable Cox model estimates for time-to-
miscarriage and acts in the luteal phase

Variable Hazard Ratio 95% CI
Act in luteal phase
Yes 1.422 0.807, 2.506
CI: Confidence Interval
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Figure 8.4. Time-dependent effect for acts in luteal phase

Multivariable model estimates are given in Table 8.3. When maternal age,

BMI, smoking status and the number of previous miscarriages were included in

the model an act of intercourse corresponded to a 58.0% increase (HR: 1.580; 95%
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CI: 0.886, 2.817) in the rate of miscarriage, however this again was not significant

at the 5% level.
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Table 8.3. Multivariable Cox model estimates for time-to-
miscarriage and acts in the luteal phase

Variable Hazard Ratio 95% CI
Act in luteal phase
Yes 1.580 0.886, 2.817
Centred age, years 1.019 0.979, 1.062
Centred quadratic age, years 1.009 1.004, 1.015
Centred BMI, kg/m2 0.982 0.942, 1.023
Smoking status
Never Reference
Current/Previous 0.844 0.521, 1.368
Number of previous miscarriages 0.917 0.739, 1.138
CI: Confidence Interval
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Figure 8.5. Schoenfeld residual plots to assess the proportional
hazards assumption for the multivariable model for acts in the
luteal phase
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Schoenfeld residual plots for each variable included in the model are shown

in Figure 8.5. Smoothed lines for smoking status and previous number of mis-

carriages did not follow reference lines for the log hazard ratio, although corre-

sponding p-values (p=0.621 and p=0.358 respectively) indicated no violation of

the proportional hazards assumption.
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Figure 8.6. Martingale residual plots to assess the functional
forms of variables included in the multivariable model for acts in
the luteal phase

Martingale residuals were plotted to assess the functional form of continuous

variables included in the model and are shown in Figure 8.6. The addition of the

quadratic term to model age addressed non-linearity at the younger and older

ages. Linear modelling of BMI in this instance appears adequate, with some

curvature at the higher extreme. This could be influenced by a very large BMI
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value of 53.81kg/m2 (centred BMI: 28.81kg/m2). Removal of this BMI value did

not significantly alter the log hazard ratio estimate for BMI or other variables in

the model.

A deviance residual plot to identify outliers is shown in Figure 8.7. Residuals

above 1.96 correspond to early losses occurring before six weeks of pregnancy. By

definition these losses will occur very early on in the follow-up period, and so do

not represent true outlying observations.

-2

-1

0

1

2

3

D
ev

ia
nc

e 
re

si
du

al

0 100 200 300 400
Volunteer ID

Deviance residual by volunteer

Figure 8.7. Deviance residual plot for multivariable model for
acts in the luteal phase
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Figure 8.8. Delta-beta plot for multivariable model for acts in
the luteal phase

Delta-beta plots for identifying influential observations are presented in Figure

8.8. On the whole delta-betas for each covariate were close to zero signalling little

impact of systematically removing individuals on coefficient estimates. For acts

in the luteal phase, delta-betas were ≤ −0.05 for twelve individuals who did

not report having intercourse in the luteal phase but did miscarry. When these

individuals were removed and the model refitted, having intercourse in the luteal

phase became statistically significant (HR:8.04 95% CI:2.48, 26.04). Removal

of these individuals, however, also reduced the number of events from 75 to 63.

For smoking status five women who were current or previous smokers had a

delta-beta estimate of ≥ 0.04, and all miscarried. The rate of miscarriage for

current/previous smokers decreased (HR: 0.67 95% CI: 0.40, 1.12) on removal of
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these individuals, however the effect as before was not statistically significant.

Removal of one individual who experienced eight previous miscarriage did not

alter the estimate of this coefficient greatly (HR:0.95 95% CI: 0.75, 1.18).

8.5.2 Acts during implantation

The peri-implantation window was defined as five to nine days post ovulation

[55]. Three-day implantation windows were also identified. This encompassed

the first day a minimum of 2 mIU/ml hCG measurement was observed, the day

before and the day after. Binary variables for whether an act took place either in

the peri-implantation window or narrower three-day implantation window were

defined.

Table 8.4 shows the number of women who did and did not have intercourse

in the peri-implantation window by pregnancy viability group. Of the women

who experienced viable pregnancies 59.3% had intercourse compared with 69% of

women who experienced losses. Figure 8.9 displays the percentage of intercourse

by pregnancy group. A greater percentage of women in the viable pregnancy

group (n(%): 116(40.7%)) did not have intercourse in the implantation window

compared with women who miscarried (n(%): 26(31.7%)). For women who mis-

carried 37.8% reported one instance of intercourse in this window, compared with

27.7% of women who experienced viable pregnancies. The median number of acts

was 1 (Q1, Q3: 0,2) for both viable and miscarried groups.

Table 8.4. Acts in the peri-implantation window (five to nine
days post ovulation) by viability group

Acts Viable (n=285) Miscarriage(n=82)
No 116 (40.7) 26 (31.7)
Yes 169 (59.3) 56 (68.3)
All values are n (%)
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Figure 8.9. Number of acts in the peri-implantation window (five
to nine days post ovulation) by viability group

Table 8.5 shows the univariable estimates for acts in the peri-implantation

window. There was a 44.7% (HR: 1.447; 95% CI: 0.891, 2.352) increase in the

rate of miscarriage at time t if an act occurred in the specified window.

Table 8.5. Univariable Cox model estimates for time-to-
miscarriage and acts in the peri-implantation window

Variable Hazard Ratio 95% CI
Act in peri-implantation window
Yes 1.447 0.891, 2.352
CI: Confidence Interval

There was no evidence of a time-dependent effect for acts in the implantation

window when an interaction with log time was included in the model (p = 0.741)
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Figure 8.10 shows a plot of the time-dependent log hazard ratio for acts in the

peri-implantation window.
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Figure 8.10. Time-dependent effect for acts in the implantation
window

On inclusion of additional variables in the model, the rate of miscarriage

increased to 63.6% (HR:1.636; 95%: 0.993, 2.693) as shown in Table 8.6. As with

the univariable model, this effect was not statistically significant.
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Table 8.6. Multivariable Cox model estimates for time-to-
miscarriage and acts in the peri-implantation window

Variable Hazard Ratio 95% CI
Act in peri-implantation window
Yes 1.636 0.993, 2.693
Centred age, years 1.018 0.978, 1.060
Centred quadratic age, years 1.010 1.005, 1.015
Centred BMI, kg/m2 0.982 0.941, 1.024
Smoking status
Never Reference
Current/Previous 0.852 0.526, 1.379
Number of previous miscarriages 0.922 0.745, 1.142
CI: Confidence Interval

Model checks were carried out in a similar manner to that presented in section

8.5.1. Schoenfeld residuals did not show evidence of a violation of the proportional

hazards assumption. Martingale residuals showed continuous variable had been

modelled adequately. A similar set of outlying observations were identified, and

removal did not affect estimates. See Appendix B.1 for plots.

8.5.2.1 Acts during three-day implantation window

The previous peri-implantation window is generalised, assuming that the day of

implantation is not known. As implantation is the point at which hCG begins to

be produced, the actual day of implantation can be more closely pinpointed. The

window was narrowed to the day hCG of at least 2mIU/ml was detected, the day

before and day after.

Table 8.7 shows the number of women who experienced an act in this three-day

implantation window. More women who experienced viable pregnancies (n(%):

124(43.5%)) had intercourse in the three-day implantation window than women

who miscarried (n(%): 31(37.8)). The percentage of acts by viability group are

shown in Figure 8.11. The median number of acts for healthy and miscarried

pregnancy groups was 0 (Q1, Q3: 0, 1). Of the women who did report having
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intercourse, 70% and 61% of the healthy and failing pregnancy groups respectively

recorded a single act.

Table 8.7. Acts in the narrowed implantation window relative to
first hCG observation ≥ 2 mIU/ml, by viability group

Acts Viable (n=285) Miscarriage(n=82)
No 161 (56.5) 51 (62.2)
Yes 124 (43.5) 31 (37.8)
All values are n (%)
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Figure 8.11. Number of acts in the narrowed implantation win-
dow relative to first hCG observation ≥ 2 mIU/ml, by viability
group

Results from the univariable model are shown in Table 8.8. An act in the

window inferred a 7.3% (HR:0.927 95% CI: 0.582, 1.473) decrease in the rate
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of miscarriage. This was not significant at the 5% level. Addition of a log-

time interaction failed to indicate evidence of a time-dependent effect (p=0.803).

Figure 8.12 shows the time-dependent log hazard ratio for an act in the three-day

implantation window.

Table 8.8. Unadjusted Cox model estimates for time-to-
miscarriage and acts in individual implantation window

Variable Hazard Ratio 95% CI
Act in 3-day implantation window
Yes 0.928 0.584, 1.473
CI: Confidence Interval
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Figure 8.12. Time-dependent effect for acts in the three-day im-
plantation window
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The multivariable model estimate, shown in Table 8.9, demonstrated an act

in the window corresponded to a smaller 3.7% (HR: 0.963; 95% CI: 0.605, 1.533)

decrease in the rate of miscarriage. Again this was not significant at the 5% level.

Table 8.9. Multivariable Cox model estimates for time-to-
miscarriage and acts in individual implantation window

Variable Hazard Ratio 95% CI
Act in 3-day implantation window
Yes 0.963 0.605, 1.533
Centred age, years 1.014 0.973, 1.056
Centred quadratic age, years 1.009 1.004, 1.014
Centred BMI, kg/m2 0.982 0.942, 1.023
Smoking status
Never Reference
Current/Previous 0.847 0.523, 1.370
Number of previous miscarriages 0.920 0.741, 1.142
CI: Confidence Interval

Model checks showed no violation of the proportional hazards assumption.

The functional forms of variables were adequately modelled. Removal of outlying

observations did not affect model estimates. For plots see Appendix B.2.

8.5.3 Acts in the fertile window

Acts in the fertile window were used as surrogates to answer questions about

sperm age and quality and their association with miscarriage. The fertile window

was defined as the day of ovulation and the five days preceding ovulation. The

last act of intercourse in the fertile window was identified and used as a marker

for the age of the sperm which contributed to conception.
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Table 8.10 shows the day prior to ovulation on which women experienced their

last act of intercourse, by pregnancy viability. For the majority of women the last

act in the fertile window most commonly fell on the day of ovulation or the day

before. This represents 89.1% of women who experienced healthy pregnancies

and 90.1% of women who miscarried.

Table 8.10. Last act in the fertile window (the day of ovulation
and the five days prior) relative to the day of ovulation

Number of days prior to ovulation Viable (n=285) Miscarriage (n=82)
0 157 (55.3) 40 (49.4)
1 96 (33.8) 33 (40.7)
2 19 (6.7) 7 (8.6)
3 7 (2.5) 0 (0.0)
4 2 (0.7) 1 (1.2)
5 3 (1.1) 0 (0.0)
All values are n(%)

Univariable model estimates are presented in Table 8.11. For each additional

day before ovulation that the last act of intercourse took place there was a 3.4%

(HR: 0.966; 95% CI: 0.743, 1.257) decrease in the rate of miscarriage. Addition of

an interaction with log time did not indicate evidence of a time-dependent effect

(p=0.325). Figure 8.13 shows the time-dependent log hazard ratio for the last

act in the fertile window.

Table 8.11. Univariable Cox model estimates for time-to-
miscarriage and last act in fertile window

Variable Hazard Ratio 95% CI
Day of last act prior to ovulation 0.966 0.743, 1.257
CI: Confidence Interval
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Figure 8.13. Time-dependent effect for the last act in the fertile
window

Table 8.12. Multivariable Cox model estimates for time-to-
miscarriage and last act in fertile window

Variable Hazard Ratio 95% CI
Day of last act relative to ovulation 0.962 0.737, 1.256
Centred age, years 1.013 0.972, 1.055
Centred quadratic age, years 1.009 1.004, 1.014
Centred BMI, kg/m2 0.984 0.944, 1.026
Smoking status
Never Reference
Current/Previous 0.855 0.527, 1.368
Number of previous miscarriages 0.923 0.744, 1.145
CI: Confidence Interval
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Multivariable model estimates are shown in Table 8.12. A similar 3.8% (HR:

0.962; 95% CI: 0.737, 1.256) decrease in miscarriage rate for each day prior to ovu-

lation the last act occurred was found. This again was not statistically significant

at the 5% level.

There was no evidence that the proportional hazards assumptions was vio-

lated. The functional form of variables included in the model were appropriately

modelled. Removing influential observations did not appreciably affect estimates.

See Appendix B.3 for plots.

8.5.3.1 Number of acts in the fertile window

The number of acts in the fertile window by viability group are presented in

8.13. Most women in both the healthy and failing pregnancy groups reported

having intercourse three or four times in the fertile window, 53.1% and 56.1% for

healthy and failing pregnancy groups respectively. One woman who conceived and

subsequently miscarried did not report having intercourse in the fertile window.

Table 8.13. Number of acts in the fertile window, the day of
ovulation and five days preceding, by viability group

Number of acts Viable (n=285) Miscarriage (n=82)
0 0 (0.0) 1 (1.2)
1 18 (6.3) 1 (1.2)
2 44 (15.5) 12 (14.6)
3 81 (28.5) 24 (29.3)
4 70 (24.6) 22 (26.8)
5 42 (14.8) 13 (15.9)
6 18 (6.3) 5 (6.1)
7 5 (1.8) 2 (2.4)
8 2 (0.7) 1 (1.2)
9 3 (1.1) 0 (0.0)
10 0 (0.0) 0 (0.0)
11 1 (0.4) 1 (1.2)
All values are n(%)
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Univariable model estimates are presented in Table 8.14. For every additional

act in the fertile window there was a 9.4% (HR:1.094; 95% CI: 0.952, 1.257)

increase in the rate of miscarriage at time t. Inclusion of an interaction with log

time did not indicate a time-dependent effect(p=0.189). Figure 8.14 shows the

time-dependent log hazard ratio for the number of acts in the fertile window.
Table 8.14. Univariable Cox model estimates for time-to-
miscarriage and number of acts in the fertile window

Variable Hazard Ratio 95% CI
Number of acts 1.094 0.952, 1.257
CI: Confidence Interval
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Figure 8.14. Time-dependent effect for the number of acts in the
fertile window

The multivariable model estimates are presented in Table 8.15 suggest that

each additional act of intercourse in the fertile window corresponded to a 9.1%
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(HR: 1.091; 95% CI: 0.945, 1.260) increase in the rate of miscarriage. This effect

was not statistically significant.

Table 8.15. Multivariable Cox model estimates for time-to-
miscarriage and number of acts in the fertile window

Variable Hazard Ratio 95% Confidence Interval
Number of acts 1.091 0.945, 1.260
Centred age, years 1.014 0.973, 1.056
Centred quadratic age, years 1.009 1.004, 1.014
Centred BMI, kg/m2 0.983 0.943, 1.026
Smoking status
Never Reference Reference
Current/Previous 0.824 0.508, 1.337
Number of previous miscarriages 0.905 0.729, 1.123
CI: Confidence Interval

There was no evidence to suggest that the proportional hazards assumptions

was violated. Linear and non-linear covariates were modelled adequately. Sensi-

tivity analyses removing potentially influential observations did not substantially

change model estimates. See Appendix B.4 for additional plots.

8.6 Discussion

The timing of intercourse at key points of the cycle and the ramifications for

pregnancy outcomes were explored in this analysis. Intercourse in the luteal

phase resulted in a 58% increase in the rate of miscarriage compared with those

individuals who did not report having intercourse in this window. Similar results

were seen for the an act of intercourse in the peri-implantation window, which sits

within the luteal phase of the menstrual cycle. Specifically women who reported

at least one act in the five to nine days post ovulation had a 63.6% increase

in the rate of miscarriage when compared with women who did not experience

an act in the window. When this implantation window was narrowed down to

the day of implantation (hcg > 2mIU/ml) and the day preceding and following
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implantation, acts of intercourse had a small protective effect, reducing the rate

of miscarriage by 3.7% when compared with women who did not have intercourse

in this three-day window.

Acts in the fertile window were used as a marker for the age of the sperm which

resulted in fertilisation and for sperm quality. For each day before ovulation the

last act of intercourse in the fertile window took place, the rate of miscarriage

at time t decreased by 3.8%. This suggests that pregnancies occurring from

sperm from older ejaculate, which has remained inside the woman longer before

ovulation, are less likely to end in loss. For each additional act of intercourse

in the fertile window there was a corresponding 9.1% increase in the rate of

miscarriage at time t. If greater number acts signifies higher sperm quality, this

suggests a detrimental effect for each additional act.

For each of these analyses the effect was not significant at the 5% level, though

this is not unexpected given the exploratory nature of the analyses and the avail-

able sample size. The direction of effect for intercourse in the three-day implan-

tation window indicated a non-significant protective effect, which goes against

the idea that intercourse at implantation may interfere with pregnancy establish-

ment. Findings for acts in the fertile window used as a proxy for sperm age and

quality were also unexpected. A greater lag between ovulation and the last act of

intercourse decreased the rate of miscarriage, suggesting acts close to ovulation

do not necessarily mean a greater likelihood of a healthy pregnancy. Equally,

targeting the fertile window with greater number of acts, and thereby increasing

the quality of the sperm available for fertilisation, did not necessarily correspond

to a better outcome.
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8.6.1 Current evidence

As previously noted the research into whether intercourse can harm a pregnancy is

sparse. In the words of Moscrop [308] we do not know and when mentioned in the

literature it is to emphasise the absence of evidence [308]. Advice from healthcare

professionals is varied with some advising restraint if experiencing bleeding, but

intercourse as usual if not [318]. Yet the risks of intercourse in early pregnancy

remain a concern for many couples [319]. A Canadian study on sexual activity

during pregnancy, found 49% of women worried that intercourse would harm the

pregnancy [320]. A similar Turkish study on sexual behaviour during pregnancy,

found that of the women who avoided intercourse 49.1% held the belief that

it would harm the baby [321]. It is conceivable that having intercourse during

early pregnancy may be a convenient excuse for self-recriminations later if the

pregnancy is not brought to term.

Guilt, self-blame and what-ifs have been established as very common emotions

post loss[312]. This analysis did not find an association between the timing of

intercourse and pregnancy loss, and in this case no news may be good news. This

can provide reassurance to women who experienced miscarriages that abstaining

would not have prevented the loss.

Those who miscarried tended to experience implantation later, at a median of

11 days (Q1, Q3 : 10, 12) post conception than women who experienced healthy

pregnancies at a median of 9 days (Q1, Q3 : 9, 10) post conception. This delayed

implantation is thought to be an indication of late fertilisation. Essentially there

is a longer waiting time between ovulation and the sperm fertilising the egg [322].

This is more likely to occur when intercourse takes place on the day of ovulation

rather than the five days preceding[315]. This was not the case for this dataset, in

which a similar percentage of women who experienced viable pregnancies (55.3%),
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and women who miscarried (49.4%) recorded the act thought to be responsible

for conception on the day of ovulation.

Assessment of acts in the luteal phase served as a wider window for the pe-

riod of corpus luteum development and subsequent implantation [323]. Although

not analysed, a shorter luteal phase of less than ten days has been shown to be

associated with difficulty in conceiving, and if pregnancy is achieved then it is

more likely to end in an early loss [307]. A short luteal phase stunts the devel-

opment of the womb lining which requires prolonged exposure to progesterone to

mature, and this can in turn interfere with implantation. Progesterone treatment

to ensure appropriates levels for maturation have been suggested for women who

experience a short luteal phase, and therefore recurrent miscarriages [324]. As

with research into intercourse and pregnancy in general, it is not known whether

intercourse, particularly for women with short luteal phases, exacerbates matters.

Acts in the fertile window were assessed as a surrogate for sperm age and

quality. It has been hypothesized that pregnancies from sperm retained for longer

in the female reproductive tract are more likely to end in miscarriage, however

there is little research available on the matter. It is acknowledged every ejaculate

will contain inferior sperm, which have DNA fragmentation, and this is likely

to be more of an issue with older males[316; 325]. A recent meta-analysis of

15 studies found that for cases of recurrent miscarriage the mean level of sperm

DNA fragmentation was higher than for women who did not have a history of

loss [317]. The GCC data is characterised by women who have suffered a loss

previously. Approximately 44% of women who had healthy pregnancies and 45%

of women who miscarried had suffered at least one loss previously. However only

a smaller 8% and 2% of women who experienced healthy and failing pregnancies
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respectively reported suffering recurrent losses (≥ 3), suggesting sperm DNA

fragmentation is not a factor here.

The number of acts in the fertile window were not significantly associated

with time-to-miscarriage. Increased intercourse, however, is very well known

to improve sperm quality. Evidence has shown that for sub-fertile men each

subsequent ejaculation improved sperm motility from the first [326]. Conversely,

long periods of abstinence between acts can lower sperm motility, which is why

frequent intercourse during the fertile window is recommended [327].

8.6.2 Strengths and limitations

One of the main weaknesses of this study was the use of self-reported data on

acts of intercourse. This introduces a level of unreliability, particularly as it

was assumed that no observation was equivalent to no acts occurring on that

day. It is likely that at least some of these blank entries are missing data, when

an individual may have forgotten to fill out the diary though intercourse did

take place. As binary variables were used for analyses of acts in the luteal and

implantation windows, as long as one act was recorded this would have made

no difference to estimates. However, for analyses in the fertile window, missing

records could have affected the act which was assumed to lead to conception, as

well as the frequency of acts and the association with miscarriage.

Use of binary variables for selected analyses means information about the

number of acts was lost, however due to the wide range of categories and low

numbers in the higher categories this seemed the best option. This however,

assumes that one act of intercourse is as hazardous as multiple acts, which may

not be the case. If we are to belive that intercourse physically affects pregnancy

from being securely established than, multiple physical acts are likely to be more

harmful than a solitary physical act. To appropriately model this however, more
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data for multiple acts would be required to allow for intercourse to be modelled

continuously.

Models were fitted to a total of 360 individuals, including 75 events. Con-

sidering the number of variables included in the model, the number of events is

likely too few to produce unbiased parameter estimates [328]. The much-debated

general rule of thumb recommends at least ten events per variable included in the

model [329]. In some cases, for example binary variables with low prevalence, up

to 20 events are advised, however this does not apply to the binary intercourse

variables used in the luteal and implantation window models [328].Vittinghoff

and McCulloch [330] points out however that reduced coverage, increased Type

I error rate and increase relative bias are infrequent even when the events per

variable range from 5 to 9, though they are still seen when events per variable

exceed 10 up to 16 [330]. Regardless, considering the low number of events esti-

mates must be interpreted with caution, particularly as these analyses were not

powered to detect a significant effect size. Post-hoc power analyses show that a

sample size of 360, with an event probability of 21% had at best 57% power to

detect a hazard ratio of 1.636 for acts in the implantation window. Whilst for

the last act in the fertile window, the power to detect a log hazard ratio of 0.087

was only 18%. The sample size was clearly a barrier for this study.

Time since conception was used as the timeline for modelling time-to-miscarriage.

The rationale is that women cannot be at risk of miscarriage until they conceive,

and ovulation serves as the closest landmark to implantation, when pregnancy

can be confirmed. Ovulation was estimated as the day after the LH surge, which

is generally accepted as a reasonable marker for conception [331]. However, real-

istically it cannot be known that this day truly signals conception, particularly

as ovulation can take place up to 36 hours after the surge [243]. As this analysis
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focusses on intercourse in phases of the cycle, using an estimate may mean defi-

nitions of each window may not be accurate. However, using this approach also

allows for a comparable timeline across women, which makes it the most useful.

In a population who may have been struggling to conceive, generalised definitions

of luteal and implantation windows (see section 8.2.1) are not likely to represent

the women in the study. For example luteal phases have been shown to vary in

length from 7 to 19 days, so using a 2 to 10 day post conception window may

not capture the entire length of the phase [332]. With regards to the defined

implantation window, for 83% of women who miscarried, implantation did not

actually occur five to nine days post ovulation, but rather ranged from 10 to 15

days post ovulation. This could mean analyses investigating acts in the luteal

and peri-implantation phase targeted the incorrect time-windows.

Women in this study were provided with conception aids in the form of ovu-

lation testing. This suggests intercourse behaviour for this sample of women may

not match that of women not using fertility aids. Certainly looking at the number

of acts in the fertile window in Table 8.13, it is clear that women tended to target

intercourse to best maximise conception. However, the data also suggests that

women combined this with advice to have intercourse at least two to three times

a week, with specific targeting in the fertile window [327]. It would be helpful

however to investigate the relationship between timing of acts and miscarriage in

a sample of women exhibiting ‘natural’ intercourse behaviour.

Acts of intercourse in the fertile window were assumed a reasonable proxy

for sperm age and quality. However, it is not possible from the data available

to firmly attribute conception to a particular day of intercourse. As seen in this

very analysis, it is possible to conceive even when the act does not occur in the

most commonly defined fertile window of ovulation and the five preceding days.
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It is conceivable the sperm of acts post ovulation may have been responsible

for conception. In this instance sperm age is not as relevant a question as the

age of the egg, which could be the instigator of miscarriage [314]. Though the

assumption of the last act has been utilised in the literature, pregnancy cannot

necessarily be attributed to that particular act [315]. DNA fragmentation of

sperm is known to be a factor in cases of recurrent miscarriage. However in this

study sperm count was not directly measured, and of course a surrogate is not

as helpful for analysis if it is possible to directly collect and measure sperm to

assess quality [333].

The three-day implantation window was very much dependent on the detec-

tion limits of the assay used to measure hCG. It was assumed that implantation

occurred on the day hCG first reached at least 2mIU/ml, however it is likely that

implantation occurred prior to this, except the assay was not sensitive enough to

detect this. However even if implantation was not correctly pinpointed, the esti-

mation is sufficient as the day before and after the purported day were included

for analysis.

8.6.3 Conclusion

No evidence of an association between intercourse in the luteal phase or peri-

implantation window was found. This was reflected in the analysis looking at

the three-day implantation window. There was no evidence that pregnancies as a

result of acts further away from ovulation (in the fertile window) were more likely

to end in miscarriage. Finally there was no evidence that a greater number of acts

in the fertile window reduced the rate of miscarriage. The results are presented

with the caveat that the sample size did not allow for adequate power to detect

statistically significant effects at the 5% level. Further studies are required to add
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to the evidence base in order to effectively advise women on whether intercourse

in early pregnancy is unsafe.
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Chapter 9

The effect of misspecifying a non-linear

association structure in a joint model -

a simulation study

9.1 Chapter overview

Joint models fitted in Chapters 6 and 7 assumed a linear association between the

longitudinally modelled biomarker and risk of miscarriage, however it is unlikely

that this assumption holds in many cases. In this chapter the effect of incorrectly

assuming a linear association structure on subsequent survival predictions will be

investigated via a simulation study. The focus here will be a quadratic association

between the trajectory function and hazard. For each model the details of the

data generating mechanism for the simulated datasets will be presented, along

with the measures intended to be used to evaluate performance of the misspeci-

fied models. The corresponding estimates of bias and comparison of model and

empirical standard errors for misspecified models will be presented. Finally the

simulation will be evaluated for its strengths and limitations.
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9.2 Introduction

It is common when developing a prediction model to consider non-linear effects

of covariates. For example age is often modelled non-linearly to appropriately

describe the greater effect or risk associated with certain age brackets [334; 335].

Another notable example is body mass index (BMI), which has been shown to be

non-linearly associated with mortality and even healthcare costs [336; 337]. BMI

values that fall outside of the healthy range(18.5kg/m2 - 24.9kg/m2) correspond

to worse outcomes. This results in a U or J shaped hazard, with event rates

higher for those with low and high BMIs. When developing prediction models it

is instinctive to investigate whether covariate behaviour is linear, yet this is not

yet a parallel consideration when selecting the appropriate association structure

between the biomarker and time-to-event outcome for a joint model. In a joint

model the biomarker, though modelled via a longitudinal model, is effectively a

covariate in the survival submodel. Therefore joint model development should

also consider non-linear effects of the biomarker on the time-to-event outcome.

If these potentially non-linear effects are ignored then this will have a knock-on

effect on model coefficients and predictions, introducing bias into the estimation.

Simulation studies have confirmed that the joint longitudinal-survival model

improves upon simpler approaches discussed in section 5.3, both by utilising full

longitudinal biomarker information, addressing measurement error and appropri-

ately estimating uncertainty around estimates [28; 338; 339]. Misspecification of

the hazard function of standard proportional hazards survival models has been

studied extensively [246; 340; 341]. Where joint models are concerned, simula-

tion studies have focussed on misspecification of the longitudinal and survival

submodels. Crowther et al. [52] conducted a simulation study investigating the
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impact of misspecifying the longitudinal submodel for various current value and

first derivative association models [52]. Results suggested that when a simple

linear trajectory was assumed over the true trajectory, which included quadratic

and cubic polynomials, the parameter estimate for the time-dependent slope as-

sociation (changes in which are an important indicator of miscarriage as shown in

Chapter 7), was found to be substantially biased [52]. Yet the current value model

estimates remained robust to misspecification. A simulation study conducted by

Arisido et al. [53] found that, like in the standard survival model context, mis-

specifying the baseline hazard function in a joint model resulted in biased model

estimates. And when a non-monotonic baseline hazard was misspecified the esti-

mate for the association parameter was biased and had poor coverage [53]. Yet,

leaving the baseline hazard unmodelled as per the approach by Song et al. [342]

can lead to difficulty in obtaining reliable standard errors [54]. Notably these

simulations have been carried out assuming that the relationship between the

biomarker trajectory function and the hazard is linear in form. Though various

associations between the trajectory and hazard function have been explored (see

section 5.5), there has been no, to the author’s knowledge, investigation of the

consequences of misspecification of a non-linear association structure. Further-

more limited methodological and software development in this aspect mean that

tools have not been available until recently to address the issue of misspecifying

a non-linear association structure.

9.3 Simulation study

A simulation study was conducted to assess (i) the effect of misspecifying a qua-

dratic association structure in a joint longitudinal-survival model on predicted
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survival; (ii) the effect of misspecification on predicted survival as the strength

of the quadratic association increases.

9.3.1 Methods

The following specification of the the joint model was utilised for simulation. A

simple linear longitudinal trajectory, with random intercept and random slope

was assumed so that,

mi(t) = (β0 + u0i) + (β1 + u1i)t (9.1)

where

u0i

u1i

 = N


0

0

 ,
 σ2

u0 ρσu01

ρσu10 σ2
u1


 (9.2)

To evaluate misspecification of the non-linear association structure, data was

simulated for a quadratic association. The true survival submodel included a

Weibull baseline hazard function, a time-independent treatment variable and

association parameters which correspond to the relevant non-linear trajectory-

hazard relationship. The true survival submodel is shown in Equation 9.3.

hi(t) = λγtγ−1 exp
[
βtrt+ α1mi(t) + α2mi(t)2

]
(9.3)

where,

mi(t) = (β0 + u0i) + (β1 + u1i)t

9.3.1.1 Data and parameter values

Simulated datasets were based on a commonly utilised joint model training dataset

[30; 343]. The data was collected by the Mayo Clinic between 1974 and 1984 [344].
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This trial followed up 312 patients diagnosed with the liver disease primary biliary

cirrhosis (PBC). The patients were either randomised to placebo (n = 154) or the

drug D-penicillamine (n = 158). PBC is characterised by an excessive build-up

of bile in the liver due to damaged bile ducts. This eventually leads to cirrhosis

and when left untreated, to death. The longitudinal biomarker of interest was

billirubin, which due to skew was modelled on the natural logarithm scale. The

time-to-event outcome was death.

Figure 9.1a shows the longitudinal log billirubin profiles for each treatment

group. Log billirubin profiles for the treatment group are steeper than for the

placebo group. The corresponding survival probability curves, by treatment

group are presented in Figure 9.1b. Survival at the end of follow-up was ap-

proximately 37% for the treatment group and 30% for the placebo group.

-2

0

2

4

ln
 b

illi
ru

bi
n,

 m
g/

dL

0 5 10 15
Time, years

Placebo

-2

0

2

4

ln
 b

illi
ru

bi
n,

 m
g/

dL

0 5 10 15
Time, years

Treatment

(a) Longitudinal profiles of log serum bil-
lirubin, by treatment group

0.00

0.25

0.50

0.75

1.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0 5 10 15
Time, years

 D-penicillin  Placebo

Kaplan–Meier survival estimates

(b) Survival probability curves for mortal-
ity, by treatment group

Figure 9.1. Pulmonary billiary cirrhosis data graphs

To simulate data from a joint longitudinal-survival model setting the following

distributions were used for all scenarios.

• trt ∼ U(0, 1) > 0.5

• u0 ∼ N(0, σu0)
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• u1 ∼ N(0, σu1)

• For s ∈ Z ∈ [1, 4] time = |N ∼ (s, 0.5)|

• y ∼ N(mi(t), σe)

The fixed effect parameters for the intercept and slope were β0 = 0.5 and β1 =

0.16 respectively. The measurement error or residual error standard deviation was

assumed to be σe = 0.35. The standard deviation for the random intercept u0i

was σu0 = 1.02, with the corresponding SD for the random slope u1i equal to

σu1 = 0.17. The covariance σu01 = 0. The scale and shape parameter values

for the Weibull baseline hazard were chosen as λ = 0.06 and γ = 1.58. The

corresponding log hazard ratio for the treatment variable was assumed to be

−0.5.

For each true model the quadratic association parameter was varied as follows.

• Scenario 1: Fixed α1 = 0.4 and α2 = (0.05, 0.1, 0.2)

• Scenario 2: Fixed α1 = −0.6 and α2 = (−0.05,−0.2,−0.3)

Scenario 1 describes an association where an increase in biomarker implies

greater risk, as with the PBC dataset. Conversely Scenario 2 presents an associ-

ation where a decrease in biomarker indicates higher risk such as the GCC data

(see Chapter 7).

Figure 9.2 shows the increase or decrease of the overall hazard ratio for the

biomarker, as modelled by the trajectory function, as values increase for each

model in Scenarios 1 and 2 respectively. For each subsequent model in a given

scenario the J or reflected J shape, typical of a quadratic association, is more

pronounced.
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Figure 9.2. Association between the hazard function and
biomarker trajectory for each model

The assumed true survival functions across the two scenarios are presented by

treatment group in Figure 9.3. Survival is dependent on the fixed mean biomarker

response (setting the random effects to zero) estimated by the fitted longitudinal

trajectory function. As treatment is the only added covariate and only appears

in the survival submodel, differences in true survival between treatment groups

are based on the estimated time-varying fixed biomarker response, subject to

the specification of the hazard-biomarker association, here quadratic for the true

model.
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Figure 9.3. Assumed survival functions (setting random effects
to 0) for each model from Scenarios 1 and 2

Survival times and events were simulated for 500 individuals, with a follow-up

time of five years. Each line of data was then expanded to create a maximum of

five repeated measurements for each individual. The initial observation was as-

sumed to have been observed at baseline t = 0. To enable simulation of biomarker

observation times which were spaced roughly one year apart, the times for obser-

vations 2 to 5 were simulated using a normal distribution with mean µ = 1, · · · , 4

where µ ∈ Z is an integer and SD σ = 0.5. Any simulated times after the

simulated event time were dropped. A joint model assuming only a linear asso-

ciation between biomarker trajectory and the hazard function was fitted to each

simulated dataset. A maximum of thirty iterations was allowed to achieve con-

vergence. This was based on investigating the number of iterations required for
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model convergence for a small set of simulated datasets. Survival probabilities,

independent of random effects, were then estimated for each treatment group and

at baseline and each year thereafter.

9.3.1.2 Simulating survival times

The survival times were simulated using the Stata package survsim.[345; 346]

This implements and extends methods by Bender et al. [347] which presents

techniques to simulate survival times for a Cox proportional hazards model, util-

ising one of the exponential, Weibull or the Gompertz distributions.

Assuming proportional hazards, the survival function, S(t) given a vector of

baseline covariates xi can be written in terms of the cumulative baseline hazard

function H0(t) as shown by Equation 9.4.

S(t | xi) = exp[−H0(t) exp(βxi)] (9.4)

For a Weibull distribution the baseline cumulative hazard function is equiv-

alent to H0(t) = λtγ. Following from Equation 9.4, the probability of death is

given by,

J = F (t | xi) = 1− S(t | xi) (9.5)

1− J = 1− F (t | xi) = exp[−H0(T )eβxi ] = exp[−λtγeβxi ∼ U [0, 1] (9.6)

So if J ∼ U [0, 1] then it follows that 1−J ∼ U [0, 1]. So provided the baseline

hazard function h0(t) > 0 for all t and that H0(t) is invertible, survival times T

can be calculated after drawing from a uniform distribution. More specifically

we solve Equation 9.6 for T so that it is written as a function of U , the relevant
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parameters for the baseline cumulative hazard function (λ and γ), and vector of

baseline covariates xi with associated parameter estimates β[347][345].

T = H−1
0 [−ln(J) exp(−βxi)] =

(
− ln(J)
λ exp(βxi)

) 1
γ

(9.7)

9.3.1.3 Estimands

Coefficients for linear and non-linear association joint models could not be directly

compared to assess misspecification. Instead, baseline survival probabilities (set-

ting random effects parameters to 0) predicted from the misspecified model were

compared to true model survival probabilities at yearly follow-up points in each

treatment group. The estimand of interest then, denoted θ, is the joint model

survival function evaluated at t = 0, 1, 2, 3, 4 and 5 for treatment groups trt = 0

and 1 and is shown in Equation 9.8. Parameter values are referenced in section

9.3.1.1.

θ = exp
(
−
∫ t

0
h(w)dw

)
(9.8)

where for the true value of the estimand,

hi(w) = λγwγ−1 exp
[
βtrt+ α1(β0 + β1w) + α2(β0 + β1w)2

]
9.3.1.4 Performance measures

The bias of the survival probabilities predicted from the simulated data and

denoted θ̂ is defined as Bias = E[θ̂] − θ. This was assessed using Equation 9.9.

The empirical standard error,
√
V arθ̂, was estimated using Equation 9.10. Here

θ̄ represents the mean of θ̂. The term nsim refers to the number of simulations.
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Bias = 1
nsim

nsim∑
i=1

θ̂i − θ (9.9)

Emp SE =

√√√√ 1
nsim − 1

nsim∑
i=1

(θ̂i − θ̄)2 (9.10)

The empirical standard errors were compared to average model standard er-

rors, defined as
√
E
[
V̂ ar(θ̂)

]
, and is estimated using Equation 9.11. The model

SE should target the empirical SE so that E(Mod SE2) = Emp SE2 [348]. The

corresponding relative percentage error in model SE was estimated using Equa-

tion 9.12.

Average Mod SE =

√√√√ 1
nsim

nsim∑
i=1

V̂ ar(θ̂i) (9.11)

Relative % error in Mod SE = 100
 M̂odSE

̂EmpSE
− 1

 (9.12)

9.4 Results

9.4.1 Scenario 1

Table 9.1 details the results for models from Scenario 1. As a reminder, for these

models the true linear association parameter was α1 = 0.4 and the quadratic

association parameters were α2 = 0.05, 0.1, and 0.2 for models 1, 2 and 3 respec-

tively. For each specification of α2 in Scenario 1, a total of 990 out of 1000 models

converged successfully.

Predicted survival probabilities for the misspecified model at baseline for each

treatment group were unbiased across all choices of α2. For all models in Sce-

nario 1, misspecification of the quadratic association resulted in underestimation

of the predicted survival probabilities at years 1 to 5. In general greater bias was
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observed in the placebo group when compared to the treatment group. Levels of

bias increased as survival probabilities were predicted for longer lengths of follow-

up. Survival probability predictions for model 1, which represents the weakest

quadratic association, were minimally biased at year 1 (-0.22% in placebo and

-0.17% in treatment group). Lower levels of bias were observed in the treatment

group at year 2 (-0.63%) than for the placebo group (-0.85%). Survival probabil-

ities at year 5 were the most biased with a percentage bias of -5.83% and -4.14%

in the placebo and treatment groups respectively. Subsequent predicted survival

estimates from models with greater misspecification were incrementally more bi-

ased. Model 2 produced survival probabilities at years 1 through to 5 which were

more biased than model 1. The largest level of bias for Model 2 was observed

at year 5 (−11.84% and −8.00% for placebo and treatment groups respectively).

Survival probabilities from Model 3 were the most biased. A bias of greater than

10% was observed at years 4 and 5. Year 4 survival probabilities were underes-

timated by -14.68% in the placebo group and -10.70% in the treatment group,

whilst at year 5 the percentage bias observed was -20.26% and -15.13% in the

placebo and treatment groups respectively.

Empirical standard error estimates show greater variation for predictions for

the placebo group than treatment group. Variation increased for each year sur-

vival was predicted across all models. The model standard errors systematically

missed targeting the empirical standard error. Generally model SEs were overes-

timated, slightly more so for the treatment group than the placebo. For model

1, the largest relative percentage error in model SE was seen at year 2 (3.03%,

MC SE: 2.32 and 3.21% MC SE: 2.33 in the placebo and treatment group respec-

tively). Whilst the smallest relative percentage error in model SE was observed

at year 5 (0.35%, MC SE: 2.26 and 0.53% MC SE: 2.26 for placebo and treatment
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group respectively). A greater quadratic association resulted in a smaller relative

percentage error in model SE for the placebo group but larger for the treatment

group. For Model 2 model SEs were over estimated by less than 1% for years 1

and 4 in the placebo group, but underestimated by less than 1% for years 2 and

3 in the placebo group. On the other hand the relative percentage error in model

SE at year 5 in the placebo group was 2.36% (MC SE: 2.31). In the treatment

group the relative percentage error in model SE ranged from 1.75% to 2.63% at

years 1 to 5. The relative percentage error in model for survival predictions from

model 3 were similar to those form model 2, with the exception of estimates at

year 5. Model SEs were underestimated by less than 1% in the placebo group

at years 2 and 3 and overestimated by less than 1% at years 1,4 and 5. In the

treatment group the model SE missed targeting the empirical SE at time-points

1 to 5, resulting in a relative percentage error in model SE ranging from 0.99%

at year 5 to 3.74% at year 1.

Figure 9.4 shows the distribution of the difference between predicted and true

survival predictions for each model in Scenario 1. The spread in differences tends

to increase as follow-up time increases under treatment, whilst at follow-up times

1 and 2 years there was less variation in the difference between predicted and

true survival for the treatment group when compared with the placebo group.

9.4.2 Scenario 2

For each α2 specified in Scenario 2, a total of 984 of 1000 models converged

successfully. Table 9.2 presents results for Scenario 2, assuming a decrease in the

biomarker is related to an increase in the risk of an event. For these models the

true linear association parameter was α1 = −0.6 and the quadratic association

parameters were α2 = −0.05,−0.2, and −0.3 for models 1, 2 and 3 respectively.
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Figure 9.4. Difference between predicted and true survival prob-
abilities for each model in Scenario 1, by treatment group (dark
grey: placebo, light grey: treatment) and time-point)

Overall, misspecified models in Scenario 2 overestimated survival probabilities

at year 1 through to 5. Survival predictions at baseline were unbiased across all

models. For the model with the weakest quadratic association, α2 = −0.05,

the predicted survival probabilities were the least biased. Bias estimates were

less than 1% up to year three and year 4 in the placebo and treatment groups

respectively. At year 5 percentage biases of 1.29% in the placebo group and 0.93%

in the treatment group were observed. Predictions of survival for Model 2 were

more biased for the placebo group than the treatment group. The largest level of

bias in the placebo group was 3.26% at year 5 and correspondingly 1.87% also at

year 5 in the treatment group. Bias estimates for Model 3 were similar to that
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of Model 2. Percentage bias for each group increased from 0.61% (placebo) and

0.37% (treatment) at year 1 to 2.89% (placebo) and 1.84% (treatment) at year

5. Again survival predictions were more biased in the placebo group than the

treatment group. The greatest % bias was observed at year 4, 3.08% and 1.93%

for placebo and treatment groups respectively.

The empirical standard error estimates demonstrated slightly greater long-run

variation for estimates for the placebo group than treatment group. Variation

increased for each year survival was predicted across all models. Model SEs

missed targeting the empirical SE for all models to varying degrees. For model 1,

which included the smallest quadratic effect α2 = −0.05, the relative percentage

error in model SE was larger in the treatment group than in the placebo. For

both groups the model SEs were overestimated with larger error at year 1, and

decreasing to the lowest at year 5. The relative percentage error in model SE

was 3.10% (MC SE: 2.36) in the placebo group at year 1 decreasing to 1.16%

(MC SE: 2.28) at year 5. In the treatment group the relative percentage error in

model SE was 7.19% (MC SE: 2.47) at year 1 decreasing to 3.04% (MC SE: 2.33)

at year 5. Model 2 underestimated model SEs at years 3, 4 and 5 in the placebo

group and years 1, 2, 3 and 4 in the treatment group. The smallest relative

percentage error in model SE was observed at year 2 (0.07%, MC SE: 2.28) in

the placebo group and at year 5 (0.06% MC SE: 2.27) in the treatment group.

Model SEs were underestimated by less than 1% in the placebo group and less

than 2% in the treatment group across the yearly predictions. Finally the largest

relative percentage error in model SE was observed for predictions of survival for

model 3, for which α2 = −0.3. Generally model SEs were underestimated. The

percentage error was fairly small at year 1, - 0.51% (MC SE: 2.32) in the placebo

group and -0.34% (MC SE: 2.32) in the treatment group. The largest relative
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percentage error in model SE was observed at year 5, -8.20% (MC SE: 2.08) and

-7.43% (MC SE: 2.10) in the placebo and treatment groups respectively.
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Figure 9.5. Difference between predicted and true survival prob-
abilities for each model in Scenario 2, by treatment group (dark
grey: placebo, light grey: treatment) and time-point)
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Figure 9.5 shows the distribution of the difference between predicted and

true survival predictions for each model in Scenario 2. As with Scenario 1, the

variation in differences between predicted and true survival increase as follow-up

time increases. The spread of differences was generally similar across treatment

groups, although at year 1 and 2 there was less variation in differences for the

treatment group.

9.5 Discussion

When implementing the joint longitudinal-survival model, often simplistic as-

sumptions about the nature of the dependency between the survival and longi-

tudinal outcomes are made. In practice, most likely due to convention, a linear

association structure is assumed with little consideration for the possibility of a

non-linear dependency between biomarker and time-to-event outcome. This is

despite consideration of non-linear effects for baseline covariates being the norm.

In this simulation study the effect of misspecifying a non-linear association struc-

ture was investigated. It has been shown that, for particular cases of quadratic

hazard-longitudinal trajectory associations, bias is introduced when predicting

survival from misspecified models which incorrectly assume a linear association.

Two scenarios were evaluated for misspecification in this simulation study; a qua-

dratic association between the hazard and a biomarker for which higher values are

detrimental and conversely a biomarker for which lower values infer greater risk.

For Scenario 1 larger levels of bias were observed at later follow-up times, when

compared with the first two years of follow-up. Survival probabilities were con-

sistently underestimated, with more biased survival predictions observed when a

linear association structure was fitted to simulated data which assumed a greater
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strength of quadratic association. This pattern was not as pronounced for Sce-

nario 2, for which survival predictions from misspecified models were generally

equally biased across models. Even so, increase in bias was observed between

models 1 and 2. Survival probability predictions were generally less biased for

the treatment group as opposed to the placebo group for both scenarios. Model

SEs consistently missed targeting empirical SEs, suggesting bias was introduced

in the estimation of model SEs. In Scenario 1, model SEs were generally overes-

timated, with the largest levels of error introduced for misspecified models fitted

to simulated data assuming the smallest quadratic effect. Model SEs were over-

estimated to a greater extent in the treatment group. Larger levels of error in the

estimation of model SE were observed for Scenario 2, particularly in the treatment

groups for misspecified models 1 and 3.

9.5.1 Strengths and limitations

This simulation study is by no means exhaustive, however it does represent a

novel investigation into non-linear association structures in the context of joint

models. Non-linear effects are routinely considered when developing models for

prognostic or prediction purposes. Yet in the case of a biomarker, modelled via a

longitudinal trajectory, questions about non-linear associations are rarely asked.

This study shows that ignoring non-linearity by incorrectly specifying the asso-

ciation structure in the survival submodel, introduces bias into the estimation of

subsequent survival predictions, as well as their corresponding standard errors.

Previous simulation studies have focussed on the consequences of misspecification

in relation to model estimates. Here an alternative approach was taken to evaluate

model misspecification by investigating the impact on model predictions. Joint

longitudinal-survival models are very often implemented for their unique predic-

tive capabilities, first because they allow predictions of survival which depend
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on the (appropriately modelled) longitudinal biomarker of interest, and secondly

allow predictions at the individual level when the BLUPs for the random effects

are estimated. With such widescale use, it is important to consider how misspec-

ification can affect resulting predictions, especially as a misspecified model does

not necessarily lead to both biased model estimates and model predictions. This

study evaluated how robust survival predictions, setting random effects to 0, are

to misspecification.

There are several issues which arose in the course of this simulation study.

For one the data generating mechanism was based on the PBC dataset of 312

individuals. This is smaller than the 500 individuals for which data was ulti-

mately simulated. Longitudinal and survival models were simplified as much as

possible, assuming a linear biomarker trajectory and a Weibull baseline hazard,

to encourage model convergence both for linear and non-linear association struc-

ture models. It could be argued that a Weibull baseline hazard is unlikely to

be flexible enough to capture the baseline hazard in real-life data. Certainly

biomarkers rarely follow a linear trajectory, requiring non-linear terms such as

polynomials or splines to be modelled appropriately (see section 7.5.3). These

models are computationally difficult to estimate, and adding non-linear effects

increases this burden. Small sample sizes and inadequate power can prohibit

correct joint model model specification.

For each of Scenarios 1 and 2 a small percentage of models did not converge

(1.0% and 1.6% respectively). In each case the estimates of performance were

obtained for only those models which converged successfully, in what is termed

a ‘pure method evaluation’ [348]. An alternative approach would be to continue

to fine-tune the model estimates until they converged, e.g. for example adjusting

quadrature points to achieve convergence [52]. This would be difficult to achieve
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in a simulation study setting. For a complex hazard function as generated for

this simulation it was difficult to identify just one set of parameter values which

allowed models to converge the majority of the time. In fact, further data gen-

erating mechanisms for a cubic association structure were defined, however for

this scenario the majority of models did not converge. Ultimately, it is likely that

the sample size did not support complex non-linear associations which increase

the complexity of the hazard function and so computational burden. A larger

sample size is necessary then when the main interest is to investigate the impact

of incorrect functional form in the joint model setting.

Original attempts at defining the data generating mechanism relied on the

General Cycle Collection data described in Chapter 7. This dataset, though

similar in size to the PBC dataset, is unlikely to resemble scenarios outside of a

clinical trial or assisted pregnancy setting. As previously discussed in Chapter 7

the GCC dataset is singular in terms of the frequency and length for which hCG

observations were collected. This is compounded by the addition of delayed entry,

which is necessary to accommodate women falling pregnant and then becoming at

risk of loss. A delayed entry model then requires an additional set of numerical

integration on top of that which is required for the standard joint model [52].

The added features of this data and model made it difficult to fit non-linear

associations, hence the use of PBC dataset as the basis for data simulation.

True model values were selected by fitting separate longitudinal and survival

models to the PBC dataset. No further covariates were considered for either

submodel, other than a treatment variable for the survival model. Depending on

the medical application, there will be any number of variables associated with one

or both outcomes. In the presence of censoring it has been shown that omission

of important covariates can introduce bias into treatment effect estimates [349].
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Model selection procedures for joint models, discussed briefly in section 5.10, are

currently still in their infancy but should be considered when developing a model

[225].

A simulation study can never cover all possible scenarios, and here the focus

was on a quadratic non-linear association structure. Other alternative specifica-

tions of non-linear association structures are of course possible, however as they

are by definition non-linear similar issues would be expected in those scenarios

too. The quadratic associations evaluated in this simulation study followed a J

shape, however U shaped associations with turning points are not uncommon.

BMI and blood pressure risk profiles are characterised by turning points, with

very high and low observations indicating an increase in the hazard rate.

9.5.2 Extensions

The focus here was on the misspecification of the non-linear association. A core

component of defining the non-linear hazard function is the longitudinal sub-

model. As previously noted the joint model has been shown to be relatively robust

to misspecification in the context of the current value association, however less

so when the slope association is specified [52]. In light of this, misspecification of

the longitudinal model is likely to have an impact on parameter estimates when

a complex non-linear association structure is assumed. This would represent an

interesting extension to the simulation study.

For this simulation survival probabilities were considered independently of the

random effects. With conditional survival probabilities an important output of

the joint model (see section 5.11.2) it would be of interest to extend the simulation

to also evaluate the impact of misspecification on marginal survival predictions,

which are estimated by integrating out the variances of the random-effects. This

allows estimation of the BLUPs for the random effects, capturing variability at
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the subject level, ultimately allowing for individualised predictions. If bias is

introduced into estimation of the variance components, then resulting subject-

specific probabilities would not be fit for use.

Further non-linear association structures should also be evaluated for misspec-

ification, though the complexity of fitting such models makes this a challenging

task. Certainly a larger dataset from which to base the simulation on, and ulti-

mately a larger simulated dataset would improve model convergence.

9.5.3 Conclusions

This simulation study presents evidence that misspecification of a non-linear as-

sociation structure can introduce bias into the estimation of predicted survival

probabilities. However this is based on evaluating misspecification of only a qua-

dratic association structure. The computational burden of fitting models with

complex non-linear associations means it is unsurprising that they have not yet

been addressed. Additional scenarios of non-linear associations would be useful

to further generalise the results of this simulation study and provide further guid-

ance. When fitting a joint longitudinal-survival model it is important to consider

whether a non-linear association structure could explain the dependency between

time-to-event and longitudinal outcomes. A simpler, more stable model is always

encouraged, but sensitivity analyses are advised to avoid a misspecified model

and subsequently biased predictions.
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Chapter 10

Discussion

10.1 Chapter Overview

This chapter will summarise the work carried out in this thesis and how this ful-

fils the aims that were laid out in section 1.8. The overarching aim was to apply

both established and cutting-edge joint modelling techniques to novel pregnancy

datasets, in order to answer several hypotheses related to the early pregnancy

setting. In doing so consequences of a key modelling assumption made when fit-

ting the joint longitudinal-survival model was evaluated via a simulation study,

namely that the association between the biomarker trajectory function and sur-

vival is linear, when this may not truly be the case. The strengths and limitations

of the thesis will be discussed and areas of future work will be considered.

10.2 Summary of the thesis

The motivation for this thesis evolved from the General Cycle Collection study

data introduced in section 7.3. The novel study, conducted by SPD Development

Company Ltd, prospectively followed over 2000 women as they attempted to

conceive. This presented a rare opportunity to access an intensive collection of

daily urinary hormone observations on a scale which has yet to be seen in publicly

funded clinical trials. More importantly the relationship between urinary hCG

and early pregnancy loss, discussed in Chapter 2, is well-established; though
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modelling the two outcomes simultaneously has received little attention up to

now. This is largely because the joint longitudinal-survival model, introduced

in Chapter 5, is a relatively recent development in statistics. The modelling

technique combines conventional statistical models (see Chapters 4 and 3) to

model the dependency between longitudinal and time-to-event data, where the

repeatedly measured biomarker can feasibly be used as a surrogate for the survival

outcome. The shared random effects parameter framework addresses issues of

biomarker measurement error, intermittent observations and uncertainty. They

also provide a foundation for individualised risk prediction, an important joint

model extension which has yet to be addressed in the early pregnancy outcome

literature.

The joint model was first applied to a smaller dataset, similar to the GCC

data, which was previously analysed with the naive but perhaps more accessi-

ble two-stage model approach (see section 5.3.3) [44]. The analysis, presented in

Chapter 6, was an opportunity to compare estimates for naive methods against

the joint model (see 6.14). It also served as a learning experience, allowing explo-

ration of the best way to model the longitudinal trajectory, the baseline hazard

of the survival submodel and the impact this had on conditional survival predic-

tions. When the two outcomes were simultaneously modelled via the joint model

framework, a unit-increase in log hCG was associated with a 66% decrease in the

rate of miscarriage, which was similar to the two-stage model estimate though

with a larger, more appropriate standard error, but a larger effect than when

modelled by the time-varying covariate approach. It was found during modelling,

however, that the quadratic did not adequately model the longitudinal trajectory

of log hCG, as the predicted decrease in log hCG came too early for healthy preg-

nancies. An additional quadratic random slope effect may have allowed for this
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variation but could not be fitted at the joint modelling stage (see section 6.5.2).

The survival submodel included a simpler Weibull baseline hazard, as opposed to

a flexible baseline hazard modelled using restricted cubic splines, due to problems

with model convergence. As a result the model was likely misspecified and re-

sulting conditional survival probabilities were possibly biased and predicted with

greater levels of uncertainty (see section 6.4.8). This analysis brought to light

the complexity of the joint model and the need for a sufficient sample size for

computation. All of this information informed the analysis of the GCC data.

The GCC data was analysed in Chapter 7. The approach to modelling aimed

to address issues encountered in the previous analysis, in larger and more detailed

data. Joint model calibration and discrimination measures were also considered.

Clinical knowledge from those working in the pregnancy field was combined with

standard model selection procedures to build trajectory and survival submodels

which both provided good fit, but also included known confounding variables.

Here improvements were made by modelling the longitudinal trajectory with re-

stricted cubic splines, which better modelled the tails of the data. An interesting

and possibly useful association between miscarriage and two other hormones,

FSH3 and P3G, was identified during the modelling process, however this still

corresponded to a 50% reduction in the rate of miscarriage for a unit increase

in log hCG. Furthermore the slope of hCG was identified as an important factor

in early pregnancy outcomes. Subject-specific survival predictions obtained for

viable, early and late losses emphasized the changeable nature of hCG and the

importance of continued biomarker observations to minimise uncertainty around

predictions. Survival probabilities tended to predict the correct outcome even

for a ten-day window. Establishing the optimal timing of observations was in-

vestigated, with a two to three-day window between updates to the longitudinal
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trajectory giving enough time for some change to occur but not to the detriment

of the pregnancy. This was highly dependent on the shape of the log hCG tra-

jectory, however. Calibration and discrimination measures were introduced and

implemented. Survival probability cut-offs for each five-day prediction window

ranged from 0.65 to 0.98. In windows where there were fewer events the cut-off

tended to be lower. Sensitivities and specificities were variable across the pre-

diction windows, with sensitivities and specificities over 90% attained after 20

days of follow-up. The joint model was extended to a multiple marker context,

modelling both log P3G and log hCG simultaneously with time-to-miscarriage.

Ultimately, likely due to inconsistencies between the timing of P3G and hCG

observations, increases in log P3G were found to increase the rate of miscarriage.

In Chapter 8 daily intercourse diary data, collected as part of the GCC study,

was analysed relative to miscarriage. Acts in the luteal phase (post ovulation)

and implantation window were associated with an increase in the rate of mis-

carriage, though these findings were not statistically significant. The timing of

intercourse was further used as an (imperfect) proxy for sperm age (once in the

female reproductive tract) and quality. If the last act recorded in the fertile

window (assumed to have led to conception) was more in advance of the day of

ovulation then the rate of miscarriage was decreased. Conversely more acts in

the fertile window, assuming increased sperm quality, actually increased the rate

of loss. Again neither of these associations were statistically significant. These

results can be interpreted in two ways. Firstly, the study was not powered to find

an association between timing of intercourse and miscarriage, with a number of

assumptions made around recording of intercourse data, and in the definitions of

the intercourse windows. Hence significant results should not be expected. Sec-

ondly, this adds to the current opinion that there is no evidence that intercourse
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during pregnancy increases the likelihood of a loss [308]. No news therefore may

be good news.

When including a continuous covariate in a survival model, the functional

form is investigated to establish non-linear associations. For example, younger

and older individuals may experience a higher event rate compared with individu-

als in between. This would require modelling age using polynomials or restricted

cubic splines to capture turning points where the risk profile increases and then

decreases. Joint model applications have tended not to deviate from the current

value association structure, and the assumption that the relationship between a

continuous biomarker and hazard is linear. The simulation study carried out in

Chapter 9 investigated the effect of assuming linearity on predicted survival prob-

abilities (setting random effects to zero) when the true association is quadratic.

It was found that bias was introduced into the estimation of predicted survival

probabilities for misspecified models, more so as the level of the quadratic asso-

ciation increased and at each subsequent follow-up time. Model standard errors

were consistently over- or underestimated. The results of the simulation study

demonstrated that survival predictions are not robust to misspecification of a

non-linear association structure. Where possible, it is recommended that the

possibility of a non-linear association structure is explored when fitting a joint

model, just as non-linear covariates are. Sensitivity analyses should always be

carried out to assess the validity of model assumptions.

10.3 Strengths and Limitations

The analyses presented in this thesis are the first examples of the application of

the joint longitudinal-survival model to the early pregnancy outcome setting. The

novel aspect comes from prospectively collected urinary hCG data from women
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as they attempted to conceive, recorded daily for individuals, allowing for con-

sistent capture of changes in relation to pregnancy progression. Evidence of an

association between hCG and pregnancy loss is well-established in the litera-

ture, but has never been quantified utilising advanced joint modelling techniques

[242; 350]. Where outcomes have been modelled in tandem, the hCG trajectory

has been limited to a maximum of three observations or focussed on serum ob-

servations [45; 46]. In applying the joint model to this data, several modelling

challenges were identified. This serves to emphasise the complexity of using joint

models to analyse such data, and highlights the kind of challenges which analysts

may encounter during modelling.

The analyses conducted in Chapters 6 and 7 have demonstrated the value of

using urinary hCG to a greater extent in an early pregnancy setting. The im-

provements in accounting for error and uncertainty by implementing the shared

parameter joint model framework over the two-stage model approach were well

recognised [44; 241]. Software updates in recent years also made it possible to

explore an alternative association structure and obtain subject-specific predic-

tions to illustrate the dynamic monitoring capabilities of the joint longitudinal

survival model [38; 200; 202]. Model calibration and discrimination measures are

only now beginning to be implemented in software packages and have never been

considered in a pregnancy outcome setting before now [43; 205; 290]. This thesis,

though not all-encompassing, is an important step in prediction model building

for early pregnancy outcomes.

There are several barriers to use of urinary hCG, however, in clinical practice.

Urinary observations may be cheaper to observe, but at the scale observed in

the GCC data would be impractical and costly, but for a subset of women who

may be undergoing IVF and/or have experienced recurrent losses previously. In
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natural pregnancy settings it is not usual to measure hCG regularly unless a loss is

suspected, and certainly not from first detection of hCG (implantation). The day

of conception would be unknown in a typical pregnancy and in reality clinicians

work from the date of the last menstrual period to date a pregnancy rather than

hCG. IVF pregnancies are tracked closely from implantation and so this type of

hCG monitoring for viability is feasible and likely most beneficial in an assisted

pregnancy setting. It is also possible that the General Cycle Collection study may

have (inadvertently) recruited women who were struggling to conceive, perhaps

due to the study provision of ovulation testing kits for targeting of intercourse.

This represents sample selection bias and has implications for the generalisability

of the results of analyses in this thesis.

The GCC study was a large scale longitudinal collection, with significant

cost implications. Women were recruited via the Clearblue website and so were

from the start more likely to adhere to an intensive sample collection regime.

Volunteers who did not comply were subsequently withdrawn from the study

by SPD Development Company Ltd. Furthermore, great effort was made to

ensure full data collection through contacting volunteers for outstanding samples,

confirming volunteer history and diary data. This dataset is therefore unlikely

to be representative of the general population. In routine practice, a greater

amount of missing data would be expected for the biomarker measurements and

for covariate data.

NICE guidelines do not recommend hCG as a diagnostic tool for early preg-

nancy loss, but there could be scope for its use as a monitoring tool in conjunction

with established methods such as ultrasound [66]. In addition, more consistent

monitoring has the potential to establish a more well-rounded picture of preg-

nancy progression. During the course of this thesis the association between the
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biomarker hCG and early pregnancy has been established and this comes under

the scope of research priorities around miscarriage published by Prior et al. [105].

Once viability is determined and women move out of the first trimester, hCG may

be less useful, however we have seen throughout this thesis the potential of hCG

in early loss [11].

Pregnancy outcomes were generally predictable via subject-specific survival

probabilities predicted for three women from the GCC data, and these certainly

improved upon subject-specific predictions presented in Chapter 6. It was diffi-

cult to ascertain the ideal prediction window to truly illustrate the capabilities

of the model. Though timing of risk prediction updates were crudely simulated,

ultimately predicting for individuals whose data was used to build the model

cannot evaluate model performance. Discrimination and calibration estimates

were obtained, but these again were data dependent. To evaluate how well the

model performs an external validation dataset would really be required to es-

tablish whether the risk of miscarriage can be predicted via hCG. Identifying a

similar dataset would be challenging, given the singular nature of the GCC data.

In the absence of an external dataset, however, internal validation could have

been carried out via bootstrapping.

Several improvements to modelling could have been made during the course

of analysis. All models were fitted on a complete case basis. Where models

were fitted including P3G and FSH3 on the day of implantation, this resulted

in a significant reduction in sample size from 367 to 312 individuals. This is

because all samples were not tested for all hormones, and likely contributed to

issues with model convergence. An alternative approach could be to impute

missing P3G and/or FSH3 values. Secondly, the last day hCG was observed was

assumed to be the day the miscarriage occurred. However, it may have been more
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appropriate to assume interval censoring, assuming that the loss occurred between

perhaps the date of the onset of a symptom, such as a bleed, and the last day

hCG was observed. Finally, the hCG hormone can be elevated in circumstances

unrelated to pregnancy, such as in menopause or in particular forms of cancer

[351; 352; 353]. This could be modelled using a competing risks joint model,

where in older women the two events are pregnancy or menopause, or in a more

diverse age group pregnancy or cancer.

The issues which have been encountered across the analyses in this thesis

can largely be attributed to the data. This is real-life data with its own quirks

that ultimately do not fit into the mould of illustrative data presented in joint

modelling tutorials. So, whilst joint models are attractive prospects for combining

two types of outcome data with a built in framework for dynamic prediction, in

practice they require a sample size which perhaps is prohibitive. Development

of a joint model specific sample size equation by Chen et al. [354] has shown

that power to detect an effect is impacted by several aspects of data collection;

including the number of events observed, the timing of biomarker observation and

the frequency of observation. In addition greater numbers of polynomial terms

used to model the longitudinal trajectory in turn require a greater sample size

for equivalent power [354].

Chen et al. have suggested that the ‘ideal data collection strategy’ for lon-

gitudinal biomarker data would require balancing the timing and frequency of

measurements for a fixed follow-up period [354]. Though a longer follow-up time

would lead to an increase in event numbers and in turn power, it is usual for

follow-up to be pre-determined due to cost implications. Increasing the frequency

of observations is a means of reducing the impact of within-subject variability or

measurement error [354]. If measurement error is high, each individual would need
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to contribute at least two measurements for a linear trajectory and more than

four for a quadratic trajectory to maintain power and avoid biased estimates of

the longitudinal effect [354]. An additional consideration should be the variance-

covariance matrix, and whether this is known or unknown. If there is high het-

erogeneity with larger variances, sample size will likely be low, less heterogeneity

will result in larger sample size requirements. Assuming the variance-covariance

matrix is unknown results in reduced power against a known variance-covariance

structure, even when the number of events increases [354].

The length of follow-up affects the number of events observed, but for the early

pregnancy setting this is limited to the 13 weeks for which hCG is considered a

relevant biomarker to predict early loss. Furthermore longitudinal observations

were observed maximally, obtained from daily early morning urine where con-

centration of hCG would be the greatest. Urine could potentially have been

collected at multiple times of day, but these would then need to be corrected

for creatinine concentration, for comparability across urine samples of varying

dilution. A ramped-up collection schedule would also increase the burden on the

volunteer, most likely resulting in greater amounts of missing data. Furthermore,

modelling the longitudinal trajectory using more complex restricted cubic splines

would again reduce power to observe effects. Data collection can only be opti-

mised then by collecting for a larger sample of volunteers. Though a substantial

association between log hCG and miscarriage was observed in the GCC data, the

number of confounding variables included in the survival submodel may be an

example of overfitting. Certainly it is unlikely that the number of events support

the inclusion of so many variables.

Joint longitudinal-survival models are complex in nature, requiring several

levels of numerical integration (adaptive Gaussian quadrature), depending on the
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model specification, to evaluate the likelihood [38]. This increases computational

burden and for a small sample size, using too few quadrature nodes can prevent

models from converging [214]. The analysis in Chapter 7 ultimately moved away

from the frequentist joint model approach, in favour of Bayesian joint models,

removing the need for numerical quadrature techniques entirely. Default vague

priors in the JMBayes R package were utilised, however these could have been

updated with informative prior distributions using the findings from the analysis

conducted in Chapter 6 [221]. A Bayesian approach to model estimation also

allows for a natural progression to the estimation of subject-specific conditional

survival predictions using the approach presented by Rizopoulos [43].

The computational complexity of fitting a joint model to the pregnancy out-

come data led to several compromises during the course of modelling. A less

flexible but more stable baseline hazard was utilised in the survival submodels

described in Chapters 6 and 7. Restricted cubic splines, however, have been advo-

cated over distributional assumptions for capturing the baseline hazard [179; 182].

An appropriately modelled baseline hazard is important for accurate survival pre-

dictions, a key aspect of this thesis [178]. Misspecification of components of the

joint model have been covered in Chapter 9, but to reiterate - a misspecified

baseline hazard can lead to biased parameter estimates in the joint model [53].

Though improvements to the longitudinal model were made over the course of

the two joint modelling analyses, an additional slope random effect could not be

fitted. This meant only subject-specific deviations in linear slope were allowed

for, possibly resulting in a misspecified longitudinal submodel. Bias may have

been introduced into subsequent association estimates, particularly for the first

derivative model fitted in Chapter 7 [52].
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Model selection followed a combination of expert opinion and established

model selection techniques, such as the AIC and BIC, for separate submodels.

However, the influence of the individual components of the longitudinal submodel

have on the survival submodel are not considered using this approach. An ap-

proach for simultaneous model selection proposes a partitioning of the joint model

AIC (or BIC) into that for the longitudinal model and conditional (on the lon-

gitudinal submodel) survival submodel [223]. This is, however, currently only

implemented in SAS. Given the number of modelling decisions made during joint

model building, for both longitudinal and survival submodel and random effect

selection, it is important sensitivity analyses are carried out to minimise model

misspecification.

10.4 Future Work

10.4.1 Multiple markers

Several extensions could be made to the work presented in this thesis. For one

this thesis has in the main considered only one pregnancy-specific biomarker in

relation to early pregnancy loss. Yet, a number of biomarkers are key to the men-

strual cycle and some key to maintaining a pregnancy. Progesterone was modelled

along with hCG in Chapter 7 within a multivariate joint model framework. This

met with limited success, due to the inconsistency in the timing of observations

between the biomarkers. An extension to the Bayesian multivariate joint model

which allowed for biomarkers measured at different and for varying numbers of

time-points may result in altered findings. Progesterone encourages implantation

and maintenance of the fertilised ovum, whilst falling levels can cause the preg-

nancy to be rejected [355]. High levels of progesterone then are indicative of a

positive outcome, and several trials have investigated its benefits as a treatment
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for women who experience recurrent loss [21; 80]. Progesterone in conjunction

with hCG have been shown to assist in diagnosis of ectopic pregnancies [356],

and there is evidence of each marker being useful to differentiate between viable

and failing pregnancies in isolation [357]. However, there is less certainty about

whether the markers together can be used for predicting pregnancy loss, perhaps

as current studies have used significantly fewer observations than were available

in the GCC study data [48; 280]. The Bayesian joint model formulation allows in

theory informative prior distributions to be specified for the correlation between

each of these longitudinal biomarkers.

10.4.2 Timing of observations

Subject-specific survival predictions from a joint longitudinal-survival model, have

been discussed in the context of establishing the timing of observations. Extensive

collection, such as that undertaken in the GCC study, is unlikely to be imple-

mentable outside of a trial setting. Therefore, work needs to be carried out to

define the optimal collection schedule to capture significant changes in biomarker

trajectory, whilst offsetting the cost and burden of collection. This was briefly

investigated in Chapter 7, however a robust comparison of profiles with differ-

ing observation schedules is required to understand how often hCG should be

measured for a given individual. Use of Bayesian optimal designs to select per-

sonalised screening intervals has been discussed in the literature [358]. This is

based on maximising a utility function which estimates the difference between

the predictive conditional distribution of the joint model with and without an

additional biomarker measurement being observed. A larger deviation between

the two distributions indicates an additional measurement should be observed

imminently. A alternative approach proposes the use of decision modelling based

on estimating optimal expected life-years [230].
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10.4.3 Interval censoring

Throughout this thesis the assumption of right censoring has been made, how-

ever we could also think of losses as either occurring before the last observation

or between two observation times. This would indicate either left-censoring or

interval-censoring. The timing of loss was recorded as the date of the last hCG

observation. By this point the miscarriage may have resolved, and so the loss

most likely occurred prior to the censoring time. On the other hand, a biochemi-

cal pregnancy, may only be recognised by a declining hCG trajectory. In this case

the loss may have occurred between the time at which hCG began to decrease and

the last observed hCG measurement, resulting in interval censoring. Approaches

to modelling interval censored time-to-event outcomes in a joint model setting

have utilised both parametric and semi-parametric model approaches, with the

former allowing for more robust and informative estimates in the presence of

heavy interval-censoring [359; 360].

10.4.4 Joint longitudinal-survival hurdle models

The time since conception timeline has been a point of contention throughout this

thesis. As a common anchoring point across women it does its job, but it also

relies on the assumption that conception occurs the day after ovulation. This is

likely reasonable, but even so is unlikely to hold for all women. The bigger issue

is that though we assume conception on this day, pregnancy is not confirmed

until hCG is observed above a certain detection limit, which leads to delayed

entry. The joint longitudinal-survival hurdle model proposes a two-part hurdle

model for the longitudinal biomarker, which first estimates the probability of

exceeding the detection limit [361]. This could be a hCG level of 2mIU/ml for a

lab test or even 25mIU/ml for a home pregnancy test. The second part estimates
311



the mean biomarker response conditional on having exceeded the detection limit.

Threshold values are then excluded from the estimation of the mean response in

the second part of the longitudinal modelling process. The resulting association

structure with the survival submodel is based on both parts of the longitudinal

hurdle model. This is an interesting extension to incorporate a common issue

when measuring a biomarker.

10.4.5 Simulation study extensions

The simulation study presented in Chapter 9 could be extended in several ways.

Firstly the effect of misspecification for further non-linear associations should be

considered, although currently polynomials are the simplest to implement. This

extension also relies on having a large enough dataset for which to simulate from

to address issues around model convergence. The effect on marginal survival

predictions could also be evaluated, as this would investigate the impact of mis-

specification on the variance components which estimate variability at the subject

level. This feature is a main attraction of the joint model and bias introduced at

this juncture would mean misspecified models are not fit for prognostic purposes.

It may also be of interest to evaluate the impact of misspecifying the longitudinal

submodel for a non-linear association structure, particularly as it has been shown

that longitudinal model misspecification has an impact on estimates from a first

derivative association structure [52].

10.5 Conclusion

In this thesis cutting-edge methods were utilised to quantify the association be-

tween longitudinal hCG and time-to-miscarriage. The joint longitudinal-survival

model was uniquely applied to a rich dataset, with a view to allow prediction of

subject-specific risk estimates. Each of the analyses carried out in Chapters 6 and
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7 demonstrated the value of more consistent observation of urinary hCG mea-

surements in an early pregnancy setting. The findings confirmed evidence of an

association between longitudinal log hCG and time-to-miscarriage, and showed

the potential of its use as a monitoring tool. In certain subsets of women where

the collection burden is offset by need, for example for those undergoing IVF

treatment or who have experienced recurrent loss, hCG tracking may be feasible

to establish current risk of loss. This, however, would need to be implemented

in conjunction with established diagnostic pathways such as ultrasound. There

is clearly potential for urinary hCG to be utilised to a greater extent in practice

than it currently is.

Joint models are complex in nature and require sufficient data to truly exploit

the advantages of simultaneous modelling within a shared parameter framework.

Where data allows, fitting a joint model accounts for uncertainty better than the

two-stage model approach [28]. If prediction is an aim, then developments in soft-

ware make individualised prediction and monitoring an accessible tool. However,

the computational complexity of this software is also a barrier to implementa-

tion. In these instances, the two-stage model makes for a reasonable alternative,

particularly as biological applications evolve in difficulty.
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Appendix A

Nature Scientific Reports research

paper

This Appendix contains a copy of the research paper titled “Jointly modelling

longitudinally measured urinary human chorionic gonadotrophin and early preg-

nancy outcomes,” which was published in Nature Scientific Reports under the

DOI https://doi.org/10.1038/s41598-020-61461-w.
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Jointly modelling longitudinally 
measured urinary human chorionic 
gonadotrophin and early pregnancy 
outcomes
n. B. Ashra1*, L. Marriott2, S. Johnson2, K. R. Abrams1 & M. J. crowther1

Human chorionic gonadotrophin (hCG) is largely used to confirm pregnancy. Yet evidence shows 
that longitudinal hCG profiles are distinguishable between healthy and failing pregnancies. We 
retrospectively fitted a joint longitudinal-survival model to data from 127 (85 healthy and 42 failing 
pregnancies) US women, aged 18–45, who were attempting to conceive, to quantify the association 
between longitudinally measured urinary hCG and early miscarriage. Using subject-specific predictions, 
obtained uniquely from the joint model, we investigated the plausibility of adaptively monitoring early 
pregnancy outcomes based on updating hcG measurements. Volunteers collected daily early morning 
urine samples for their menstrual cycle and up to 28 days post day of missed period. The longitudinal 
submodel for log hCG included a random intercept and slope and fixed linear and quadratic time terms. 
The survival submodel included maternal age and cycle length covariates. Unit increases in log hCG 
corresponded to a 63.9% (HR 0.36, 95% CI 0.16, 0.47) decrease in the risk of miscarriage, confirming 
a strong association between hCG and miscarriage. Outputted conditional survival probabilities gave 
individualised risk estimates for the early pregnancy outcomes in the short term. However, longer 
term monitoring would require a larger sample size and prospectively followed up data, focusing on 
emerging extensions to the joint model, which allow assessment of the specificity and sensitivity.

Early miscarriage, defined in the UK as loss before week 13, is a frequent complication of pregnancy1. It affects 
12% to 24% of clinically confirmed pregnancies, not counting those losses which occur prior to the date of the 
missed period - so-called biochemical pregnancies2. Women who suffer from a miscarriage are more likely to 
report symptoms associated with depression, with affected women ranging from 20% to a high of 55%3. Though 
the majority of losses are self-resolving, those that are not may require diagnostic tests, hospital treatment, sur-
gical intervention and follow-up care2. This provides an incentive to identify potential early losses as early as 
possible by exploring more patient-centred monitoring strategies.

The recently published priorities for research within miscarriage ranked highest the identification of effective 
interventions to prevent miscarriage4. This encompasses the plausibility of using biomarkers to track pregnancy 
progression through viability or miscarriage. Several potential biomarkers have been identified to predict miscar-
riage, with human chorionic gonadotrophin (hCG) a strong contender5. The hormone tends to rise rapidly and 
reliably in early pregnancy, doubling every 1.5 days in the first 5 weeks post conception and then every 3.5 days 
from week 7, before plateauing around week 105,6. Its use is more prevalent in tracking early pregnancy progress 
in an in vitro fertilisation (IVF) population and for identifying ectopic pregnancies7. However, evidence suggests 
that longitudinal profiles of hCG can be utilised to distinguish between viable and failing pregnancies, with sim-
ilar patterns of hCG noted across maternal serum and urine8.

The repeated collection of a continuous biomarker, such as hCG, over time gives rise to intermittently 
observed longitudinal data which are subject to measurement error9,10. Conventionally, this data is analysed using 
linear mixed effects models, with time-to-event outcomes analysed using survival models11,12. However, when 
interest lies in quantifying the association between the repeatedly measured biomarker and time-to-event out-
come, separate analyses ignore the dependency between the longitudinal and time-to-event processes13.

1Department of Health Sciences, University of Leicester, Leicester, UK. 2Clinical Research Department, SPD 
Development Company Ltd., Bedford, UK. *email: nbba1@le.ac.uk
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Acknowledging an association between a longitudinal biomarker and survival outcome implies that very high 
or low values of the biomarker are indicative of adverse outcomes14. Fitting a simple survival model to the event, 
including all of the longitudinal biomarker information, tells us how a change in biomarker value affects survival 
over follow-up time. However, the variation in biomarker observations between individuals is not incorporated 
into the model, so inferences for individuals cannot be drawn. Secondly, the implicit changes in biomarker values 
between each physically observed measurement are ignored, resulting in a failure to build a complete biomarker 
profile. The linear mixed effects model can build this biomarker trajectory and inbuilt random effects allow esti-
mation of personalised risk as an output of the model. Recognizing the advantages of both types of model, com-
bining both the linear mixed effects and survival models through a shared dependence structure via the joint 
longitudinal-survival model is essential. This allows the association to be appropriately modelled, whilst taking 
into account the intermittent nature of observations and measurement error. The model, through estimation of 
individual trajectories, can aid monitoring and potentially prediction of outcomes.

The aim of this paper is to retrospectively apply the classical joint model framework to data of pregnant 
women, who were followed up from before conception, to quantify the association between longitudinal urinary 
hCG observations and early miscarriage. The paper will also consider whether estimation of conditional survival 
probabilities from the joint model could provide the basis for dynamic monitoring of patients in the very early 
stages of pregnancy prior to other symptoms manifesting.

Results
A total of 44 (17.6%) women suffered miscarriages. The dataset used for analysis consists of 85 randomly selected 
viable pregnancies and 44 miscarried pregnancies. A summary of demographic variables is given in Table 1. 
Overall, the two groups were comparable. Women who experienced healthy pregnancies were slightly younger 
(mean ± SD: 29.95 ± 4.15) than those who miscarried (mean ± SD: 32.34 ± 4.60). The majority of women in 
either group were from a White European background (88.24% and 77.27% respectively). A slightly higher pro-
portion of women who had viable pregnancies had previously experienced a miscarriage, compared to women 
who miscarried (12.94%, and 9.76%). Of the women who miscarried, 18 (14.2%) experienced biochemical preg-
nancies and 24 (57.1%) women suffered early miscarriages. Two women who miscarried did not contribute hCG 
measurements and were not included in the joint modelling analysis.

The remaining 127 women all contributed repeated hCG measurements. For women who miscarried the 
average number of hCG observations was 17.5 (SD: 8.6) and for women who experienced viable pregnancies the 
average number of measurements was higher at 23.6 (SD 3.9).

Profiles of log hCG measurements for viable and failing pregnancies are presented in Fig. 1. The general 
trajectory shows an initial rise after conception, which continues through the first three weeks of the healthy 
pregnancies before slowing in rise. There was greater variation in profiles for women who miscarried, who also 

Variables
Healthy 
(n = 85)

Miscarried 
(n = 44)

Overall 
(n = 129)

Age, years 29.95 (4.15) 32.34 (4.60) 30.77 (4.44)

Ethnicity, n (%)

White 75 (88.24) 34 (77.27) 109 (84.50)

Black 3 (3.53) 7 (15.91) 10 (7.75)

Asian 4 (4.71) 2 (4.55) 6 (4.65)

Mixed 3 (3.53) 1 (2.27) 4 (3.10)

Education, n (%)

High School 4 (4.71) 2 (4.55) 6 (4.65)

Graduate 69 (81.18) 28 (63.64) 97 (75.19)

Postgraduate 12 (14.12) 14 (31.82) 26 (20.16)

Occupation, n (%)

Homemaker 12 (14.12) 3 (6.82) 15 (11.63)

Student 1 (1.18) 1 (2.27) 2 (1.55)

Skilled labourer 2 (2.35) 2 (4.55) 4 (3.10)

Office admin 8 (9.41) 5 (11.36) 13 (10.08)

Professional 60 (70.59) 31 (70.45) 91 (70.54)

Other 2 (2.35) 2 (4.55) 4 (3.10)

Cycle length 29.94 (2.95) 28.66 (3.21) 29.50 (3.09)

Previous pregnancies 1.00 (1.05) 1.11 (1.15) 1.04 (1.08)

Previous live births 0.62 (0.76) 0.70 (0.88) 0.65 (0.80)

Time to conceive, 
months 4.36 (5.83) 4.55 (5.98) 4.43 (5.86)

Previous miscarriage, 
n (%) 11 (12.94) 4 (9.76) 15 (11.90)

Table 1. Baseline demographics by pregnancy viability group. All values are mean(SD) unless otherwise stated.
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presented with an initial rise after conception. However, some women experienced a sharp drop in hCG, whilst 
others experienced a more gradual rise in hCG in comparison with women who had healthy pregnancies.

Overall Kaplan-Meier survival estimates for time to miscarriage are shown in Fig. 2. An approximate 15 day 
lag is evident before an event is seen, due to the use of time since conception as a timeline.

Modelling longitudinal profile. Inclusion of a quadratic time variable was necessary to appropriately 
capture the shape of the log hCG profile. Results from an initial fitted linear mixed effects model, including a 
grouping variable for pregnancy outcome, confirmed that mean log hCG was −1.66 mIU/mL (95% CI −2.14, 
−1.18) lower in the biochemical pregnancy group and −1.13 mIU/mL (95% CI −1.48, −0.78) lower in the early 
miscarriage group, when compared with the healthy pregnancies. Results are presented in Table 2.

Joint longitudinal-survival model. A joint longitudinal-survival model was fitted to the data. Estimates 
for the model with current value association structure are given in Table 3. A unit increase in absolute value of 
log hCG corresponded to a 66.1% (HR 0.339, 95% CI 0.257, 0.447) decrease in the risk of miscarriage at time t. 
A one-year increase in maternal age at conception resulted in a 7.6% (HR 1.076, 95% CI 0.998, 1.159) increase in 
the risk of miscarriage. A one-day increase in cycle length was associated with a 15.6% (HR 0.844, 95% CI 0.739, 
0.965) decrease in the risk of miscarriage.

Figure 1. Log human chorionic gonadotrophin trajectories for viable pregnancies and miscarriage pregnancies.

Figure 2. Kaplan-Meier survival probabilities for time-to-miscarriage.
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A comparison of log hCG association parameters for various models are presented in Table 4. The association 
between log hCG and time to miscarriage was attenuated when fitting a survival model with time-varying covar-
iate (HR: 0.439, 95% CI: 0.373, 0.516) and the two-stage model (HR: 0.440 95% CI: 0.368, 0.527). Furthermore, 
standard errors for both the standard survival model and two-stage model were 0.036 and 0.040 respectively 
compared to a larger 0.142 for the joint model.

Conditional survival predictions. Conditional survival probabilities were obtained from the joint model, 
which included the current value association structure (see Table 2). Probabilities estimated for the ten-day win-
dow after the last observed hCG measurement are shown in Fig. 3 and for a two-day window in Fig. 4. Participants 
A and B experienced biochemical and early losses respectively, whilst participant C experienced a healthy preg-
nancy. For both participants A and B a similar number of measurements were observed over comparable time 
periods, with similar average cycle lengths (28 and 30 days respectively) and ages (42 and 38 years respectively). 
Based on observed hCG measurements as well as age and cycle information, both were predicted to experience 
miscarriages.

For participant C estimates confirmed an 80% survival probability for the pregnancy two days post last 
observed hCG measurement. Depending on the cut-off used for low risk this may not be considered a high 
enough survival probability for a healthy pregnancy. As follow-up did not continue it was not possible to update 
probabilities to look at longer-term outcomes.

Discussion
Principal findings. This analysis builds on the two-stage model approach implemented by Marriott et al.15. 
By utilising the more advanced joint longitudinal-survival framework, the association between longitudinally 
measured urinary hCG and time to miscarriage is modelled, accounting for both measurement error and the 
intermittent nature of observations. This improves upon the two-stage model, which assumed that measurements 
remained constant between observation times.

Longitudinal model

Mean change 
in log hCG 
MIu/ml

95% Confidence 
Interval

Time since conception, 
days 1.431 1.396, 1.466

Quadratic time since 
conception, days −0.025 −0.026, −0.024

Group

Healthy — —

Biochemical loss −1.656 −2.135, −1.176

Early loss −1.132 −1.484, −0.781

Table 2. Model estimates from a linear mixed effects model.

Survival submodel
Hazard 
Ratio

95% Confidence 
Interval

Age, years 1.076 0.998, 1.159

Usual cycle length, days 0.844 0.739, 0.965

Expected current value of log 
hCG 0.339 0.257, 0.447

Longitudinal submodel Mean 95% Confidence 
Interval

Time since conception, days 1.431 1.396, 1.466

Quadratic time since 
conception, days −0.025 −0.026, −0.024

Table 3. Model estimates from a joint longitudinal-survival model with current value association structure.

Model
Standard 
error

Hazard 
Ratio for 
log hCG

95% 
Confidence 
Interval

Time-varying covariate 0.036 0.439 0.373, 0.516

Two-stage model 0.040 0.440 0.368, 0.527

Joint model 0.142 0.339 0.257, 0.447

Table 4. Survival estimates from a standard survival model with time-varying covariate, two-stage model and 
joint model.
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With the emphasis now on personalised care, it is becoming standard practice to use the joint model in favour 
of singular or two-stage analyses to model the association between longitudinal and failure processes, to both 
maximise efficiency and minimise the potential for bias16. The mainstream use of joint models coincides with 
improvements in software making these complicated models increasingly easier to fit, with packages available in 
both R (JM, JoineRML) and Stata (stjm, merlin)13,17–19. This makes the estimation of conditional survival 
probabilities from such models more accessible.

This paper investigates whether urinary hCG could be used to monitor pregnancy viability prospectively in 
early pregnancy from first detection of hCG. Tracking at this early stage presents an adjunct to diagnosis by ultra-
sound later on in the pregnancy. This analysis echoes research suggesting declines in hCG can be noted even prior 
to other symptoms presenting20. There is also potential for this monitoring to occur prior to conception, with a 
recent study finding that a lag between the luteal phase and hCG production can be indicative of a biochemical 
pregnancy, possibly due to early or delayed implantation21.

Tracking of hCG by pregnant women is practicable, as demonstrated by Foo et al. who employed a fertility 
monitor that also provide semi-quantitative analysis of hCG levels on pregnancy tests that were used daily in 
women who conceived21. Retrospective analysis of the semi-quantitative data indicated that non-viable preg-
nancies had different hCG profiles to viable pregnancies. Serial tracking could have the potential to cause stress, 

Figure 3. Conditional survival probability curves for participants A and B who experienced biochemical and 
early losses, respectively.

Figure 4. Conditional survival probability curve for participant C who experienced a healthy pregnancy.
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although women using tests to track ovulation for fertility purposes do not appear to have higher stress levels 
than those not employing tests22,23. Nevertheless, it is likely that tracking would initially be of benefit in high risk 
pregnancies, where anxiety levels are already high and there would be a willingness and reason to track. Further 
research would be required to understand the psychological impact of tracking.

Monitoring from first detection has the potential to be useful in cases of recurrent miscarriage, particularly 
as research into treatment gains traction. A recently published feasibility study assessing the effectiveness of the 
diabetes drug sitagliptin as a treatment for recurrent miscarriage, presented promising findings24. This trial builds 
on previous research, which found that in some cases of recurrent miscarriage it is the deterioration of stem-like 
cells in the uterus which contribute to pregnancy loss. When adjusted for age and baseline colony forming unit 
(CFU) counts, the CFU count was higher (RR 1.52, 95% CI 1.32, 1.75) in the sitagliptin group compared to pla-
cebo, pointing to successful regeneration of cells. These findings could revolutionise treatment for unexplained 
recurrent miscarriage, particularly as the more established progesterone therapy has not been shown to signifi-
cantly impact the rate of live births (PROMISE and PRISM trials)25,26.

Not all miscarriage is likely to be predictable due to the diverse aetiology of the condition. Some causes can be 
directly related to reduced hCG levels, e.g. conditions that affect rate of embryonic development such as chromo-
somal abnormalities, or inadequate placentation. Other causes, for example, where infectious agents or trauma 
are involved, may have no forewarning.

The demographic factors that add to the model have plausibility. The association between chronological age 
and miscarriage is well documented, and short follicular phase has also been associated with miscarriage by other 
authors27,28. Short cycle length may represent a surrogate marker for advanced reproductive age as the initial 
transition to peri-menopause can be characterised by a shortening of cycle length29.

Strengths and limitations. The two-stage model did not allow the investigation of the nature of the asso-
ciation between miscarriage and hCG, something which is possible with the joint model. Although attempted 
it was not feasible to sensibly fit a joint model with a first derivative association structure, possibly due to the 
small sample size. This is something that requires further investigation in a larger dataset, particularly as there 
is evidence in the literature, which suggests that the overall profile of hCG is important as opposed to changes 
in absolute values of hCG. Certainly, both recent papers utilising Bayesian non-parametric models, and mixed 
effects penalized splines model approaches, focused on classification of each type of pregnancy based on complete 
longitudinal profiles30,31.

A Weibull model was utilised to model the baseline hazard, however ideally more flexibility would be desir-
able. This could be achieved by using restricted cubic splines to model the baseline hazard. Model selection was 
carried out using forwards stepwise selection, which is known to introduce bias32. Alternative selection methods 
should be considered in future, specific to the joint modelling context. Selection based on the log likelihood 
contribution for the longitudinal part and conditional survival model have been proposed, but are currently only 
implemented in the SAS statistical software33. The example dataset was relatively small, and so fitting a model as 
complex as the joint model was challenging. Results must therefore be interpreted with caution. As this was a 
retrospective analysis of data with limited follow-up measurements, it was not possible to update predictions as 
measurements were observed. Predictions were therefore inaccurate for wider time periods. With the small sam-
ple size, it was also not viable to split the dataset for development and validation of the model. Attempting to uti-
lise such data for diagnostic or monitoring purposes also requires careful consideration of the potential for false 
positives. This study did not take into account the sensitivity and specificity of the fitted model, however this is 
an important component for planned future analyses in line with developments in joint model methodology34,35.

When utilising the joint model framework, it is essential to think about adjustments that need to be made to 
the model to truly reflect the biological reality of the biomarker and disease processes. In this analysis considera-
tions were made for the timeline on which miscarriage was modelled and how this affected the inclusion of fixed 
and random effects. Due to limitations of the software, the models included fixed and random intercepts, though 
no hCG would have been detectable at time zero. Date of conception would also be unknown in a natural preg-
nancy setting, making this analysis more suited to an IVF setting. This, however, could be adjusted for by using 
the last menstrual period (LMP) as a timeline in a natural pregnancy setting.

Employing two separate modelling techniques for longitudinal and survival data requires larger sample size 
requirements in a clinical trial setting. The increased efficiency of simultaneously modelling the two outcomes has 
the advantage of maintaining desired power at a lower sample size36. This makes designing clinical trials around 
a joint model framework an attractive prospect.

conclusions
The novel extension to this analysis concerns the subject-specific predictions. This study is an initial investigation 
into whether women at high risk of miscarriage could be adaptively monitored via their urinary hCG concentra-
tion. Though the effectiveness of possible treatments, particularly for recurrent miscarriage, remain uncertain; 
the joint model is well placed for dynamic monitoring. However long term follow-up observations are required, 
along with access to a larger dataset for a model to be developed and subsequently validated. Future analyses 
should also consider the sensitivity and specificity of the fitted predictive model, to minimise the likelihood of 
false diagnoses of miscarriage.

Methods
Description of dataset. Women attempting to conceive were asked to collect daily early morning urine 
samples for their entire menstrual cycle and up to 28 days after the day of their missed period if they became 
pregnant. Women recruited were aged between 18–45 years and were not excluded on the basis of existing fer-
tility issues. Intra-individual variation in the concentration of first morning urine is much lower, than when 
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considering all urine voids. In addition, the exponential rise of hCG in early pregnancy from <1 mIU/ml to 
>150 000 mIU/ml renders fluctuations in urine concentration as having minimal effect on the trajectory of rise. 
Therefore, correction for urine concentration differences, e.g. using creatinine, was not required.

Urinary concentration of hCG was quantified using a validated quantitative immunoassay system 
(AutoDELFIA; PerkinElmer, Waltham, USA). The concentration of luteinising hormone (LH) in the urine were 
analysed by a panel of experts from a range of disciplines, including statisticians, endocrinologists and clinical sci-
entists, to determine the day of LH surge, which occurs approximately 24 hours prior to ovulation. It was assumed 
conception occurred the day after the LH surge37. Details of sample collection and storage have been described 
previously15. Additional maternal demographics, menstrual and pregnancy history data were recorded. The study 
was carried out in accordance with the ethical principles of the Declaration of Helsinki. Written, informed con-
sent was obtained from all individual participants involved in the study.

Statistical analyses. The data utilised in this analysis have been analysed previously using a two-stage 
model approach15. The two-stage model utilises existing modelling techniques by first fitting a linear mixed 
effects model to the longitudinal data. Subject-specific predictions are then obtained from the mixed model and 
included as a time-varying covariate in a survival model. This method incorrectly assumes that the biomarker 
remains stagnant between measurements and gives too precise estimates with unrealistically small standard 
errors16. This analysis will now be extended using a joint model framework, which offers a number of advantages 
over the two-stage model approach.

Longitudinal modelling. The joint model is made up of two component models – the longitudinal linear 
mixed effects model and proportional hazards survival model36. The longitudinal model for urinary log hCG 
forms a trajectory function, which estimates the unobserved values of log hCG for the ith patient at time t to form 
complete profiles. The formulation of the fitted model is as follows,

= +log hCG t m t e( ) ( )i i ij

m t b b time time( ) ( ) ( )i i i0 0 1 1 2
2β β β= + + + +

σ∼ Ω ∼b MVN e N(0, ) (0, )i u ij e
2

The model is made of fixed effects parameters including a fixed intercept (β0) and linear and quadratic time 
since conception terms, with parameter estimates, β1 and 2β  respectively. The random effects parameters allow 
each individual i to vary at baseline via a random intercept (b )oi  and over time through a random linear time since 
conception term, with parameter estimate b i1 . The possibility of measurement error, as with any continuous bio-
marker, is accounted for via the residual error term, e ,ij  which is normally distributed. The random effects bi are 
multivariate normally distributed. An unstructured correlation matrix was assumed.

Survival modelling. A proportional hazards survival submodel was assumed, conditional on 
= ≤ ≤M t s s t( ) {m ( ), 0 }i i , which denotes the history of the true unobserved longitudinal measurements up to 

time t and additional covariates vi
14. The specific fitted model is given by,

γ γ α| = + +h t M t v h t usual cycle length m t( ( ), ) ( )exp[ age ( )]i i i0 1 2

The baseline hazard, h t( )0 , was assumed to follow a Weibull distribution. Maternal age and usual cycle length 
were included as covariates in the survival model, after a forwards model selection procedure was carried out at 
the 5% significance level. The inclusion of m t( )i  in the survival submodel estimates the change in absolute log hCG 
values and is termed the current value parameterisation, with association parameter α. By including the longitu-
dinal model within the survival submodel, we effectively link the expected value of log hCG to the miscarriage or 
censoring time, where typically an hCG response would not have been observed. Various association structures 
were explored, including the first derivative association structure, which models the rate of change of log hCG.

To allow for comparison a standard survival model with log hCG included as a time-varying covariate was 
fitted, as well as a two-stage model using subject specific predictions from the longitudinal model, as defined for 
the joint model, in a survival model.

Subject-specific survival probabilities dependent on maternal age and longitudinal log hCG measurements 
were obtained from the sample on which the joint model was fitted, using the Stata package stjm13. Conditional 
survival predictions can potentially be updated as measurements are observed, giving a real-time risk of miscar-
riage, or dynamic predictions. All models were fitted in Stata IC version 15.1.

Funding and ethical approval. This was a diagnostic accuracy study on a sample bank collected from a 
multicentre, prospective study, conducted by Radiant Research (USA) on behalf of the sponsor SPD Development 
Company Ltd. (UK). The study was approved by Quorum Review Committee on 30th November 2009; clinical 
trial number NCT01077583. This analysis was conducted by N.B.A as part of a doctoral training programme 
jointly funded by MRC IMPACT and SPD Development Company Ltd.
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Appendix B

Modelling checks for intercourse

analyses

Appendix B.1 contains Schoenfeld residual, Martingale residual, deviance residual

and delta-beta plots for the multivariable model for acts during implantation.

Appendix B.2 contains Schoenfeld residual, Martingale residual, deviance

residual and delta-beta plots for the multivariable model for acts during the

three-day implantation window.

Appendix B.3 contains Schoenfeld residual, Martingale residual, deviance

residual and delta-beta plots for the multivariable model for the last act in the

fertile window.

Appendix B.4 contains Schoenfeld residual, Martingale residual, deviance

residual and delta-beta plots for the multivariable model for the number of acts

in the fertile window.
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B.1 Model checks for acts during the implantation window
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Figure B.11. Schoenfeld residual plots to assess the proportional
hazards assumption for the multivariable model for acts in the peri-
implantation window
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Figure B.12. Martingale residual plots to assess the functional
forms of variables included in the multivariable model for acts in
the peri-implantation window
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Figure B.13. Deviance residual plot for multivariable model for
acts in the peri-implantation window
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Figure B.14. Delta-beta plot for multivariable model for acts in
the per-implantation window
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B.2 Model checks for acts during the three-day implantation window
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Figure B.25. Schoenfeld residual plots to assess the proportional
hazards assumption for the multivariable model for acts in the
three-day implantation window
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Figure B.26. Martingale residual plots to assess the functional
forms of variables included in the multivariable model for acts in
the three-day implantation window
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Figure B.27. Deviance residual plot for multivariable model for
acts in the three-day implantation window
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Figure B.28. Delta-beta plot for multivariable model for acts in
the three-day implantation window
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B.3 Model checks for last act in fertile window
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Figure B.39. Schoenfeld residual plots to assess the proportional
hazards assumption for the multivariable model for last act in fertile
window

333



-1

-.5

0

.5

1

M
ar

tin
ga

le
 re

si
du

al
s

0 1 2 3 4 5
Day prior to ovulation of last act

-1

-.5

0

.5

1

M
ar

tin
ga

le
 re

si
du

al
s

0 50 100 150 200
Quadratic centred age

-1

-.5

0

.5

1

M
ar

tin
ga

le
 re

si
du

al
s

-10 0 10 20 30
Centred BMI

-1

-.5

0

.5

1

M
ar

tin
ga

le
 re

si
du

al
s

0 2 4 6 8
Previous number of miscarriages

Multivariable model for last act in fertile window

Figure B.310. Martingale residual plots to assess the functional
forms of variables included in the multivariable model for last act
in the fertile window
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Figure B.311. Deviance residual plot for multivariable model for
last act in the fertile window
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Figure B.312. Delta-beta plot for multivariable model for last
act in the fertile window
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B.4 Model checks for number of acts in the fertile window
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Figure B.413. Schoenfeld residual plots to assess the propor-
tional hazards assumption for the multivariable model for number
of acts in the fertile window
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Figure B.414. Martingale residual plots to assess the functional
forms of variables included in the multivariable model for number
of acts in the fertile window
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Figure B.415. Deviance residual plot for multivariable model for
number of acts in the fertile window
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Figure B.416. Delta-beta plot for multivariable model for num-
ber of acts in the fertile window
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