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on Blockchain
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Abstract—In most electricity theft detection schemes, con-
sumers’ power consumption data is directly input into the
detection center. Although it is valid in detecting the theft of
consumers, the privacy of all consumers is at risk unless the
detection center is assumed to be trusted. In fact, it is impractical.
Moreover, existing schemes may result in some security problems,
such as the collusion attack due to the presence of a trusted
third party, and malicious data tampering caused by the system
operator (SO) being attacked. Aiming at the problems above,
we propose a blockchain-based privacy-preserving electricity
theft detection scheme without a third party. Specifically, the
proposed scheme uses an improved functional encryption scheme
to enable electricity theft detection and load monitoring while
preserving consumers’ privacy; distributed storage of consumers’
data with blockchain to resolve security problems such as data
tampering, etc. Meanwhile, we build a long short-term memory
network (LSTM) model to perform higher accuracy for electricity
theft detection. The proposed scheme is evaluated in a real
environment, and the results show that it is more accurate in
electricity theft detection within acceptable communication and
computational overhead. Our system analysis demonstrates that
the proposed scheme can resist various security attacks and
preserve the consumer’s privacy.

Index Terms—Privacy protection, electricity theft detection,
smart grid, blockchain, long short-term memory network
(LSTM).

I. INTRODUCTION

SMART grid (SG) is an advanced grid integrating smart
technology, which uses smart meters (SMs) to collect,

analyze and process fine-grained power consumption data from
consumers to manage energy effectively [1]. While the smart
grid brings convenience, it also brings serious challenges [2].
For one thing, the communication of the smart grid is exposed
to potential malicious attacks, such as data tampering attack
and false data injection. If these malicious attacks cannot be
resisted, the smart grid will be unable to operate normally [3].
For another thing, electricity theft has become a widespread
phenomenon in the grid. Annual economic losses due to
electricity theft are estimated to be about 170 million dollars
in the United Kingdom [4] and 6 billion dollars in the United
States [5]. Meanwhile, electricity theft can also seriously affect
energy management and endanger the normal operation of the
smart grid [6].

Since the smart grid has access to consumer’s fine-grained
power consumption data, the traditional machine learning
model [7] and deep learning model [8] based on big data
have achieved good performance. However, directly giving
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fine-grained power consumption data of consumers to the SO
raises serious privacy issues [9]. Meanwhile, as the security
and privacy of data are becoming more and more concerned,
related laws and regulations have been proposed, such as
the General Data Protection Regulations (GDPR) in Europe,
and the utilities’ disregard for privacy aspects could lead
to strong consumer objection and significant curtailment of
service deployment [10]. Therefore, there is an urgent demand
for a privacy-preserving electricity theft detection scheme.

Although existing schemes are beginning to consider the
privacy of consumers’ power consumption data during the
electricity theft detection process, most schemes have serious
challenges. On the one hand, a serious threat is the potential
leakage of consumers’ privacy due to the presence of a trusted
third party. In [11], the model requires a fully trusted third
party to perform the detection using the original consumers’
data. However, it is difficult to guarantee that the third party
is fully trustworthy in reality, so consumers’ privacy is still
at risk of being compromised. In [12], the scheme requires
a fully trusted key distribution center. However, once the SO
colludes with the key distribution center, then the SO can get
the consumers’ raw power consumption data, which leads to
consumers’ privacy leakage. On the other hand, the security of
data and smart grid is not considered. In [11], if the trustworthy
detection center is maliciously attacked, then it will possibly
lead to malicious data tampering. In [12], this scheme does not
verify the legitimacy of the transmitted data, so it is unable
to resist data falsification and forgery attacks. The existing
schemes do not consider the security of the smart grid in
operation and data tampering due to centralized data storage
when performing electricity theft detection, thus making it
impossible to achieve electricity theft detection. Therefore,
how to accomplish the security of smart grid operations
and consumers’ privacy while utilizing consumers’ power
consumption data is a major challenge of current research.

In this paper, we aim to achieve more secure electricity theft
detection and load monitoring without the involvement of a
third party. The main contributions of this work are threefold:

1) We propose a blockchain-based electricity theft detection
scheme, which uses the distributed storage of blockchain
to solve security problems such as data tampering of
centralized storage, etc.

2) We improve the functional encryption scheme [12] to
enable privacy-preserving electricity theft detection and
load monitoring without a trusted key distribution center,
which eliminates potential security and privacy problems
caused by a trusted third party.

3) We build an electricity theft detection model based on
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TABLE I
THE COMPARISON OF RELATED WORK.

Joker et al. [7] Wen et al. [13] Yao et al. [11] I.Ibrahem et al. [12] Richardson et al. [14] Nabil et al. [15]
Technique adopted SVM Federal Learning CNN FNN DBSCAN 1-D CNN

Attack Defense No No No No No No

Grid monitoring Yes No Yes Yes No Yes

Third-party No Yes Yes Yes No No

long short-term memory networks that is more suitable
for processing time-series data, and the model parameter
settings are analyzed to obtain higher performance.

The remainder of this paper is organized as follows. In
Section II, we review the related work. Section III illustrates
the related knowledge. In Section IV, we define the system
model and design goals. Section V presents the proposed
scheme. Experimental results and system characterization are
presented in Sections VI and VII, respectively. Finally, the
paper is summarized in Section VIII.

II. RELATED WORK

In this section, we briefly review recent research work
on electricity theft detection schemes in the smart grid and
distributed blockchain-based smart grid framework.

Currently, due to the seriousness of the electricity theft
problem and the importance of privacy-preserving, we focus
on electricity theft detection schemes with privacy-preserving,
which can be broadly classified into two categories with or
without the participation of a third party. The comparison of
the related work is given in Table I.

In the case of schemes where a third party is involved,
the third party is used to perform tasks such as distributing
keys or performing electricity theft detection, etc. Wen et al.
[13] proposed a privacy-preserving federal learning framework
consisting of a data center, a control center, and multiple
detection stations, which requires a high cost to complete
the system. Moreover, the author’s scheme does not consider
other functional requirements such as load monitoring. Yao
et al. [11] proposed to send the encrypted data of SMs to a
fully trusted detection center to decrypt and then detect using
the convolutional Neural Network (CNN) model, meanwhile,
SMs send the encrypted data to an untrusted center that
aggregates power consumption data for load monitoring. In
[12], Ibrahem et al. proposed to use functional encryption and
the feed-forward neural network (FNN) to perform electricity
theft detection and privacy protection under the condition that
the key distribution center is fully trusted. All of the above
schemes assume that the third party is trustworthy, but in
practice, consumers’ privacy can still be compromised such as
once the third party colludes with other entities. Untrustworthy
third parties have caused the above-mentioned problems in
other areas as well [16], so it is important to eliminate the risks
associated with the presence of untrustworthy third parties.

In schemes where no third party is required, the scheme
is performed by only two entities, SM and SO. Joker et
al. [7] proposed to use the clustering method support vector
machine (SVM) to monitor consumption pattern anomalies

and identify suspicious consumers in the case of low sampling
of consumers’ power consumption data. However, this scheme
is difficult to resist malicious attacks, such as replay attacks,
fake data injection, etc. In [14], the Euclidean distance between
the normalized photovoltaic power output of any two installa-
tions in the region in a day is calculated by homomorphic
encryption. Then the Euclidean distances are clustered to
analyze the anomalous users. However, this scheme detects
energy theft from the perspective of energy output, and when
a smart meter is tampered with due to external attacks, it
can no longer be detected properly. Meanwhile, the author’s
scheme cannot obtain the sum of power consumption in
the region for load monitoring. Nabil et al. [15] proposed
a CNN machine learning model based on secure two-party
computation protocols using arithmetic and binary circuits.
This scheme requires high computation and communication
overhead to complete the detection of a consumer, which takes
at least 35 minutes for detection and a minimum of 1375
MB for communication overhead. None of the above schemes
consider the problem of ensuring the operational security of
the smart grid when performing electricity theft detection, such
as data tampering problem when SO is maliciously attacked.
Therefore a more secure detection model with acceptable
computation and communication overhead is needed.

To ensure the security of the smart grid, in [17], Liang et al.
proposed a new distributed blockchain-based protection frame-
work to enhance the self-defense of modern power system. In
[18], the authors design a blockchain-based platform to prevent
user data from being tampered with and propose a multifaceted
mechanism to protect user privacy. In [19], Hamouda et al. pro-
posed a blockchain-based comprehensive transactive energy
market framework that enables a safer and fairer electricity
market. Fan et al. [20] proposed a decentralized privacy-
preserving data aggregation scheme for smart grid based on
blockchain, which uses the Paillier cryptographic algorithm to
aggregate consumers’ power consumption data. In [21], the
authors propose a new blockchain-based strategy for inter-
connected microgrids energy trading that enhances the security
and transparency of the platform. In [22], the authors propose
an efficient and robust blockchain-based multidimensional data
aggregation scheme in smart grid to resist more internal and
external attacks. Chen et al. [23] proposed a blockchain-
based framework to prevent energy market failures caused by
dishonest participants.

There are many recent studies that consider distributed
blockchain-based smart grid framework can secure the grid.
Meanwhile, it is also a good solution for electricity theft
detection, and to advance the state of the art, we propose a
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blockchain-based privacy-preserving electricity theft detection
scheme, which will be further explained and evaluated in the
following sections.

III. PRELIMINARIES

A. Secure Aggregation

Bonawitz et al. [24] proposed a secure aggregation scheme
where the server can only see the gradient after the aggregation
is completed and cannot know the private true gradient value
of each user. Unlike the original text, the proposed scheme
uses elliptic curve Diffie-Hellman key agreement. The steps
of secure aggregation are as follows:

1) Key agreement between arbitrary SMs: Each SMi ne-
gotiates key masks with each other.

• KA.Setup(λ) → (E,G, g, p, q,H): The setup algorithm
takes as input the security parameters λ. Then it outputs
cyclic additive group G of prime order q, a basis point
g, a hash function H , and an elliptic curve E on GF (p)
as well as a large prime number p.

• KA.Gen(E,G, g, p, q,H) → (x, xg): Each user chooses
a random x ∈ Zq as own secret key ssku and calculates
xg as the public key spku .

• KA.Agree(xu, xvg) → su,v: After receiving the public
key xvg from user v, user u uses its own secret key xu

to generate su,v = H(xu(xvg)).
2) Generating masks for aggregation: A mask is generated

by key agreement between arbitrary users. Assume that all
users form a user set U in order and each user u ∈ U computes:

yu = xu +
∑

v∈U,u<v

su,v −
∑

v∈U,u>v

sv,u (1)

where u < v represents the users whose serial number is less
than v, by the same token, we can get u > v.

Each user u sends yu to the server, the server computes Eq.
(2) to securely aggregate the secret keys.

z =
∑
u∈U

yu

=
∑
u∈U

(xu +
∑

v∈U,u<v

su,v −
∑

v∈U,u>v

sv,u)

=
∑
u∈U

xu

(2)

B. Boneh-Lynn-Shacham Short Signature

Boneh-Lynn-Shacham (BLS) short signature [25] is a sig-
nature algorithm that enables signature aggregation and speeds
up block verification, which is divided into three phases: key
generation, signature, and verification.

1) Key generation: Sampling random number x ∈ Z∗
q as

private key and calculate the public key PK = x · g.
2) Signature: The message m is mapped to a point H(m) in

the cyclic group G1. Generating signature δ = x ·H(m).
3) Verification: If e(δ, g) = e(H(m), PK), where e : G1 ×

G1 → G2 is a bilinear map, then the signature is verified.
Otherwise fails.

Build

Query

Block Block Block ………… j-1

1SM

…

Record the total power supply data

Public parameters

j j+1

2SM

MN

1SMm−

Fig. 1. System Model.

IV. SYSTEM MODEL AND DESIGN GOALS

This section focuses on the construction of the system model
and threat model as well as describes our design goals.

A. System Model

As shown in Fig. 1, the model of our system scheme in-
cludes smart meters (SMs) in the residential area (RA), system
operator (SO) and distribution transformer meters (DTMs).
The function of each entity is described below.

1) Smart meter (SM): SM is an electricity meter that sends
the consumer’s power consumption data to MN peri-
odically (e.g., every 30 minutes) after implementing a
predefined privacy-preserving scheme.

2) Mining node (MN): The MN is a smart meter selected
by the votes of all SMs in each residential area, it
is responsible for verifying the legitimacy of the data,
aggregating the encrypted data reported by SMs, and
creating blocks to record power consumption data. If the
MN goes down, all SMs will continue to vote for a new
MN. If a malicious SM wants to become an MN, it needs
to control at least 50% of the SMs in the entire network
to be elected as MN, but this is unrealistic.

3) System operator (SO): The SO can generate system
parameters and read the consumer’s encrypted power
consumption data through blockchain as well as get the
real-time total power consumption

∑
i ESMi(t) of the

area sent by MN, which are used for power consumption
analysis and energy management. The SO uses a distribu-
tion transformer meter (DTM) to record the total power
supply data EDTM (T ) for the residential area during the
electricity theft detection period in order to judge the
existence of electricity theft and perform electricity theft
detection.

B. Threat Model

For the system model proposed in the previous sub-section,
we consider the threat from three aspects: consumers, the SO
and external attackers.

1) Consumers: Malicious consumers may falsify their elec-
tricity consumption data to reduce their bills. Also, they
may collude with other consumers or SOs to infer sen-
sitive information about the victimized consumers. In
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addition, malicious consumers may deny their transmitted
data when they are detected. With respect to MN, it may
also maliciously falsify the data reported by SMs.

2) SO: The SO is assumed to be honest but curious, i.e., it
performs operations according to the protocol, but it may
attempt to obtain fine-grained power consumption data
from consumers to analyze valuable information.

3) External attackers: External attackers may attempt to
eavesdrop on consumer communications to obtain con-
sumer data, and may also forge malicious data to harm
the SO, as well as initiate attacks on the SO to tamper
with stored data.

Therefore, the scheme aims to achieve smart grid can resist
malicious attacks and preserve consumers’ privacy while still
enabling energy management and electricity theft detection.

C. Design Goals

In order to protect the security and privacy of consumers’
data without relying on third-party organizations, the proposed
scheme should achieve the following design goals:

1) Privacy-preservation: For any one consumer, their original
power consumption data is not obtainable by DTM, SO
and other consumers, and no entity can infer any private
information from the encrypted data.

2) Confidentiality: Consumers’ data is encrypted for trans-
mission, storage, aggregation and theft detection, so that
the original consumers’ data cannot be recovered even if
entities collude with each other.

3) Data unforgeability and non-repudiation: The consumer’s
encrypted data is signed and then transmitted to ensure
that the data cannot be forged, while the transmission
information is recorded in the blockchain to achieve data
non-repudiation and data unforgeability.

4) Resist collusive attacks: The proposed scheme can resist
the attack that smart grid entities collude with each other
to obtain consumers’ power consumption data.

V. THE PROPOSED SCHEME

Our scheme consists of five phases: (1) system initialization
phase; (2) reporting phase; (3) aggregation phase; (4) judge-
ment phase; (5) electricity theft detection phase. The notations
are listed in Table II.

A. Overview

The main process of our scheme is summarized as follows:
• In the initialization phase, SO divides the residential

area RA and generates the system parameters as well as
parameters of the first layer of the neural network. The
SMs in each detection region select the MN by Byzantine
fault-tolerant consensus mechanism [26], while the SM
generates encryption and decryption keys.

• In the reporting phase, each SM encrypts the power
consumption data r(t) during the detection period T =
{t1, t2, · · · td}, then signs and sends encrypted data to the
MN.

TABLE II
NOTATIONS

Notation Description
EDTM (t) Power supply data for a residential area∑
i ESMi

(t) Total of uploaded data for all SMs
SMi i-th smart meter
Ci[t] Encrypted reading of SMi at time t

U The set of SMs in the detection region
W The first layer’s weights of the model
T Electricity theft detection period

TSi
t Timestamp of SMi

δi Signature of SMi

DA Decryption keys for aggregating readings
DWi Decryption keys for electricity theft detection
|RA| Number of residential areas
m Number of smart meters in the detection area
d Number of readings for electricity theft detection period

• In the aggregation phase, MN verifies the legitimacy of
the data, then constructs blocks and aggregates the power
consumption data through the Merkle tree.

• In the judgement phase, SO judges whether there is elec-
tricity theft in a region based on the difference between
the DTM statistics and the aggregated data of MN within
the tolerance range.

• In the electricity theft detection phase, SO reads the
encrypted data from the blockchain that is reported by
each SM in the suspected electricity theft area during the
theft detection period. The encrypted data are decrypted
(still in ciphertext state after decryption) and then fed
to the detection model to identify the electricity theft
consumers.

B. System Initialization

System initialization includes three parts. First, SO gener-
ates the parameters of the system and the first layer’s weights
of the model, and delineates |RA| residential areas with m
SMs in each detection area. Second, all SMs in the region
reach consensus to choose the MN. Third, Each SM generates
its own keys.

1) System parameters generation:

• Step 1: The SO generate (q, g,G,G1, e) where G and
G1 are two cyclic additive group of prime order q, g is
a generator of G.

• Step 2: The SO generates (G2, q, g2) where G2 is a cyclic
additive group of prime order q and generator g2 based
on elliptic curves.

• Step 3: The SO chooses a full-domain hash function H1 :
{0, 1}∗ → G2 and a hash function H2.

• Step 4: The SO publishes public parameters (q, g, g2,
G,G1, G2, e,H1, H2).

2) The first layer’s weights of the model: The SO trains
the electricity theft detection model based on historical honest
and malicious consumers’ power consumption data, and then
saves the weight of the first layer of the network, the weight
W = [wT

1 , w
T
2 , · · ·wT

n ] can be represented as:
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W =


w1[1] w2[1] · · · wn[1]
w1[2] w2[2] · · · wn[2]

...
... · · ·

...
w1[d] w2[d] · · · wn[d]


d×n

where d is the number of power reporting in the electricity
theft detection period T = {t1, t2, · · · td} and n is the number
of neurons in the first layer of the neural network, n should be
fewer than the number of inputs d, because if n ≥ d, the SO
will calculate the consumers’ fine-grained power consumption
data, since d unknowns in d equations may be solved to obtain
the data.

3) Key Generation: SM generates the encryption keys and
decryption keys. All SMs U = {SM1, SM2, · · · , SMm}
cooperate using the secure aggregation algorithm to generate
a decryption public key DA for aggregating the power con-
sumption readings of all SMs. Meanwhile, each SM generates
electricity theft detection public keys DW .

• Secret key generation: SMi selects a random number
xi ∈ Zq as the secret key for signing and key negotiation
and selects si ∈ Z2

q as the secret key for encryption.
• Generation of DA: Arbitrary SMs negotiate key masks

among themselves and the MN performs secure aggrega-
tion to generate decryption public keys DA.
Step 1: Each SMi calculates and publishes the public
key spki = xig2.
Step 2: Each SMi receives the public keys spko of other
SMs and then calculates ski,o = xis

pk
o (i ∈ U ; o ∈ U , o ̸=

i). Fig. 2 shows an example of four SMs perform key
masks agreement and generate DA.
Step 3: Each SMi calculates yi and sends the results to
MN for aggregation by Eq. (3).

yi = si +
∑

o∈U,i<o

ski,o −
∑

o∈U,i>o

sko,i (3)

Step 4: MN aggregates its own y and the results sent by
other SMs, as shown in Eq. (4).

1SM

3SM

2SM

MN

1,2s

1,3s
2,3s

2,mns

3,mns

1,mns

Fig. 2. Example of four SMs key masks agreement and generate DA.

DA =
∑
i∈U

yi

=
∑
i∈U

(si +
∑

o∈U,i<o

ski,o −
∑

o∈U,i>o

sko,i)

=
∑
i∈U

si ∈ Z2
q

(4)

SM

SM

SM

SM

MN

Ciphertext

+

Signature

Transferred

Data

Basic

Stored

Info Key agreement 

values

Private key 

for its own
Consensus Blocks

+ + +

+

Timestamp

Fig. 3. The data within each smart meter node consists of basic stored
information and primary transmitted data.

• Generation of DW : SO publishes the weights of the first
layer network of the electricity theft detection model to
each SMi, and each SMi generates decryption public
keys to enable theft detection without obtaining the
original power consumption data.
Step 1: Each SMi generates a timestamp TSi

t of the
current detection time T = {T1, T2, · · ·Td} by Eq. (5).

TSi
t = H1(Tt) ∈ G2, t = {1, 2, · · · , d} (5)

Step 2: Each SMi generates cth, c = {1, 2, · · · , n}
decryption public key by Eq. (6):

DWci =

d∑
t=1

wc[t](s
⊤
i · TSi

t) ∈ G (6)

Step 3: Each SMi generates decryption public keys by
Eq. (7).

DWi = {DW1i, DW2i, · · · , DWni} (7)

C. Reporting Phase

In the reporting phase, each SMi encrypts its power con-
sumption readings and then performs signature operations.

• Step 1: For each electricity theft detection period T , each
SMi encrypts its power consumption readings by Eq. (8).

Ci[t] = (s⊤i · TSi
t) + ri[t]g ∈ G (8)

• Step 2: Each SMi computes the public key PKi = xi ·g2
and then generates the BLS short signature by Eq. (9),
TSi

t is the current timestamp to prevent replay attack.

δi = xi ·H2(Ci[t]||TSi
t ||DWi||PKi) (9)

• Step 3: Each SMi sends Ci[t]||TSi
t ||DWi||δi||PKi to

MN. The data within each SMi node consists of basic
storage information and primary transmission data, as
shown in the Fig. 3.
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D. Aggregating Phase

Efficient message propagation methods are important build-
ing blocks for various networks [27], and in the proposed
scheme, the SM sends messages directly to the MN, which
is responsible for broadcasting and aggregating the total area
power consumption. After receiving the data from the SMs,
first, the MNj , j ∈ |RA| in the residential area RAj verifies
the signature and timestamp, after the verification is passed.
MNj generates the Merkle tree and then creates the block
though Byzantine fault-tolerant consensus mechanism, the
block head stores the timestamp, the hash of the previous
block, and the Merkle tree root hash, and the block body
stores the encrypted data and decryption Keys. After that,
MNj aggregates the ciphertext and decrypts it to get the total
power consumption of all SMs at the current time. Fig. 4
shows the blockchain structure of the proposed scheme. The
detailed steps are as follows:

• Step 1: MNj verifies signature and timestamp. If the Eq.
(10) and TSi

t = TSMN
t is valid, the verification passes,

and fails otherwise. To make verification more efficient,
MNj can perform batch verification.

e(δi, g2) = e(H2(Ci[t]||TSi
t ||DWi||PKi), PKi) (10)

• Step 2: MNj performs hash operation to generate
Merekle tree root hash value. Then MNj generates a new
block Block = (Data||H(Data||Timestamp)||Timest
amp), and broadcasts the block to other SMs in the
residential area RAj .

• Step 3: After receiving the block, SMs verify the block’s
hash value, timestamp and its data, then send the result
of the verification to other SMs to achieve mutual super-
vision among SMs.

• Step 4: SMs send their own check results to MNj . MNj

collects feedback from all SMs and checks them. If all
SMs agree on the legitimacy and integrity of the block,
MNj adds the block to the blockchain in chronological
order and sends the block to other SMs. If there exists
SM disagrees with the check result, MNj checks the
feedback information and sends the block to this SM
again for a second check.

• Step 5: MNj aggregates the encrypted data of all SMs
and decrypts it to get the total power consumption of the
area at the current time by Eq. (11).∑

i∈U
Ci[t]−DA⊤TSt

=
∑
i∈U

((s⊤i · TSt) + ri[t]g)− (
∑
i∈U

si)
⊤TSt

=
∑
i∈U

ri[t]g ∈ G

(11)

Since
∑
i∈U

ri[t]g is not a very large value, there are many

ways to calculate the aggregated value, such as Shank’s baby-
step giant-step algorithm [28].

Report

SO
……

Publish public parameters

Send aggregated value

1SM

2SM 1nSM −

Record Upload the total power supply data

Timestamp

Hash of  Block

Root hash j-1MN

j-2

Timestamp
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Fig. 4. The blockchain structure of the proposed scheme.

E. Judgement Phase

To achieve efficient detection, our solution will perform
electricity theft detection after discriminating whether there
is electricity theft in residential areas.

For each residential area, the transformer meter measures
the total amount of electricity supplied to that residential
area during the electricity theft detection period, EDTM (t).
Meanwhile, the MN aggregates the readings uploaded by all
SMs in the residential area,

∑
i ESMi

(t), the SO determines
whether there is electricity theft by Eq. (12):

EDTM (t) >
∑

i
ESMi

(t) + ETL(t) + ε (12)

where ETL(t) is the technical loss (TL) in transmission lines
within the residential area and ε is the calculation error for TL.
The SO can use historical data to analyze the technical loss,
while many methods exist [7] to calculate the technical loss.
If the Eq. (12) is valid, SO considers that there is electricity
theft in the current area. Afterwards, SO reads the power
consumption data uploaded by each SMi in the blockchain
for electricity theft detection.

F. Electricity Theft Detection Phase

In this sub-section, a privacy preserving electricity theft
detection model is presented in the proposed scheme, and then
we explain the experimental settings, including computing
platforms, dataset and data pre-processing.

1) Privacy-preserving Electricity Theft Detection Model:
As shown in Fig. 5, our model is composed of the fully
connected layer and the long short-term memory network. The
core operation of the fully connected layer is the multiplication
of a matrix and a vector, which can be expressed as xW . More
detailed representations are:

[x1, x2, · · ·xd]×


w1[1] w2[1] · · · wc[1]
w1[2] w2[2] · · · wc[2]

...
... · · ·

...
w1[d] w2[d] · · · wc[d]


= [x ·w⊤

1 , x ·w⊤
2 , · · ·, x ·w⊤

c ]

(13)

where x is the input vector, W is the weight matrix, and then
b is the bias vector is added. This operation can be seen as
an inner product of the input vector x and each column of
the weight matrix W . It can also be viewed as a group of n
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Fig. 5. The LSTM based privacy-preserving electricity theft detection
framework.

d-equations, where the input vector x are the unknowns and
the weight matrix W are the coefficients, and since n is less
than d, the input vector x cannot be solved.

Therefore, in order to perform electricity theft detection in
the ciphertext state of the consumers’ power consumption data,
the result of the inner product of consumers’ power consump-
tion data ri = [ri[1], ri[2], · · · , ri[d]] and each column of the
weight matrix is obtained by Eq. (14).

d∑
t=1

wc[t]× Ci[t]−DWci

=
d∑

t=1

wc[t]((s
⊤
i · TSt) + ri[t]g)−

d∑
t=1

wc[t](s
⊤
i · TSt)

= (
d∑

t=1

ri[t]wc[t])g

(14)

The output of the fully connected layer is obtained by
calculating the inner product of each column of the weight
matrix with the consumer power consumption data, and then
adding the bias vector b as follows:
[(ri ·wT

1 ) + b1, (ri ·wT
2 ) + b2, · · · , (ri ·wT

c ) + bc]
After SO gets the output result of the fully connected layer,

it still cannot solve the original consumer power consumption
data, and the consumers’ power consumption data is input to
the next layer of the network in the encrypted state, finally,
detection result is inferred after layer-by-layer computation.

The detection model uses the categorical cross-entropy as
the loss function. In the model training phase, we use the
RMSprop optimizer to train the model for 30 epochs, 512
batch sizes and 0.001 learning rate. To prevent overfitting,
we use the kernel ℓ2−regularizer in the LSTM layer, and at
the same time the callback function ReduceLROnPlateau in
the keras framework [29] is used to dynamically reduce the
learning rate, and the callback function EarlyStopping is used

to obtain the optimal model. Parameters of our model structure
are summarized in Table III, where AF stands for activation
function.

TABLE III
PARAMETERS OF MODEL STRUCTURE.

Layer(type) No. of neurons No. of parameters AF

dense(Dense) 10 20 tanh

lstm(LSTM) 300 373200 tanh,sigmoid

lstm-1(LSTM) 300 721200 tanh,sigmoid

dense-1(Dense) 2 602 softmax

2) Computing Platforms: In our experiments, we build
a Tensorflow virtual environment on a server with unbutu
18.04.6 LTS system and NVIDIA Tesla T4 GPU as well as
use the Keras framework to train and evaluate the model.

3) Dataset: We use the dataset from the Irish Smart Energy
Trials [30], which contains the power consumption data of
more than 1000 consumers in 535 days from 2009 to 2010,
and fine-grained power consumption data is reported by each
SM every 30 minutes.

4) Data Pre-processing: We select the smart meter data
of 200 consumers from the dataset and create one record of
the consumer’s power consumption data (48 readings) for one
day, with a total of 107,200 records. Since all the data in
the dataset are from honest consumers’ data, so we use the
electricity theft attack proposed by [7] to generate malicious
consumers’ data. We based on the dataset of benign samples,
for each sample X = {xt|1 ≤ t ≤ 48}, perform the following
operations to generate six malicious types of data:

1) f1(xt) = αxt, α = random(0.1, 0.8);
2) f2(xt) = βtxt, βt = random(0.1, 0.8);
3) f3(xt) = mean(X);
4) f4(xt) = βtmean(X), βt = random(0.1, 0.8);
5) f5(xt) = x48−t;
6) f6(xt) = γtxt.

γt =

{
0 ts < t < te
1 else

ts = random(0, 42)
te− ts = random(6, 48)

Through electricity theft attacks generate 643,200 records
of malicious data. Since the data of honest data records
are only 107200, which leads to the problem of unbalanced
sample categories of data. Therefore, we apply for each record
the adaptive synthetic sampling method (ADASYN) [31] to
balance the size of honest and malicious classes. We randomly
divide the balanced dataset into a training dataset (80%) and
a testing dataset(20%) to perform the training of the model.

VI. PERFORMANCE EVALUATION

In this section, at first, our method is compared with other
methods that deal with time series to demonstrate the better
performance of our method. Then, we study the parameters
of our model. Finally, we evaluate the performance of our
electricity theft detection model in our test set. Meanwhile,
we compare the computation and communication of the model
with other schemes.
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(a) (b) (c)
Fig. 6. Parameter study of time steps t.

(a) (b) (c)
Fig. 7. Parameter study of batch size β.

A. Method Comparison
To demonstrate the better performance of our model, the

experimental comparison with other methods was performed
on a test dataset. Concretely, Deng et al. proposed a tree-
ensemble method, referred to as time series forest (TSF), for
time series classification [32]. Middlehurst et al. proposed an
improved hierarchical vote collective of transformation-based
ensembles (HIVE-COTE) for time series classification [33].
Dempster et al. proposed a simple linear classifier based on
the random convolution kernels (ROCKET) [34]. Meanwhile,
in [15], the authors proposed to use one-dimensional convo-
lutional neural network (CNN) for electricity theft detection.
Table IV gives the experimental results for each method using
the same training data set and testing data set, and we see that
the LSTM model gets the highest accuracy score of 95.56%.

TABLE IV
ALGORITHM ACCURACY SCORES.

Algorithm Accuracy Score(%)
The LSTM model 95.56

1-D CNN model [15] 93.20

Time Series Forest [32] 86.36

The improved HIVE-COTE [33] 90.91

ROCKET [34] 78.76

B. Parameter Study
Various hyper-parameters of the model have an impact

on the performance of the model. For our model, what is

more important is the time step, which is the number of
power readings input in the model. In our model, the time
step is the same as the theft detection period. For the theft
detection model, increasing the detection time period means
that the communication overhead of the model will increase,
so a reasonable theft detection period must be determined.
Therefore, we deeply analyze the impact of these parameters
on the performance of our model.

1) Effect of time steps t: Fig. 6 shows the accuracy of the
validation set with varying epochs when the time steps are
different. We can find out that different time steps affect the
accuracy of the model as well as the training time, while the
longer the time steps, the longer the theft detection period will
be, which will lead to a rise in the overall model in terms of
communication overhead. Although the difference in accuracy
between time steps 96 and 48 is not significant, the training
time is shorter and communication is less when the time steps
are 48.

2) Effect of learning rate ℓ: In the model training progress,
we use the RMSprop optimizer with a default learning rate
ℓ = 0.001. To find the optimal model, we use the callback
function ReduceLROnPlateau in the Keras framework, which
serves to reduce the learning rate when learning stagnates. As
shown in Fig. 6, there is some improvement in accuracy after
reducing the learning rate.

3) Effect of batch size β:: Fig. 7 shows the performance
of our model with setting the batch size as 512 which gets the
highest accuracy with 95.60 % while needs more epochs to
optimize. The experimental results show that a smaller batch
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TABLE V
THE PERFORMANCE OF OUR MODEL AND OTHER SCHEMES.

Model DR(%) FA(%) HD(%) Accuracy(%) Model detection overhead Communication overhead

Our model 93.72 2.62 91.10 95.56 56.03 ms 600 Bytes

ETDFE [12] 92.56 5.84 86.72 93.36 1.94 seconds 40 Bytes

PPETD MD1 [15] 91.50 7.40 84.10 91.80 48 minutes 1900 MB

PPETD MD2 [15] 90.00 8.79 81.2 90.20 39 minutes 1675 MB

PPETD MD3 [15] 88.60 3.90 84.60 90.30 35 minutes 1375 MB

Jokar et al [7] 94.00 11.0 83.0 - - -
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Fig. 8. Parameter study of neurons η.

Fig. 9. Confusion matrix of our model.

size can speed up the optimization within same epochs, which
suggests that setting the bath size between 256 and 512 is
more acceptable.

4) Effect of neurons η: Fig. 8 shows that the highest
accuracy is achieved when the number of neurons in the LSTM
layer is 300-360. A more number of model neurons represents
a slower model inference, so the neurons of our model are set
to 300.

C. Performance of electricity theft detection model

1) Performance Metrics: In order to evaluate our elec-
tricity theft detection model, we conduct the experiments by
considering four performance metrics: accuracy, the detection
rate (DR), and the false acceptance rate (FA) as well as the

highest difference (HD). Accuracy measures the percentage
of correct classifications in the testing dataset. The detection
rate measures the percentage of detected malicious consumers
in the total malicious consumers. The false acceptance rate
measures the percentage of honest consumers who are mistak-
enly detected as malicious consumers. When DR, accuracy,
and HD are high and FA is low, the model performance is
better.

DR =
TP

TP + FN
,FA =

FP

TN + FP
,HD = DR− FA,

where TP , FP and TN stands for true positive, false positive
and true negative, respectively.

accuracy =
1

s

s∑
i=1

ϕ(f(xi), yi),

ϕ(f(xi), yi) =

{
1 f(xi) = yi
0 f(xi) ̸= yi

,

where s is the total number of samples in the testing dataset,
yi is the label for the i−th consumer, f(xi) is is the inference
result of the model.

2) Performance Comparison: We obtain the confusion
matrix of our model by using the Scikit-learn python library.
As shown in Fig. 9, in the confusion matrix of our model, the
proportion of consumers who are predicted to be electricity
theft consumers among those who are really electricity theft
consumers is the DR, the proportion of consumers predicted
to be electricity theft as a percentage of those who are truly
normal consumers is the FA.

Table V shows the evaluation results of our model and
the existing models with privacy preservation. The proposed
scheme is better in terms of FA, accuracy, and HD among the
schemes considering privacy protection. Our privacy detection
model has higher accuracy and HD, 95.56%, and 91.10%,
respectively. At the same time, the FA in our model is
2.62%, which is lower than other schemes. From the evaluation
results, we can demonstrate that the proposed scheme has a
better performance. Moreover, the performance of our model
is not decreased by the use of encryption compared to [15]
due to the fact that we use the inner product operation of the
parameters of the first layer of the model with the consumers’
power consumption data, which has the same output as the
plaintext direct input to the first layer of the model.
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Fig. 10. Comparison of the communication overhead with other schemes.

D. Computation and Communication Overhead

To evaluate this in a more realistic environment, we used the
Python ”Charm” crypto-graphic library [35] on a Raspberry Pi
Zero W device with a 1.0 GHz single-core CPU and 512 MB
of RAM. The elliptic curve of size 160 bits (MNT159 curve)
was also used.

1) Communication overhead: In our model, the main
communication overhead comes from the SMs transferring
Ci||TSi

t ||DWi||δi||PKi to the MN. We use an elliptic curve
with 160-bit security level. From Eq. (5) to Eq. (9), it can see
that the ciphertext, signature, and public key PK size are all
40 bytes, the DWi = {DW1i, DW2i, · · · , DW10i} size is 400
bytes, and the timestamp size is 80 bytes, so it takes 600 bytes
for the SMi to report one reading. PPETD [15] uses secure
multiplication, sigmoid(·) security evaluation, and garbled
circuits to protect the privacy evaluation of the CNN model,
which results in a high communication overhead of about
1900 MB per SM. Yao et al.’s scheme [11] requires sending
a ciphertext, signature, and timestamp to two institutions to
complete the aggregation and detection, and we assume that
it generates 2048 bits of ciphertext, 40 bytes of signature,
and 40 bytes of timestamp, the total size required is 672
bytes. Richardson et al. [14] and Ibrahem et al.’s schemes [12]
only sends 40 bytes, and 256 bytes of ciphertext, respectively.
Meanwhile, Fig. 10 gives a comparison of the communication
overhead with other schemes. It can be seen that the proposed
scheme achieves more security within an acceptable range of
communication overhead.

2) Computation overhead: In the proposed scheme, the
computations mainly include three phases: reporting phase,
aggregating phase, and electricity theft detection phase. In
the reporting phase, the main computation overhead comes
from the encryption, signature, decryption keys generation
and timestamp generation operations of the SM, therefore,
the total time cost of the reporting phase is 59.488 ms. In
the aggregation phase, MN achieves aggregating readings,
decrypting, and verifying signatures, the total time cost is
129.635 ms. In the detection phase, the computation cost of
decrypting to obtain rW is 49.63 ms. The computation costs
of required functions are listed in Table VI. Experimental
results show that this is feasible in a real-world environment.
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Fig. 11. Average block time for the number of SMs from 50 to 300.

In model inference speed, the total evaluation time of
ETDFE for a 15-layer FFN model with 3,391,634 parameters
is about 1.94 seconds and PPETD MD1 takes 48 minutes to
evaluate the model, our model has only 1,095,022 parameters
and its evaluation time is only 56.03 ms. In addition, the
proposed scheme is more efficient compared to other schemes
because it performs electricity theft detection after identifying
the suspected theft area.

TABLE VI
AVERAGE COMPUTATION COST OF BASIC FUNCTIONS.

Notations Description Time(ms)

TC Time cost of encryption 0.096
Tagg Time cost of aggregating 200 readings 2.21

TdecAgg Time cost of decrypting aggregated readings 0.135
TDM Time cost of public key generation DW 45.36

TdecDW Time cost of decrypting to obtain rW 49.63
TSt Time cost of generating timestamp 0.852
Tsig Time cost of signature operation 13.18

Tversig Time cost of the verify signature operation 127.29
Tm Time cost of model detection 56.03

E. Blockchain simulations

Block time is a measure of the time it takes for the miners
or validators in the network to verify the transactions within
a block and generate a new block in that blockchain. Very
short block times may lead to abnormal behavior, because
nodes may not have enough time to send transactions, and
synchronize their transaction pool or blockchain. Very long
block time wastes arithmetic power and reduces the security of
the system. Therefore, an appropriate block time is important.
As shown in Fig. 11, average block time is simulated in
the blockchain simulation system [36] for the number of
SMs in the detection region from 50 to 300. The block time
should be as much as possible less than the period of the SM
reporting power consumption readings, and the SO can select
the number of SMs in the area based on the reporting period.
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VII. SYSTEM ANALYSIS

In this section, we aim to demonstrate that the proposed
scheme can achieve the following security and privacy guaran-
tee, while it can resist the attacks in Section IV-B. In addition,
in order to prove that the proposed scheme is more secure
than the existing schemes, we perform a comparison of system
characteristics.

A. Security analysis
Scenario 1: The privacy of consumers’ power consumption

cannot be inferred by any attacker.
Proof: The consumers’ fine-grained data ri[t] is encrypted

and sent to the MN. The confidentiality of ri[t] is achieved
by an elliptic curve over finite fields. Specifically, in order to
analyze the consumer’s private information, the attacker needs
to crack the consumer’s continuous long-term encrypted data
[· · · ,Ci[t− 1],Ci[t],Ci[t+ 1], · · · ], but the attacker can only
get the public parameters, which is infeasible in cracking the
computation. In the electricity theft detection stage, the input
encrypted power consumption data Ci[t], t = [1, 2, · · · , d] is
decrypted to get the output result [(ri ·wT

1 )+b1, (ri ·wT
2 )+

b2, · · · , (ri ·wT
n ) + bn] of the first layer of neural network.

Since n is less than d, n d-element equations cannot be solved,
therefore the SO cannot obtain the original consumers’ power
consumption data [ri[1], ri[2], · · · , ri[d]], while still complete
the electricity theft detection. Therefore, the proposed scheme
preserves the privacy of consumers.

Scenario 2: Consumers’ fine-grained power consumption
data cannot be falsified and forged during transmission and
storage, etc.

Proof: The messages Ci[t]||TSi
t ||DWi||PKi sent by each

SMi in the scheme are BLS signed as δi = xi ·
H2(Ci[t]||TSi

t ||DWi||PKi) to ensure the integrity of the data
and prevent falsification. After accepting the message, the MN
creates a block after establishing the Merkle tree, and each
SMi can access the block to verify whether its data has been
falsified. Meanwhile, since all data transfers in the blockchain
have timestamps and cannot be changed when added to the
blockchain, so the proposed scheme can resist data falsification
and forgery.

Scenario 3: The proposed scheme does not require a third
party and also can resist collusion attacks by smart grid
entities.

Proof: In the proposed scheme, the whole process does
not require the participation of a third party, which makes
the scheme more reliable and convenient. In the keys se-
curity aggregation process, each SMi negotiates the masks
ski,o = xis

pk
o (i ∈ U ; o ∈ U , o ̸= i) with all other SMs, and the

mask agreement is based on the computational Diffie-Hellman
hard problem. Suppose the SO wants to get the private key
si of the SMi after colluding with the MN, it still needs to
collude with m− 2 SMs, which is not achievable in practice.
Therefore, our scheme resists collusion attacks.

B. Effective defense evaluation
In this sub-section, we calculate the probability of successful

attacks by the attacker in two scenarios and illustrate the
effectiveness of the scheme through mathematical proofs.

1) Scenario 1: Network attackers may destroy data before
it is transmitted, during its transmission, and after it is received
by the MN to render the system inoperable.

2) Scenario 2: Network attackers may tamper with the
original data before it is transmitted, during data transmission,
and after it is received by the MN (before it is broadcast) to
allow false data to be verified.

The attack methods and success probabilities of data being
destroyed and tampered with before, during, or after transmis-
sion are summarized in Table VII.

TABLE VII
PROBABILITY OF SUCCESSFUL ATTACKS.

Stages Scenario 1 Scenario 2

Pre-data
transmission

Attack
method Hack into m SMs Hack into m SMs;

Get the keys

Probability
m∏
i=1

PSMi

m∏
i=1

PSMi
·

m∏
i=1

Pki

Data in
transit

Attack
method Hack m channels Hack m channels;

Get the keys

Probability
m∏
i=1

PCi

m∏
i=1

PCi
·

m∏
i=1

Pki

Data
received

Attack
method Hack into MN Hack into m SMs;

Get the keys

Probability PMN

m∏
i=1

PSMi
·

m∏
i=1

Pki

For scenario 1, we suppose that the probability of an attacker
hacking into a smart meter is denoted as PSM , 0 < PSM < 1,
and the probability of an attacker hacking into a channel is
denoted as PC , 0 < PC < 1. In order to make the system
unworkable, the attacker needs to attack m smart meters
with success probability

∏m
i=1 PSMi

before data transmission,
m channels with success probability

∏m
i=1 PCi

during data
transmission, and after the MN accepts the data, the success
probability of the attack is PMN . However, because m is large,
the attacker’s probability of hacking into the smart meters is
extremely low, and even if it is destroyed during the data
transmission phase, it can still be detected from the data
signature to discover and eliminate this attack, and meanwhile,
when the MN is attacked and the data is destroyed, all other
SMs will find the wrong data in the consensus phase and re-
vote to select a new MN, so our scheme has good defense
capability under scenario 1.

For scenario 2, we suppose that the probability of an
attacker stealing the private key of the smart meter is denoted
as Pk, 0 < Pk < 1. When the attacker wants to tamper
with the data in the smart grid, the probability of successful
attack before data transmission is

∏m
i=1 PSMi

·
∏m

i=1 Pki
,

during data transmission is
∏m

i=1 PCi
·
∏m

i=1 Pki
, after the

MN receives the data, the probability of successful attack is∏m
i=1 PSMi

·
∏m

i=1 Pki
. Compared with scenario 1, scenario 2

can be attacked with more demanding requirement conditions
and lower probability of successful attack. From the above
probabilistic analysis, it can be demonstrated that our scheme
can perform the basic tasks in a more secure environment.
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C. System characteristic comparison

The proposed scheme is compared with several other
representative privacy-preserving electricity theft detection
schemes for smart grid in terms of non-reliance on any trusted
third party (TTP), data non-falsifiability (DNF), data non-
repudiation (DNR), and data non-tamperability (DNT). As
shown in Table VIII, the related work does not achieve all
the desired characteristics of the smart grid, while only the
proposed scheme achieves it.

TABLE VIII
SYSTEM CHARACTERISTICS COMPARISON.

No TPP DNF DNR DNT

Joker et al. [7] Yes No No No
Yao et al. [11] No Yes Yes No

I.Ibrahem et al. [12] No No No No
Richardson et al. [14] No No No No

Our Scheme Yes Yes Yes Yes

VIII. CONCLUSION

In this paper, we propose a more secure blockchain-
based privacy-preserving electricity theft detection scheme.
The proposed scheme does not require a third party, which
avoids the security and privacy issues brought about by a
third party. Meanwhile, the blockchain’s distributed storage
of electricity theft detection scheme is used to solve the
problems such as data tampering due to centralized storage
data resulting in the inability to perform electricity theft
detection. In addition, a real dataset and environment are used
for simulation evaluation. The experimental results show that
the proposed scheme can detect malicious consumers more
accurately with acceptable communication and computational
overhead. System analysis shows that the proposed scheme
is more secure compared to existing schemes. For our future
work, we intend to improve the proposed scheme by reducing
communication and computation overhead.

REFERENCES

[1] V. C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati,
and G. P. Hancke, “A survey on smart grid potential applications
and communication requirements,” IEEE Transactions on industrial
informatics, vol. 9, no. 1, pp. 28–42, 2012.

[2] Y. Wang, Q. Chen, T. Hong, and C. Kang, “Review of smart meter
data analytics: Applications, methodologies, and challenges,” IEEE
Transactions on Smart Grid, vol. 10, no. 3, pp. 3125–3148, 2018.

[3] Z. Zeng, X. Wang, Y. Liu, and L. Chang, “Msda: multi-subset data
aggregation scheme without trusted third party,” Frontiers of Computer
Science, vol. 16, no. 1, pp. 1–7, 2022.

[4] X. Xia, Y. Xiao, and W. Liang, “Sai: A suspicion assessment-based
inspection algorithm to detect malicious users in smart grid,” IEEE
Transactions on Information Forensics and Security, vol. 15, pp. 361–
374, 2019.

[5] P. McDaniel and S. McLaughlin, “Security and privacy challenges in the
smart grid,” IEEE security & privacy, vol. 7, no. 3, pp. 75–77, 2009.

[6] P. Gope and B. Sikdar, “Privacy-aware authenticated key agreement
scheme for secure smart grid communication,” IEEE Transactions on
Smart Grid, vol. 10, no. 4, pp. 3953–3962, 2018.

[7] P. Jokar, N. Arianpoo, and V. C. Leung, “Electricity theft detection
in ami using customers’ consumption patterns,” IEEE Transactions on
Smart Grid, vol. 7, no. 1, pp. 216–226, 2015.

[8] Z. Zheng, Y. Yang, X. Niu, H.-N. Dai, and Y. Zhou, “Wide and deep
convolutional neural networks for electricity-theft detection to secure
smart grids,” IEEE Transactions on Industrial Informatics, vol. 14, no. 4,
pp. 1606–1615, 2017.

[9] J. E. Rubio, C. Alcaraz, and J. Lopez, “Recommender system for
privacy-preserving solutions in smart metering,” Pervasive and Mobile
Computing, vol. 41, pp. 205–218, 2017.

[10] R. Hoenkamp, G. B. Huitema, and A. J. de Moor-van Vugt, “The
neglected consumer: The case of the smart meter rollout in the nether-
lands,” Renewable Energy Law and Policy Review, pp. 269–282, 2011.

[11] D. Yao, M. Wen, X. Liang, Z. Fu, K. Zhang, and B. Yang, “Energy
theft detection with energy privacy preservation in the smart grid,” IEEE
Internet of Things Journal, vol. 6, no. 5, pp. 7659–7669, 2019.

[12] M. I. Ibrahem, M. Nabil, M. M. Fouda, M. M. Mahmoud, W. Alasmary,
and F. Alsolami, “Efficient privacy-preserving electricity theft detection
with dynamic billing and load monitoring for ami networks,” IEEE
Internet of Things Journal, vol. 8, no. 2, pp. 1243–1258, 2020.

[13] M. Wen, R. Xie, K. Lu, L. Wang, and K. Zhang, “Feddetect: A
novel privacy-preserving federated learning framework for energy theft
detection in smart grid,” IEEE Internet of Things Journal, vol. 9, no. 8,
pp. 6069–6080, 2021.

[14] C. Richardson, N. Race, and P. Smith, “A privacy preserving approach
to energy theft detection in smart grids,” in 2016 IEEE International
Smart Cities Conference (ISC2). IEEE, 2016, pp. 1–4.

[15] M. Nabil, M. Ismail, M. M. Mahmoud, W. Alasmary, and E. Serpedin,
“Ppetd: Privacy-preserving electricity theft detection scheme with load
monitoring and billing for ami networks,” IEEE Access, vol. 7, pp.
96 334–96 348, 2019.

[16] H. Fu, P. Hu, Z. Zheng, A. K. Das, P. H. Pathak, T. Gu, S. Zhu, and
P. Mohapatra, “Towards automatic detection of nonfunctional sensitive
transmissions in mobile applications,” IEEE Transactions on Mobile
Computing, vol. 20, no. 10, pp. 3066–3080, 2020.

[17] G. Liang, S. R. Weller, F. Luo, J. Zhao, and Z. Y. Dong, “Distributed
blockchain-based data protection framework for modern power systems
against cyber attacks,” IEEE Transactions on Smart Grid, vol. 10, no. 3,
pp. 3162–3173, 2018.

[18] J. Song, T. Gu, Z. Fang, X. Feng, Y. Ge, H. Fu, P. Hu, and P. Mohap-
atra, “Blockchain meets covid-19: a framework for contact information
sharing and risk notification system,” in 2021 IEEE 18th International
Conference on Mobile Ad Hoc and Smart Systems (MASS). IEEE, 2021,
pp. 269–277.

[19] M. R. Hamouda, M. E. Nassar, and M. Salama, “A novel energy trading
framework using adapted blockchain technology,” IEEE Transactions on
Smart Grid, vol. 12, no. 3, pp. 2165–2175, 2020.

[20] H. Fan, Y. Liu, and Z. Zeng, “Decentralized privacy-preserving data
aggregation scheme for smart grid based on blockchain,” Sensors,
vol. 20, no. 18, p. 5282, 2020.

[21] M. R. Hamouda, M. E. Nassar, and M. M. Salama, “Centralized
blockchain-based energy trading platform for interconnected micro-
grids,” IEEE Access, vol. 9, pp. 95 539–95 550, 2021.

[22] X. Zhang, L. You, and G. Hu, “An efficient and robust multidimensional
data aggregation scheme for smart grid based on blockchain,” IEEE
Transactions on Network and Service Management, 2022.

[23] S. Chen, Z. Shen, L. Zhang, Z. Yan, C. Li, N. Zhang, and J. Wu,
“A trusted energy trading framework by marrying blockchain and
optimization,” Advances in Applied Energy, vol. 2, p. 100029, 2021.

[24] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” in proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
2017, pp. 1175–1191.

[25] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil
pairing,” Journal of cryptology, vol. 17, no. 4, pp. 297–319, 2004.

[26] H. Moniz, N. F. Neves, and M. Correia, “Byzantine fault-tolerant
consensus in wireless ad hoc networks,” IEEE Transactions on Mobile
Computing, vol. 12, no. 12, pp. 2441–2454, 2012.

[27] Y. Zou, D. Yu, P. Hu, J. Yu, X. Cheng, and P. Mohapatra, “Jamming-
resilient message dissemination in wireless networks,” IEEE Transac-
tions on Mobile Computing, 2021.

[28] V. Shoup, “Lower bounds for discrete logarithms and related problems,”
in International Conference on the Theory and Applications of Crypto-
graphic Techniques. Springer, 1997, pp. 256–266.

[29] C. Keras, “Theano-based deep learning librarycode: https://github.
com/fchollet,” Documentation: http://keras. io, 2015.

[30] “Irish social science data archive,” http://www.ucd.ie/issda/data/
commissionforenergyregulationcer/.

Page 14 of 15IEEE PES Transactions on Smart Grid

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

[31] H. He, Y. Bai, E. A. Garcia, and S. Li, “Adasyn: Adaptive synthetic
sampling approach for imbalanced learning,” in 2008 IEEE interna-
tional joint conference on neural networks (IEEE world congress on
computational intelligence). IEEE, 2008, pp. 1322–1328.

[32] H. Deng, G. Runger, E. Tuv, and M. Vladimir, “A time series forest for
classification and feature extraction,” Information Sciences, vol. 239, pp.
142–153, 2013.

[33] M. Middlehurst, J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bag-
nall, “Hive-cote 2.0: a new meta ensemble for time series classification,”
Machine Learning, vol. 110, no. 11, pp. 3211–3243, 2021.

[34] A. Dempster, F. Petitjean, and G. I. Webb, “Rocket: exceptionally
fast and accurate time series classification using random convolutional
kernels,” Data Mining and Knowledge Discovery, vol. 34, no. 5, pp.
1454–1495, 2020.

[35] J. A. Akinyele, C. Garman, I. Miers, M. W. Pagano, M. Rushanan,
M. Green, and A. D. Rubin, “Charm: a framework for rapidly proto-
typing cryptosystems,” Journal of Cryptographic Engineering, vol. 3,
no. 2, pp. 111–128, 2013.

[36] L. Stoykov, K. Zhang, and H.-A. Jacobsen, “Vibes: fast blockchain
simulations for large-scale peer-to-peer networks,” in Proceedings of the
18th ACM/IFIP/USENIX Middleware Conference: Posters and Demos,
2017, pp. 19–20.

Page 15 of 15 IEEE PES Transactions on Smart Grid

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60




