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Malignant Pleural Mesothelioma (MPM) is a rare type of cancer which occurs in
the mesothelium of the lungs, and is characterised by a long latency period

followed by a highly aggressive phase once fully developed. The initial tumour
is the result of exposure to asbestos, and the prognosis is very poor once

diagnosis has taken place. Currently, several genes have been associated with
MPM, but no drivers have been identified via phylogenetic analysis. In order to

identify potential driver genes which cause the cancer to mutate into its
aggressive state, three distinct phylogenetic pipelines were established to

process whole-exome sequencing data taken from 25 MPM patients from the
MEDUSA cohort. The first pipeline used copy number calls generated from the
patient cohort and incorporated them into a phylogenetic inference software in

order to generate trees displaying the evolution of the cancer across 4-5
samples per patient. The second pipeline used single-nucleotide variations

generated from the patient cohort and incoporated them into a second
phylogenetic inference software to generate a different set of trees. The third
pipeline used the output from the first in order to generate a third set of trees

and establish an order of mutation for events found in the truncal regions of the
first tree set. Each pipeline provided strong evidence for the Neurofibromin

2/Merlin (NF2) gene as a potential driver in the progression of the cancer from
its latent state. This phylogenetic inference is among the first times such a

method has been used for MPM, with the findings possibly revealing candidates
for potential drug-targeting in the cancer.
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1) Introduction

1.1) Asbestos and Asbestos Usage

Asbestos is a term given to a group of fibrous rocky minerals which form long 

and thin fibre-like structures when they crystallize, and has been used in 

construction for over 100 years, mainly due to its flame retardant properties 

making it effective for insulating buildings whilst avoiding fire risks (Pira, Donato 

et al. 2018). It is now widely known that exposure to these fibrous structures 

can result in the development of diseases: asbestosis, lung cancer, and 

mesothelioma, which can develop upon inhalation of the asbestos particles 

(Mott 2012; Visonà, Silvia D et al. 2018). 

In most Western countries and Japan, the use of asbestos is banned for 

construction purposes or anywhere within the public domain, though due to the 

long latency period the high prevalence of the diseases persists. In the United 

Kingdom for example, there is to be a predicted 91,000 deaths from asbestos-

related diseases between 1968 and 2050 (with about two-thirds of these to 

occur between 2007 and 2022) assuming the year of peak exposure was 1968 

(Tan, Warren et al. 2010). Similar scenarios can be seen across early industrial 

countries, such as the Lombardy region of Italy, which is heavily industrialised 

and had a high level of asbestos use throughout the 20th century (Mensi, De 

Matteis et al. 2016). The reason why the prevalence is expected to fall is due to 

the banning of asbestos resulting in it now being removed from any new builds, 

and thus massively decreasing the level of exposure which should occur. 
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However, it should be noted that as many older buildings still contain large 

amounts of asbestos, occasional exposure may still occur and result in 

mesothelioma cases later in the future. 

Even though the use of asbestos has dropped massively in the Western world, 

which  should lead to a large-scale decrease in the prevalence of asbestos-

related disease, in some regions the use of asbestos is actually increasing 

(Choi, Lim et al. 2013; Leong, Zainudin et al. 2015). A large amount of the 

asbestos used in China is imported directly from Russia, which accounts for just

under half of global supply at 49% (Stayner, Welch et al. 2013), and is used due

to its widespread availability and low-cost, with its usage also widespread in 

Kazakhstan and India (Visonà, Silvia D et al. 2018). It is also the case that 

certain construction organisations and governing bodies in Russia and China do

not support international findings that asbestos exposure results in cancer 

development (or at least certain types of asbestos)(Leong, Zainudin et al. 

2015). 

The content of this thesis focuses on the asbestos-related disease, Malignant 

Pleural Mesothelioma (MPM). Even though the prevalence of MPM is expected 

to be heavily reduced within the next couple of decades in a large proportion of 

the Western world, the continued and accelerated use of asbestos in Asia is 

likely to result in an epidemic within the next 30-40 years in these regions. The 

problem may be further amplified if the use of asbestos in the industrialisation of

these places continues at a rapid rate, leading to thousands of exposure events 

to the workers and local communities. This results in a greater importance in 

understanding the pathophysiology of MPM and developing possible 
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treatments, as tumours will begin to develop in people exposed within the next 

few years, long after it has largely vanished in the Western world.
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1.2) Malignant Pleural Mesothelioma

1.2.1) Introduction to Malignant Pleural Mesothelioma

Malignant Pleural Mesothelioma (MPM) is a rare type of cancer which occurs in 

the pleura of the lungs, a thin membrane which functions to separate the organ 

from the chest wall. As previously mentioned, the development of the cancer 

has been consistently linked to asbestos exposure via inhalation (Mott 2012). 

The cancer has a long latency period, meaning that it takes a long time for 

disease presentation to occur after the initial asbestos exposure event, which 

on average is around 40 years (Bibby, Anna C .2016). MPM is considered to be 

an aggressive type of cancer once it fully develops and is generally associated 

with a poor prognosis (Cao, Croce et al. 2012; Shavelle, Vavra-Musser et al. 

2017; Taioli, van Gerwen et al. 2017). 

MPM can be divided into three major types based on histological classification: 

epithelioid, which can be seen in clearly defined lumps of cells, and with pink 

cytoplasm; sarcomatoid, with overlapping irregularly shaped cells that have a 

large elongated structure; and biphasic, which is MPM comprising of both 

epithelioid and sarcomatoid cells. Histopathology pictures for each of the three 

types can be seen in Figures 1.1, 1.2 and 1.3. Epithelioid MPM accounts for 

around 60% of cases, with the other two types accounting for around 20% each 

(Inai, Kouki 2008).
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Figure 1.1: Histopathology picture of epithelioid cells in a MPM patient, taken from (Inai, 

Kouki 2008).

Figure 1.2: Histopathology picture of sarcomatoid cells in a MPM patient, taken from 

(Inai, Kouki 2008).
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Figure 1.3: Histopathology picture of epithelioid and sarcomatoid cells in a MPM patient, 

resulting in biphasic MPM, taken from (Inai, Kouki 2008).
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1.2.2) Risk Factors in Developing Malignant Pleural 

Mesothelioma

The single greatest risk factor in developing MPM is exposure to asbestos (Mott

2012; Robinson 2012), with studies showing evidence that greater intensities of 

exposure, for example, a long career in construction working with asbestos, 

lead to shorter latency periods in diagnosed patients (Bianchi, Bianchi 2007; 

Marinaccio, Binazzi et al. 2007). Further supporting evidence is the prevalence 

of MPM being higher in early industrial countries, with the highest rates being in 

the United Kingdom and Australia (with a rate of 30 cases per million), as well 

as Japan and the United States of America (Robinson 2012). The use of 

asbestos was widespread in the construction industries of these countries, 

especially in the late 1950s up to the late 1980s, resulting in high levels of 

exposure to the workers in these sectors (Marinaccio, Binazzi et al. 2007; Tan, 

Warren et al. 2010). 

Age is also a risk factor in the development of MPM, with 69 years being the 

average age of diagnosis (Shavelle, Vavra-Musser et al. 2017). However, this is

mostly due to the long latency period of the disease, as exposure to asbestos at

between the ages of 25-30, would then only result in the initial tumour cells 

developing when that individual was in their 60s. It would then take additional 

time for diagnosis, especially if symptoms did not present for the first few 

months. Determining whether or not asbestos exposure has occurred, as well 

as the time  period since the exposure and the intensity of the exposure, is very 

difficult as the only method for collecting this data is via retrospective interview. 

This relies on the individual to have a memory of a possible event where 
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exposure may have occurred, with level of exposure being almost impossible 

for them to determine. Individuals who worked in an environment where 

asbestos exposure occurred are likely to know the time period, but due to the 

continued exposure, intensity levels would be extremely difficult to estimate. 

This results in the possibility of a large amount of inconsistency when trying to 

quantify the overall effect of asbestos exposure in the development and 

outcome of MPM. 
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1.2.3) Survival, Staging and Treatment Options

Average survival time is a difficult statistic to measure in the case of MPM due 

to there being a myriad of factors which can affect the outcome of the disease. 

The type of MPM present will affect survival time, with epithelioid MPM 

generally having longer survival times than sarcomatoid MPM. This is due to the

aggressive nature of sarcomatoid type MPM and its tendency to spread more 

quickly (Inai, Kouki 2008). As for Biphasic type MPM, the proportion of cell types

can tilt survival time in either direction, with higher proportions of epithelioid 

cells resulting in bigger prognosis. 

The staging of the cancer is also an important factor, with mesothelioma divided

into 4 distinct stages known as the number system. Stage 1 is the earliest stage

and is defined by mesothelioma cells being present in the pleura on a single 

side of the chest. Stage 1 can further be broken down into 1a and 1b stages, 

with stage 1a meaning the mesothelioma cells are only present in the outer 

layer of the pleura (parietal pleura), and stage 1b meaning the mesothelioma 

cells are present in the inner layer of the pleura (visceral pleura). Stage 2 refers 

to the mesothelioma having spread into both layers of the pleura, as well as 

either the diaphragm muscle or the lung tissue. Stage 3 is when the 

mesothelioma has begun to spread to the chest wall, pericardium (tissue 

surrounding the heart) or the lymph nodes. And stage 4 refers to the 

mesothelioma either growing through the diaphragm; spreading to the pleura on

the opposite side; growing through the chest organs; or growing through the 

pericardium (Bonomi, Maria 2017). 
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Each subsequent stage reduces survival time, with 1 year survival time for each

stage available from the Cancer Research UK (CRUK) website, and is shown in

Figure 1.4. This value refers to the proportion of individuals who have survived 

after diagnosis for up to 1 year and is given as a percentage. Stage 1 and 2 

both have a 1 year survival rate of 60%, stage 3 has a 1 year survival rate of 

50%, and stage 4 has a 1 year survival rate of 30%. The general health of the 

patient also factors into the survival rate, though the variables defining this 

would be too numerous to list here. The overall 5 year survival rate for MPM 

(not considering stages) is around 12% (Shavelle, Vavra-Musser et al. 2017).

Figure 1.4: 1-year survival time for mesothelioma patients depending on what stage the cancer 

was when diagnosis occurred. The circles refer to the percentage of patients who survived after 1 

year, and the bars indicate the total number of patients diagnosed at each stage. Unstageable 

cancer represents cases where staging tests did not take place as the invasiveness of the staging 

was thought to outweigh any benefit that could be obtained from the information. (taken from 

Cancer Research UK).
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Treatment for MPM is also dependent various factors, including; stage of the 

cancer, location of the tumour, cell type of the mesothelioma (epithelioid, 

sarcomatoid, biphasic), and the general health of the patient. Generally, early 

stage mesothelioma is treated with surgery, though it is unlikely to permanently 

remove the cancer, and this is usually followed by treatment with chemotherapy 

or radiotherapy, or a combination of the two. For more advanced stage patients 

chemotherapy is offered to attempt to shrink the tumour, with radiotherapy as an

alternative or used for combination treatment. In late stage mesothelioma 

surgery is usually ineffective due to the spread of the cancer over a large area 

or into multiple organs. 
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1.3) Known Genomic Features of Malignant Pleural 

Mesothelioma

1.3.1) Evaluation of Large Studies Using Whole Exome 

Sequencing to Analyse Malignant Pleural Mesothelioma

The data used in the analysis throughout the main body of the thesis was 

generated via whole exome sequencing (WES) of an MPM patient cohort, and 

as such, it is essential that the previous literature is reviewed to establish an 

understanding of what knowledge already exists in relation to this subject. 

The most recent large-scale study performed on MPM data using WES was 

performed using The Cancer Genome Atlas dataset, which is a database 

containing datasets specifically to form cohorts for different types of cancer. The

paper (Hmeljak, Julija et al. 2018) performed WES analysis on a cohort of 74 

MPM samples in order to identify somatic mutations, or single-nucleotide 

mutations, as well as somatic copy number alteration events (SCNAs), which 

could be identified as “driver” events. Driver events can refer either to any 

mutation event which occurs in cancer, causing it to shift from a dormant state 

into a more aggressive one, or it can refer specifically to mutations in 

oncogenes, which are genes that cause positive proliferation of cancer cells 

when they are mutated (as opposed to suppressor genes which allow cancer to 

proliferate when they are inactivated). The study used various algorithms to 

assess the mutational burden of exome regions, both focused on finding single 

nucleotide mutations as well as changes in copy number.
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The study identified large-scale copy number losses, which were recurrent 

between samples, that also sometimes spanned entire chromosome arms. This 

is reflective of previous studies, with large-scale copy number alterations known

to occur throughout the genome in MPM and is considered a key feature of the 

genomic landscape of the disease (Furukawa, Toyooka et al. 2015; Hylebos, 

Van Camp et al. 2017). The prevalence of copy number loss in the absence of 

amplifications is what fuels the notion that MPM is likely to be caused by loss of 

function mutations in tumour suppressor genes as opposed to increased 

expression of oncogenes. 

Key findings in the paper in relation to copy number variations were deletions or

complete losses of both the CDKN2A and NF2 genes, reporting homozygous 

loss of  CDKN2A in 49% of samples and heterozygous deletions in 7%, and 

homozygous loss of  NF2 in 34% of samples with heterozygous deletions in 

another 30%. Both of these genes are reported at length throughout MPM 

literature with studies often reporting  CDKN2A (Borczuk, Pei et al. 2016 

Kettunen, Savukoski et al. 2014; Prins, Williamson et al. 1998) and NF2 

(Borczuk, Pei et al. 2016; Sato, Sekido 2018; Sekido, Pass et al. 1995) losses 

in copy number. Another frequently mutated gene was reported by the paper, 

BAP1, though it didn't have the same copy number alteration frequency as 

CDKN2A or NF2. However it did display a greater mutational burden overall, 

once somatic nucleotide mutations were taken into account. BAP1 is also 

frequently reported in MPM literature (Bott, Brevet et al. 2011; Quetel, Meiller et 

al. 2020).
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The heavier mutational burden displayed by BAP1 in the paper was due to the 

large number of single nucleotide variations (SNVs) detected in the gene. 

These significant SNVs were detected using a software called MutSig2CV 

(Lawrence, Michael S. 2014) which detects when genes have a higher 

mutational burden than would be expected by chance, using the dataset as a 

whole to normalise the expected mutation rate. Increased numbers of SNVs 

were also detected in CDKN2A and NF2, as well as in three additional genes, 

TP53, LATS2 and SETD2, all of which have also been frequently reported in 

MPM literature (de Assis, Isoldi 2014; Murakami, Mizuno et al. 2011; 

Sementino, Menges et al. 2018), although not to the same extent as BAP1, 

CDKN2A and NF2.

The study also reported an overall lower level of SNVs when compared to other 

cancers, a finding consistent with MPM literature, where it is reported that the 

mutational burden represented by single nucleotide mutations is low 

(Martincorena, Iñigo. 2015). This may imply that SNVs are not as influential in 

the development of MPM when compared to CNVs, which is supported by the 

fact that CNVs a more likely to remove the functions of entire genes and their 

surrounding regions. However, frameshift and nonsense mutations are still often

reported in the literature in relation to SNVs in identified driver genes in MPM, 

including in the study being reviewed, suggesting that SNVs do likely play a role

in MPM. Furthermore, SNVs can result in biallelic deletions where heterozygous

copy number loss has occurred, i.e. they can cause a homozygous deletion at a

single base loci possibly resulting in a complete loss of function of any gene 

they are present in. These will be important points to consider when assessing 

the role of SNVs in MPM throughout the main body of the thesis. 
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Another article published in 2016 (Bueno, Raphael. 2016) had a cohort size of 

206 MPM samples, though only 99 were WES based. The findings of this study 

are largely parallel to the TCGA paper (Hmeljak, Julija et al. 2018) though 

interestingly CDKN2A was not reported as a significant finding. 

At this point, the 2021 Zhang paper should be mentioned as the thesis author is

also a supporting author in that study (Zhang, Jin-Li et al. 2021). It should be 

mentioned that no data produced for this thesis was used in the Zhang paper, 

though calls made for the cohort used in that paper were used in the thesis in 

Chapters 3 and 4 (see Methods). The Zhang paper used WES to extract data 

from a 22 patient cohort from the MEDUSA main cohort, and used phylogenetic 

inference to identify driver events which occurred early in the development of 

the cancer (more on this discussed in Section 1.5). The main findings of this 

paper were large scale heterozygous losses in BAP1, CDKN2A and NF2 with 

NF2 in particular reporting losses in 82% of patients. 

It is clear that NF2, BAP1 and CDKN2A are key genes in the development of 

MPM. The next section will focus on these three genes.
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1.3.2) Key Driver Genes in Malignant Pleural Mesothelioma

BAP1, or BRCA1 associated protein 1 is a gene that has been consistently 

associated with MPM, both through CNVs and SNVs. The gene encodes a 

protein called ubiquitin carboxyl-terminal hydrolase BAP1, which is shortened to

BAP1, that functions to remove ubiquitin from other proteins as a form of 

regulation. The BAP1 protein is known to operate in the processes of cell 

proliferation and cell death, both key features in the development of cancer 

(Carbone, Michele et al. 2020). 

The cBioPortal (Cerami, Ethan et al. 2012; Gao, Jianjiong et al. 2013) was used

to examine known point mutations in the BAP1 gene, with results displayed in 

the lollipop plot in Figure 1.5. cBioPortal is a database of cancer genomics 

datasets and annotations which can be used to easily access mutational 

information about given genes. The same plots were also generated using 

cBioPortal for NF2 and CDKN2A in Figure 1.6 and Figure 1.7 respectively. 

There were 18 listed known mutations in BAP1 associated with MPM, all of 

which are non-synonymous and so should result in protein changes.
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Figure 1.5: Lollipop plot generated by cBioPortal by filtering for BAP1 and Pleural Mesothelioma. 

The plot displays 18 known point mutations in the gene, all of which are non-synonymous. The 

green section to the left of the plot is the splice variant of BAP1, Peptidase_C12.

Figure 1.6: Lollipop plot generated by cBioPortal by filtering for NF2 and Pleural Mesothelioma. 

The plot displays 21 known point mutations in the gene, all of which are non-synonymous. The 

splice variants are displayed in the coloured boxes.

Figure 1.7: Lollipop plot generated by cBioPortal by filtering for CDKN2A and Pleural 

Mesothelioma. The plot displays no known point mutations in the gene. The splice variants are 

displayed in the coloured boxes.

17



NF2, or moesin-ezrin-radixin like (MERLIN) tumor suppressor, encodes for a 

protein called merlin, which functions as a tumour suppressor protein in order to

prevent cells from proliferating too quickly. It is clear that mutations in this gene 

that result in loss of function would be likely candidates when searching for 

cancer causing genes. Due to its role as a tumour suppressor, it isn't surprising 

that NF2 has been associated in the development of other types of tumour, 

including breast, colorectal and skin cancers (Petrilli, A M. 2016). 21 known 

mutations are reported on cBioPortal for NF2 in association with MPM, though 

none are reported more than once.

CDKN2A, or cyclin dependent kinase inhibitor 2A, which is a gene that encodes

several proteins, two of which, the p16(INK4A) and the p14(ARF) proteins are 

tumour suppressors (He, Shenghui 2017). As with BAP1 and NF2, loss of 

function in CDKN2A can clearly lead to unwanted cell proliferation, and thus 

result in tumours. Also much like the other two genes, CDKN2A has been 

associated with other cancers including breast cancer and pancreatic cancer  

(Goldstein, Alisa M et al. 2006). Interestingly, the cBioPortal reports no SNV 

mutations for CDKN2A in association with MPM, which may seem surprising 

due to the frequency of CDKN2A throughout the literature. However, this could 

be indicative that CNV based mutations are much more prevalent in the disease

than SNVs, especially in the case of CDKN2A as was indicated in the results of 

the TGCA paper discussed in the previous section.

The relatively low number of reported mutations on cBioPortal for all three key 

driver genes could simply be due to the low number of cases present in the 
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database. Despite being one of the more common mesotheliomas, MPM is still 

classified as a rare cancer and has a low incidence rate, as discussed in 

Section 1.2. This means that there is a relatively low number of patients 

samples available to form cohorts and perform analysis on.

Though this section only briefly described the function of the most well 

established MPM associated genes, it is important for biological function to be 

acknowledged. Associating genes with disease is an important step in 

developing possible treatments, but an understanding of the biological function 

and pathways which the proteins encoded by these genes operate in is also 

paramount in successfully treating disease.
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1.4) Biological Mechanisms in the Development of 

Malignant Pleural Mesothelioma

1.4.1) Frustrated Phagocytosis

The mechanism by which the fibrous strands of asbestos inhaled during an 

exposure event results in the development of MPM is regarded to be caused by 

a process called “Frustrated Phagocytosis”, referring to an incomplete attempt 

at phagocytosis by a macrophage (Gualtieri, Alessandro F. 2021). The normal 

process of phagocytosis involves a phagocyte cell expanding its cell membrane 

to engulf a foreign particle, followed by internally breaking down the target 

particle they have engulfed. It is an essential process in maintaining cell 

balance and protecting the host via the immune system. 

Frustrated Phagocytosis occurs when a phagocyte cell in unable to engulf its 

target, and in the case of MPM development, that phagocyte cell is likely to be a

macrophage. This is because part of the additional function of a macrophage 

cell in to engage the adaptive immune system. In Frustrated Phagocytosis, as 

the particle is too big to be engulfed by the macrophage, this leads to 

inflammation due to a prolonged immune response, which in turn leads to the 

production of ROS free radicals (Liu, Cheresh et al. 2013; Pietrofesa, 

Velalopoulou et al. 2016). These can then cause DNA damage in the 

surrounding cells which is what can then lead to mutation during DNA repair as 

the DNA repair system is eventually overwhelmed by mutation. This process 

can be observed in Figure 1.8.
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There is a lot of evidence supporting the inflammation response in the 

carcinogenesis of MPM due to asbestos exposure (Plato, Martinsen et al. 2016;

Shukla, Gulumian et al. 2003) . It should be noted that whilst a basic 

understanding of what could be causing asbestos exposure to result in the 

development of MPM is useful, this is not the question which this project aims to

answer. It could be that the findings of this project help to answer this question 

by identifying early genetic modifications which occur during the process, but 

the methods used do not specifically aim to decipher the specific cause of initial 

carcinogenesis. However, it was still important to include these theories as 

Figure 1.8: The process of normal and Frustrated Phagocytosis. The left of the figure represents 

a macrophage cell operating normally, engulfing a target, breaking it down internally and then 

releasing it. The right of the figure shows the process of Frustrated Phagocytosis. The asbestos 

fibre is too large for the macrophage to engulf, leading to prolonged inflmmation response. Figure 

taken from (Donaldson, Ken et al. 2010)
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understanding what may be causing the initiation of genetic changes could be 

useful in then analysing those genetic changes which do occur. 
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1.4.2) Other Possible Causes

Around 80% of MPM patients have had confirmed exposure to asbestos (based

on retrospective interview), leaving 20% who developed the disease for 

unexplained reasons (Kroczynska, Cutrone et al. 2006; Murthy, Testa 1999; 

Pershouse, Heivly et al. 2006). 

There has been evidence presented in the literature, that the SV40 virus is 

linked to the development of MPM without the requirement of asbestos 

exposure. How the virus causes carcinogenesis in unknown, though there is 

evidence that it results in the inactivation of certain tumour-suppressor genes 

such as p53 (activator of apoptosis) (Ahuja, Saenz-Robles et al. 2005). It could 

also be the case that the SV40 virus causes carcinogenesis in a similar way to 

how asbestos exposure is thought to, with the  presence of the virus in cells 

resulting in a prolonged immunity response which then produces ROS resulting 

in DNA damage and inducing the eventual formation of tumour cells. It should 

be noted however, that the prevalence of SV40 traces in MPM patients is far 

below 20% and so cannot totally explain (if at all) how the remaining non-

asbestos cases developed. Though it is still important to consider, as asbestos 

may not be the only cause of MPM development and so cannot be attributed to 

every case conclusively, it is still highly likely it is the most significant agent in 

the proliferation of the process.  

There is also evidence that other types of foreign particle could result in 

Frustrated Phagocytosis in much the same way as asbestos, in particular, 

carbon nanotubes have multiple studies linking them to this very phenomenon 

(Benedetti, Serena et al. 2015; Donaldson, Ken et al. 2010). The process would
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work in much the same way as with asbestos, with the macrophage cells unable

to engulf the carbon nanotubes resulting in prolonged inflammation and 

eventually DNA damage and mutation. 

It is important to consider the other possible causes of MPM besides asbestos, 

as this may reveal additional findings when analysing the results of the 

research, however, as asbestos is the firmest accepted agent in the 

development of MPM, and also appears to account for the majority of cases, it 

is the most significant focus when considering possible carcinogenic agents. It 

is also important to remember that determining asbestos exposure is done via 

retrospective interview and this method lends itself more to under-calling the 

true number of asbestos exposed cases. This is because it is logically more 

likely that an individual would have forgotten possible exposure events after 30-

40 years (the time when diagnosis and the interview will have taken place), than

someone falsely remembering an event where they think they were exposed. It 

can also be assumed that someone who doesn’t remember whether or not they 

were specifically exposed, but has had a history in the construction industry 

during the time period when asbestos was heavily used, is considered to have 

been asbestos exposed. 

24



1.5) Phylogenetics and Evolution of Cancer

Phylogenetics is the study of evolutionary relationships between defined groups

of biological units, be that individual organisms, entire species, or sets of genes.

Phylogenetic methodology usually results in the output of a phylogeny (tree), 

which explains the relationship between the units being assessed. Different 

methods of phylogenetic inference include maximum parsimony, which 

connects units based on the lowest number of changes between them; 

neighbour-joining which is an iterative method that joins together the most likely 

pairs step-by-step; and Bayesian methods which work out the best overall tree 

by comparing hundreds or thousands of trees with different assigned likelihood 

values.

The use of phylogenetics for the analysis of cancer has been a concept for over

two decades (Desper, Jiang et al. 1999), with the ability to identify the order of 

mutations an attractive feature when considering the development of 

treatments. A variety of phylogenetic methods have been used in various 

analysis of cancers (Alexandrov, Nik-Zainal et al. 2013; Gerlinger, Horswell et 

al. 2014; Jamal-Hanjani, Wilson et al. 2017; Schwartz, Schäffer 2017). In 

particular, the TRACERx Consortium (TRAcking non-small cell lung Cancer 

Evolution through therapy (Rx)) study of phylogenetic analysis in lung cancer 

(Abbosh, et al. 2017) employed solid methodology to identify clonal single-

nucleotide variants using circulating tumour DNA, based on the following logic.

The basis for the ability to generate phylogenetic analyses for these tumours is 

the heterogeneous nature of cancer, meaning different regions within the same 
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patient can have vastly different genetic architecture, even those present within 

close proximity in the same tissue (Curtis, Shah et al. 2012). Whilst this has a 

confounding effect for treatment, as a sample taken is not necessarily 

representative of the entire tumour (and is in fact, unlikely to be) and means it 

can be hard to direct treatment options optimally (Merlo, Pepper et al. 2006),  

replicating and migrating cells, the process of tumour development has strong 

evolutionary signatures in the form of large-scale genetic changes which occur 

and can then be traced back. The idea is, that samples from different tumours 

within the same patient should have a significant amount of genetic difference, 

and the amount of difference that exists between compared samples is the key 

to phylogenetic analysis (Somarelli, Ware et al. 2017). 

For example, two samples with a large amount of genetic difference would be 

assumed to have diverged early in the development of the cancer, and possibly 

even at the first stages near to where the first cancer cells developed. Those 

samples that are more similar will be assumed to have diverged later on in the 

process. The method also works for looking at specific genetic changes and 

provides valuable information into when those changes may have occurred. If 

there is a common genetic alteration present in all tumours, the assumption 

would be that this particular genetic alteration occurred in the original subclone 

of the cancer (the region of cancer cells which then proliferated and lead to the 

development of other tumour sites via the spread of the cancer through the 

tissue and bloodstream). 

The understanding of this is paramount to the research intentions of the project,

as it is these early events (genetic alteration events seen to be recurring across 
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all samples in a patient) which are thought to harbour the driver mutations for 

MPM. The reasoning behind thinking this is that shared genetic events across 

all samples will appear in the “trunk” of the tree, or the first branch between the 

normal tissue and the first common precursor. Any changes which occurred 

during the latency period, and before the cancer began to develop and 

proliferate  will appear in this region of the tree. It is therefore logical to assume 

that changes here are responsible for the transition of the cancer into its non-

latent, aggressive state. With this in mind, identifying candidate regions in this 

area, and possibly even specific candidate genes, can then allow for further 

analysis in the form of  functional and comparative studies, which may then lead

into drug design and trials on the appropriate candidates. By arresting the 

cancer before it begins to spread, the disease will be less serious and surgical 

treatment may then be more effective. Databases such as The Catalogue of 

Somatic Changes in Cancer (COSMIC) (Forbes, Bhamra et al. 2008) to 

catalogue observations like this. Comparing the results of the phylogenetic 

analysis to databases such as this is extremely useful, both in terms of 

investigating whether recurring results have been seen to be oncogenic in other

experiments, and to confirm that findings which do not appear in the database 

may be novel and specific either to MPM or just to the individual patient based 

on their level of exposure, method of exposure or germline genetic variation. 

This project focuses on the generation of phylogenies from tumour samples 

taken from MPM patients in order to determine; a recurring pattern in which the 

tumour originates and then spreads, driver mutations which occur during the 

latency period of the tumour and cause it to develop into a full cancer, and to 

determine whether specific mutations result in significant differences in patient 

27



outcome (as well as whether these mutations are more likely to produce 

recurring mutations further downstream).

Limitations of this methodology for MPM samples include; the assumption that 

all samples taken from separate anatomical positions will be derived from the 

same original tumour, and that germline DNA is used as the precursor or rather, 

root of the tree. In answer to the first limitation, it could be argued that there is a 

high likelihood of all tumour tissue in a single patient being derived from a single

original clone. There is a long latency time before the cancer enters its 

aggressive stage, triggered by a mystery event that the analyses is trying to 

uncover, and during this latency period mutations are accumulating throughout 

the DNA across the cells in the tissue. However, once the event occurs the 

expansion of an individual clone is rapid, and the likelihood that two clones 

would hit this mystery driver event in a close enough time period to compete 

seems like an unlikely event.

In regards to the second limitation, it is true that the germline DNA may not be 

the best precursor, as the driver event will be occurring on an already heavily 

mutated genomic landscape. However, the driver event will undergo rapid 

positive selection in the cancer cell population, resulting in the highly variable 

mutated landscape being statistically insignificant when simply compared to the 

germline. There's also a problem with practicality, MPM is almost never 

identified until after the driver event has occurred and the tumour has begun to 

proliferate, by which point it would be too late to collect the pre-driver tissue 

without contamination.
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The methods employed by other phylogenetic studies in cancer, and in 

particular the methods performed by TRACERx in lung cancer are a suitable 

template in MPM for these reasons.
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1.6) Aims of the Thesis

This thesis was founded on the hypothesis that the use of phylogenetic 

inference methods would allow “driver” events to be identified in Malignant 

Pleural Mesothelioma, and that the identification of these events would be 

beneficial in the selection of future drug targets to treat the disease.

The aims of the thesis are: to establish a pipeline which can handle both copy 

number and single nucleotide variant data in order to generate phylogenetic 

trees in order for truncal (or clonal) events to be identified; test the robustness 

of this pipeline via comparisons of different software; identify possible 

trajectories between any identified truncal events to try and establish true 

“driver” variants.
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2) Methods and Materials

2.1) Introduction to Project Pipelines, Methods and Materials

This chapter covers the development and deployment of the three bespoke 

pipelines used in this project to detect driver events in MPM. It covers the 

justification and description of the methods used throughout the project as well 

as information about how the data was initially acquired and processed prior to 

the start date of the project. An outline of each of the pipelines is given here as 

well as reference to the relevant section of the chapter which addresses the 

methods used for each.

The first pipeline focused on copy number variation in MPM, which as 

discussed in Chapter 1, is well established in the genomic landscape of the 

cancer. As such, the methods employed for this pipeline focused solely on copy 

number variants found in the data and used only these in the subsequent 

phylogenetic analysis. The pipeline consisted of two copy number estimations 

softwares, Sequenza (Favero, Joshi et al. 2015) and ABSOLUTE (Carter, 

Cibulskis et al. 2012), to be compared using an orthogonal approach, with the 

results then being used in a phylogenetic generation software, TuMult (Letouze, 

Allory et al. 2010), which uses only copy number data to generate trees. A 

further copy number dataset generated by Novogene, using ASCAT (Van Loo, 

Nordgard et al. 2010), was also used in this pipeline to generate a second set of

phylogenetic results, which were then compared to the original as an orthogonal

approach. The last objective of the first pipeline was to attempt to infer 

anatomical spread of MPM on the pleura based on event sequence in the 
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phylogeny. Section 2.3 of this chapter covers this pipeline with results shown in 

chapter 3 (from section 3.3 onwards). 

The second pipeline is focused entirely on single-nucleotide variations in the 

dataset (though does use copy number calls for correction), and was 

established to explore the impact of these SNVs in the development of MPM as 

discussed in Chapter 1. Similar to the structure of the first pipeline, this one 

used two single-nucleotide variant callers, VarScan2 (Koboldt, Zhang et al. 

2012) and MuTect2 (Cibulskis, Lawrence et al. 2013), to establish an orthogonal

approach and provide a measure of quality control in the selection of individual 

SNVs. Similar to ASCAT, the MuTect2 data was generated by Novogene and 

then used in this project. The data generated by this method was then analysed

using another phylogenetics software which is designed to operate using SNV 

input. Section 2.4 covers the methods for this pipeline with chapter 4 containing 

the results.

The final pipeline used a single piece of software, Revolver (Caravagna, 

Giarratano et al. 2018), alongside results which were generated by the previous

pipelines to establish any recurrent trajectories observed, i.e. it compared the 

phylogenies generated to attempt to find patterns in key events called by the 

other pipelines.  Section 2.5 of this chapter covers this final pipeline with result 

shown in chapter 5.

Chapter 2 aims to establish an understanding of how the initial data was 

extracted and processed from the patients, as well as a general understanding 

of the structure of each pipeline and the software/computational steps taken to 
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generate the project results.
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2.2) Sample Extraction, Sequencing and Assembly

2.2.1) Sample Selection and Extraction

The raw data for this project was obtained from 25 patients who were part of the

MEDUSA cohort established by the Mesothelioma Research Programme at the 

University of Leicester. The patients were recruited into this cohort prior to 

scheduled Extended Pleurectomy Decortication surgery, which involves the 

removal of the pleura and subsequent removal of tumour tissue, and is 

considered a lung-sparing surgery due to it preserving the lung. Tumour tissue 

samples were taken from 5 anatomical locations, as described below, with 

additional steps then taken to ensure sufficient tumour content and prevention 

of cross contamination between each sample. 23 blade scalpels were used to 

cut 10 pieces of tumour tissue (or sometimes less if the tissue samples were too

small) measuring approximately 1.5cm x 0.5cm in order to avoid cross 

contamination of samples. The samples were reviewed via a histopathologist 

via assessment of hematoxylin and eosin slides to ensure there was sufficient 

tumour content present in each sample. Prior to each surgery, multiple blood 

samples were taken from each patient and frozen, with DNA extracted from 

these blood samples acting as matched normal samples to provide a germline 

reference for each patient. These steps were performed by the MEDUSA 

surgical team. 

The samples for each patient were numbered 1 to 5, with sample 2 only being

present in those 6 patients who had 5 samples extracted. Sample 1 was taken

from the apex of the lung which is located at the top of the structure where it

appears to form a point. Sample 2 was taken from near the pericardium, which
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is the tissue that surrounds the heart. Sample 3 was taken from the anterior

costophrenic angle, which is located at the bottom tip of the lung structure and

on the ventral side. Sample 4 was taken from the posterior costophrenic angle,

located at the bottom tip of the lung but on the dorsal side. Sample 5 was taken

from the oblique fissure, a fissure on either lung present towards the bottom of

the structure. The oblique fissure was selected over the horizontal fissure as it

is present on both lungs and so gives better options when selecting tissue to

extract, whereas the  horizontal fissure is only present on the right lung and so

may not  be suitable for extraction in all  cases. Figure 2.1 demonstrates the

approximate regions from which the samples would have been taken. 
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The histopathologist assessment led to the Sample 2 (pericardium) samples 

being excluded from 19 patients, due to lack of tumour content, with only 6 

patients retaining these samples for the purposes of further analysis (1, 12, 23, 

24, 27 and 34). (It should be noted that the numbering of the patients is arbitrary

and not reflective of any patient data). All samples were flash frozen using liquid

nitrogen in order for DNA extraction and sequencing at a later date. 

Figure 2.1: The approximate locations where the biopsy samples were taken from MPM patients. 1) the apex of the 

lung. 2) the pericardium or surrounding tissue. 3) the anterior costophrenic angle of the lung (front-facing). 4) the 

posterior costophrenic angle (rear-facing). 5) the oblique fissure (present on both the left and right lungs, unlike the 

horizontal fissure only present on the right lung). In patient 27, sample 2 was extracted from the anterior chest wall 

instead of the pericardium, but the relative position would be similar to that shown in the diagram. Diagram adapted 

from (Zhang, Jin-Li et al. 2021). 
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2.2.2) DNA Extraction and Exome Sequencing

DNA was extracted from the tumour tissue samples and the blood samples 

using the QiAamp mini kit (Qiagen) and QiAamp DNA blood mini kit (Qiagen) 

respectively, following the manufacturer's instructions each time. After the DNA 

was extracted from the tissue, whole-exome sequencing was performed using 

Illumina sequencing and an exome sequencing library, giving a final mean 

coverage of 276X in both the normal and tumour samples. In order to perform 

sequence alignment, the raw reads underwent quality control to remove low 

quality reads and reads that were contaminated by an adaptor. These quality 

controlled reads were then used in the Burrows-Wheeler Aligner (BWA) (version

0.7.17), which is the most well established  sequence alignment software, to 

map the reads to a human reference genome (Li, Durbin 2009). The hg19 

human genome taken from the UCSC website (Church, Schneider et al. 2011) 

and was used as a reference for the alignment. The reads and human reference

genome were then run through the mem algorithm in the BWA with all the 

parameters set to default values. Once the alignment was completed, the newly

generated BAM files were sorted using the Sambamba tool (version 0.6.7) 

(Tarasov, Vilella et al. 2015) which is a software used to manipulate SAM and 

BAM files, and indexed. Duplicate reads in the BAM files were then marked 

using Picard tools (version 2.18.9). It should be noted here, that all prior steps 

discussed so far in this chapter were not performed by the author of this thesis, 

and that the final BAM files were the starting point in terms of data for this 

project.
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2.3) Copy Number Based Pipeline Methods and Software

2.3.1) Selection of Sequenza as Copy Number Calling Software

Copy number variations (CNVs) are structural mutations which occur in the 

genome and are defined as the multiplication or deletion of DNA segments 

which have a length of greater than 1kb bases (Zare, Dow et al. 2017). The 

presence of these CNVs have been associated with various complex diseases, 

including schizophrenia, autism and multiple cancers (Zhang, Gu et al. 2009) 

though the specific biological mechanisms involved can be difficult to decipher 

due to the large allelic variance in CNVs, i.e. whereas a single-nucleotide 

polymorphism can exist in one of three states, the amount of differences that 

can occur within a CNV segment over a certain region are vast (Lupski 2007). 

Significant association has been specifically found between CNVs and cancers 

(Greenman, Stephens et al. 2007; Meyerson, Gabriel et al. 2010; Speleman, 

Kumps et al. 2008). It has been observed that cancer is a disease mainly 

consisting of somatic mutations which occur in the genomes of normal cells and

thus cause them to develop into tumours (Shlien, Malkin 2009) though 

susceptibility to developing cancer can be found in the germline. Of these 

somatic mutations, CNVs are widely considered to be one of the most 

significant in the development of a tumour, due to the inactivation of tumour 

suppressor genes from deletions (both heterozygous and homozygous) or the 

activation of oncogenes due to the amplification caused by increases in copy 

number (Albertson, Collins et al. 2003; Beroukhim, Mermel et al. 2010). As 

such, it follows that identifying somatic CNVs and the genomic regions they 

incorporate is essential in elucidating the biological mechanisms involved in 

tumour development and in improving cancer treatment. 
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Whole-exome sequencing (WES) is a popular method for identifying mutations 

in cancer tumours, as it can provide a high coverage compared to whole-

genome sequencing (WGS) and can be performed at a lower cost (Rabbani, 

Tekin et al. 2014). Unique methods are  required for estimating copy-number in 

WES data, as software already developed for the analysis of WGS is unsuitable

due to the hybridisation problem. There are several factors that make detecting 

CNVs in WES cancer data difficult, firstly somatic CNVs tend to have a much 

greater coverage of the genome than germline variations would (Kidd, Cooper 

et al. 2008), meaning the same techniques cannot be used for both and novel 

software must be made. Furthermore, the unknown ploidy within tumours 

means that this value must also be calculated when searching for CNVs (ploidy 

refers to the number of total copies of the genome, with two being the normal 

amount in diploid organisms). The most major difficulty factor is the cellularity of 

the cancer tissue, which is further complicated by possible contamination from 

normal tissue in the sample, and that there is a possibility that several distinct 

cancer clones could also be present in a single sample. Despite these 

challenges, a plethora of software has been developed to accomplish the 

detection of CNVs in WES cancer data (Zare, Dow et al. 2017; Zhang, Bai et al.

2019). 

Detecting CNV mutations from sequencing data is performed in one of three 

ways; using a pair-end approach, using an assembly based approach, or using 

a read-depth approach. As the reads required by the pair-end and assembly 

based approaches need to be longer than the very short reads produced by 

WES, these methods cannot be used in the identification of CNVs unless WGS 

is used. Therefore, all methods developed to handle WES must use the read-
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depth approach when estimating copy-number (Zare, Dow et al. 2017). The 

read-depth approach basically functions by comparing the number of reads 

present across every region of the genome, and then assigning a copy-number 

to that region based on how the ratio of total reads compares to neighbouring 

regions as well as to a matched normal sample in most cases. 

There are several published software packages which have been specifically 

designed for use with cancer data, with a portion of them also specifically 

catered towards dealing with whole exome sequencing data. ASCAT (Van Loo, 

Nordgard et al. 2010) is a CNV-caller which determines copy number in cancer 

by comparing matched normal and tumour samples to a list of already known 

single nucleotide polymorphisms (SNPs) and compares the read depth of the 

SNP loci between the three. It also determines ploidy and cellularity estimates 

for a given patient sample, and then uses the values calculated to call a copy 

number profile across the regions provided. CNVkit (Talevich, Shain et al. 2016)

targets both targeted and random non-targeted reads to infer copy number by 

applying corrections based on the notion that the random off target reads have 

less bias. For whole exome sequencing data, there's ExomeCNV 

(Sathirapongsasuti, Lee et al. 2011) designed to call copy number and loss of 

heterozygosity, based on short mapped reads, providing read depth and B-

allele frequencies. Considering multiple methodologies for the calling of copy 

number variants is essential is ensuring that the one used is the most suitable 

for the pipeline and downstream software.

The first major analysis pipeline used in the project was assembled using 

software which could call copy-number changes from exome data, and 
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phylogenetic software which could then use the resulting data to build a tree for 

each patient. The first step was to select a copy-number calling software with 

the following criteria; the ability to accept exome data as an input, the ability to 

accept data generated from cancer tissue which would be expected to have 

lower cellularity, and finally the ability to distinguish between changes in ploidy 

and large-scale copy-number alterations. The last criterion was necessary due 

to the possibility of MPM causing very large copy-number alterations that may 

effect the entire length of a chromosome arm but were not actually caused by a 

full chromosome replication (or deletion). Multiple options were considered for a

software to fulfil this role, and eventually Sequenza (Favero, Joshi et al. 2015) 

was chosen. A further software was selected called ABSOLUTE (Carter, 

Cibulskis et al. 2012) which would be used to support the Sequenza software 

(details discussed later in the chapter). Sequenza would be used in the main 

analysis pipeline to generate the copy-number input, whilst ABSOLUTE would 

be used as a comparison to the ploidy and cellularity estimates made by 

Sequenza. 

Sequenza is a software package specifically made to incorporate matched 

normal and tumour exome data (or whole genome data) to infer copy-number 

profiles based on  estimates of cellularity and ploidy in the tumour samples 

(Favero, Joshi et al. 2015). It is divided into two major software components; a 

Python script used to process the sequencing data and create the input for the 

second component, and an R package which uses a probabilistic model to 

generate the copy number profiles for each sample. Sequenza was selected 

over other options due to it being developed specifically for use with tumour 

data, and the ability to work with samples with very low cellularity with copy 
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number calls being accurately reported at cellularity values as low as 25%. 

Furthermore, it isn't limited to genome data and can readily accept exome data 

as well, although it cannot take BAM files as raw input. It was selected as the 

primary copy-number calling software over others due to having reported higher

accuracy, especially at lower cellularity values (Favero, Joshi et al. 2015). 

Sequenza uses B-allele frequency (BAF) as well as depth ratio in order to 

establish the parameters for its probabilistic model. The BAF refers to the ratio 

of allele frequency between the A and B alleles, such that a BAF of 0.5 would 

indicate an equal proportion of both alleles being present. The depth ratio 

indicates the sequencing depth of any given segment of the exome compared 

to normalised values. This can be used to identify regions of deletion or gain 

where an unexpected read depth is present. Sequenza also produces output in 

a tabulated text format, making it useful when converting the data to generate 

input for the subsequent step of the pipeline. 
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2.3.2) Generation of Sequenza Input 

As stated in section 2.2.2, the sequencing data was assembled and then stored 

in BAM format, with each patient consisting of 4 or 5 tumour samples and 1 

normal tissue sample, meaning there were 5 or 6 large BAM files to process per

patient. The first step in using Sequenza required the sequencing data to be in 

pileup format, so the pipeline required some preliminary processing before 

Sequenza could be used. Pileup format is similar to BAM format in that they 

both contain sequence alignment data in a text format, though pileup files are 

not limited to segment sizes of 128mb and can also facilitate the visual display 

of this data. The generation of the pileup files is the most time-consuming and 

computationally heavy step in the Sequenza pipeline, and acts as a practical 

limitation in the software. This can be overcome by splitting the BAM files before

conversion into pileup format, and then re-merging the files at the end of the 

pre-processing steps before the R-based analysis component of Sequenza is 

performed. Sequenza includes a function in its Python script to allow for this. 

Pileup files were created from the already generated BAM files using the 

mpileup function in SAMtools (Li, Handsaker et al. 2009), which is a software 

suite widely used for the manipulation of alignment data. Version 1.9 of 

SAMtools was used for all files. Creating a pileup file required a reference 

genome in FASTA format , so the same UCSC reference file that was used 

previously to generate the BAM files was also used here (as mentioned in 

chapter 2.2). The -Q value for the mpileup function was set as 20, meaning that 

any reads with a quality below that value would not be considered in the 

assembly of the final file. Sequenza also required a GC content file alongside 

the pileup files in order to normalise the depth ratio calculations used in the first 
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analysis step. This file is required to be in wiggle track format (Kent, Zweig et al.

2010) and was produced using the Python script  included in the Sequenza 

package, with the same genome reference file mentioned previously used as 

the source. A -W value of 50 was selected as recommended by the Sequenza 

documentation, which enforced a window size of 50 bases in the creation of the 

file. 

The pileup files then needed to be converted into the unique Sequenza format, 

seqz, which were made using the Python script, and for which the GC content 

file is required, as well as a normal pileup file and a tumour sample pileup file. 

This script extracted sequencing depth from the pileup files, with a minimum 

requirement of at least 20 reads across both the tumour and normal pileup files 

for each genomic region. It determined homozygous and heterozygous loci in 

the normal sample and then called variant alleles in the tumour sample followed

by the allelic frequency. The output of this script is a tab-delimited text file, which

can be easily imported into R for the analysis step. However, an optional step 

was taken to bin the data using a further function provided in the Python script. 

This was done in order to improve performance in R, and is also recommended 

in the Sequenza user guide to mitigate the long processing times and is stated 

to have a negligible effect on the results. A window size of 50 was selected for 

the binning function. This binned output was then ready for analysis in the R 

component of Sequenza. 

It should be noted that initially, version 2.1.0 of Sequenza was used to process 

and analysis the data in this stage of the pipeline. However, in May 2019 a new 

version of Sequenza (3.0.0) was released and so the samples were re-
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analysed. The updated release made few changes to the probabilistic model 

and were mostly focused on improving the performance of the software. 

Although runtime was greatly reduced, there were no noticeable changes in the 

copy-number profiles produced by Sequenza.

Figure 2.2: Flowchart displaying the general pipeline from the BAM files generated by Novogene up to 

the point where the binned seqz files were ready to be imported to R for use as input.
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2.3.3) Sequenza Copy Number Analysis in R

All 106 seqz files were then analysed using the R component of the Sequenza 

package, which is split into 3 major functions. The sequenza.extract function is 

run initially in order to read the input files into R and normalise the normal 

versus tumour depth ratio using the GC content file. This function can then use 

the normalised depth ratio to establish distinct allele-specific copy number 

segments in the exome by establishing breakpoints where the depth ratio 

fluctuates. The second function is sequenza.fit which applies the probabilistic 

model for estimating copy-number profiles. The model incorporates the copy 

number segments calculated in the previous step, as well as the copy number 

of the B allele (which is defined as the allele with minor frequency). The function

then infers both ploidy and cellularity estimates and uses these 4 parameters to 

generate copy-number profiles for each sample. The model defines prior 

probabilities for copy number so that 2 copies will be preferred by default. This 

function also provides alternate solutions along a range of ploidy and cellularity 

values. There is a secondary implementation of this function which is available, 

that allows for cellularity and/or ploidy values to be given to the model from the 

onset, enforcing those values and removing their estimation from the work flow. 

This can be done in cases where two alternate solutions are extremely close in 

probability but other external data can provide evidence towards one. A use of 

this secondary implementation will be discussed later in this chapter. The final 

function of the R component is sequenza.results which simply formats and 

returns the results of the previous functions and allows for visualisation of these 

results. Each function feeds directly into the next, with all output being produced

by the final function.
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2.3.4) ABSOLUTE Copy Number Estimation

Although Sequenza was selected as the software to be used in order to 

estimate copy-number segments in the exome data, it was decided that 

additional software should be incorporated into the pipeline in order to validate 

the ploidy and cellularity estimates made by Sequenza, and thus, provide an 

orthogonal approach in determining copy number estimates for the pipeline. A 

suitable software would need to be able to handle Sequenza output or WES 

input, and would need to have been developed with cancer data specifically in 

mind. An immediate obvious choice was ABSOLUTE (Carter, Cibulskis et al. 

2012), which was a well established software that has been used in numerous 

cancer-based studies to provide estimates of cellularity and ploidy (Hu, Estecio 

et al. 2021; Krause, Roma et al. 2021; Yu, Chen et al. 2019). ABSOLUTE is 

also mentioned directly in the Sequenza paper (Favero, Joshi et al. 2015), 

where it is used to test against the cellularity and ploidy values estimated by 

Sequenza. Although in the paper, Sequenza is reported to produce more 

accurate values when compared to a range of other estimates from the same 

samples, it should be noted that ABSOLUTE was not using Sequenza 

generated output for these calculations, with both softwares using pre-

computed segment files. Further to this, in this project, ABSOLUTE is used only 

as a comparison to the predictions made by Sequenza, via comparison of 

results from both pieces of software. 

Other software was looked at including PyLOH (Li, Xie 2014) and qpure (Song, 

Nones et al. 2012), though both were unable to determine accurate estimates 

from exome-based data, and only worked with whole-genome results. There 
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was in fact, only a single other software available at the time which could handle

exome data, AbsCN-seq (Bao, Pu et al. 2014). The AbsCN-seq paper refers to 

ABSOLUTE at the time as the “gold standard” for estimating ploidy and 

cellularity in cancer data, and whilst this is not validation enough by  itself, it is 

certainly a strong recommendation. The main difference between the two 

softwares is that ABSOLUTE only uses the segment file input in its calculations,

whereas AbsCN-seq uses independent data alongside the segment file input. 

As the selected software was to be used for comparison purposes, it was 

decided that ABSOLUTE would be the better choice as the lack of any 

independent data input for AbsCN-seq may influence the results and create bias

in favour of the estimates matching those produced by Sequenza. 

ABSOLUTE is a computational method which functions to infer both cell ploidy 

and tumour purity (cellularity) using pre-computed copy-number segments (in 

this case, produced by Sequenza) and pre-computed recurrent cancer-

karyotype models which are provided by ABSOLUTE itself. It can also take an 

optional additional input file, called a point mutation file, which is essentially a 

file containing single-nucleotide polymorphisms called on the cancer data, 

though, at the time of analysis this additional data was not available. 

ABSOLUTE first estimates ploidy and cellularity from the copy-number profiles 

provided in the segments file using a probability model. It then uses the 

karyotype models from a large internal collection to resolve samples where an 

estimation could not be reached using the probability model alone. It selects the

most simple karyotype solution (or rather the one that appears most commonly) 

that fits the data, drawing from a large range of karyotype models, from haploid 

genomes to hyper-aneuploid genomes (>6 whole copies). 
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2.3.5) ABSOLUTE Input and Copy Number Analysis

The input for ABSOLUTE was generated using a perl script to extract the 

relevant information from the segments file produced by Sequenza. The copy-

number segments file could be provided either in HAPSEG format (a specific 

format created for use with the HapSeg software), or as a simple tab-delimited 

segmentation file. The basic file was chosen as it would be easier to convert the

Sequenza format into that format than into the HAPSEG format, and either 

formats should produce identical output. The input format required the 

chromosome number, start position and end position, and the copy number 

value for each segment. All of this information was extracted using a simple Perl

(v 5.18.2 ) script, though segments with a size of less than 10kb or a total copy 

number above 10 were not included and were discarded at this stage. This was 

decided as very small segments are likely to be artifacts from the copy-number 

calling software, with the same logic applied to segments with a total copy-

number size of over 10. In fact, the only segments removed for having a copy-

number size of above 10 were also segments which were smaller than 10kb. 

Once the input was generated, it could be used with the R-based ABSOLUTE 

package. R version used was 3.4.4. ABSOLUTE version used was 1.0.6. 

ABSOLUTE runs with a single command, and the majority of the arguments 

were kept as the default values. There were exceptions to this though, as the 

“min.ploidy value”, which discards any solutions that estimate a lower ploidy, 

was set to 1. Genome was set to “hg19”, and the platform was set as 

“Illumina_WES”. The only other argument altered was “copy_num_type” was 

set to “total”, which was required as the generated input used the tab-delimited 
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format. All 106 samples were successfully run through ABSOLUTE, providing  a

plot displaying the estimated solutions, a plot displaying copy number, genomic 

fraction and copy ratio, and an Rdata file containing all the values used to plot 

the graphs. 
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2.3.6) Selection of TuMult as a Phylogenetic Analysis Software

As discussed, a major aim of this project is to identify driver mutations in the 

evolution of MPM which occur early in the process through the use of 

phylogenetics, with the ultimate aim of providing possible druggable targets 

which can arrest the process before the cancer reaches its aggressive form. As 

stated previously, MPM has been shown to be mainly driven by copy number 

alteration events as opposed to single nucleotide variations (though these 

events may still be involved). As such it follows that a phylogenetic software 

which focuses on copy number events should be selected for use in the initial 

pipeline. Several algorithms incorporating different methods were considered, 

though TuMult (Letouze, Allory et al. 2010) was chosen as the software to be 

used in conjunction with Sequenza to generate the first phylogenetic results. 

TuMult is an R-based software which consists of a single R script containing 

multiple functions, and calculates tree topologies and maps copy-number 

variation events based on copy-number estimation profiles (Letouze, Allory et 

al. 2010). 

TuMult functions by mapping common breakpoints between samples in each 

patient and follows the assumption that if a breakpoint has occurred in an 

identical location (or a location which is extremely close) on the exome, then it 

is unlikely that this event occurred on two separate occasions in the evolution of

the cancer and so must be representative of a single event which happened 

prior to the samples diverging. This is in contrast to other methods which use 

regions of corresponding copy number between patients and assume that they 

occurred from a single event regardless of the segmental breakpoints. This 

method can mistakenly call convergent events as single events and so has a 
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tendency to place events earlier on phylogenetic trees than where they actually 

occurred. The use of breakpoints by TuMult is more reliable and allows for a 

more accurate prediction of early events. TuMult uses a neighbour-joining 

inference method to calculate tree topologies, assigning events to branches 

based on the lowest available evolution distance. This means it tries to establish

the lowest total overall distance in the output tree and will always produce the 

same tree from the same input data. This basic assumption behind this is that 

samples which have more similar events in common diverged more recently 

than samples which are more different, and that the more frequently an event 

occurs (assuming the same breakpoints) the earlier in the tree that event will be

placed. Unlike certain neighbour-joining methods TuMult does make the 

assumption that single events are all equal in terms of evolutionary time and so 

branch length on the outputted trees does not correspond to time and instead 

simply reformats to allow for the visualisation of all events which have occurred 

on any given branch. Due to this assumption, by default, TuMult treats every 

single event as significantly as any other (Kannan, Wheeler 2012). 

TuMult was also selected as its required input was easily generated from a text 

tabulated format provided by a software like Sequenza. In terms of 

methodology, TuMult uses a neighbour-joining method, which is compatible with

each patient containing multiple samples. TuMult would not be suitable for 

analysis on patients with only 1 or 2 samples, although it would still be able to 

provide some information in the case of 2 samples as it could call events which 

occurred prior to the samples diverging. Another major advantage of using a 

neighbour-joining method is that it allows for extremely quick runtimes when 

compared to alternative methods such as maximum parsimony or maximum 
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likelihood (Kuhner, Felsenstein 1994). For these reasons TuMult was selected 

as the most suitable software for generating the phylogenies for this component

of the project. The limitations of TuMult were outweighed by its suitability to the 

dataset and for the practicalities of the software which allowed for quick 

turnover despite limited available computational resources. TuMult version 1.0 

was used for all analyses.
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2.3.7) Generation of TuMult input

The input for TuMult comprises of 4 distinct components: a text file containing 

positional information of all segments per patient to be analysed including 

cytogenetic bands (probe file), a text file containing copy number estimates per 

sample of all segments to be analysed (profile file), an Rdata reference file 

containing a reference dataset derived from unrelated patients, and an integer 

value which defines the number of probes below which two breakpoints from 

two samples are considered identical (breakpoint value). The two text files could

mostly be generated directly from the segments file produced by Sequenza for 

each sample, though several steps were required in order to build the correct 

input format. This is the step in the analysis where all samples for a patient are 

combined into a single input, as the profile file contains the copy number data 

for all samples per patient. The first major problem to overcome was that both 

the probe file and the profile file needed to have an identical number of lines as 

each line in each file need to be paired with the corresponding line in the other 

file. This was problematic, as the segments called by Sequenza were not of 

equal length and varied greatly between patients, meaning all profile files would 

not be able to directly correspond to a single probe file containing defined 

positions. The solution to this problem is addressed in the TuMult user guide, 

the data could be split into equally sized bins and the copy number of each new 

binned segment assigned a value based on the segments file produced by 

Sequenza. 

Choosing the size of the bins which the segments would be split into was a 

crucial step in generating the TuMult input. Initially a value of 10kb was chosen, 

though it was decided that the subsequent trees produced contained a lot of 
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noise from smaller segments which tended to have much higher copy number 

values than the average for the same sample. This is demonstrated in Figure 

3.20 which is the TuMult tree produced using a 10kb bin size. A bin size of 

100kb was then selected, as the majority of high confidence events had a total 

size greater than this value, whilst it also allowed for many to be ignored. 

Setting the bin size to 100kb meant that any segments with a total length below 

that value would be removed from the dataset at this stage and so would not be

represented in the TuMult input. A comparison between the two bin sizes can be

seen from Figures 3.19 and 3.20, displaying trees for Patient 1 Sample 1 with a 

100kb bin size and a 10kb bin size respectively. 

The binning method was performed using a small collection of scripts generated

using the programming language Perl (Wall, Christiansen et al. 2000) version 

5.18.2. In order to generate equal bins for each patient, the lowest positional 

value for each chromosome from each sample was set as the starting point of 

the bins, and the highest positional value for each chromosome from each 

sample was set as the ending point. This was necessary as the chromosome 

lengths between samples was not always the same for different samples in the 

same patient. Once the start and end points for each chromosome had been 

selected, the probes files could the be created by generating a 100kb segment 

(or probe) from the start point, and adding a new segment in 100kb increments 

until the highest positional value on the chromosome was reached or exceeded.

Using these 100kb probes, the copy number information could then be 

extracted from the segments file produced by Sequenza. The copy number 

value in each region defined by the probes was then written to a new file, which 

would act the profiles file for TuMult. In segments where there were two copy 
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number values (essentially, where a probe would overlap the breakpoint of two 

segments), the copy number value was set as the non-normal (not 2) value for 

the entire probe, or if both were non-normal it would keep the same copy 

number value as the previous probe. 

This allowed for the profiles and probes files to generated with matching data on

corresponding lines as required by TuMult, though there is an obvious drawback

to this method in that the absolute breakpoint value is lost and rounded to the 

next 100kb artificial breakpoint. This seems like a major limitation initially as it 

opposes TuMults unique selling point of using unique breakpoints to better 

define single mutation events. However, the breakpoint value (4th input for 

TuMult) is implemented in order to account for this issue. The default breakpoint

value integer given by TuMult is 2, which is the value that was used for all 

patients in this pipeline. A value of 2 means that as long as a breakpoint was 

within 2 probe lengths of a breakpoint in another sample, then they would be 

counted as identical breakpoints. This is an acceptable compromise, as in order

to be counted as a single event by TuMult, the breakpoints need to be identical 

at both ends of the event, and breakpoints occurring within 2 probe lengths at 

both ends of a single event should be an extremely unlikely event. The 

breakpoint value was adjusted from a range between 2-10 to see what effect it 

would have on the produced trees, though no difference was seen with any 

value. This implies that there were no events in any patient with occurred close 

enough that increasing the acceptable number of probe lengths from 2 to 10 

allowed for any other events to be included. 

It should be noted that TuMult does not directly record the specific copy number
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for each of the binned segments. TuMult uses its own numbering system which 

reflect copy number status; with 0 defining a normal segment, 1 defining a 

heterozygous gain (or a copy number increase of 1, meaning a total copy 

number of 3), 2 defining a gain with a total copy number value of 4 or any value 

higher, -1 defining a heterozygous loss (copy number of 1), and -2 defining a 

homozygous loss (copy number of 0). This means that TuMult does suffer from 

a loss of specificity in regard to total copy number, but this can also lead to 

improved tree calculations in the distance matrix as it will allow for more 

matches to be  made. It could be argued because of this that TuMult has a 

slight bias in reporting more increasing copy number events. 

The final input file required for TuMult is the Rdata reference set, which requires

a dataset generated from unrelated patients with the same type of tumour. 

Unfortunately, no reference datasets were available for this analysis and so an 

artificial reference set was produced where every probe segment was reported 

as having a normal copy number value. It had to be ensured that the reference 

dataset contained an identical number of segments as the probes file in order 

for the TuMult script to accept it. This approach was decided upon as it seemed 

a completely normal artificial dataset would have the least impact on the results 

in the situation where no actual reference dataset was available. 

The phylogenetic trees produced by TuMult are outputted as .dot files, which 

are non-human-readable files which need to be processed by additional 

software in order to produce actual images. A visualisation software called 

GraphViz (Gansner, North 2000) was used in order to convert the .dot files into 

png images. 
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2.3.8)  ASCAT/TuMult Methods

It was suggested that a good way of validating the Sequenza/TuMult pipeline 

would be to run it using a different copy number calling software in the place of 

Sequenza, and see whether the results produced showed any concordance. 

Initially ABSOLUTE was considered as a candidate for this, but as ABSOLUTE 

does not produce its own set of copy number segments and instead adjusts a 

copy number profile given to it, a further copy number software would be 

needed anyway (as obviously Sequenza data could not be used in order to 

avoid bias for this analysis). Due to this ABSOLUTE was disregarded, and 

fortunately, the Novogene team was working in parallel on the same patient 

cohort using alternative pipelines and methods than the ones discussed in this 

project. One such software in the Novogene copy number pipeline was ASCAT 

(Allele-Specific Copy number Analysis of Tumors) (Van Loo, Nordgard et al. 

2010). 

ASCAT works by calculating copy number profiles, as well as estimates of 

cellularity and ploidy in a sample, based on sequencing read depth at specific 

single nucleotide polymorphisms (SNPs). These SNPs need to known prior to 

the use of the software and stored in a list that is given to ASCAT as one of the 

inputs, along with matched tumour and normal BAM files. It should be noted 

here, that the generation of ASCAT output was performed entirely by the 

Novogene team, and although the author of this thesis did then use this output 

to create input for TuMult, no collaboration on the running of ASCAT was done. 

Novogene generated the list of SNPs using AlleleCount (Raine, Van Loo et al. 

2016) which is part of the ascatNgs software package, that was created in order

to aid researchers in the use of the ASCAT software. They did this using a 
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reference data set taken from the 1000 genomes project (1000 Genomes 

Project Consortium, Auton et al. 2015) an initiative established to generate the 

largest catalogue of human genetic variation for use in genetic research, and 

used the AlleleCount tool alongside the matched normal and tumour BAM files 

generated for each patient and sample. This produced a normalised log transfer

of read depth (LogR)  from the tumour sequence data compared to the normal, 

as well as B-allele frequencies (BAF). After a GC-correction step, these values 

are then used in the ASCAT algorithm to generate copy number segment 

estimations, in a similar way as the Sequenza software does, as described in 

Section 2.3.1, though obviously the two algorithms are different and so perform 

differently. ASCAT was performed for all patients, with copy number profiles 

generated for the 17 patients in the established cohort of this project, producing 

profile graphs for each patient and the equivalent of a segments file, which 

contained the start and end positions for each segment, the major and minor 

copy number, as well as the B allele frequency. Results for this methodology 

can be found in Section 3.3.6.
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2.3.9) Use of Branch Length to Infer Anatomical Spread of MPM

One of the objectives of this pipeline was to attempt to establish a possible 

recurrent anatomical trajectory of MPM as it spreads across the pleura. The 

average branch lengths were calculated for each sample in an attempt to try 

and determine if there was a clear order of divergence which could then be 

mapped to the physical space of the pleura. This was done by simply counting 

the number of events from the patient node up to the root of the tree. As such, 

the value of all branch lengths will exceed the total number of events called, as 

events on shared branches will be counted for all the samples which stem from 

that branch. The branch lengths can be used as a loose method to determine 

evolutionary distance for each sample, and due to the assumptions made by 

TuMult discussed earlier, lower values for branch length assume that the 

particular cancer population associated diverged more recently. 

Unfortunately no results are present directly answering the question of this 

objective, though a table (Table 3.10) does display the total number of events 

and different branch lengths for each patient in section 3.4.3. Detailed 

discussion about the reasoning for this can be seen in section 3.5.2.
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2.4) Single Nucleotide Variant Calling Software

2.4.1)  Selection of VarScan2 as the SNV Calling Software

Single nucleotide variations (SNVs) are mutations that occur in the genome 

when a nucleotide is altered, resulting in a change in base. As opposed to 

CNVs, SNVs are not well associated with driving the progression of cancer, and

instead tend to confer susceptibility (Deng, Zhou et al. 2017). Nevertheless, 

there are still a large amount of studies which find association in specific cases 

(Chen, Zhang et al. 2021; Gan, Carrasco Pro et al. 2018) and many variant 

callers designed to be used with cancer derived sequence have been 

developed within the last decade (Xu 2018). There are unique challenges in 

calling SNVs from cancer-derived sequencing data, with a major difficulty being 

the ability to distinguish between genuine low-frequency variants and 

sequencing artifacts. Somatic SNV calling generally follows a three-step 

process: a pre-processing step in which low-quality reads are filtered out of the 

sequence; a variant calling step which is the main part that different calling 

software will vary; and a quality control step which filters out calls that don't 

meet the threshold criteria of the calling software. 

Published software which acts to call SNVs in cancer sequence include 

Shimmer (Hansen, Gartner et al. 2013) which uses statistical hypothesis testing

to call somatic SNVs in either exome or whole genome sequencing data 

extracted from tumours. It is also specifically designed to work with samples 

that are highly contaminated, or have a high level of heterogeneity. MuTect2 

(Cibulskis, Lawrence et al. 2013) uses joint allele frequencies alongside a 

probability model to calculate differences in Variant Allele Frequency (VAF), and
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is also designed to work with samples that have very low cellularity values 

(<0.1). VarDict (Lai, Markovets et al. 2016) is able to detect variants in indels as 

well as in SNVs, with indels being small insertions or deletions in the sequence 

(of up to 50bp). 

Although not considered to be as influential or frequent in cancers, there is still 

a large demand for SNV calling software that can be used with cancer-derived 

sequence. It is critical that the unique aspects of SNV calling software are 

examined before selecting one for a pipeline, in order to ensure that it 

complements the other elements, allowing for greater accuracy in the final 

output. Most studies into the genes associated with MPM development are 

mainly focused on copy number variation, with single-nucleotide alterations 

often only being used to call copy number segments by software such as 

ASCAT, and do not consider the possibility that single base changes at specific 

sites could also be a hidden factor in the transformation of the cancer from its 

latent state to its aggressive state. It should be noted that there has been no 

studies published at the time of writing, which explore the idea of single-

nucleotide drivers in MPM that have been assessed using a phylogenetic 

strategy. A key feature of using phylogenetics to identify drivers is that it can be 

established whether any particular single-nucleotide variation (SNV) occurred 

early in the evolution of the cancer, or at least whether it took place before the 

initial divergence of cancer cell populations. It is these mutation events which 

have the potential to effect cellular function in such a way to cause the rapid 

replication of cancer cells. Though it is obviously unlikely that the occurrence of 

a single SNV could cause the same level of impact as a large copy number 

loss, it is possible that certain positions or certain combinations of SNVs are 
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significant in driving MPM. 

(It should be noted here that the patient cohort was reduced from 25 to 17 due 

to the comparative analysis of Sequenza and ABSOLUTE as to be discussed in 

Chapter 3, and that the same 17 patients would be used in this second pipeline 

due to those findings. That is to say, the extremely low cellularity values 

reported for the excluded samples by Sequenza and ABSOLUTE would still 

have an adverse effect in this pipeline as it would have done in the 

Sequenza/TuMult pipeline.)

 

In order to explore this concept, an SNV caller would need to be selected to 

generate a list of variants present in the tumour samples from the patient 

cohort. The selected variant caller would need to fulfil the following criteria: be 

able to use whole exome sequencing data as input; be able to use data that 

was generated from cancer tissue samples, or rather data that was known to 

have lower expected values of cellularity; and be able to use matched normal 

tissue data in order to distinguish between germline variants that may have 

been present prior to the initial formation of cancer cells. There are several 

bespoke SNV calling software designed specifically to deal with cancer tissue 

sequence available. Of these, VarScan2 (Koboldt, Zhang et al. 2012) was 

selected to generate SNV calls for the purposes of this pipeline. VarScan2 could

meet all of the listed criteria mentioned previously that are required to operate in

this position, and uses a different calling framework than most other published 

softwares which tend to use Bayesian statistical probabilities to detect and 

evaluate variants. VarScan2 uses a heuristic statistical approach which is 

designed to operate better at higher read depths and samples with lower purity 
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(either through decreased cellularity or admixture of multiple cell populations), 

which are factors that often cause variant callers to struggle. Furthermore, a 

study published in 2013 evaluated different somatic variant callers, and found 

that VarScan2 performed the best overall, particularly at read depths of between

200-500 (Stead, Sutton et al. 2013). 

VarScan2 accesses the tumour and normal sample data simultaneously in order

to make pairwise comparisons of the read depth and and nucleotide calls at 

each position in the genome (or exome). To detect variants, the software uses a

heuristic algorithm to independently determine the genotype at individual 

positions based on the variant allele frequency (VAF) (the proportion of non-

germline alleles reported in the data). A heuristic algorithm is one which is 

designed to solve a problem efficiently at the cost of precision, and so does not 

guarantee a perfect solution but completes the problem much more quickly. 

VarScan2 also makes copy number alteration predictions based on differences 

in normalised read depth simultaneously. Based on which version of the 

algorithm is performed, VarScan2 can report either germline, somatic or loss of 

heterozygosity (LOH) variants in the data. LOH variants refer to positions which 

are heterozygous in the normal sample (i.e. have two alleles present at a given 

genomic position) which are then found to be homozygous in the tumour 

sample. 
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2.4.2)  VarScan2 Input Generation and Throughput

For input, VarScan2 requires a pileup file for each patient sample and a pileup 

file for the matched normal sample in each case. These files had already been 

generated for use with Sequenza and so could be used again here without the 

need to recreate the pileups in SAMtools. The methodology for creation of the 

pileup files can be read in section 2.3.2. However, the pileup files were slightly 

adjusted as they were sorted using SAMtools so as to ensure the that 

chromosome positions were listed in ascending order, which is a requirement 

for the VarScan2 algorithms.

VarScan2 somatic algorithm (version 2.3) was used to call variants for each 

patient and sample in the cohort, initially using all default parameters except for 

the tumour purity, which was set to 0.5. This was selected at first as it was 

recommended in the VarScan2 user guide to use this value when actual values 

were unknown, however, cellularity estimates were available both from 

ABSOLUTE and Sequenza. To take advantage of the availability of this data, 

the ABSOLUTE and Sequenza cellularity estimates were combined for each 

sample, to give an average estimate of the tumour cellularity. These combined 

values were then used for each corresponding VarScan2 run, with the tumour 

purity parameter changed each time. A comparison of the Sequenza values, 

ABSOLUTE values, and leaving the parameter at its default setting was 

considered here, but the resources required, both in terms of time and 

computational power, were too large to justify it, though it would be an 

interesting route for further analysis in this pipeline and to assess the effect of 

different values in this parameter on the overall results. 

65



Of the 106 total samples, 74 were successfully run through VarScan2 somatic, 

with the remaining 32 samples removed based on results of the comparative 

analysis between Sequenza and ABSOLUTE, leading to the removal of 8 

patients as mentioned in the previous section. Each sample gave two output 

files in the form of tab-delimited lists, one for the variants called and one for 

indels reported. Indels refer to small scale insertion or deletion in the genomic 

sequence, of between 1 and 50 nucleotide bases. These indel calls were not 

used for any further analysis in this project though examining the potential of 

indels in the pathophysiology of MPM could be an interesting expansion in 

future research. The variants file contained SNVs detected by the VarScan2 

somatic algorithm, though these were then processed using the 

processSomatic command which is part of the VarScan2 software package. 

This resulted in 4 output files: one containing germline variants, one containing 

LOH variants, and two containing somatic variants, with high confidence calls 

and low confidence calls stored in each file respectively. A somatic call was 

considered to be high confidence if it had a p-value of less than 0.05 with 

adjustments for multiple comparisons and false discovery rate performed by the

somatic algorithm. The high confidence somatic files were the ones used 

throughout the subsequent steps of this pipeline, as germline variants and LOH 

variants were not the target of this investigation. That is to say, somatic variants 

are the ones where the most interest lies as they are the variants that have 

occurred within the cancer cells, whereas germline and LOH variants would be 

more suited to when searching for cancer susceptibility. 
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2.4.3)  Quality Control Using MuTect2

Further quality control steps were then taken to ensure the variant calls were of 

the absolute highest standard for the rest of the pipeline, the first of which was a

comparison to variant calls made by a separate software called MuTect2 

(Cibulskis, Lawrence et al. 2013). MuTect2 was the software of choice of 

Novogene, who were using it for variant calling in their own pipeline which was 

using data from the same patient cohort, as with ASCAT mentioned previously. 

MuTect2 was also briefly discussed in Section 2.4.1, as a variant caller which 

uses a Bayesian statistical model to detect somatic alterations in cancer tissue 

derived sequence. MuTect2 was specifically designed to work with data where 

there was very low cellularity (as low as 0.1) and still produce accurate calls, 

making it useful in the analysis of cancer data. The reason MuTect2 was not 

originally chosen for use as the primary SNV caller in this pipeline is that the 

cellularity, although low, is not as extremely low as the cases for which MuTect2 

was designed in mind of. Further to that, as mentioned previously, VarScan2 

does not use Bayesian statistics in its approach to variant calling which is stated

to help avoid certain pitfalls in the process. The MuTect2 results used for this 

quality control were produced full independently by Novogene, with the author 

of this project having no input into producing them. MuTect2 version 4.0.5.1 was

used by Novogene and was run using default parameters.

The initial step of the additional quality control of the high confidence somatic 

VarScan2 calls was a direct comparison with the MuTect2 results, produced 

from the same BAM files but independently produced pileup files (though in 

theory the two sets of pileup files should be identical) and each patient and 

sample call file was compared to its complementary file in MuTect2. This was 
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done to create a list of consensus calls, i.e. the only calls carried forward 

through the rest of the pipeline had to be present in both the VarScan2 and 

MuTect2 outputs. The consensus calls were then processed to remove entries 

with a reported read depth of less than 30 in total or less than 5 in the tumour 

sample. Entries were also removed if the variant was detected in the germline 

more than 4 times, if the variant allele frequency in the tumour sample was less 

than 5, or if the variant allele frequency in the normal sample was greater than 

1. This was to ensure that the variant calls labelled by VarScan2 as somatic 

were valid, as recurrent variants detected in the germline or in the normal 

sample would imply that the mutation is not fully somatic and was present in the

genome prior to the first cancer mutations in the pleura. 
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2.4.4) Selection of PhyloWGS as an SNV-based Phylogenetic 

Analysis Software

In this section the selection of a phylogenetics software that specialises in 

inferring trees based on SNV calls will be discussed. The chosen phylogenetics 

software would need to able to infer clonality using SNV calls as input and also 

be able to work with data derived from whole exome sequencing. 

A clear frontrunner was found with the PhyloWGS software (Deshwar, Vembu et

al. 2015) which had the additional attractive feature of being able to incorporate 

CNV calls alongside SNV calls to account for changes in copy number and 

correct for this when considering the read depth in the SNVs. Due to MPM 

having a large amount of copy number variation, which had also been 

confirmed in this patient cohort, this feature was basically a necessity when 

trying to establish clonal SNV events, which could otherwise be obscured due to

changes in read depth caused by gains or losses in copy number in the region 

incorporating the SNV. PhyloWGS had been created with exactly this issue in 

mind (though not specifically for use with MPM), and so was the perfect 

candidate for this pipeline. It should be noted that at the time of analysis, no 

other published software was available which contained this feature, making 

PhyloWGS essentially the only choice. Other SNV based phylogenetic software 

such as PhyloSub (Jiao, Vembu et al. 2014) or PurBayes (Larson, Fridley 2013)

were also considered, but without addressing the issue of how CNVs will effect 

the read depth of SNVs, the results from software such as these would have 

likely been inaccurate. The importance of this issue can be expanded on even 

more when it is considered that SNVs that are present within important copy 

number change regions, are themselves more likely to be significant in the 
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progression of MPM than the majority of SNVs, and that they would likely be 

completely misplaced in any phylogenetic tree if the copy number effect of said 

region was not taken into account. It is important to note that despite the name 

and the user guide referring exclusively to whole genome sequencing (WGS), 

PhyloWGS is fully compatible with WES data, and this is confirmed in the 

frequently asked questions section of the online hub that supports the software.

PhyloWGS operates using a probabilistic Bayesian statistical model, and uses 

the read depth of the SNV input calls, corrected for using the CNV calls, to 

generate a distribution of trees. PhyloWGS then samples from this distribution 

using a MCMC (Monte Carlo Markov Chain) and reports the tree or trees which 

maximise the likelihood of the sampling run data. A MCMC is a method of 

sampling, used on a probability distribution, in which multiple chains are given 

random start points and through the directions of an algorithm which gives 

states that would increase the overall likelihood of said chain. The random 

simulation of data points, when run hundreds or thousands of times will begin to

reveal the set of states which has the likelihood, i.e. the set of states (in this 

case, the tree) which appears most commonly. Although PhyloWGS reports 

quicker runtimes than other phylogenetics software in the SNV arena, it still 

requires a large amount of time and computational power to be used, which is a

limitation with the method, though one that cannot be easily overcome.
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2.4.5) Generation of PhyloWGS Input and Work-flow

PhyloWGS only requires two files as input, an ssms file (“simple somatic 

mutations file”) containing the SNV calls and supporting data, and a cnvs file 

containing the CNV calls used to adjust during the running of the software, 

however, multiple stages of pre-processing had to done in order to correctly 

format this input for PhyloWGS. The ssms file required a unique id identifier for 

each unique ssms reported in a patient, the total number of reference-allele 

reads at the loci reported for each sample in the patient, and the total number of

reads (both reference and variant) at the loci, which requires recurrent SNVs 

between samples in a patient to be identified beforehand. Both the reference-

allele reads and the total reads sections of the input had to be divided via a 

comma to indicate which value was from which sample, and they required to be 

kept in the same order throughout all entries.

This step was done using a Perl script, which took all samples, in the form of 

the consensus calls generated from VarScan2 and MuTect2. The script had to 

be able to identify when an identical SNV was present in multiple samples, and 

then record the information as a new single event for the ssms file. Here is 

where the first problem arose, as most of the SNV events reported by VarScan2

were not present in all of the samples in any given patient, meaning the 

information could not be extracted from the consensus calls file (as this only 

had variant calls). This meant that a second step would have to take place, 

where the read depth for samples that had did not have a variant that another 

sample did, would need to be extracted from the BAM file using the 

bam_readcount tool. This resolved this issue and meant that accurate read 

counts could be provided for all samples for each unique variant, even when 
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that variant was not present in a sample. To indicate that this was the case, both

the reference-allele reads and total reads for that sample were set to the same 

value. An additional pair of values was also required in the ssms files, which 

were an mu_r value and a mu_v value. The mu_r value is the expected fraction 

of reference alleles in the reference population, and so ideally would have a 

value of 1. The value was set to 0.999 as recommended by PhyloWGS to 

account for the error-sequencing rate of Illumina. The mu_v value is the 

expected fraction of reference alleles in the variant population, and so would  be

expected to have a value of 0.5. The value was set to 0.499 as recommended 

by PhyloWGS to account for the error-sequencing rate of Illumina. These steps 

were all repeated for all 17 patients in order to produce ssms files for each. 

The cnvs files were generated using a Perl script that used the generated ssms 

file and a Sequenza segments file to determine which SNVs were within the 

region effected by a copy number change event. The cnvs input file itself 

required a unique id identifier as with the ssms, as well as the region the CNV 

covered, the estimated copy number of the CNV, and the SNV entries present in

the ssms file that are located within the CNV. It should be noted that PhyloWGS 

only considers CNVs that have SNVs within them for the purpose of analysis, 

and that the ssms field in the cnv file is a requirement, or the software will throw 

an error. All of these values could be acquired from the Sequenza output, 

though there were issues in the creation of the cnvs file. The main issue, was 

that if multiple CNVs in a patient effected the same SNVs, which was fairly 

common, then there was no way to indicate this in the cnvs file. For example, 

given an SNV that is present in 4 samples in the ssms file, if in 2 of the samples

the SNVs are effected by a copy number loss from a particular CNV, and the 
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other two samples were effected by a copy number loss from a different CNV 

(that covered the same region but was distinct based on its start and end 

points) then there was no way to inform PhyloWGS that this was the case 

based on the required format of the input. This actual phenomenon occurred 

frequently during the creation of the cnvs input, but there was no solution to 

resolving the issue and so all CNVs simply had to be included with PhyloWGS 

presumably assuming that all CNVs were effecting all SNVs in the ssms file for 

that particular entry. Patient 12 in particular was very difficult to deal with 

because of this limitation, as the genome doubling event resulted in CNVs being

associated with almost every SNV entry. This process was repeated for all 17 

patients, giving the required input for PhyloWGS to run for the entire cohort.

A general comment on the input format for PhyloWGS is that it is quite 

challenging to generate and has functional limitations as listed above. 

All 17 patients were then run through the PhyloWGS software, which consists of

a series of Python scripts, with all default parameters used and the number of 

chains set to 14. This chain number was selected due to the structure of the 

High Performance Computer Cluster at the University of Leicester, which was 

used for all computational heavy tasks in this project. Computational nodes in 

the cluster each have 28 cores, and so a PhyloWGS run for a single patient 

could be run using half an entire node. The default number of samples 

generated by the probability distribution of the PhyloWGS statistical model is 

2500, meaning that each patient had a total of 35000 trees generated by 

PhyloWGS (14 chains multiplied by 2500 samples). 
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Once the runs were complete the write_results.py script was run with default 

parameters apart from the –include-ssm-names flag, which was activated so 

that ssm names would be included in the different nodes of the trees produced. 

This generated a json file containing all the sampled trees, a tree summary file, 

a mutation summary file and a list of each ssm assigned to each subclone in the

trees.
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2.4.6) PhyloWGS Output Workaround

PhyloWGS produces output in the form of a json file that is to be used with the 

index_data.py script provided by PhyloWGS to host the data on a local server 

and allows for visualisation of all sampled trees for each patient. Unfortunately, 

this is another limitation of the PhyloWGS software, as this is the only way in 

which the results can be viewed using the methods provided by the package. 

The visualisation page struggled to perform with the memory limitations of a 

localised machine, due to the huge amount of data it had to display at any one 

time. This resulted in the page essentially loading indefinitely with all menu or 

figure actions to irresponsible to function, whilst also crippling the local machine 

due to a surplus of RAM usage. In order to escape this limitation, it was 

determined that the json file itself could be targeted and the data be acquired by

simply pulling it directly from the file using the Linux command line.

The tree summary file was the first to be targeted in an attempt to extract the 

most likely tree for each patient, however, upon sampling some of the patient 

json files, it was clear that all patients had multiple trees of highest likelihood. 

This was interesting, as in these trees, the separation of ssms in subgroups was

always the same, but the tree topology could be vastly different, with the 

software unable to determine how certain ssms were related to other in the 

evolutionary process of the cancer. Every patient had a minimum of 5 different 

tree topologies awarded highest likelihood, with Patient 64 having the highest 

number of tree topologies at 18. The mean average number of highest 

likelihood tree topologies was 8.2. Whilst the lack of useful visualisation of 

highest likelihood trees for each patient was unfortunate, that each patient had 

the same subgroups in these trees was a promising finding, indicating a good 
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degree of robustness in the PhyloWGS method. The content of these 

subgroups were inspected by extracting the ssm list from the json file of each 

patient. 

As the truncal region of the tree is where clonal ssms should be located, this the

region that was focused on for the purposes of analysis. This was done by 

using the following command to extract the ssms that were present in the 

truncal region of every sampled tree for each patient:

 

jq '.["mut_assignments"]["1"]["ssms"]' > "${file/%json/txt}";

This generated a text file of 35000 lines, with each line being the truncal region 

of one of the sampled trees produced by PhyloWGS. The logic behind this was 

that each ssm (which was then associated back to its original SNV) could be 

counted to see how many times it was classified as truncal by PhyloWGS, 

giving a primitive source of likelihood for that SNV being truncal in the patient. 

For example, if an ssm appeared in all 35000 lines of the file, then it would have

a likelihood of 1 for being truncal in the patient. The SNV the ssm was matched 

with could then be viewed to see its position in the exome as well as the 

genotype viewed. This method was performed for every patient and it was 

decided that any SNV which appeared in more than 50% of sample trees, i.e. 

had a likelihood of at least 0.5, would be classified as clonal for that patient. The

basic logic for this was that a likelihood of greater than 0.5 meant that the 

variant was appearing in the trunk of the tree more often than not, though this is

not an ideal measure of clonality. This was certainly a less than perfect measure

in determining which SNVs were classified as clonal by PhyloWGS, as it is 

possible that certain biases in the MCMC could result in a variant appearing 
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more often than would be expected in the truncal region of a given patients 

sample trees. One method of correcting for this would be to run the PhyloWGS 

software several times, as the output would theoretically be slightly different 

each time due to the random aspect of the probability distribution and MCMC, 

with the results then being compared to establish consensus in the patients. 

However, due to computational and time limitations, this unfortunately could not 

be done. It is for this reason that there were no trees generated for this pipeline 

as the computational restraints were just too great, with the work described 

above being all that could be done. 
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2.5) Revolver Pipeline

2.5.1) Revolver as a Tool to Measure Driver Event Trajectories

The third and final pipeline used differs from the previous two in that: it uses 

data from an entire cohort in a single run; and, whereas the concept of the 

previous pipelines was established first before suitable software was then 

chosen, this third pipeline was decided upon due to the existence of the 

software package it uses. In this chapter, the Revolver (Repeated EVOLution in 

cancER) (Caravagna, Giarratano et al. 2018) software suite will be used to 

determine driver trajectories within the reported driver mutations of the 17 MPM 

patient cohort. 

Revolver was created to address the issue of trunk order in cancer 

phylogenetics, which refers to the ability of various phylogenetics to determine 

truncal events accurately, but not be able to then arrange those mutation events

in the order in which they occurred. Naturally, this is a highly complementary 

concept in terms of the project aims, as the pipelines have been able to identify 

truncal events in each patient, with the only methods of calling drivers being 

looking for recurrence between patients and previous associations with the 

gene contained in the truncal region, as well as assessing the regions for their 

biological plausibility to explain cancer progression (i.e. whether it makes 

biological sense that a particular gene could be a driver). In combination with a 

method like Revolver, strong evidence could be provided in calling particular 

genes as drivers if they were seen to be occurring later in the trunk, just prior to 

the progression of MPM into the highly aggressive metastatic state. 
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Revolver works by taking a full cohort of pre-computed trees, generated using 

another phylogenetic software and then assessing them based on maximum  

likelihood estimation to determine recurrent instances of driver trajectory. Briefly,

the Revolver algorithm observes patterns of evolutionary trajectory in driver 

mutations that are recurrent in multiple patients. i.e. it records how often a given

driver event is placed subclonally when it isn't part of the truncal branch. It can 

then use these observations across the entire cohort to determine the most 

likely trajectories for the drivers when they do appear truncally in a different 

patient. It gives higher likelihoods for trajectories which appear at a greater rate 

than others, and then use this information to form an order of trajectories in the 

truncal branch for any given drivers. It does this by computing artificial trees 

using the pre-computed phylogenetic input as a basis, and then calculates the 

likelihood of different groups forming between drivers. It does this a number of 

times until a likelihood threshold has been met, determined by the total number 

of patients and drivers. 
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2.5.2) Generation of Revolver Input

As an R package, Revolver takes input in the form of a data frame consisting of 

7 columns, with each row representing a single genetic alteration event in the 

patient cohort. Revolver expects the input data to have been produced using a 

phylogenetic pipeline (though the option also exists for Revolver to do this step 

itself, however, as output from Sequenza/TuMult was readily available, this 

option was not explored), and then formatted into a data frame with the 

following columns; 'misc' a custom field that wasn't used in revolver analysis, 

this value was left blank for all entries; 'patientID' a string containing the patient 

number; 'variantID', a string containing the cytoband and copy number alteration

state of the given event, -22p for example. The variantID field actually required 

some additional work to generate, as many alterations in the subclonal 

branches of the TuMult trees had not been compared from patient to patient. 

This was because the truncal branch of the tree was the focus of the 

Sequenza/TuMult pipeline, and whilst the events on each tree were catalogued 

to compare to other events within the same tree, comparison of non-truncal 

branch events was never carried out between patients. This involved checking 

the segments file for each event and manually comparing them to events 

present on the other patient trees based on whether the cytoband labels were 

similar. The specific region the events covered could then be compared to 

determine whether events from separate trees could be counted as recurrent. 

For the majority of cases, the choice was clear but there were some 

confounding factors in some comparisons, for instance, where two events 

overlapped but had substantial non-overlapping regions. In cases where a clear

distinction could not be made, the events were listed separately. 
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The 4th column required in the Revolver input data frame was a clusterID, which

was a integer value to be set to determine how each event was grouped on 

each patient tree. The clusterID was linked to the patientID, meaning each 

patient could use the same values without convoluting the input. For each 

patient, the truncal branch was listed as with a cluster value of '1', with 

subsequent shared and node branches being given cluster values between 2 

and 7. The clusterID is how the Revolver algorithm determines how events were

placed on the phylogenetic trees. The 5th column in the data frame was 

'is.driver' and required a TRUE or FALSE value of whether the listed event was 

a driver or not. In order to be considered a driver, an event had to be have 

appeared in the truncal region of at least 2 patients, the full list of drivers can be

seen in Chapter 3.7.3 in Figure 3.26. The 6th column for the data frame was 

'is.clonal' and required TRUE or FALSE value on whether the event was in the 

truncal region of the tree. This was set to TRUE for every event where the 

clusterID value was set to 1, as they were already classified as the truncal 

branch in each patient. 

The final column is the 'CCF' column and expects either a parsable list of 

cancer cell fraction (CCF) values for each sample in the patient that the event 

line is in, or a binary value of either 1 or 0, representing whether the event was 

present in each sample. CCF values represent what proportion of the cancer 

cells in a given sample harbour a specific variant or copy number event. As 

CCF values had not been generated, the binary values were used, which 

unfortunately would result in an overall lower resolution from Revolver and limit 

the plots which could be produced. However, the main Revolver drivers plot 

would still be available and be able to portray the main findings of the analysis. 
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2.5.3) R Analysis of Revolver Cohort

After construction of the data frame, it was then passed into Revolver via the 

revolver_cohort command in R. The parameters were set so that the 

CCF_Parser was used, in order to parse the binary values in the 'CCF' column 

of the data frame, the ONLY.DRIVER flag was set to FALSE and the minimum 

number of clusters was set to 0. This command produces a revolver cohort 

object, which could then be used as input for the following computation step. 

The revolver cohort object was then used in the compute_mutation_trees 

command, as the 'CCF' values being used were binary. Default parameters 

were used for this command. This modified the revolver cohort object so that it 

now also contained the computed mutation trees. 

The revolver cohort object was used as input for the revolver_fit command, 

which is the implementation of the main fitting function, where Revolver 

performs its 2-step algorithm and calculates the evolutionary distance between 

drivers, and determine trajectories based on the computed mutation trees. The 

default parameters for this command were used, except that the max iterations 

were set to 10 as the cohort was only made up of 17 patients and so would not 

require more than that to establish accurate trajectories between drivers. 

Once the revolver_fit command was completed, it produced a revolver fit object 

which could be use to generate a drivers graph, which allows for the 

visualisation of driver trajectories in a patient cohort. Results can be seen in 

Section 5.2.
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3) Copy Number Based Pipeline, Results and 

Discussion

3.1) Introduction to Copy Number Pipeline, Methods 

and Materials

This chapter contains the results and discussion for the copy number based 

pipeline described in Section 2.3. It also contains a patient cohort results 

section which displays the characteristics of the 25 MEDUSA patients from 

whom the DNA was extracted. It opens with that section, followed by: the 

Sequenza results, including examples of the plots generated for each patient 

and sample; the ABSOLUTE results, also including examples of plots generated

for each patient and sample; a section discussing comparison between the 

Sequenza and ABSOLUTE results and justification in how this caused patients 

to be removed from the cohort; a section discussing comparison between the 

Sequenza and ASCAT results; a section displaying example TuMult results for 

an individual patient; TuMult summary results, including tables displaying the 

results across the cohort. This is then followed by a discussion of these results 

which includes certain interesting cases which occurred, the meaning of key 

findings in the chapter, and the limitations of the pipeline.

It has already been established several times in the previous chapters that copy

number variation is the major feature in the development of MPM, with the 

methods employed by this pipeline focused solely on deciphering key CNV 

events that occur early in the process. The aims of this chapter are: to identify 

important truncal regions where recurrent copy number events occur across the
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patient cohort, and suggest possible MPM associated genes which they 

contain; critically evaluate the methods employed, noting why they are suitable 

for this type of analysis as well as limitations in the software/methods; to 

discuss why the anatomical spread of MPM may not be possible to infer using 

phylogenetic methods.
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3.2) Patient Cohort Characteristics

This section describes the characteristics of the 25 MEDUSA patient cohort 

which was analysed during the course of the project. The findings as reported 

were obtained from a summarised clinical report and are displayed in Table 3.1.

Each patient was longitudinally tracked following their surgery up until disease 

progression was detected, with a large range of values in progression free 

survival and overall survival, though unfortunately all patients were deceased 

prior to the conclusion of the project. All but 3 of the patients had reported some

form of asbestos exposure previously in life, though it is a difficult characteristic 

Table 3.1: Table displaying characteristics for the 25 MEDUSA cohort, from left to right the columns are as follows: MEDUSA ID 

displays the patient number for each individual; Progression free survival (days) displays the number of days the patient had no 

further cancer progression post surgery; overal survival (days) displays the number of days the patient survived post surgery; status 

refers to the survival of the patient with 0 = survived (up to the date), 1 = deceased; asbestos exposure displays whether the patients 

were able to report exposure to asbestos previously in life 0 = no exposure, 1 =exposure; histology refers to the type of MPM each 

patient was diagnosed with, 0 = epithelioid, 1 = biphasic, 2 =sarcomatoid; gender refers to whether the patient was male = 0 or 

female = 1; age > median* displays whether the patient was above or below the median age of the cohort, 0 = younger, 1 = older; 

laterality refers to which lung the cancer was present on. *Individual ages were not displayed for each patient, however the median 

age was 70 years old with an IQR of 66-74 years old (min and max age range was 53-78 years).
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to identify in the case of non-exposed individuals, as it would be impossible to 

evaluate every aspect of their past life for possible exposure events. Most of the

patients have epithelioid type mesothelioma, with 4 patients identified as 

biphasic and none with sarcomatoid type. All but 1 of the patients were male, an

expected result giving the higher incidence of MPM in men. Individual ages for 

each patient were not provided in the documentation, but median age (70 

years) was included and values given as to whether patients were above or 

below this age. Only 5 patients had the cancer present on their left lung, with 

the other 20 having it on their right. 
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3.3) Copy Number Estimation Results

3.3.1) Sequenza Individual Sample Results

All of the 106 samples were successfully run through Sequenza, producing a 

range of results as discussed below. Data from Patient 1 will be used as 

examples throughout this chapter and the rest of the report to demonstrate the 

output of the various software, as fully displaying all results would not be 

possible in the main body of text. Patient 1 was selected as it was one of the 5 

sample patients and reported high cellularity values, whilst also showcasing 

some interesting results which can be better discussed alongside figures.

Sequenza produces the following figures for each sample; depth ratio (before 

and after the normalisation step) per chromosome (Figure 3.1), mutations, B-

allele frequency and the depth ratio per chromosome (Figure 3.2), proportion of 

the exome with different copy number values (Figure 3.3), genome wide view of

total copy number, allele-specific copy number and a depth ratio and allele 

frequency overview (Figure 3.4), the likelihood of each cellularity/ploidy solution 

(Figure 3.5), a visualisation of the highest likelihood model fit (Figure 3.6), and 

visualisations of the alternate model fits (Figure 3.7).
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Figure 3.1 : Figure produced by Sequenza from Patient 1 Sample 1, and displays only the results from 

chromosome 1 of the sample. The two graphs display the depth ratio between the normal and tumour samples, 

raw on the top and normalised on the bottom. The normalised results on the bottom are the results of interest in 

terms of analysis, though comparing them to the raw results displays the effects of normalisation. The empty 

space visible in the middle of each graph represents the centromere of the chromosome. 
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In Figure 3.1, the value of 1.0 in the normal and tumour depth graphs is 

calculated from the average read depth across the entire chromosome. Only 

segments with a read depth of at least 20 are included. The depth ratio displays

how the average read depth differs between the normal and tumour samples, a 

drop in read depth from normal to tumour can be seen between around 

positions 86mb to 115mb indicating there may be deletion events in the region. 

The empty “gap” in the 120mb to 140mb region is where the centromere of the 

chromosome is located, and so is not included in sequencing data. 

The mutant allele frequency shown in Figure 3.2 gives a good indication of point

mutations detected by Sequenza, although this output is not actually used in 

subsequent steps of the analysis. The B-allele frequency graph displays the 

frequency of the minor allele at every position on the chromosome. Segments of

lower B-allele frequency indicate a heterozygous deletion in the same region. 

The depth ratio graph is essentially the same as in Figure 3.1, although also 

includes the estimated copy number value.
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Figure 3.2: Figure produced by Sequenza from Patient 1 Sample 1, and displays only the results from chromosome 1 of the sample. The 

top graph displays the location of mutant alleles, with colour indicating the change in genotype. The middle graph shows the B-allele 

frequency across the chromosome, the drop in B-allele frequency between 86mb and 115mb indicates a possible heterozygous deletion in 

that region. The bottom graph displays depth ratio between the normal and tumour samples, with the addition of estimated copy number 

value along the right-hand side of the graph. The gap in the 120mb to 140mb region indicates the centromere in each graph. The B allele 

frequency in the middle graph only has a range of up to 0.5 due to the defining feature of B alleles being that they can be no greater than 

0.5 in frequency as they represent the minor allele.
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Figure 3.3 is a bar plot indicating that approximately 90% of the exome has a 

copy number of 2, 8% has a copy number of 1 and 2% has a copy number of 3. 

With only approximately 10% of the exome effected by copy number alteration 

events, Patient 1 has a high level of stability compared with other patients. It 

should also be noted that subsequent alteration events across the same region 

may cause multiple changes in the copy number value, and so 10% isn't a 

conclusive value for the amount of change which has occurred. 

Figure 3.3: Figure produced by Sequenza from Patient 1 Sample 1. A bar plot of the proportion of 

the exome with different copy number values. 
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Figure 3.4 (seen rotated) allows for the viewing of the copy number values 

across all chromosomes, as well as the allele frequency values for these same 

regions. Large scale deletions can clearly be seen in chromosomes; 1, 6, 9, 14 

and 22 whilst a large scale gain can be seen in chromosome 8. Closer 

inspection of chromosome 9 will also display the only homozygous deletion 

event in the exome. No chromosomes reported a copy number above 3. 
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Patient 1 Sample 1 provides a good example of the Sequenza model 

parameters, with an estimated cellularity of 0.5 and a ploidy of 2 used to call 

copy number values due to the highest confidence value displayed in Figure 

3.5. It can also be seen the higher values of cellularity still maintain high LPP 

values when matched with ploidy samples which are multiples of 2. This is due 

to the relatively low level of copy number alterations present in Patient 1. Higher

cellularity values matched with odd number ploidies give much lower LPP 

Figure 3.5: Figure produced by Sequenza from Patient 1 Sample 1. Model parameter values of cellularity and ploidy 

with likelihood values for each combination. Darker blue indicates higher log posterior probability (LPP), with the red 

line incircling the smallest number of points with a LPP >0.95. The crosses are combinations of ploidy and cellularity 

values of alternative solutions proposed by Sequenza. 
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values eventually reaching 0, although lower cellularity values give higher 

probabilities in these regions due to difficulty of generating good estimates at 

extremely low cellularity. The alternate models also require lower cellularity 

levels in order to match higher ploidy values in the model parameters. 
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The density of the colour in Figure 3.6 is stronger for LPP values that are 

higher. These values are calculated for the ploidy and cellularity estimates 

which are displayed in Figure 3.5. This value is calculated for hypothetical 10Mb

segments due the actual segment length causing a change in the LPP value. 

Segments which can be seen in regions of weaker colour density can be 

indicative of subclonal events, though can also be attributed to errors in the 

model parameters. A small event can be seen in the stronger colour region at a 

copy number value of 0, which corresponds to the homozygous deletion event 

Figure 3.6: Figure produced by Sequenza from Patient 1 Sample 1. B allele frequency values and 

observed depth ratio for each segment, defined by black circles and dots. The density of the colour 

is representative of the joint LPP values. 
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in chromosome 9 displayed in Figure 3.4. 
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Figure 3.7: Figure produced by Sequenza from Patient 1 Sample1. B allele frequency values and observed depth ratio for each segment in 

the alternatie models, defined by black circles and dots. The density of the colour is representative of the joint LPP values. 
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The alternate models provided by Sequenza as seen in Figure 3.7, can be 

compared to copy number estimates generated by other software or methods, 

where differences in ploidy values can explain unexpected copy number values.

All but two samples gave a primary model with a ploidy of between 1.8 and 2, 

both present in Patient 12. This implies that there may be a lack of genome 

doubling in MPM, which is a phenomenon known to occur in several cancers, 

as discussed in chapter 1. Even in Patient 12, only 2 of the 5 samples displayed

signs of genome doubling, indicating that the possible doubling event occurred 

after the cancer had already developed and spread. With only 2 of 106 total 

samples displaying any evidence of genome doubling, it is possible that this 

type of event is not important for the development of MPM, or at least is not 

significant in the majority of patients. 

Patient 12 Samples 1 and 4 both reported higher ploidy numbers, with the most 

likely model having a ploidy parameter of 3.4 in both cases. This is an unusual 

ploidy, though as it's representative of the entire exome, the number can be 

explained due to different total ploidy on different chromosomes. Figure 3.8 

displays both the whole exome copy number profiles of both these samples.
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Large scale copy number alterations can be seen in both samples, with a range 

of values from between 1 and 6. Entire chromosomes can be seen to be 

reported with different copy numbers, though what is noticeable is that both 

samples share a similar pattern of change, with only minor differences between 

the two. An initial look at Figure 3.8 might imply that the data quality of these 

samples was lower and thus made it difficult for depth ratio to be accurately 

calculated. However, the similar copy number states between the two samples 

imply that these events may have happened prior to samples 1 and 4 

establishing themselves, but after divergence had already occurred for the other

three samples. It was decided the samples should remain in the dataset despite

the ploidy value for both being an outlier. This is because it could be interesting 

to test the impact of this situation on the phylogenetic software to be used later 

in the pipeline. The implication if the data for these two samples is accurate, is 

that there may be rare cases where MPM results in mass genome instability, 

resulting in fluctuations in copy number. 

 

As well as generating figures, Sequenza also produces results in tabulated text 

format. The mutations file contains the positional information for mutated alleles 

and the specific genotypic change which has occurred. The mutations file was 

never parsed for use in further pipelines but was necessary to generate 

summary results from Sequenza. Another tabulated text file Sequenza 

generates is the segments file. This file contains all reported copy number 

segments, giving both start and end positions, and copy number, both total and 

for each allele. This is the file which is used for generating the input of the next 

step of the pipeline, and is the only output directly necessary for this. The file 

must at least contain as many segments as there were chromosomes, as a 
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chromosome with no reported copy number alterations would be recorded as a 

single uninterrupted segment incorporating the entire length of the chromosome

in question. 
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3.3.2) ABSOLUTE Results

For the purposes of displaying an example of the ABSOLUTE results per 

sample, both patient 1 sample 1 and patient 12 sample 1 will be used. Patient 1 

as a standard and patient 12 to show how ABSOLUTE also predicted that the 

ploidy was increased for this sample, as it was for Sequenza, and this gives a 

good basis for comparison. 
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Figure 3.9: Figure produced by ABSOLUTE for patient 1 sample 1 (top) and patient 12 

sample 1 (bottom). The green dot represents the position of the most likely solution in 

terms of ploidy and cellularity (Fraction cancer nuclei) values. 
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Figure 3.9 is the solutions plot generated by ABSOLUTE for patient 1 sample 1 

and for patient 12 sample 1, with a range of ploidy estimates along the x-axis 

and the full range of cellularity plotted on the y-axis (cellularity is labelled as 

fraction cancer nuclei). The green dot represents the solution which had the 

greatest likelihood and in the case of patient 1 sample 1 can be seen at the 

intersection of ploidy = 2.01 and cellularity = 0.48 (these precise values were 

taken from the Rdata output also produced by ABSOLUTE). Alternative 

solutions can be seen where other intersections occur, at higher ploidy and 

cellularity values such as ploidy = 4.00 and cellularity = 0.32. Patient 1 sample 1

displays a very stable result and is almost identical to the estimates provided by

Sequenza (see Figure 3.5). 

The solutions plot for Patient 12 sample 1 produced by ABSOLUTE, was one of 

the two samples reported by Sequenza as having a higher than average ploidy 

of around 3.4 (the other being sample 4). It can be seen in the figure that 

ABSOLUTE predicted a similar best solution as Sequenza, with the ploidy being

reported as 3.27 (pulled from Rdata output), compared to the 3.4 estimated by 

Sequenza. A similar pattern was observed for Patient 12 sample 4, with 

Sequenza and ABSOLUTE estimating ploidy values of 3.4 and 3.37 

respectively. The alternative solutions for these samples all fell significantly 

away from a ploidy of 2, with solutions the closest to this having either very high

or very low cellularity estimates. This provides evidence that the amplified ploidy

seen in these samples is not an artifact caused by low resolution in sequencing,

or by mistakes made during Sequenza copy-number calls. 
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Figure 3.10 is the genomic fraction for each copy-number value (labelled copy 

ratio) estimated by ABSOLUTE across the segments provided for Patient 1 

sample 1. It agrees strongly with the Sequenza estimates, shown in figures 3.3 

and 3.4, where most of the “genomic fraction” (though it actually represents 

exome sequence) is estimated to have a copy-number of 2, with small sections 

having slightly lower or higher copy-number. These deviations from a copy-

number of 2 are representative of loss or gain events in the exome where a 

mutation has taken place and altered the copy-number of the region. This figure

indicates that Patient 1 sample 1 has a larger amount of exome affected by 

Figure 3.10: Figure showing the genomic fraction for each copy-number value for Patient 1 sample 1, as estimated 

by ABSOLUTE. Most of the “genomic fraction” (though the data only represents the exome), can be seen to have a 

copy ratio of 2, with small amounts indicating both the loss and gain of sequence, possibly due to mutation events. 
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deletion events than duplication events, though doesn't display whether deletion

or duplication events are more common or not, as it could be the case that 

deletion events simply affect a larger region per event on average. 
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Figure 3.11 shows the coverage of different copy-number values across the 

exome sequence for Patient 12 sample 1, as estimated by ABSOLUTE. Unlike 

with Figure 3.10, this figure displays a larger range of copy-number values, with 

the majority of the exome being estimated as having a value of between 2 and 

4, with small amounts both above and below this range. This gives greater 

insight into why a ploidy value of 3.27 was predicted for this sample by 

ABSOLUTE, and agrees with the Sequenza estimate for the same sample (3.4),

with the actual break down of the fractions of the exomes estimated at different 

copy-number values providing interesting possible causes. 

Figure 3.11: Figure showing the genomic fraction for each copy-number value for Patient 12 sample 

1, as estimated by ABSOLUTE. Unlike for the Patient 1 sample, Patient 12 sample 1 displays a 

significant amount of the genomic fraction with a copy-number of 4, with much of the rest accounted 

for by values of between 2 and 4. 
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The ploidy for any given sample is essentially calculated using the average 

value of all of the copy-number values estimated by either Sequenza or 

ABSOLUTE, though in the vast majority of cases, a high proportion of the 

exome is reported to have the same copy-number, with outliers being caused by

mutation events causing the value to rise or decrease based on whether a gain 

or deletion has happened respectively (see later summary figures for a more 

detailed explanation on this). However, for Patient 12 samples 1 and 4, this is 

clearly not the case, and although one possible explanation of this amplified 

ploidy is genome doubling (as mentioned earlier in the chapter) the ABSOLUTE 

results indicate that this may not be the case. 

If genome doubling was responsible for the ploidy being reported by both 

Sequenza and ABSOLUTE, it would be expected for a large proportion of the 

genomic fraction to be estimated at a copy-number of 4 (or close to 4) with 

minor outliers at distinct copy-number values such as 3 or 5 which would 

indicate mutation events in the samples. However, this is not what Figure 3.12 

displays, instead showing a wide spread of estimates across the copy ratio. 

One possible explanation is simply that this is the result of a massive amount of 

mutation which has taken place in the genome (chromothripsis) of the cancer 

cells that comprise samples 1 and 4, which occurred prior to the two samples 

separating in physical space and thus is now detectable in both samples. 

Another explanation is that the two samples appear this way due to the result of

admixture of multiple cancer cell populations within the tumour, a phenomenon 

which was discussed in both chapters 1 and 2, and that the differing amounts of

reads for any given section of the exome has caused the depth ratio to fluctuate

and resulted in amplified copy-number estimates.  
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It is difficult to differentiate between these possibilities, as either could cause the

effect of increased ploidy estimation using depth ratio based methods. However,

further discussion of this is present later on in this chapter after other results 

have also been discussed, providing extra evidence to the arguments. 
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Table 3.2 is a table displaying the estimated cellularity values for all 106 

samples, as well as the mean average cellularity for each of the patients. The 

values cover a large range, with Patient 8 having an average cellularity value of 

0.19 and Patient 24 having an average cellularity of 0.688. In terms of individual

sample values, the lowest value is 0.16 and is for Patient 8 sample 4, whereas 

the highest value is 0.9 and is for Patient 24 sample 3. These values were 

compared to the equivalent values produced by Sequenza (discussed in the 

next section) and the combined results were used to determine which patients 

would be pushed forward along the pipeline and used for further analysis. 

Table 3.2: Table displaying the cellularity for each patient and sample estmated by ABSOLUTE. The 

average cellularity refers to the mean value. The #### symbols in entries where sample 2 data would be 

expected represents that their was no data for sample 2 in these patients, as discussed in Methods.
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Table 3.3 displays the estimated ploidy values for all 106 samples and the mean

average values for each patient. The range of the average ploidy goes from a 

low of 1.77 for Patient 24 and a high of 2.74 for Patient 6. In terms of individual 

samples, the lowest value is 1.7 for Patient 12 sample 2 and the highest value 

is 5.34 for Patient 6 sample 5. Besides Patient 6 sample 5 the other obvious 

outliers are Patient 12 samples 1 and 4 which have been discussed previously. 

The average ploidy values are much more cohesive than the average cellularity 

values, or rather, they show less deviation between patients. Whereas the 

cellularity values are distributed more widely, the average ploidy is mostly within

0.2 of a ploidy of 2. This is expected as the model parameters for Sequenza 

Table 3.3: A table displaying the ploidy for each patient and sample as estimated by ABSOLUTE. 

The average ploidy refers to mean value. The #### symbols in entries where sample 2 data would 

be expected represents that their was no data for sample 2 in these patients, as discussed in 

Methods.
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and ABSOLUTE both push towards a ploidy of 2 by default and only deviate 

from this if a different ploidy and cellularity combination have a higher likelihood.

Furthermore, a ploidy of 2 is the default ploidy for sequence in the genome, so it

should only differ when a  mutation event has occurred. Of the 106 individual 

samples, 43 had an estimated ploidy of above 2, with a further 4 having an 

estimated ploidy of exactly 2. The rest of the samples (59) were all estimated to 

have a ploidy of less than 2, implying that overall, there is a greater amount of 

loss in the sample exomes than there is gain. There is no apparent correlation 

between the cellularity and ploidy estimates for each sample, possibly due to 

higher cellularity values only improving the ability of the models to estimate an 

accurate ploidy value. 

One concern when using ABSOLUTE to validate results from a copy-number 

calling software, is that the results may be biased towards agreeing with the 

input, especially in the case of Sequenza where both algorithms use a depth-

ratio based estimation system. However, the differences in the models will result

in slightly different results in most cases, and this can be seen when comparing 

the summary figures for Sequenza and ABSOLUTE (Tables 3.13 to 3.16). 

Another major feature of ABSOLUTE is made to deal with just this possible 

problem, as when a estimation cannot meet the threshold likelihood ABSOLUTE

uses its large database of karyotype examples to match the input with a solution

already established. 
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3.3.3) Sequenza and ABSOLUTE Comparison

The following section contains 3 Tables and 1 Figure, and aims to compare the 

copy number estimation values generated by both Sequenza and ABSOLUTE, 

and then evaluate them to determine which values would be suitable for further 

analysis through the later steps of the pipeline. The 3 Tables display the 

cellularity values predicted by ABSOLUTE per patient per sample, the ploidy 

values predicted by ABSOLUTE per patient per sample, and a comparison table

representing the mean average cellularity per patient calculated by Sequenza 

and ABSOLUTE. The Figure is a graphical interpretations of comparisons 

between the cellularity values produced by the two methodologies and is in the 

form of a box plot.
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Table 3.4 is a table displaying the Sequenza estimates of cellularity for all 

samples across all patients, as well as a mean average of the cellularity per 

patient. The range of the average values is greater than with ABSOLUTE, with 

the lowest value being 0.165 for Patient 8 and the highest value being 0.73 for 

Patient 24. Even though the range is slightly larger, it is the same patients 

reported at each end of the range scale. The range for individual samples is 

0.15 to 0.9, very similar to ABSOLUTE, and is represented by Patient 8 sample 

1 and Patient 24 sample 3 respectively. There is a slight difference in that it is 

Patient sample 1 rather that has the lowest value estimated by Sequenza, but 

Patient 8 sample 4 that has the lowest value estimated by ABSOLUTE. 

Table 3.4: Table displaying the cellularity of each patient and sample as estimated by Sequenza, as 

well as the mean average cellularity per patient. The #### symbols in entries where sample 2 data 

would be expected represents that their was no data for sample 2 in these patients, as discussed in 

Methods.
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Calculating the average cellularity per patient is important for use in quality 

control before the next step of the pipeline, with cellularity being the determining

factor for which patients can be pushed forward in the pipeline. 
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As discussed previously in the chapter, the Sequenza probability model opts for 

a default solution of 2 copies when estimating the copy-number of any predicted

segment. The logic of this assumption is that the expected copy-number in 

normal tissue exome sequence should have a value of 2, representing the 2 

copies of the genome present in every cell. As such, the mean average values 

seen in Table 3.5 all have values of near 2, with a range from 1.5 for Patient 3 

and 2.4 for Patient 12. The lowest ploidy value for a single sample is 1.5 and is 

shared by Patient 3 samples 3, 4 and 5, and Patient 91 sample 5, with the 

highest ploidy value for a single sample being 3.4 for Patient 12 sample 1 and 

4. Overall, the values estimated by Sequenza tend to be closer to a ploidy of 2 

Table 3.5: Table displaying the ploidy of each patient and sample as estimated by 

Sequenza, as well as the mean average ploidy per patient. The #### symbols in entries 

where sample 2 data would be expected represents that their was no data for sample 2 

in these patients, as discussed in Methods.
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than those that were estimated by ABSOLUTE, which should be due to the 

inherent bias of the Sequenza model to default the copy-number to 2. However, 

of the 106 samples, only 8 were predicted to have a ploidy of over 2 by 

Sequenza, compared to the 43 predicted by  ABSOLUTE. There are 22 

samples with a Sequenza predicted ploidy of exactly 2 compared to the 4 

predicted by ABSOLUTE. Meaning, that there are 76 samples that Sequenza 

estimated had a ploidy of less than 2. As with the ABSOLUTE estimates, this 

implies that there is a greater amount of exome sequence loss in the cohort 

than gain for the majority of patients. This contributes to the findings of this 

chapter by validating the copy number losses reported across the patient 

cohort.

Overall, despite the higher number of lower ploidy values predicted by 

Sequenza, both sets of results generally show a high level of concordance, with

the ploidy estimates having higher similarity than the cellularity estimates in 

most cases. Even though the ABSOLUTE calls often reported the ploidy as 

above 2, the similarity in the values was still strong. Two clear exceptions to this

are Patient 3 in terms of cellularity and Patient 6 sample 5 in terms of  both 

ploidy and cellularity. The issues with the Patient 3 data are discussed in the 

next section. For Patient 6 sample 5, it is clear that ABSOLUTE has chosen a 

model that has a lower cellularity (of 0.3) and a larger ploidy 5.34, whereas 

Sequenza opted for the model where the ploidy was closer to 2 and there was a

much higher cellularity for the sample (of 0.61). This was probably caused by 

the bias in the Sequenza model to opt for solutions with a ploidy close to 2 by 

default, with an alternative solution having values more similar to the 

ABSOLUTE estimates. When viewing the alternative solutions for Patient 6 
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sample 5 it can be seen that this was the case, where a solution was proposed 

with a cellularity of 0.37 and a ploidy of 0.57. Both solutions had a similar LPP 

of near 1, which explains the discrepancy seen here between the two softwares.
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The cellularity of a tumour sample is reflective of its quality in respect to how 

valuable it is for analysis. As discussed in Chapter 2, low cellularity values are a

major problem that needs to be overcome when working with cancer 

sequencing data. As such the values displayed in Table 3.6 were used to 

determine if samples were of sufficient quality to produce accurate results 

further down the pipeline. As Sequenza can reportedly estimate accurate results

with cellularity values as low as 0.25, this was the value decided upon for 

whether a patient was sufficient for advancement to the next analytical step. 

However, in order to utilise the two different copy number estimation methods 

used on the data, it was decided that a patient would only be removed if both 

estimates fell below 0.25, or if the average values for cellularity between the two

Table 3.6: A table of the average values of cellularity for each patient as estimated by both 

Sequenza and ABSOLUTE. All patients comprise of 4 samples apart from 1, 12, 23, 24, 27 and 34, 

all of which have 5. 
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methods was greater than 0.1. This means that 7 patients did not meet the 

quality threshold and so were not used for further analysis, these patients are; 

7, 8, 9, 20, 32, 35 and 62. Figure 3.12 displays the comparative data for 

cellularity between the two methods and helps to visualise which patients 

should be removed from the cohort.
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Figure 3.12: Box and Whisker plot of cellularity covering all 25 patients in the initial cohort, with 

values provided by Sequenza (orange) and ABSOLUTE (blue). The plots are separated into 3 graphs 

due to convenience in displaying the figure and not for any analytical reasons. The plots are grouped 

into pairs for each patient so they can be directly compared. The upper and lower values of each plot, 

the “whiskers”, represent the max and min range of each set of values. The top and bottom of the 

“box” display the upper and lower interquartile range respectively, with the inner line showing the 

median value. The x in the box shows the mean value of the data.

C
el

lu
la

ri
ty

C
el

lu
la

ri
ty

C
el

lu
la

ri
ty

122



Figure 3.12 helps to more clearly display the range of values between patients 

and why 7 of the patient cohort were removed from any additional analysis, all 

removed due to having cellularity values below the required threshold of 0.25. 

As well as the 7 patients removed for low cellularity, Patient 3 was also removed

from the cohort. Even though Patient 3 did meet the necessary quality threshold

for cellularity from both Sequenza and ABSOLUTE, the difference between the 

mean values exceeded the limit of 0.1, as can be seen in Table 3.6 and Figure 

3.12. It displayed a huge range of copy number values, ranging from 0 to 20, 

across large segments of the exome and also reported much greater numbers 

in the amount of segments predicted, especially in samples 3 and 4. Further 

inspection of the Patient 3 sequencing data revealed large amounts of low 

quality reads, implying an error during sequence assembly or low quality 

samples. It is also worth noting that Patient 3 had the biggest difference in 

average cellularity between Sequenza and ABSOLUTE, which by itself doesn't 

count for much, but when observed it conjunction with other evidence may also 

hint towards the Patient 3 sequencing data being unstable. For these reasons it 

was decided that there was enough evidence to remove Patient 3 from the 

cohort alongside the 7 patients who didn't meet the cellularity threshold. This left

a cohort of 17 patients which could be analysed in subsequent steps of the 

Sequenza/TuMult pipeline, as well as in other pipelines established in later 

chapters.

It may be a concern that only the average cellularity was compared between 

Sequenza and ABSOLUTE, and that the cellularity of individual samples was 
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overlooked when deciding which patients and samples would be carried forward

in the pipeline. For example, Patient 23 sample 3 did have an estimated 

cellularity of below 0.25 in both software outputs, with a value of 0.17 from 

Sequenza and a value of 0.22 from ABSOLUTE, so by the criteria used above it

would be excluded from any further analysis. However, it was suggested that as

long as the average cellularity for a patient met the 0.25 threshold, then the full 

patient should be included. This was decided in order to maintain the size of the

cohort and avoid shrinking it more than necessary, and that the effect of a single

sample may be minor in the overall goal of finding driver mutations in the 

tumour data. A counterpoint to this is that in order for any single event to be 

called as clonal, it would have to be present in all samples of a patient, and that 

one sample with low cellularity may cause certain events to be missed. 

However, not only would this effect be easy to observe in the output of each 

pipeline, there were only 4 samples total where this was a consideration: 

Patient 23 sample 3, Patient 16 sample 5. and Patient 64 samples 1 and 4. An 

event which is referred to as “clonal” means that it originally occurred in the first 

clone, i.e. the cancer cell population from which the current populations have all

descended from.

A final note on this quality control step is to acknowledge that Patient 64 was 

very close to being excluded from the cohort. With the ABSOLUTE average 

cellularity estimate putting it only just above the threshold, and it falling 

significantly below the threshold when estimated by Sequenza, even though it 

technically passed it could be the case the cellularity is too low for the patient to 

yield valid results. This is especially true as Sequenza is the software with 

which it fell below the threshold. However, it was decided that it was better to 
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keep Patient 64 in the patient cohort as it had technically passed, but to keep in 

mind how close it was to being excluded when considering results. 
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3.3.4) Sequenza and ASCAT Comparison

In a similar fashion to the previous section, the Sequenza results were also 

compared to results produced by the software ASCAT, which was run by 

Novogene as described in chapter 2. This ASCAT data is what was used to 

provide copy number estimates in the Zhang, M paper (Zhang, Jin-Li et al. 

2021) discussed in chapter 1 and present in the publication list of this project. 

This section will display a brief example of ASCAT output followed by summary 

statistics and a box and whisker plot as in the previous section.
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Figure 3.13 is a profile graph produced by Novogene using the ASCAT software

for Patient 1 from the MPM cohort. All 5 samples are displayed in the figure, 

with each set of twin graphs assigned to one sample, the higher graph in each 

pair showing the log ratio calculated by ASCAT (essentially the depth ratio) and 

Figure 3.13: The profiles graph produced by Novogene using ASCAT for Patient 1. All 5 samples of 

Patient 1 are displayed across twin graphs per sample, the top graph displaying the log ratio and the 

lower graph displaying the BAF. Purity (cellularity), ploidy and the average copy number for each 

patient are also displayed. 
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the lower graph in each pair displaying the BAF. Each sample also has the 

predicted ploidy and cellularity estimates displayed as well as the average copy 

number. 
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Table 3.7 showcases the main difference in the output of Sequenza and ASCAT,

which is in the number of segments called for each patient, with the values for 

ASCAT being far lower than for Sequenza. The amount called for Sequenza 

ranges from 166 in Patient 1 to 372 in Patient 64 and a mean number of 262 

segments reported across all patients. However, for ASCAT the lower range sits

at 41 in Patient 1 and the upper range at 97 in Patient 34 and a mean of 60 

segments reported across all patients. It is clear that the sensitivity for detecting

copy number events in ASCAT is much lower than in Sequenza, calling 

approximately 6 times fewer segments. One possibility into what has caused 

this is that ASCAT was primarily designed with whole genome sequencing in 

mind, not whole exome sequencing, and that its use with whole exome 

sequencing data may have resulted in more regions of the data being called 

with a “normal” copy number, meaning they did not contribute to any segments. 

Conversely, it may be that Sequenza generates results with more noise, and 

divides large segments called by ASCAT into smaller segments which 

incorporate the same region. 

Table 3.7: A table showing comparative statistics from the Sequenza and ASCAT copy 

number calls, as well as mean average estimations of cellularity and ploidy. 
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Figure 3.14: Box and Whisker plot of cellularity covering the 17 patients in the reduced cohort, with 

values provided by Sequenza (orange) and ASCAT (yellow). The plots are separated into 2 graphs 

due to convenience in displaying the figure and not for any analytical reasons. The plots are grouped 

into pairs for each patient so they can be directly compared. The upper and lower values of each plot, 

the “whiskers”, represent the max and min range of each set of values. The top and bottom of the 

“box” display the upper and lower interquartile range respectively, with the inner line showing the 

median value. The x in the box shows the mean value of the data.
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As shown by Figure 3.14, in terms of mean cellularity, the two methods have a 

good level of agreement, with only Patients 12, 16 and 64 having a difference 

greater than 0.05 estimated. The Sequenza estimates display a greater range 

with an upper value of 0.73 and a lower value of 0.198, whereas ASCAT has an 

upper value of 0.688 and a lower value of 0.21. Patient 12 has the biggest 

difference in estimated average cellularity, of 0.13. The general agreement of 

these values does imply that the ASCAT software was able to work to a 

reasonably accurate degree, even with the use of whole exome sequencing 

data, assuming that the Sequenza estimates are also accurate. The difference 

in average values between the two softwares for Patient 12 would have made it 

the only patient not to pass this brief quality control step, however, for the 

following reasons it was not straightforward to eliminate Patient 12 because of 

this.

Curiously, all samples from all patients have an estimated ploidy value of 

exactly 2 in the ASCAT results, including samples 1 and 4 in Patient 12 which 

were thought to have had a genome doubling event present, occurring some 

time after the initial divergence of the cancer cell populations. In order to check 

further on whether the genome doubling event was in fact present in the BAM 

files of samples 1 and 4 (or at least the implication that they could be there), the

Integrative Genomics Viewer (IGV) was used, which allows for the visualisation 

of BAM files with a display of read counts across the regions within the file 

(Robinson, Thorvaldsdóttir et al. 2011; Robinson, Thorvaldsdóttir et al. 2017). 

Loading either of the sample files to the IGV alongside the normal sample from 

Patient 12 clearly showed a large increase in read counts across large portions 

of the exome, so samples 3 and 5 were also checked, both displaying read 
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counts more similar to that of the normal tissue, though still slightly increased. 

This implies that genome doubling event is not merely an artifact and is in fact 

present in both samples 1 and 4. This raises the question as to why the ASCAT 

analysis by Novogene either missed or obscured the event from its work flow so

that it was absent from the results. 

The best explanation is that Novogene used an option present in the ASCAT 

software to enforce a particular ploidy in the model, that ploidy value being 2 

(which is why all sample ploidy estimates are exactly 2), which forced all copy 

number calls to be made as if that was the case. This is done is place of letting 

ASCAT estimate the ploidy itself and is actually also an option available to use 

with Sequenza. The reason ASCAT does this is to control for cell admixture 

between separate tumour tissue and normal tissue, leaving these parameters of

the model to the user. This is likely the reason for the higher average cellularity 

value for Patient 12 reported by ASCAT compared to Sequenza, as can be seen

in Figures 3.6 and 3.7, when the estimated ploidy of a given sample is reduced, 

it causes an increase in the cellularity estimate to compensate for the change. 

This is also likely the reason why Patient 12 has the lowest mean average copy 

number across all samples, with a value of 1.72. As such, it is likely ASCAT 

would miss a genome doubling event if one was present, and as one is 

suspected to be present in Patient 12, it was decided that this was likely the 

reason it didn't meet the comparison thresholds. As such, it was decided to 

keep Patient 12 as part of the cohort as there was no evidence of low data 

quality in this particular case.
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3.3.5) Sequenza Summary Results

The following table (Table 3.8) displays the summary results for Sequenza 

across the 17 patients carried forward after comparison.

The total segments reported in Table 3.8 were extracted from the segments file 

produced by Sequenza as its main output, which contains the genomic 

positions and copy-number of each distinct segment as reported by Sequenza. 

The total number of segments has a range of 166 in Patient 1 up to 372 in 

Patient 64 and the mean number of segments reported across the cohort was 

262 per patient. There doesn't appear to be any correlation between either 

ploidy or cellularity and the number of segments that were detected in a patient,

though it should be noted that Patient 64 did have the highest amount of 

segments by a large margin. It is possible that this is due to the lower cellularity 

of Patient 64 resulting in larger segments being broken into separate smaller 

ones due to regions of lower quality, though this is conjecture. It should be 

Table 3.8: A table displaying the total number of segments called by Sequenza per patient. The proportion of 

exome effected refers to how much of the sequence of te exome was effected by copy-number changes in total, 

expressed as a percentage. The losses and gains columns refer to the proportion of the copy-number change 

that was either a decrease or increase in copy-number respectively. 
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noted that the minimum number of possible segments that can be called by 

Sequenza on this dataset is 22, as that is the number of chromosomes included

for each patient, and as stated previously, a chromosome with no reported 

copy-number change events would be designated as a single unbroken 

segment. 

The proportion of the exome effected was determined using the positional data 

included in the Sequenza segments file, by comparing the length of all 

segments with a copy number bigger or smaller than 2, to the total length of all 

reported segments. This value had a range of 12.5% in Patient 1 up to 93.7% in

Patient 12, and the mean proportion of the exome effected was 34.3%. 

However, Patient 12 is clearly an outlier here, as the only patient with an exome

coverage of over 50%, and only one of two with an exome coverage of over 

40% (the other being Patient 24). The possible genome doubling in Patient 12 is

what will have caused this phenomenon, resulting in large sections of the 

exome data to report with higher copy number. The reason that Patient 12 could

still be reporting an exome effected coverage of less than 100% even if genome

doubling has occurred is due to the timeline of the mutation events in the 

tumour. If the genome doubling event was the first to occur, then it is likely that 

the reported number would be even closer to 100%, as single copy gains or 

losses would be much more difficult for Sequenza to identify. It is also possible 

that in a patient where genome doubling had occurred as one of the very first 

copy-number events, it would be difficult to identify that it had occurred, though 

the use of depth ratio in the Sequenza software would help to solve this issue. 

The mean average when Patient 12 is excluded is 30.6%. 
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This is an important finding, as it provides further supporting evidence that MPM

is a cancer that involves large-scale copy number events, though as discussed 

in previous chapters, this has been known for at least 14 years. A similar 

observation can be made when comparing the proportion of decreases or 

increases in copy number change in the cohort, or losses and gains 

respectively. The Sequenza findings agree with previous reports that it is losses 

that are more prevalent in MPM than gains, with all patients showing a greater 

amount of loss than gain, except for Patient 12, with the genome doubling event

accounting for the huge amount of gains reported.  
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3.4) TuMult Results

3.4.1) TuMult Patient Results

All 17 remaining patients in the cohort were successfully processed by the Perl 

scripts and subsequently the TuMult R script, which generates two phylogenetic

trees and a table per patient. The first tree is the most important visualisation 

and will be referred to as the cytobands tree, as it posts the events in cytoband 

format along the branches of the tree. This is demonstrated in Figures 3.15 and 

3.16. The second tree is identical to the first except it posts the events using 

unique “segment IDs” instead of as cytobands (referred to as the segments 

tree). These IDs refer directly to the segments file which TuMult produces that 

lists each event posted on the tree, giving the probes that the event covers, the 

start and end position, and assigns a unique segment ID to each event. The 

purpose of the segments tree is simply to allow for mapping of results from the 

cytobands tree to the segments table without having to manually do it using the 

cytoband information. An example of a segments tree is provided in Figure 3.17.
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Each terminal node on a TuMult phylogenetic tree represents one of the 

samples included in the input, and TuMult enforces that these must be unique 

nodes. This results in the internal “common precursor” nodes which represent 

hypothetical evolutionary states TuMult predicts were present at an earlier time. 

The length of the branches which connect nodes to precursors is not 

representative of evolutionary time and is simply established by TuMult when 

formatting the tree. Due to TuMult making the assumption that all events are 

Figure 3.15: The TuMult cytobands tree for Patient 1. Events are displayed as cytoband label and 

separated from each other via a comma. A '+' sign indicates it is a heterozygous gain in the region of the 

label, '++' indicates a copy number gain of 2 or more copies, '-' indicates a heterozygous loss, and '–' 

indicates a homozygous loss. The nodes of the trees have labels regarding the patient number and sample 

number, for example, P1s1 is the far right node and refers to the patient 1 sample 1 data.
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equal in terms of evolutionary time, a basic method of determining the true 

length of a tree edge is to count all events which occur between any given node

and the normal tissue at the root of the tree. For example, in Figure 3.15, 

sample 1 (P1s1) is located on the far right of the tree, branching from common 

precursor 2. Between sample 1 and common  precursor 2 there are 1 3 events, 

between common precursor 2 and common precursor 1 there are 5 events and 

between common precursor 1 and the normal tissue there are 11 events, giving 

a total edge length of 29 for sample 1. 

Samples which have more events in common are assumed to have diverged 

later in time than those with fewer events in common. In Figure 3.15, samples 3 

and 5 are located at the bottom of the image, and are shown to have the 5 

events between common precursor 4 and comm on precursor 2 in common, the

5 events between common precursor 2 and common precursor 1 in common, 

and the 11 events between common precursor 1 and the normal tissue in 

common. With a total of 21 common events they have the highest number of 

common events on the tree and so could be said to be the two most related 

samples in Patient 1, or rather, the two samples which diverged most recently 

compared to all other samples. 

The most important region of any phylogenetic tree to consider in this project is 

the branch between the normal tissue and the first common precursor. This is 

the branch known as the truncal region and represents events which are 

common to all samples in any given patient and so can be said to have 

occurred the earliest, and importantly, before the samples were able to 

significantly genetically diverge. This is the region where driver mutations would
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be present, as they would cause the rapid genetic divergence as well as the 

physical spread of the cancer across the pleura. As such, reported truncal 

events which recur across the cohort are the key events to consider when 

searching for possible genetic drivers, and subsequently, identify regions which 

may contain druggable targets for the treatment of MPM. 
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Figure 3.16 acts as an example of what a lower 10kb bin size results in when 

compared to the tree in Figure 3.15 with a 100kb bin size. Generally, the trees 

appear the be quite similar, with the same topology of samples, though it is 

clear that there is a much greater number of events reported in the 10kb tree. 

This is because many copy number events exist with sizes between 10kb and 

Figure 3.16: The TuMult cytobands tree for Patient 1 generated using a bin size of 10kb. Events are 

displayed as cytoband label and separated from each other via a comma. A '+' sign indicates it is a 

heterozygous gain in the region of the label, '++' indicates a copy number gain of 2 or more copies, '-' 

indicates a heterozygous loss, and '–' indicates a homozygous loss. The nodes of the trees have 

labels regarding the patient number and sample number, for example, P1s1 is the far left node and 

refers to the patient 1 sample 1 data.

140



100kb which would be excluded when binned in the latter size but not the 

former. It can also be seen that these events are far more likely to be larger 

scale copy number gains, often reporting copy numbers above the exome 

average but only for relatively small regions. There is a strong possibility that 

these events are artifacts generated by Sequenza due to lower qualities in 

these small regions which can affect the depth ratio calls made. 

It can also be seen that the truncal region is very different between the two 

trees, with a much larger number of gain events in the 10kb bin size tree (Figure

3.16), whereas in the 100kb bin size tree (Figure 3.15) there was only a single 

gain event in the truncal region. The overall topology of the tree is also altered 

between the two versions, with samples 1 and 4 being grouped in Figure 3.16 

rather than samples 2 and 4 in Figure 3.15. It was decided that the 100kb trees 

would reduce the noise present in the 10kb trees whilst still maintaining enough 

sensitivity to include the vast majority of eligible segments produced by 

Sequenza. This was due to MPM being characterised by large-scale copy 

number loss events, with an influx of small gain events unlikely to be 

contributing to the disease if they are even present in the first place. 
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Figure 3.17 is the sister tree of the cytobands displayed in Figure 3.15 and it 

can be seen that structurally both trees are identical, with the only difference 

being the labels on each branch. These labels actually refer to segment IDs that

are established by TuMult and displayed in a segments file produced as 

additional output. These IDs link the information present in the file with the 

position on the cytobands tree (Figure 3.15), with the segments tree acting as a 

Figure 3.17: The Tumult segments tree for Patient 1. This tree is the sister tree to the one presented in Figure 

3.15, and both trees are actually identical in structure. Rather than showing the cytobands as events, the 

segments tree shows the unique ID of the segment or segments used to create specific events. These IDs 

correspond to the segments file generated by TuMult. The nodes of the trees have labels regarding the 

patient number and sample number, for example, P1s1 is the far right node and refers to the patient 1 sample 

1 data.

142



key to link the two together. The reason for producing this figure is simply as an 

example to showcase what TuMult produces and how specific genomic 

positions were identified based on the cytoband given in the cytobands tree. All 

3 outputs are required in order to properly identify which regions are effected by

the loss or gain of copy number and where they were then placed on the 

phylogenetic tree, as just having the cytoband displayed on the cytobands tree 

does not necessarily mean the entire cytoband is actually involved in the event, 

just that it incorporates some portion of it. This avoids the accidental association

with genes that may exist within a certain cytoband, but not actually exist within 

the copy number event (defined by the segment) which is present on the tree.

One particular tree of interest is that of Patient 12, as the increased ploidy 

estimates and very large proportion of exome predicted to be effected by copy 

number change both suggest that a genome doubling event may have taken 

place. 
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3.4.2) Genome Doubling in Patient 12

Patient 12 samples 1 and 4 have been mentioned multiple times throughout this

report up to this point, in relation to the much higher ploidy value estimated by 

Sequenza and ABSOLUTE in comparison with the other samples and other 

patients, which in turn resulted in a large amount of copy number gain events 

being reported by Sequenza for these samples. Besides genome doubling 

being responsible, two alternative explanations were provided in the form of 

chromothripsis, and admixture of multiple tumour populations.
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Figure 3.18 allows for a visualisation of what might have happened in these 

Patient 12 samples, and it suggests that genome doubling may in fact be the 

best explanation for the large amount of copy number gain, even though the 

initial spread of copy number values shown in Figure 3.11 suggested that this 

may be unlikely. 

Figure 3.18: The cytobands tree for Patient 12 produced by TuMult. The large number of gain 

events seen between common precursor 1 and common precursor 4, as well as between the 

sample 1 and sample 4 nodes is indicative of a genome doubling event occuring. 
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The truncal region between the normal tissue and the first common precursor 

represent the point in evolutionary time where the cancer had not yet diverged 

at all. During the period represented by the truncal branch, TuMult has 

calculated that 6 large scale copy number events occurred. It is after this point, 

it can be seen that the cancer diverged into at least two distinct cancer cell 

populations (other cancer cell populations will also have formed but no longer 

be detectable due to either being too small in number or no longer being 

present, both caused by selection within the populations), which are 

represented by common precursor 4 and common precursor 2. Examining the 

patient data in Table 3.1 indicates that patient 12 had epithelioid MPM, with this 

phenomenon possibly being explained if they had biphasic MPM.

This is a good opportunity to mention a limitation with the use of TuMult as a 

phylogenetic software, though one that can be overcome through more careful 

analysis of the results. As stated previously, TuMult assumes all events are 

equal in terms of evolutionary time, and it is instead the number of events which

is used to determine how recently two samples may have diverged. In this 

scenario, as all the branch lengths for samples 2, 3 and 5 are shorter than the 

branch length between common precursor 1 and common precursor 4, it would 

be assumed that these populations were already established before common 

precursor 4 had become fully established. However, if it is a genome doubling 

event responsible for the huge amount of gain events seen, then it is likely that 

all of these events took place simultaneously, due to endoreduplication (where a

genome has duplicated but no cell mitosis has taken place) or a failure in 

cytokinesis (Nik-Zainal, Van Loo et al. 2012). There is no way for TuMult to list 

such an event as a single event, due to the technical constraints of the 
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software, with no way to account for events which take place over multiple 

chromosomes simultaneously. In this specific example, the event is easy to spot

and so does not convolute analysis, though it should be noted that although the 

branch lengths for samples 1 and 4 would imply that they diverged from the 

common precursor less recently, this may not be the case.

Therefore, all that can be determined about the genome doubling event is that it

happened after the initial divergence of the samples, and so probably occurred 

after the cancer had already entered its more aggressive stage and begun to 

spread across physical distance. 

The genome doubling may have eclipsed events that had taken place prior to it 

happening, with loss events then regaining copy number in regions where it was

decreased. This phenomenon can explain why the copy number distribution 

seen in Figure 3.11 was so dispersed. Unfortunately, the genome doubling 

event may have also resulted in limiting how many truncal events could be 

found. Earlier it was mentioned that the Patient 12 TuMult tree had 6 reported 

truncal events, however this could be an underestimation of how many events 

actually took place prior to the initial divergence of the samples. Clearly, this is 

an issue as the events which occurred before the initial divergence are the 

events with the most clinical significance, as well as the events that this pipeline

was built to identify. Therefore, it could be the case that amongst the events 

assigned to the branch between common precursor 1 and common precursor 2,

there are actually truncal events, masked in samples 1 and 4 by the genome 

doubling, which were unable to be accurately identified by Sequenza. Although 

not recorded as truncal events, this branch will be discussed again later in the 
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chapter.

The presence of genome doubling in cancer cells is not a novel finding, and 

they have been previously reported both in MPM (Hmeljak, Sanchez-Vega et al.

2018) and in other cancers (Bielski, Zehir et al. 2018; López, Lim et al. 2020;  

Nik-Zainal, Van Loo et al. 2012). It has been established that these genome 

doubling events tend to take place during the later stages of cancer evolution 

(Hmeljak, Sanchez-Vega et al. 2018) and this could be due to a specific type of 

selection which results in the proliferation of cancer cells which have had a 

genome doubling event. Cancer cells are able to mutate at a much greater 

scale than normal cells and still remain viable, however this does have a limit 

and at a certain point, a cancer cell can have picked up so many deleterious 

mutations that it can no longer maintain replication. It has been suggested that it

is this scenario, which results in the establishment of a genome doubling cancer

phenotype, as the cells may be able to recover some of the lost sequence in 

order to maintain viability. This results in positive selection towards cells which 

have genome doubling as other cells in the population are unable to maintain 

their own replication (López, Lim et al. 2020). This hypothesis makes sense 

here, as we have already established that MPM is a cancer which displays a 

large amount of genomic loss, and provided evidence which supports that 

claim, and so could be providing the perfect selection pressure to cause 

genome doubling events to occur.

Overall, only 1 of the 17 patients displayed any sign of genome doubling, and it 

is likely that the event occurred later on in the evolution of the cancer (or at 

least, occurred after the cancer had already diverged and began to spread). 
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This makes it unlikely that genome doubling is a significant driver in the spread 

of MPM, though its presence can cause problems with genome analysis.

The complete set of TuMult trees for the cohort can be seen in Appendix A.
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3.4.3) TuMult Summary Results

This section covers the summary results from the TuMult analysis and includes 

the following figures: the total proportion of the exome sequence effected by 

copy number alteration events, as well as the proportion that were clonal 

(present in the truncal region) or subclonal (present in shared or node 

branches) (Table 3.9); the total number of events reported for each patient tree 

and the total branch length for each sample per patient (Table 3.10); a table 

showing all clonal regions which showed recurrence between patients (Table 

3.11); and a table showing in which patients the recurrent clonal regions were 

detected (Table 3.12).
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In Table 3.9 the proportion of exome effected by copy number changes is the 

same values that can be seen in Table 3.8, though now, instead of showcasing 

the proportion of losses versus the proportion of gains, this table displays the 

proportion of events which were assigned as clonal or subclonal by TuMult. In 

this context clonal means events which were present in the trunk due to being 

present in all samples within the patient, and subclonal refers to all other events

on the tree not assigned to the trunk, i.e. events in the shared branches and 

branch nodes. The clonality of these events has not only be defined by their 

presence in each sample though, as the breakpoints at either end of the event 

had to be similar enough for TuMult to classify it as a single event. This is 

essentially the key aspect of the pipeline, and is the biggest strength of this 

analysis, as the likelihood of the same breakpoints occurring in parallel after the

initial divergence of samples should be extremely low. The heterogeneity index 

is calculated by dividing the clonal proportion by the subclonal proportion, with a

value of 1 indicating an identical amount of both clonal and subclonal, a value 

Table 3.9: A table displaying the proportion of the exome effected by copy number changes per patient. 

Also displays the proportion of the change which was assigned as clonal and subclonal, with a 

heterogeneity index showcasing the relationship between the two. 
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higher than 1 indicating that the clonal proportion is higher and a value lower 

than 1 indicating that the subclonal proportion is higher.

The range of the proportion of the exome which has been classified as clonal 

ranges from 0.1 in Patient 16, up to 26.1 in Patient 6. The Patient 16 tree only 

has two events in the truncal region, one gain and one amplification (a gain with

a copy number increase of more than 2), both of which are small in size, being 

300kb and 400kb respectively. Patient 16 has not had any previously abnormal 

results, so the very small number of truncal events is difficult to explain. It could 

be the case that there was just an extremely early divergence in this patient, 

with the samples then deriving separately from these distinct populations. 

Another explanation is that there was no divergence and that multiple tumours 

formed independently in this patient, leaving no clonal events and the samples 

were never all part of a single tumour cell population, but there was no mention 

in the patient characteristics data that this may be the case. However, in order 

for the second explanation to fit, it would mean the two events that are listed as 

truncal would have to have occurred by chance, which has already been stated 

as being extremely unlikely. Or, it would mean that the two truncal events are in 

some way artificial, however, besides the events being fairly small there is no 

other evidence that would suggest that this is the case. 

The range of the proportion of the exome which has been classified as 

subclonal ranges from 2.1 in Patient 1 and 91.9 in Patient 12. The reasons for 

this high number in Patient 12 have been discussed at length already, with the 

genome doubling event occurring after the first divergence being responsible. 

Taking the next highest value puts the top range at 33.1 in Patient 24. The 
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heterogeneity index in the final column of Table 3.9 basically represents 

whether a patient has more copy number change events in the truncal region or

on the branches of the tree. Overall, 9 patients display a heterogeneity index 

value of above 1 and 8 patients display a value of below 1, giving a fairly even 

split of patients that have a majority of change in the trunk and patients which 

have a majority of change in the branches. 

Logically, the longer an MPM tumour has been present in a patient in its 

aggressive form, the lower its heterogeneity index value will be. This is due to 

there being no change to the number of clonal events once the populations 

have already diverged from the original tumour, but an increase in the number 

of subclonal events as the cancer continues to mutate and accumulate more 

copy number changes. Whilst it would be very interesting to compare the 

heterogeneity index values calculated here to the progression of the cancer in 

each of the patients at the time of surgery and sample extraction, unfortunately, 

this data is not available. 
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In Table 3.10 the total number of events on the TuMult tree for each patient is 

listed in the second column. This is where a noticeable divergence from the 

Sequenza results can be seen, in Table 3.4. The numbers of total events 

calculated by TuMult can actually exceed the number of segments reported by 

Sequenza for the same patient as the same segment can be used to account 

for multiple different events that have occurred in separate samples. The range 

of the total number of events has a low of 175 for Patient 1 (which also had the 

lowest proportion of the exome effected) and a high of 431 for Patient 12 due to 

genome doubling and having 5 samples instead of 4. The next highest would be

Patient 64 which has a total of 426, possibly due to the lower cellularity values 

estimated in this patient, resulting in a larger amount of smaller segments being 

reported by Sequenza. 

Table 3.10: A table showing the total number of events reported on the TuMult tree for each patient. It 

also displays the branch length of each sample for each patient, and then an average branch length 

across all samples. The #### values present in the sample 2 column indicate that the given patient 

didn't have sample 2 data available, as discussed in Methods.
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Table 3.11 is a table showing all of the recurrent clonal regions calculated by 

TuMult. In order to be classified as recurrent and clonal, a region simply had to 

be present in full, in the truncal region of at least 2 patients. These results are 

essentially the key findings of the Sequenza/TuMult pipeline, as these regions 

are where the genes which have the potential to trigger the proliferation of MPM

and cause it to shift from its latent phase into its aggressive phase (i.e. driver 

genes) will be found. The next section of text will discuss the findings presented

in the table, with candidate genes being mentioned throughout but not fully 

discussed. However, detailed discussion on the possible biological pathways 

that these genes involve will be done later in the report, in the final section of 

Chapter 5. 

Overall, there were 10 recurrent clonal regions calculated by TuMult across the 

Table 3.11: A table displaying recurrent clonal regions found in the patient 

cohort. For an event to be included, it had to be present in at least 2 patients. 
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patient cohort, with the most common region being 22q, which was present in 

13 of the 17 patients. The first obvious thing that can be noticed with the 

regions, is that they are all caused by copy number loss events, supporting the 

notion that MPM is a cancer mainly driven by genomic loss in the cancer cells. 

Whilst all of these regions are shown as heterozygous losses, where one copy 

of the chromosome covering that section is sequence is lost, it should be noted 

that in the case of the 9p21 region, homozygous losses were detected in 2 

patients, Patient 1 and Patient 37. Homozygous loss is when both copies of the 

sequence for a given region are completely deleted, resulting in a total loss of 

function for any protein-coding sequence present there. The heterozygous loss 

of one copy of a gene region can be enough to cause functional change in a cell

due to the lower amount of protein expression, mainly through a lower efficiency

at a specific stage of a cellular pathway or the inability to meet a protein 

threshold in the case of regulation. Homozygous losses are a step up from this, 

with the protein expression reduced to zero. Although only detected in 2 

patients out of 17, and only in a single recurrent region, this finding indicates 

that the 9p21 region may be especially important in the acceleration of MPM 

progression.
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Table 3.12 displays the recurrent clonal regions in association with the patients 

they were detected in, ordered by frequency of occurrence of each specific 

recurrent event. These recurrent deletion events are a key finding of the project 

and are discussed at length at the end of the chapter. 

Table 3.12: A table displaying the patients where each clonal region was detected, coloured in 

blue. In order for a clonal region to be counted, it had to be present in at least 2 of the patients 

in the cohort. 
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3.4.4) ASCAT/TuMult Results

The ASCAT results produced by Novogene were also run through TuMult to 

evaluate whether the findings were significantly different. An example ASCAT 

tree is displayed as well as 2 summary tables representing the TuMult/ASCAT 

analysis. 
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The ASCAT/TuMult cytobands tree is shown in Figure 3.19, appearing very 

differently to how it looked when generated using the Sequenza/TuMult pipeline.

The topology of the tree has completely changed, as the lack of the genome 

doubling event results in the samples being placed into different clades due to 

the lower number of overall events. In terms of topology, this tree is far weaker 

than the Sequenza/TuMult tree, as it is highly likely that samples 1 and 4 should

be placed together, though the elimination of the genome doubling may excuse 

this. Interestingly there are now far more events present in the truncal region of 

Figure 3.19: TuMult tree produced using copy number segments called by ASCAT (generated by 

Novogene) for Patient 12. Events with a – are heterozygous deletions,  + are single copy number gains, - 

-  is a homozygous deletion and ++ is a copy number gain of 2 or more. The labels in each node refer to 

the patient number and sample number represented by that particular branch of the tree, for example, 

P12s2 in the far right node indicates that it is data from Patient 12 sample 2. 
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the tree compared to the other pipeline, with this being a common theme 

throughout most of the ASCAT trees. Many of these events also coincide with 

the recurrent clonal events reported in Sequenza/TuMult. 
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Table 3.13 and 3.14 display the increased amount of recurrent clonal regions 

which are predicted using ASCAT rather than Sequenza, with all events except 

13q loss being reported more frequently. Losses in 9p21, 1p36 and complete 

loss of chromosome 4 are all greatly enriched, appearing at least 5 times more 

in the ASCAT/TuMult trees. All patients also saw either an increase in the 

number of clonal events reported or the same amount, with all 

Sequenza/TuMult clonal events also being reported in ASCAT/TuMult, with the 

exception of 1p36 loss in Patient 24, and 10q23 loss in Patient 85. The 

Table 3.13: A table displaying recurrent clonal regions found in the patient cohort using ASCAT/TuMult. 

For the sake of comparison, only events that were recurrent in Sequenza/TuMult are considered. 

Table 3.14: A table displaying the patients where each clonal region was detected in the ASCAT/TuMult 

trees, coloured in red. For the sake of comparison, only events that were recurrent in Sequenza/TuMult 

are considered. 
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increased frequency of 9p21 loss is especially interesting as it is the most 

recurrent loss in the ASCAT/TuMult trees. In order to find out whether it was the 

Sequenza calls or the TuMult process which was preventing these 9p21 loss 

events from being called as clonal, the original Sequenza segmentation files 

were browsed to find the specific break points in chromosome 9. For Patients 6,

23, 24, 34 and 78, there were 9p21 loss events present in all samples, however,

at least one of the samples always had different chromosome breakpoints 

encapsulating the region, which prevented TuMult from placing the events on 

the truncal branch. However, there were never more than two sets of distinct 

breakpoints in any of these 5 patients. This implies, that at least for these 

patients, the 9p21 loss event was not clonal, but in fact an event that occurred 

shortly after divergence of the first cancer cell populations. 

Clearly, the difference in ASCAT and Sequenza when calling copy number 

segments results in variable events being associated with the truncal region in 

TuMult. However, in the opinion of the author, Sequenza is the superior tool for 

calling copy number segments when trying to determine accurate breakpoints. 

Sequenza considers the read counts and therefore, depth ratio, of all of the 

sequence provided to it, whereas ASCAT uses an SNP based process, meaning

it does not consider every single base when establishing copy number 

predictions. This could lead to the missing of specific breakpoints and result in 

the algorithm assigning whole regions to certain copy numbers between SNPs, 

essentially creating artificial breakpoints where an SNP is present. This would 

explain why there is an increase of clonally called events in TuMult, as it is not 

in fact a higher frequency of events, but instead a higher frequency of 

breakpoints being detected. 
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Despite this limitation with ASCAT in relation to generating TuMult trees, it is still

useful to see that most of the events called by Sequenza are also confirmed by 

ASCAT, increasing the confidence that these events have actually occurred 

clonally. The comparison of different methodologies via practical means such as

this is a key part of the scientific process, especially in the field of 

bioinformatics, where software is often taken at face value. ASCAT has shown 

that it has the ability to call copy number events accurately, but is ill suited to 

TuMult because it uses an SNP-based method to estimate copy number, 

resulting in a surplus of false positive calls in relation to specific breakpoints. 

However, for phylogenetic methods where specific breakpoints are not taken 

into account, the segments produced by ASCAT would be more likely to 

accurately call clonal regions.

The full ASCAT/TuMult results figures are available in Appendix B.
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3.5) Discussion of Copy Number Pipeline Results

3.5.1) Recurrent Events and Patient Exceptions

Examining Table 3.11, it has been the top three most common recurrent regions

in the table which have been most extensively associated with MPM, 22q, 3p21 

and 9p21, with copy number losses in these regions appearing frequently 

throughout the literature (Bott, Brevet et al. 2011;  Bueno, Stawiski et al. 2016;  

Hylebos, Van Camp et al. 2016;  Hylebos, Van Camp et al. 2017; Lindholm, 

Salmenkivi et al. 2007; Prins, Williamson et al. 1998;  Sekido, Pass et al. 1995).

Table 3.12 reveals, that in the case of the patient cohort used here, almost 

every patient experienced a clonal loss event which effected at least one of 

these 3 regions, with the exception of 3 patients: Patient 12, Patient 16 and 

Patient 64. This is especially interesting as these are 3 patients which have all 

been mentioned previously in the report due to various problems during 

analysis or abnormalities in the results compared to the rest of the cohort. 

Earlier it was shown that there was likely a genome doubling even in Patient 12,

which may have had a convoluting effect on the Sequenza/TuMult analytical 

pipeline, in that it may have obscured certain clonal events from being detected.

It was suggested that the shared branch between common precursors 1 and 2 

could actually hint at events that in reality, are clonal in Patient 12, but were 

undetectable by Sequenza in samples 1 and 4. Interestingly, when observing 

the Patient 12 tree (Figure 3.18) it can be seen that on the shared branch 

between common precursors 1 and 2, losses in 1p36, chromosome 4, 9p21, 

10q23 and 22q are present. One explanation for this could be that these events 

did in fact occur clonally, prior to the initial divergence of cancer cell populations
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and subsequent genome doubling event in one of those populations. Further 

evidence towards this point is that no events associated with these regions can 

be seen in the shared branch between common precursor 1 and 4, or on either 

of the node branches for samples 1 and 4. Should these regions have been 

unaffected in the samples, then it would logically make sense for them to 

appear as gain events, along with most of the rest of the genome. These loss 

events occurring, causing a loss in copy number, and then having that copy 

number recovered during the genome doubling event would make sense. In 

theory, Sequenza should be able to detect this kind of phenomenon as the 

depth ratio of the regions in question should still be half of that of the majority of 

the genome which was not initially affected by any sort of copy number change. 

Though there is a strong possibility that these events were missed due to the 

complexity introduced by the genome doubling event subsequent to their initial 

loss. 

Patient 16 only had a very small proportion of the exome effected by events 

which were calculated as truncal, with only two smaller events reported in that 

branch of the tree. In the node branches of the tree, where events specific to 

each sample are listed, samples 1 and 5 both displayed losses in 22q, samples 

4 and 5 shared a 3p21 loss event, and sample 5 also showed an almost 

complete loss of chromosome 4 as well as a heterozygous loss event in 9p21. 

Though these events are present lower in the tree, it is still confusing as to why 

no significant events were reported in the truncal branch, and as to why sample 

3 contained no loss events in common with the other samples. Overall, the 

defining feature of Patient 16 is the accumulation of many small gain events, 

each only effecting small sections of the genome. It is possible that the two gain
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events calculated to be in the truncal region do play a role in the proliferation of 

MPM, being in the region of 10q11 and 11q14. There are studies implication 

both of these regions in cancer, but only in the case of prostrate cancer for 

which they have both been associated (Pomerantz, Shrestha et al. 2010; 

Schleutker, Baffoe-Bonnie et al. 2003). This does seem unlikely however, with 

both association being in non-coding regions of the genome and the study that 

implicates 11q14 reporting a heterozygous loss in the region rather than a gain. 

Neither region has been previously implicated with MPM in any previous 

literature. The results for Patient 16 remain a mystery, though the most robust 

explanation is that the samples derived from two distinct cancer cell populations

which never shared a single population, or, that the slightly lower cellularity 

estimate of the patient (0.29) meant that copy number could not be accurately 

called. 

In the case of Patient 64, it is probable that it is simply the quality of the data 

which resulted in the the lack of any clonal loss of 22q, 3p21 or 9p21. As 

mentioned in previous sections of this chapter when discussing the selection of 

patients to move forward with in the pipeline, Patient 64 was very close to being

excluded, and actually fell below the minimum threshold for selection in relation 

to the Sequenza results (with a value 0.198). In actuality, every sample did have

a 3p21 heterozygous loss called by Sequenza, but the separation of 

chromosome breakpoints meant that TuMult did not calculate this to be caused 

by a single event, but instead as two separate events, one incorporating 

samples 1, 4 and 5 and one incorporating sample 3. It is unclear whether this is 

the truth though based purely on the output of TuMult, this can not be called as 

a clonal event and so must be excluded from the figure, though it is still 
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interesting to note the involvement of 3p21 in every sample. This example, 

though it may be caused by low quality data, actually represents an essential 

argument in the use of phylogenetics to analyse cancer cell data in order to find 

key driver mutations. A simple association study using the Sequenza output 

would have found that the 3p21 event in all of the Patient 64 samples was 

clonal, simply because it was present across all physical regions of the cancer. 

However, as mentioned in Chapter 1, simply finding events which have 

occurred in all samples is not enough, as it neglects that parallel evolution may 

have resulted in the events happening subsequent to the cancer already 

entering its aggressive state. When trying to find candidate gene targets to 

arrest the spread of MPM (or any cancer), it is imperative that the mutation 

events must occur prior to divergence of the cancer cell populations. 

Whilst copy number loss events in the three most recurrent clonal regions (22q, 

3p21, 9p21) are clearly very important in the proliferation of MPM, as displayed 

here and reported in the literature, it is interesting that no patient exhibits a loss 

of the 9p21 region without also showing a loss in one of the other two regions. 

This may imply that in order for 9p21 to influence the transformation of the 

cancer into its aggressive state, the genome must also experience a copy 

number loss event in one of the other two regions. (Bueno, Stawiski et al. 2016; 

Hylebos, Van Camp et al. 2016; Hylebos, Van Camp et al. 2017; Lindholm, 

Salmenkivi et al. 2007). There are tumour-suppressor genes in each of these 

regions, which are also well established, NF2 in the 22q region (Sekido, Pass et

al. 1995), CDKN2A in the 9p21 region (Kettunen, Savukoski et al. 2019; Prins, 

Williamson et al. 1998), and BAP1 in the 3p21 region(Bott, Brevet et al. 2011), 

though SETD2,MTAP and CRI1 (EP300) have also been associated with cancer
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(Fahey, Davis 2017; Fukazawa, Matsuoka et al. 2008; Hida, Hamasaki et al. 

2017) which are also present in the 3p21 and 9p21 regions respectively. The 

loss of function in tumour suppression from these genes may be what allow the 

cancer to begin to proliferate. It should be noted that the reason the top three 

are grouped like this for the purpose of the discussion of this analysis is not only

that they are the three most recurrent clonal copy number events, but also 

because they are so prevalent in the literature, and so can be seen to be almost

standard findings in the genetic analysis of MPM. 

The 14q loss event is reported on a near similar scale as the top three most 

recurrent, but interestingly has less of a presence in the MPM genetics 

literature, appearing in studies far less commonly than 22q, 3p21 and 9p21, 

though it is still associated with the cancer in a few studies and so cannot be 

considered a novel finding (Borczuk, Pei et al. 2016; Lindholm, Salmenkivi et al.

2007). This could be due to the fact that there are no reported genes within the 

region that have been associated with MPM, and so it is neglected from gene 

studies looking to find associations with already established cancer genes. 

Despite this, it has been proposed that both the HECTD1 and NFKBIA genes 

have regulatory effects in pathways that can lead to tumorigenesis (Bredel, 

Scholtens et al. 2011; Sarkar, Zohn 2012). The fact that a loss event in 14q is 

reported as being a clonal event in 8 of the 17 patients by the Sequenza/TuMult

pipeline indicates that it is likely to have some kind of importance in regulating 

the suppression of tumours, and that loss of function in this region can result in 

the proliferation of the cancer. However, a loss in 14q is never independent from

the top three events and actually is only found in patients with at least 2 of the 

top three also present. This implies that the effect of a heterozygous loss in this 
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region alone may not be significant enough to result in the transformation of the 

MPM tumour, and that the genome requires additional events to occur in 

conjunction with 14q in order for the process to take place. 

This effect can also be seen with the rest of the 6 recurrent events, as well as 

with 9p21, and has some interesting implications into explaining what could be 

happening prior to the spread of the cancer. A broad explanation could be that 

whilst the cancer is still in its latency period, and the various cancer cells within 

the original population are accumulating various mutations, certain specific copy

number change events are increasing the ability of a given cancer cell to begin 

rapid replication and expansion, but that there is always a specific trigger event 

required, regardless of how many of these other events build up. A good 

candidate for this specific copy number change event would be the loss of 22q 

and the NF2 gene due to its prevalence in most patients and the fact that it is 

present in 2 patients where neither of the other two most prevalent events are 

found. That is to say, that the point at which a cancer cell obtains a 22q loss 

event, it undergoes positive selection in the cancer cell population and 

proliferates until that phenotype dominates, whilst also causing the tumour to 

undergo rapid expansion in physical space, culminating in metastasis and 

spread across the tissue of the pleural membrane. This is not to say that the 

other recurrent clonal regions determined by TuMult are not undergoing positive

selection, on the contrary, they will be and will resulting a larger proportion of 

the cancer cell population harbouring those events, but they will not be 

undergoing strong enough positive selection to result in the kind of event seen 

in MPM, with mass rapid replication of cancer cells over a short period of time. 

This explanation would mean that -22q would be the ideal region to search for a
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candidate gene, such as NF2, which could then be targeted in drug 

development studies to arrest the spread of the cancer in patients with known 

exposure to asbestos, before the cancer was able to transform. 

In most of the patients, the results of the Sequenza/TuMult pipeline would 

support this hypothesis, with the presence of clonal -22q in all but 4 patients 

(Patients 12, 16, 24 and 64). However, 2 of these patients do have recurrent 

clonal regions suggesting a possible alternative path in the proliferation of MPM 

(Patients 12 and 16 were excluded from this  part of the discussion as neither 

had any recurrent clonal regions). Patient 24 has a copy number loss event in 

3p21 that is assigned by TuMult as clonal and also appears in other patients 

making it recurrent, though it is the only patient which does not also harbour a 

clonal 22q event alongside 3p21. Patient 24 also has a copy number loss event 

in 1p36 assigned as clonal, an event shared with Patient 64, and although 

stated previously, Patient 64 also harbours loss events in 3p21 in every sample,

though this was not called as clonal by TuMult due to difficulties with the data 

quality. Copy number losses in 1p36 have been associated with multiple human

cancers and are one of the most well established chromosome aberrations in 

the field (Bagchi, Mills 2008; Henrich, Schwab et al. 2012; White, Maris et al. 

1995). 

In terms of tumour suppression coding regions in the short arm of chromosome 

1, it has been a constant challenge in the genetic analysis of cancers to locate 

specific genes which are responsible for the loss of function in tumour 

suppression when the genomic region has suffered a copy number loss. But 

rather than there being a shortage of eligible genes, there is actually a surplus, 
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with tumour suppressors in the region including CHD5, CAMTA1, CASZ1 and 

KIF1B (Henrich, Schwab et al. 2012). However, due to the often large size of 

the copy number losses which occur in the region, it is difficult for specific genes

to be identified as causative factors in the cancer proliferation. This also applies 

to both Patient 24 and 64, with the entire 1p36 region being lost in both patients.

There have been suggestions that the region is inherently unstable, and so 

more prone to copy number loss, which results in the whole cytoband often 

undergoing loss (Bagchi, Mills 2008). 

The results shown for Patient 24 indicate that the 22q loss pathway may not be 

the only one which can cause the cancer to progress, and that an alternative 

pathway may exist by way of 3p21 loss, possibly supported by a loss of 1p36. 

Based on the results shown here, if this alternative pathway does exist, it is 

much rarer than the 22q loss pathway proposed earlier, and also may not be 

dependent on the involvement of a 1p36 loss. A copy number loss of 1p36 is 

only present clonally in 4 of the patients, but subclonally it is present in an 

additional 10 (Patients 1, 12, 18, 27, 33, 34, 75, 78, 85 and 91) implying that it is

actually a change that takes place most commonly after the cancer has already 

diverged, and is more likely to evolve in parallel in the samples (i.e. it is unlikely 

to have common chromosome breakpoints which would be picked up by 

TuMult). This is backed up by the notion that the 1p36 region of the genome 

may be unstable and so is likely to accumulate copy number losses and allow 

for the loss in function of tumour suppressor genes in the region to provide 

further positive selection for a given cancer cell population. Heterozygous loss 

of 1p36 is also present clonally in Patients 33 and 37, but this is in conjunction 

with losses in 22q, 3p21, 9p21 and 14q in both patients. 
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The rest of the recurrent clonal regions can now be discussed briefly, as they 

are present in a smaller proportion of the patients and only in conjunction with 

regions that have already been discussed. Heterozygous loss in the 6q region is

present clonally in 5 of the patients, and is a region which encompasses the 

tumour suppressor gene LATS1 which has been associated with MPM in 

previous studies (Miyanaga, Masuda et al. 2015; Zhang, Dai et al. 2017). The 

region only had a copy number loss in conjunction with a loss in 22q. A 

heterozygous loss of the 13q region was also present in 5 patients, though it 

was only ever lost in conjunction with the 6q region in Patient 78. The region 

encompasses two previously reported tumour suppressor genes associated 

with MPM, LATS2 and BRCA2 (Betti, Casalone et al. 2017; Hassan, Morrow et 

al. 2019; Murakami, Mizuno et al. 2011). 13q only had a copy number loss in 

conjunction with a loss in 3p21. It is unclear whether there is a link between 

copy number loss in 13q and 3p21, as opposed to a loss in 22q, as the 13q loss

is also seen in conjunction with a 22q loss in all but one patient where it is 

present (Patient 24). 

In the 3 patients where there was a clonal loss of chromosome 4, the event 

incorporated the entire chromosome (as near to this as the TuMult input would 

allow, listed as a loss from 4p16-4q35) and so caused heterozygous loss to all 

coding regions. However, the FBXW7 gene is present of chromosome 4 and 

has been previously associated with MPM (Kato, Tomson et al. 2016; Yeh, 

Bellon et al. 2018). The entire loss of one copy of a chromosome is actually 

quite common in cancers, and is referred to as aneuploidy (Duijf, Benezra 2013;

Thomas, Marks et al. 2018). The whole loss of one copy of chromosome 4 
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actually introduces an interesting limitation with the TuMult software, as 

regardless of when a total chromosome loss had occurred in different samples, 

it would always be reported in the truncal region by TuMult. This is because the 

chromosome breakpoints of a total chromosome loss will always be the same, 

simply either end of the chromosome. However, it could be argued that it is 

unlikely that the entire loss of one copy of a chromosome would occur twice, 

though that is assuming no genetic changes have already occurred which make

chromosome loss more likely. Overall, it is a minor limitation that is unlikely to 

have a major effect on analysis, and the fact that the loss of chromosome 4 was

recurrent in 3 patients, when no other chromosomes suffered the loss of an 

entire copy, suggests that this event may well be clonal in the patients where it 

is reported. 

Heterozygous loss in the 17p region was clonal in 3 of the patients, with the 

MPM associated gene TP53 (de Assis, Isoldi 2014; Sementino, Menges et al. 

2018) present in this region. Heterozygous loss in the 10q23 region were clonal 

in only 2 patients, with MPM associated gene PTEN (de Assis, Isoldi 2014; 

Sementino, Menges et al. 2018) present here. Interestingly, these two genes 

have often been reported to be lost in conjunction with one another, although 

they are only shared by Patient 91 in this cohort. Looking at subclonal 

branches, samples 3, 4 and 5 of Patient 85 do have losses in the 17p region, 

though it is not detected in sample 1 and so is not clonal to the patient, though it

is possible that the event is selected for if a 10q23 loss is already present in the 

genome.

A final point to address on the Sequenza/TuMult results presented here, is the 
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lack of any recurrent clonal gain events across the patient cohort, which is 

unusual as copy number gain events have been reported several times 

throughout the literature (Furukawa, Toyooka et al. 2015; Lindholm, Salmenkivi 

et al. 2007). This report has already established that losses account for a 

greater proportion of change than do gains (Figure 3.18) and that although a 

large number of gain events can be observed on the TuMult trees, they are 

mostly very small and certainly much smaller than the loss events. An 

explanation for the lack of any clonally reported gain events is that they simply 

do not recurrently occur prior to the transformation of an MPM to its aggressive 

state and only begin to appear frequently once divergence of cancer cell 

populations has taken place. This assumes that any clonal gain events that are 

reported on the TuMult trees are simply passenger mutations, i.e. they do not 

undergo positive selection and do not offer any additional function to promote 

the replication of the cancer cells. It is also possible that these events are just 

rare and so were just less likely to be detected in a cohort size of just 17 

patients.

 Whilst these results do not offer any novel findings in the form of new regions 

of interest associated with MPM, they are novel in that the phylogenetic analysis

of MPM sequencing data has allowed the copy number loss events in these 

regions to be mapped based on the time that they occurred in the evolution of 

the cancer.
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3.5.2) Use of Branch Length to Determine Anatomical Spread of

MPM

The average branch lengths were calculated for each sample in an attempt to 

try and determine if there was a clear order of divergence which could then be 

mapped to the physical space of the pleura, using the data presented in Table 

3.10. One of the project aims was to see if a pattern could be observed with 

how MPM spreads once it has entered its aggressive state and began to 

metastasise across the pleura. Previous observations in the field have 

hypothesised that the cancer initially spreads upwards, towards the apex of the 

lung (sample 1 region) before traversing down the lung pleura (Collins, Sundar 

et al. 2020; Tertemiz, Ozgen Alpaydin et al. 2014). In order for the results to 

support that hypothesis, it would be expected for the average branch length for 

sample 1 to be higher than the others, though in the case of the 

Sequenza/TuMult pipeline, it has a value higher than the average for samples 2 

and 3 and lower than the average for samples 4 and 5. It would seem unlikely 

that the apex of the lung is the first site of metastasis by this metric, but there 

are a few considerations to take which suggest that this is not the best method 

for trying to determine this pattern.

Firstly, this method would need to assume that all instances of this cancer 

would need to spread the same way, with subsequent populations always 

spreading to the next region after the apex. This is unlikely to be the case and is

also heavily influenced by the initial site of cancer development in the pleura, 

which is also variable. The second assumption would be that all sites are 

equally as easy for the cancer to metastasise too, which has been reported to 

be a false assumption (Collins, Sundar et al. 2020) with the pericardium region 
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(sample 2) being described as a fairly rare occurrence. This could also explain 

why the sample 2 region is missing from the majority of patients, as often the 

patient will have passed before the pericardium was metastasised. However, 

the biggest concern with this is also one of TuMults biggest limitations, and that 

is the creation of artificial events in order for the tree topology to exist.

The phenomenon of creating artificial events is quite complicated though it does

happen regularly in TuMult trees in order to support the topology which has 

been determined by the neighbour-joining method that operates at the core of 

the TuMult software. When constructing the trees, TuMult has to decide which 

patients will be grouped together based on the shared chromosome breakpoints

between them by using the copy number profiles it is provided to determine 

regions of consensus between samples. It does this incrementally, starting with 

the pair of samples which have the lowest distance between them and then 

adding on further samples until there are none left to add. At the end of this 

process, the topology of the tree will be determined, with the sample nodes 

arranged at the end of each branch and linked to the closest other sample in 

terms of shared chromosome breakpoints. However, in some cases, two of the 

samples (or groups) it has linked will have contradicting events despite having 

the most common chromosome breakpoints at that point in the process. After 

the grouping stage is done, TuMult then populates the tree with the events 

which resulted in the software arranging the samples in that particular topology. 

In order to resolve any contradictions, TuMult will then add an artificial event on 

a shared branch. This is a confusing concept to grasp, though it is essentially 

the software resolving the tree in the best way it can via the incremental 

process. It is not a hugely common occurrence across the cohort reported on in 
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this thesis, however, every patient has at least one of these events, with Patient 

12 having a substantial amount in particular due to the uncertainty caused by 

the subclonal genome doubling. 

 

This means that using the number of events listed by TuMult, as determined by 

common breakpoints in the input profile, will not always be entirely accurate. As 

such, TuMult is not an ideal software when trying to determine the pattern of 

spreading a cancer has undergone. It is actually unlikely that any phylogenetics 

software would be able to resolve this due to the issues described previously. 

Whereas TuMult assumes a constant rate of evolution in the cancer cell 

populations, this is not the case for all methods, and the possibility of 

accelerated mutation as the cancer evolves adds an additional confounding 

variable to the problem. 

Even though TuMult does have limitations such as this, it is still a demonstrably 

good method when considering what this project is aiming to do. In terms of the 

main goal of identifying recurrent clonal regions which may harbour druggable 

targets, TuMults use of chromosome breakpoints to determine the origin point of

copy number events is a very robust tool.
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3.5.3) Copy Number Based Phylogenetic Pipeline Final 

Comments

The aims of this chapter were to identify recurrent clonal regions via copy 

number based phylogenetic methods in order to identify possible driver regions 

and subsequently, actionable genes which they may contain. This was to be 

done whilst critically evaluating the software used to ensure that the final output 

was of sufficient quality for this level of research. Furthermore, an additional 

goal was to attempt to use the branch lengths provided by phylogenetic trees 

produced as part of the analysis, to try and determine whether anatomical 

spread of MPM over the lung could be tracked via phylogenetic methods.

The two initial aims were achieved via the use of the Sequenza/TuMult pipeline,

which identified multiple possible regions that contain known MPM-associated 

genes, as truncal regions. Unfortunately, the last aim was not met, though the 

understanding of the limitations of the methodology in that process can allow for

more robust analysis in future attempts. The critical appraisal of why the aim 

could not be met is sufficient in regards to this project.
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4) Single Nucleotide Based Pipeline and Results

4.1) Introduction to Single Nucleotide Pipeline

Chapter 4 contains the results and discussion for the single nucleotide based 

pipeline which was described in Section 2.4 on the thesis. The VarScan2 results

are displayed first followed by results from PhyloWGS and a discussion of the 

findings.

The importance of CNV events in MPM has been mentioned throughout the 

thesis, with a vast amount of literature focused on deciphering these events. 

However, the potential of SNVs to affect the outcome and progression of MPM 

needs to be thoroughly explored alongside the CNVs, and largely has been as 

discussed in Chapter 1. This chapter aims to; identify recurrent clonal SNV 

events in the patient cohort and evaluate their possible impact; evaluate the 

structure of the pipeline used; and cross-reference any SNV-related findings to 

see if they affect CNV events reported in the previous chapter.
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4.2) VarScan2 Results

Unlike Sequenza, ABSOLUTE and ASCAT, VarScan2 does not generate any 

visual output and so the only figure to be discussed in this section is a table 

displaying the total amount of variants detected for each sample (Table 4.1).

Table 4.1 is a table displaying the amount of variants in each sample for each 

patient that were called by VarScan2, after the quality control steps in the 

previous section had been performed. It also includes a mean average amount 

of variants called per patient and a mean average amount of variants called in 

each sample region across all patients. Overall, an immediate point of 

consideration is that the total number of variants detected in all samples is quite

low, and this is not simply a result of the quality control steps, with each sample 

retaining approximately 30% of variant calls. The range of total variants in a 

Table 4.1: A table displaying the total amount of variants called by VarScan2 for each patient and sample, after 

quality control. The average values for each sample and each patient are also displayed. The #### values in 

the sample 2 column represent lack of data due to unavailability in those specific patients, as discussed in 

Methods.
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sample ranges from a low of 12 variants in Patient 16 sample 1 and a high of 

160 in Patient 91 sample 1. The range of mean average variants called per 

patient ranges from a low of 34.6 in Patient 16 and a high of 126 in Patient 27. 

4.3) PhyloWGS Results

As discussed in the Methods section, visual output in the form of trees could not

be obtained from PhyloWGS due to the immense amount of computational 

power that would be required to display them. However, due to the workaround 

employed, results were still able to be extracted and are displayed here across 

2 tables.

Patient Number Number of clonal SNVs 

1 3

6 2

12 32

16 4

18 8

23 14

24 3

27 2

33 42

34 2

37 19

64 3

75 6

78 1

84 1

85 1

91 68

Table 4.2: A table displaying the number of clonal SNVs reported by 

PhyloWGS in each of the patients. 
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Table 4.2 displays the total number of clonal SNVs reported by PhyloWGS in 

each of the patients, with the overall number for each being quite low. This is 

not an unexpected result when considering that the total number called by 

VarScan2 for each patient was also low. 

Table 4.3 displays the SNVs that were classified as clonal through PhyloWGS 

whilst also being present in suspected driver genes identified via the 

Sequenza/TuMult pipeline, with the patient they were found in, the cytoband 

and gene in which the SNV is located, the specific genomic position that the 

nucleotide change has occurred, and whether the change is synonymous or 

non-synonymous. The VarScan2/PhyloWGS pipeline was built in order to 

produce findings such as those displayed in the table, as they present a route 

by which SNVs found in MPM cancer tissue cell populations can influence the 

pathophysiology of the cancer, and possibly confer positive selection in cells 

where they occur (dN/ds analysis cannot be performed on such a small amount 

of variants, and so positive selection cannot be validated but a method by which

it could occur can be remarked upon). Though not recurrent when considering 

exact genomic position, the SNVs found in Patients 18, 33, 75 and 27 within the

Table 4.3: Clonal SNVs as reported by PhyloWGS, present in suspected driver regions. Synoymous 

refers to a single-base change in the DNA that does not result in a different amino acid being 

produced, indicating that the change is very unlikely to have any causative effect. Non-synonymous 

is the opposite, where the base change has caused a change in amino acid resulting in a change in 

the protein structure.
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22q region are recurrent in that they all occur within the NF2 gene, and also all 

result in non-synonymous mutation in the gene. Synonymous and non-

synonymous mutations refer to the codon code, in which several combinations 

of nucleotide triplets all produce the same amino acid in a protein. If a mutation 

is synonymous, that means the nucleotide change which has happened, has 

not caused the amino acid in the protein to change, and so should not effect the

function of the protein. Non-synonymous mutations refer to a nucleotide change

which has caused the amino acid to change (as with the 4 NF2 SNVs shown in 

Table 4.3), and so may confer a functional change in the produced protein. 

There is also the possibility that a non-synonymous mutation may occur to 

produce a stop codon, which would then result in a truncated protein, or disrupt 

a stop codon, resulting in a long amino acid chain unable to fold into the correct 

shape to retain function of the protein. 
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4.4) Discussion of Single Nucleotide Pipeline Results

4.4.1) Discussion of VarScan2 Findings

The low number of variants could be due to the nature of the cancer, in that it 

undergoes large amounts of copy number loss and so also has a high chance 

of losing variants when these loss events occur. It could also simply be due to 

the exome data only representing regions of coding DNA, so variants outside of 

these regions are not counted, though it should be noted that this is not an 

issue in terms of the analysis as SNVs in these regions, though not detectable, 

are also extremely unlikely to play a role in the pathophysiology of MPM. 

Another explanation is that the the vast majority of SNVs don't play any role in 

the  proliferation of the cancer cells, and so offer no positive (or negative) 

selection pressure and instead simply act as passenger mutations. As such, 

throughout the early cancer cell population, a huge variety of SNVs would be 

found across the individual cancer cells in the population, as none would be 

driving the cells to replicate and thus increase their presence in said population.

That being said of course, it would still be expected for these mutations to be 

retained if a copy number event (or other event) allowed for a cancer cell to be 

positively selected for, as with the case with copy number events that also 

confer no positive selection value (which is why having recurrent events is so 

important when trying to identify regions of interest in relation to driver genes). 

The key difference is, that copy number events, especially on a large scale, are 

very difficult to reverse compared to SNV events, and the latency time of MPM 

is very long, giving a long period of time where these SNV events could be lost 

without effecting the proliferation of the cancer cell population and causing it to 

be diluted in the population. 
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This may suggest that SNV events do only have low impact, or no impact, on 

the proliferation of MPM and its transformation from the latent to aggressive 

stage, though it is not possible to confirm this without analysing the data set to 

find SNVs that were present prior to the divergence of the cancer in physical 

space, and then attempting to find recurrent SNVs which may hint at some role 

played in MPM. The use of phylogenetics is perfect for this.

There is no correlation between average ploidy or cellularity, as both reported 

by Sequenza and ABSOLUTE, to the average amount of variants detected in 

each patient, though Patient 16 and 64 both display the lowest amount of 

variants as well as the lowest average cellularity. This is possibly due to lower 

quality data in some of the samples of these patients, with samples 1 and 3 in 

Patient 16 showing particularly low numbers of variants (12 and 15 

respectively). 

In terms of differences between sample regions, the average number of variants

per region tends to be quite similar, with a range of 81.88 being the lowest for 

region 3 and an upper limit of 93.33 for region 2. The reason for the increased 

average in region 2 is likely due to an increased average number of variants 

called in patients with 5 samples, with 3 of the top 5 average values being in 5 

sample patients (Patients 27, 34 and 1).
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4.4.2) Discussion of PhyloWGS Findings

The range of the number of clonal SNVs that is detected in the cohort by 

PhyloWGS is unusually large, as can be seen in Table 4.2, with 3 patients 

hosting only a single clonal SNV, up to 68 clonal events hosted by Patient 91. 

The presence of such a high amount of clonal SNVs in Patient 91 does seem 

unusual when compared to the rest of the cohort, as most of the patients have 3

or less clonal SNVs. There could be a few reasons for this, but the first thing to 

consider is that Patient 91 was reported as having the lowest ploidy by 

Sequenza after analysis in the Sequenza/TuMult pipeline. This may have 

resulted in large numbers of SNVs to be grouped together based on a common 

dip in the read depth, which also may have resulted in the ploidy estimates of 

the patient samples to be lower, though the cause of such an event is a 

mystery. It is also interesting to note that Patient 91 has clonal SNVs present in 

every chromosome, again indicating that this phenomenon has been caused by 

some kind of whole genome occurrence. Of the other patients with a high 

number of SNVs called clonal, Patient 12 has obvious ploidy abnormalities 

resulting from the genome doubling event in samples 1 and 4, though this does 

not extend to all samples and so should not be resulting in a clonal effect. 

Patient 33 did not have a lower than average ploidy estimate or cellularity 

estimate, though Patient 37 was second lowest for ploidy. In terms of biological 

explanation, it could be that these patients had the initial aggressive spread of 

MPM more recently, and so more SNVs that were present in the initial 

population are still harboured by the new population which diverged from it. 

Patients 37 and 33 both have lower than average exome coverage which also 

hints towards this possibility, though Patients 91 and 12 do not. 
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In terms of recurrent clonal SNVs across the cohort, there were zero found that 

were present at the same nucleotide position, implying that, at least in this 17 

patient cohort, there is no individual SNV which contributes to MPM as a driver. 

However, the case could also be that there is an SNV mutation in MPM which 

can confer positive selection to the cancer cell population, but that it is rare and 

so undetectable in a cohort of only 17 patients. However, among the clonal 

SNVs there are cases where the SNV lies within candidate driver genes 

proposed in Chapter 3, as can be seen in Table 4.3.

What is particularly interesting with the SNVs reported in Table 4.3 is that they 

all occur in patients where the gene region in question has already undergone a

heterozygous loss in copy number, meaning an entire copy of the gene region 

has already been lost. That means, at least in the cases of non-synonymous 

mutation seen in the table, for the particular loci where the SNVs are located, 

the gene is homozygously hit, possibly resulting in a complete loss of function. 

This concept is paramount when considering the possible effects of SNVs when

they occur alongside copy number changes, as the complete loss of function of 

a gene will produce a stronger effect in terms of selection when the gene itself 

operates as a tumour suppressor. That being said, it does not necessarily 

double the effect, as the loss of one copy of a gene can be enough to reduce 

overall functionality to almost nothing. For example, in the case of regulation, 

there are often threshold amounts of protein which need to be reached in order 

for a biological pathway to proceed to a further step. If one copy of a regulatory 

gene is lost, the ability to reach that threshold may be greatly impacted, and 

make it practically impossible for it to be reached, meaning the heterozygous 

loss essential acts as a homozygous loss in terms of selective pressure (when 
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considering cancer cells). It is unlikely that these SNVs are themselves acting 

as drivers however, as if this were the case, it would be expected to see a 

higher frequency of these mutations in MPM cancer tissues. Further to this, in 

this cohort these SNVs have only been seen to be clonal when in a gene region

that has already undergone copy number loss. Were the SNVs acting as 

drivers, it would be expected to see them clonally in copy number normal 

regions, as in that scenario, a non-synonymous nucleotide mutation would be 

equal to a heterozygous copy number loss in that it prevents the full expression 

of two gene copies.

That these SNVs have occurred in the 22q and 3p21 regions, in genes already 

associated with MPM ( NF2, BAP1 and SETD2 ), as well as having been 

identified as clonal in the Sequenza/TuMult pipeline is strong evidence that the 

genes play a role in the development of the cancer and act as drivers in the 

characteristic accelerated replication and physical spread of MPM. It also 

validates the ability of the PhyloWGS method to determine clonal SNVs, though

it should be noted that the false-positive rate in the findings is not established. 

The clonal SNVs found in Patient 27 in the region of 9p21 and within the 

CDKN2A gene, and in Patient 6  within the FBXW7 gene are non-synonymous 

events, meaning they do not alter the amino acid code in either of the genes, 

and so therefore are unlikely to be conferring any sort of positive selection for 

the cancer cell populations where they are present. Even though no deleterious 

effect is being caused by either SNV, they are still useful for this analysis, as 

they act as a secondary marker to infer clonality on the regions where they are 

present. For example, in Patient 27, the CDKN2A gene has shown to have 

undergone a copy number loss due to an alteration event during the history of 
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the cancer, and this event has also been shown to have occurred clonally by the

Sequenza/TuMult pipeline, before the cancer cell populations diverged and 

physically spread across the pleural membrane. The presence of the SNV in 

this region, which has also been called as clonal, establishes further evidence 

that this region was altered prior to cancer divergence. The logic to this is that, 

just as it is highly unlikely that a copy number change event would occur twice 

at the same breakpoints through parallel evolution in separate cancer cell 

populations, it is also highly unlikely that the same nucleotide base would be 

mutated in the same way in. As such, it acts as a biomarker of clonality. This 

same logic can be applied to all of the SNV events reported to happen clonally 

that are present within a clonal copy number change event called by the 

previous pipeline, including those that are non-synonymous. 
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4.4.3) Single Nucleotide Based Pipeline Final Comments

In conclusion, this pipeline failed to identify any novel clonal SNV events that 

may act as potential drivers, though this could be considered the expected 

result based on the lack of single nucleotide mutations identified in the literature

(except those which are thought to confer susceptibility). As well as previous 

research providing strong evidence that MPM is a cancer mainly driven by copy 

number alterations (and losses in particular), which, due to their large scale are 

more likely to cause deleterious effects in normal cells and drive the 

proliferation of cancer through widespread loss of function. However, the 

identification of clonal SNV events within known associated MPM genes (NF2, 

BAP1, SETD2) causing non-synonymous mutations, alongside copy number 

loss, is a novel finding not previously documented in the literature. The use of 

phylogenetics to identify these homozygous loci, calculated to have occurred 

prior to the major divergence of cancer populations reinforces the evidence that 

these genes are important drivers in the proliferation of MPM. Furthermore, it 

provides evidence that these SNVs could themselves be conferring positive 

selection on the cancer cells where they are present, though with less selective 

power than a copy number loss. 
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5) Revolver Analysis

5.1) Introduction to the Revolver Analysis

Chapter 5 covers the results and discussion for the Revolver Analysis, 

performed as described in Section 2.5 of Chapter 2. It is a short chapter with 

only a single result and some discussion, though it establishes one of the most 

important findings of the thesis. 

Revolver was chosen as it was a freshly released software which suggested 

that it could calculate trajectories of recurrent events in phylogenies, which was 

an attractive prospect when considering the structure of the project up to this 

point. This chapter displays the single result obtained from Revolver, which is 

then followed by a short discussion on the impact of that result. The sole aim of 

this chapter is to try and establish trajectories for recurrent CNV events that 

were reported by the copy number pipeline in the Chapter 3, and evaluate the 

importance of any findings.
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5.2) Revolver Results

As binary values were used rather than CCF values (explained in Methods), the

amount of plots which can be generated using Revolver were more limited. One

of the plots which could be generated was the 'drivers occurrence' plot, though 

it was essential identical in the data that it displayed to Table 3.12, and so was 

excluded from this report. One plot that was generated and included can be 

seen in Figure 5.1, and is the drivers graph displaying the driver trajectories 

across the entire patient cohort.
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The drivers graph is a visualisation of the trajectories calculated by Revolver 

during the revolver_fit step of the work flow. In order to fully appreciate what the 

graph is displaying, each part of the figure needs to be explained in greater 

detail. Firstly, the GL displayed in the middle part of the figure represents the 

germline tissue, which in the patient cohort here, all drivers have to derive from. 

Figure 5.1: The drivers graph produced for the 17 patient cohort using Revolver. The graph displays all 

drivers that were part of the Revolver input and the evolutionary distance calculated between them (x 

and y access). The germline is represented in the middle of the graph. Yellow arrows indicate a direction 

of trajectory that is significant (p-value < 0.05). The colour of each node represents whether it had 

multiple or single trajectories going to it, calculated via the DET index. The size of the arrow head 

indicates the penalty that was applied to the driver during the fit command process. The size of the node 

indicates how many of that driver were present in the patient cohort. 
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This can be seen as there is an arrow to every node from the germline here. 

This is due to drivers being defined as events which have appeared in the 

truncal region of TuMult trees more than once across all patients in the cohort, 

meaning that all drivers have been directly derived from the germline at least 

twice. 

The next thing to be aware of is the x and y axis, which display the evolutionary 

distance calculated between the drivers. The physical space on the graph 

represents evolutionary distance between different nodes, this can best be seen

when comparing nodes to the germline. For example, the 10q23 loss event 

node is the closest to the germline on the graph, which is representative of 

10q23 loss appearing most frequently in the truncal region compared to 

elsewhere in the TuMult trees. It should be noted that this is only in relation to 

itself, as it is in fact the least abundant driver, only appearing twice, however, 

both appearances are in the truncal region, whereas other drivers appear more 

frequently in subclonal regions. 

The direction of an arrow on the graph indicates the direction of the trajectory, 

meaning that Revolver has calculated that the order in which the events occur 

in the cancer cell population follow the direction of the arrows. Whether an 

arrow is yellow or grey indicates the statistical significance, with arrows that are 

yellow showing enrichment at p-values < 0.05. The thickness of an arrow 

indicates the penalty that was applied to the likelihood during the Revolver 

algorithm, and is directly reflective of how many individual trajectories each 

node has. The penalty starts with a value of 1 and shrinks every time a 

individual trajectory between two nodes is established during the computational 

194



step of Revolver, meaning that the penalty of all incoming arrows to a node 

must be equal to 1 (i.e. a node with two incoming arrows will have a penalty of 

0.5 on each one). 

Lastly, the nodes themselves represent each driver reported in the input file, 

with the size of the node corresponding to the total number of that driver event 

in the cohort, including subclonally. The colour of the node represents the value 

of the DET index ( Divergent Evolutionary Trajectories ), which is a measure of 

heterogeneity. Essentially, if the DET index value is above 0, then there is a 

heterogeneous trajectory path to the node. On this graph, blue nodes are ones 

which only have a single trajectory, whereas red nodes have multiple incoming 

trajectories. 
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5.3) Revolver Discussion

In terms of discussing the results displayed on the drivers graph, only significant

trajectories will be discussed. However, one interesting point in relation to this is

that the 17p loss event, which can be seen in the lower left, only has a single  

trajectory, which is directly from the germline, and yet it is not significantly 

enriched. In a practical sense, this implies that the 17p loss event is not a true 

driver as far as the Revolver algorithm can determine. This is unusual, as it 

appears in the truncal region of three different patients in the Sequenza/TuMult 

pipeline, and does harbour the TP53 gene, which has been historically 

associated to MPM and is part of the same biological pathway as NF2 . 

Loss events in 9p21, 3p21, 6q, 14q and chr4 are all linked directly from the 

germline with a single trajectory. This finding does not imply that these events 

are not drivers, just that there is less evidence for them to be drivers compared 

to alternative events in the dataset. The frequency of 9p21 and 3p21 alone 

indicate that they are both important loss events in the positive selection of 

cancer cells. However, it could be the case that neither event results in the 

progression of MPM into its hyper-aggressive state. Clear trajectories can be 

seen going into loss events of 10q23, 1p36 and 13q, though of the two events 

going into both 1p36 and 13q, only one is statistically significant. The 

trajectories calculated for these regions displayed by Revolver here implies 

these events occur later on in the development of the cancer, possibly showing 

that they have potential to be drivers in the progression. What is particularly 

interesting about the 1p36 event, is that it does not show any outbound 

trajectories. This implies that 1p36 may be an alternative driver, either that it 

operates via a different pathway or that it is present as a major driver in only a 
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subset of patients. 

The key event on the graph is clearly the loss event which occurs in 22q, with 4 

alternative and significant trajectories leading to it. This provides strong 

evidence that 22q loss is a major driver event in the progression of MPM, 

showing good concordance with the previous pipelines utilised during this 

project. Interestingly, the lack of a significant trajectory implies that 22q loss 

alone is not always enough to cause rapid progression of the cancer, and 

instead, what is being seen is that 22q loss alongside another driver is required 

for this to happen. This implies that it may not always be a 22q loss which is the

last event to occur, but that it is 22q loss paired with another event (though 22q 

is still the catalyst for the change in cancer state). 

 In conclusion, although this analysis was shorter than the other two, it still 

provided new evidence that a 22q loss event is a key driver in the proliferation 

of MPM. This type of methodology has never been used before with MPM data, 

making the identification of 22q loss as a driver a novel finding in the cancer 

research field. 
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6) General Discussion, Conclusions and Further 

Work

The identification of the 22q region, and more specifically, the NF2 gene as a 

driver event in the progression of malignant pleural mesothelioma was 

established during this report, via three different phylogenetic based pipelines 

incorporating both copy number and single nucleotide somatic mutation calls. 

As discussed in Chapter 1, NF2 has long been established as an important 

gene in the development of MPM, with evidence of its association with the 

disease presented in a great deal of literature. As such, identification of NF2 

alone is not sufficient to provide a novel and useful contribution to the field. 

However, it is the methodology by which NF2 was identified which is the true 

strength to the body of work in this thesis.

Many studies which have identified NF2 have simply examined the prevalence 

of mutations in the gene in order to establish it as an important factor (Borczuk, 

Pei et al. 2016; Sato, Sekido 2018; Sekido, Pass et al. 1995). Whilst this does 

provide evidence towards association with MPM, it is not enough to label NF2 

as one of the main driver events in the disease. The prevalence of mutations 

detected could be due to positive selection of NF2 in the later stages of 

malignancy, and mean that the gene itself is not what is responsible for the 

initial proliferation of the cancer from a latent state. The reason why this 

distinction is important is due to ideal drug design. 

Developing a drug that can successfully target an MPM associated gene (or a 
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gene in a linked pathway) which is present in high numbers long after the initial 

boost may help to treat symptoms or reduce the rate of proliferation, but it does 

not address the root problem. If a drug can be developed which can inhibit the 

key driver event, then recurrence of the cancer in a patient post treatment via 

chemotherapy or surgery for example, may be reduced or even completely 

stopped. It should be noted that inhibiting the key driver event in the case of 

NF2 in MPM will not target NF2 or merlin, but rather another target with 

connected function. Whilst this seems idealist, it is a core reason as to why 

phylogenetic inference is far superior in identifying driver events in MPM (and 

other cancers) when considering druggable targets. 

At least two previous studies have used the prevalence of NF2 to identify 

protein targets in order to induce synthetic lethality in cancer cells where merlin 

is deficient. One targeting the focal adhesion kinase (FAK) protein (Shapiro, 

Irina M et al. 2014) and one targeting the mammalian target of rapamycin 

(mTOR) protein (Rodrik-Outmezguine, Vanessa et al. 2016). Synthetic lethality 

in this case refers to targeting another protein, which alongside the lack of 

merlin, will result in the death of any cells where neither protein is present. As 

NF2 is a tumour-suppressor gene characterised by loss-of-function mutations in

MPM, it cannot be directly targeted itself, as no protein is being expressed. FAK

was selected as a target because the researchers had discovered that merlin 

depleted cells were more sensitive to FAK-inhibition and realised that the cells 

were more dependent on FAK for cell-to-cell adhesion. The decisions to target 

the specific proteins in these studies was done due to the recurrence of NF2 

deletion (or LOF). Incorporation of phylogenetic inference as in this body of 

work could result in increased priority for searching for appropriate drug targets 
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linked to NF2, due to its nature as a driver event.

A further issue in targeting specific gene pathways without identifying driver 

events, is that of drug resistance. Phylogenetic inference ensures that you are 

targeting the pathway of the key gene, or genes, involved in a given cancer. 

Targeting non-drivers which occur in greater number once proliferation has 

already started to occur, will lead to selection pressure in the cancer cell 

population, possibly making further treatment more difficult or even impossible. 

In regards to the FAK-inhibition study, clinical trials were subsequently approved

but stopped shortly after due to unspecified reasons. This could have been due 

to drug resistance or possibly even to NF2-pathway resistance, i.e. the loss of 

merlin may be making it harder for the drugs to be effectively delivered. This 

idea is also suggested in a review paper for merlin associated druggable targets

(Sato, Tatsuhiro 2018). 

An additional reason as to why a phylogenetic inference study to identify driver 

events is superior to a simple prevalence study, is to allow identified clonal 

events to be used as markers for relapse in patients after treatment. It is 

common practice for patients to receive significant after-care in treatment of 

MPM and if regular screening of blood samples around the site of the tumour 

were taken, the expression levels of proteins in the blood could be compared to 

matched normals to see if they were reflective of possible driver events taking 

place. In the case of this study this would be seen as a decrease in expression 

of NF2, i.e. there would be less merlin and NF2 RNA in the sample than 

expected.
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In terms of comparing the body of work in the thesis to another phylogenetic 

study analysing MPM, as of the time of writing only one exists, and is the Zhang

paper discussed previously. The thesis work and the Zhang paper use 

overlapping patient cohorts and employ similar methodologies, as well as 

similar results, though the Zhang paper reports higher frequency of the clonal 

events across the samples. If critically comparing the methodologies employed, 

it could be argued that the phylogenetic inference performed in the thesis is 

probably more accurate than the one in the Zhang paper, though the overall 

methodology of the Zhang paper was superior. This is due to the software 

choices, in particular the use of ASCAT as the copy number estimation software

in the Zhang paper compared to Sequenza in the thesis. The control of 

cellularity and ploidy values used by ASCAT causes a bias in the copy number 

reported, and will report copy numbers as closer in value to one another than 

will Sequenza. When this is paired with a phylogenetic inference software, it will

then lead to a greater number of clonal events being called. This phenomenon 

can be seen in Chapter 3.4.4, indicating that ASCAT will produce a higher rate 

of false positive calls when compared to Sequenza, specifically when producing

copy number calls to be used for phylogenetic inference. However, as stated, 

the quality control steps and post-phylogenetic analysis in the Zhang paper was

far more extensive than in the thesis.

There are several limitations to the thesis which will be discussed now. The 

most minor limitation is the small patient cohort, only 17 patients were left after 

quality control steps were taken, covering 74 samples. Due to MPM being a 

rare cancer it's difficult to obtain greater patient cohort sizes, though there are 

several online databases which could be utilised for testing purposes. The small
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cohort size may have led to inaccuracies in the final results due to selection 

bias. 

The lack of greater statistical analysis is a major limitation in the project, 

especially in the case of the PhyloWGS and Revolver pipelines. The range of 

additional results which could have been obtained, especially from Revolver, 

was great, and the pipeline should be modified in future to ensure CCF values 

are calculated so that full Revolver analysis can be performed. 

The biggest limitation in the pipeline is probably the required computational 

resources it needs to complete a full throughput. Sequenza and PhyloWGS in 

particular are computationally heavy and take a long time to produce output, 

resulting in a robust but slow pipeline. Further to this, the PhyloWGS tree output

was inaccessible due to lack of computational power, though this could also be 

attributed to the strange design choice by the creators of the software to display

the tree output in such a way.

Further work that could be undertaken as part of this project would be 

incorporation of several parallel softwares at each step of the pipeline in a 

variety of combinations, so that the final results from each could be compared to

form a combined results output. It would be particularly interesting to put such a 

result set into Revolver to see what trajectories in would present. Furthermore, 

in order to test the robustness of the pipeline, datasets from other cancer types 

could be used to see if it is able to handle them in much the same way as MPM 

data. An eventual final future objective of the project would be the specification 

of a druggable target in MPM, based on the results from a greater cohort.
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In conclusion, the overall aims of the project were each fulfilled by the body of 

work in the thesis. Potential driver events were identified in NF2, BAP1 and 

CDKN2A, using a combination of both copy number and single-nucleotide 

derived data. The pipeline used several softwares at different stages to 

establish consensus results and perform quality control, and post-phylogenetic 

inference was used to generate trajectories to establish a “true driver” event in 

NF2.
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Appendix A - Sequenza/TuMult Cytobands Trees

Sequenza/TuMult cytobands tree Patient 1
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Sequenza/TuMult cytobands tree Patient 6
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Sequenza/TuMult cytobands tree Patient 12
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Sequenza/TuMult cytobands tree Patient 16
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Sequenza/TuMult cytobands tree Patient 18
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Sequenza/TuMult cytobands tree Patient 23
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Sequenza/TuMult cytobands tree Patient 24
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Sequenza/TuMult cytobands tree Patient 27
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Sequenza/TuMult cytobands tree Patient 33
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Sequenza/TuMult cytobands tree Patient 34
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Sequenza/TuMult cytobands tree Patient 37
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Sequenza/TuMult cytobands tree Patient 64
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Sequenza/TuMult cytobands tree Patient 75
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Sequenza/TuMult cytobands tree Patient 78
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Sequenza/TuMult cytobands tree Patient 84
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Sequenza/TuMult cytobands tree Patient 85
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Sequenza/TuMult cytobands tree Patient 91

220



Appendix B - ASCAT/TuMult Cytobands Trees

ACSCAT/TuMult cytobands tree Patient 1

ACSCAT/TuMult cytobands tree Patient 6
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ACSCAT/TuMult cytobands tree Patient 12
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ACSCAT/TuMult cytobands tree Patient 16

ACSCAT/TuMult cytobands tree Patient 18

ACSCAT/TuMult cytobands tree Patient 23
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ACSCAT/TuMult cytobands tree Patient 24

ACSCAT/TuMult cytobands tree Patient 27
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ACSCAT/TuMult cytobands tree Patient 33
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ACSCAT/TuMult cytobands tree Patient 34

ACSCAT/TuMult cytobands tree Patient 37
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ACSCAT/TuMult cytobands tree Patient 64

ACSCAT/TuMult cytobands tree Patient 75
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ACSCAT/TuMult cytobands tree Patient 78

ACSCAT/TuMult cytobands tree Patient 84
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ACSCAT/TuMult cytobands tree Patient 85

ACSCAT/TuMult cytobands tree Patient 91
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