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Summary

To evaluate the criterion validity of an automated sleep detection algorithm applied

to data from three research-grade accelerometers worn on each wrist with concur-

rent laboratory-based polysomnography (PSG). A total of 30 healthy volunteers

(mean [SD] age 31.5 [7.2] years, body mass index 25.5 [3.7] kg/m2) wore an Axivity,

GENEActiv and ActiGraph accelerometer on each wrist during a 1-night PSG assess-

ment. Sleep estimates (sleep period time window [SPT-window], sleep duration, sleep

onset and waking time, sleep efficiency, and wake after sleep onset [WASO]) were

generated using the automated sleep detection algorithm within the open-source

GGIR package. Agreement of sleep estimates from accelerometer data with PSG was

determined using pairwise 95% equivalence tests (±10% equivalence zone), intraclass

correlation coefficients (ICCs) with 95% confidence intervals and limits of agreement

(LoA). Accelerometer-derived sleep estimates except for WASO were within the 10%

equivalence zone of the PSG. Reliability between data from the accelerometers worn

on either wrist and PSG was moderate for SPT-window duration (ICCs ≥ 0.65), sleep

duration (ICCs ≥ 0.54), and sleep onset (ICCs ≥ 0.61), mostly good for waking time

(ICCs ≥ 0.80), but poor for sleep efficiency (ICCs ≥ 0.08) and WASO (ICCs ≥ 0.08).

The mean bias between all accelerometer-derived sleep estimates worn on either

wrist and PSG were low; however, wide 95% LoA were observed for all sleep esti-

mates, apart from waking time. The automated sleep detection algorithm applied to

data from Axivity, GENEActiv and ActiGraph accelerometers, worn on either wrist,

provides comparable measures to PSG for SPT-window and sleep duration, sleep

onset and waking time, but a poor measure of wake during the sleep period.
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1 | INTRODUCTION

Numerous studies have implicated disturbed sleep with adverse

health outcomes including increased risk of obesity and diabetes

(Reutrakul & Van Cauter, 2018), cardiovascular disease (Cappuccio

et al., 2011), and mental health conditions (João et al., 2018); how-

ever, the quality of evidence depends on the validity of the measure-

ment of sleep parameters. Most epidemiological studies linking poor
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sleep with negative health outcomes rely on a single, retrospective

self-report of sleep (Girschik et al., 2012), which is prone to recall bias

(Lauderdale et al., 2008). Polysomnography (PSG), the ‘gold standard’
for sleep assessment, is expensive, labour-intensive (Sadeh, 2015),

and hence not feasible for large scale studies. The use of wrist actigra-

phy devices such as Actiwatch is cost-effective, non-intrusive, and

allows continuous recording of activity over days or weeks under

free-living conditions (Martin & Hakim, 2011).

Wrist-worn accelerometers that collect raw data have become

increasingly used for physical activity assessment in large

population-based studies (e.g., National Health and Nutrition

Examination Survey [Loprinzi & Cardinal, 2011], UK Biobank

[Doherty et al., 2017]). The three most widely used research-grade

raw data accelerometer brands used in epidemiological studies are

the Axivity (Axivity Ltd., Newcastle, UK), ActiGraph (ActiGraph

LLC, Pensacola, FL, USA), and GENEActiv (Actvinsights Ltd.,

Kimbolton, Cambridgeshire, UK). Implementation of a 24-h proto-

col in these studies means that they could be used to assess sleep

and physical activity with a single device in a free-living setting.

Availability of raw data also potentially improves comparability

among different accelerometer brands and enables the develop-

ment and application of novel algorithms. In the early devices, due

to limited memory and battery capacity, data were pre-processed

onboard the device into the form of ‘counts’ through proprietary

algorithms that complicates comparability of data from different

devices. Some of the most widely used count-based sleep detec-

tion algorithms include those developed by Sadeh et al. (1994) and

Cole et al. (1992).

Recently, van Hees et al. (2015) developed a sleep detection

algorithm based on angular wrist rotation measured with raw accel-

eration data. Sleep is defined as sustained inactivity, determined as

the absence of change in wrist rotation greater than 5 � for 5 min, or

user-defined duration within a defined sleep window (starting at

sleep onset and ending when waking up) (van Hees et al., 2015). The

sleep window can be obtained from sleep onset and offset timings

participants record in their sleep log (sleep log method) or from an

automated sleep window detection (the Heuristic Algorithm looking

at Change of Z-Angle, HDCZA [van Hees et al., 2018]). This algo-

rithm is available as part of an open-source software which combines

sleep and activity data over the 24-h day, can be applied to raw

accelerometer data irrespective of accelerometer brand, and is now

widely used in the research community (Jones et al., 2019; Wendt

et al., 2020). However, the sleep algorithm has undergone limited

validation to date and parameters such as wake after sleep onset

(WASO) have not been validated. Additionally, the impact of hand-

edness on the accelerometer-derived sleep estimates compared to

PSG has not been assessed.

The primary aim of the present study was to validate an auto-

mated sleep detection algorithm (HDCZA) when applied to data from

the ActiGraph, Axivity, and GENEActiv accelerometers worn simulta-

neously on both wrists against PSG in a healthy adult population. The

secondary aim was to compare the automated sleep window detec-

tion and the sleep log method.

2 | METHODS

2.1 | Study participants

Adults aged 18–65 years inclusive without known sleep disorder

(self-reported by the participants) were recruited through the

University of Leicester, University Hospitals of Leicester, and word

of mouth between January and December 2020. This study was

approved by the Nottingham 1 Research Ethics Committee

(19/EM/0275) and registered on the ClinicalTrials.gov Protocol

Registration (NCT04288557). Informed consent was sought for all

participants. Individuals unwilling or unable to give informed con-

sent and without a good command of the English language were

excluded from the study.

2.2 | Procedure

Participants underwent informed consent on a separate day prior to

the PSG assessment. Demographic details such as age, sex, ethnicity,

medical history, and habitual sleep duration were recorded. Partici-

pants' height and weight were measured and recorded to the nearest

0.5 cm and 0.5 kg, respectively. Each participant self-reported their

handedness.

The PSG assessment took place on a weeknight. Participants

arrived early in the evening and were fitted with three accelerometers

on each wrist: the GENEActiv Original (ActivInsights Ltd, Cambridge-

shire, UK), Axivity AX3 (Axivity Ltd, Newcastle, UK), and ActiGraph

GT9X Link (ActiGraph LLC, Pensacola, FL, USA). For comfort reasons,

two of the devices (the Axivity and ActiGraph) were taped together to

reduce the number of straps on each wrist. The relative position of

the three devices on a given wrist was randomised between the

participants but consistent between wrists for each participant. After

fitting the accelerometers, participants were prepared for the PSG

assessment in accordance with the American Academy of Sleep Medi-

cine (AASM) guidelines (Berry et al., 2012) by a trained technician.

The recording began when participants expressed willingness to go to

bed and ended the following morning (usually between 6:00 and

7:00 a.m.). In the morning, participants were asked about time they

tried to sleep, fell asleep and woke up. To assess the extent to which

sleep duration in the laboratory setting was representative of habitual

sleep duration all participants were fitted with a GENEActiv acceler-

ometer on their non-dominant wrist for 8 days. Participants com-

pleted a sleep log for the days they wore the device.

2.3 | Measures

2.3.1 | Polysomnography

Digital PSG was conducted using an Alice-5 unit recorder (Philips

Respironics) in conjunction with Philips Respironics proprietary soft-

ware. A total of seven channels were utilised: two bipolar and two

2 of 10 PLEKHANOVA ET AL.
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common reference electroencephalogram (EEG) channels (sampled at

100 Hz, gain factor 1, high pass [30 Hz] and low pass [0.3 Hz] filters

applied), two electro-oculogram channels (EOG; sampled at 100 Hz)

and one bilateral electromyogram submentalis (EMG; sampled at

200 Hz, gain factor 1, high pass [90 Hz] and low pass [0.3 Hz]) chan-

nel. The EEG array was attached in accordance with the 10:20 system

of electrode placement (Jasper, 1958); the final montage included

C3-A2, C4-A1, fP1-F3, and O1-P3 placements.

The sleep PSG data were processed using Philips Respironics

software. The beginning of sleep scoring was determined by ‘lights
out’ time and ended at ‘lights on’. Sleep parameters were scored

using the AASM criteria (Berry et al., 2012) by a single specialist sleep

technologist. This included use of 30-s epochs for sleep staging,

assigning epochs a state of sleep or wake, documenting and generat-

ing indices of the frequency limb movement events.

2.3.2 | Accelerometers

The GENEActiv Original, Axivity AX3, and ActiGraph GT9X Link are

triaxial accelerometers with a dynamic range of ±8 g, where g is equal

to the Earth's gravity. All accelerometers were configured to record at

a frequency of 100 Hz and initialised using the same personal com-

puter (PC). However, the accelerometers could not be precisely time

synchronised with the PSG (accelerometers initialised on a different

PC). GENEActiv devices were initialised, and data were downloaded

and saved in raw format as .bin files using GENEActiv PC software

version 3.2. Axivity devices were set up and data downloaded with

OmGui software version 1.0.0.30 (Open Movement, Newcastle, UK).

ActiGraph Link GT9X devices were initialised and downloaded using

ActiLife version 6.13.3, saved in raw format as .gt3x, then converted

to .csv format for data processing.

All accelerometer files were processed using R-package GGIR ver-

sion 2.5 (https://cran.r-project.org/web/packages/GGIR/) (Migueles

et al., 2019). Signal processing in GGIR includes autocalibration using

local gravity as a reference, detection of sustained abnormally high

values, detection of non-wear, calculation of the average magnitude

of dynamic acceleration (i.e., the vector magnitude of acceleration cor-

rected for gravity [Euclidean Norm – 1 g] in milli-gravitational units

averaged over 5-s epochs).

The automated sleep window detection algorithm calculates wrist

rotation (changes in the z-angle) for each 5-min rolling window and

values under the 10th percentile over an individual day (noon-to-

noon). The algorithm then detects blocks lasting >30 min, with gaps

<60 min counted towards the identified blocks. The longest block in

the day between noon–noon represents the sleep window (van Hees

et al., 2018).

When a sleep log is used to guide the algorithm in GGIR, it is also

possible to calculate sleep onset latency (SOL) if onset reported by

participants corresponds to intention to fall asleep as opposed to the

timing of sleep onset. In this study, the results reported for the sleep

log condition used timings of sleep onset to guide the algorithm.

In addition, accelerometer data were also processed with onset T
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indicating intention to fall asleep. These data were used to demon-

strate agreement between accelerometer SOL and PSG SOL, thus

only results for SOL are presented from these outputs.

To demonstrate the agreement between PSG and count-based

sleep detection, the zero-crossing algorithm developed by Sadeh et al.

(1994) also available in GGIR was applied to data.

2.4 | Statistical methods

The variables of interest included: sleep period time window duration

(SPT-window; time difference between falling asleep and waking up),

sleep duration (accumulated nocturnal sustained inactivity bouts [time

spent sleeping] within SPT-window), sleep efficiency (ratio of sleep

duration compared to SPT-window), WASO (total minutes of wake in

the sleep window), timing of sleep onset, waking time, and SOL (time

it took to fall asleep; only in the sleep log method).

Only those participants who provided all six valid accelerometer

files (three devices on both wrists) and valid PSG recording output

were included in analyses. Descriptive characteristics were calculated

for the study population, as well as the sleep variables estimated by

each method mean (SD) or median (25–75th percentile) after testing

for normality. Equivalence testing was performed using the confi-

dence interval (CI) approach (95% equivalence testing) (Dixon

et al., 2018), with PSG as the reference method. A 90% CI was

obtained for the difference in means of sleep estimates from PSG and

accelerometers. This CI was then used to test equivalence at α = 5%

(Dixon et al., 2018). To be deemed equivalent, the 90% CI of for the

mean of one accelerometer should fall entirely within the predefined

equivalence zone of ±10% of the mean of PSG. The ±10% equivalence

zone of the reference mean was selected based on previous validation

studies of physical behaviours measures. However, as presented by

O'Brien (2021), the selection of an equivalence zone (i.e., narrow versus

broad) influences equivalence test outcomes. Therefore, as there is no

evidence of a standardised equivalence criteria, this study also reported

a minimum equivalence zone for the PSG estimates that include 90% CI

of the accelerometer sleep estimates. Log transformation was applied to

data where data were not normally distributed. The agreement between

sleep estimates was examined using intraclass correlation coefficients

(ICCs, single measures, absolute agreement) with 95% CI and limits of

agreement (LoA) (Bland & Altman, 1986). The level of reliability was

classified as ‘poor’ (ICC > 0.5), ‘moderate’ (ICC 0.5–0.75), ‘good’
(ICC > 0.75–0.9) and ‘excellent’ (ICC > 0.9) (Koo & Li, 2016). Bland–

Altman plots were created to assess the pattern and magnitude of

differences in sleep estimates between PSG and each accelerometer.

Paired t tests were conducted to assess whether habitual sleep duration

measured using 7-day accelerometry with and without use of a sleep

log was different from sleep duration defined by 1-night PSG.

Additionally, sensitivity, specificity, and accuracy of the binary

classification of sleep (any sleep stage) and wakefulness, were derived

from epoch-by-epoch comparison to PSG. However, it should be

noted that it was not possible to precisely synchronise the data and

raw PSG data was not available for one participant. Accelerometer 5-sT
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epoch data were converted into 30-s epochs by taking the mode for

each 12 sets of data. If 50% of epochs were classified as ‘sleep’ and
50% as ‘wake’, then the transformed 30-s epoch was classified as

‘wake’. The SPT-window was defined from sleep onset and waking

time from PSG recordings.

Descriptive statistics, t tests and ICCs were performed using the

IBM Statistical Package for the Social Sciences (SPSS) version 26 and

LoA using GraphPad Prism 7. Equivalence tests were conducted in

Minitab (version 21.1). Alpha was set at 0.05.

3 | RESULTS

3.1 | Study participants

In total, 31 healthy volunteers underwent a 1-night PSG assessment

in the sleep laboratory. Two accelerometers malfunctioned (same

participant), thus data from 30 participants (mean [SD] age

31.5 [7.2] years, body mass index 25.5 [3.7] kg/m2, 63% females and

77% White) were available for the analyses. The description of the

participants and sleep characteristics defined by PSG are shown in

Table S1. The median wear duration of the accelerometer during the

habitual sleep assessment was 6.8 days and 6.0 nights.

3.2 | Comparison of sleep estimates by
polysomnography and automated sleep window
detection

Table 1 presents descriptive statistics of sleep estimates (mean

[SD] or median [interquartile range, IQR]) measured by PSG and

accelerometers worn on the non-dominant and dominant wrist.

Tables 2 and 3 shows the ICCs, mean bias, 95% LoA, and equiva-

lence zones between each accelerometer worn on (a) the non-

dominant and (b) dominant wrist and PSG for all sleep estimates.

Equivalence and Bland–Altman plots for all sleep estimates between

each accelerometer worn on the non-dominant and dominant wrist

and PSG are presented in Figure 1 and in Figure S1a–c, respectively.

Reliability between all three brands of accelerometers when worn

on either wrist and PSG for SPT-window was moderate, with ICCs of

0.65–0.86. The mean differences between PSG and the three brands

of accelerometers worn on either wrist were low (up to 8 min); how-

ever, 95% LoA (up to ±91 min) were wide. The size of the zone

required for PSG and accelerometer estimates of the SPT-window to

be deemed equivalent was ~7% for the non-dominant wrist. This was

similar for the dominant wrist for the Axivity and GENEActiv, but

smaller for the ActiGraph, at 2.7%.

Regardless of wrist placement, reliability was moderate for sleep

onset (ICCs of 0.61–0.87) and mostly good for waking time (ICCs of

0.80–0.90) between the three accelerometer brands and PSG. Sleep

onset and waking time detected by accelerometers on either wrist

compared to PSG was up to 16 and 9 min later, respectively. Notice-

ably wider 95% LoA were observed between all accelerometers andT
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PSG for sleep onset (up to ±1 h 34 min) compared to waking time

(up to ±31 min; except for the Axivity on dominant wrist LoA were

± 75 min). Across the three accelerometer brands and both wrists, the

equivalence zone required for PSG and accelerometer estimates of

sleep onset and waking time to be deemed equivalent was similar at

up to 2.1% and 0.8%, respectively.

Moderate reliability was observed for sleep duration (ICCs of

0.54–0.74). The mean differences between the three accelerometer

brands worn on either wrist and PSG were low; however, 95% LoA

(up to ±96 min) were high. Sleep duration was slightly overestimated

(up to 6 min) by accelerometers compared to PSG worn on either

wrist except for the Axivity. Across the three accelerometer brands

and both wrists, the equivalence zone required for PSG and acceler-

ometer estimates of sleep duration to be deemed equivalent was simi-

lar at up to 5.1%.

Between each accelerometer and PSG, reliability was poor for

sleep efficiency (ICCs of 0.08–0.29) and WASO (ICCs of 0.08–0.30).

Sleep efficiency was slightly overestimated and WASO

F IGURE 1 Equivalence
between each accelerometer
worn on the non-dominant wrist
and dominant wrist and
polysomnography. Error bars
represent the 95% confidence
interval of the ratio.
Equivalence = 1 (solid line).
Dashed lines indicate the 10%

equivalence zone and dotted lines
indicate a 5% equivalence
zone. D, dominant; ND, non-
dominant
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underestimated by accelerometers irrespective of brand or wrist com-

pared to PSG, by up to 2% and 8 min, respectively. Wide 95% LoA for

sleep efficiency (up to ±16%) and WASO (up to ±70 min) were

observed. Bland–Altman plots also revealed a pattern in the bias

between accelerometer-measured sleep efficiency and WASO and

PSG such that accelerometer measures showed smaller differences

compared to PSG when sleep efficiency increased and WASO

decreased. Regardless of accelerometer brand or wrist placement,

equivalence zone required of PSG for sleep efficiency was reached at

up to 5.1%. The equivalence zones for WASO ranged from 28%

to 40%.

3.3 | Comparison of sleep estimates by PSG and
the sleep log method

The descriptive statistics of sleep estimates (mean [SD] or median [IQR]

per night) measured by PSG and accelerometers worn on the non-

dominant and dominant wrists using the sleep log method are shown in

Table S2. Table S3a,b demonstrates ICCs, mean bias, 95% LoA, and

equivalence zones between each accelerometer worn on (a) non-

dominant and (b) dominant wrists and PSG for all sleep estimates.

The pattern of the results using the sleep log method was largely

unaltered compared to the automated sleep window detection.

Table S4 shows ICCs, mean bias, 95% LoA, and equivalence zones

between each accelerometer worn on both wrists and PSG for SOL.

Reliability was poor (ICCs of �0.24 to �0.11) between each acceler-

ometer brand worn on either wrist and PSG. SOL was underestimated

by accelerometers by up to 5 min with wide 95% LoA (up to ±49 min)

observed. Regardless of accelerometer brand or wrist placement the

equivalence zones for SOL ranged from 40% to 73%.

3.4 | Comparison of sleep estimates by PSG and
the zero-crossing algorithm

The descriptive statistics of sleep estimates (mean [SD] or median [IQR]

per night) measured by PSG and accelerometers worn on the non-

dominant and dominant wrists using the zero-crossing method are

shown in Table S5. Table S6 demonstrates ICCs, mean bias, 95% LoA,

and equivalence zones between each accelerometer worn on (a) non-

dominant and (b) dominant wrists and PSG for all sleep estimates.

The agreement between PSG and the zero-crossing algorithm

was comparable to the automated sleep window detection based

on angular wrist rotation for SPT-window duration, sleep onset and

waking time; however, noticeably lower for sleep duration, sleep effi-

ciency and WASO.

3.5 | Epoch-by-epoch comparison to PSG

Relative to PSG, the overall accuracy of the algorithm was 84%. Sensi-

tivity (identifying sleep as sleep) was generally high at 92%, while

specificity (identifying wake as wake) was relatively low at 20%.

Results were similar for all brands of accelerometers on either wrist

(Table S7).

3.6 | Comparison of 1-night PSG and 7-day
accelerometry

Habitual sleep duration measured using 7-day accelerometry did not

significantly differ from 1-night PSG assessment. The mean (SD) sleep

duration defined by PSG was 385.7 (29) min versus accelerometer

sleep duration in presence of a sleep log 373.1 (55) min (p = 0.29) or

absence of a sleep log 395.7 (49.5) min (p = 0.26).

4 | DISCUSSION

Irrespective of brand of monitor or placement on the dominant or

non-dominant wrist, all accelerometer sleep estimates apart from

WASO, could be deemed equivalent to sleep estimates measured by

PSG. This was true whether the sleep window was determined using

automated detection or the sleep log method. These data provide

further evidence that GGIR can be used to provide valid and monitor-

agnostic estimates of sleep quantity and timing, as well as physical

activity, in the large studies worldwide employing research-grade raw

data accelerometers. Overall, the results suggests that these acceler-

ometers can be used to capture an accurate picture of the whole 24-h

physical behaviour profile. However, poor detection of wakefulness

during sleep by the algorithm tested should be considered in the

future studies.

An important finding of this study was that overall agreement

between PSG and accelerometers for all sleep estimates, irrespective

of the accelerometer brand or placement, was similar. Given that

handedness had little impact on accelerometer-derived sleep esti-

mates, researchers could decide on wrist placement based on other

outcomes of interest. For instance, in physical activity research the

non-dominant wrist is commonly used for device placement (Dieu

et al., 2017). Of note, although until recently hip placement has been

most widely used for physical activity assessment (Ainsworth

et al., 2015), hip-mounted accelerometers (GTX3+) compared to

wrist-worn demonstrate lower agreement for sleep duration, sleep

efficiency, WASO, and SOL when compared to PSG (Full et al., 2018;

Slater et al., 2015; Zinkhan et al., 2014).

The sleep detection algorithm used in the present study has been

previously developed and validated in a sample of clinical patients

(n = 28) and healthy young adults (n = 22) (van Hees et al., 2018). In

healthy sleepers, sleep parameters were assessed by the Axivity accel-

erometer worn on the non-dominant wrist and compared to PSG. The

findings from this study are consistent with the study by van Hees

et al. (2018) reporting small differences between accelerometer and

PSG for SPT-window and sleep duration, sleep onset and waking time.

The findings from the equivalence tests in this study confirm that

these sleep estimates derived from the HDCZA algorithm are
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comparable to PSG. Nonetheless, healthy sleepers usually have high

sleep efficiencies (in this study >90% on average), therefore, it should

be noted that an algorithm that always classified ‘sleep’ within the

SPT-window would also have high sensitivity for sleep. It is worth

noting, that while mean bias for sleep efficiency were low, the reliabil-

ity was poor irrespective of accelerometer brand or wrist placement

compared to PSG. Furthermore, a difference of 5% is considered clini-

cally significant in sleep efficiency (Smith et al., 2018). As the equiva-

lence tests revealed that accelerometer measures of sleep efficiency

were around the 5% equivalence zone, this should be considered

when interpreting data.

In this study, the HDCZA algorithm poorly detected periods of

wakefulness in SPT-window compared to PSG. WASO was underesti-

mated by accelerometers, and in two participants it was underesti-

mated by ~1.5 h. These findings were not surprising, as van Hees

et al. (2015) previously reported moderate specificity (45%) of the

algorithm to detect wake during sleep period in a sample of sleep

clinic patients. Similar specificity of 34%–46% was reported for

count-based sleep detection using algorithms developed by the Sadeh

et al. (1994) or Cole et al. (1992) (Quante et al., 2018; Slater

et al., 2015). In this study specificity for WASO was lower (20%) than

in previous studies. One explanation for low specificity could be that

a few participants had very little wake during the sleep period. In

accelerometry-based assessment, wrist movement indicates wakeful-

ness and immobility indicates sleep. However, immobility is possible

during periods of wakefulness and as such can be mistakenly identi-

fied as sleep periods by accelerometers. Bland–Altman plots also

revealed a pattern in the bias between accelerometer-measured

WASO and PSG such that accelerometer measures showed smaller

differences compared to PSG when WASO decreased. Therefore,

more wakefulness in the sleep period will likely result in misclassifica-

tion of WASO.

Implementing the algorithm developed by Sadeh et al. (1994)

based on zero-crossing in GGIR to generate sleep estimates demon-

strated poor detection of sleep episodes with the SPT-window result-

ing in substantial underestimation of WASO.

Further, this study compared sleep estimates from accelerometers

with PSG using sleep onset and offset timings to guide the algorithm.

Overall, the use of a sleep log did not improve the level of agreement

of sleep estimates between accelerometers and PSG. Although the par-

ticipants were asked about their sleep onset and waking times not long

after awakening, it appears that estimating these timings by self-report

is challenging, particularly estimating timing of sleep onset.

A potential value of a sleep log is that when the timing of

intention to fall asleep is recorded, it is possible to calculate SOL.

This estimate generated in GGIR has not been validated against

PSG previously. In this study, SOL was not comparable to PSG as

indicated by poor reliability and wide equivalence zones. A system-

atic review found that in healthy participants actigraphy (usually

using the algorithms developed by Sadeh et al. [1994] and Cole

et al. [1992]) generally underestimated SOL and showed poor to

moderate agreement (ICCs range �0.07 to 0.56) when compared

to PSG (Scott et al., 2020). It should be noted, that in these studies

SOL is usually defined as ‘lights off’ to the first epoch scored as

sleep from PSG recording not ‘intention to fall asleep’ reported by

the participants. Hence, generally reporting somewhat better

agreement between PSG and accelerometers. A sleep log can also

be valuable to guide the algorithm to identify the main sleep epi-

sode if someone is very inactive or has multiple episodes of sleep

throughout the day, which can result in misclassification of the

SPT-window. However, the consistency of the algorithm to iden-

tify the SPT-window when the sleep estimates were compared

with and without a sleep log in free-living setting has been previ-

ously demonstrated (Plekhanova et al., 2020).

5 | STRENGTHS AND LIMITATIONS

The strengths of this study include the simultaneous comparison of

three research-grade accelerometers worn on each wrist with PSG.

Importantly, sleep data were generated using an automated sleep

detection algorithm that can be applied to raw accelerometer data

irrespective of accelerometer brand and is available as part of the

open-source software. This method allows identical data handling and

facilitates comparability of the results. The limitations of this study

include the small sample size, which makes it hard to generalise

findings beyond the specific population recruited for this study.

The sample consisted of healthy volunteers; thus, the findings cannot

be generalised to individuals with sleep disorders. While the compari-

son of wrist accelerometers to the ‘gold standard’ PSG is a strength,

1 night of PSG assessment may not represent participants' habitual

sleep due to the first-night effect. However, the habitual sleep dura-

tion of the participants was similar to that of 1 night of PSG as indi-

cated by 7-day accelerometry. The influence of the first-night effect

should also be a minor issue when evaluating the agreement between

the measurement methods. Also, the GENEActiv was worn adjacent

to the Axivity, which was taped on top of the ActiGraph, this may

have impacted on the agreement between the three devices. Future

studies should randomise the positioning of all devices and/or con-

sider different set-ups of accelerometers to establish the impact on

agreement between the devices and PSG.

6 | CONCLUSION

This study suggests that the automated sleep detection algorithm

HDCZA applied to the Axivity, GENEActiv and ActiGraph acceler-

ometers, worn on either wrist, provides comparable measures with

PSG of SPT-window and sleep duration, sleep onset and waking

time. Accelerometry should be used cautiously in studies where

estimates of sleep efficiency and wakefulness during sleep period

are important.
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